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ABSTRACT 

Climate change may change the frequency and intensity of weather events which will 

likely challenge human and natural systems more than normal change. Agriculture is considered 

one of the most vulnerable systems to climate change. The main goal of this study is to estimate 

the economic impact of climate change on agriculture in the Canadian prairies and to capture the 

impact of weather conditions on the viability of production systems along with the impact of 

market price effects by predicting the economic impact of climate change. A two way fixed 

effects panel model with time and provinces group fixed effects is calibrated to simulate a set of 

potential climate change and global change in prices on the economics of prairie agriculture.  

The predicted impact of change in rainfall, increase in temperature and rise in future 

global market prices indicate that climate change will have complicated nonlinear effects on 

prairie agriculture.  The results of this study also highlight the importance of precipitation for 

agriculture on the Canadian prairies. Marginal impacts of the evapo-transpiration proxy, rainfall, 

and July relative humidity indicate direct and positive relationship between agricultural land 

values and water related climate variables. It verifies that agriculture in the Prairies is very 

vulnerable to water scarcity and land use and land value strongly depends on the precipitation. 

The most important finding of this study is that climate change is beneficial for Canadian prairie 

agriculture except for some south east regions of Alberta. Comparing the results from direct 

impacts of climate and price changes on land value with the results from indirect impacts 

through area response estimation reveals that direct impacts of climate and price change increase 

farmland value by 31% while the indirect impacts from different scenarios increase simulated 

land value by up to 51%.  

 iii
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The results from base and three scenarios in this study reveal that climate change may not 

be a big threat for prairie agricultural economics if farmers employ appropriate adaptation 

strategies such as switching between crops and introducing new crops. As a matter of fact, 

climate change may provide an opportunity for agricultural producers in the prairies to gain from 

future price and environmental change. To achieve this goal, policies to address climate change 

concerns need to put a greater emphasis on dealing with water deficit and scarcity. Policies that 

facilitate access to irrigation and crop choices will help farmers to adapt to climate change. 
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CHAPTER 1 INTRODUCTION 

 
  

1.1   Background  
Climate change is emerging as the most important environmental problem facing modern 

society. Increases in atmospheric stocks of greenhouse gases (GHG), including carbon dioxide 

(CO2), methane (CH4) and nitrous oxide (N2O), due to human activities have been linked to 

global climate change (Intergovernmental Panel on Climate Change (IPCC), 1990, 2007). The 

Fourth Assessment Report of the IPCC (2007) emphasizes that there will be changes in the 

frequency and intensity of some weather events and extreme climate events which will likely 

challenge human and natural systems much more than gradual changes in mean conditions. 

According to this report, it is virtually certain (more than 99% probability of occurrence) that 

most land areas will have warmer and fewer cold days and nights. It is also very likely that most 

areas (between 90 to 99 % probability of occurrence) will have warmer temperature, more 

frequent heat waves and heavy precipitation events. More drought, tropical cyclone, and 

incidence of extreme high sea level are also likely.  

Agriculture may be particularly vulnerable to climate change due to its dependence on 

natural weather patterns and climate cycles for its productivity.  There is a growing literature 

focused on predicting and quantifying the impact of climate change on agricultural systems in 

many areas around the world. A few degrees of warming will generally increase temperate crop 

yields while in the tropics, yields of crops near to their maximum temperature tolerance and 

dryland crops will decrease. A large decrease in rainfall would have even greater adverse effect 

on yields. In addition, degradation of soil and a decrease in water resources resulting from 
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climate change are likely to have negative impacts on global agriculture (IPCC, 2001). However, 

with adaptation1, crop yields will likely be less affected by climate change.  

Quantifying the economic impact of climate change on agriculture is receiving increasing 

attention in the literature. It has been estimated that a temperature increase of 2.5 degrees (°C) or 

more would cause a decline in crop yields and prompt food prices to increase because growth in 

global food demand is faster than expansion of global food capacity (Parry et al., 1999,). Global 

income is expected to be impacted little with small or negative changes in developing regions 

and positive changes in developed regions (IPCC, 2001). Consequently, climate change not only 

will have an effect on the productivity of agricultural products but will also have economic 

consequences on farm profitability, agricultural supply and demand, trade, price, and so on 

(Kaiser and Drennen, 1993). Since there is great uncertainty in the understanding of the timing, 

magnitude and rate of climate change (CBO, 2003), it is important to quantify and monetize the 

economic impacts of change in climate on the agriculture sector. 

From a policy standpoint, a response to the global threat of climate change required an 

international environmental agreement to foster efforts to reduce global GHG concentration in 

the atmosphere. The Kyoto Protocol was adopted by government negotiators in December 1997 

at the Third Conference of Parties (COP 3) to the United Nations Framework Convention on 

Climate Change (UNFCCC). The purpose of the Kyoto Protocol is to limit GHG emissions to 

prevent or reduce the negative impacts of climate change. This protocol contains two objectives: 

policy and quantitative. The quantitative objectives require developed countries to reduce GHG 

emissions by, on average,  5 percent below 1990 levels during the period from 2008 to 2012 

(first commitment period). Policy objectives include enhancement of energy usage and carbon 

                                                 
1 Adaptation is defined as trials which society undertakes to diminish the damaging effects of climate change or take advantage 
of the beneficial opportunities which may arise from the change in climate (IPCC, 2001). 
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sinks as well as promoting sustainable forms of agriculture and forestry with respect to climate 

change. 

In general, there are two categories of approaches to climate change recognized in the 

Kyoto protocol, mitigation and adaptation. Mitigation is an action that limits global climate 

change through the reduction of GHG emissions and enhancing the sink of GHGs. Alternatively, 

adaptation is focused on the ability to adjust economic systems to the effects of climate change 

or to respond to its impacts (IPCC, 1990). Adaptation is defined as activities which society 

undertakes to diminish the damaging effects of climate change or take advantage of the 

beneficial opportunities which may arise from the change in climate (Mendelsohn, 2001). If 

adaptation is one of the important ways to overcome the environmental damages associated with 

climate change, then improving the knowledge and understanding of these changes is necessary. 

In the last decade, many researchers have incorporated adaptation in their climate change impact 

models in an attempt to improve the conceptual and empirical approaches to explain the 

characteristics of environmental problem and measuring environmental effects on agriculture. 

One of the extensively used models is the Ricardian approach introduced by Mendelsohn 

et al. (1994 and 1996). The land climate Ricardian model can be used to econometrically 

estimate the impact of climatic, socio-economic and geographical variables on the value of 

agricultural land which allows measurement of the marginal contribution of the attributes to the 

net farm income capitalized in land value. According to this theory, if a market is competitive 

then the agricultural land value will be equal to the present value of the future stream of annual 

net revenues derived from the most economically efficient management of the land. Therefore, 

this model not only considers the current farming practice but also allows land to be used for 

other future purposes as the land manager adapts to economic and environmental shocks and 
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changes. Then, as climate changes, the best and most profitable use of land will also change. 

Because climate is used as an exogenous variable the model can be used to describe how changes 

in climate will change the value of land.   

 The study area for this study is the western Canadian prairies. The Prairies produce well 

over half of the total value of Canadian agri-food exports (McCrae and Smith, 2000). Also, crop 

and livestock production has historically been associated with prairie agriculture, while grain and 

oilseeds production continues to account for the majority of production. According to McCrae 

and Smith (2000), agriculture dominates the prairie landscape both in the percentage of land in 

agriculture (81%) and the share of Canadian agricultural GDP (46%). Agriculture is an industry 

that depends on seasonal weather patterns and the productivity of biophysical systems. Within 

the Canadian prairies, the significant historical change of weather has selected for production 

systems that minimize, or at least reduce, the risk associated with weather shocks. However, 

these systems may become vulnerable if the nature or intensity of the weather shocks changes.  

As such agricultural systems of the Canadian prairies may be particularly vulnerable to climate 

change.  The capacity of Canadian prairie agricultural systems to adapt to the changing weather 

shocks associated with climate change is not well known.  Developing a better understanding of 

this adaptation capacity provides the ground for wiser agricultural and environmental policies. 

1.2   Problem Statement 
The viability of western Canadian agriculture depends on the ability of producers to adapt 

their production systems to environmental and economic shocks and changes.  This is 

particularly important as climate change alters the nature and intensity of these environmental 

shocks.  Those systems that do not adapt will have increasing economic losses over time and 

ultimately will no longer be economically viable.  In order to understand the economic viability 
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of the agricultural systems of western Canada under increasing climate variability, as proposed in 

climate change forecasts, it is necessary to quantify the economic impact of this climate change 

on farms in western Canada.    

1.3   Objectives 
 The primary objective of this study is to estimate the economic impact of climate normals 

on agriculture in the Canadian prairies, including a prediction of the economic impacts of climate 

change.  The analysis will capture both the impact of historical weather conditions on the 

viability of production systems and the impact of market price effects from input and output 

markets.  A Ricardian approach will be adopted to evaluate historical changes and a range of 

scenarios will be developed to consider the range of potential effects of climate change and 

global change in prices on the economics of prairie agriculture. The specific study objectives are 

as follows: 

o to adapt a Ricardian model to evaluate the  impact of climate change on the 

economic viability of agricultural systems  

o to include the changes in global commodity prices on the Ricardian model and to 

reflect the importance of market price factor in Ricardian land climate model for 

prairies 

o to determine the impact of global market prices on local prairie agriculture. 

1.4   Methodology 
The land climate Ricardian model was introduced by Mendelsohn et al. (1994), however, 

one limitation of this analysis was the assumption that the environmental change, which is global 

in scale, will leave market prices unchanged (although in the theoretical model prices are 

included). Consequently, the model developed by Mendelsohn et al. (1994) did not consider 
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important global change effects in the analysis which means these significant factors were 

omitted from the model.  Ignorance of the global market signals will exclude possible change in 

international markets and prices due to change in climate from the analysis. By inclusion of 

market prices, such as grain and oilseed prices, that represent changes in markets as influenced 

by global climate change, the present study can more fully capture the impact of climate change 

on prairie agriculture. 

The empirical analysis for this study will be based on data from three time periods (1991, 

1996, and 2001). The lack of data and change in the structure of data collections made it difficult 

to include 1981 and 1986 data. This analysis regresses farmland value per hectare on climate 

variables, non-climate (socioeconomic) variables, and market prices of grain  which capture 

shifts in production function for crops as climate changes across space (adaptation strategy).  

The estimation results of the model are used to project effects of climate change under 

different climate change assumptions. The comparison among scenarios enables estimates of the 

potential economic impacts of climate change. Also, the model can be used to examine the 

effects of expected future prices change on the market land value in the Prairies as an economic 

indicator of the potential future profit which might be derived from agricultural land use. 

1.5   Organization of the Study 
 The remaining chapters of the dissertation are organized as follows. Chapter 2 contains a 

review of the literature and Chapter 3 describes the conceptual model and model adaptation. 

Chapter 4 describes methodology of the study. The empirical Ricardian model results, model 

analysis and panel models are described in Chapter 5. Climate Change Scenarios Simulation and 

Price Forecasting are described in Chapter 6. In the last chapter (chapter 7) conclusion and study 

limitations are presented. 



 
 
 
 

 CHAPTER 2 LITERATURE REVIEW  

 
 
 
 

2.1   Introduction  
As outlined in chapter one the objective of the thesis is to quantify the potential impacts 

of climate change on the viability of Prairie agriculture. This chapter briefly reviews the 

literature which is related to assessing the economic impact of global and local climate change 

and also identifies the benefits and limitations of the Ricardian approach. Particularly, this 

literature review highlights the appropriateness of the Ricardian approach to assess the economic 

impact of climate change on the agricultural sector. This chapter begins by reviewing economic 

impact assessment studies in section 2.2 and describes three different approaches which evaluate 

the climate change impact on agriculture. In the section 2.3, the Ricardian studies, land price 

literature, and the role of prices on climate change impacts literature are presented. The final 

section (section 2.4) highlights the important issues and provides a link to Chapter three. 

2.2   Assessing Previous Economic Impact Studies of Climate Change  
 Scientific debates on global climate change still exist after more than thirty years. Most 

recently, IPCC in fourth Assessment Report (AR4) states that: 

“Observational evidence from all continents and most oceans shows that many 
natural systems are being affected by regional climate changes, particularly 
temperature increases… [and that the] magnitudes of impact can now be 
estimated more systematically for a range of possible increases in global average 
temperature…” (IPCC, 2007; page 1 and page12) 
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In response to such affirmations, there have been a considerable number of studies examining the 

potential economic impacts of climate change on global and local economies. One large body of 

research focuses on the development of integrated assessment models (IAMs) and valuation of 

the impacts. A second active area of research is focused on developing quantitative local and 

regional indicators to assess the impact of climate change (Ringius, 2002). 

 As climate change has a multidimensional impact, impact studies could be differentiated 

based on sectors, themes, areas, etc (McCarthy et al., 2001). Manne et al (1995) have categorized 

climate change impacts into two categories: market and non-market damages (Figure 2.1). The 

knowledge of potential impact is investigated more extensively in the primary economic sectors 

such as agriculture, forestry and fishery. The reason for this focus is that the agricultural sector is 

highly sensitive to climate change due to its dependence on water availability, drought and 

growing season conditions. Among all areas in Figure 2.1, agriculture and sea level rise are the 

most studied sectors (Nordhaus and Boyer, 2000).  
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Global warming Damages

Market Damages

Primary Sector 
Damages

Agriculture

Forestry

Fishery

Other Sector 
Damages

Energy

Water

Transport

Tourism

Loss of 
Property

Capital Loss

Dry Land Loss

Natural 
Disasters

Floods

Droughts

Hurricanes

Nonmarket Damages  

(Ecological)

Bio‐Diversity

Wetland Loss

Other Loss

Human Well 
Being

Human 
Amenity

Morbidity Life

Air Pollution

Migration

Natural Disasters

Floods

Droughts

Hurricanes

 

Source: Manne et al (1995)  
Figure 2.1Overview of global warming impacts 
  

Since the IPCC’s first and second assessments, impact assessment studies have been 

receiving more attention and their impact estimate have been improved (Ringius, 2002). As 

IAMs modeling are diverse and cover many sectors (Tol and Fankhauser, 1998), here, the 

emphasis is only on some models which agriculture has the largest component of these 

assessment studies. In Table 2.1, a summary of some important studies with focus on the impact 

modeling and adaptation treatment has been presented.   
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Table 2.1: Representation of the climate change impact in some IAM models 

Model Damage categories 
Considered 

Spatial detail Impact measurement 
Treatment of adaptation 
 

RICE-99 
(Nordhaus and 
Boyer, 2000) 
 
 
 
 
 
MERGE 
(Manne et al., 
1995) 
 
 
 
 
CETA (revised) 
(Peck and 
Teisberg, 1992) 
 
 
 
 
FUND 1.5 
(Tol, 1995; Tol, 
1996) 
 
 
 
 
 
 
MARIA 
(Fankhauser, 
1993; Mori, 
1996; Mori and 
Takahaashi, 
1996; Mori and 
Takahaashi, 
1997) 
 
FARM (Darwin 
et al., 1995; 
Darwin et al., 
1996) 
 
 
 
 
 

agriculture, sea-level  rise, 
other market sectors, health, 
non-market amenity impacts, 
human settlements and 
ecosystems, catastrophes 
 
 
 
Farming, energy, coastal 
activities 
 
 
 
 
 
Wetland loss, ecosystem loss, 
heat and cold stress, air 
pollution, migration, tropical 
cyclones, coastal defense, 
dryland loss, agriculture, 
forestry, energy, water 
 
Coastal defence, dryland loss, 
wetland loss, species loss, 
agriculture, heat stress, cold 
stress, migration, tropical 
cyclones, river floods, 
extratropical storms 
 
 
 
Coastal defence, dryland loss, 
wetland loss, species loss, 
agriculture, forestry, water, 
amenity, life/morbidity, air 
pollution, migration, tropical 
cyclones 
 
 
 
land and water resources, 
agriculture, forestry, other 
 
 
 
 
 
 
 

13 regions (USA, Japan, other 
high income, OECD Europe, 
Eastern Europe, Russia, Middle 
income, High-income OPEC, 
Lower middle income, China, 
India, Africa, Low income) 
 
 
five regions (USA, other OECD 
(Western Europe, Japan, 
Canada, Australia and New 
Zealand), former Soviet Union, 
China, rest of the world 
 
 
six regions (USA, European 
Union, other OECD, former 
Soviet Union, China, rest of the 
world 
 
 
 
nine regions (OECD America, 
OECD Europe, OECD Pacific, 
Eastern Europe and former 
Soviet Union, Middle East, 
Latin America, South and 
Southeast Asia, Centrally 
Planned Asia, Africa) 
 
 
four regions (Japan, other 
OECD, China, rest of the world) 
 
 
 
 
 
 
 
8 regions (USA, Canada, 
European Union (12), Japan, 
Other East Asia, South East 
Asia, Australia and New 
Zealand, rest of the world) 
 
 
 
 

separate functions for 
each category; monetized 
based on 
(Nordhaus and Boyer, 
2000) 
 
 
 
two functions (market, 
nonmarket; monetized 
adjusted from Nordhaus 
(1991) not explicitly 
considered 
 
 
two functions (market, 
nonmarket); monetized 
adjusted from 
Frankhauser (1995) not 
explicitly considered 
 
 
separate functions for 
each category; monetized 
based on Tol 
(1996) 
 
 
 
 
 
one function; 
(Fankhauser, 1993) 
 
 
 
 
 
 
 
separate models for  each 
damage category; 
physical indicators; 
monetized based on 
Hertel (1993) production 
practices in agriculture 
and forestry, land, water, 
labour and capital 
allocation 
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GIM 
(Mendelsohn et 
al., 2000)  

 
market impacts for    
agriculture, forestry, coastal 
resource, energy, water 
 

 

 
178 countries based on 4° 
latitude x 5° longitude 
resolution of GCM, results are 
presented for 7 regions (Africa, 
Asia/Middle East, Latin 
America/Caribbean, West 
Europe, Former Soviet 
Union/Eastern Europe, North 
America, Oceania) 
 

 
different response 
functions for each impact 
category; 
(Mendelsohn et al., 2000) 
 
 
 
 

 
Source: Tol and Fankhauser (1998) supplemented by Ringius (2002)  
 

 These studies have focused on the agriculture sector because not only has agriculture 

been the most crucial sector for the climate change impact assessments but also the impact on 

this sector has been under more investigation than other economics sectors (Schlenker et al., 

2006). Assessing the climate change impact on agriculture is the subject of abundant literature 

which has been divided into experimental-simulations and cross-sectional analyses by some 

researchers (Mendelsohn and Dinar, 2003; Mendelsohn, 2007). Also, Schlenker et al. (2006) put 

these approaches into three broad categories:  

o Agronomic-Simulation models(agro-economic analysis)  

o Computable General Equilibrium (CGE)models 

o Ricardian cross-sectional Hedonic models 

The following discussion will focus, in turn, on each of these categories of models. 

2.2.1   Agronomic-Simulation models 
The core idea of agronomic models is to use a controlled dynamic physiological process 

model of plant growth, like a complex production function to simulate yields given exogenous 

weather, nutrient and other input requirements. These models do not endogenize farmer behavior 

and economic considerations and sometimes the focus is on a single crop (Adams 1989, 

Rosenzweig and Parry 1994) while other studies (Kaiser et al., 1993, Adams, 1995) allow for 
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crop substitution with a profit maximization analysis for different cropping patterns (Schlenker et 

al., 2006). In these experimental-simulation analyses, once models are calibrated with 

predetermined climate change then a series of assumed farmer behaviors and climate change 

scenarios can be extrapolated by simulation protocols.  

There are some shortcomings with agronomic- simulation models: first uncertainty about 

functional forms and second ignoring the linkages with other sectors in the economy are some 

flaws that have been identified with this kind of analysis. Also including adaptation into the plant 

simulation models could ruin the controlled experiment (Mendelsohn, 2007) and can estimate a 

lower bound or an inaccurate estimate on the farm benefits of climate change (Reinsborough, 

2003). 

2.2.2   CGE Models 
There is a rich literature that utilizes CGE models to relate agriculture to the other major 

sectors of the economy under global climate change (Bosello and Zhang, 2005) and allows 

resources to move among different sectors in response to economic incentives (Schlenker et al., 

2006). A well known example was developed by Darwin et al. (1995) which examined an eight-

region CGE model for the world agricultural economy. Rubin and Hilton  (1996) examined the 

employment impacts of climate change on several sectors of the Pere Marquette Watershed 

region of Michigan of the U.S. Rosenberg (1993) examined the climate change impacts on 

Missouri, Iowa, Nebraska, and Kansas states (MINK). Inter-sectoral linkages and endogenous 

market prices are advantages of these models but they highly aggregate the sectors in an 

economy and there are only a few of them which are concentrated on the global warming 

(Bosello and Zhang, 2005). Moreover, these CGE approaches are elaborated simulation models 

where the climate change impacts are assumed to be simply exogenous. While a CGE model can 
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make commodity prices endogenous and account for inter-sectoral linkage but spatially and 

economically diverse sectors are characterized by a representative (individual) farm or firm. 

2.2.3   Ricardian Approach  
  As mentioned earlier, other models have limitations, agronomic models are weak to 

capture adaptation and mitigation strategies and CGE models are highly aggregated. In light of 

capturing adaptation and calculating the direct impact on farmers in a region, Mendelsohn, 

Nordhaus, and Shaw (1994) introduced an approach that attempts to capture the influence of 

economic, climatic, and environmental factors on the value of agricultural lands. It is called 

“Ricardian Method” after the 19th century classical economist David Ricardo (1772-1823) which 

observed that land values would reflect land profitability within a perfectly competitive market. 

The Ricardian approach [which will be more fully described in section(3.2)] is a hedonic model 

of farmland pricing that assumes the value of a tract of land equals the discounted value of the 

stream of future rents or profits that can be derived from the land (Schlenker et al., 2006).  

The basic concept of the Ricardian approach is that land values and agricultural practices 

are correlated with climate (environmental variable). If the production of an agricultural 

commodity that represents the optimal use of the land, then observed market rent on the land will 

be equal to the annual net profits from the production of this commodity. Now, land rent per 

hectare should be equal to net revenue per hectare (from a parcel of the land). As farm value is 

the value of the land in aggregate ($/ha multiplied by the number of hectare of available land), 

the present value of the stream of current and future revenues, under appropriate assumptions, 

should be equivalent the land value. The Ricardian model was developed based on this 

theoretical foundation. One can measure the impact of the environmental variable of interest on 

the present land value by examining the relationship between environmental variables and land 
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value. The economic impact of the change in the environmental variables is captured by the 

change in land values across different conditions. Then, depending on the harmful or beneficial 

effects of environmental changes the long run accumulation of net profits determines the land 

value (Mendelsohn et al., 1999). 

 There are some land value studies debating that land values do not reflect net present 

value (NPV) of revenue. Clark et al (1993) discuss that using NPV is not appropriate to evaluate 

land prices and land values. Also, Just and Miranowski (1993) and Falk (1991) reject using NPV 

model to determine farm land value. However, Foutnouvelle and Lence (2002) found that land 

rents and prices behavior is consistent with a NPV model in the presence of the observed value 

of transaction costs. In the present study, following other Ricardian studies, land value will be 

represented by the discounted value of the stream of future rents or profits that can be derived 

from the land. 

The Ricardian approach has been used to evaluate the impact of climate change on farm 

land value and to estimate the effects of possible climate change scenarios on agriculture 

(Mendelsohn, 2007). Moreover, as land value contains information on the value of climate 

attributed to land productivity, by regressing farmland value on environmental, socio-economic 

and other factors, one can determine the marginal contribution of each input to farm income as 

capitalized in land value. Finally, this approach accounts for the costs and benefits of adaptation 

because farmer adaptations are reflected in farmland value which is based on the fact that land 

values shift with climate and other control variables (Kurukulasuriya and Ajwad, 2007).  

 There are some limitations in the Ricardian approach. One issue with particular relevance 

to this study is the assumption that the environmental change, which is global in scale, will leave 

market prices for commodities and inputs unchanged. Consequently, the model has not 
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considered important global change effects in the analysis which means that significant factors 

have been omitted from the model (Cline, 1996). Also, the Ricardian model underestimates 

damages and overestimates benefits by holding prices constant. Mendelsohn and Nordhaus 

(1999) explain that the assumption of constant prices remains a flaw of the technique and a 

global agricultural model needs to be built to find possible change in agricultural prices and 

supplies. The present study contributes to the literature by inclusion of commodity market prices 

to the model that represent changes in markets as influenced by global climate change. Response 

of prices to climate change will provide insight for farmers because price is one of the most 

important incentives driving their decision making process.   

 There is a body of literature that investigates change in agricultural production and prices 

due to change in global climate. Parry et al. (1999 and 2005), illustrate the climate change effects 

on agricultural commodities production and prices (Figure 2.2). Parry et al. (1999) projected 

output prices to rise between 3% and 32% for years 2020 to 2080 while cereal production fell 

between 25 and 125 million tons (mt) for the years 2020 to 2080. On the other hand, two other 

global scale economics studies (Darwin et al., 1995; Adams et al., 1998) project agricultural 

production prices to decrease even if precipitation increases moderately. There is agreement 

especially after the IPCC's second assessment, that a rise of more than 2.5°C in mean global 

temperature is likely to increase agricultural commodity prices. It is because temperature rise 

greater than 2.5°C will exceed the global food production system's capacity to adapt to this 

climate change without increasing in the price of agricultural outputs (Parry et al., 1999). 
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Source: Parry et al. 1999 
Figure 2.2 Change in global cereal production and prices under projected climate change 
scenarios in years 2020, 2050 and 2080 

Another limitation of Ricardian models is the assumption that farmers can observe all 

changes in climate. The Ricardian model optimistically assumes that farmers will adjust to 

climate change (adaptation) and it will be relatively inexpensive. However, research has shown 

that farmers are slow to adjust to climate change because farmers slowly update to their estimate 

of the true climate. Therefore, their adjustment would be expensive (Quiggin and Horowitz, 

1999; Adams, 1999). Also, based on panel data representing county-level farm profits for 

Midwestern states in the U.S., Kelly et al. (2005) conclude that there is a significant source of 

costs associated with climate change (adjustment costs) because of the fact that farmers will not 
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instantly observe the change in climate. Mendelsohn and Nordhaus (1999) state that as climate 

change is a long term phenomenon, it is more than likely that there will be several rounds of 

replacement of technologies, which will make the present value of adjustment costs over the long 

term very small. 

 As the Ricardian technique can be applied to different regions, researchers have widely 

used this method which will be described in the next section (2.3) as a review of Ricardian 

studies.            

2.3   Ricardian Studies 
The Ricardian technique for estimating the economic effects of climate change on 

agriculture has produced an unusual amount of attention and criticism (Polsky, 2004). This 

method has been applied in a variety of countries including United States, Canada, England and 

Wales, India and Brazil, Cameroon, China, and Sri Lanka. This section will now highlight some 

of the insights provided by this literature that is relevant to the present study. 

In their influential paper on the use of the Ricardian technique to value climate impacts, 

Mendelsohn et al. (1994) introduce a cross-sectional approach which regresses value per acre for 

annual cropland, pasture and grazing for counties across the United States on a number of 

climate and other control variables. They discovered that a quadratic relationship exists between 

farm land value and climate variables (normal daily mean temperature and normal precipitation). 

Their estimates indicate that impacts in the United States range from a loss of $5.8 billion to a 

gain of $36.6 billion. These results are dependent on the type of model and climate scenario used 

in the analysis.  

In a subsequent paper Mendelsohn et al, (1996) further expand the method and use 

aggregate farm value per acre in a county. The results indicate that climate change not only 
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affects the value of the existing farms but the probability that land would be farmed. In 1999, 

Mendelsohn et al. included additional inter-annual temperature and precipitation and diurnal 

temperature variation in the Ricardian method. The results suggest that inter-annual temperature 

effects are more important than inter-annual precipitation effects.  

Mendelsohn and Dinar (2003), revisited the U.S. case study examined earlier by 

Mendelsohn et al. (1994), to test whether surface water withdrawal can help explain the variation 

of farm values across the United States, and whether adding these variables to the standard 

Ricardian model changes the measured climate sensitivity of agriculture. The paper concludes 

that the value of irrigated cropland is not sensitive to precipitation, and increases in value with 

temperature. The authors find that sprinkler systems are used primarily in wet, cool sites, 

whereas gravity, and especially drip systems, helps compensate for higher temperatures. These 

results indicate that irrigation can help agriculture adapt to climate change. 

Other authors have also used the Ricardian framework to evaluate irrigation value under 

climate change. Schlenker et al., (2005) included the role of irrigation to cover theoretical 

concerns about potential bias related to the inadequate treatment of irrigation in the previous 

Ricardian analysis which might bias the results. They discovered that using more accurate 

measures of climate variables will result in a more robust estimation. This research found an 

annual profit loss of about $5 to $5.3 billion for the U.S. counties. In a separate subsequent 

study, Schlenker et al., (2006) developed a spatially correlated error term Ricardian model for 

counties east of 100th meridian in the U.S. and explore very robust predictions and more than 

75% of counties show statistically significant effects ranging from moderate gains to large 

losses. Most recently, Schlenker et al., (2007) employed individual farms data sets to examine 
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whether climate and water had an influence on farm land value of California. They conclude that 

both water and heating-degree days were influential on California’s agriculture.  

Deschenes and Greenstone, (2007) estimated the effect of random year-to-year variation 

in temperature and precipitation on U.S. agricultural profits. Their estimates indicate that climate 

change will lead to a $1.3 billion in 2002 dollars or 4 percent increase in annual profit. These 

findings appear to contradict the popular view that climate change has substantial negative 

welfare results for U.S. agriculture. 

Polsky (2004) discussed that Ricardian climate sensitivity analyses should employ spatial 

effects and temporal changes. In this case, the model used by Polsky reflects time specific 

contingencies as well as space characteristics. Also, this model provides the concept of spatial 

economics of a geographic variable like land value. The value of a land will be determined not 

only by the local conditions but also by the conditions of the geographical neighbors. Polsky 

(2004) employed six spatial econometric models to explore how human-environment 

relationships associated with climate sensitivities have varied over space and time in the U.S. 

Great Plains, during 1969 to 1992. 

In Canada there are a few studies which employ the Ricardian model to address climate 

change issues. Reinsborough (2003) used a Ricardian land rent model (econometric approach) to 

analyze the potential impact of global warming for Canadian agriculture. This study found that 

Canada would benefit marginally as a result of climate change – some $1.5 million per year of 

increase in farm revenue. In contrast, Weber and Hauer (2003) found that Canadian agricultural 

landowners could gain substantially as a result of climate change. Their Ricardian rent model 

employed a much finer grid and greater intuition (national and regional scale) regarding 

agricultural operations than did Reinsborough. They projected average gains in land values of 
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more than 50% by the year 2040 and increases of 75% or greater by 2060. They found that 

Canadian agriculture benefits from climate change by a $5.24 billion increase in annual GDP. 

The Ricardian land rent models of Reinsborough (2003) and Weber and Hauer (2003) also 

indicate that agricultural landowners in Canada can benefit from climate change. However, 

employing non-homogeneous national level data (different agricultural systems) and model 

misspecification (exclusion of relevant variables) were weaknesses in their approaches. In 

particular, there is an expectation that adaptation and the effects of climate change will differ for 

the arid Prairies versus, for example, corn and soybean regions of Southern Ontario. 

Comparing two neighbor countries (Canada and USA), Mendelsohn and Reinsborough 

(2007) investigated whether a Ricardian study of a country is adequate to capture the effects 

elsewhere in the world. The results showed that climate sensitivity of each country (region) was 

different; therefore, the US temperate results cannot accurately predict what will happen in polar 

zone country (Canada) and vice versa. Also, it was argued that it is necessary to develop a cross- 

sections study for each region of the globe to have an adequate climate sensitivity analysis. 

Maddison (2000) employed the Ricardian technique to estimate the marginal value of 

various farmland characteristics in England and Wales. His findings revealed that climate, soil 

quality, and elevation, in addition to the structural attributes of farmland, were significant 

determinants of farmland prices. Maddison also found that landowners were constrained by their 

inability to repackage their land (given that the size of the plot has a considerable influence on 

the price per acre).  

Kumar and Parikh (2001) examined adaptation options while estimating the agricultural 

impacts in India. The relationship between farm level net revenue and climate variables is 

estimated using cross-sectional data in India. The authors demonstrated that even with farmer 
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adaptation of their cropping patterns and inputs in response to climate change, losses would 

remain significant. The loss in farm-level net revenue given a temperature rise of 2°C–3.5°C was 

estimated to range between 9 percent and 25 percent. Kumar and Parikh (2001) projected a 30–

35 percent reduction in rice yields for India given a similar temperature increase (or losses in the 

range of US$3–4 billion). Moreover, the authors concluded that government policy and prices 

have a major influence on variations in net revenues. 

McKinsey and Evenson (1998) employed a model specification that is similar to the 

Ricardian model developed by Mendelsohn et al. (1994). In particular, they utilized a net 

revenue specification of the model, and using two-stage least squares, examine the processes of 

technological and infrastructure change that characterized India’s green revolution. In contrast to 

earlier studies, McKinsey and Evenson (1998) examined the primary technological variables of 

the green revolution, that of adoption of high-yielding varieties, and expansion of multi-cropping 

and irrigation, within a framework that also incorporate detailed data on soils and climate, and 

public and private investment variables. Their results highlighted that climate affects technology 

development and diffusion. The authors also found that technology development affects the 

impacts of climate on productivity. Furthermore, the authors asserted that technology 

development and diffusion, and climate have a significant impact on net revenue in agriculture in 

India.  

In a study of the southwestern region of Cameroon, Molua (2002) explored the impact of 

climate variability on agricultural production through an analysis at the farm household level. 

The results suggested that precipitation during the growing season, and adaptation methods 

through changes in soil tillage and crop rotation practices have significant effects on farm 

returns. Results from the Ricardian analysis confirmed that farm level adaptations including 
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change in tillage and rotation practices and change in planting and harvesting dates positively 

correlate with higher farm returns. In addition, Molua found that irrigation in the growth period, 

especially during dry spells, is very important for productivity.  

Using a county level cross-sectional data on agriculture, Liu et al., (2004) measured the 

economic impacts of climate change in China based on Ricardian model. They found that 

seasonal higher temperature and more precipitation would be beneficial for China’s agriculture. 

Although five climate scenarios in year 2050 are beneficial in general but the Southwest, the 

Northwest and the southern part of the Northeast may be negatively affected. 

Kurukulasuriya and Ajwad (2007) employed a micro level farm data (smallholder) to test 

climate sensitivity of the agriculture sector in Sri Lanka. They found that only 14% of the net 

revenues across farms are explained by climate variables. Also, non-climate variables explain 

about half the variation in net revenues. Overall, Sri Lanka will be hurt only slightly from 

warming. The key to Sri Lanka’s future, however, lies in what climate change does to the 

monsoon rains.  

2.4   Conclusion 
This chapter presents a review the literature related to assessing the economic impact of 

global and local climate change and also identifies the benefits and limitations of the Ricardian 

approach. Mainly, this literature review highlights the appropriateness of Ricardian approach in 

evaluating the economic impact of climate change on agricultural sector. Also, Ricardian models 

can be employed to examine the impact of climate change on agriculture by quantifying the 

relationship between farmland value and other climate and non-climate factors and projecting 

climate change scenarios. Using this review, Chapter 3 will develop a conceptual and theoretical 

framework to evaluate the impact of historical climate means on prairie agriculture. 



 
 
 
 

CHAPTER 3 CONCEPTUAL FRAMEWORK 

 
 
 
 

3.1   Introduction 
Chapter 2 provided a review of the relevant literature on Ricardian models and how these 

models use an empirical cross sectional approach to evaluate the impact of climate change on 

economic systems. This class of Ricardian model has been used to econometrically estimate the 

impact of climatic, socio-economic and geographical variables on the value of agricultural land 

which measures the marginal contribution of such attributes to net farm income capitalized in 

land value. In particular the literature review focused on the appropriateness of Ricardian models 

to evaluate the impact of climate change on agriculture by quantifying the relationship between 

farmland value and climate and non-climate factors.  

This chapter develops a conceptual and theoretical framework used to evaluate the impact 

of historical climate means on the prairie agricultural economics. It begins by providing a 

detailed analysis of an appropriate Ricardian model.  The model framework incorporates a 

structure that can capture farmer adaptation decisions to changing environmental conditions 

(sections 3.2). Section 3.3 will discuss the theoretical background of the Ricardian approach. 

Section 3.4 develops the Ricardian framework further to explicitly incorporate changes in market 

prices over time as influenced by climate change forces. The final section (section 3.5) concludes 

this chapter by highlighting the important issues and provides a link to Chapter 4 which presents 

the methodology of this study. 
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3.2   A Conceptual Perspective of Ricardian Model  
 The theoretical understanding of the Ricardian model here is directly obtained from 

Mendelsohn et al. (1994 and 1996). The basic concept of the Ricardian approach is that land 

values and agricultural practices are correlated with climate (environmental variable): the 

productivity of a crop is a function of an environmental variable like average temperature and 

precipitation. The ways in which the environment can act as a production input are varied. 

Environmental factors influence output by changing the productivity of inputs, by altering output 

that has been produced, or by reducing the effective supply of inputs.  

The Ricardian model was extended to integrate changes in market prices in this study by 

relaxing the assumption that market prices do not change as a result of the changes in 

environmental variables. A basic production function with environmental (climate) factors is 

developed to link a climate variable to agricultural production.  

In the present model it is assumed that there are a set of well-behaved (twice 

continuously differentiable, strictly quasi-concave with positive marginal products) production 

functions which link purchased inputs (e.g. seed and fertilizer) and environmental inputs into 

output of a farm at a certain location: 

( , ), 1,...,i i iQ Q K E i n= =                                                        (3.1) 

1( ,..., ,..., ), 1,...,i i ij iJK K K K j= J=                                                      (3.2) 

 1( ,..., ,..., ) 1,...,l LE E E E l= = L                                (3.3) 

In this set of equations, Qi is the quantity produced of good i(wheat or canola), Ki is a vector of 

production inputs j used to produce Qi and E defines a vector of exogenous environmental 

factors l, such as temperature, precipitation, and soil that are biophysical characteristics of the 

specific location of production.  
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 Now, consider a production function reflecting a non linear relationship between crop 

production (yield) and temperature (Figure 3.1). Holding other variables constant in this simple 

model, the yield of one crop (e.g. wheat) increases as temperature increases ( 0Q
E

∂
>

∂
) up to some 

point (T1) where further increases in temperature are damaging to the crop such that the yield 

declines ( 0Q
E

∂
<

∂
) as temperature rises. Finally, at a higher temperature beyond the coping range 

of the crop yield drops to zero.  

0Q
E

∂
<

∂  

Environmental Variable (eg. Temperature) 

0Q
E

∂
>

∂
 

T1 

 

Yield per 
hectare or  
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Figure 3.1: Impact of Environmental Variable on Production 

It is assumed that the farmers’ objective function is to maximize the profit function. A 

cost function needs to be introduced here to solve the profit maximization problem for farmers. 

Given a set of factor prices wj, E and Qi, cost minimization gives the cost function: 

 ( , , )i i iC C Q Eω=                                                             (3.4) 

1( , ..., , ..., )j Jw w wω =                        (3.5) 

Where Ci is the cost of production of good i and ω is the vector of factor prices. 
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It is important to consider how the environmental factors influence production costs as 

well as farmers’ profit. When 0C
E

∂
<

∂
, as the environmental factor increases, the cost of 

production will decrease, consequently, the profit will increase. As an example with more 

rainfall, the need for irrigation of the crops will decrease which can translate to a decrease in 

irrigation costs. In the case of 0C
E

∂
>

∂
, the costs increase as environmental input increase (e.g. as 

temperature increases) evaporation also increase and crops will need more irrigation which 

means more costs for farmer. 

For illustration, from Figure 3.1, the value measured along the vertical axis is yield per 

hectare of land and as crop yield is a hill shaped function of temperature, then the profit is also a 

hill shaped function of temperature (Zilberman et al., 2004). Thus, the y axis can precisely show 

the value of output less the value of all inputs (net revenue). The net revenue for profit 

maximizing farmer is: 

[ ( , ,i i i iPQ C Q E)]π ω= −                                                                       (3.6) 

Where Pi is the price of good i and π is farmer’s profit.   

Thus far, this simple model links a climate variable to yield per hectare and/or profit of 

agricultural production. However, by adopting the Ricardian approach, instead of looking at the 

yields of specific crops, one can examine how climate in different places affects the net rent or 

value of farmland. This approach takes into account both the direct impacts of climate on yields 

of different crops as well as the indirect substitution (adjustment) to other activities by 

introduction of new land uses and other potential adaptations to different climates (Mendelsohn 

et al., 1994).  Consequently, the analysis needs to be developed to capture more adaptation 
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strategies which farmers can employ in response to climate change. The inclusion of adaptation 

into the conceptual model is described in the next section.  

3.3   Adapting to Climate Change in Agriculture  
 In the previous section, a simple model was examined to represents the relationship 

between net revenue and climate variables. However, Ricardian land rents embody current 

producer adaptations as well as potential adaptations of alternative uses of the land (Darwin, 

1999) which assume complete adaptation. Also, as mentioned in the literature review, 

considering land values as the discounted present value of the future stream of annual net 

revenues or rents, changes in agricultural land rents across space reflect the annual value of 

climate change to agriculture. In other words, it is assumed that spatial variation in climate can 

capture the influence of climate change over time in a single location. Figure 3.2, from Kelly et 

al. (2005), demonstrates the process of adaptation. This graph represents the economic returns 

that are possible from a series of alternative land uses as a function of temperature. The 

relationship is basically a production function for different crops and different land use. The 

heavier line represents a response curve to climate change that is maximum value of a parcel of 

land- i.e. the yield per hectare of land. A production function approach would estimate the value 

of each different crops/sectors production at different temperatures along its curve. For example, 

a production function for wheat would show how the revenue of the wheat varies with change in 

temperature which is consistent with the relationship represented in Figure 3.1.  

 Kelly et al., (2005) show that point A (Figure 3.2) is the value of the land before any 

change in climate (T1). If average temperature rises to T2 as a result of climate change, three 

alternatives are represented. First, point C indicates no adaptation such that the farmer continues 

to produce wheat using the same technology despite the decreased yields caused by the warmer 
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climate, but the farmer can adjust other practices for instance increasing the allocation of land to 

corn production instead of wheat2. In this case, the land value decreases by the amount of L1 

while the farmers who invest in adaptation will lose just the amount of (L0). Second, point D 

indicates no adjustment and no adaptation. In fact, at this temperature (T2), the land cannot be 

optimally used for wheat and farmers may consider switching to corn. Finally, point B indicates 

complete adaptation (e.g., switching to the production of a new crop such as corn). In the case of 

complete adaptation the loss in the value of the land for two different temperatures is (L0) where 

L0<L1 but the value of adaptation is (L1-L0) (Kelly et al. 2005). 

 

Source: Kelly et al. 2005 
Figure 3.2: Value of land as a function of temperature 
 

                                                 
2 Farmers always face with risk and uncertainty which make them adjust to their new changing environment. 
Adaptation to climate change is one way that farmers employ to ensure their stable income and earnings. There are 
different adaptation strategies to choose: best management practices (BMPs), new technology and etc…   
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The basic hypothesis is that a crop production function shifts with changes in climate 

variables. Also, farmers at particular locations consider climate as given and adjust their 

production process (what, why, and how to grow?) to accommodate the change in environment.  

Using these concepts, it is possible to measure the economic effects of climate on prairie 

agriculture. Returning to the profit function developed in the last section: 

  [ ( , ,i i i iPQ C Q E)]π ω= −                                                (3.6) 

In this analysis, land as a production input is distinct from the environmental inputs (E) and it is 

assumed that land, Li, is heterogeneous with an annual cost or rent of PL in a specific location. 

Using the cost function Ci () at given market prices, profit maximization by farmers at a given 

location can be specified as:  

[ ( , , )
i

i i i i L iQ
]Max PQ C Q E P Lπ ω= − −                                  (3.7) 

Where Pi is the price of output i, such that under perfect competition at the optimum all profits in 

excess of normal returns to all factors (rents) are driven to zero:  

0
iQ

π∂ =
∂

,                                                                                                   (3.8) 

then we have  

'( , , )i i iP C Q Eω=                                                                                     (3.9)                                    

It is actually the known equality of price and marginal cost which after solving for Qi it will 

results in optimal output value. Now separating land rent PL from other input prices and 

rearrange: 

  ' ( , , ) 0i i i LP C Q E Pω− − =
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then  or outputs optimal value along with the inputs optimal value (including the optimal land 

use 

*
iQ

*
iL ) can obtain from equating prices and marginal costs. Now plugging   back in (3.7) 

gives: 

*
iQ

* * * *( , , ) 0i i i i L iPQ C Q E P Lω− − =

*/ i

dt

                                    (3.10) 

If the production of good i is the optimum use of the land given E, the observed market rent on 

the land will be equal to the annual net profits from the production of the good i. Solving for 

value of the land rent per hectare PL from the above equation gives: 

* * *[ ( , , )]L i í i íP PQ C Q E Lω= −                                         (3.11) 

From (3.11) land rent per hectare should be equal to net revenue per hectare (from a parcel of the 

land). As farm value is the value of the land in aggregate ($/ha multiplied by the number of 

hectares of available land), therefore, the present value of the stream of current and future 

revenues give the land value VL: 

                  (3.12) ( )
0 0

, , /rt rt
i i i i iL LV P e dt P Q C Q E L eω

∞ ∞
− −⎡ ⎤⎣ ⎦= = −∫ ∫

In this equation r is discount rate and t is time. This is the essence of the Ricardian model. One 

can measure the impact of the environmental variable of interest on the present value of land by 

examining the relationship between this environmental variable and land value. The Ricardian 

model takes the form of equation (3.12). The economic impact of the change in the 

environmental variables is captured by the change in land values across different climatic 

conditions. An environmental factor affects production as well as costs, which changes the 

behavior of the farmer and influences net revenue (this can be seen from figures 3.1 and 3.2). 

Then, depending on the harmful or beneficial effects of environmental changes the long run 

accumulation of net profits determines the land value (Mendelsohn et al., 1999). 
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Based on production theory, the marginal cost of the agricultural production represents 

the supply curve for agricultural commodities. Also, as price takers, farmers face a horizontal 

market price line. The area between agricultural supply function and market price line (P0AD in 

Figure 3.3) shows return to land as a fixed asset. In the present analysis, this area corresponds to 

the return to farmland value which can be used as a measure of economic welfare. This figure 

(3.3) illustrates the concept of the economic welfare and can be used to demonstrate the impact 

of exogenous changes in environmental variables on net economic welfare (ΔW). This captures 

change in the present net revenue per hectare (farmland value). 

Initially consider an environmental change from the environmental state A to B, for 

example an increase in temperature which makes the annual crop more productive resulting in 

production increasing from EA to EB. From figure 3.3, we can see that in state A, producer 

welfare is the area P0AD then after environmental change to state B, the new welfare increases to 

P0BD. For instance, the productivity of certain crops that thrive in warmer climates will increase 

resulting from a warming scenario (state B), then the marginal cost for this crop (or supply 

curve) shifts outside. In this case, the net economic welfare is the change in welfare induced or 

caused by the changing environment from a given state to the other (ΔW=P0BD-P0AD). It can be 

seen from figure 3.3, having unchanged price at P0 the consumer welfare is not affected but 

producer welfare (or the net revenue per hectare) has increased by the area DAB. Therefore, the 

economic welfare change here is measured in terms of change in the capitalized value of the 

land.  
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Figure 3.3: the welfare impact of a change in climate variable 

The change in annual welfare can be written as: 

                                            (3.13) 0 0( ) ( )B AW W E W E P BD P ADΔ = − = −

( )
0

, , /
B

B

Q
rt

i i i i iW P Q C Q E L e dQω −⎡ ⎤Δ = ⎣ ⎦−∫  

( )
0

, , /
A

A

Q
rt

i i i i iP Q C Q E L e dQω −⎡⎣− −∫ ⎤⎦                           (3.14) 

In their analysis of the impact of climate change, Mendelsohn et al., (1994) assumed that market 

prices do not change as a result of the change in environmental variables; therefore, considering 

a constant vector price , the above equation reduces to: 1[ ,..., ,..., ]i nP P P P=
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1
( ) ( ) [ ( , , )]

n

B A B i i B
i

W W E W E PQ C Q Eω
=

Δ = − = − −∑  

1
[ ( , ,

n

A i i
i

PQ C Q Eω
=

− ∑ )]A

A

)

                                                             (3.15)     

Substituting (3.10) into (3.15) gives: 

                                          (3.16) 
1

( ) ( ) ( )
n

B A LB B LA
i

W W E W E P L P L
=

Δ = − = −∑

Where PLA denotes the value per hectare of land area LA in state A and PLB denotes the value per 

hectare of land area LB in state B. 

Thus, the present value of the welfare change is: 

 
10
(

n

B A
i

Q
rtdt V VWe

=

− = −Δ ∑∫                                                                        (3.17) 

This is “the Ricardian estimate of the value of environmental change” by the definition of 

Ricardian model. Empirically, after estimating the base model with current climate condition, 

one can examine the value of change in the future climate by plugging any climate change 

scenario3 into the base model (e.g. cooling or warming weather, change in precipitation 

patterns).  

3.4   Relaxing Constant Market Prices Assumption 
 In the previous section, a traditional theoretical Ricardian analysis has been discussed in 

detail. One contribution of the present study to the literature is to include global commodity 

market prices into the Ricardian model and to address likely problems raised when the model has 

no prices and finally to exhibit a solution for it. In this section, an explicit discussion will be 

provided to add Market price analysis to the previous Ricardian studies.   

                                                 
3 Described in Chapter 4 section 4.3.3 
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There are two potential problems with assuming fixed market prices: 1) a potential 

misspecification in the empirical estimation of the model and 2) a bias in welfare measurements. 

The first problem is when some important variables are excluded from a model4 and it creates 

biased estimation5. The second problem needs to be described theoretically because one 

important objective of this study is to include change in market prices in the Ricardian model and 

to explore the potential importance of price factor in this analysis. 

 According to the relevant literature described in Chapter 2,  the IPCC projects average 

warming for next century (IPCC, 2007), but researchers disagree about whether agricultural 

production prices are likely to decrease (Darwin et al.,1995) or increase (Parry et al., 1999). 

Therefore, it is important to illustrate the possible consequences of the decrease and increase in 

prices in a theoretical context.  

 Starting with a three panel “small open economy” trade model, the impacts of climate 

and price changes6 can be evaluated. In this model, the Canadian Prairies is represented as a 

small open economy which has no impact on world agricultural market prices. Parameters used 

in this model are defined as follows: 

Di= Demand for Canadian prairies (DP), Rest of the world (DR), World total (DT) 

Si=Supply for Canadian prairies (SP), Rest of the world (SR), World total (ST)   

ST= World total supply 

P0= Current market price  

SPCC = Canadian prairies supply after climate change (CC) 

SRCC = ROW supply after climate change  

                                                 
4 Omitted variable error 
5 Less trustable standard error and confidence intervals  
6 As Prairies has small share in world agricultural production. 
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STCC = World total supply after climate change 

P1= Market price after climate change 

Figure 3.4 shows world supply and prices for agricultural market and illustrates the relationship 

between the Canadian prairies, the rest of the world (ROW) and world total (ST=SP+SR). World 

total supply and demand (ST, DT) determine current market price (P0) while each of the other two 

markets have their own market clearing conditions (supply and demand for ROW (SR, DR) and 

Prairies (SP, DP) are in equilibrium conditions.  

As discussed earlier when climate changes the production of the agricultural commodities 

will change as well. If climate change results in greater water stress to crops by decreasing 

rainfall and increasing temperature and therefore increased evapo-transpiration, agricultural 

production will decrease7. This supply reduction is represented in Figure 3.4 as a leftward shift 

in the world total supply function (STCC). Consequently, Agricultural market price will rise to 

(P1) and also the supply curve for the ROW and the prairies will shift to the left. In this case 

agricultural production in total world will be reduced. In the present study, it is assumed that 

there would be no other adjustment to a different and higher yielding crops. Relaxing this 

assumption may yield different results. If other conditions (adjustments) take place then supply 

expansion may finally result in a decrease in prices. In both cases, changes in market prices 

seems inevitable which in turn; more clearly support the idea of inclusion of global market prices 

in the Ricardian approach. 

 

 
7 Ceteris Paribus  



Quantity 

ST 
SR 

SP 

DP 

SPCC 

P0 

P1 

Price Price Price 

Quantity Quantity 

SRCC 
STCC 

DR DT 

Canadian Prairie ROW World Total 

 
Figure 3.4: Climate change impacts on agricultural supply and price 
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To illustrate how the traditional Ricardian model conceptually could suffer from 

exclusion of prices; the current study employs a simple profit maximization concept. Since 

farmers in the Canadian prairies are assumed to be profit maximizing the starting point here is 

the following maximization: 

,

max ( ) ( , ) ( , ) ( , , , )
A Yi i

i i i i i i i iP E A P E Y P E C Y A Eπ ω= ∑ −                               (3.18) 

where Pi is output prices and Yi is yield of outputs and finally Ai is planted area of outputs1. The 

other elements were introduced previously in this chapter. It is assumed that all the above 

variables are influenced by climate, although the exact mathematical expression is unknown. 

Taking the first derivative (F.O.C) of the profit function with respect to area and yield 

respectively: 

 ( ) 0i i i
i

P E Y CA
π∂ ′= −∂ =                                                                                  (3.19)     

 '( ) 0i i i
i

P E A CY
π∂ = −∂ =                                                                                 (3.20) 

give the following optimal area usage Ai
*and produced yield Yi

*. 

 * ( , , )i iA f E P ω=                                                                                              (3.21) 

* ( , , )i iY f E P ω=                                                                                               (3.22) 

Now plugging Ai
* and Yi

* back into equation (3.18) yields the following indirect profit function: 

                                                                    (3.23) * * *( ) ( ) ( ) ( )i i i i iP E A E Y E C Eπ = ∑ −

As in the current study the production yield ( iY  ) is not explicitly in the model therefore, the 

reduced form will be shown by: 

* * *[ ( ), ( ), ]i iP E A E Eπ π=                                                                               (3.24) 

                                                 
1 Agricultural products like: wheat and canola. 
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therefore, the profit in this case is a function of external market prices (Pi ), planted area (area 

response) to climate change (Ai), and climate change included in production function (E). As 

market prices and area response are all function of climate change, equation (3.24) can be 

reduced to * ( )f Eπ = which show that profit and then profit per hectare (land value) are directly 

function of climate change.  

Equation (3.24) shows that farmers profit is not only affected directly by climate change 

(E) but also indirectly through input and output prices, and planted area. Figure 3.5 shows that an 

environmental change (climate change) affects area of land allocated to the production of 

agricultural products (1) and prices (3) along with direct effect on profit (4). Also, climate 

change indirectly affects profit via all other variables (relationships 5 and 7 in Figure 3.5). In fact 

there are other influential variables such as output yields, production technology, and policies (δ) 

which are shown by relationships 2 and 6 that might affect profit. As all variables are a function 

of climate we can take total derivatives2 of equation (3.24) to find the indirect influence of 

climate change on farmers profit and hence land value3.  

**

( ) (i
i i

P A P
E E E
π ∂∂

= +
∂ ∂ ∂

)iA∂

                                                

                                                                             (3.25)4 

 Based on this analysis, it is clear that the traditional Ricardian model with no prices 

ignores both the indirect effect of climate change via line 3 and 7 in Figure 3.5 and direct effects 

of price via line 7. In fact, considering Canadian prairies as a “small closed country” (autarky)5 

 

A

2 Chiang (1984) 
3 The process of retrieving Ricardian land value from profit described through equation (3.6) to (3.12) in this 
section. 
4 Taking total differentiation from (3.24) gives: 

* *
i i i id AdP Pdπ = +  

then dividing both side of above equation by dE will result in change in profit with respect to environmental change 
[equation (3.25)].  
 
5 Economic independence and self-sufficiency in which the country is isolated from the rest of the world  
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with no import and export, the Ricardian model estimates accurate climate change impact on 

agricultural economics. But in this study, the prairie has an open economy with international 

interactions specifically in agricultural trade; therefore, market prices need to be included to 

obtain a more accurate estimate of climate change impacts.   

 
Figure 3.5 Direct and indirect influence of climate change on profit 

In this analysis, an area response to climate change may provide a mechanism to analyze 

adaptation strategy, which will be undertaken by farmers. In other words, equation (3.25) shows 

that change in profit in response to climate change has two major components: market price 

change and planted area change (area response). In fact, the current study will contribute to the 

Ricardian analysis by adding price and area response change to the previous literature. Area 

response takes into account a value of adaptation as an influential factor in profit and hence in 

land value. A more technical explanation of this analysis will be discussed in section 3.5. 

F (Pi*, Αi*, Yi*, δ) 

Pi*

E (Climate Change) i* 

5 1

6 2

Αi*

37
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Using the concept presented in the three panel trade model (Figure 3.4), it can be shown 

that market prices are a function of world total planted area ( D
iA ) which in turns are integration 

of prairies and ROW planted areas ( ROW
iA  and  ). In this case, we have: World

iA

( , , )D ROW World
i i i iP H A A A=                                                                       (3.26) 

Now, taking total derivatives of (3.26) I can find the small influence of Prairies planted area on 

the global market price (
D
i

H
A

∂
∂

) from equation (3.27). 

( ) ( ) ( )
ROW World

i i
D D ROW D World
i i i i i

P AH H H
A A A A A A
∂ ∂∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂

i
D
i

A∂                                    (3.27) 

Comparing equations (3.24) and (3.26), the mutual interactions between market prices and 

farmers profit along with other factors can be inferred. The above relationships among factors in 

the international trade of agricultural products are another reason for the inclusion of global 

market prices in the Ricardian approach. 

Now using new market price (P1), the welfare impacts, as reflected in prairie agriculture 

as a change in land value, of climate change can be illustrated. As can be realized from the three 

panel trade model, the price of agricultural products will rise (from P0 to P1 in Figure 3.4 and 

3.6) and the supply curve shifts to the left (from S0 to SCC in Figure 3.6). In this case, holding 

prices constant, the model reveals that the equilibrium condition in the Canadian prairies moves 

from A to B in Figure (3.6), therefore, the new farmland value is the area P0BD ( as 

demonstrated in Figure 3.3).  However, relaxing constant prices assumption results in the new 

equilibrium point (point E) which changes the new land value to area P1ED. Consequently, the 

Ricardian analysis with no prices will understate the damage of climate change with the size of 
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P1 EBP0. This bias (overstate) amount can be illuminated if one includes the market prices to this 

analysis. 

Price 

P1 

SCC 

A B

S0

A1 E

Quantity 

P0 

D

 

Figure 3.6: Welfare loss from supply reduction due to climate change 

In a warming scenario, the productivity of certain crops that thrive in warmer climates 

will shift the supply curve for this crop to the right (from S0 to SCC in Figure 3.7). This supply 

shift could result in a decrease in output prices, therefore the Ricardian model where prices are 

held constant, estimates a benefit of P0 BD. This is an overestimate of the benefits if the changes 

in global supply result in a decrease in output prices from P0 to P2. In fact the new land value in 

this case needs to be calculated based on movement from point A to E (instead of B by the 

Ricardian model). The new welfare is area P2ED and area P0BEP2 is the size of this 

overestimation. Since the Ricardian model without price analysis is biased in welfare estimation, 

integrating the market prices in this analysis will give a better and more accurate estimation 

results.   
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Figure 3.7: Welfare gain from supply expansion due to climate change 

 

In this study market prices are included to alleviate biased estimation and to more 

accurately measure the welfare effects6. Utilizing this modified Ricardian model, one can 

investigate a variety of climate change and price forecasting scenarios in order to predict a cost 

or benefit for Canadian prairies agriculture. However, land use decisions by farmers might 

change due to adaptation to climate and price changes; therefore, a mechanism will be needed to 

endogenize land use decision in the current study. In the next section an area response analysis is 

introduced to address this issue.  

  

                                                 
6 Also, in Chapter 5, model with included prices shows more robust and efficient estimation which clarifies the 
improvement in the traditional Ricardian analysis. 
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3.5   Area Response to Climate Change  
Farmers in the Canadian prairies respond to climate change by making decisions on 

allocating their land to different types of production. Consequently, a mechanism is required to 

include (endogenize) land use or area response in the prediction of the consequences of climate 

and price changes on the pattern and economic performance of agricultural production. This 

analysis will begin with a profit maximization model which has two crops: wheat and canola. 

,

max ( ) ( ) ( , , )
A AW C

W W i W C C i C i iP Y E A P Y E A C Y Eπ ω= + −         (3.28) 

where PW and PC are wheat and canola output prices and YW and YC are wheat and canola yields 

and finally AW and AC represent the area allocated to wheat and canola respectively. The other 

parameters were introduced previously in this chapter. Taking the first order condition of the 

profit function with respect to wheat and canola area: 

 '( ) 0W W i i
W

P Y E CA
π∂ = − =                                                                              (3.29) 

 '( ) 0C C i i
C

P Y E CA
π∂ = − =

]

                                                                              (3.30) 

will give us optimal allocation of land to wheat and canola: AW
* and AC

*. Now plugging optimal 

land allocation back into equation (3.28) yields the following indirect profit function: 

 * *[ , ( ), , ( ),W W i C C iP Y E P Y Eπ π= ω                                                                         (3.31) 

Now, taking the derivative of the indirect profit functions with respect to the revenues 

(RW=PWYW, RW=PWYW) will give area response function for wheat and canola as follow: 

*
( , , )W W C

W
A P P ER

π∂ =∂
                                                            (3.32) 

*
( , , )C C W

C
A P P ER

π∂ =∂
                                                      (3.33) 
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Notice that now, area response function for wheat and canola are function of prices and 

environmental (climate) variables (E). 

In this analysis, one can estimate the above area response functions for canola and wheat. 

Conceptually, this estimation is an alternative analysis for adaptation strategy which will be 

undertaken by farmers. In other words, one can quantify the crop diversification decision by 

farmers in response to climate change. Then any climate and price change scenarios will be 

predicted by using estimated parameters. Finding fitted land use (different allocation of planted 

area to wheat and canola) in this case will lead to simulate both direct and indirect impacts of 

climate change and price forecast on the land value utilizing estimated Ricardian model. 

3.6   Conclusion 
 This chapter presented a conceptual and theoretical framework to evaluate the impact of 

climate change on prairie agriculture. Also, with a three panel “small open economy” trade 

model, the effects of change in agricultural market prices are illustrated to show the welfare 

impacts of climate change. Then, the bias of the Ricardian approach on over/under estimation of 

the benefits and damages are demonstrated. Finally, an area response function is introduced to 

capture the indirect effects of alternative land use on the developed Ricardian model. Chapter 4 

will develop the methodology of the present study. 

 



 
 
 
 

CHAPTER 4 METHODOLOGY 

 
 
 
 

4.1   Introduction  
This chapter describes the econometric model that will be used to simulate climate 

change scenarios as well as agricultural market price forecasting of this study. First, the study 

area is described and the general types of variables and the various data sources for the 

dependent and independent variables used in the model are outlined. Also, a discussion of the 

specific variables and how and what each variable is being used to measure is developed. Next, a 

brief outline of the basic and panel model is presented to give readers a general overview of the 

econometric model and finally a review of how the base model is used to project future climate 

and price changes on land value. Chapter 4 concludes with a section highlighting the important 

issues and provides a link to Chapter 5.  

4.2   Study Area and Data  
The special biophysical and socioeconomic characteristics of the prairies are the main 

reason for choosing the Canadian prairies as the focus for this study. In this study, the study area 

is the Prairies Ecozone and some part of the Boreal Plains Ecozone(Ecological Stratification 

Working Group, 1995) (Figure 4.1). The Prairies Eco-zone is composed mostly of agricultural 

cropland (75%) and grasslands (Figure 4.2). Table 4.1 illustrates the number of farms and 

farmland area for Canada and the Prairies. More than half of the Canadian farms are located in 
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the Prairies and with more than 54 millions hectare of farmland it has more than 80% of 

Canadian farmland (Sauchyn and Kulshreshtha, 2008).  

 
 

 

 
Source: Environment Canada available at: http://www.statcan.gc.ca/pub/16-201-x/2007000/5212634-eng.htm 

Figure 4.1 Canadian Climate regions 
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Source: Sauchyn and Kulshreshtha (2008) available at: http://www.ec.gc.ca/soer-
ree/English/SOER/1996report/Doc/1-6-4-3-1.cfm#f4-1(f) 
Figure 4.2 Land cover Distribution of Prairies 
 

 
Table 4.1 Number of farms and farmland area in Prairies and Canada, 2001 

 Alberta Saskatchewan Manitoba Prairies Canada 

Number of farms 54×103 51×103 21×103 125×103 247×103 

Area of farmland (ha) 21×106 26 ×106 8×106 55×106 68×106 

Source: Statistics Canada (2001) available at: http://www.statcan.ca/english/agcensus2001/index.htm 

 
 
 

The Western Interior Basin that comprises the northern portion of cultivable land in 

North America (Great Plains eco-zone) is where Prairie agriculture takes place (Millennium 

Ecosystem Assessment, 2005).The classification of the climatic regimes of the Prairie is cold and 

sub-Arctic. Hot summers, very cold winters, and low annual precipitation characterize the prairie 
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climate1 (Weber and Hauer, 2003). Average yearly temperatures are highest in southern Alberta 

and temperatures decrease in the direction of northern Saskatchewan and Manitoba (Figure 4.2).  

 

 

Source: Sauchyn and Kulshreshtha (2008) available at: 
http://adaptation.nrcan.gc.ca/assess/2007/ch7/images/fig4_a_e.jpg 
Figure 4.3 Prairies Climate Normal (1961-1990) Temperature 

Annual precipitation ranges from 400 mm to 700 mm for Manitoba, Saskatchewan (300 

mm–500 mm) and Alberta (300 mm–500 mm) tend to receive relatively less precipitation 

(Figure 4.3). Continuous snow cover in this region varies from year to year and from south to 

north but northern and eastern regions can expect about 4 to 5 months of snow cover (Herrington 

et al., 1997). Snow also is good source for soil moisture recharge and water storage. Across the 

Prairies the precipitation is relatively equal but the amount of available moisture is dramatically 

less in south western Saskatchewan and southeastern Alberta. Increasing temperature and wind 

are two important causes of evaporation and evapo-transpiration on the prairies. Burn and Hesch 

(2007) estimate an increasing evaporation trend using 40 years data for prairies. This trend 

                                                 
1 Sub humid 
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shows an increase in northern regions than southern regions of Prairies. Availability of water for 

agricultural production is one of the most important impacts of climate change on agriculture.   

 

 

Source: Sauchyn and Kulshreshtha (2008) available at: 
http://adaptation.nrcan.gc.ca/assess/2007/ch7/images/fig4_b_e.jpg 
Figure 4.4 Prairies Climate Normals (1961-1990) Precipitation 

 
Agricultural land use of this region is mostly specified for grain and oilseeds. Export of 

grains, oilseeds and animal products has played an important role in Canadian foreign exchange. 

Canadian Prairie agricultural makes a significant contribution to the nation’s wealth. The prairies 

produce well over half of the total value of Canadian agri-food exports. Although grain 

production has historically been associated with prairie agriculture and continues to account for 

the majority of production, recently, farmers begun diversify into specialty crops (Tyrchniewicz 

and Chiotti 1997). Also, McCrae and Smith (2000) show that Prairie agriculture dominates in the 

share of Canadian agricultural GDP, grain and oilseeds represent approximately 52% of the 
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Prairies agricultural GDP while red meat contribute 33.5% of GDP. Also, the Prairies have lower 

productivity per hectare relative to Ontario and Quebec (Weber and Hauer, 2003).  

According to Environment Canada (Hengeveld, 2000), yearly average temperature in the 

Prairie provinces have warmed about 1.2°C over the last 50 years, with average winter 

temperatures warming about 3.0°C, and summer temperatures increasing about 0.2°C. Since 

1948, seven of the ten warmest years in the Prairies have occurred since 1981. Most of the 

climate change scenarios that have been projected for the Prairie Provinces suggest that the 

southern Prairies can expect an increase in the frequency and length of droughts. This region 

could experience deficiencies in soil moisture by the end of the century which is due to both 

changes in precipitation patterns and also due to increased potential evapo-transpiration. 

However, not all parts of the Prairie Provinces will experience the same effects (Hengeveld, 

2000). Hogg and Hurdle (1995) anticipate the regional context of prairies may change from the 

left corner of the map (Lethbridge) to the right corner (north east of Winnipeg) due to change in 

the climate (Figure 4.5). 
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Source: Hogg and Hurdle, 1995 
Figure 4.5 Anticipated changes in the regional context of Prairies  

 

In brief, the large and diverse agricultural economy, favorable soils, and climatic regime 

have given a unique biophysical and socioeconomic characteristic to the Canadian prairies. Also, 

high probability of severe flooding, change in precipitation and temperature patterns and more 

frequent drought makes the prairies more vulnerable to climate change. These characteristics 

make the prairies an excellent region to examine the economic impacts of climate change.   

The data for the empirical analysis of this study is based on three time periods (1991, 

1996, and 2001) for the Canadian Prairies. The data sources are Agricultural Census 1991, 1996 

and 2001, Census of population 1991, 1996 and 2001, Statistics Canada, Environment Canada, 

and C-RERL2 (Canada Rural Economy Research Lab). In the next section all variables will be 

introduced and interpreted to make them relevant to represent Prairie condition. 

 

                                                 
2 Most of the data previously has been refined by C-RERL 
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4.3   Variable Definitions 
 The unit of spatial analysis for this study is the Census Sub Division (CSD)3. The 

fundamental agent in the land use is the farmer or farm household. Unfortunately, the finest 

census unit which most of the required variables are available is CSD. In this analysis, I assumed 

that CSDs are internally homogeneous in terms of the behaviors of the individual farmers. 

Therefore, the results can be assumed to reflect the farmer’s behavior.  

The dependent and independent variables in this study are defined in Table 4.2. The 

independent variables are categorized into two groups: Climate and Non-Climate. Control 

variables, Dummies and Market prices are non-climate variables. Table 4.2 presents the 

definitions, source of each variable, and unit of measurement for this study. The following 

sections elaborate on these variables. 

  

                                                 
3 I assumed CSD (1991) and Census Consolidate sub-division (CCS) 1996 are equal. 
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Table 4.2 Variables Description  

Variable Definition Source*

Dependent 
Variable 

LVAL Market value of land and 
buildings($CAD/Ha) 

AG Census 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Independent 
 Variables 

 
 
Control 
 

INCCAP 
POPDEN 
NETMIG 
HIDIST 
GOVPAY 
X_COORD 

Per capita income (×1000 $CAD) 
Population density (people per km2) 
Net migration 
Distance to nearest Highway(km) 
Government transfer payment($CAD/Ha) 
Longitude 

CoP 
CoP 
CoP 
C-RERL 

StatsCan 
C-RERL 

 
 
 
Dummy  

BLACK_SZ 
DGRAY_SZ  
GRAY_SZ 
DBROWN_SZ  
BROWN_SZ 
AL, SK, MB 

Black  Soil Zone 
Dark Gray Soil Zone 
Gray Soil Zone 
Dark Brown Soil Zone 
Brown Soil Zone 
Provincial dummies for Alberta, 
Saskatchewan and Manitoba 

C-RERL 
C-RERL 
C-RERL 
C-RERL 
C-RERL 
Auth 

Market 
prices 

PW  
PC 

Market price of Wheat($CAD/t)  
Market price of Canola($CAD/ t) 

FRM© ,Auth 

 
 
 
 
 
 
 
 
 
Climate 

JAN,  APR, 
JUL, SEP  
 
 
GDD(month) 
 
 
 
TEMPAV 
 
 
TPERC 
 
 
 
RHJUL  
 
 
TPTEMP  
 
 
FFD 
 
SNOWAV 
 
RAINAV 

Climate-normal annual mean temperature for 
20 years preceding each Census year for 
January, April, July, October(˚C)  
 
Climate-normal annual mean Growing Degree 
Days(GDD) for 20 years preceding each 
Census year for different months 
 
Climate-normal annual mean temperature for 
20 years preceding each Census year  
 
Climate-normal annual mean precipitation for 
20 years preceding each Census 
year(mm/year)  
 
The relative humidity for July (20 years 
average) 
 
Proxy for 
Evapotranspiration(TPERC/TEMPAV)   
 
Frost free days 
 
Annual average snowfall (20 years average) 
 
Annual average rainfall(20 years average) 

EnvCan, 
Auth 

 
 

EnvCan, 
Auth 

 
 

EnvCan, 
Auth 

 
EnvCan, 

Auth 
 
 

EnvCan, 
Auth 

 
 

Auth 
 

EnvCan, 
Auth 

EnvCan, 
Auth 

EnvCan,      
Auth 

* AG Census: Agricultural Census 1991, 1996 and 2001, CoP: Census of population 1991, 1996 and 2001, Auth: the author of this thesis, C-RERL: the 

Canada Rural Economy Research Lab, StatsCan: Statistics Canada, EnvCan: Environment Canada, FRM©: Freight Rate Manager (versions 1.0, 
2.0 and 2.1) software has been used to calculate freight costs for each CSD. This software was developed by the agricultural 
Economics department at the University of Saskatchewan and Agriculture Institute of Management in Saskatchewan. 
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4.3.1   Dependent Variable  
Consistent with most Ricardian models that have been developed in the literature, the 

dependent variable in the present model is per hectare agricultural land values ($CDN/ha) as 

reported by the market value of land in the Census of Agriculture (LVAL). In general, 

agricultural land values are higher in Alberta and increase from 1991 to 2001, while the 

agricultural land values for Saskatchewan and Manitoba are lower and increase steadily during 

the study period. Figure 4.6 reflects change in land values in each CSD over the previous decade 

(1991-2001). Land value in most CSDs has increased by between 10 and 150% between 1991 

and 2001. 

 

Source: Canada Rural Economy Research Lab (C-RERL) 
Figure 4.6 Percentage change in land value, 1991-2001  
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4.3.2   Independent Variables: Non-climate (control) 
In the Ricardian model developed for the present research the independent variables are 

divided into four sets: non-climate (control), climate, agricultural market prices, and dummy 

variables. For non-climate factors, a variety of social, cultural, political, and economic factors are 

included in the model. Population density (people per km2) (POP) and per capita income 

(INCCAP, average income in each CSD) are specified to control the competition for non-

agricultural land uses. For change in population, (NETMIG) is defined as the subtraction of out 

migration from in migration in the prairies CSDs. The other policy variable is government 

transfer payment (GOVPAY) or alternatively any farm program which has transferred money to 

farmers by government. 

4.3.3   Independent Variables: Dummy Variables 
 Soil type is a variable to control for the quality of the agricultural land.  Figure 4.7 

reflects the classification of soil types in the Prairies. There are five soil zones in this area 

(Black, Dark Brown, Brown, Gray and Dark Gray) and each zone is represented by a dummy 

variable (BLACK_SZ, DGRAY_SZ, GRAY_SZ, DBROWN_SZ and BROWN_SZ). Provincial 

effects (AL, SK and MB) are considered to account for province specific effects. 
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Source: Canada Rural Economy Research Lab (C-RERL) 
Figure 4.7 Soil types for each census sub-division in Prairies 

4.3.4   Independent Variables: Market Price Variables  
 Price variables are crucial components of this study as these variables can not only 

capture the effect of the market on the Prairies agricultural economics (by estimation of the base 

model) but also can be used to project the market fluctuations on the current Ricardian model (by 

simulating future expected prices in the base model). Consequently, it is crucial to define and 

determine appropriate variables which are important both locally and globally. The market prices 

received for major agricultural products in the prairies are chosen based on their share of total 

farm cash receipts. Wheat (PW) and Canola (PC) represent the largest cash receipts in western 

Canadian farm production. In fact, in terms of acreage, wheat and canola are the first and second 

most important crops grown in the Canadian prairie.   
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In this study, market price of wheat and canola in each CSD are different because each 

different delivery point in the prairies has different freight costs. In other words, as the freight 

rates from each delivery point (farms in each CSD) to each port (Thunder Bay or Vancouver) are 

different the proximity of delivery points to export ports causes a spatial variation in market 

prices. The market price for canola and wheat can be calculated based on subtraction of freight 

costs from the Canadian Wheat Board (CWB) price for each CSD. Freight Rate Manager 

(FRM©, versions 1.0, 2.0 and 2.1) software has been used to calculate freight costs for each CSD. 

This software was developed by the agricultural Economics department at the University of 

Saskatchewan and Agriculture Institute of Management in Saskatchewan.  It is important to note 

that the area allocated to wheat and canola production are not the same in each CSD, therefore 

market prices are weighted by the hectare cultivated share of each crop. In this case, if one crop 

has not been cultivated in a CSD or if the hectare share of this crop is not significant it will not 

enter into market price calculation. Hectare cultivated share is calculated based on dividing the 

planted area of wheat (AW) or canola(AC) by the total planted area for wheat and canola (AW + 

AC). Therefore, wheat weighted market price is calculated by multiplying delivery point price of 

wheat by the cultivated share of wheat ( W
W

W C

AP
A A

×
+

) and canola weighted market price is  

( C
C

W C

AP
A A

×
+

). 

4.3.5   Independent Variables: Climate 
Climate variables in this study include climate-normal annual means for the 20 years 

preceding each of the Census years (1991, 1996, and 2001). For example, climate variable for 

1991 precipitation (TPERC) represents the years 1972-1991. The Climate variables for 2001 
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temperature represents the years 1982-2001, and so on. In the same fashion, JAN, APR, JUL and 

SEP is the 20 year climate normal mean daily temperature for the months of January, April, July 

and September respectively. An alternative variable that represents the solar energy input in the 

system is growing degree days (GDD). The number of growing degree days for a given day is 

defined in relation to the minimum and maximum temperatures at which a given plant is 

expected to exhibit significant growth. Relative humidity for the month of July (RHJUL) is 

another important climate variable. SNOWAV is climate-normal annual average snowfall and 

frost free days (FFD) as the days with more than zero temperature is the other climate variable in 

this study. As Prairies are dryland of Canada, the precipitation variables are important part of the 

model. SNOWAV, RHJUL and RAIN are water related variables which need to be in the model 

to capture the precipitation effects. FFD captures the growing season effects on the model. Table 

4.3 shows descriptive statistics for all dependent and independent variables.  

Next section outlines a brief and general overview of the econometric models employed in this 

study.  
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Table 4.3 Descriptive Statistics 

Variable Mean Standard 
Deviation 

Min Max Observations 

Land Value 993.4 746.8 83.7 8272.8 1407 

Income per Capita 15.0 3.5 4.6 32.8 1407 

Population Density 10.3 89.8 3.91×10-2 1317.8 1407 

 Net Migration 393.3 4325.7 -1535.0 108350 1407 

Distance to nearest Highway 45.9 42.4 5.67×10-2 388.2 1407 

Government transfer payment 1407.9 1491.7 7.6 11143.1 1407 

Price of Wheat 134.8 39.8 1.55×10-2 230.8 1407 

Price of Canola 63.5 46.0 3.57×10-10 259.5 1407 

Longitude -105.2 4.9 -119.3 -95.8 1407 

Black  Soil Zone* 0.4 0.5 0.0 1.0 1407 

Dark Gray Soil Zone* 0.2 0.4 0.0 1.0 1407 

Gray Soil Zone* 0.2 0.4 0.0 1.0 1407 

Dark Brown Soil Zone* 8.60×10-2 0.3 0.0 1.0 1407 

Brown Soil Zone* 9.52 ×10-2 0.3 0.0 1.0 1407 

Evapo-transpiration Proxy -225.9 748.3 -1063.7 768.3 1407 

January Temperature -14.1 4.1 -23.6 18.2 1407 

April Temperature 4.2 1.4 -4.7 17.1 1407 

July Temperature 17.3 1.3 5.5 20.2 1407 

September Temperature 10.7 1.2 5.1 15.0 1407 

Rainfall 320.6 54.7 189.3 518.2 1407 

Snow fall 105.8 23.4 42.8 262.5 1407 

Frost Free Days 13.9 5.0 0.0 21.1 1407 

July Relative Humidity 52.3 5.1 36.3 64.9 1407 

Growing Degree Days for April 52.4 14.9 0.0 102.5 1407 

Growing Degree Days for May 183.9 40.3 0.0 260.2 1407 

Growing Degree Days for June 290.2 60.4 0.0 386.2 1407 

Growing Degree Days for July 361.1 75.0 0.0 480.8 1407 

Growing Degree Days for August 337.7 70.8 0.0 445.0 1407 

* Dummy Variables 
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4.4   The Basic and Panel model 
 This section describes the econometric framework that I use to assess the effects of 

climate variations on Canadian agriculture. The econometric model specification involves 

regressing per hectare farmland value against climate variables while controlling for other 

environmental and socio-economic variables affecting agricultural farmland value for the years 

1991, 1996 and2001. The data is pooled over the 3 census years and CSD level farmland value 

are regressed on climate , non-climate (control), agricultural market prices, and dummy variables 

to estimate the best use value function (also called best climate response function) across the 

Canadian Prairies. The econometric strategy is defined as a hedonic approach and panel fixed 

effects approach. 

4.4.1   A Cross Sectional Approach 
I initially consider the following cross sectional approach that has been predominant in 

the previous studies which is based on the following equation:  

 
2

iY N N Z P Dα β δ γ ϕ= + + + + + ε                                   (4.1) 

where Y is agricultural land value, N represent the climate variables (N2 is climate variables in 

quadratic form), Z are the socioeconomic variables, P are agricultural market price variables, D 

are the dummy variables and iε  is a stochastic error term. The coefficient vectors (α , β ,δ ,ϕ  

and γ ) will be estimated by OLS and Panel econometrics methods and the results reflect the 

effects of climate, non-climate, price and dummy factors on agricultural land value. Empirically, 

the basic hedonic model has been set up as follow: 

2
1 2 3

3 4 5

( ) (

( ) ( ) (

L V A L C L IM A T E C L IM A T E

C O N T R O L P R IC E D U M M IE S

β β β

β β β

= + +

+ +

)

)

+                                  (4.2) 
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Equation (4.2) shows that the functional form for climate variables is quadratic form which is 

consistent with literature4. Quadratic forms are designed to take into account any possibilities of 

nonlinearities in the climate sensitivities. If land values expressed as a quadratic function of 

climate variables then the partial derivative with respect to climate of the general equation would 

be:  

 
2 32L V A L C L I M A T E

C L I M A T E
β β∂

= +
∂

                                                                (4.3) 

These are simply means of the estimated slopes of the climate variables from the model  

( 2 32 CLIMATEβ β+ ) (Polsky, 2004). The linear terms represent the marginal value of climate at 

the Canadian mean, while the squared terms are representing the shape of the relationship 

between climate and land value. A positive coefficient indicates a U shape and the negative 

coefficient reflects the hill shape relationships (Mendelsohn, 2001). A hill shape relationship 

between a climate variable and land value indicates that as the climate variable increases the 

land value increase to the certain point (maximum) then increasing climate variable beyond this 

point reduces the land value. On the other hand, a U shape relationship shows that land value 

will decrease as climate variables rise to reach a certain point (Minimum) then both land value 

and climate variables will increase. The empirical examples will be presented in the next 

Chapter. 

4.4.2   A Panel Fixed Effects Approach 
 As this study considers three points of time and as the Canadian Prairies spread across 

different provinces, the analysis must include a mechanism to represent regional and temporal 

scale variation in this study. Econometrically, these time and spatial effects can be tested by 

                                                 
4 Described in section 3.2  
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running the model as a two way fixed effects method. The model can be estimated as a panel 

considering time and place fixed effects on the Ricardian analysis as follow: 

  2
t province t t t t t tY N N Z P D itη λ α β δ γ ϕ μ ε= + + + + + + + +                                 (4.4) 

where Yt is agricultural land value in 1991, 1996, and 2001, tλ  is year fixed effects and now the 

equation includes provinceη  as a province indicator. There are two reasons to include this time-

place fixed effects: first, the province fixed effects can absorb unobserved time invariant 

determinants of the dependent variable. Second, the year indicator tλ  control for time 

differences in the dependent variable which are common across CSD. 

To show two way fixed effects regressors, assume Nt, N2
t, Zt, Pt, and Dt are all included 

in the Xit matrix: 

it province t it itY Xη λ β μ ε= + + + +                                                                        (4.5) 

then, the fixed effect two-way estimator for α, β, δ, γ, and φ in (4.4) is b as follows(Greene, 

2003): 

3 3
1

. . . .
1 1

b=[ (x -x -x x)(x -x -x x)']it i i it i i
i t

−

= =

+ +∑ ∑ ×  

      
3 3

1
. . . .

1 1
[ (x -x -x x)(y -y -y y)it i i it i i

i t

']−

= =

+ +∑ ∑                                                                (4.6) 

now, the regression constant term is: 

 ˆ y x 'bμ = −   

and fixed effect two-way estimator for other coefficients are: 
 
for provinces fixed effects: . .ˆ (y -y) (x x)'bprovince i iη = − +                                                      (4.7) 
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and for time fixed effects: . .
ˆ (y -y) (x -x)'bt t tλ = −                                                       (4.8) 

where the bar symbol represents the average in the above formulas. For instance, . is average 

of X for three provinces in a fixed year and  is average of X in all three years and three 

provinces (Baltagi, 2005 p. 34). 

4.4.3   Area Response Function 
In this analysis, to quantify the crop diversification decision by farmers in response to 

climate change, I developed a simplified area response function from Salassi (1995) represented 

by: 

( , )i i iA f P SS=                                                                                                 (4.9) 

where Ai is the planted area of the crop i, Pi is the price of the crop i, and SSi is a vector of 

variables representing supply shifters. According to Mythili (2001), Mahmood et al. (2007), and 

Salassi (1995) supply shifters include variables such as government support, lagged planted 

acreage of the commodity, lagged yield of crop, and lagged price of crop. Since yield is a 

function of climate, one can conclude that climate variables are indirectly a determinant of the 

area response function. 

Area response function for wheat and canola in this study are a function of prices, 

government payment and environmental (climate) variables. This relationship can be written as:  

 i i i iA N G P iα δ γ= + + + ε                                                                               (4.10) 

where, 

Ai = Planted area of wheat or canola 

Ni = Climate variables 

Gi = Government payment 
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Pi = Agricultural market prices of wheat or canola 

and iε  is a stochastic error term. 

Now, equation (4.10) can be estimated to capture the impact of current climate change and prices 

on planted area. Then it will be used to simulate future climate and price changes directly on 

planted area and indirectly on future (simulated) land value. 

4.5   Econometric estimation  

 An econometric model is an important tool available to researchers to separate and 

determine the influence of several explanatory variables on a dependent variable. The common 

problem with any econometric model needs to be considered in this study as well. Potential 

problems regarding the linear regression model are outlined. A reasonable expectation regarding 

whether these problems actually exist are formed, and how to mitigate these issues are assessed. 

Common econometric problems that can cause a violation of the fundamental assumptions of 

regression modeling include multicollinearity, heteroskedasticity, and measurement error.  

For multicollinearity problem, it is important to not include any two independent 

variables in the model with a pair-wise correlation greater than 0.8. The important issue here is 

that climate variables and squared terms of them inherently have potential multicolliniarity. 

Kaufman (1998) emphasizes that running models with un-demeaned (when data are not 

subtracted from their mean) climate variables leads to frequent switching of the parameter 

estimates and may cause large marginal effects. Therefore all climate variables have been 

demeaned (subtracting all data from their mean) to prevent strong multicollinearity in the 

estimated model. 
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To avoid any unknown heteroskedasticity in the model, White’s heteroskedasticity 

consistent covariance matrix estimator is utilized, which provides correct estimates of the 

coefficient covariances.  

In the results chapter, different regressions considering a number of different 

specifications will be estimated to determine the most robust model, and to lessen econometric 

and theoretical issues. To address model robustness, it is necessary to establish the set of 

variables that provide the most robust specification, while minimizing potential theoretical and 

econometric concerns. Robustness has a variety of definitions, in the current study; the following 

factors are used to determine robustness: 

1. The fit of the overall model as represented by the F-Statistic and R-squared values.  

2. The level of significance of the individual explanatory variables as revealed by the coefficient 

t-statistics. 

3. Whether or not the individual variables exhibit the direction of influence on the dependent 

variable are consistence with the literature and the theoretical model. 

4.6   Simulation Method  
After estimating the impact of climate means by using above panel model regression, in 

current years (1991 to 2001), one needs to evaluate the impact of future change in climate and 

prices (or revised climate and price variables) on land value. These new variables have been 

adjusted to meet new climate and price conditions in the future. The current analysis employs 

climate change scenarios to create new adjusted variables for temperature, precipitation and 

market prices. The current variables in the primary data set will be added by some °C to calculate 

the new temperature variable in case of future temperature, the precipitation variables will be 

multiplied by percentage change in future precipitation and price variables will be multiplied by 
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percentage change expected in prices. Now by plugging the change between the old and new 

(modified) variables in the regression result, change in the farmland value will be simulated. 

To illustrate the technical mechanism of this simulation, recall equation (4.4): 
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2

t province t t t t t tY N N Z P Dη λ α β δ γ ϕ μ ε= + + + + + + + +                                           (4.4) 

After estimating equation (4.4) all coefficients will be determined as well as fitted land value as 

follow: 

 2ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆη λ α β δ γ ϕ μ= + + + + + + +t province t t t t t tY N N Z P D                                          (4.11)  

the above estimation is based on the 1991-2001 base model data set, now to simulate future 

climate and price changes in time t+1 following equation (4.12) needs to be subtracted from 

equation (4.11): 

2
1 1 1 1

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆη λ α β δ γ ϕ μ+ + + += + + + + + + +t province t t t t t tY N N Z P D

ˆ )t

                               (4.12) 

notice that only climate and price variables (Nt, N2
t, and Pt ) will be changed therefore we will 

not see the other unchanged variables and constant terms in the new calculation: 

2
1 1 1 1

ˆˆ ( ) ( ) (α β γ+ + + +Δ = − = − + − + −t t t t t t tY Y Y N N N N P P                                   (4.13) 

Changing climate and price variables in simulation will result in change for land value variable 

(ΔY). Now we can compare the results of simulated models with the base model and examine the 

impacts of climate change on the land value. 

4.7   Conclusion   
  This Chapter highlighted the study area and discussed the econometric and simulation 

procedure to capture climate change in the developed Ricardian model. Also, chapter 4 

developed the technical explanation for two way fixed effects estimation as well as a simple area 

response function. Chapter 5 illustrates and analyzes the estimation results for all developed 

models.  



 
 
 
 

CHAPTER 5 BASE MODEL RESULTS 

 
 
 
 

5.1   Introduction 
The last chapter introduced a methodology for the current study. Based on the 

methodology, in this chapter a set of Ricardian models are estimated to investigate the impact of 

climate normals on the economics of agricultural systems in the Canadian prairies during three 

time periods (1991, 1996, and 2001). The econometric approach used to assess the climate 

impacts was a two way fixed effects panel model specification with time and provinces fixed 

effects. First this chapter will discuss the estimated parameters. Then a simple area response 

function application is presented in the next section. Finally concluding remarks will be provided 

to connect this chapter to Chapter 6. 

5.2   Parameter Estimates 
Parameter estimates from basic and panel fixed effects approaches are discussed in this 

section. Table 5.11 represents final base (only climate variables) and panel model 

estimations2.As this study considers three points of time and as the Canadian Prairies spread 

across wide geographical area, the analysis must include a mechanism to represent regional and 

temporal scale variation. Econometrically, the time and spatial effects can be tested by running 

                                                 
1 The quadratic forms for variables will be presented while number 2 appears right after each variable (e.g. TPERC2, 
JAN2, and so on). The quadratic forms are designed to take into account for any possibilities of nonlinearities in the 
climate sensitivities.(section 4.4.2) 
2 Full set of LIMDEP print outs are included in Appendix A. 
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the model as a two way fixed effects method3. The advantages of using a panel fixed effects 

model over cross section least square are the ability of using time and provinces effects 

simultaneously to capture more effects and also to acquire more accurate estimation (Baltagi, 

2005). 

As discussed in Chapters 3 and 4, price variables are necessary to avoid misspecification 

error (omission of relevant variable biased) in the Ricardian model. Before unfolding more of the 

results, and according to one of the objectives of this study which is to include and to explore the 

potential importance of price factor, it is important to discuss one potential problem with 

assuming unchanged market prices in the Ricardian model4. In the fifth column of Table 5.1, the 

classical Ricardian model has been presented. This model has no prices included and it is like all 

other Ricardian models which consider prices as constant. Therefore this model estimated to 

compare with the fourth column of Table 5.1 which is the basic panel model 1 of this study with 

prices being included. Note that the year variables are not significant when price variables are 

omitted. Although the R-squared statistic shows very small difference (in the third digit) whether 

prices are included or not, price variables do make a difference to the significance of April 

temperature, April temperature squared, July relative humidity, constant and time period 

variables.  

There are some important results. First, including prices in the model takes the effect of 

year fixed effects out of constant term and makes year fixed effects significant5. It also supports 

the inclusion of prices in the model is necessary to capture the fixed effect nature of our data. 

Second, the model with prices can also take the impact of year fixed effects out of error term, 

                                                 
3 Described in section 4.4.2 of Chapter 4 
4 Misspecification error 
5 Practically, constant term includes all fixed effects of a model, by running the model with market prices some fixed 
effects can be excluded from constant term (year fixed effects in this context). 
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enabling the model to capture more information for variables such as April temperature, April 

temperature squared, and July relative humidity and consequently enable these variables to show 

their own effects in the model. In other words, the covariance between neglected price changes, 

which appears in the error term, and explanatory variables may offset the effect of those 

explanatory variables and make them insignificant. To end with, the above empirical results 

confirm the necessity of including commodity market prices in Ricardian model.  

Two OLS (with only climate variables) and two panel models (with all variables) has 

been chosen from other models that were empirically estimated for the current available data set 

(Table 5.2). Since two sets of temperature and growing degree day (GDD) variables are 

employed in this study two panel models are presented. Panel model 1 includes temperature 

variables and growing degree day (GDD) variables are included in model 2 .The criteria to 

choose the better model were based on R-squared statistics which reflect the explanatory power 

of the independent variables of the model and partially from having more significant number of 

variables (Panel model 1 has 4 more significant parameters than panel model 2).  

In the second Column of Table 5.2, the OLS model with only climate variables includes 

temperature variables. In this model, January and July temperature are significant; positive 

expected sign for the linear term and a negative sign for squared term guarantee a hill shaped 

relationship between land value and environmental factors6. The squared (quadratic) term shows 

the non linear shape of a climate variable (U or hill shaped). It is expected that temperature and 

land value will have hill shaped relation based on production function hill shaped relationship7. 

                                                 
6 The relation between climate variables and land value are based on the sign of the related coefficients. Here four 
relations have been identified: positive (positive linear and positive squared term; ex: rainfall and April 
temperature), negative (negative linear and negative squared term; ex: July temperature), U shaped (negative linear 
and positive squared term; ex: snowfall), and hill shaped (positive linear and negative squared term; ex: July relative 
humidity) relations. The main application of these concepts will be presented in section 5.2.1.1when Marginal 
Climate Impacts (MCI) will be introduced. 
7 See Chapter 3 section 3.2   
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A hill shape relationship between a climate variable and land value indicates that as the climate 

variable increases the land value increase to a certain point then increasing the climate variable 

beyond this point reduces the land value. In contrast, a U shape relationship shows that land 

value will decrease as climate variables rise to reach a certain point then both land value and 

climate variables will increase. The main application of these concepts will be presented in 

section 5.2.1.1when Marginal Climate Impacts (MCI) will be introduced. 

Furthermore, April and September temperature and squared terms are not significant in 

the OLS climate model 1 and also annual average snow fall, relative humidity in July and Frost 

free days are not significant, even at the 10% level, although they have plausible signs. The other 

climate variables such as annual average rainfall (RAIN) and the evapo-transpiration proxy 

(TPTEMP) are significant reflecting that precipitation and potential available water play key 

roles in prairie agricultural production.  

 The OLS only climate model with growing degree day (GDD) variables is presented in 

the third column of Table 5.1. This model result indicates that growing degree days are not 

significant (except April’s GDD) although they have expected signs (except GDD signs for June 

and July). In fact, there are not enough variations in GDD variables to significantly describe land 

value in this model. All other variables have the same descriptions as the first climate variable 

model (OLS climate 1). The OLS only climate 1 and climate 2 models have low R-squared 

values at less than 0.21. In other words, in these models climate variables only explain about 

21% of the variation in prairies farm land values. The regressions consist of only climate 

variables and as such are not complete and suffering from lack of other relevant variables. In 

order to improve the estimation results, more appropriate variables and methods have been 
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applied and followed. Adding more related variables along with different estimation method are 

shown to increase R-squared to 59%8.  

                                                 
8In fact, the alternative model increases the R squared value from 0.2 to 0.58 
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Table 5.1 Basic and Panel Estimation Results 

Variable 
 

OLS Only
Climate1 

OLS Only
Climate2 

Panel 
Model 1 

Panel 
Model 1 

No Prices 

Panel 
Model 2 

Control      
Income per Capita  - - 37.85*** 38.30*** 37.50*** 
Population Density - - 14.62*** 14.78*** 14.76*** 
Population Density Squared  - - -0.01*** -0.01*** -0.01*** 
Net Migration - - 0.03*** 0.025*** 0.03*** 
Distance to nearest Highway - - -1.71*** -1.73*** -1.80*** 
Government transfer payment - - 0.04*** 0.04*** 0.04*** 
Longitude     -    - 14.76* 16.70** 9.72 

Dummy      
Black  Soil Zone - - 71.33 57.35 139.88 
Brown Soil Zone - - -217.33 -228.61* -118.61 
Dark Brown Soil Zone - - -52.71 -68.24 34.93 
Gray Soil Zone - - 31.52 22.19 87.38 
Dark Gray Soil Zone - - 70.37 62.79 116.01 

Market prices      
Price of Wheat - - 6.67* - 7.92** 
Price of Canola - - 4.08* - 4.62** 

Climate      
Evapo-transpiration Proxy  0.04*** 0.04*** 0.04*** 0.04*** 0.04***
Evapo-transpiration Squared 0.38×10-6*** 0.37×10-6*** 0.37×10-6*** 0.37×10-6*** 0.38×10-6*** 
January Temperature 9.84*** - 15.25* 16.85* - 
January Temperature Squared -2.3*** - -0.46 -0.50 - 
April Temperature 13.84 - 22.04* 21.44 - 
April Temperature Squared 3.16 - 3.05* 3.02 - 
July Temperature  312.84* - -31.70* -30.51* - 
July Temperature Squared -11.12* - -5.40 -5.39 - 
September Temperature  41.32 - 15.50 17.15 - 
September Temperature Squared -0.56 - 5.77 6.18 - 
Growing Degree Days for April  - 22.47* - - -2.86 
Growing Degree Days for April Squared - -0.08 - - 0.06 
Growing Degree Days for May  - 2.04 - - 0.77 
Growing Degree Days for May Squared - -0.02 - - -0.05** 
Growing Degree Days for June - -9.76 - - 1.91 
Growing Degree Days for June Squared  - 0.2 - - 0.03** 
Growing Degree Days for July - -4.20 - - -1.48 
Growing Degree Days for July Squared - 0.001 - - 0.002 
Growing Degree Days for August - 7.77 - - -0.08 
Growing Degree Days for August Squared - -0.01 - - -0.008 
Rainfall -6.73* -8.57* 0.57 0.71 0.81 
Rainfall Squared 0.02*** 0.02*** 0.03*** 0.03*** 0.03*** 
Snow fall 1.09 -4.02 -1.79** -1.89** -1.79** 
Snowfall Squared -0.01 0.01 0.01 0.01 0.01 
Frost Free Days 12.01 -18.01 3.95 4.08 4.71 
July Relative Humidity   58.57 62.15 9.15* 8.40 4.30 
July Relative Humidity Squared -0.38 -0.60 -0.35 -0.40 -0.21 

 Constant   -2797.67     450.11  617.98 1987.99** -212.69 
  *** denotes significant at 1% level, ** denotes significant at 5% level and * denotes significant at 10% level. 
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Table 5.1 Continued 

Variable 
 

 
OLS Only

Climate1 
OLS Only

Climate2 
Panel 

Model 1 

Panel 
Model 1 

No Prices 

Panel 
Model 2 

Province Fixed Effects 

Manitoba  
Saskatchewan 
Alberta 

- 
- 
- 

- 
- 
- 

26.72 
-90.59*** 
385.40*** 

34.13 
-95.39*** 
394.56*** 

6.67 
-91.95*** 
429.62*** 

Year Fixed Effects      
1991 
1996 
2001 

- 
- 
- 

- 
- 
- 

314.46** 
-323.89** 

1.21 

-3.46 
2.12 
1.40 

338.40** 
-373.04** 

25.18 
R2 
Adjusted R2 

0.21 
0.20 

0.15 
0.14 

0.59 
0.58 

0.59 
0.58 

0.59 
0.58 

*** denotes significant at 1% level, ** denotes significant at 5% level and * denotes significant at 10% level. 
 

The signs of the parameter estimates are the same in both set of models, the magnitudes 

are similar and the set of significant variables is almost identical between the two set of 

estimates. This similarity validates the decision to use Panel Fixed Effects model against OLS. It 

is noteworthy that OLS results also show similar signs and magnitudes; however, the number of 

significant variables are less than other models and also the R-squared for OLS with all variables 

are less than other panel models9 which was expected as panel fixed effects model use time and 

provinces effects simultaneously to capture more effects. 

It is important to recognize the fact that there are a number of missing factors such as 

irrigation, livestock, and urban development effects that are not included in the model. 

Particularly, Alberta with higher land value with respect to Manitoba and Saskatchewan needs to 

be examined for the above effects more carefully. A sensitivity analysis of removing Alberta’s 

data from the base model has been executed to examine the difference between the complete 

model and a sub-sample of data set10. Table C.1 shows the results of the sensitivity analysis of 

the removing Alberta from data set. This sensitivity analysis result reveal that the signs and 

                                                 
9 OLS with all variables presented in Appendix A. 
10 See Appendix C  
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magnitudes of the parameters estimated for complete and sub-sample models are similar except 

for January Temperature, January Temperature Squared, and July Relative Humidity. However, 

the R squared for model without Alberta is less that the model with Alberta showing the model 

without Alberta has the lower explanatory power that the other one. 

An important point here is that the constant term and Alberta fixed effects in the both 

models are making the model with Alberta more representative than the model without Alberta. 

In fact, Alberta fixed effect captures at least some part of missing factors in the total sample 

model. On the other hand, when Alberta data is removed from the model the constant term 

captures this effect and not the other parameters on the model. As the inclusion of provinces 

fixed effects are to capture each province effect on the land value and as fixed effects inherently 

can be captivated from constant term (Baltagi, 2005), the model with Alberta can be justified to 

be used in the current analysis and model without Alberta has no advantage to the other model. 

5.2.1   Climate Variables 
The panel model 1 regression results from Table 5.1 demonstrate that most of the climate 

variables have a significant impact on land values (except September temperature and Rainfall). 

The estimated coefficients of most of the linear and quadratic terms are statistically significant. 

As expected, the climate parameters across the prairies change over the seasons. Since the 

squared terms for temperature of different seasons have different signs, a mixture of hill shaped 

and U shaped responses has been implied. Also, the parameter estimates for precipitation 

variables such as TPTEMP, SNOW, RHJUL and RAIN all have positive squared term implying 

U shaped response function. 

The panel model 2 regression results reveal that climate variables based on growing 

degree days for different seasons are not significant and does not show any significance even at 
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the 10% level except for May growing degree days squared and June growing degree days 

squared. Also, frost free days (FFD) is significant in none of the models. Rainfall (RAIN) and 

the evapo-transpiration proxy (TPTEMP) climate variables in this model are at the same 

significance level and similar in value with respect to the panel model 1. Therefore, the two 

model results are consistent with the understanding of the importance of precipitation in 

agricultural production within the prairie landscape.  

5.2.1.1   Marginal Climate Impacts 
Since it is difficult to interpret the linear (constant slopes) and squared coefficients 

(nonlinear slopes which are a function of CLIMATE variables) in raw form, Marginal Climate 

Impact (MCI)11 for each climate variables has been calculated. Recalling equation 4.2 from 

section 4.3.1, if land values are expressed as a quadratic function of climate variables then the 

partial derivative of land value (LVAL) with respect to climate would be:  

 
2 32LVAL CLIMATE

CLIMATE
β β∂

= +
∂

                                                                             (4.3)                      

next, taking the mean from both sides: 

 
2 3( ) 2 * (LV A L )E E CLIMA TE

CLIMA TE
β β∂

= +
∂

                                                                 (5.1)        

which is the MCI for any climate variable. Evaluating the marginal effects of all climate 

variables at their mean provides the MCI for each climate variable (Table 5.2). In fact, MCI is 

the amount of change in land value when one unit change occurs in any climate variable. In this 

case, MCIs represent the change in CAD/ha of farmland value per ˚C or mm/year, evaluated at 

the mean annual climate for farmland in Canadian Prairies. Equation (5.1) can be calculated 

based on the numbers from the estimation results. Therefore, it can be tested as a restriction for 

                                                 
11 It is also called marginal influence, marginal value, marginal effects of climate (Mendelsohn and Reinsborough, 
2007) or Ricardian climate sensitivities (Polsky, 2004). 
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panel model 112. Now, to investigate the significant level of estimated MCIs, it is necessary to 

run an F-test13 (Gujarati, 2006). All the F- statistics of the climate variables in the model are 

highly significant at the 1 percent level (Table 5.2).  

5.2 Marginal Climate Impacts 

Variable 2β  3β  SD MCI F-statistic 

January Temperature 15.26 -0.46 -3.80 28.14*** 54.91 

April Temperature 22.04 3.05 8.43 47.38*** 31.59 

July Temperature -31.70 -5.40 -14.20 -218.96*** 237.65 

September Temperature 15.50 5.77 14.23 139.42*** 96.03 

Rainfall 0.57 0.03 3.14 18.98*** 36.47 

Snow fall -1.80 0.01 0.38 -0.10 0.07 

July Relative Humidity   9.15 -0.35 -3.55 9.15*** 6.66 

Evapo-transpiration Proxy 0.04 3.69×10-7 0.00 0.04*** 5341.92 
*** denotes significant at 1% level. 
 

The estimated MCIs for the climatic variables are consistent with expectations and have 

intuitive signs as well. All variables, except Snowfall, are highly significant. The marginal 

effects of January and September temperature on land value are significant indicating that a 

marginal increase in temperature for these months is beneficial for prairie agriculture. In 

contrast, the MCI for July temperature is negative and significant; indicating that higher July 

temperatures will tend to decrease agricultural land value. The reason for this relationship is that 

the greater than the normal warming condition along with more water evaporation (due to higher 

                                                 
12 The restriction to test is 2 32β β+ Α = Β where A, and B are numerical amount.  
13 The F-test to test the numerical amount of restriction (5.1) in the model can be estimated by the following way. 
Taking Standard Deviation (SD) from equation 5.1gives: 

3( ) 2 (β∂
=

∂
LV ALSD SD CLIMATE

CLIMATE
)

}

  

which is presented as SD in column 4 of Table 5.4. Now, F-statistics of the joint significance is: 
2

3{ / 2 ( )β= ×F MCI SD CLIMATE  
which is presented in the last Column of Table 5.4.   
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air temperature, which takes available water out of reach of plants) can cause heat stress on crops 

and reduces the crop productivity.  This discussion about change in productivity and yields of 

different crop needs to be used with caution since there are different perspectives on the effects 

of climate change on crop yield. Tubiello et al (2007) show that among some agronomical 

studies on the yield effects of climate change, high temperature during the critical flowering 

period of a crop may lower positive CO2 effects on yield by reducing grain number, size, and 

quality. Also, increased temperatures during the growing period may also reduce CO2 effects 

indirectly, by increasing water demand. This is justifying the negative MCI for July on the 

prairies. 

It is also important to identify that the results cannot be interpreted explicitly as land 

value reflecting change in yield and crop productivity. There are other regional differences that 

might affect agricultural land values, especially for non- agricultural based CSDs. Irrigation, 

livestock, and urban development are some of those regional factors that directly and indirectly 

might affect land value.  In fact, depending on dominant activity within each CSDs (agricultural 

or non-agricultural base), regional factors may have significant impact on the land value. For 

example, agricultural land values will be affected by the metropolitan spillovers such as 

competition over land for a range of non-agricultural uses.   

The MCI results indicate that with a temperature increase of 1˚C in April, farmland value 

will increase, on average, by 47 CAD per hectare, while the same increase in temperature in July 

will decrease land value, on average, by 219 CAD per hectare. Amongst all temperature 

variables, September’s temperature has the most influence on Canadian prairie agriculture (with 

139 MCI) and January’s temperature has the least effect (with 25 MCI). There are no crops on 

the land in January, and September is harvesting time for most of the crops on the prairies. 
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Moreover, warmer Septembers provide longer growing season which in turn can results in 

greater productivity. 

Since the Prairies are Canada’s main dry land, it is expected that water deficits will have 

significant harmful effects on agricultural production. As increasing water scarcity is a serious 

problem, it is also expected that there will be a positive relationship between precipitation and 

farmland value in CSDs where agriculture is primary driver of land values. According to the 

findings of this study, the Ricardian climate sensitivities (i.e. MCI) for precipitation variables are 

highly significant and positive in sign. Keeping all other variables constant, a 1 mm per month 

increase in Rain on average results in 19 CAD per hectare increase in farmland value. Moreover, 

RHJUL (relative humidity in July), another water related variable, is strongly significant but 

appears to have less strong of an impact on agriculture. Finally, TPTEMP which is a proxy for 

evapo-transpiration has the least influence on the land value. In fact, the results show that 1 

mm/month decrease in TPTEMP (keeping temperature constant) will cause only 4 cents per 

hectare decrease in farmland value. Also, based on the definition of TPTEMP14, if temperature 

increases (holding precipitation constant), TPTMP decreases causing land value to decrease. If 

precipitation increases (no change in temperature) then TPTMP will rise and thereby causing 

agricultural land value to increase.  

Several interesting results appear from the regression analysis; first, the evapo-

transpiration proxy (TPTEMP), rainfall (RAIN) and July relative humidity (RHJUL) are highly 

significant with positive signs which are consistent with the expectation of having a direct and 

positive relationship between agricultural land values and water related climate variables. 

Furthermore, July temperature negatively impacts land value which can be interpreted as an 

increase in water deficits for plants (more evaporation than normal). Again, it is consistent with 
                                                 
14 TPTEP= (TPERC/TEMPAV) which is total annual mean precipitation divided by total annual mean temperature. 
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the claim that agriculture in the Prairies is very vulnerable to the water scarcity. In summary, as 

agriculture production on the Canadian prairies is highly constrained by precipitation, land use 

and land value strongly depend on the precipitation, at least for agricultural based CSDs. 

5.2.2   Market Prices Effects 
The most significant contribution of this study to the related Ricardian literature is to 

determine the impact of including market prices in the model. Price variables are a crucial 

component of this study as these variables can not only capture the effects of the market but also 

can be used to simulate the impact of future market fluctuations on the Ricardian model. 

Consequently, it is crucial to define and employ appropriate market price variables which are 

important both locally and globally. The commodities chosen to include market prices in this 

model are based on the share of total farm cash receipts. Wheat (PW) and Canola (PC) represent 

the largest cash receipts in western Canadian farm production. Wheat and canola on average 

comprised 43.18 and 19.53 percent of total planted area for 1991 to 2008 years that makes them 

the most common crops in the Canadian Prairies15. In fact, in terms of land allocation, wheat and 

canola are the first and second most important crops grown in the Canadian prairies. As a result, 

canola and wheat prices are important and significant determinants of the agricultural economics 

of the western Canada.  

The proposition of including market prices in the Ricardian model can be tested by 

employing Incremental F-test16 (Gujarati, 2006). It will be assumed that the panel model 1 with 

prices and panel model 1 with no prices are unrestricted and restricted forms, respectively. In 

fact, running the panel model 1 with restriction that the price coefficients are zero is used to test 

                                                 
15CANSIM II, last accessed at December 2009:http://www.statcan.gc.ca/cgi-bin/af-fdr.cgi?l=eng&keng=8&kfra=8&loc=http://estat.statcan.gc.ca/Results/OMNFF03.CSV 
16 Test for including market prices. 

 79

http://www.statcan.gc.ca/cgi-bin/af-fdr.cgi?l=eng&keng=8&kfra=8&loc=http://estat.statcan.gc.ca/Results/OMNFF03.CSV
http://www.statcan.gc.ca/cgi-bin/af-fdr.cgi?l=eng&keng=8&kfra=8&loc=http://estat.statcan.gc.ca/Results/OMNFF03.CSV


whether market prices for canola and wheat are jointly significant and have an impact on land 

value or not. The test is as follow:  

2 2

, 1 2
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where J = number of restrictions imposed (in this case, 1), 

K = number of variables in the unrestricted model (36), 

N = number of observations (1407), 

R2
u= R squared for unrestricted model (panel model 1), and  

R2
r= R squared for restricted model (panel model 1 No Prices). 

The null hypothesis here is that both price coefficients for canola and wheat are equal to 

zero. It can be written as: 

0 Pw PcH    β β= = =                                                                                           (5.3)                             

Now, as panel model 1 No Prices is a restricted version of panel model 1 then the Incremental F-

statistic for this hypothesis is:   
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Comparing the calculated F-statistic with table F (Fj,n-k-1=3.45>Ftable=3 for 95%) rejects the null 

hypothesis17 in favor of alternative hypothesis which is that market prices for canola and wheat 

are jointly significant and have an impact on land value. This result helps to meet the second 

important objective of this study, namely to include and reveal the importance of market price 

factor in the Ricardian land climate model for prairies. 

The estimated coefficients on the market prices variables are consistent with economic 

theory. Canola and wheat prices are important and significant determinants of the agricultural 

 
17 Wheat and canola prices have no effects on farmland value. 
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economy of western Canada. In the current analysis, both of these variables are positive and 

significant which indicates that an increase in wheat and canola price will increase agricultural 

land value. According to the findings of this study, if wheat price increase by $10/t the land 

value in the Canadian prairies will increase by $66.7/ha  based on panel model 1 (or $79.2/ha for 

the panel model2). Similarly, a $10/t increase in canola price results in approximately $40.7 (or 

$44.6 for the panel model2) per hectare increase in farmland value. These results indicate that 

Canadian farmers, as price takers, will tend to follow changes in wheat and canola prices as vital 

components of land use and farming plan decision making. 

5.2.3   Control Variables 
It is important to clarify the reason for including the control variables. The control 

independent variables represent some of the non-climate features that influence the land use 

decision making and land value. The pattern of using control variables is consistent with all 

Ricardian models but there are some different variables included in the present model. All of the 

control variables reflect the human dimensions of the land use process. In addition, they have 

been used to avoid any bias from misspecification error (omitted variable bias). 

Consistent with expectations, the population density parameter is positive and strongly 

significant which indicates that as population pressure increases, agricultural land value 

increases. As land is a limited production input (fixed factor of production), increase in the 

demand for land will cause its value to increase. However, the negative sign for population 

density squared (hill shaped relationship) indicates that this increase will be limited when the 

population growth pass its optimum level. Per capita income reflects the wealth of the residents 

of an area. Per capita income has a positive and significant relation with land value. In high 

income areas non-agricultural land uses, like industrial and commercial compete with farmers 
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on the same land which generates upward pressure on land values. Net migration18 indicates 

growing or declining population can directly affect the land value. In this study, net migration 

has a positive and significant coefficient meaning that as in-migration to prairies increases the 

land value will increase. This result is consistent with the result that more population will lead to 

higher land value as described earlier in this paragraph. 

The other significant and positive parameter in the present Ricardian model is 

government payments (GOVPAY). The basic effect of government financial support is to lessen 

the farmers financial risk associated with instability in economic and environmental conditions. 

Theoretically, income stabilization is the main motivation for government programs but 

empirically the relationship between government payments and land value is very complex. In 

August 1990, two support programs were introduced to stabilize grain farmers' incomes (King 

and Narayanan, 1992). First, the Gross Revenue Insurance Plan (GRIP) was introduced to insure 

farmers' gross revenues in the short run. It was designed to protect farmers from natural hazards 

or from market risks beyond the control of producers. The second program called the Net Income 

Stabilization Account (NISA) was a farmer contributed fund to help farmers stabilize their 

income. The positive parameter estimate indicates that as government payments stabilize 

farmers’ income the land value should be higher for farmers receiving payments (or at least not 

decrease). 

As prairie farmers need to transport their grain to the nearest port or nearest grain 

elevator when transportation distances decrease and transportation costs become smaller, farmer 

income will increase. This will be capitalized in higher land values. The other theoretical 

expectation in the control variables is that distance to the nearest highway (HIDIST) should be 

                                                 
18 Net migration for a given geographic area is the difference between in-migration and out-migration during a 
specified time frame. 
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negative. Indeed, better access to transportation and therefore decreased transportation costs, 

increases land value. Also, as a regional parameter, distance to nearest highway was employed to 

capture the effects of land use competition. For example, where farmland areas are near to the 

cities, there is more competition for land use which causes land value to increase. In the two 

panel models, this effect is captured by the fact that the coefficients estimated for distance to 

nearest highway were significant and negative in sign. 

Finally, longitude parameter (X_COORD) is positive and significant at the 10% level. 

According to the land value data as we move from Manitoba to Saskatchewan and Alberta, land 

value increases, therefore, positive longitude parameter here indicates that increase in longitude 

corresponds to increase in land value.   

5.2.4   Dummy Variables 
 As described in Chapter 4, soil zone dummy variables are included in this study to 

capture the productivity differences among the prairie soil zones. Unfortunately, according to the 

estimated results none of soil zone dummies are significant. Among all soil zones the BLACK, 

DGRAY and GRAY soil zones have positive signs but the coefficients are not statistically 

significant. Empirically, being in a more fertile soil zone, like the black soil zone, positively 

explains the higher land values in this zone. Apparently, as Census Subdivision (CSD) is not a 

proper gross scale to capture soil effects, more investigation with better soil characteristic data 

set needs to be done. The provinces dummy variables will be described in province fixed effects 

section. 
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5.2.5   Province and Year Fixed Effects 
In Chapter 419, the concept of including time-place fixed effects was presented. The 

province fixed effects can absorb unobserved time invariant determinants of the land value while 

year fixed effects control for time differences in land value which are common across CSD. In 

the panel model results, the significant and negative coefficient on the Saskatchewan fixed effect 

indicates that land value in Saskatchewan are lower compared to Alberta. This effect may be due 

to Saskatchewan being more distant from the east and west coasts in comparison with other two 

provinces (farthest province to coasts). In general, the data shows that Alberta has higher land 

values compared to the two other provinces and it is confirmed by the panel model 1 and 2 

presented in Table 5.1. Alberta has positive and highly significant estimated coefficient (also the 

largest magnitude) while the Manitoba parameter is not significant (positive sign). In fact, the 

province fixed effects results support the other control variables results presented earlier in this 

section. For example, increase in population and migration positively influenced land value in 

Alberta.  

An interesting result for year fixed effects is the significant and negative coefficient for 

the year of 1996. In 1995, Canada repealed the Western Grain Transportation Act (WGTA), 

which was a rail transportation subsidy paid to prairie farmers.  The end of the WGTA 

eliminated government support that had lowered producers’ cost of transporting grain to export 

ports from the Prairie Provinces. Elimination of freight subsidies reduced returns for traditional 

grains such as wheat and canola (Vercammen, 1999). This negative relationship within the 

Ricardian model, between agricultural land value and 1996 year variable has captured the 

removal of the WGTA. The other two years fixed effects have positive effects on land value but 

                                                 
19 Chapter 4 Section 4.4.2 
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only 1991 year fixed effect is significant. Further investigations need to be done by using more 

quantitative data rather than dummy variables.  

5.3   Comparison with other Ricardian Assessments  
 The analysis so far has focused on the base Ricardian model for the Canadian Prairies at 

the CSD level. Unfortunately, the national assessments only report aggregate CD (Census 

Division) level for all of Canada, which makes it difficult to compare the results with the current 

study. In addition, based on the present analysis, previous Canadian-based Ricardian analyses are 

subject to misspecification error. Weber and Hauer (2003) assume climate variables are a linear 

function of the land value, and they do not include a squared form in their estimation. It means 

land value and climate variables have linear relationships and an optimum level of climate 

factors cannot be found. Therefore, not only does their model suffer from the omitted variable 

bias but from functional issues as well. On the other hand, the Reinsborough (2003) and Weber 

and Hauer (2003) studies are based on one year cross sectional data (1995 and 1996, 

respectively) and could not capture temporal effects. And last, but not least, none of the studies 

include the market price factor in their examinations. 

 Weber and Hauer (2003) show that increasing temperature for April and July are 

beneficial while January and October are harmful for Canadian agriculture. Meanwhile, 

Reinsborough (2003) reveals that rising temperature for January and April increase farmland 

value, while July and October temperature decreases land value. The current analysis is in 

agreement with Reinsborough (2003) on harmful effects of July and beneficial effects of January 

temperatures. However, this study disagrees with the harmful effects of January and beneficial 

effects of July results from Weber and Hauer (2003). In the case of precipitation, all water 

related variables are beneficial for agriculture production on the Prairies which is consistent with 
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the Weber and Hauer (2003) results (except October negative effects) and consistent with the 

Reinsborough (2003) results (except April negative effects). All other control variables seem to 

have the same effects with this study where there is a similar variable. More comparison on the 

climate scenarios will be presented in Chapter 6. 

 As the current analysis is based on the Mendelsohn et al. (1994) study, it is important to 

compare the results of two studies specifically on the base model20. Mendelsohn et al. (1994) 

suggest that higher winter and summer temperatures are harmful for agricultural production 

while fall and winter rainfall are beneficial and summer and spring rainfall are harmful. The 

estimation results in this study show that higher temperature in winter is beneficial for Canadian 

prairie land values, but higher summer temperature is harmful, which is consistent with the 

results from Mendehlson’s study. In addition, snowfall, as the closest variable to winter rainfall 

in the Canadian prairies, is harmful which is in agreement with Mendehlson’s results. The total 

rainfall and relative humidity are two other beneficial variables in this study which are not 

comparable as there is no similar variable on the Mendehlson’s American study.  

5.4   Area Response results  
 In order to evaluate the indirect effects of climate change on land value21 through planted 

area, an area response function for wheat and canola has been developed and estimated. The link 

between land value and area response function is through market prices in the model. As 

described in section 4.3.4, market prices are weighted by the cultivated share of wheat and 

canola. Therefore, instead of using the planted area for each crop, cultivated shares  

                                                 
20 Chapter 6 will illustrate more comparison between two studies on the climate scenarios.  
21 Figure 3.5 in the section 3.5 of Chapter 3 illustrates direct and indirect influence of Climate change  
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 ) are utilized to make the connection between predicted planted area and 

simulated land values in the projected panel models. 

 The area response results for wheat are presented in this section. The regression has a 

73% goodness of fit meaning independent variables can describe more than 70% of the 

variations (Table 5.3). All variables are significant except frost free days (FFD). As each year 

planted area is directly correlated to the last years planted area, a three year lag22 for wheat 

cultivated (area) share has been recognized in this data set. Interestingly, all temperature 

variables have positive effects on the share of the planted area for wheat in prairies. On the other 

hand, all the water related variables have negative effects on the planted share of wheat. These 

results seem to indicate that, as expected, given the greater drought tolerance of wheat, relative to 

canola, farmers chose to plant more wheat in dryer and hotter locations. Consistent with 

production theory wheat price is positive indicating that higher prices for wheat increase the 

share of planted wheat in the Prairies. However, canola (substituting crop with wheat) price has a 

negative effects which indicates that an increase in canola price will results in reducing in the 

cultivated area of wheat in favor of canola (substitution effects). Any supportive payment from 

government will increase the cultivated wheat area but in very small amount.

                                                 
22 Three lags have been recognized based on Autocorrelation correlogram. Seasonal patterns can be examined via 
correlograms. The correlogram (autocorrelogram) displays graphically and numerically the autocorrelation function 
(ACF), which is serial correlation coefficients (and their standard errors) for consecutive lags (Gujarati, 2006).  
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Table 5.3 Area response of Wheat 

Variable Coefficient t-student 
Wheat area share [1st lag] 0.33*** 12.6 
Wheat area share [2nd lag] 0.15*** 5.71 
Wheat area share [3rd lag] 0.08*** 3.24 
Government transfer payment 0.34x10-5** 2.1 
Evapo-transpiration Proxy  -0.7x10-6** -2.32 
January Temperature 0.002*** 3.32 
April Temperature 0.005*** 2.54 
July Temperature 0.006*** 2.62 
September Temperature 0.008*** 3.21 
Rainfall -0.2×10-4** -2.42 
Snow fall -0.2×10-4* -1.73 
Frost Free Days -0.5×10-4 -1.11 
July Relative Humidity   -0.007*** -9.96 
Price of Wheat [1st lag] 0.001* 1.69 
Price of Canola [1st lag] -0.001** -2.4 
Constant 0.49*** 7.89 
R2 
Adjusted R2 

0.73 
0.72  

*** denotes significant at 1% level, ** denotes significant at 5% level, and * denotes significant at 10% level. 
 

 The coefficients presented in Table 5.4 show the estimation results for the canola area 

response function. The parameter estimates are mostly significant. No lags was recognized for 

canola area share1 showing that for agronomic reasons canola is not planted for two consecutive 

years. Independent variables can only describe 56% of the variations in the regression. More 

interestingly, in contrast with the wheat case, all the water related variables have positive effects 

on the share of the planted area for canola in Prairies. Now, all temperature variables have 

negative effects on the planted share of canola. This likely reflects the fact that canola is less 

productive in warmer temperature and requires more water. Consistent with production theory 

                                                 
1 Based on Autocorrelation correlogram (autocorrelogram) 
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canola price is positive indicating higher price for canola increases the share of planted canola in 

the Prairies. 

 

Table 5.4 Area response of Canola 

Variable Coefficient t-student 
Government transfer payment -7.11×10-6*** -3.45 
Evapo-transpiration Proxy 1.00×10-6*** 2.89 
January Temperature -0.004*** -4.77 
April Temperature -0.01*** -3.75 
July Temperature -0.009*** -2.93 
September Temperature -0.015*** -4.88 
Rainfall 0.2×10-4*** 3.1 
Snow fall 0.5×10-4*** 3.37 
Frost Free Days 0.4×10-4 0.75 
July Relative Humidity   0.016*** 16.68 
Price of Wheat [1st lag ] -0.6×10-4 -0.50 
Price of Canola [1st lag ] 0.4×10-4 0.51 
Constant 0.23*** 3.06 
R2 
Adjusted R2 

0.56 
0.55 

 

*** denotes significant at 1% level, ** denotes significant at 5% level, and * denotes significant at 10% level. 
 

Using area response as a function of climate and prices, the effects of simulated planted 

area on future land value will be examined in the next chapter. The results found here will be 

utilized to simulate land values for future climate and price conditions. In fact, a third dimension 

of this study, as described in Chapter 3, is to evaluate the indirect impact of climate change by 

switching between crops as an adaptation strategy of farmers in the face of climate change. This 

third approach includes change in planted area to capture the farming system response to any 

climate and price changes. In Chapter 6, the results of direct impacts of climate and price 

changes on land value with the results from indirect impacts through area response estimation 

will be compared. 
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5.5    Conclusion 
To summarize, in this empirical results chapter, first the regression results are presented. 

Several important results were revealed in this regression, first there was a direct and positive 

relationship among agricultural land values and water related climate variables. Then, July 

temperature were found to negatively affect land values as increasing the probability of 

potentially water deficits for plants. Again, it is consistent with the claim that agriculture in the 

prairies is very vulnerable to water scarcity, and land use and land value strongly depend on 

precipitation. Based on the estimated Ricardian results, climate change seems to have a 

complicated nonlinear effect on prairie agriculture. 

The most significant contribution of this study is the inclusion of market prices in the 

Ricardian model; this proposition is tested and verified by the results. Also, I find that a 

combination of water and temperature is required to describe the impact of climate means on 

agricultural land value. Two area response functions for wheat and canola were presented in this 

chapter to evaluate the indirect impacts of climate change by switching between crops as an 

adaptation strategy for farmers. The following Chapter will investigate the climate and price 

change impacts on the agricultural economics of the prairies. 

 



 
 
 
 

CHAPTER 6 SIMULATION RESULTS 

 

 
 
 

6.1   Introduction  
In this chapter, a set of potential climate and price change scenarios has been simulated to 

investigate the impact of climate change on the economics of agricultural systems in Prairie. The 

base model results are compared with the predicted results. Three different climate change 

scenarios, from 1961-1990 to Modest (2020), Strong (2050) and Extreme (2080) scenarios, have 

been used to make the comparison. After comparing different projections, the final simulated 

results for two direct and indirect impacts are illustrated. The impacts of change in rainfall, 

increase in temperature, and rise in future global market prices are employed to predict the 

economic consequences of global climate change. A conclusion section closes the chapter and 

introduces the final chapter.  

6.2   Future Climate Scenarios and Price forecasts 
The primary objective of the current study is to examine the economic impacts of climate 

change on the Prairies agriculture. In this section a set of climate change scenarios are projected 

to evaluate climate change impacts. These projections are an attempt to describe what would 

happen, given certain hypotheses (climate and price change). When a projection is well 

structured, it can provide predictive capacity helping in the design and assessment of the impact 

studies. Thus far, historical climate means and price change have been evaluated by using the 
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base models. The regression coefficients from the plausible and robust1 model have been used to 

evaluate the range of potential effects of climate change and global change in prices on the 

economics of prairie agriculture.  

To accomplish the simulations, each temperature variable in the base model has been 

increased make new temperature variables reflecting different future climate scenarios. In the 

same fashion, current precipitation variables multiplied by percentage change in future 

precipitation, then new precipitation variables reflecting climate change scenario have been 

made. Finally, percentage change expected in prices has been added to the price variables to 

represent new grain prices under climate scenarios. These new variables now have been adjusted 

to meet new climate and price conditions in the future. Next by plugging the change between the 

old and new (modified) variables in the regression result, change in the farmland value will be 

simulated2. Finally, by comparing the results of simulated models with the base model, the 

impacts of climate change on the land value are presented. In order to project climate change 

scenarios, first these scenarios need to be determined from environmental climate models. 

The climate scenarios used in the simulation analysis presented in this chapter were 

derived from appropriate global climate models (GCMs). The second version of the Canadian 

Global Coupled Model (CGCM2), as described by Flato and Boer (2001), was selected to form 

the basis of the climate change scenarios constructed for this study. Climate change simulations 

generated  for the period 1900 to 2100 was based on different concentrations of GHGs. Data 

from CGCM2 grid3 was available for three 21-year time windows: 1975-1995 (present climate), 

2040-2060 (approximately CO2 doubling) and 2080-2100 (approximately CO2 tripling). Based on 

                                                 
1 A robust regression is an efficiently estimated model which is corrected or checked for Heteroscedasticity 
(Davidson and Mackinnon, 1999).  
2 See section 4.6 of Chapter 4 for  projection methodology   
3 Canadian Climate Change Scenarios Networks 
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these CGCM2 data a number of projections were generated to represent changes in future 

temperature and precipitation (Table 6.1). The scenarios represent projected climate change from 

1961-1990 to Moderate (2020), Strong (2050) and Extreme (2080). Based on these projections, 

the annual average temperature was forecasted to increase by 1.046, 2.019 and 3.26 ˚C 

respectively, while average precipitation was forecasted to increase by 0.016, 0.116 and 0.186 

mm/day. These numbers are calculated by subtracting the annual mean of each climate variable 

in 1961-1990 from the annual mean of each certain year (2020, 2050 and 2080).    

 

Table 6.1 Climate Change Scenarios 

                                       Change in Temperature (°C) * 
 Change in 

Precipitation(mm/day)* 

Change in Crop 

Price(CAD)** 

Scenarios Yearly Winter Spring Summer Autumn   

Moderate 1.046 1.037 0.852 1.140 1.149 0.016 5% 

Strong 2.19 4.61 1.60 1.62 1.91 0.116 15% 

Extreme 3.26 4.95 3.21 3.26 1.95 0.186 25% 

Source: *Environment Canada available at: 
http://www.cccsn.ca/Download_Data/tools/CGCM1_canada.phtml?type=spatial and ** Parry et al. (1999)   
  

The modeled projected mean annual and seasonal temperature for the prairies in the 

extreme scenario show that the temperature for different seasons and years are increasing, but 

much of the projected increase will occur in winter 4(Figure 6.1). The projected annual 

precipitation for the extreme scenario has been graphed using CGCM2 grid. This graph reveals 

that in this scenario precipitation increase slightly (about 0.016 mm/day) (Figure 6.2). It is worth 

                                                 
4 Higher trend coefficient 
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noting that for the three scenarios precipitation shows a very small increase (Table 6.1)5. In fact, 

this might be a more accurate and realistic prediction, as the prairie is one of the driest regions of 

Canada. For example, Sauchyn and Kulshreshtha (2008) showed that drying projections 

predicted moisture deficits for this region, specifically precipitation cannot offset water loss by 

evapo-transpiration as summertime drying in Prairies elevates aridity. 

  

                                                 
5 Mean annual and seasonal temperature and annual temperature graphs for 2020s and 2050s are presented in 
Appendix B.  
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Figure 6.1 Mean Annual and seasonal Temperature to 2080s 
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Figure 6.2 Mean Annual Precipitations to 2080s      
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Each of the climate scenarios and each price forecast were used to predict future land 

value and these were compared with the base model (Table 6.1). These price scenarios were 

based on Parry et al. (1999)6 which projected output prices to rise between 3% and 32% for 

years 2020 to 2080 and cereal production was predicted to fall by between 25 and 125 million 

tons for the years 2020 to 2080.The current analysis used a range of 5% to 25% change 

(increase) in the wheat and canola prices to evaluate the effects of price change on land value. 

The next section examines the future impacts of climate and price change on land value.  

6.3   Economic Impacts on Land Value 
 The general impacts of the change in rainfall, increase in temperature and rise in future 

global market prices are projected. Using the climate and price parameter estimates from the 

base model, climate change impacts over a range of climate change parameters are estimated. 

For each climate scenario and each price forecast presented in Table 6.1, change in per hectare 

land value has been simulated for the moderate, strong and extreme scenarios. Then calculated 

change in land value has been compared with the base model to measure the economic impact of 

climate change on prairie agriculture.  

 In order to reveal the effects of climate change on prairie agriculture productivity and 

profitability, the change in average7 value of land has been calculated by both including and 

excluding the influence of commodity prices (Table 6.2). It can be inferred from these results 

that under the three scenarios predicted land values increase under climate change in the range of 

$16/ha to $94/ha. Land values increase from 3.5% in the moderate climate change scenario to 

9.5% in the strong climate change scenario. However, land value will increase by only 1.6% in 

the extreme climate change case, relative to the baseline model. This different prediction is due 
                                                 
6 Discussed in Chapter 2, section 2.2.3 
7 This average is a simple average land value for whole CSDs within prairie and each CSD have different average 
from the average reported in this study. 
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to a negative and concave relationship between land value and July temperature8. In fact, July 

temperature has diminishing marginal effect on the land value which shows an increase in July 

temperature driving by climate change will results in a decrease in land value. As mentioned 

before, increases in July temperature have the effects of increasing potential water deficits for 

plants and therefore, decrease productivity of crops. The same as Chapter 5(section 5.2.1.1), 

change in temperature and precipitation may cause a reduction in yield and productivity, which 

within the agricultural CSDs can be capitalized in land value but the current study, assumes that 

this is the main reason for decreased land value. Once again, this interpretation needs to be used 

with caution. In the extreme scenario, July temperature was predicted to increase by more than 3 

˚C while a relatively small increase in precipitation was predicted. Therefore, this scenario leads 

to a smaller increase in land value over the base as a result of climate change. 

The forecasted farmland values where prices change due to climate change demonstrate 

that increases in prices increase land values by 31% (Table 6.2). In fact, market prices play an 

important role in the model; ignoring prices can result in underestimating the impact of climate 

change by an estimated magnitude of $93/ha to $305/ha on average. In the extreme climate 

change scenario, the increase in land value due to increases in commodity prices is more than 

29%, which is a significant increase in comparison to other scenarios. The results in this case 

show that even though the warmer and drier condition in extreme scenario will have slight 

increase (2%) in the productivity of prairie farm, which will result in a small increase in 

profitability, increase in commodity prices may cause more profitability. In general, based on the 

above analysis, it can be concluded that anticipated changes in market prices are at least as 

important to the economic viability of prairie agriculture under climate change as changes in the 

climate itself.  
                                                 
8 See section 5.2.1 Chapter 5 
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Table 6.2 Predicted Impact of Climate Change on Farmland Values  
 Average Land Value (CAD/ha) 

 No Price Change With Price Change With Price and Area 

Change  

Base Model 993.38 993.38 993.38 

  

Moderate 35.02 92.95 145.13 

 (3.53)* (9.36) (14.62) 

Strong 93.96 267.74 386.31 

 (9.46) (26.95) (38.89) 

Extreme 15.84 305.45 505.48 

 (1.59) (30.75) (50.88) 

* Numbers in parenthesis show percentage changes.  

When wheat and canola prices increase, average land values in each of the three scenario 

will be greater. The results show that moderate climate change leads to increases in land value 

ranging from 4% to 9% (Figure 6.3). However, the economic impact on prairie agriculture is 

approximately 15 times greater when including price changes under extreme climate change 

(from 2% to 31%). In general, agricultural land values were predicted to increase regardless of 

the origin of the impacts which can be just climate change or climate combined with commodity 

price changes (Figure 6.3).   
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Figure 6.3 Change in Farmland Values for Different Scenarios 

 

6.3.1   Economic Impacts including Area Response results  
Thus far, the current analysis has been focused on two kinds of Ricardian approaches: a 

classical Ricardian model when no market prices are included and the Ricardian model that 

includes market prices for wheat and canola. Since the Ricardian analysis can partly incorporate 

adaptation possibilities for climate change scenarios, it is useful to examine how predicted 

planted area will affect the farmland value. In fact, farming systems in the prairies are apparently 

responsive to changes including climate and price changes. Switching between crops, therefore; 

might be a choice for farmers as a climate change adaptation strategy. In this section, using the 

area response estimated in Chapter 5, a third version of the Ricardian approach that includes not 

only the price changes but change in planted area will also be presented.   
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In Chapter 5 a simple area response function for wheat and canola was estimated. Those 

results have been used to simulate land values for future climate and price conditions. The fourth 

column of Table 6.2 reports the change in agricultural land value when farmers respond to 

climate change by changing their land allocation. When changes in the planted area occur, the 

forecasted farmland value increases up to 51%. In fact, area response to climate and price change 

itself plays a very vital role in the model. As climate change directly and indirectly affects 

profitability9, including change in the planted area captures the farming system response to 

climate and price changes. Ignoring the indirect effect of climate change on land value will result 

in underestimating the benefit of climate change on prairie agriculture. The underestimating of 

the climate change benefits range from $52/ha to $200/ha on average10. 

 In the extreme climate change scenario, the increase of land value due to change in 

planted area is the largest change relative to the other scenarios. The results in this case indicate 

that adaptation to the new climate and price conditions in the future might keep or increase the 

productivity of prairie farms which will result in profitability gain under forecast climate change. 

Comparing the results from direct impacts of climate and price changes on land value with the 

results from indirect impacts through area response estimation reveals that:  

1. Direct impacts of climate and price change indicate an increase in farmland value up 

to 31% while the indirect impacts from different scenarios increase simulated land 

value up to 51%. 

2. Both direct and indirect impacts have projected a similar pattern for moderate, strong 

and extreme climate change scenarios. However, the results from the indirect impacts 

                                                 
9 See Figure 3.5 which shows direct and indirect influence of climate change on profit. 
 
10 These numbers are calculated by subtracting column 4 from column 3 in Table 6.2. 
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for strong and extreme climate change increase land value while a moderate increase 

in farmland value has been projected for the moderate scenario.   

One possible explanation can be inferred from the way that price variables have been set 

up for the current regression estimation. As canola is not planted in some CSDs price variables 

are weighed by the planted share of each crop11. Also, the link between land value and area 

response function is through market prices included in the model12. Therefore, climate change 

combined with price changes may introduce an incentive for farmers to switch from one crop to 

other crops to maintain their income (for example, switching from wheat and canola to pasture or 

hay, which is out of scope of this study).  These kinds of adaptation strategies seem to be a very 

important part of farmers’ decision making process. As by the results of this study, there might 

be an opportunity for farmers to benefit from climate change if they respond to climate change 

by taking appropriate adaptation strategies.   

6.3.2   Geographical Distribution of Impacts 
 A map representing the spatial distribution of impacts under the moderate climate change 

scenario without commodity prices and with commodity prices in combination with area 

response change can be employed to disclose some effects of climate and prices on farmland 

value. Figure 6.4 shows the impact of climate change when there is no change in commodity 

prices, while Figure 6.5 reflects the climate, price, and area response change combined. The 

predicted model with price and planted area change suggest that land value around big cities in 

the prairies gain as a direct impact of increases in market prices for wheat and canola. This rise 

in land value also can be seen for the southern part of Manitoba, some CSD’s in Saskatchewan, 

and a few in Alberta. The maps clearly show that moderate climate change effects in 

                                                 
11 Section 4.3.4 in Chapter 4 
12 Section 5.4 of Chapter 5     
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combination with a 5% increase in commodity prices can be beneficial for some regions within 

prairies. However, the regional change in land values is not uniform for the three provinces; the 

greatest increase in land values take place in Manitoba and Alberta. It is also shown that some 

CSDs in the south east of Alberta have decreased land value. As discussed in Section 5.2.1.1, 

there are other factors that might influence land value in CSDs that are not predominately an 

agricultural commodity based economy.  The changes in land values in these areas are reflecting 

other regional effects. For example, clearly there is a stronger effect around cities, which is likely 

not due to agricultural productivity. 
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Figure 6.4 Change in Farmland Value ($/ha) under Moderate Climate Change and Constant Output Prices   

 

 

Figure 6.5 Change in Farmland Value ($/ha) under Moderate Climate, Output Price and Planted Area 

Change 
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 To put the prediction results for strong climate change scenario in perspective, the 

simulated change in farmland value with and without commodity price change estimates along 

with area change are mapped in Figures 6.6 and 6.7. Climate change effects vary across the 

prairies in the strong climate change scenario, but the changes in land values show a similar 

pattern as the moderate climate change scenario. When price effects are included in the analysis, 

almost the same CSDs in the prairies will gain or lose from climate and price changes in 

comparison with the moderate climate change scenario. Saskatchewan and Manitoba gain more 

from the strong scenario than Alberta. The dark green areas indicate which areas benefit more 

than $150/ha. The above results are the direct and indirect impacts of a15% rise in prices in 

combination with 2 ˚C temperature increase and 0.12 mm/day precipitation increment (Figure 

6.7). 

 The moderate and strong climate change scenarios indicated that not only is a uniform 

change in land value across the region not predicted but commodity prices are also an important 

factor in the Ricardian analysis. The results suggest that farmland value around big cities in the 

prairies will increase more than other CSD’s in the first and second scenarios. The magnitude of 

these land value increase are from $200/ha to more than $3000/ha. This effect will tend to push 

up the land value if we consider the effects of switching between crops. In fact, adaptation to the 

new climate and price conditions makes farmers gain more from climate change.  
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Figure 6.6 Change in Farmland Value ($/ha) under Strong Climate Change and Constant Output Prices   

 

Figure 6.7 Change in Farmland Value ($/ha) under Strong Climate, Output Price and Planted Area Change 
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The regional distribution of climate, area and price impacts on land value in the extreme 

scenario indicate that most CSDs gain significantly from climate change on the Canadian 

prairies, while some lose value. Figures 6.9 and 6.10 show the extreme climate change effects on 

agricultural economy of Prairies. The positive effects of climate change on farmland value are 

predicted to be very limited when no price and area change are considered in the model. 

However, land value in the prairies increase under the extreme climate change scenario directly 

when an increase in market prices is included in the model. The indirect effects of including 

planted area change are predicted to make almost all CSDs gain more than $200/ha in 2080, 

under the extreme climate change scenario. A few CSD’s in southern Alberta have decreased 

land value in this scenario. In fact, farmland value in some CSD’s predicted to benefit between 

$250/ha to more than $4000/ha from a 25% rise in market prices, more than 3 ˚C increases in 

temperature and 0.19 mm/day increment in precipitation. Consistent with the results under the 

moderate and strong climate change scenarios, the three provinces’ regional change in land 

values is not uniform but the numbers of benefited CSDs in all three provinces are more than 

other scenarios.  

The results from extreme climate change scenario should be used with caution as it is 

showing a 51% increase in land values. The results could be considered suspect due to the fact 

that the model is simulating very long term effects from past and present information.  On the 

other hand, the pattern of increasing benefit of climate change remains the same with the two 

other scenarios.  In short, as it is revealed by the above maps, the three scenarios support the fact 

that climate change makes an opportunity for agricultural producers in the prairies to gain from 

future price and environmental change.  
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Figure 6.8 Change in Farmland Value ($/ha) under Extreme Climate Change and Constant Output Prices   

 

Figure 6.9 Change in Farmland Value ($/ha) under Extreme Climate, Output Price and Planted Area Change 
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When evaluating the impact of land values across the prairie region, the south east corner 

of Alberta is predicted to lose between $96/ha and $509/ha according to the different scenarios 

simulated in this analysis. As most of the CSDs in this part of Alberta are under irrigation, the 

climate response is very complex. Climate change affects not only irrigation demand but also the 

availability of water for irrigation. Under different climate change scenarios, with warmer and 

drier conditions, there may be less water available for irrigation while demand for irrigation 

might increase in southern Alberta. In this case, climate change will negatively affect farmland 

value in this region. This analysis did not include any improvement in irrigation technology and 

adoption of water conserving crops which makes this issue more complex. An examination of 

these effects remains out of the scope of the current analysis.   

6.3.3   Comparison with other Ricardian Projections  
 In this section the results of Weber and Hauer (2003) and Reinsborough (2003) will be 

compared with the present analysis.  Weber and Hauer (2003) conclude that the prairies will 

benefit from climate change but this benefit will be affected by increases in evapo-transpiration 

and soil moisture deficits. Meanwhile, Reinsborough (2003) concluded that the estimated 

impacts of climate change are neither catastrophic nor miraculous.  

 The current analysis is in agreement with Weber and Hauer (2003) in that the water 

scarcity has harmful effects and also imbalanced precipitation evaporation relationship involved 

with Prairie agriculture. However, the results in this study indicate increases in land values and 

possible diversification from cropland to pasture and livestock production. In this case, the 

present analysis is in disagreement with the results of Reinsborough (2003) study. As the unit of 

study in the two above studies are different (CSD in this study versus Census Division in the 

Reinsborough’s study) from which was used here, a more detailed comparison is not possible. 
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 In Chapter 5 comparisons were made between the base model results of the current study 

and the Mendelsohn et al. (1994) study. In this section climate change scenarios in both studies 

are compared. Mendelsohn et al. (1994) suggest that a 2.8˚C increase in temperature and an 8% 

rise in precipitation are harmful and, on average, decrease American farmland value. However, 

they conclude that the northern fringe of the U.S. might gain from climate change. Indeed, as the 

northern border of some state of U.S is the southern border of the Canadian prairies, their results 

are consistent with the beneficial impact of climate change, found in the results of current study. 

One key difference between the two studies is that the current study utilizes output prices as a 

critical and influential variable which can reflect the benefit of climate change on prairie 

agriculture while Mendehlson’s study has emphasized just the impacts from climate change. 

6.4   Marginal Climate Impacts 
As climate change alters the impact of seasonal weather events, it is important to assess 

the impacts of seasonal effects of climate change on the profitability of prairie agriculture. In this 

section the marginal impacts of climate variables and their related elasticities have been 

calculated to show how the productivity of farming becomes more sensitive to local weather 

under climate change conditions. Marginal Climate Impacts (MCIs) and their elasticities for the 

three climate change scenarios are presented in Tables 6.313. Recalling equation (5.1), the MCI 

for each climate variable can be calculated by: 

2 3( ) 2 * (E E
CLIMA TE

β β= +
∂

)LV A L CLIMA TE∂

                                                

                                                             (5.1)
 

as climate variables have been adjusted to show the new climate condition, the new MCIs can be 

calculated by plugging the mean of each new climate variable into equation (5.1). 

 
13 Projected data for July’s relative humidity and snow fall was not available for the period of 2020 to 2080. 
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The marginal effects of temperature on land values in January, April and September in 

the three climate change scenarios suggest that increases in the temperature in these months 

increase land value in the prairies. The marginal impact of temperature in July is negative which, 

as discussed earlier, suggests the harmful effect of high July temperatures on plants. Again, for 

CSDs where agriculture is not the dominant land use these values might not reflect productivity 

impacts. As mentioned in Chapter 5, increases in July temperature will also have the effects of 

decreasing the available water for plants. 

 

Table 6.3 Comparison between MCI and Elasticities for different Scenarios 

 Moderate Strong Extreme 

Variable MCI Elasticity MCI Elasticity MCI Elasticity

January Temperature 27.19 -0.36 23.923 -0.23 23.61 -0.22 

April Temperature 52.57 0.26 57.138 0.33 66.96 0.50 

July Temperature -231.27 -4.30 -236.45 -4.51 -254.16 -5.27 

September Temperature 152.68 1.83 161.46 2.06 161.93 2.07 

Rainfall 19.22 6.29 21.39 7.81 21.64 8.00 

Evapo-transpiration Proxy 0.04 0.01 0.04 0.004 0.04 0.003 

 
 

Among all the temperature variables in the moderate climate change scenario, September 

and January, with 153 and 27 MCIs, have the largest and smallest positive effect on land value, 

respectively. As explained earlier (chapter 5) there are no crops on the farm lands in January. 

Almost the same results can be inferred for the two other scenarios. The positive effect of rain on 
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land value seems plausible. Having all other variables constant, a 1 mm increase in rainfall on 

average results in more than a $19/ha increase in the value of farmland in all scenarios.  

MCI of temperature in April suggests that in April the marginal impact of temperature on 

land value increases to 53 in 2020, to 57 in 2020, and to 67 in 2080 as severe climate change 

occurs (warmer conditions). The same situation happens for temperatures in July and September, 

while higher temperature in July has a negative effect on land value. The impacts of April and 

September temperatures are positive and significant which implies that when warmer conditions 

prevail the growing season on Prairie will be extended. The current growing season is very short 

and crops are subject to frost damage but as climate changes, expected longer growing season 

will result in increase in productivity and therefore more benefits for prairie agriculture. 

However, given the hill shaped relationship between land value and some temperatures, if 

increase in the temperature in warmer conditions gets closer to the top of the hill and pass this 

point then the value of Prairie farmland will fall (diminishing marginal effects). The negative 

MCI for July supports these results.        

Increase in January temperature will gradually lessen the impacts of climate and price 

changes on the Prairie agricultural economy (Figure 6.10). However, projected impacts for April 

and September increase, indicates that estimated benefits rise over time. Consistent with the base 

model, future warming scenarios for July temperature has significant negative impacts on prairie 

agriculture. 
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Figure 6.10 Seasonal Marginal Climate Impacts for all scenarios  

Increase in future precipitation will result in higher land values under each climate and 

price changes scenarios. However, the benefits are not expected to be extensive under projected 

increased rainfall in the three scenarios in comparison to base model results (Figure 6.11). 

Basically, it shows that drier condition will likely occur in the prairies, which is consistent with 

Boehm et al. (2006) study. Boehm et al. (2006) state that decreasing potential evapo-

transpiration from southwest to the northwest will influence the potential productivity and in turn 

reduces the value of the farmland.   
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Figure 6.11 Marginal Climate Impacts of Rain for Base and all Scenarios  

In addition to marginal climate impacts, elasticities14 are measured to evaluate the 

sensitivity and vulnerability of land value to changes in each season’s climate (Table 6.3). Since 

elasticities are designed to measure the percent change of a dependent variable (farmland value) 

in response to the percentage change in an independent variables (climate variables), they can be 

useful for analyzing the effects of climate change on land value. Rainfall is the most elastic 

climate variable influencing land value positively in the three climate change scenarios. It reveals 

that a 1% increase in rainfall would cause land value to increase, on average, by more than 6% in 

the three scenarios. July temperature negatively affects land value and it is elastic in the all 

scenarios. Land value appears to be less sensitive to the evapo-transpiration proxy than to the 

other climate variables. The evapo-transpiration proxy, January and April temperatures are all 

inelastic. Based on these results it can be predicted, for example, that 1% change in the evapo-

transpiration proxy, January temperature, or April temperature would result in, on average, less 

                                                 
14 The signs of elasticities are consistent with those of MCIs except for January temperature. But this negative 
elasticity is due to negative mean for January temperature variable and does not contrast the positive MCI of January 
temperature. 
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than 0.5% change in land value. In contrast, a 1% changes in rainfall, September or July 

temperature would result in a greater than 1% change in land value. The elasticity of January 

temperature is smaller for the moderate climate change scenario than for the strong or the 

extreme scenarios, while elasticities of other variables are increasing with greater levels of 

climate change. 

 In short, elasticities seem to be very useful in terms of comparing the vulnerability of 

land value in response to change in seasonal climate. Also, the elasticities can be used to 

determine that land value is more elastic or vulnerable in response to change in each climate 

variables. In the current study, the value of farmland seems to be more sensitive to change in 

rainfall and July temperature which indicates that these two seasonal weather events have the 

major impacts on the profitability of the prairie agriculture. 

6.5   Conclusion 
This chapter developed a simulation of the impact of climate and price changes on the 

Canadian prairie agricultural economy. The results showed that climate change along with 

corresponding commodity price changes will positively affect land value in nearly all regions. It 

also indicates that increases in prices signify the effect of global warming on the agricultural 

economy of Prairies. Predicting the land value after including area responses to climate change 

suggests that land values increase even more than other approaches when crop patterns change, 

which is induced by climate change, is considered to capture the importance of climate change 

adaptation measures used by farmers. To analyze the sensitivity and vulnerability of land value 

with respect to change in each season’s climate, marginal climate impacts were calculated and 

interpreted for three climate and price change scenarios. Chapter 7 will provide a comprehensive 

summery including importance of analyzing the impact of climate change on the economics of 
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Canadian Prairies agriculture, contribution of the present study to literature, conceptual 

framework, results, and policy implications. 

 



 
 
 
 

CHAPTER 7 CONCLUSION 

 
 
 
 

7.1   Summary 
Climate change may alter the frequency and intensity of weather events which will likely 

challenge human and natural systems more than normal variability in weather and climate. 

Agriculture is considered one of the most vulnerable industries to climate change. Quantifying 

the economic impact of climate change on agriculture can help to reduce the environmental 

damages and maintain the profitability of agricultural systems.  The main goal of this study is to 

estimate the economic impact of change in climate normals on agriculture in the Canadian 

prairies and to capture the impact of weather conditions on the viability of production systems 

along with the impact of market price effects by predicting the economic impact of climate 

change.  

The main contribution of this study to the literature is the inclusion of the grain market 

prices in the Ricardian approach. Assuming fixed market prices within a Ricardian model raises 

two potential problems: misspecification in the empirical estimation of the model and bias in 

measuring climate change impacts. These problems were demonstrated and tested empirically. 

An Incremental F-test confirmed that market prices for canola and wheat are jointly significant 

and have an impact on land value. Also, empirical results show that the economic impact of long 

run climate change on prairie agriculture when including changes in commodity prices can result 

in significantly larger land values as compared to simulations without these changes in prices.  
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The empirical results of direct climate impacts with no market price effects also are consistent 

with the findings of research using a traditional Ricardian model.  

The most important finding of this study is that climate change is beneficial for most 

regions of the Canadian prairies except for some southern regions of Alberta. Comparing the 

results from direct impacts of climate and price changes on land value with the results from 

indirect impacts through arae response estimation reveals that direct impacts of climate and price 

change increase in farmland value, on average, by 31% while the indirect impacts from different 

scenarios increase simulated land value up to 51%. Moreover, both direct and indirect impacts 

have projected a similar pattern for moderate, strong and extreme scenarios. However, the results 

from indirect impacts for strong and extreme drives up land value while for the moderate 

scenario a temperate increase in farmland value has been projected. The results should be used 

with caution due to the fact that the model is simulating outside the range of historical climate 

means and summarizing a very long term effect from past and present information. 

The results from area response function for wheat and canola have been utilized to 

simulate land values for the future climate and price conditions. When changes in the planted 

area occur (as an adaptation strategy), the forecasted farmland values demonstrate a large 

increase (greater than 20%) in comparison with the situation that adaptation is not included in the 

analysis. In fact, area response to climate and price change itself plays a very vital role in the 

model. In the extreme case, the increase in land value due to change in the planted area is more 

than 51%, which is the largest increase in land value with respect to other scenarios. The results 

in this case signify that adaptation to the new climate and price conditions in the future might 

keep or increase the productivity of prairie farm, which will result in profitability gains. 
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  The results of this study are consistent with the general understanding of the importance 

of precipitation for agriculture of prairies. Marginal impacts of the evapo-transpiration proxy, 

rainfall, and July relative humidity indicated direct and positive relationship among agricultural 

land values and water related climate variables. It represents that agriculture in the Prairies is 

very vulnerable to the water scarcity and land use and land value strongly depend on the 

precipitation. Also, rainfall is the most elastic climate variable influencing land value positively 

in three scenarios. It reveals that a 1% increase in rainfall would cause land value to increase, on 

average, by more than 6% in all three climate change scenarios. However, under different 

climate change scenarios, with warmer and drier conditions, there may be less water available for 

irrigation while demand for irrigation might be increased in the southern Alberta. In this case, 

climate change will negatively affect the farmland value in this region. 

Marginal temperature value for July reveals that increased July temperature reduces land 

value. In fact, a 1˚C increase in July temperature decreases farmland value by 219 CAD per 

hectare on average. An explanation for this, at least in the agriculture dominated CSDs, is that 

more than normal warming condition along with more water evaporation which takes available 

water out of reach of plants can cause heat stress on crops and reduce the productivity of the 

production. In the current study, the value of farmland seems to be more sensitive to change in 

rainfall and July temperature which indicates that these two seasonal weather events have 

significant impacts on the profitability of prairie agriculture. 

 The results from base and three climate change scenarios in this study reveal that climate 

change may not impose a significant economic impact on prairie agriculture if farmers employ 

appropriate adaptation strategies. The results of this study indicate that, given the assumptions of 

the Ricardian approach, climate change may provide an opportunity for agricultural producers in 
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the prairies to gain from future price and environmental change. To achieve this goal, policies to 

address climate change concerns need to put a greater emphasis on dealing with water deficit and 

scarcity. Policies that facilitate access to irrigation and crop choices will help farmers to adapt to 

climate change and take the climate change opportunity. 

The results of the current analysis may lead to several policy implications. First of all, as 

within this study an important component of adaptation is a switch in crop production towards 

canola, this should be carefully monitored by policy makers to prevent any instability in 

economic and environmental conditions. Canada is currently an important exporter of wheat. A 

decrease in wheat area would misplace Canada’s place in international wheat trade. This might 

have crucial political reflections. Therefore, policy makers should be aware that climate change 

may induce substantial changes in prairie agriculture. They should be ready for introducing and 

supporting any adaptation strategy required for adjusting the impacts, minimizing the social 

costs, and maximizing the social benefits of such changes. For example, if the policy makers are 

severe to keep Canada’s place in international wheat markets for any price, then they should try 

to make it more profitable for farmers to cultivate wheat. To aim at this, one adaptation strategy 

could be introducing new wheat varieties. This discussion needs to be expanded by including the 

effects of relative price of wheat to canola and relative global demand of wheat and canola, 

which is out of the scope of this study. 

Another important implication for policy development would be to support the 

development and introduction of new crop varieties by encouraging R&D efforts. Policy makers 

may introduce an incentive for breeding and genetic engineering practices to work on drought 

tolerant varieties of currently cultivated crops. Breeding and genetic engineering practices can 

introduce new varieties of wheat and canola, which are more drought tolerant than current 
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varieties. Since a major part of crop research, especially in the case of wheat, which in Canada is 

still public, government may have a key role to a resources towards research and development of 

drought tolerant varieties. Even in the case of private crop research institutes, government may 

still be able to encourage them to put more effort on R&D of drought tolerant varieties. Policy 

makers also may introduce an incentive for farmers to switch from the current varieties to the 

new varieties or other crops to maintain their income. 

According to the climate change forecasts the Canadian prairies are going to be warmer 

and drier.  As such, irrigation may be considered increasingly important to maintain the 

profitability of prairie agriculture. To ensure adaptation policy may need to focus on encouraging 

and providing more efficient irrigation methods and equipments for farmers who are currently 

practicing water-fed cultivation. In addition, policy makers should be aware that in future 

decades, irrigation might be necessary for those farms that are currently under rain-fed 

cultivation.  Confounding this is the fact that while additional water will be required by crops 

there may be less surface water available.  Therefore, analyzing the benefits and costs of large 

scale irrigation development and improving the water use efficiency of irrigation technology 

should be considered by policy makers as well as researchers. 

7.2   Study Limitations 
 Several limitations need to be identified to ensure the results are interpreted correctly. 

First, due to the lack of available data for irrigation, the influence of irrigation on land values 

was not included in this model. Farmland values in some parts of the prairies depend on 

irrigation and this production input needs to appear in the model to capture irrigation impact, 

which might change the negative impacts of climate change on the most arid areas such as 

southeast of Alberta. Second, the analysis did not consider agronomic carbon fertilization effect 
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(the impact of increasing CO2 in the soil and air) which is predicted to increase future crop 

productivity. This effect might influence the impacts measured here and may lead to more 

beneficial impacts from climate change. 

 Another limitation of the present analysis is the fact that the econometrics model 

estimates land value changes due to relatively small changes in climate normals. The simulation 

analysis then develops results for changes, which exceed the range that responses are based on. 

Although, care has been taken not to simulate out of the range of each variable Standard 

Deviation (SD) but in the extreme scenario this range has been exceeded based on the nature of 

the warming scenario. 

The Ricardian model optimistically assumes that farmers will adjust to climate change 

(adaptation), and it will be relatively inexpensive to do so. The current study did not include 

adjustment costs, which may result in overestimation of the benefits of climate change. There 

may be significant adjustment costs associated with adaptation to climate change because 

farmers will not instantly observe the change in climate. By including adjustment cost, the cost 

of adaptation will be more realistically captured in a model and the results likely would be more 

robust than ignoring these costs. 

The other limitation in the current study is the omission of future technological change. 

Based on the recent history of rapid technological change in Canadian agriculture, it is likely that 

during the next decades production technologies will see significant further change. The 

productivity and profitability of agricultural production will be directly affected by the available 

technology. As the climate response is very complex, the results of change in technology in the 

long run might lead to very different outcomes. 
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7.3   Future Research  
 The current model can be extended to better estimate the impacts of climate change on 

agriculture. This may be attained by employing more detailed data for soil and irrigation 

characteristics. In this case the impact study will capture the effects of irrigation and soil 

moisture as well as possible adaptation to new crops and production technology. More studies 

will be needed on the impacts of weather volatility on agriculture. Also the current model 

considered just the two crop prices but theoretically this can be extened to include more input 

and output data to capture the impact on land values of a wider range of commodity price 

fluctuations. 

Moreover, more studies could be done on the role of new technologies, particularly 

tillage systems, genetic innovation, and irrigation technologies. And finally, as this analysis 

shows that adaptation to climate change can be beneficial to farmers, the Ricardian model 

developed here can be further extended for related studies that focus on the adaptation on the 

Canadian prairies. 
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APPENDIX A LIMDEP printouts for OLS and Panel models  

 
 

OLS Only Climate1 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| Model was estimated Nov 23, 2009 at 00:58:15PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         19     | 
|              Degrees of freedom   =       1388     | 
| Residuals    Sum of squares       =   .6188521E+09 | 
|              Standard error of e  =   667.7267     | 
| Fit          R-squared            =   .2107184     | 
|              Adjusted R-squared   =   .2004828     | 
| Model test   F[ 18,  1388] (prob) =  20.59 (.0000) | 
| Diagnostic   Log likelihood       =  -11137.84     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 18]  (prob) = 332.94 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   13.02117     | 
|              Akaike Info. Criter. =   13.02117     | 
| Autocorrel   Durbin-Watson Stat.  =  1.1263435     | 
|              Rho = cor[e,e(-1)]   =   .4368282     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -2797.67408      1930.32183    -1.449   .1472 
 JAN     |    9.84361968      5.64732773     1.743   .0813  -14.0810194 
 JAN2    |   -2.30334799       .38120410    -6.042   .0000   215.480684 
 APR     |    13.8420101      27.5279988      .503   .6151   4.15286527 
 APR2    |    3.16679669      2.51652385     1.258   .2082   19.1534458 
 JUL     |    312.846789      178.273886     1.755   .0793   17.3455512 
 JUL2    |   -11.1173627      5.35753396    -2.075   .0380   302.597890 
 SEP     |    41.3153501      174.638177      .237   .8130   10.7351281 
 SEP2    |    -.56320210      8.11379652     -.069   .9447   116.760891 
 RAINAV  |   -6.73407229      3.53085886    -1.907   .0565   320.588412 
 RAINAV2 |     .01808127       .00517390     3.495   .0005   105771.477 
 SNOWAV  |    1.09476858      3.63288637      .301   .7631   105.791094 
 SNOWAV2 |    -.01258234       .01458971     -.862   .3885   11739.1831 
 FFD     |    12.0090271      15.4095194      .779   .4358   13.8752801 
 FFD2    |    -.27413841       .82695491     -.332   .7403   217.106877 
 RHJUL   |    58.5655796      51.5083127     1.137   .2555   52.3037438 
 RHJUL2  |    -.37518213       .49641555     -.756   .4498   2761.39700 
 TPTEMP  |     .04293864       .01470746     2.920   .0035  -225.907528 
 TPTEMP2 |    .380903D-06    .112249D-06     3.393   .0007  .560861D+08 
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OLS Only Climate2 
 
 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| Model was estimated Nov 23, 2009 at 02:04:31PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         21     | 
|              Degrees of freedom   =       1386     | 
| Residuals    Sum of squares       =   .6627044E+09 | 
|              Standard error of e  =   691.4779     | 
| Fit          R-squared            =   .1547894     | 
|              Adjusted R-squared   =   .1425930     | 
| Model test   F[ 20,  1386] (prob) =  12.69 (.0000) | 
| Diagnostic   Log likelihood       =  -11186.00     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 20]  (prob) = 236.61 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   13.09248     | 
|              Akaike Info. Criter. =   13.09248     | 
| Autocorrel   Durbin-Watson Stat.  =  1.0061644     | 
|              Rho = cor[e,e(-1)]   =   .4969178     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    450.109297      1456.46857      .309   .7573 
 GDDM4   |    22.4653430      11.5964980     1.937   .0527   52.4366483 
 GDDM42  |    -.07697262       .10040476     -.767   .4433   2970.04687 
 GDDM5   |    2.03993176      11.5614035      .176   .8599   183.921217 
 GDDM52  |    -.01512041       .03060839     -.494   .6213   35452.0237 
 GDDM6   |   -9.76443396      10.8728007     -.898   .3692   290.161684 
 GDDM62  |     .02260630       .01895078     1.193   .2329   87841.1595 
 GDDM7   |   -4.20408354      8.13537041     -.517   .6053   361.053764 
 GDDM72  |     .00058870       .01124721      .052   .9583   135973.912 
 GDDM8   |    7.76628432      9.19195537      .845   .3982   337.749094 
 GDDM82  |    -.01246498       .01331721     -.936   .3493   119090.581 
 RAINAV  |   -8.56756381      3.65016441    -2.347   .0189   320.588412 
 RAINAV2 |     .02110396       .00533485     3.956   .0001   105771.477 
 SNOWAV  |   -4.01837520      3.73866387    -1.075   .2825   105.791094 
 SNOWAV2 |     .01089846       .01502945      .725   .4684   11739.1831 
 FFD     |   -18.0066386      18.3333753     -.982   .3260   13.8752801 
 FFD2    |    1.69086712      1.07860642     1.568   .1170   217.106877 
 RHJUL   |    62.1495627      55.1693515     1.127   .2599   52.3037438 
 RHJUL2  |    -.60322952       .53142931    -1.135   .2563   2761.39700 
 TPTEMP  |     .04317468       .01543061     2.798   .0051  -225.907528 
 TPTEMP2 |    .369698D-06    .118146D-06     3.129   .0018  .560861D+08 
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Panel Model 1 
 
+----------------------------------------------------+ 
| OLS Without Group Dummy Variables                  | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 23, 2009 at 02:18:22PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         32     | 
|              Degrees of freedom   =       1375     | 
| Residuals    Sum of squares       =   .3299838E+09 | 
|              Standard error of e  =   489.8859     | 
| Fit          R-squared            =   .5791400     | 
|              Adjusted R-squared   =   .5696515     | 
| Model test   F[ 31,  1375] (prob) =  61.04 (.0000) | 
| Diagnostic   Log likelihood       =  -10695.46     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 31]  (prob) =1217.70 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.41083     | 
|              Akaike Info. Criter. =   12.41083     | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel Data Analysis of LVAL       [ONE way]        | 
|           Unconditional ANOVA (No regressors)      | 
| Source      Variation   Deg. Free.     Mean Square | 
| Between       .147345E+09       2.     .736727E+08 | 
| Residual      .636725E+09    1404.     453508.     | 
| Total         .784070E+09    1406.     557660.     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    36.8221095      4.40678490     8.356   .0000   14.9706563 
 POPDEN  |    14.8934757      1.06944420    13.926   .0000   10.3281815 
 POPDEN2 |    -.01090272       .00085429   -12.762   .0000   8165.47251 
 NETMIG  |     .02689232       .00467551     5.752   .0000   393.283582 
 HIDIST  |   -1.95232976       .37617998    -5.190   .0000   45.8647532 
 GOVPAY  |     .05143206       .00956430     5.378   .0000   1407.84663 
 X_COORD |   -11.4988346      5.38185350    -2.137   .0326  -105.177028 
 BLACK_SZ|   -48.8115976      115.531792     -.422   .6727    .42643923 
 BROWN_SZ|   -377.494688      135.515908    -2.786   .0053    .15138593 
 DBROWN_S|   -212.729783      125.886779    -1.690   .0911    .22459133 
 GRAY_SZ |   -98.4318965      119.586912     -.823   .4105    .08599858 
 DGRAY_SZ|   -16.4748619      117.125385     -.141   .8881    .09523810 
 TPT     |     .04472446       .01086252     4.117   .0000  .190653D-11 
 TPT2    |    .401817D-06    .831316D-07     4.834   .0000  .560350D+08 
 J       |    23.6622992      9.00978362     2.626   .0086 -.378397D-13 
 J2      |    -.72132387       .32272368    -2.235   .0254   17.2055766 
 A       |    22.2829712      13.2602470     1.680   .0929  .420096D-14 
 A2      |    3.56652545      1.86425574     1.913   .0557   1.90715584 
 JU      |   -16.3777241      17.2968122     -.947   .3437 -.408549D-14 
 JU2     |   -4.03700565      4.04704201     -.998   .3185   1.72974345 
 SE      |    19.4024944      14.9591908     1.297   .1946 -.638595D-16 
 SE2     |    3.92566983      6.14960274      .638   .5232   1.51791524 
 R       |    2.70299898       .47946063     5.638   .0000  .492280D-13 
 R2      |     .02606918       .00408566     6.381   .0000   2994.54695 
 SN      |   -2.09718679       .81759279    -2.565   .0103  .612292D-13 
 SN2     |     .01295900       .01095952     1.182   .2370   547.427475 
 FFD     |    2.40084840      2.84742721      .843   .3991   13.8752801 
 RH      |    14.5936141      5.48316572     2.662   .0078  .479581D-12 
 RH2     |     .23161062       .39234457      .590   .5550   25.7153897 
 PW      |    -.20372150       .47379139     -.430   .6672   134.829397 
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 PC      |    -.33468184       .52412841     -.639   .5231   63.5451314 
 Constant|   -781.324950      583.997282    -1.338   .1809 
 
+----------------------------------------------------+ 
| Least Squares with Group Dummy Variables           | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 23, 2009 at 02:18:22PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         34     | 
|              Degrees of freedom   =       1373     | 
| Residuals    Sum of squares       =   .3189913E+09 | 
|              Standard error of e  =   482.0079     | 
| Fit          R-squared            =   .5931598     | 
|              Adjusted R-squared   =   .5833814     | 
| Model test   F[ 33,  1373] (prob) =  60.66 (.0000) | 
| Diagnostic   Log likelihood       =  -10671.63     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 33]  (prob) =1265.36 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.37980     | 
|              Akaike Info. Criter. =   12.37979     | 
| Estd. Autocorrelation of e(i,t)     .438427        | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel:Groups   Empty       0,   Valid data       3 | 
|                Smallest  183,   Largest        880 | 
|                Average group size           469.00 | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    38.4032711      4.34937309     8.830   .0000   14.9706563 
 POPDEN  |    14.7492489      1.05344391    14.001   .0000   10.3281815 
 POPDEN2 |    -.01077298       .00084145   -12.803   .0000   8165.47251 
 NETMIG  |     .02524147       .00460878     5.477   .0000   393.283582 
 HIDIST  |   -1.70539120       .37186755    -4.586   .0000   45.8647532 
 GOVPAY  |     .04135468       .00953444     4.337   .0000   1407.84663 
 X_COORD |    16.3165165      8.40364281     1.942   .0522  -105.177028 
 BLACK_SZ|    57.4793161      115.270230      .499   .6180    .42643923 
 BROWN_SZ|   -241.253404      135.585771    -1.779   .0752    .15138593 
 DBROWN_S|   -75.3780740      125.825308     -.599   .5491    .22459133 
 GRAY_SZ |    24.8938228      119.192785      .209   .8346    .08599858 
 DGRAY_SZ|    64.9375410      116.083005      .559   .5759    .09523810 
 TPT     |     .04093265       .01074546     3.809   .0001  .190653D-11 
 TPT2    |    .371529D-06    .822239D-07     4.519   .0000  .560350D+08 
 J       |    16.4638322      8.94515765     1.841   .0657 -.378397D-13 
 J2      |    -.49413632       .31931235    -1.548   .1217   17.2055766 
 A       |    21.4916711      13.0496057     1.647   .0996  .420096D-14 
 A2      |    3.01285710      1.83888350     1.638   .1013   1.90715584 
 JU      |   -30.5120885      17.1649170    -1.778   .0755 -.408549D-14 
 JU2     |   -5.37560126      3.98687075    -1.348   .1776   1.72974345 
 SE      |    16.5854213      14.7618039     1.124   .2612 -.638595D-16 
 SE2     |    6.17589460      6.06760779     1.018   .3088   1.51791524 
 R       |     .72622787       .55395476     1.311   .1899  .492280D-13 
 R2      |     .02836139       .00418614     6.775   .0000   2994.54695 
 SN      |   -1.89587491       .80589408    -2.353   .0186  .612292D-13 
 SN2     |     .00855340       .01080270      .792   .4285   547.427475 
 FFD     |    4.05737298      2.81233379     1.443   .1491   13.8752801 
 RH      |    7.94141529      5.54017761     1.433   .1517  .479581D-12 
 RH2     |    -.41824977       .39765907    -1.052   .2929   25.7153897 
 PW      |     .17964063       .46952642      .383   .7020   134.829397 
 PC      |    -.02579083       .51919288     -.050   .9604   63.5451314 
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        Estimated Fixed Effects 
        Group       Coefficient       Standard Error       t-ratio 
            1        1959.22367            850.92372       2.30247 
            2        1829.56135            873.30177       2.09499 
            3        2319.78612            936.68669       2.47659 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only   -11304.31008  .7840701399D+09    .0000000 | 
|(2)  Group effects only   -11157.86875  .6367247026D+09    .1879238 | 
|(3)  X - variables only   -10695.46252  .3299837846D+09    .5791400 | 
|(4)  X and group effects  -10671.62810  .3189912743D+09    .5931598 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   292.883      2  .00000  162.451     2    1404   .00000 | 
|(3) vs (1)  1217.695     31  .00000   61.036    31    1375   .00000 | 
|(4) vs (1)  1265.364     33  .00000   60.660    33    1373   .00000 | 
|(4) vs (2)   972.481     31  .00000   44.116    31    1373   .00000 | 
|(4) vs (3)    47.669      2  .00000   23.657     2    1373   .00000 | 
+--------------------------------------------------------------------+ 
 
+--------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i)     | 
| Estimates:  Var[e]              =   .232332D+06  | 
|             Var[u]              =   .765662D+04  | 
|             Corr[v(i,t),v(i,s)] =   .031904      | 
| Lagrange Multiplier Test vs. Model (3) =   22.14 | 
| ( 1 df, prob value =  .000003)                   | 
| (High values of LM favor FEM/REM over CR model.) | 
| Baltagi-Li form of LM Statistic =          10.02 | 
| Fixed vs. Random Effects (Hausman)     =     .00 | 
| (31 df, prob value = 1.000000)                   | 
| (High (low) values of H favor FEM (REM).)        | 
|             Sum of Squares          .351062D+09  | 
|             R-squared               .563886D+00  | 
+--------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    38.3282860      4.34742556     8.816   .0000   14.9706563 
 POPDEN  |    14.8312691      1.05288721    14.086   .0000   10.3281815 
 POPDEN2 |    -.01083907       .00084103   -12.888   .0000   8165.47251 
 NETMIG  |     .02545281       .00460776     5.524   .0000   393.283582 
 HIDIST  |   -1.76002301       .37148613    -4.738   .0000   45.8647532 
 GOVPAY  |     .04408848       .00949442     4.644   .0000   1407.84663 
 X_COORD |    4.52427190      7.11986614      .635   .5251  -105.177028 
 BLACK_SZ|    21.5144013      114.594510      .188   .8511    .42643923 
 BROWN_SZ|   -287.517925      134.631849    -2.136   .0327    .15138593 
 DBROWN_S|   -116.399101      125.094974     -.930   .3521    .22459133 
 GRAY_SZ |   -9.52652776      118.675837     -.080   .9360    .08599858 
 DGRAY_SZ|    38.7462820      115.741703      .335   .7378    .09523810 
 TPT     |     .04072062       .01073415     3.794   .0001  .190653D-11 
 TPT2    |    .370455D-06    .821437D-07     4.510   .0000  .560350D+08 
 J       |    18.6981155      8.91381007     2.098   .0359 -.378397D-13 
 J2      |    -.55175591       .31880138    -1.731   .0835   17.2055766 
 A       |    21.4119502      13.0490459     1.641   .1008  .420096D-14 
 A2      |    3.02423494      1.83815236     1.645   .0999   1.90715584 
 JU      |   -28.3316962      17.1459513    -1.652   .0985 -.408549D-14 
 JU2     |   -5.03889818      3.98547945    -1.264   .2061   1.72974345 
 SE      |    18.3623988      14.7420408     1.246   .2129 -.638595D-16 
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 SE2     |    5.33311141      6.05997909      .880   .3788   1.51791524 
 R       |    1.21155287       .53296293     2.273   .0230  .492280D-13 
 R2      |     .02662687       .00411303     6.474   .0000   2994.54695 
 SN      |   -1.98271968       .80521448    -2.462   .0138  .612292D-13 
 SN2     |     .00963791       .01079742      .893   .3721   547.427475 
 FFD     |    3.63917745      2.80928501     1.295   .1952   13.8752801 
 RH      |    8.53787947      5.52201322     1.546   .1221  .479581D-12 
 RH2     |    -.28848190       .39558323     -.729   .4658   25.7153897 
 PW      |     .10056363       .46888462      .214   .8302   134.829397 
 PC      |    -.05077901       .51874117     -.098   .9220   63.5451314 
 Constant|    822.691582      757.914880     1.085   .2777 
 
+----------------------------------------------------+ 
| Least Squares with Group and Period Effects        | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 23, 2009 at 02:18:22PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         36     | 
|              Degrees of freedom   =       1371     | 
| Residuals    Sum of squares       =   .3182244E+09 | 
|              Standard error of e  =   481.7792     | 
| Fit          R-squared            =   .5941378     | 
|              Adjusted R-squared   =   .5837766     | 
| Model test   F[ 35,  1371] (prob) =  57.34 (.0000) | 
| Diagnostic   Log likelihood       =  -10669.93     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 35]  (prob) =1268.75 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.38024     | 
|              Akaike Info. Criter. =   12.38023     | 
| Estd. Autocorrelation of e(i,t)     .438465        | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel:Groups   Empty       0,   Valid data       3 | 
|                Smallest  183,   Largest        880 | 
|                Average group size           469.00 | 
| Panel: Prds:   Empty       0,   Valid data       3 | 
|                Smallest    0,   Largest        473 | 
|                Average group size           469.00 | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    37.8492815      4.92625650     7.683   .0000   14.9706563 
 POPDEN  |    14.6187924      1.05918720    13.802   .0000   10.3281815 
 POPDEN2 |    -.01068206       .00084516   -12.639   .0000   8165.47251 
 NETMIG  |     .02619255       .00463747     5.648   .0000   393.283582 
 HIDIST  |   -1.71183392       .37281374    -4.592   .0000   45.8647532 
 GOVPAY  |     .04056448       .00993868     4.081   .0000   1407.84663 
 X_COORD |    14.7555845      8.45815236     1.745   .0811  -105.177028 
 BLACK_SZ|    71.3268425      115.650600      .617   .5374    .42643923 
 BROWN_SZ|   -217.327791      136.308563    -1.594   .1109    .15138593 
 DBROWN_S|   -52.7133543      126.586459     -.416   .6771    .22459133 
 GRAY_SZ |    31.5234560      119.367677      .264   .7917    .08599858 
 DGRAY_SZ|    70.3730119      116.189224      .606   .5447    .09523810 
 TPT     |     .04056614       .01074937     3.774   .0002  .190653D-11 
 TPT2    |    .369324D-06    .822527D-07     4.490   .0000  .560350D+08 
 J       |    15.2547322      9.01367727     1.692   .0906 -.378397D-13 
 J2      |    -.45763300       .32128299    -1.424   .1543   17.2055766 
 A       |    22.0382442      13.0469087     1.689   .0912  .420096D-14 
 A2      |    3.05061276      1.83831724     1.659   .0970   1.90715584 
 JU      |   -31.7008739      17.1986904    -1.843   .0653 -.408549D-14 
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 JU2     |   -5.39799527      3.99934369    -1.350   .1771   1.72974345 
 SE      |    15.4988160      14.8184990     1.046   .2956 -.638595D-16 
 SE2     |    5.77163932      6.07255823      .950   .3419   1.51791524 
 R       |     .57344695       .56199461     1.020   .3075  .492280D-13 
 R2      |     .02870752       .00419202     6.848   .0000   2994.54695 
 SN      |   -1.79570035       .80908196    -2.219   .0265  .612292D-13 
 SN2     |     .00803533       .01081836      .743   .4576   547.427475 
 FFD     |    3.95053706      2.81182111     1.405   .1600   13.8752801 
 RH      |    9.15072492      5.57805037     1.640   .1009  .479581D-12 
 RH2     |    -.34954338       .39982782     -.874   .3820   25.7153897 
 PW      |    6.67084149      3.61324423     1.846   .0649   134.829397 
 PC      |    4.08038393      2.33342335     1.749   .0803   63.5451314 
 Constant|    617.982847      1141.15005      .542   .5881 
 
       Estimated Fixed Effects - Full sets of effects, normalized to sum to 0 
       Group        Coefficient       Standard Error       t-ratio 
            1          26.72343             46.38810        .57608 
            2         -90.59148             15.57533      -5.81634 
            3         385.39695             81.69670       4.71741 
       Estimated Fixed Effects - Full sets of effects, normalized to sum to 0 
       Period       Coefficient       Standard Error       t-ratio 
            1         314.46448            175.44129       1.79242 
            2        -323.89276            178.96458      -1.80981 
            3           1.21112             22.98274        .05270 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only   -11304.31008  .7840701399D+09    .0000000 | 
|(2)  Group effects only   -11157.86875  .6367247026D+09    .1879238 | 
|(3)  X - variables only   -10695.46252  .3299837846D+09    .5791400 | 
|(4)  X and group effects  -10671.62810  .3189912743D+09    .5931598 | 
|(5)  X ind.&time effects  -10669.93483  .3182244095D+09    .5941378 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   292.883      2  .00000  162.451     2    1404   .00000 | 
|(3) vs (1)  1217.695     31  .00000   61.036    31    1375   .00000 | 
|(4) vs (1)  1265.364     33  .00000   60.660    33    1373   .00000 | 
|(4) vs (2)   972.481     31  .00000   44.116    31    1373   .00000 | 
|(4) vs (3)    47.669      2  .00000   23.657     2    1373   .00000 | 
|(5) vs (4)     3.387      2  .18392    1.652     2    1371   .19206 | 
|(5) vs (3)    51.055      5  .00000   10.133     5    1371   .00000 | 
+--------------------------------------------------------------------+ 
  
+----------------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i) + w(t)      | 
| Estimates:  Var[e]              =   .232111D+06          | 
|             Var[u]              =   .409972D+05          | 
|             Corr[v(i,t),v(i,s)] =   .150113              | 
|             Var[w]              =   .679245D+05          | 
|             Corr[v(i,t),v(j,t)] =   .226388              | 
| Lagrange Multiplier Test vs. Model (3) =   23.11         | 
| ( 2 df, prob value =  .000010)                           | 
| (High values of LM favor FEM/REM over CR model.)         | 
| Fixed vs. Random Effects (Hausman)     =     .00         | 
| (31 df, prob value = 1.000000)                           | 
| (High (low) values of H favor FEM (REM).)                | 
|             Sum of Squares          .351062D+09          | 
|             R-squared               .563886D+00          | 
+----------------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
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+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    38.2134620      4.91477720     7.775   .0000   14.9706563 
 POPDEN  |    14.7053993      1.05762782    13.904   .0000   10.3281815 
 POPDEN2 |    -.01074510       .00084418   -12.728   .0000   8165.47251 
 NETMIG  |     .02578483       .00462391     5.576   .0000   393.283582 
 HIDIST  |   -1.72432951       .37273012    -4.626   .0000   45.8647532 
 GOVPAY  |     .04194881       .00990735     4.234   .0000   1407.84663 
 X_COORD |    11.6175847      8.03882383     1.445   .1484  -105.177028 
 BLACK_SZ|    52.6413258      115.298824      .457   .6480    .42643923 
 BROWN_SZ|   -244.251823      135.692698    -1.800   .0719    .15138593 
 DBROWN_S|   -77.2287742      126.052351     -.613   .5401    .22459133 
 GRAY_SZ |    17.0296753      119.153365      .143   .8864    .08599858 
 DGRAY_SZ|    59.0332916      116.046145      .509   .6110    .09523810 
 TPT     |     .04062132       .01074445     3.781   .0002  .190653D-11 
 TPT2    |    .369630D-06    .822203D-07     4.496   .0000  .560350D+08 
 J       |    16.6047330      8.99049619     1.847   .0648 -.378397D-13 
 J2      |    -.49502343       .32079886    -1.543   .1228   17.2055766 
 A       |    21.7394805      13.0451251     1.666   .0956  .420096D-14 
 A2      |    3.03044386      1.83808542     1.649   .0992   1.90715584 
 JU      |   -30.5263878      17.1860068    -1.776   .0757 -.408549D-14 
 JU2     |   -5.29678696      3.99890693    -1.325   .1853   1.72974345 
 SE      |    16.6804645      14.8050591     1.127   .2599 -.638595D-16 
 SE2     |    5.70360833      6.06897420      .940   .3473   1.51791524 
 R       |     .80266498       .55216436     1.454   .1460  .492280D-13 
 R2      |     .02794648       .00416671     6.707   .0000   2994.54695 
 SN      |   -1.87547857       .80800896    -2.321   .0203  .612292D-13 
 SN2     |     .00865715       .01081441      .801   .4234   547.427475 
 FFD     |    3.86896393      2.81047122     1.377   .1686   13.8752801 
 RH      |    8.71117236      5.55616753     1.568   .1169  .479581D-12 
 RH2     |    -.34419351       .39856650     -.864   .3878   25.7153897 
 PW      |    3.50079112      2.62860486     1.332   .1829   134.829397 
 PC      |    2.08840105      1.72190316     1.213   .2252   63.5451314 
 Constant|    963.967180      1016.46797      .948   .3430 
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Panel Model 2 
 
+----------------------------------------------------+ 
| OLS Without Group Dummy Variables                  | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 23, 2009 at 02:31:28PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         34     | 
|              Degrees of freedom   =       1373     | 
| Residuals    Sum of squares       =   .3316896E+09 | 
|              Standard error of e  =   491.5081     | 
| Fit          R-squared            =   .5769643     | 
|              Adjusted R-squared   =   .5667967     | 
| Model test   F[ 33,  1373] (prob) =  56.75 (.0000) | 
| Diagnostic   Log likelihood       =  -10699.09     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 33]  (prob) =1210.44 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.41883     | 
|              Akaike Info. Criter. =   12.41883     | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel Data Analysis of LVAL       [ONE way]        | 
|           Unconditional ANOVA (No regressors)      | 
| Source      Variation   Deg. Free.     Mean Square | 
| Between       .147345E+09       2.     .736727E+08 | 
| Residual      .636725E+09    1404.     453508.     | 
| Total         .784070E+09    1406.     557660.     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    39.0501266      4.45883581     8.758   .0000   14.9706563 
 POPDEN  |    15.1220501      1.07577599    14.057   .0000   10.3281815 
 POPDEN2 |    -.01113782       .00085879   -12.969   .0000   8165.47251 
 NETMIG  |     .02879627       .00469626     6.132   .0000   393.283582 
 HIDIST  |   -2.06348674       .38121624    -5.413   .0000   45.8647532 
 GOVPAY  |     .05403489       .00960570     5.625   .0000   1407.84663 
 X_COORD |   -18.9266635      4.32945269    -4.372   .0000  -105.177028 
 BLACK_SZ|    15.0095126      115.481431      .130   .8966    .42643923 
 BROWN_SZ|   -263.743531      134.068438    -1.967   .0492    .15138593 
 DBROWN_S|   -118.349720      125.789469     -.941   .3468    .22459133 
 GRAY_SZ |   -52.8704319      120.058307     -.440   .6597    .08599858 
 DGRAY_SZ|    18.3821528      118.071121      .156   .8763    .09523810 
 TPT     |     .04632477       .01103725     4.197   .0000  .190653D-11 
 TPT2    |    .410239D-06    .848210D-07     4.837   .0000  .560350D+08 
 GDM4    |   -1.46382715      2.25154030     -.650   .5156 -.131986D-12 
 GDM42   |     .02844623       .07244075      .393   .6946   220.444785 
 GDM5    |     .25042791      1.88485123      .133   .8943  .359504D-13 
 GDM52   |    -.04377419       .02181381    -2.007   .0448   1625.00965 
 GDM6    |    2.18332528      1.65745409     1.317   .1877 -.942581D-12 
 GDM62   |     .02307724       .01354684     1.704   .0885   3647.35640 
 GDM7    |   -1.58398106      1.30908148    -1.210   .2263 -.340150D-12 
 GDM72   |     .00375354       .00800033      .469   .6389   5614.09200 
 GDM8    |    -.18556974      1.21255937     -.153   .8784 -.184494D-11 
 GDM82   |    -.00555779       .00949705     -.585   .5584   5016.13001 
 R       |    3.25031719       .46519869     6.987   .0000  .492280D-13 
 R2      |     .02731878       .00411069     6.646   .0000   2994.54695 
 SN      |   -2.24223145       .79983559    -2.803   .0051  .612292D-13 
 SN2     |     .01668694       .01103121     1.513   .1304   547.427475 
 FFD     |    3.62591595      3.13605016     1.156   .2476   13.8752801 
 RH      |    6.93951640      5.34513413     1.298   .1942  .479581D-12 
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 RH2     |     .39341802       .40199728      .979   .3277   25.7153897 
 PW      |     .34677285       .47199769      .735   .4625   134.829397 
 PC      |    -.25917201       .52675468     -.492   .6227   63.5451314 
 Constant|   -1794.11418      460.947356    -3.892   .0001 
 
+----------------------------------------------------+ 
| Least Squares with Group Dummy Variables           | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 23, 2009 at 02:31:28PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         36     | 
|              Degrees of freedom   =       1371     | 
| Residuals    Sum of squares       =   .3194408E+09 | 
|              Standard error of e  =   482.6991     | 
| Fit          R-squared            =   .5925865     | 
|              Adjusted R-squared   =   .5821857     | 
| Model test   F[ 35,  1371] (prob) =  56.98 (.0000) | 
| Diagnostic   Log likelihood       =  -10672.62     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 35]  (prob) =1263.38 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.38405     | 
|              Akaike Info. Criter. =   12.38404     | 
| Estd. Autocorrelation of e(i,t)     .433465        | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel:Groups   Empty       0,   Valid data       3 | 
|                Smallest  183,   Largest        880 | 
|                Average group size           469.00 | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    40.1115799      4.39445569     9.128   .0000   14.9706563 
 POPDEN  |    14.8502852      1.05810933    14.035   .0000   10.3281815 
 POPDEN2 |    -.01090555       .00084471   -12.910   .0000   8165.47251 
 NETMIG  |     .02697390       .00462053     5.838   .0000   393.283582 
 HIDIST  |   -1.77970204       .37646376    -4.727   .0000   45.8647532 
 GOVPAY  |     .04238641       .00957465     4.427   .0000   1407.84663 
 X_COORD |    11.3198226      7.81604378     1.448   .1475  -105.177028 
 BLACK_SZ|    118.478056      114.589848     1.034   .3012    .42643923 
 BROWN_SZ|   -151.499214      133.089693    -1.138   .2550    .15138593 
 DBROWN_S|    1.60226295      124.790298      .013   .9898    .22459133 
 GRAY_SZ |    75.2640344      119.278729      .631   .5280    .08599858 
 DGRAY_SZ|    105.113618      116.658352      .901   .3676    .09523810 
 TPT     |     .04211792       .01088706     3.869   .0001  .190653D-11 
 TPT2    |    .379292D-06    .836442D-07     4.535   .0000  .560350D+08 
 GDM4    |   -2.57547703      2.21742637    -1.161   .2455 -.131986D-12 
 GDM42   |     .05714745       .07139818      .800   .4235   220.444785 
 GDM5    |     .54129926      1.85316597      .292   .7702  .359504D-13 
 GDM52   |    -.05427047       .02148158    -2.526   .0115   1625.00965 
 GDM6    |    1.84291752      1.62874856     1.131   .2578 -.942581D-12 
 GDM62   |     .02962918       .01333772     2.221   .0263   3647.35640 
 GDM7    |   -1.91533866      1.28678200    -1.488   .1366 -.340150D-12 
 GDM72   |     .00050243       .00786992      .064   .9491   5614.09200 
 GDM8    |     .46083329      1.19424844      .386   .6996 -.184494D-11 
 GDM82   |    -.00491092       .00932735     -.527   .5985   5016.13001 
 R       |    1.04650461       .54958111     1.904   .0569  .492280D-13 
 R2      |     .02967756       .00419768     7.070   .0000   2994.54695 
 SN      |   -1.96122869       .78691561    -2.492   .0127  .612292D-13 
 SN2     |     .01189819       .01085505     1.096   .2730   547.427475 
 FFD     |    4.83974097      3.09226687     1.565   .1176   13.8752801 
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 RH      |    2.36929202      5.38093145      .440   .6597  .479581D-12 
 RH2     |    -.33991826       .40807171     -.833   .4049   25.7153897 
 PW      |     .65605257       .46630880     1.407   .1595   134.829397 
 PC      |     .06337807       .52129187      .122   .9032   63.5451314 
 
        Estimated Fixed Effects 
        Group       Coefficient       Standard Error       t-ratio 
            1        1226.61539            782.34038       1.56788 
            2        1110.84773            808.34865       1.37422 
            3        1639.09041            875.87821       1.87137 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only   -11304.31008  .7840701399D+09    .0000000 | 
|(2)  Group effects only   -11157.86875  .6367247026D+09    .1879238 | 
|(3)  X - variables only   -10699.08991  .3316896447D+09    .5769643 | 
|(4)  X and group effects  -10672.61874  .3194407822D+09    .5925865 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   292.883      2  .00000  162.451     2    1404   .00000 | 
|(3) vs (1)  1210.440     33  .00000   56.745    33    1373   .00000 | 
|(4) vs (1)  1263.383     35  .00000   56.975    35    1371   .00000 | 
|(4) vs (2)   970.500     33  .00000   41.265    33    1371   .00000 | 
|(4) vs (3)    52.942      2  .00000   26.285     2    1371   .00000 | 
+--------------------------------------------------------------------+ 
 +--------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i)     | 
| Estimates:  Var[e]              =   .232998D+06  | 
|             Var[u]              =   .858184D+04  | 
|             Corr[v(i,t),v(i,s)] =   .035524      | 
| Lagrange Multiplier Test vs. Model (3) =   25.51 | 
| ( 1 df, prob value =  .000000)                   | 
| (High values of LM favor FEM/REM over CR model.) | 
| Baltagi-Li form of LM Statistic =          11.54 | 
| Fixed vs. Random Effects (Hausman)     =     .00 | 
| (33 df, prob value = 1.000000)                   | 
| (High (low) values of H favor FEM (REM).)        | 
|             Sum of Squares          .356473D+09  | 
|             R-squared               .558941D+00  | 
+--------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    40.2606623      4.39137251     9.168   .0000   14.9706563 
 POPDEN  |    14.9601751      1.05740521    14.148   .0000   10.3281815 
 POPDEN2 |    -.01099508       .00084414   -13.025   .0000   8165.47251 
 NETMIG  |     .02723567       .00461954     5.896   .0000   393.283582 
 HIDIST  |   -1.83566217       .37609336    -4.881   .0000   45.8647532 
 GOVPAY  |     .04529319       .00953506     4.750   .0000   1407.84663 
 X_COORD |    -.99317704      6.50394254     -.153   .8786  -105.177028 
 BLACK_SZ|    86.7672682      114.145459      .760   .4472    .42643923 
 BROWN_SZ|   -189.249422      132.509962    -1.428   .1532    .15138593 
 DBROWN_S|   -31.5838254      124.372630     -.254   .7995    .22459133 
 GRAY_SZ |    43.1462918      118.890124      .363   .7167    .08599858 
 DGRAY_SZ|    81.0379265      116.422882      .696   .4864    .09523810 
 TPT     |     .04209817       .01088003     3.869   .0001  .190653D-11 
 TPT2    |    .379027D-06    .835929D-07     4.534   .0000  .560350D+08 
 GDM4    |   -2.25996186      2.21527024    -1.020   .3076 -.131986D-12 
 GDM42   |     .04573690       .07128695      .642   .5211   220.444785 
 GDM5    |     .38937303      1.85226064      .210   .8335  .359504D-13 
 GDM52   |    -.05270613       .02147446    -2.454   .0141   1625.00965 
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 GDM6    |    1.95391688      1.62834891     1.200   .2302 -.942581D-12 
 GDM62   |     .02851500       .01333301     2.139   .0325   3647.35640 
 GDM7    |   -1.80903876      1.28632347    -1.406   .1596 -.340150D-12 
 GDM72   |     .00127565       .00786658      .162   .8712   5614.09200 
 GDM8    |     .30302098      1.19332224      .254   .7995 -.184494D-11 
 GDM82   |    -.00509715       .00932717     -.546   .5847   5016.13001 
 R       |    1.56307313       .52786205     2.961   .0031  .492280D-13 
 R2      |     .02791998       .00413344     6.755   .0000   2994.54695 
 SN      |   -2.05297459       .78634984    -2.611   .0090  .612292D-13 
 SN2     |     .01314473       .01084851     1.212   .2256   547.427475 
 FFD     |    4.32594628      3.08682850     1.401   .1611   13.8752801 
 RH      |    2.24317059      5.36037821      .418   .6756  .479581D-12 
 RH2     |    -.20283239       .40594864     -.500   .6173   25.7153897 
 PW      |     .61932921       .46600530     1.329   .1838   134.829397 
 PC      |     .04500579       .52081128      .086   .9311   63.5451314 
 Constant|    42.2524836      687.211444      .061   .9510 
 
+----------------------------------------------------+ 
| Least Squares with Group and Period Effects        | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 23, 2009 at 02:31:29PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         38     | 
|              Degrees of freedom   =       1369     | 
| Residuals    Sum of squares       =   .3182323E+09 | 
|              Standard error of e  =   482.1370     | 
| Fit          R-squared            =   .5941277     | 
|              Adjusted R-squared   =   .5831582     | 
| Model test   F[ 37,  1369] (prob) =  54.16 (.0000) | 
| Diagnostic   Log likelihood       =  -10669.95     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 37]  (prob) =1268.72 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.38311     | 
|              Akaike Info. Criter. =   12.38309     | 
| Estd. Autocorrelation of e(i,t)     .435988        | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel:Groups   Empty       0,   Valid data       3 | 
|                Smallest  183,   Largest        880 | 
|                Average group size           469.00 | 
| Panel: Prds:   Empty       0,   Valid data       3 | 
|                Smallest    0,   Largest        473 | 
|                Average group size           469.00 | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    37.5073711      4.91591018     7.630   .0000   14.9706563 
 POPDEN  |    14.7649831      1.06294282    13.891   .0000   10.3281815 
 POPDEN2 |    -.01084401       .00084763   -12.793   .0000   8165.47251 
 NETMIG  |     .02805908       .00464117     6.046   .0000   393.283582 
 HIDIST  |   -1.80114054       .37628516    -4.787   .0000   45.8647532 
 GOVPAY  |     .03915588       .00995736     3.932   .0001   1407.84663 
 X_COORD |    9.72373788      7.89223308     1.232   .2179  -105.177028 
 BLACK_SZ|    139.876884      114.858345     1.218   .2233    .42643923 
 BROWN_SZ|   -118.605660      133.723941     -.887   .3751    .15138593 
 DBROWN_S|    34.9273118      125.509515      .278   .7808    .22459133 
 GRAY_SZ |    87.3843701      119.296009      .733   .4639    .08599858 
 DGRAY_SZ|    116.015298      116.634888      .995   .3199    .09523810 
 TPT     |     .04223499       .01088684     3.879   .0001  .190653D-11 
 TPT2    |    .381030D-06    .836284D-07     4.556   .0000  .560350D+08 

 140



 GDM4    |   -2.85914614      2.22275023    -1.286   .1983 -.131986D-12 
 GDM42   |     .06388403       .07144986      .894   .3713   220.444785 
 GDM5    |     .76954909      1.89476996      .406   .6846  .359504D-13 
 GDM52   |    -.05362784       .02145868    -2.499   .0125   1625.00965 
 GDM6    |    1.91768955      1.62960722     1.177   .2393 -.942581D-12 
 GDM62   |     .03143775       .01336731     2.352   .0187   3647.35640 
 GDM7    |   -1.48443444      1.32073479    -1.124   .2610 -.340150D-12 
 GDM72   |     .00184478       .00788379      .234   .8150   5614.09200 
 GDM8    |    -.08209652      1.26416061     -.065   .9482 -.184494D-11 
 GDM82   |    -.00782620       .00942541     -.830   .4064   5016.13001 
 R       |     .80543302       .55922906     1.440   .1498  .492280D-13 
 R2      |     .03025127       .00420187     7.199   .0000   2994.54695 
 SN      |   -1.79534410       .79064022    -2.271   .0232  .612292D-13 
 SN2     |     .01069315       .01086602      .984   .3251   547.427475 
 FFD     |    4.71069083      3.08944926     1.525   .1273   13.8752801 
 RH      |    4.30317438      5.44305925      .791   .4292  .479581D-12 
 RH2     |    -.21656220       .41166906     -.526   .5988   25.7153897 
 PW      |    7.91993834      3.62681964     2.184   .0290   134.829397 
 PC      |    4.61941698      2.34995941     1.966   .0493   63.5451314 
 Constant|   -212.689509      1104.63654     -.193   .8473 
 
       Estimated Fixed Effects - Full sets of effects, normalized to sum to 0 
       Group        Coefficient       Standard Error       t-ratio 
            1           6.68585             46.50405        .14377 
            2         -91.95427             15.54297      -5.91613 
            3         429.61653             80.46818       5.33896 
       Estimated Fixed Effects - Full sets of effects, normalized to sum to 0 
       Period       Coefficient       Standard Error       t-ratio 
            1         338.39965            176.40473       1.91831 
            2        -373.04757            180.36189      -2.06833 
            3          25.18371             25.46021        .98914 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only   -11304.31008  .7840701399D+09    .0000000 | 
|(2)  Group effects only   -11157.86875  .6367247026D+09    .1879238 | 
|(3)  X - variables only   -10699.08991  .3316896447D+09    .5769643 | 
|(4)  X and group effects  -10672.61874  .3194407822D+09    .5925865 | 
|(5)  X ind.&time effects  -10669.95235  .3182323356D+09    .5941277 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   292.883      2  .00000  162.451     2    1404   .00000 | 
|(3) vs (1)  1210.440     33  .00000   56.745    33    1373   .00000 | 
|(4) vs (1)  1263.383     35  .00000   56.975    35    1371   .00000 | 
|(4) vs (2)   970.500     33  .00000   41.265    33    1371   .00000 | 
|(4) vs (3)    52.942      2  .00000   26.285     2    1371   .00000 | 
|(5) vs (4)     5.333      2  .06950    2.599     2    1369   .07469 | 
|(5) vs (3)    58.275      5  .00000   11.578     5    1369   .00000 | 
+--------------------------------------------------------------------+ 
 +----------------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i) + w(t)      | 
| Estimates:  Var[e]              =   .232456D+06          | 
|             Var[u]              =   .511818D+05          | 
|             Corr[v(i,t),v(i,s)] =   .180448              | 
|             Var[w]              =   .847611D+05          | 
|             Corr[v(i,t),v(j,t)] =   .267202              | 
| Lagrange Multiplier Test vs. Model (3) =   26.93         | 
| ( 2 df, prob value =  .000001)                           | 
| (High values of LM favor FEM/REM over CR model.)         | 
| Fixed vs. Random Effects (Hausman)     =     .00         | 
| (33 df, prob value = 1.000000)                           | 
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| (High (low) values of H favor FEM (REM).)                | 
|             Sum of Squares          .356473D+09          | 
|             R-squared               .558941D+00          | 
+----------------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    37.9316981      4.90488171     7.733   .0000   14.9706563 
 POPDEN  |    14.8597944      1.06140747    14.000   .0000   10.3281815 
 POPDEN2 |    -.01091524       .00084662   -12.893   .0000   8165.47251 
 NETMIG  |     .02770578       .00463066     5.983   .0000   393.283582 
 HIDIST  |   -1.81228487       .37619609    -4.817   .0000   45.8647532 
 GOVPAY  |     .04044534       .00993151     4.072   .0000   1407.84663 
 X_COORD |    6.92069590      7.51072214      .921   .3568  -105.177028 
 BLACK_SZ|    123.547513      114.615770     1.078   .2811    .42643923 
 BROWN_SZ|   -141.028586      133.309104    -1.058   .2901    .15138593 
 DBROWN_S|    13.8362706      125.119074      .111   .9119    .22459133 
 GRAY_SZ |    74.6810750      119.152867      .627   .5308    .08599858 
 DGRAY_SZ|    105.666494      116.539343      .907   .3646    .09523810 
 TPT     |     .04231695       .01088392     3.888   .0001  .190653D-11 
 TPT2    |    .381223D-06    .836104D-07     4.560   .0000  .560350D+08 
 GDM4    |   -2.70724172      2.22156375    -1.219   .2230 -.131986D-12 
 GDM42   |     .05905071       .07140544      .827   .4082   220.444785 
 GDM5    |     .75838765      1.89226152      .401   .6886  .359504D-13 
 GDM52   |    -.05339865       .02145675    -2.489   .0128   1625.00965 
 GDM6    |    1.89707546      1.62874770     1.165   .2441 -.942581D-12 
 GDM62   |     .03070420       .01336294     2.298   .0216   3647.35640 
 GDM7    |   -1.53725106      1.31990328    -1.165   .2442 -.340150D-12 
 GDM72   |     .00162271       .00787747      .206   .8368   5614.09200 
 GDM8    |    -.03477521      1.26301372     -.028   .9780 -.184494D-11 
 GDM82   |    -.00702388       .00940929     -.746   .4554   5016.13001 
 R       |    1.03537257       .54990981     1.883   .0597  .492280D-13 
 R2      |     .02954777       .00418233     7.065   .0000   2994.54695 
 SN      |   -1.86839716       .78984560    -2.366   .0180  .612292D-13 
 SN2     |     .01134199       .01086195     1.044   .2964   547.427475 
 FFD     |    4.61645110      3.08757438     1.495   .1349   13.8752801 
 RH      |    3.50311927      5.41312190      .647   .5175  .479581D-12 
 RH2     |    -.21640845       .41049138     -.527   .5981   25.7153897 
 PW      |    4.81129550      2.76167437     1.742   .0815   134.829397 
 PC      |    2.64963585      1.81037229     1.464   .1433   63.5451314 
 Constant|    163.654612      993.415645      .165   .8691 
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Panel Model 1(No Prices) 
 
+----------------------------------------------------+ 
| OLS Without Group Dummy Variables                  | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 23, 2009 at 02:36:42PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         30     | 
|              Degrees of freedom   =       1377     | 
| Residuals    Sum of squares       =   .3301030E+09 | 
|              Standard error of e  =   489.6184     | 
| Fit          R-squared            =   .5789880     | 
|              Adjusted R-squared   =   .5701213     | 
| Model test   F[ 29,  1377] (prob) =  65.30 (.0000) | 
| Diagnostic   Log likelihood       =  -10695.72     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 29]  (prob) =1217.19 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.40835     | 
|              Akaike Info. Criter. =   12.40834     | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel Data Analysis of LVAL       [ONE way]        | 
|           Unconditional ANOVA (No regressors)      | 
| Source      Variation   Deg. Free.     Mean Square | 
| Between       .147345E+09       2.     .736727E+08 | 
| Residual      .636725E+09    1404.     453508.     | 
| Total         .784070E+09    1406.     557660.     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    36.2525715      4.31437956     8.403   .0000   14.9706563 
 POPDEN  |    14.9882052      1.05691772    14.181   .0000   10.3281815 
 POPDEN2 |    -.01097553       .00084540   -12.983   .0000   8165.47251 
 NETMIG  |     .02665532       .00463943     5.745   .0000   393.283582 
 HIDIST  |   -1.94340161       .37209692    -5.223   .0000   45.8647532 
 GOVPAY  |     .05209117       .00951165     5.477   .0000   1407.84663 
 X_COORD |   -10.9638451      5.11857509    -2.142   .0322  -105.177028 
 BLACK_SZ|   -46.3273859      115.413287     -.401   .6881    .42643923 
 BROWN_SZ|   -372.330118      130.136771    -2.861   .0042    .15138593 
 DBROWN_S|   -209.235689      124.056526    -1.687   .0917    .22459133 
 GRAY_SZ |   -95.2008010      119.175381     -.799   .4244    .08599858 
 DGRAY_SZ|   -12.1079839      116.736079     -.104   .9174    .09523810 
 TPT     |     .04506069       .01081322     4.167   .0000  .190653D-11 
 TPT2    |    .404457D-06    .828170D-07     4.884   .0000  .560350D+08 
 J       |    23.1286290      8.88565244     2.603   .0092 -.378397D-13 
 J2      |    -.70277390       .32024874    -2.194   .0282   17.2055766 
 A       |    22.5789970      13.2460662     1.705   .0883  .420096D-14 
 A2      |    3.59836049      1.86253761     1.932   .0534   1.90715584 
 JU      |   -15.1217059      17.1936807     -.879   .3791 -.408549D-14 
 JU2     |   -3.80830101      4.02927316     -.945   .3446   1.72974345 
 SE      |    18.3342765      14.7669383     1.242   .2144 -.638595D-16 
 SE2     |    3.50647056      6.11721263      .573   .5665   1.51791524 
 R       |    2.70220704       .47737987     5.660   .0000  .492280D-13 
 R2      |     .02627240       .00405996     6.471   .0000   2994.54695 
 SN      |   -2.10682022       .81685986    -2.579   .0099  .612292D-13 
 SN2     |     .01283443       .01081958     1.186   .2355   547.427475 
 FFD     |    2.32049050      2.84319382      .816   .4144   13.8752801 
 RH      |    12.2786115      4.29728847     2.857   .0043  .479581D-12 
 RH2     |     .16785096       .38075698      .441   .6593   25.7153897 
 Constant|   -768.285665      555.240170    -1.384   .1665 
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+----------------------------------------------------+ 
| Least Squares with Group Dummy Variables           | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 23, 2009 at 02:36:42PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         32     | 
|              Degrees of freedom   =       1375     | 
| Residuals    Sum of squares       =   .3190298E+09 | 
|              Standard error of e  =   481.6863     | 
| Fit          R-squared            =   .5931106     | 
|              Adjusted R-squared   =   .5839371     | 
| Model test   F[ 31,  1375] (prob) =  64.65 (.0000) | 
| Diagnostic   Log likelihood       =  -10671.71     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 31]  (prob) =1265.19 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.37707     | 
|              Akaike Info. Criter. =   12.37707     | 
| Estd. Autocorrelation of e(i,t)     .438350        | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel:Groups   Empty       0,   Valid data       3 | 
|                Smallest  183,   Largest        880 | 
|                Average group size           469.00 | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    38.6320592      4.26833204     9.051   .0000   14.9706563 
 POPDEN  |    14.7667261      1.04083112    14.187   .0000   10.3281815 
 POPDEN2 |    -.01078445       .00083254   -12.954   .0000   8165.47251 
 NETMIG  |     .02512003       .00457081     5.496   .0000   393.283582 
 HIDIST  |   -1.72816575       .36739389    -4.704   .0000   45.8647532 
 GOVPAY  |     .04123218       .00949720     4.342   .0000   1407.84663 
 X_COORD |    16.6044163      8.28791419     2.003   .0451  -105.177028 
 BLACK_SZ|    56.1819243      115.088291      .488   .6254    .42643923 
 BROWN_SZ|   -228.939023      130.745807    -1.751   .0799    .15138593 
 DBROWN_S|   -69.0078020      124.188719     -.556   .5784    .22459133 
 GRAY_SZ |    20.6538338      118.615954      .174   .8618    .08599858 
 DGRAY_SZ|    61.3732482      115.587908      .531   .5954    .09523810 
 TPT     |     .04056840       .01070086     3.791   .0001  .190653D-11 
 TPT2    |    .369090D-06    .819466D-07     4.504   .0000  .560350D+08 
 J       |    17.0724928      8.80516208     1.939   .0525 -.378397D-13 
 J2      |    -.50923045       .31638965    -1.610   .1075   17.2055766 
 A       |    21.4106156      13.0350959     1.643   .1005  .420096D-14 
 A2      |    3.01886360      1.83729254     1.643   .1004   1.90715584 
 JU      |   -30.7474856      17.0934022    -1.799   .0721 -.408549D-14 
 JU2     |   -5.46168580      3.97126818    -1.375   .1690   1.72974345 
 SE      |    17.4676736      14.5686888     1.199   .2305 -.638595D-16 
 SE2     |    6.25297932      6.03755870     1.036   .3004   1.51791524 
 R       |     .72133184       .55210016     1.307   .1914  .492280D-13 
 R2      |     .02818251       .00415863     6.777   .0000   2994.54695 
 SN      |   -1.88915226       .80515107    -2.346   .0190  .612292D-13 
 SN2     |     .00924549       .01065708      .868   .3856   547.427475 
 FFD     |    4.08001308      2.80900459     1.452   .1464   13.8752801 
 RH      |    8.70530158      4.30318398     2.023   .0431  .479581D-12 
 RH2     |    -.39452552       .38341101    -1.029   .3035   25.7153897 
 
        Estimated Fixed Effects 
        Group       Coefficient       Standard Error       t-ratio 
            1        2007.54289            838.82845       2.39327 
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            2        1878.26202            861.83719       2.17937 
            3        2365.56277            926.57831       2.55301 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only   -11304.31008  .7840701399D+09    .0000000 | 
|(2)  Group effects only   -11157.86875  .6367247026D+09    .1879238 | 
|(3)  X - variables only   -10695.71658  .3301029768D+09    .5789880 | 
|(4)  X and group effects  -10671.71309  .3190298155D+09    .5931106 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   292.883      2  .00000  162.451     2    1404   .00000 | 
|(3) vs (1)  1217.187     29  .00000   65.300    29    1377   .00000 | 
|(4) vs (1)  1265.194     31  .00000   64.655    31    1375   .00000 | 
|(4) vs (2)   972.311     29  .00000   47.215    29    1375   .00000 | 
|(4) vs (3)    48.007      2  .00000   23.862     2    1375   .00000 | 
+--------------------------------------------------------------------+ 
+--------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i)     | 
| Estimates:  Var[e]              =   .232022D+06  | 
|             Var[u]              =   .770452D+04  | 
|             Corr[v(i,t),v(i,s)] =   .032139      | 
| Lagrange Multiplier Test vs. Model (3) =   23.94 | 
| ( 1 df, prob value =  .000001)                   | 
| (High values of LM favor FEM/REM over CR model.) | 
| Baltagi-Li form of LM Statistic =          10.83 | 
| Fixed vs. Random Effects (Hausman)     =     .00 | 
| (29 df, prob value = 1.000000)                   | 
| (High (low) values of H favor FEM (REM).)        | 
|             Sum of Squares          .351012D+09  | 
|             R-squared               .563934D+00  | 
+--------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    38.4314266      4.26536713     9.010   .0000   14.9706563 
 POPDEN  |    14.8516582      1.04035994    14.275   .0000   10.3281815 
 POPDEN2 |    -.01085336       .00083217   -13.042   .0000   8165.47251 
 NETMIG  |     .02534314       .00457000     5.546   .0000   393.283582 
 HIDIST  |   -1.77380158       .36712060    -4.832   .0000   45.8647532 
 GOVPAY  |     .04403657       .00945509     4.657   .0000   1407.84663 
 X_COORD |    4.87994239      6.96427174      .701   .4835  -105.177028 
 BLACK_SZ|    21.2569790      114.429714      .186   .8526    .42643923 
 BROWN_SZ|   -278.197999      129.583177    -2.147   .0318    .15138593 
 DBROWN_S|   -111.282282      123.375650     -.902   .3671    .22459133 
 GRAY_SZ |   -11.6713811      118.145994     -.099   .9213    .08599858 
 DGRAY_SZ|    37.0440950      115.277294      .321   .7479    .09523810 
 TPT     |     .04049949       .01068995     3.789   .0002  .190653D-11 
 TPT2    |    .369000D-06    .818678D-07     4.507   .0000  .560350D+08 
 J       |    19.0331799      8.77914031     2.168   .0302 -.378397D-13 
 J2      |    -.55943305       .31598428    -1.770   .0767   17.2055766 
 A       |    21.3845088      13.0344517     1.641   .1009  .420096D-14 
 A2      |    3.03014302      1.83652523     1.650   .0990   1.90715584 
 JU      |   -28.4084903      17.0709559    -1.664   .0961 -.408549D-14 
 JU2     |   -5.07918705      3.96948160    -1.280   .2007   1.72974345 
 SE      |    18.8419832      14.5521852     1.295   .1954 -.638595D-16 
 SE2     |    5.35283873      6.02948906      .888   .3747   1.51791524 
 R       |    1.20187166       .53110993     2.263   .0236  .492280D-13 
 R2      |     .02653771       .00408813     6.491   .0000   2994.54695 
 SN      |   -1.97831451       .80444536    -2.459   .0139  .612292D-13 
 SN2     |     .01008000       .01065390      .946   .3441   547.427475 
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 FFD     |    3.65199790      2.80578846     1.302   .1931   13.8752801 
 RH      |    8.81258616      4.29192630     2.053   .0400  .479581D-12 
 RH2     |    -.28057936       .38175801     -.735   .4624   25.7153897 
 Constant|    867.267140      741.932750     1.169   .2424 
 
+----------------------------------------------------+ 
| Least Squares with Group and Period Effects        | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 23, 2009 at 02:36:43PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         34     | 
|              Degrees of freedom   =       1373     | 
| Residuals    Sum of squares       =   .3190249E+09 | 
|              Standard error of e  =   482.0333     | 
| Fit          R-squared            =   .5931168     | 
|              Adjusted R-squared   =   .5833374     | 
| Model test   F[ 33,  1373] (prob) =  60.65 (.0000) | 
| Diagnostic   Log likelihood       =  -10671.70     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 33]  (prob) =1265.22 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.37990     | 
|              Akaike Info. Criter. =   12.37989     | 
| Estd. Autocorrelation of e(i,t)     .438470        | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel:Groups   Empty       0,   Valid data       3 | 
|                Smallest  183,   Largest        880 | 
|                Average group size           469.00 | 
| Panel: Prds:   Empty       0,   Valid data       3 | 
|                Smallest    0,   Largest        473 | 
|                Average group size           469.00 | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    38.2981950      4.91713914     7.789   .0000   14.9706563 
 POPDEN  |    14.7852976      1.04945636    14.089   .0000   10.3281815 
 POPDEN2 |    -.01079859       .00083883   -12.873   .0000   8165.47251 
 NETMIG  |     .02511441       .00457666     5.487   .0000   393.283582 
 HIDIST  |   -1.72828946       .37169654    -4.650   .0000   45.8647532 
 GOVPAY  |     .04098396       .00991120     4.135   .0000   1407.84663 
 X_COORD |    16.7038696      8.32357096     2.007   .0448  -105.177028 
 BLACK_SZ|    57.3563500      115.463484      .497   .6194    .42643923 
 BROWN_SZ|   -228.609529      132.082106    -1.731   .0835    .15138593 
 DBROWN_S|   -68.2411419      124.918615     -.546   .5849    .22459133 
 GRAY_SZ |    22.1944836      119.238362      .186   .8523    .08599858 
 DGRAY_SZ|    62.7873947      116.153723      .541   .5888    .09523810 
 TPT     |     .04066768       .01073853     3.787   .0002  .190653D-11 
 TPT2    |    .369841D-06    .822118D-07     4.499   .0000  .560350D+08 
 J       |    16.8563540      8.95084258     1.883   .0597 -.378397D-13 
 J2      |    -.50233348       .32036507    -1.568   .1169   17.2055766 
 A       |    21.4420800      13.0486030     1.643   .1003  .420096D-14 
 A2      |    3.02336411      1.83893529     1.644   .1002   1.90715584 
 JU      |   -30.5072178      17.1913826    -1.775   .0760 -.408549D-14 
 JU2     |   -5.39430568      4.00145054    -1.348   .1776   1.72974345 
 SE      |    17.1474004      14.7770997     1.160   .2459 -.638595D-16 
 SE2     |    6.18095963      6.06524115     1.019   .3082   1.51791524 
 R       |     .71405188       .55570763     1.285   .1988  .492280D-13 
 R2      |     .02823485       .00418252     6.751   .0000   2994.54695 
 SN      |   -1.88477305       .80808033    -2.332   .0197  .612292D-13 
 SN2     |     .00910192       .01072744      .848   .3962   547.427475 
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 FFD     |    4.07575744      2.81228509     1.449   .1473   13.8752801 
 RH      |    8.40053955      5.47184420     1.535   .1247  .479581D-12 
 RH2     |    -.40159748       .39798587    -1.009   .3129   25.7153897 
 Constant|    1987.98588      871.094665     2.282   .0225 
 
       Estimated Fixed Effects - Full sets of effects, normalized to sum to 0 
       Group        Coefficient       Standard Error       t-ratio 
            1          34.12672             46.12604        .73986 
            2         -95.39041             15.36756      -6.20726 
            3         394.55719             81.36846       4.84902 
       Estimated Fixed Effects - Full sets of effects, normalized to sum to 0 
       Period       Coefficient       Standard Error       t-ratio 
            1          -3.46102             25.56690       -.13537 
            2           2.11478             23.67796        .08931 
            3           1.39990             22.68848        .06170 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only   -11304.31008  .7840701399D+09    .0000000 | 
|(2)  Group effects only   -11157.86875  .6367247026D+09    .1879238 | 
|(3)  X - variables only   -10695.71658  .3301029768D+09    .5789880 | 
|(4)  X and group effects  -10671.71309  .3190298155D+09    .5931106 | 
|(5)  X ind.&time effects  -10671.70233  .3190249343D+09    .5931168 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   292.883      2  .00000  162.451     2    1404   .00000 | 
|(3) vs (1)  1217.187     29  .00000   65.300    29    1377   .00000 | 
|(4) vs (1)  1265.194     31  .00000   64.655    31    1375   .00000 | 
|(4) vs (2)   972.311     29  .00000   47.215    29    1375   .00000 | 
|(4) vs (3)    48.007      2  .00000   23.862     2    1375   .00000 | 
|(5) vs (4)      .022      2  .98929     .011     2    1373   .98955 | 
|(5) vs (3)    48.028      5  .00000    9.535     5    1373   .00000 | 
+--------------------------------------------------------------------+ 
+----------------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i) + w(t)      | 
| Estimates:  Var[e]              =   .232356D+06          | 
|             Var[u]              =   .222895D+04          | 
|             Corr[v(i,t),v(i,s)] =   .009502              | 
|             Var[w]              =   .514114D+04          | 
|             Corr[v(i,t),v(j,t)] =   .021647              | 
| Lagrange Multiplier Test vs. Model (3) =   24.60         | 
| ( 2 df, prob value =  .000005)                           | 
| (High values of LM favor FEM/REM over CR model.)         | 
| Fixed vs. Random Effects (Hausman)     =     .00         | 
| (29 df, prob value = 1.000000)                           | 
| (High (low) values of H favor FEM (REM).)                | 
|             Sum of Squares          .351012D+09          | 
|             R-squared               .563934D+00          | 
+----------------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    39.2039733      4.81274018     8.146   .0000   14.9706563 
 POPDEN  |    14.8438248      1.04798573    14.164   .0000   10.3281815 
 POPDEN2 |    -.01085315       .00083774   -12.955   .0000   8165.47251 
 NETMIG  |     .02571493       .00457379     5.622   .0000   393.283582 
 HIDIST  |   -1.82228543       .37061290    -4.917   .0000   45.8647532 
 GOVPAY  |     .04793599       .00973834     4.922   .0000   1407.84663 
 X_COORD |   -3.41866492      5.98999943     -.571   .5682  -105.177028 
 BLACK_SZ|   -11.0890220      114.165930     -.097   .9226    .42643923 
 BROWN_SZ|   -319.959780      129.814273    -2.465   .0137    .15138593 
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 DBROWN_S|   -152.208062      123.255929    -1.235   .2169    .22459133 
 GRAY_SZ |   -47.2838145      118.144753     -.400   .6890    .08599858 
 DGRAY_SZ|    12.2730923      115.444380      .106   .9153    .09523810 
 TPT     |     .04109525       .01070978     3.837   .0001  .190653D-11 
 TPT2    |    .373837D-06    .820019D-07     4.559   .0000  .560350D+08 
 J       |    21.4234300      8.86495114     2.417   .0157 -.378397D-13 
 J2      |    -.63393405       .31850582    -1.990   .0466   17.2055766 
 A       |    21.5287031      13.0466588     1.650   .0989  .420096D-14 
 A2      |    3.13597611      1.83699670     1.707   .0878   1.90715584 
 JU      |   -25.5600750      17.1284655    -1.492   .1356 -.408549D-14 
 JU2     |   -4.90988566      3.99577879    -1.229   .2192   1.72974345 
 SE      |    20.3855101      14.7065385     1.386   .1657 -.638595D-16 
 SE2     |    4.86513685      6.05178266      .804   .4214   1.51791524 
 R       |    1.73485946       .51035579     3.399   .0007  .492280D-13 
 R2      |     .02566093       .00405928     6.322   .0000   2994.54695 
 SN      |   -2.06097912       .80626855    -2.556   .0106  .612292D-13 
 SN2     |     .01147014       .01070582     1.071   .2840   547.427475 
 FFD     |    3.21404076      2.80597967     1.145   .2520   13.8752801 
 RH      |    10.4979391      5.26404074     1.994   .0461  .479581D-12 
 RH2     |    -.12332075       .39142699     -.315   .7527   25.7153897 
 Constant|   -3.73986293      643.503927     -.006   .9954 
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Scenario1 (2020s) 
+----------------------------------------------------+ 
| OLS Without Group Dummy Variables                  | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 24, 2009 at 01:15:51PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         32     | 
|              Degrees of freedom   =       1375     | 
| Residuals    Sum of squares       =   .3392374E+09 | 
|              Standard error of e  =   496.7073     | 
| Fit          R-squared            =   .5673379     | 
|              Adjusted R-squared   =   .5575834     | 
| Model test   F[ 31,  1375] (prob) =  58.16 (.0000) | 
| Diagnostic   Log likelihood       =  -10714.92     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 31]  (prob) =1178.78 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.43849     | 
|              Akaike Info. Criter. =   12.43848     | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel Data Analysis of LVAL       [ONE way]        | 
|           Unconditional ANOVA (No regressors)      | 
| Source      Variation   Deg. Free.     Mean Square | 
| Between       .147345E+09       2.     .736727E+08 | 
| Residual      .636725E+09    1404.     453508.     | 
| Total         .784070E+09    1406.     557660.     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    37.2555230      4.46648221     8.341   .0000   14.9706563 
 POPDEN  |    14.9672081      1.08432704    13.803   .0000   10.3281815 
 POPDEN2 |    -.01096247       .00086616   -12.656   .0000   8165.47251 
 NETMIG  |     .02713895       .00474041     5.725   .0000   393.283582 
 HIDIST  |   -2.01787427       .38628051    -5.224   .0000   45.8647532 
 GOVPAY  |     .05059775       .00971315     5.209   .0000   1407.84663 
 X_COORD |   -9.21023905      5.47375839    -1.683   .0924  -105.177028 
 BLACK_SZ|   -86.8518649      123.476795     -.703   .4818    .42643923 
 BROWN_SZ|   -402.143357      141.800195    -2.836   .0046    .15138593 
 DBROWN_S|   -244.133911      133.401220    -1.830   .0672    .22459133 
 GRAY_SZ |   -92.8954528      128.109868     -.725   .4684    .08599858 
 DGRAY_SZ|   -50.5130826      125.031021     -.404   .6862    .09523810 
 TPTSIM1 |     .01059084       .11260363      .094   .9251  .234413D-13 
 TPTSIM12|   -.141561D-04    .356051D-04     -.398   .6909   21904.4238 
 JSIM1   |    20.8843283      9.22665123     2.263   .0236  .108771D-13 
 JSIM12  |    -.62641619       .32983195    -1.899   .0575   17.2055766 
 ASIM1   |    20.3455499      13.4644583     1.511   .1308  .132189D-13 
 ASIM12  |    4.04751488      1.88885623     2.143   .0321   1.90715584 
 JUSIM1  |   -21.9249670      17.5422581    -1.250   .2114 -.409330D-14 
 JUSIM12 |   -5.24522277      4.09762046    -1.280   .2005   1.72974345 
 SESIM1  |    16.6465482      15.1765394     1.097   .2727 -.296691D-13 
 SESIM12 |    4.26486798      6.23391314      .684   .4939   1.51791524 
 RSIM1   |    2.70449884       .48751030     5.548   .0000  .622301D-12 
 RSIM12  |     .02575201       .00414153     6.218   .0000   2994.54695 
 SN      |   -2.02056786       .82955612    -2.436   .0149  .612292D-13 
 SN2     |     .01356291       .01110389     1.221   .2219   547.427475 
 FFD     |    2.88152682      2.88804793      .998   .3184   13.8752801 
 RH      |    13.5289017      5.55531138     2.435   .0149  .479581D-12 
 RH2     |     .19688970       .39788032      .495   .6207   25.7153897 
 PWSIM1  |    -.26809231       .45537269     -.589   .5560   141.570867 
 PCSIM1  |    -.40918190       .50637310     -.808   .4191   66.7223880 
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 Constant|   -480.309803      590.446798     -.813   .4159 
 
+----------------------------------------------------+ 
| Least Squares with Group Dummy Variables           | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 24, 2009 at 01:15:51PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         34     | 
|              Degrees of freedom   =       1373     | 
| Residuals    Sum of squares       =   .3270423E+09 | 
|              Standard error of e  =   488.0527     | 
| Fit          R-squared            =   .5828915     | 
|              Adjusted R-squared   =   .5728663     | 
| Model test   F[ 33,  1373] (prob) =  58.14 (.0000) | 
| Diagnostic   Log likelihood       =  -10689.16     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 33]  (prob) =1230.29 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.40472     | 
|              Akaike Info. Criter. =   12.40471     | 
| Estd. Autocorrelation of e(i,t)     .438035        | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel:Groups   Empty       0,   Valid data       3 | 
|                Smallest  183,   Largest        880 | 
|                Average group size           469.00 | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    38.9627096      4.40134507     8.852   .0000   14.9706563 
 POPDEN  |    14.8168337      1.06663153    13.891   .0000   10.3281815 
 POPDEN2 |    -.01082754       .00085198   -12.709   .0000   8165.47251 
 NETMIG  |     .02539203       .00466599     5.442   .0000   393.283582 
 HIDIST  |   -1.80339320       .38074544    -4.736   .0000   45.8647532 
 GOVPAY  |     .04044886       .00966368     4.186   .0000   1407.84663 
 X_COORD |    18.0359469      8.49984574     2.122   .0338  -105.177028 
 BLACK_SZ|   -1.94905807      122.478622     -.016   .9873    .42643923 
 BROWN_SZ|   -284.302292      141.140223    -2.014   .0440    .15138593 
 DBROWN_S|   -125.877407      132.519111     -.950   .3422    .22459133 
 GRAY_SZ |    7.61502727      126.859761      .060   .9521    .08599858 
 DGRAY_SZ|    9.25420453      123.370047      .075   .9402    .09523810 
 TPTSIM1 |     .05426932       .11081019      .490   .6243  .234413D-13 
 TPTSIM12|   -.378702D-04    .351427D-04    -1.078   .2812   21904.4238 
 JSIM1   |    12.8610827      9.15601293     1.405   .1601  .108771D-13 
 JSIM12  |    -.37100259       .32614447    -1.138   .2553   17.2055766 
 ASIM1   |    20.0393697      13.2316943     1.514   .1299  .132189D-13 
 ASIM12  |    3.37955778      1.86110779     1.816   .0694   1.90715584 
 JUSIM1  |   -36.2422723      17.3689501    -2.087   .0369 -.409330D-14 
 JUSIM12 |   -6.52807664      4.03045463    -1.620   .1053   1.72974345 
 SESIM1  |    14.2722297      14.9512991      .955   .3398 -.296691D-13 
 SESIM12 |    6.67940159      6.14180413     1.088   .2768   1.51791524 
 RSIM1   |     .60870452       .56420631     1.079   .2806  .622301D-12 
 RSIM12  |     .02791036       .00423489     6.591   .0000   2994.54695 
 SN      |   -1.78527367       .81657862    -2.186   .0288  .612292D-13 
 SN2     |     .00903415       .01092981      .827   .4085   547.427475 
 FFD     |    4.55982477      2.84798792     1.601   .1094   13.8752801 
 RH      |    6.29599820      5.60445580     1.123   .2613  .479581D-12 
 RH2     |    -.49958303       .40299945    -1.240   .2151   25.7153897 
 PWSIM1  |     .13496044       .45102050      .299   .7648   141.570867 
 PCSIM1  |    -.06988149       .50113736     -.139   .8891   66.7223880 
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        Estimated Fixed Effects 
        Group       Coefficient       Standard Error       t-ratio 
            1        2227.58451            860.32904       2.58922 
            2        2074.65849            883.05624       2.34941 
            3        2576.70971            947.29477       2.72007 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only   -11304.31008  .7840701399D+09    .0000000 | 
|(2)  Group effects only   -11157.86875  .6367247026D+09    .1879238 | 
|(3)  X - variables only   -10714.91900  .3392374161D+09    .5673379 | 
|(4)  X and group effects  -10689.16342  .3270423175D+09    .5828915 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   292.883      2  .00000  162.451     2    1404   .00000 | 
|(3) vs (1)  1178.782     31  .00000   58.161    31    1375   .00000 | 
|(4) vs (1)  1230.293     33  .00000   58.143    33    1373   .00000 | 
|(4) vs (2)   937.411     31  .00000   41.939    31    1373   .00000 | 
|(4) vs (3)    51.511      2  .00000   25.599     2    1373   .00000 | 
+--------------------------------------------------------------------+ 
+--------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i)     | 
| Estimates:  Var[e]              =   .238195D+06  | 
|             Var[u]              =   .852270D+04  | 
|             Corr[v(i,t),v(i,s)] =   .034544      | 
| Lagrange Multiplier Test vs. Model (3) =   29.26 | 
| ( 1 df, prob value =  .000000)                   | 
| (High values of LM favor FEM/REM over CR model.) | 
| Baltagi-Li form of LM Statistic =          13.24 | 
| Fixed vs. Random Effects (Hausman)     =     .00 | 
| (31 df, prob value = 1.000000)                   | 
| (High (low) values of H favor FEM (REM).)        | 
|             Sum of Squares          .363319D+09  | 
|             R-squared               .549931D+00  | 
+--------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    38.8702839      4.39966812     8.835   .0000   14.9706563 
 POPDEN  |    14.8952087      1.06609578    13.972   .0000   10.3281815 
 POPDEN2 |    -.01089066       .00085157   -12.789   .0000   8165.47251 
 NETMIG  |     .02560265       .00466507     5.488   .0000   393.283582 
 HIDIST  |   -1.84939035       .38046861    -4.861   .0000   45.8647532 
 GOVPAY  |     .04303163       .00962585     4.470   .0000   1407.84663 
 X_COORD |    6.95792901      7.26838791      .957   .3384  -105.177028 
 BLACK_SZ|   -31.3175689      121.985224     -.257   .7974    .42643923 
 BROWN_SZ|   -323.943475      140.376935    -2.308   .0210    .15138593 
 DBROWN_S|   -160.283855      131.975763    -1.214   .2246    .22459133 
 GRAY_SZ |   -19.8765467      126.515196     -.157   .8752    .08599858 
 DGRAY_SZ|   -10.6314100      123.152652     -.086   .9312    .09523810 
 TPTSIM1 |     .04532577       .11077461      .409   .6824  .234413D-13 
 TPTSIM12|   -.334909D-04    .351155D-04     -.954   .3402   21904.4238 
 JSIM1   |    15.1094441      9.12344587     1.656   .0977  .108771D-13 
 JSIM12  |    -.43023525       .32558963    -1.321   .1864   17.2055766 
 ASIM1   |    19.8716905      13.2311384     1.502   .1331  .132189D-13 
 ASIM12  |    3.40417526      1.86037402     1.830   .0673   1.90715584 
 JUSIM1  |   -34.2000461      17.3529060    -1.971   .0487 -.409330D-14 
 JUSIM12 |   -6.22677814      4.02928546    -1.545   .1223   1.72974345 
 SESIM1  |    15.8307505      14.9342591     1.060   .2891 -.296691D-13 
 SESIM12 |    5.88555863      6.13491439      .959   .3374   1.51791524 
 RSIM1   |    1.08352510       .54347993     1.994   .0462  .622301D-12 

 151



 RSIM12  |     .02628578       .00416503     6.311   .0000   2994.54695 
 SN      |   -1.87047105       .81593392    -2.292   .0219  .612292D-13 
 SN2     |     .01009375       .01092449      .924   .3555   547.427475 
 FFD     |    4.16563069      2.84515466     1.464   .1432   13.8752801 
 RH      |    6.91981352      5.58753327     1.238   .2156  .479581D-12 
 RH2     |    -.37149352       .40096262     -.927   .3542   25.7153897 
 PWSIM1  |     .06202830       .45042734      .138   .8905   141.570867 
 PCSIM1  |    -.09871471       .50071626     -.197   .8437   66.7223880 
 Constant|    1148.56285      772.318798     1.487   .1370 
 
+----------------------------------------------------+ 
| Least Squares with Group and Period Effects        | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 24, 2009 at 01:15:54PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         36     | 
|              Degrees of freedom   =       1371     | 
| Residuals    Sum of squares       =   .3263599E+09 | 
|              Standard error of e  =   487.8987     | 
| Fit          R-squared            =   .5837619     | 
|              Adjusted R-squared   =   .5731358     | 
| Model test   F[ 35,  1371] (prob) =  54.94 (.0000) | 
| Diagnostic   Log likelihood       =  -10687.69     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 35]  (prob) =1233.23 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.40548     | 
|              Akaike Info. Criter. =   12.40547     | 
| Estd. Autocorrelation of e(i,t)     .437821        | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel:Groups   Empty       0,   Valid data       3 | 
|                Smallest  183,   Largest        880 | 
|                Average group size           469.00 | 
| Panel: Prds:   Empty       0,   Valid data       3 | 
|                Smallest    0,   Largest        473 | 
|                Average group size           469.00 | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    38.7277083      4.98407002     7.770   .0000   14.9706563 
 POPDEN  |    14.6836346      1.07258122    13.690   .0000   10.3281815 
 POPDEN2 |    -.01073419       .00085585   -12.542   .0000   8165.47251 
 NETMIG  |     .02627697       .00469601     5.596   .0000   393.283582 
 HIDIST  |   -1.79982962       .38199784    -4.712   .0000   45.8647532 
 GOVPAY  |     .04001212       .01007030     3.973   .0001   1407.84663 
 X_COORD |    16.5585457      8.55257345     1.936   .0529  -105.177028 
 BLACK_SZ|    15.3795744      122.956610      .125   .9005    .42643923 
 BROWN_SZ|   -257.828809      142.054840    -1.815   .0695    .15138593 
 DBROWN_S|   -100.323089      133.459399     -.752   .4522    .22459133 
 GRAY_SZ |    18.5280025      127.062466      .146   .8841    .08599858 
 DGRAY_SZ|    18.9757539      123.504621      .154   .8779    .09523810 
 TPTSIM1 |     .05097926       .11079885      .460   .6454  .234413D-13 
 TPTSIM12|   -.334817D-04    .352851D-04     -.949   .3427   21904.4238 
 JSIM1   |    12.0113187      9.23064533     1.301   .1932  .108771D-13 
 JSIM12  |    -.34625577       .32833642    -1.055   .2916   17.2055766 
 ASIM1   |    20.4813642      13.2301035     1.548   .1216  .132189D-13 
 ASIM12  |    3.41992816      1.86086908     1.838   .0661   1.90715584 
 JUSIM1  |   -37.5545006      17.4071329    -2.157   .0310 -.409330D-14 
 JUSIM12 |   -6.61134725      4.04391036    -1.635   .1021   1.72974345 
 SESIM1  |    13.3569429      15.0121394      .890   .3736 -.296691D-13 
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 SESIM12 |    6.31417485      6.14763422     1.027   .3044   1.51791524 
 RSIM1   |     .47805118       .57213726      .836   .4034  .622301D-12 
 RSIM12  |     .02821414       .00424143     6.652   .0000   2994.54695 
 SN      |   -1.70235137       .81996561    -2.076   .0379  .612292D-13 
 SN2     |     .00865396       .01094755      .790   .4292   547.427475 
 FFD     |    4.45539931      2.84795419     1.564   .1177   13.8752801 
 RH      |    7.43542003      5.64427607     1.317   .1877  .479581D-12 
 RH2     |    -.43515253       .40530225    -1.074   .2830   25.7153897 
 PWSIM1  |    6.00124280      3.49401120     1.718   .0859   141.570867 
 PCSIM1  |    3.64840117      2.25477808     1.618   .1056   66.7223880 
 Constant|    927.794460      1155.83324      .803   .4221 
 
       Estimated Fixed Effects - Full sets of effects, normalized to sum to 0 
       Group        Coefficient       Standard Error       t-ratio 
            1          43.36594             46.77754        .92707 
            2         -97.64645             15.82127      -6.17185 
            3         388.03820             82.89998       4.68080 
       Estimated Fixed Effects - Full sets of effects, normalized to sum to 0 
       Period       Coefficient       Standard Error       t-ratio 
            1         300.31339            178.20134       1.68525 
            2        -306.19279            181.67798      -1.68536 
            3          -1.88871             23.30490       -.08104 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only   -11304.31008  .7840701399D+09    .0000000 | 
|(2)  Group effects only   -11157.86875  .6367247026D+09    .1879238 | 
|(3)  X - variables only   -10714.91900  .3392374161D+09    .5673379 | 
|(4)  X and group effects  -10689.16342  .3270423175D+09    .5828915 | 
|(5)  X ind.&time effects  -10687.69390  .3263598833D+09    .5837619 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   292.883      2  .00000  162.451     2    1404   .00000 | 
|(3) vs (1)  1178.782     31  .00000   58.161    31    1375   .00000 | 
|(4) vs (1)  1230.293     33  .00000   58.143    33    1373   .00000 | 
|(4) vs (2)   937.411     31  .00000   41.939    31    1373   .00000 | 
|(4) vs (3)    51.511      2  .00000   25.599     2    1373   .00000 | 
|(5) vs (4)     2.939      2  .23004    1.433     2    1371   .23885 | 
|(5) vs (3)    54.450      5  .00000   10.819     5    1371   .00000 | 
+--------------------------------------------------------------------+ 
+----------------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i) + w(t)      | 
| Estimates:  Var[e]              =   .238045D+06          | 
|             Var[u]              =   .416192D+05          | 
|             Corr[v(i,t),v(i,s)] =   .148818              | 
|             Var[w]              =   .613085D+05          | 
|             Corr[v(i,t),v(j,t)] =   .204803              | 
| Lagrange Multiplier Test vs. Model (3) =   30.05         | 
| ( 2 df, prob value =  .000000)                           | 
| (High values of LM favor FEM/REM over CR model.)         | 
| Fixed vs. Random Effects (Hausman)     =     .00         | 
| (31 df, prob value = 1.000000)                           | 
| (High (low) values of H favor FEM (REM).)                | 
|             Sum of Squares          .363319D+09          | 
|             R-squared               .549931D+00          | 
+----------------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    39.0826215      4.97169173     7.861   .0000   14.9706563 
 POPDEN  |    14.7710420      1.07090569    13.793   .0000   10.3281815 
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 POPDEN2 |    -.01079779       .00085480   -12.632   .0000   8165.47251 
 NETMIG  |     .02586434       .00468123     5.525   .0000   393.283582 
 HIDIST  |   -1.81329483       .38192755    -4.748   .0000   45.8647532 
 GOVPAY  |     .04141006       .01003785     4.125   .0000   1407.84663 
 X_COORD |    13.4551177      8.12750344     1.656   .0978  -105.177028 
 BLACK_SZ|   -4.19028066      122.560307     -.034   .9727    .42643923 
 BROWN_SZ|   -285.703207      141.344396    -2.021   .0432    .15138593 
 DBROWN_S|   -125.873187      132.823985     -.948   .3433    .22459133 
 GRAY_SZ |    3.12051353      126.849100      .025   .9804    .08599858 
 DGRAY_SZ|    6.79343261      123.356717      .055   .9561    .09523810 
 TPTSIM1 |     .04963928       .11077698      .448   .6541  .234413D-13 
 TPTSIM12|   -.341316D-04    .352219D-04     -.969   .3325   21904.4238 
 JSIM1   |    13.3279993      9.20803217     1.447   .1478  .108771D-13 
 JSIM12  |    -.38263484       .32787243    -1.167   .2432   17.2055766 
 ASIM1   |    20.1866459      13.2286404     1.526   .1270  .132189D-13 
 ASIM12  |    3.39992099      1.86059810     1.827   .0677   1.90715584 
 JUSIM1  |   -36.3404962      17.3932408    -2.089   .0367 -.409330D-14 
 JUSIM12 |   -6.50507659      4.04338730    -1.609   .1077   1.72974345 
 SESIM1  |    14.5223211      14.9985187      .968   .3329 -.296691D-13 
 SESIM12 |    6.25746861      6.14389046     1.018   .3084   1.51791524 
 RSIM1   |     .70917151       .56203145     1.262   .2070  .622301D-12 
 RSIM12  |     .02746113       .00421574     6.514   .0000   2994.54695 
 SN      |   -1.78120347       .81890409    -2.175   .0296  .612292D-13 
 SN2     |     .00927283       .01094347      .847   .3968   547.427475 
 FFD     |    4.37527086      2.84658315     1.537   .1243   13.8752801 
 RH      |    7.00175949      5.62035544     1.246   .2128  .479581D-12 
 RH2     |    -.42982898       .40388165    -1.064   .2872   25.7153897 
 PWSIM1  |    2.92931117      2.46184377     1.190   .2341   141.570867 
 PCSIM1  |    1.71724077      1.61480733     1.063   .2876   66.7223880 
 Constant|    1292.01530      1018.21265     1.269   .2045 
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Scenario2 (2050s) 
 
+----------------------------------------------------+ 
| OLS Without Group Dummy Variables                  | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 24, 2009 at 01:17:35PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         32     | 
|              Degrees of freedom   =       1375     | 
| Residuals    Sum of squares       =   .3392615E+09 | 
|              Standard error of e  =   496.7249     | 
| Fit          R-squared            =   .5673072     | 
|              Adjusted R-squared   =   .5575520     | 
| Model test   F[ 31,  1375] (prob) =  58.15 (.0000) | 
| Diagnostic   Log likelihood       =  -10714.97     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 31]  (prob) =1178.68 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.43856     | 
|              Akaike Info. Criter. =   12.43855     | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel Data Analysis of LVAL       [ONE way]        | 
|           Unconditional ANOVA (No regressors)      | 
| Source      Variation   Deg. Free.     Mean Square | 
| Between       .147345E+09       2.     .736727E+08 | 
| Residual      .636725E+09    1404.     453508.     | 
| Total         .784070E+09    1406.     557660.     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    37.1688654      4.47531945     8.305   .0000   14.9706563 
 POPDEN  |    14.9727492      1.08430873    13.809   .0000   10.3281815 
 POPDEN2 |    -.01096563       .00086616   -12.660   .0000   8165.47251 
 NETMIG  |     .02705277       .00474666     5.699   .0000   393.283582 
 HIDIST  |   -1.99127678       .38358651    -5.191   .0000   45.8647532 
 GOVPAY  |     .05027433       .00970511     5.180   .0000   1407.84663 
 X_COORD |   -8.99196320      5.46598609    -1.645   .1000  -105.177028 
 BLACK_SZ|   -75.9319866      124.264902     -.611   .5412    .42643923 
 BROWN_SZ|   -394.306308      142.451688    -2.768   .0056    .15138593 
 DBROWN_S|   -234.092461      134.057425    -1.746   .0808    .22459133 
 GRAY_SZ |   -79.1929903      126.632955     -.625   .5317    .08599858 
 DGRAY_SZ|   -38.1759882      124.507734     -.307   .7591    .09523810 
 TPTSIM2 |    -.31181547      1.11103092     -.281   .7790  .829319D-13 
 TPTSIM22|     .00069593       .00375566      .185   .8530   1175.21750 
 JSIM2   |    20.3027119      10.0443817     2.021   .0432  .128918D-13 
 JSIM22  |    -.60444404       .35711816    -1.693   .0905   17.2055766 
 ASIM2   |    19.6086697      13.5658418     1.445   .1483  .691070D-15 
 ASIM22  |    4.06315138      1.88859655     2.151   .0314   1.90715584 
 JUSIM2  |   -23.0144503      17.7698712    -1.295   .1953  .308639D-13 
 JUSIM22 |   -5.30237212      4.09636245    -1.294   .1955   1.72974345 
 SESIM2  |    15.3548033      15.7971592      .972   .3311 -.655942D-16 
 SESIM22 |    4.34789350      6.28797624      .691   .4893   1.51791524 
 RSIM2   |    2.75888335       .51039207     5.405   .0000 -.148791D-12 
 RSIM22  |     .02566827       .00414719     6.189   .0000   2994.54695 
 SN      |   -1.97010801       .86877975    -2.268   .0233  .612292D-13 
 SN2     |     .01343542       .01112707     1.207   .2273   547.427475 
 FFD     |    2.94693625      2.89517772     1.018   .3087   13.8752801 
 RH      |    13.5474028      5.56294182     2.435   .0149  .479581D-12 
 RH2     |     .19321686       .39902666      .484   .6282   25.7153897 
 PWSIM2  |    -.25308371       .41661189     -.607   .5435   155.053806 
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 PCSIM2  |    -.36749363       .46372151     -.792   .4281   73.0769011 
 Constant|   -468.482947      590.318753     -.794   .4274 
 
+----------------------------------------------------+ 
| Least Squares with Group Dummy Variables           | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 24, 2009 at 01:17:35PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         34     | 
|              Degrees of freedom   =       1373     | 
| Residuals    Sum of squares       =   .3271680E+09 | 
|              Standard error of e  =   488.1464     | 
| Fit          R-squared            =   .5827313     | 
|              Adjusted R-squared   =   .5727022     | 
| Model test   F[ 33,  1373] (prob) =  58.10 (.0000) | 
| Diagnostic   Log likelihood       =  -10689.43     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 33]  (prob) =1229.75 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.40511     | 
|              Akaike Info. Criter. =   12.40510     | 
| Estd. Autocorrelation of e(i,t)     .438395        | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel:Groups   Empty       0,   Valid data       3 | 
|                Smallest  183,   Largest        880 | 
|                Average group size           469.00 | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    38.9455422      4.41066457     8.830   .0000   14.9706563 
 POPDEN  |    14.8328932      1.06676643    13.905   .0000   10.3281815 
 POPDEN2 |    -.01083871       .00085209   -12.720   .0000   8165.47251 
 NETMIG  |     .02542092       .00467238     5.441   .0000   393.283582 
 HIDIST  |   -1.77302989       .37821422    -4.688   .0000   45.8647532 
 GOVPAY  |     .04017982       .00965619     4.161   .0000   1407.84663 
 X_COORD |    18.3498102      8.51564325     2.155   .0312  -105.177028 
 BLACK_SZ|    13.8666796      123.397194      .112   .9105    .42643923 
 BROWN_SZ|   -265.069814      142.091725    -1.865   .0621    .15138593 
 DBROWN_S|   -108.012518      133.385636     -.810   .4181    .22459133 
 GRAY_SZ |    26.3126138      125.543777      .210   .8340    .08599858 
 DGRAY_SZ|    26.0366559      122.948168      .212   .8323    .09523810 
 TPTSIM2 |     .29633329      1.09610453      .270   .7869  .829319D-13 
 TPTSIM22|    -.00260437       .00372081     -.700   .4840   1175.21750 
 JSIM2   |    13.7072079      9.92518255     1.381   .1673  .128918D-13 
 JSIM22  |    -.40352604       .35209214    -1.146   .2518   17.2055766 
 ASIM2   |    20.0012245      13.3348465     1.500   .1336  .691070D-15 
 ASIM22  |    3.40979734      1.86105884     1.832   .0669   1.90715584 
 JUSIM2  |   -36.1661045      17.5823918    -2.057   .0397  .308639D-13 
 JUSIM22 |   -6.66697267      4.03037843    -1.654   .0981   1.72974345 
 SESIM2  |    14.4740136      15.5479074      .931   .3519 -.655942D-16 
 SESIM22 |    6.92533504      6.19596495     1.118   .2637   1.51791524 
 RSIM2   |     .59267509       .58983678     1.005   .3150 -.148791D-12 
 RSIM22  |     .02794293       .00424496     6.583   .0000   2994.54695 
 SN      |   -1.83093688       .85440024    -2.143   .0321  .612292D-13 
 SN2     |     .00951326       .01094961      .869   .3849   547.427475 
 FFD     |    4.63401134      2.85543738     1.623   .1046   13.8752801 
 RH      |    6.07904344      5.61926138     1.082   .2793  .479581D-12 
 RH2     |    -.49152734       .40388735    -1.217   .2236   25.7153897 
 PWSIM2  |     .13430107       .41304523      .325   .7451   155.053806 
 PCSIM2  |    -.07907865       .45884604     -.172   .8632   73.0769011 
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        Estimated Fixed Effects 
        Group       Coefficient       Standard Error       t-ratio 
            1        2242.63615            861.54952       2.60303 
            2        2090.48734            884.25099       2.36413 
            3        2592.97985            948.84756       2.73277 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only   -11304.31008  .7840701399D+09    .0000000 | 
|(2)  Group effects only   -11157.86875  .6367247026D+09    .1879238 | 
|(3)  X - variables only   -10714.96887  .3392614656D+09    .5673072 | 
|(4)  X and group effects  -10689.43365  .3271679641D+09    .5827313 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   292.883      2  .00000  162.451     2    1404   .00000 | 
|(3) vs (1)  1178.682     31  .00000   58.154    31    1375   .00000 | 
|(4) vs (1)  1229.753     33  .00000   58.104    33    1373   .00000 | 
|(4) vs (2)   936.870     31  .00000   41.906    31    1373   .00000 | 
|(4) vs (3)    51.070      2  .00000   25.376     2    1373   .00000 | 
+--------------------------------------------------------------------+ 
+--------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i)     | 
| Estimates:  Var[e]              =   .238287D+06  | 
|             Var[u]              =   .844867D+04  | 
|             Corr[v(i,t),v(i,s)] =   .034242      | 
| Lagrange Multiplier Test vs. Model (3) =   28.25 | 
| ( 1 df, prob value =  .000000)                   | 
| (High values of LM favor FEM/REM over CR model.) | 
| Baltagi-Li form of LM Statistic =          12.78 | 
| Fixed vs. Random Effects (Hausman)     =     .00 | 
| (31 df, prob value = 1.000000)                   | 
| (High (low) values of H favor FEM (REM).)        | 
|             Sum of Squares          .363185D+09  | 
|             R-squared               .549988D+00  | 
+--------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    38.8230964      4.40907154     8.805   .0000   14.9706563 
 POPDEN  |    14.9101748      1.06623545    13.984   .0000   10.3281815 
 POPDEN2 |    -.01090095       .00085169   -12.799   .0000   8165.47251 
 NETMIG  |     .02560181       .00467150     5.480   .0000   393.283582 
 HIDIST  |   -1.81982059       .37792848    -4.815   .0000   45.8647532 
 GOVPAY  |     .04276460       .00961868     4.446   .0000   1407.84663 
 X_COORD |    7.13106755      7.26536005      .982   .3263  -105.177028 
 BLACK_SZ|   -17.4379158      122.846486     -.142   .8871    .42643923 
 BROWN_SZ|   -308.329640      141.207119    -2.184   .0290    .15138593 
 DBROWN_S|   -145.156484      132.760438    -1.093   .2742    .22459133 
 GRAY_SZ |   -2.81732909      125.156254     -.023   .9820    .08599858 
 DGRAY_SZ|    4.63218175      122.699257      .038   .9699    .09523810 
 TPTSIM2 |     .12594673      1.09456963      .115   .9084  .829319D-13 
 TPTSIM22|    -.00184564       .00371297     -.497   .6191   1175.21750 
 JSIM2   |    15.5303032      9.90597673     1.568   .1169  .128918D-13 
 JSIM22  |    -.44680858       .35182916    -1.270   .2041   17.2055766 
 ASIM2   |    19.6132126      13.3334808     1.471   .1413  .691070D-15 
 ASIM22  |    3.43271020      1.86032421     1.845   .0650   1.90715584 
 JUSIM2  |   -34.4536872      17.5685665    -1.961   .0499  .308639D-13 
 JUSIM22 |   -6.34893424      4.02909769    -1.576   .1151   1.72974345 
 SESIM2  |    15.5506882      15.5383472     1.001   .3169 -.655942D-16 
 SESIM22 |    6.11677375      6.18926199      .988   .3230   1.51791524 
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 RSIM2   |    1.09494851       .56765406     1.929   .0537 -.148791D-12 
 RSIM22  |     .02627043       .00417263     6.296   .0000   2994.54695 
 SN      |   -1.88675689       .85411905    -2.209   .0272  .612292D-13 
 SN2     |     .01044900       .01094548      .955   .3398   547.427475 
 FFD     |    4.24220390      2.85269795     1.487   .1370   13.8752801 
 RH      |    6.76685448      5.60164924     1.208   .2270  .479581D-12 
 RH2     |    -.36508821       .40190912     -.908   .3637   25.7153897 
 PWSIM2  |     .06183292       .41241427      .150   .8808   155.053806 
 PCSIM2  |    -.09996423       .45845685     -.218   .8274   73.0769011 
 Constant|    1151.52271      772.017077     1.492   .1358 
 
+----------------------------------------------------+ 
| Least Squares with Group and Period Effects        | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 24, 2009 at 01:17:37PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         36     | 
|              Degrees of freedom   =       1371     | 
| Residuals    Sum of squares       =   .3264133E+09 | 
|              Standard error of e  =   487.9387     | 
| Fit          R-squared            =   .5836937     | 
|              Adjusted R-squared   =   .5730659     | 
| Model test   F[ 35,  1371] (prob) =  54.92 (.0000) | 
| Diagnostic   Log likelihood       =  -10687.81     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 35]  (prob) =1233.00 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.40564     | 
|              Akaike Info. Criter. =   12.40563     | 
| Estd. Autocorrelation of e(i,t)     .437713        | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel:Groups   Empty       0,   Valid data       3 | 
|                Smallest  183,   Largest        880 | 
|                Average group size           469.00 | 
| Panel: Prds:   Empty       0,   Valid data       3 | 
|                Smallest    0,   Largest        473 | 
|                Average group size           469.00 | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    38.6996149      4.98772335     7.759   .0000   14.9706563 
 POPDEN  |    14.6903708      1.07270855    13.695   .0000   10.3281815 
 POPDEN2 |    -.01073855       .00085596   -12.546   .0000   8165.47251 
 NETMIG  |     .02632049       .00470058     5.599   .0000   393.283582 
 HIDIST  |   -1.77718111       .37936562    -4.685   .0000   45.8647532 
 GOVPAY  |     .03979427       .01006530     3.954   .0001   1407.84663 
 X_COORD |    16.6633227      8.57731806     1.943   .0521  -105.177028 
 BLACK_SZ|    22.8361466      123.615412      .185   .8534    .42643923 
 BROWN_SZ|   -246.604108      142.613228    -1.729   .0838    .15138593 
 DBROWN_S|   -90.7535576      133.914103     -.678   .4980    .22459133 
 GRAY_SZ |    29.4249740      125.642194      .234   .8148    .08599858 
 DGRAY_SZ|    27.7955015      122.985685      .226   .8212    .09523810 
 TPTSIM2 |     .14797937      1.10124255      .134   .8931  .829319D-13 
 TPTSIM22|    -.00236514       .00373242     -.634   .5263   1175.21750 
 JSIM2   |    12.0413890      10.0003535     1.204   .2286  .128918D-13 
 JSIM22  |    -.35137562       .35420208     -.992   .3212   17.2055766 
 ASIM2   |    20.3136726      13.3308329     1.524   .1276  .691070D-15 
 ASIM22  |    3.44306425      1.86058632     1.851   .0642   1.90715584 
 JUSIM2  |   -37.8975001      17.6371494    -2.149   .0317  .308639D-13 
 JUSIM22 |   -6.75981257      4.04310729    -1.672   .0945   1.72974345 
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 SESIM2  |    12.8970431      15.6014292      .827   .4084 -.655942D-16 
 SESIM22 |    6.69143155      6.19952232     1.079   .2804   1.51791524 
 RSIM2   |     .47063115       .59748096      .788   .4309 -.148791D-12 
 RSIM22  |     .02823291       .00425123     6.641   .0000   2994.54695 
 SN      |   -1.69902815       .85840080    -1.979   .0478  .612292D-13 
 SN2     |     .00907924       .01096381      .828   .4076   547.427475 
 FFD     |    4.55686607      2.85466649     1.596   .1104   13.8752801 
 RH      |    7.25906036      5.65691724     1.283   .1994  .479581D-12 
 RH2     |    -.43115599       .40589145    -1.062   .2881   25.7153897 
 PWSIM2  |    5.76730833      3.19087446     1.807   .0707   155.053806 
 PCSIM2  |    3.50164716      2.06434210     1.696   .0898   73.0769011 
 Constant|    872.519806      1158.83151      .753   .4515 
 
       Estimated Fixed Effects - Full sets of effects, normalized to sum to 0 
       Group        Coefficient       Standard Error       t-ratio 
            1          42.83554             46.79416        .91540 
            2         -97.37733             15.84508      -6.14559 
            3         387.74110             83.27570       4.65611 
       Estimated Fixed Effects - Full sets of effects, normalized to sum to 0 
       Period       Coefficient       Standard Error       t-ratio 
            1         316.14376            178.25553       1.77354 
            2        -322.03359            181.75757      -1.77178 
            3          -2.28015             23.33032       -.09773 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only   -11304.31008  .7840701399D+09    .0000000 | 
|(2)  Group effects only   -11157.86875  .6367247026D+09    .1879238 | 
|(3)  X - variables only   -10714.96887  .3392614656D+09    .5673072 | 
|(4)  X and group effects  -10689.43365  .3271679641D+09    .5827313 | 
|(5)  X ind.&time effects  -10687.80914  .3264133494D+09    .5836937 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   292.883      2  .00000  162.451     2    1404   .00000 | 
|(3) vs (1)  1178.682     31  .00000   58.154    31    1375   .00000 | 
|(4) vs (1)  1229.753     33  .00000   58.104    33    1373   .00000 | 
|(4) vs (2)   936.870     31  .00000   41.906    31    1373   .00000 | 
|(4) vs (3)    51.070      2  .00000   25.376     2    1373   .00000 | 
|(5) vs (4)     3.249      2  .19701    1.585     2    1371   .20537 | 
|(5) vs (3)    54.319      5  .00000   10.793     5    1371   .00000 | 
+--------------------------------------------------------------------+ 
+----------------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i) + w(t)      | 
| Estimates:  Var[e]              =   .238084D+06          | 
|             Var[u]              =   .255132D+04          | 
|             Corr[v(i,t),v(i,s)] =   .010602              | 
|             Var[w]              =   .610016D+04          | 
|             Corr[v(i,t),v(j,t)] =   .024982              | 
| Lagrange Multiplier Test vs. Model (3) =   29.01         | 
| ( 2 df, prob value =  .000001)                           | 
| (High values of LM favor FEM/REM over CR model.)         | 
| Fixed vs. Random Effects (Hausman)     =     .00         | 
| (31 df, prob value = 1.000000)                           | 
| (High (low) values of H favor FEM (REM).)                | 
|             Sum of Squares          .363185D+09          | 
|             R-squared               .549988D+00          | 
+----------------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    39.7625867      4.90541683     8.106   .0000   14.9706563 
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 POPDEN  |    14.8912278      1.06902721    13.930   .0000   10.3281815 
 POPDEN2 |    -.01089271       .00085358   -12.761   .0000   8165.47251 
 NETMIG  |     .02594633       .00467327     5.552   .0000   393.283582 
 HIDIST  |   -1.85439455       .37882486    -4.895   .0000   45.8647532 
 GOVPAY  |     .04686204       .00989288     4.737   .0000   1407.84663 
 X_COORD |    -.95127671      6.35415233     -.150   .8810  -105.177028 
 BLACK_SZ|   -44.2776487      122.489094     -.361   .7177    .42643923 
 BROWN_SZ|   -345.122166      140.633837    -2.454   .0141    .15138593 
 DBROWN_S|   -180.334365      132.359038    -1.362   .1731    .22459133 
 GRAY_SZ |   -32.5108440      124.845200     -.260   .7945    .08599858 
 DGRAY_SZ|   -14.7849697      122.505469     -.121   .9039    .09523810 
 TPTSIM2 |    -.08370679      1.09449272     -.076   .9390  .829319D-13 
 TPTSIM22|    -.00086093       .00370961     -.232   .8165   1175.21750 
 JSIM2   |    17.5180209      9.91300827     1.767   .0772  .128918D-13 
 JSIM22  |    -.50557183       .35224539    -1.435   .1512   17.2055766 
 ASIM2   |    19.4190105      13.3272491     1.457   .1451  .691070D-15 
 ASIM22  |    3.55112186      1.85864249     1.911   .0561   1.90715584 
 JUSIM2  |   -32.3394876      17.5721890    -1.840   .0657  .308639D-13 
 JUSIM22 |   -6.21918647      4.03993664    -1.539   .1237   1.72974345 
 SESIM2  |    16.3959157      15.5529478     1.054   .2918 -.655942D-16 
 SESIM22 |    5.56463344      6.18868772      .899   .3686   1.51791524 
 RSIM2   |    1.64875056       .54615804     3.019   .0025 -.148791D-12 
 RSIM22  |     .02538920       .00412489     6.155   .0000   2994.54695 
 SN      |   -1.93864222       .85471226    -2.268   .0233  .612292D-13 
 SN2     |     .01170704       .01094823     1.069   .2849   547.427475 
 FFD     |    3.81033312      2.84881853     1.338   .1811   13.8752801 
 RH      |    8.41041650      5.57220788     1.509   .1312  .479581D-12 
 RH2     |    -.21411533       .40029476     -.535   .5927   25.7153897 
 PWSIM2  |     .49643291      1.01904575      .487   .6261   155.053806 
 PCSIM2  |     .21905512       .74870327      .293   .7698   73.0769011 
 Constant|    203.742321      711.047792      .287   .7745 
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Scenarion3 (2080s) 
 
+----------------------------------------------------+ 
| OLS Without Group Dummy Variables                  | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 24, 2009 at 01:19:28PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         32     | 
|              Degrees of freedom   =       1375     | 
| Residuals    Sum of squares       =   .3391820E+09 | 
|              Standard error of e  =   496.6667     | 
| Fit          R-squared            =   .5674086     | 
|              Adjusted R-squared   =   .5576557     | 
| Model test   F[ 31,  1375] (prob) =  58.18 (.0000) | 
| Diagnostic   Log likelihood       =  -10714.80     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 31]  (prob) =1179.01 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.43833     | 
|              Akaike Info. Criter. =   12.43832     | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel Data Analysis of LVAL       [ONE way]        | 
|           Unconditional ANOVA (No regressors)      | 
| Source      Variation   Deg. Free.     Mean Square | 
| Between       .147345E+09       2.     .736727E+08 | 
| Residual      .636725E+09    1404.     453508.     | 
| Total         .784070E+09    1406.     557660.     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    37.0700324      4.47638287     8.281   .0000   14.9706563 
 POPDEN  |    14.9644395      1.08428701    13.801   .0000   10.3281815 
 POPDEN2 |    -.01095861       .00086616   -12.652   .0000   8165.47251 
 NETMIG  |     .02691354       .00475098     5.665   .0000   393.283582 
 HIDIST  |   -1.99167430       .38094967    -5.228   .0000   45.8647532 
 GOVPAY  |     .05003559       .00970973     5.153   .0000   1407.84663 
 X_COORD |   -9.02381096      5.44665906    -1.657   .0976  -105.177028 
 BLACK_SZ|   -73.6382287      122.698042     -.600   .5484    .42643923 
 BROWN_SZ|   -399.922016      141.094067    -2.834   .0046    .15138593 
 DBROWN_S|   -234.854261      132.296493    -1.775   .0759    .22459133 
 GRAY_SZ |   -77.3441978      124.459781     -.621   .5343    .08599858 
 DGRAY_SZ|   -36.0005218      122.614670     -.294   .7691    .09523810 
 TPTSIM3 |   -1.28998011      2.04266228     -.632   .5277  .988879D-13 
 TPTSIM32|     .01004487       .02050128      .490   .6242   458.404076 
 JSIM3   |    18.9908668      10.1404095     1.873   .0611  .616868D-14 
 JSIM32  |    -.55336358       .36240869    -1.527   .1268   17.2055766 
 ASIM3   |    18.9397132      13.5706117     1.396   .1628  .635142D-14 
 ASIM32  |    4.05256714      1.88836309     2.146   .0319   1.90715584 
 JUSIM3  |   -24.2786601      17.8311599    -1.362   .1733  .524602D-14 
 JUSIM32 |   -5.22573404      4.10046715    -1.274   .2025   1.72974345 
 SESIM3  |    13.9949945      15.8305579      .884   .3767  .624381D-14 
 SESIM32 |    4.11566338      6.32017832      .651   .5149   1.51791524 
 RSIM3   |    2.88328159       .55314450     5.213   .0000  .227346D-12 
 RSIM32  |     .02538728       .00418617     6.065   .0000   2994.54695 
 SN      |   -1.85438308       .89275353    -2.077   .0378  .612292D-13 
 SN2     |     .01277313       .01120063     1.140   .2541   547.427475 
 FFD     |    2.89948471      2.89901622     1.000   .3172   13.8752801 
 RH      |    13.8272792      5.59383285     2.472   .0134  .479581D-12 
 RH2     |     .17987958       .39942713      .450   .6525   25.7153897 
 PWSIM3  |    -.25681169       .38593785     -.665   .5058   168.536746 
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 PCSIM3  |    -.32827543       .42654155     -.770   .4415   79.4314142 
 Constant|   -469.197891      589.896898     -.795   .4264 
 
+----------------------------------------------------+ 
| Least Squares with Group Dummy Variables           | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 24, 2009 at 01:19:28PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         34     | 
|              Degrees of freedom   =       1373     | 
| Residuals    Sum of squares       =   .3271932E+09 | 
|              Standard error of e  =   488.1652     | 
| Fit          R-squared            =   .5826991     | 
|              Adjusted R-squared   =   .5726693     | 
| Model test   F[ 33,  1373] (prob) =  58.10 (.0000) | 
| Diagnostic   Log likelihood       =  -10689.49     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 33]  (prob) =1229.64 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.40519     | 
|              Akaike Info. Criter. =   12.40518     | 
| Estd. Autocorrelation of e(i,t)     .437753        | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel:Groups   Empty       0,   Valid data       3 | 
|                Smallest  183,   Largest        880 | 
|                Average group size           469.00 | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    38.9501389      4.41312133     8.826   .0000   14.9706563 
 POPDEN  |    14.8386748      1.06685260    13.909   .0000   10.3281815 
 POPDEN2 |    -.01084313       .00085217   -12.724   .0000   8165.47251 
 NETMIG  |     .02545954       .00467640     5.444   .0000   393.283582 
 HIDIST  |   -1.74635398       .37603358    -4.644   .0000   45.8647532 
 GOVPAY  |     .04014224       .00965844     4.156   .0000   1407.84663 
 X_COORD |    18.6822262      8.54375410     2.187   .0288  -105.177028 
 BLACK_SZ|    17.8919408      121.876731      .147   .8833    .42643923 
 BROWN_SZ|   -256.732932      141.082608    -1.820   .0688    .15138593 
 DBROWN_S|   -102.278213      131.811020     -.776   .4378    .22459133 
 GRAY_SZ |    34.0600174      123.538129      .276   .7828    .08599858 
 DGRAY_SZ|    32.1528328      121.136057      .265   .7907    .09523810 
 TPTSIM3 |     .51233770      2.02639840      .253   .8004  .988879D-13 
 TPTSIM32|    -.01356218       .02043661     -.664   .5069   458.404076 
 JSIM3   |    13.8686463      10.0024276     1.387   .1656  .616868D-14 
 JSIM32  |    -.41260918       .35675954    -1.157   .2475   17.2055766 
 ASIM3   |    19.6232831      13.3423993     1.471   .1414  .635142D-14 
 ASIM32  |    3.43859625      1.86089137     1.848   .0646   1.90715584 
 JUSIM3  |   -36.4010616      17.6333986    -2.064   .0390  .524602D-14 
 JUSIM32 |   -6.80092492      4.03667840    -1.685   .0920   1.72974345 
 SESIM3  |    13.8848847      15.5809655      .891   .3729  .624381D-14 
 SESIM32 |    7.28529029      6.23535768     1.168   .2427   1.51791524 
 RSIM3   |     .56479654       .63826708      .885   .3762  .227346D-12 
 RSIM32  |     .02823685       .00429428     6.575   .0000   2994.54695 
 SN      |   -1.82763827       .87774095    -2.082   .0373  .612292D-13 
 SN2     |     .00991495       .01101671      .900   .3681   547.427475 
 FFD     |    4.77883224      2.86224655     1.670   .0950   13.8752801 
 RH      |    5.85440250      5.66112093     1.034   .3011  .479581D-12 
 RH2     |    -.48676660       .40383423    -1.205   .2281   25.7153897 
 PWSIM3  |     .13879938       .38342349      .362   .7174   168.536746 
 PCSIM3  |    -.07189533       .42203046     -.170   .8647   79.4314142 
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        Estimated Fixed Effects 
        Group       Coefficient       Standard Error       t-ratio 
            1        2267.48727            864.52199       2.62282 
            2        2115.67491            887.05957       2.38504 
            3        2619.22755            952.29217       2.75045 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only   -11304.31008  .7840701399D+09    .0000000 | 
|(2)  Group effects only   -11157.86875  .6367247026D+09    .1879238 | 
|(3)  X - variables only   -10714.80400  .3391819682D+09    .5674086 | 
|(4)  X and group effects  -10689.48785  .3271931731D+09    .5826991 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   292.883      2  .00000  162.451     2    1404   .00000 | 
|(3) vs (1)  1179.012     31  .00000   58.178    31    1375   .00000 | 
|(4) vs (1)  1229.644     33  .00000   58.097    33    1373   .00000 | 
|(4) vs (2)   936.762     31  .00000   41.900    31    1373   .00000 | 
|(4) vs (3)    50.632      2  .00000   25.154     2    1373   .00000 | 
+--------------------------------------------------------------------+ 
+--------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i)     | 
| Estimates:  Var[e]              =   .238305D+06  | 
|             Var[u]              =   .837250D+04  | 
|             Corr[v(i,t),v(i,s)] =   .033941      | 
| Lagrange Multiplier Test vs. Model (3) =   27.15 | 
| ( 1 df, prob value =  .000000)                   | 
| (High values of LM favor FEM/REM over CR model.) | 
| Baltagi-Li form of LM Statistic =          12.28 | 
| Fixed vs. Random Effects (Hausman)     =     .00 | 
| (31 df, prob value = 1.000000)                   | 
| (High (low) values of H favor FEM (REM).)        | 
|             Sum of Squares          .362995D+09  | 
|             R-squared               .550131D+00  | 
+--------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    38.7987664      4.41148233     8.795   .0000   14.9706563 
 POPDEN  |    14.9132608      1.06634722    13.985   .0000   10.3281815 
 POPDEN2 |    -.01090323       .00085179   -12.800   .0000   8165.47251 
 NETMIG  |     .02560171       .00467561     5.476   .0000   393.283582 
 HIDIST  |   -1.79954697       .37566503    -4.790   .0000   45.8647532 
 GOVPAY  |     .04271228       .00962166     4.439   .0000   1407.84663 
 X_COORD |    7.24572236      7.26573732      .997   .3186  -105.177028 
 BLACK_SZ|   -13.6495128      121.327041     -.113   .9104    .42643923 
 BROWN_SZ|   -303.434043      140.085953    -2.166   .0303    .15138593 
 DBROWN_S|   -140.940619      131.144428    -1.075   .2825    .22459133 
 GRAY_SZ |    3.67171017      123.121529      .030   .9762    .08599858 
 DGRAY_SZ|    10.0970946      120.879441      .084   .9334    .09523810 
 TPTSIM3 |     .03215377      2.02016836      .016   .9873  .988879D-13 
 TPTSIM32|    -.00794732       .02035809     -.390   .6963   458.404076 
 JSIM3   |    15.3817157      9.98885886     1.540   .1236  .616868D-14 
 JSIM32  |    -.44262779       .35663630    -1.241   .2146   17.2055766 
 ASIM3   |    19.1460299      13.3406091     1.435   .1512  .635142D-14 
 ASIM32  |    3.45432324      1.86015501     1.857   .0633   1.90715584 
 JUSIM3  |   -34.9122435      17.6210236    -1.981   .0476  .524602D-14 
 JUSIM32 |   -6.42743748      4.03492539    -1.593   .1112   1.72974345 
 SESIM3  |    14.7803039      15.5729592      .949   .3426  .624381D-14 
 SESIM32 |    6.31406815      6.22611731     1.014   .3105   1.51791524 
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 RSIM3   |    1.11429298       .61381055     1.815   .0695  .227346D-12 
 RSIM32  |     .02641069       .00421531     6.265   .0000   2994.54695 
 SN      |   -1.85599181       .87762929    -2.115   .0344  .612292D-13 
 SN2     |     .01060254       .01101451      .963   .3357   547.427475 
 FFD     |    4.33387880      2.85873889     1.516   .1295   13.8752801 
 RH      |    6.68734985      5.64248389     1.185   .2359  .479581D-12 
 RH2     |    -.36220094       .40192391     -.901   .3675   25.7153897 
 PWSIM3  |     .06127541       .38265768      .160   .8728   168.536746 
 PCSIM3  |    -.08981564       .42167563     -.213   .8313   79.4314142 
 Constant|    1156.80980      772.633395     1.497   .1343 
 
+----------------------------------------------------+ 
| Least Squares with Group and Period Effects        | 
| Ordinary    least squares regression               | 
| Model was estimated Nov 24, 2009 at 01:19:29PM     | 
| LHS=LVAL     Mean                 =   993.3796     | 
|              Standard deviation   =   746.7664     | 
| WTS=none     Number of observs.   =       1407     | 
| Model size   Parameters           =         36     | 
|              Degrees of freedom   =       1371     | 
| Residuals    Sum of squares       =   .3264259E+09 | 
|              Standard error of e  =   487.9480     | 
| Fit          R-squared            =   .5836777     | 
|              Adjusted R-squared   =   .5730495     | 
| Model test   F[ 35,  1371] (prob) =  54.92 (.0000) | 
| Diagnostic   Log likelihood       =  -10687.84     | 
|              Restricted(b=0)      =  -11304.31     | 
|              Chi-sq [ 35]  (prob) =1232.95 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =   12.40568     | 
|              Akaike Info. Criter. =   12.40567     | 
| Estd. Autocorrelation of e(i,t)     .437103        | 
+----------------------------------------------------+ 
 
+----------------------------------------------------+ 
| Panel:Groups   Empty       0,   Valid data       3 | 
|                Smallest  183,   Largest        880 | 
|                Average group size           469.00 | 
| Panel: Prds:   Empty       0,   Valid data       3 | 
|                Smallest    0,   Largest        473 | 
|                Average group size           469.00 | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    38.6787927      4.98774471     7.755   .0000   14.9706563 
 POPDEN  |    14.6950630      1.07292334    13.696   .0000   10.3281815 
 POPDEN2 |    -.01074224       .00085613   -12.547   .0000   8165.47251 
 NETMIG  |     .02636803       .00470509     5.604   .0000   393.283582 
 HIDIST  |   -1.75146102       .37702398    -4.645   .0000   45.8647532 
 GOVPAY  |     .03971757       .01006648     3.946   .0001   1407.84663 
 X_COORD |    16.9827317      8.60936625     1.973   .0485  -105.177028 
 BLACK_SZ|    26.7759008      122.091610      .219   .8264    .42643923 
 BROWN_SZ|   -238.271303      141.669916    -1.682   .0926    .15138593 
 DBROWN_S|   -85.0131283      132.366826     -.642   .5207    .22459133 
 GRAY_SZ |    36.9352552      123.653144      .299   .7652    .08599858 
 DGRAY_SZ|    33.7150455      121.177999      .278   .7808    .09523810 
 TPTSIM3 |     .27532954      2.04022291      .135   .8927  .988879D-13 
 TPTSIM32|    -.01318514       .02054121     -.642   .5209   458.404076 
 JSIM3   |    12.1605234      10.0677605     1.208   .2271  .616868D-14 
 JSIM32  |    -.35898386       .35849196    -1.001   .3166   17.2055766 
 ASIM3   |    19.9298385      13.3385320     1.494   .1351  .635142D-14 
 ASIM32  |    3.47302041      1.86043007     1.867   .0619   1.90715584 
 JUSIM3  |   -38.1515679      17.6953591    -2.156   .0311  .524602D-14 
 JUSIM32 |   -6.88954540      4.04772103    -1.702   .0887   1.72974345 
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 SESIM3  |    12.2770992      15.6286525      .786   .4321  .624381D-14 
 SESIM32 |    7.03616633      6.23680325     1.128   .2592   1.51791524 
 RSIM3   |     .45040530       .64707326      .696   .4864  .227346D-12 
 RSIM32  |     .02853152       .00430351     6.630   .0000   2994.54695 
 SN      |   -1.68538514       .88149960    -1.912   .0559  .612292D-13 
 SN2     |     .00946151       .01102581      .858   .3908   547.427475 
 FFD     |    4.69801906      2.86168413     1.642   .1007   13.8752801 
 RH      |    7.05117880      5.69796592     1.237   .2159  .479581D-12 
 RH2     |    -.42607807       .40587709    -1.050   .2938   25.7153897 
 PWSIM3  |    5.36434938      2.93598468     1.827   .0677   168.536746 
 PCSIM3  |    3.24932844      1.89931042     1.711   .0871   79.4314142 
 Constant|    887.667664      1161.54609      .764   .4447 
 
       Estimated Fixed Effects - Full sets of effects, normalized to sum to 0 
       Group        Coefficient       Standard Error       t-ratio 
            1          42.34002             46.79813        .90474 
            2         -97.40074             15.90883      -6.12243 
            3         388.78516             83.81330       4.63870 
       Estimated Fixed Effects - Full sets of effects, normalized to sum to 0 
       Period       Coefficient       Standard Error       t-ratio 
            1         318.66268            178.27972       1.78743 
            2        -324.82851            181.76895      -1.78704 
            3          -2.07507             23.40348       -.08866 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only   -11304.31008  .7840701399D+09    .0000000 | 
|(2)  Group effects only   -11157.86875  .6367247026D+09    .1879238 | 
|(3)  X - variables only   -10714.80400  .3391819682D+09    .5674086 | 
|(4)  X and group effects  -10689.48785  .3271931731D+09    .5826991 | 
|(5)  X ind.&time effects  -10687.83612  .3264258638D+09    .5836777 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   292.883      2  .00000  162.451     2    1404   .00000 | 
|(3) vs (1)  1179.012     31  .00000   58.178    31    1375   .00000 | 
|(4) vs (1)  1229.644     33  .00000   58.097    33    1373   .00000 | 
|(4) vs (2)   936.762     31  .00000   41.900    31    1373   .00000 | 
|(4) vs (3)    50.632      2  .00000   25.154     2    1373   .00000 | 
|(5) vs (4)     3.303      2  .19172    1.611     2    1371   .19999 | 
|(5) vs (3)    53.936      5  .00000   10.715     5    1371   .00000 | 
+--------------------------------------------------------------------+ 
+----------------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i) + w(t)      | 
| Estimates:  Var[e]              =   .238093D+06          | 
|             Var[u]              =   .248957D+04          | 
|             Corr[v(i,t),v(i,s)] =   .010348              | 
|             Var[w]              =   .609497D+04          | 
|             Corr[v(i,t),v(j,t)] =   .024960              | 
| Lagrange Multiplier Test vs. Model (3) =   27.88         | 
| ( 2 df, prob value =  .000001)                           | 
| (High values of LM favor FEM/REM over CR model.)         | 
| Fixed vs. Random Effects (Hausman)     =     .00         | 
| (31 df, prob value = 1.000000)                           | 
| (High (low) values of H favor FEM (REM).)                | 
|             Sum of Squares          .362995D+09          | 
|             R-squared               .550131D+00          | 
+----------------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 INCCAP  |    39.7453767      4.90509516     8.103   .0000   14.9706563 
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 POPDEN  |    14.8879617      1.06923388    13.924   .0000   10.3281815 
 POPDEN2 |    -.01089007       .00085375   -12.756   .0000   8165.47251 
 NETMIG  |     .02589767       .00467795     5.536   .0000   393.283582 
 HIDIST  |   -1.84207885       .37635400    -4.895   .0000   45.8647532 
 GOVPAY  |     .04684183       .00989311     4.735   .0000   1407.84663 
 X_COORD |   -1.00147962      6.33029588     -.158   .8743  -105.177028 
 BLACK_SZ|   -41.1012336      120.962876     -.340   .7340    .42643923 
 BROWN_SZ|   -344.740000      139.445193    -2.472   .0134    .15138593 
 DBROWN_S|   -178.390187      130.711283    -1.365   .1723    .22459133 
 GRAY_SZ |   -28.0157484      122.782535     -.228   .8195    .08599858 
 DGRAY_SZ|   -10.5074570      120.676044     -.087   .9306    .09523810 
 TPTSIM3 |    -.56618319      2.02012633     -.280   .7793  .988879D-13 
 TPTSIM32|    -.00081678       .02033474     -.040   .9680   458.404076 
 JSIM3   |    16.9621478      9.99397748     1.697   .0897  .616868D-14 
 JSIM32  |    -.48446683       .35692897    -1.357   .1747   17.2055766 
 ASIM3   |    18.8493514      13.3341049     1.414   .1575  .635142D-14 
 ASIM32  |    3.56501581      1.85848870     1.918   .0551   1.90715584 
 JUSIM3  |   -33.0821165      17.6320707    -1.876   .0606  .524602D-14 
 JUSIM32 |   -6.23613468      4.04411031    -1.542   .1231   1.72974345 
 SESIM3  |    15.3911599      15.5839432      .988   .3233  .624381D-14 
 SESIM32 |    5.57580010      6.22158647      .896   .3701   1.51791524 
 RSIM3   |    1.72702441       .59084272     2.923   .0035  .227346D-12 
 RSIM32  |     .02535759       .00416417     6.089   .0000   2994.54695 
 SN      |   -1.87275370       .87794778    -2.133   .0329  .612292D-13 
 SN2     |     .01156099       .01101561     1.050   .2939   547.427475 
 FFD     |    3.83645849      2.85408116     1.344   .1789   13.8752801 
 RH      |    8.52764405      5.60892435     1.520   .1284  .479581D-12 
 RH2     |    -.21405514       .40046105     -.535   .5930   25.7153897 
 PWSIM3  |     .45081178       .93861680      .480   .6310   168.536746 
 PCSIM3  |     .20849731       .68859101      .303   .7621   79.4314142 
 Constant|    193.993157      709.716294      .273   .7846 
 
 
 
 
 
 
 



APPENDIX B Mean Annual and seasonal Temperature and Precipitation (2020s and 2050s) 

 

 
Figure B.1 Mean Annual and seasonal Temperature for 2020s 
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Figure B.2 Mean Annual and seasonal Temperature for 2050s 
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Figure B.3 Mean Annual Precipitations for 2020s 
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y = 0.0006x + 0.3532
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APPENDIX C Sensitivity Analysis of Removing Alberta’s Data from Base Model   

Table C.1 Complete and Subsample Estimation Results (with and without Alberta) 
Variable 
 Total sample (With Alberta) Subsample(Without Alberta) 

Control   
Income per Capita  37.85*** 26.00***
Population Density 14.62*** 23.38*** 
Population Density Squared  -0.01*** -0.01*** 
Net Migration 0.03*** -0.02 
Distance to nearest Highway -1.71*** -1.32*** 
Government transfer payment 0.04*** 0.01 
Longitude  14.76* 7.85 

Dummy   
Black  Soil Zone 71.33 -8.81 
Brown Soil Zone -217.33 -155.54 
Dark Brown Soil Zone -52.71 -62.01 
Gray Soil Zone 31.52 -24.12 
Dark Gray Soil Zone 70.37 66.37 

Market prices   
Price of Wheat 6.67* 10.03*** 
Price of Canola 4.08* 6.71*** 

Climate   
Evapo-transpiration Proxy  0.04*** 0.03***
Evapo-transpiration Squared 0.37×10-6*** 0.27×10-6*** 
January Temperature 15.25* -16.67* 
January Temperature Squared -0.46 0.56 
April Temperature 22.04* 32.56** 
April Temperature Squared 3.05* 4.25* 
July Temperature  -31.70* -26.13 
July Temperature Squared -5.40 -9.20* 
September Temperature  15.50 9.90 
September Temperature Squared 5.77 10.66* 
Rainfall 0.57 0.04 
Rainfall Squared 0.03*** 0.03*** 
Snow fall -1.79** -1.70** 
Snowfall Squared 0.01 0.01*** 
Frost Free Days 3.95 2.50 
July Relative Humidity   9.15* -2.77 
July Relative Humidity Squared -0.35 -1.33*** 

 Constant  617.98 -536.28 
Province Fixed Effects   

Manitoba  
Saskatchewan 
Alberta 

26.72 
-90.59*** 
385.40*** 

119.04*** 
-46.55*** 

N/A 
Year Fixed Effects   

1991 
1996 
2001 

314.46** 
-323.89** 

1.21 

456.56*** 
-480.73*** 

1.20 
R2 
Adjusted R2 

0.59 
0.58 

0.44 
0.41 

*** denotes significant at 1% level, ** denotes significant at 5% level and * denotes significant at 10% level. 
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