
)J

u Ottawa
l.'Univcrsite cannrticnnc

Canada's university

FACULTE DES ETUDES SUPERIEURES l = = l FACULTY OF GRADUATE AND
ET POSTOCTORALES U Ottawa POSDOCTORAL STUDIES

L'Universit6 canadienne
Canada's university

Yong Deng
"MEWDE"iXTHlSE"rAUTHOR"orfHESfs"

M.A.Sc. (Electrical Engineering)
GRADE/DEGREE

School of Information Technology and Engineering
""TA^ulTOtToLirDlr̂

Design and Implementation of Signaling and Traffic Control for AAPN

TITRE DE LA THESE / TITLE OF THESIS

Prof. O. Yang
DIRECTEUR (DIRECTRICE) DE LA THESE / THESIS SUPERVISOR

EXAMINATEURS (EXAMINATRICES) DE LA THESE / THESIS EXAMINERS

Prof. H. Mouftah

.P_r°i-_C--C. .Huang

Prof. G. Bochmann

Gary W. Slater
Le Doyen de la Faculte des etudes superieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies

Design and Implementation of Signaling and

Traffic Control for AAPN

Yong Deng

Thesis submitted to the
Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of requirements
For the Master of Applied Science degree in

Electrical Engineering

Department of Electrical and Computer Engineering
School of Information Technology and Engineering

Faculty of Engineering
University of Ottawa

Ottawa, Ontario
Canada

© Yong Deng, Ottawa, Canada, 2007

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-49185-0
Our file Notre reference
ISBN: 978-0-494-49185-0

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Abstract

Although all-photonic network is a hot topic in recent years, most networks still do not

have the ability to achieve high utilization and to allocate bandwidth dynamically and

efficiently to an edge node. Many theoretical works and publications have been done in

this field. However, up to now there is no commercial or lab product in this area. AAPN

(Agile All-Photonic Network) is one research project focusing on these issues while at

the same time avoid blocking and starvation. We designed and implemented the whole

AAPN signaling protocols under Linux and produced a lab prototype under the AAPN

framework. To the best of our knowledge, this is the first AAPN prototype in the world.

While bandwidth has increased so much after the Internet first came to reality,

user's request increases even much faster. Congestion can not be avoided if there is no

algorithm to control it. The XCP (eXplicit Control Protocol) algorithm is a promising

congestion control method that uses explicit feedback. However, XCP does not work

when the link capacity changes with time. In this research we designed a modified ver­

sion, the XCP-CL (XCP of Cross-Layer design) algorithm, that works successfully on the

AAPN network. Extensive simulation results have verified that XCP-CL has a much bet­

ter performance compared to the original XCP algorithm.

Acknowledgment

I would like to thank my supervisor, Prof. Oliver Yang, for his guidance, support, en­

couragement and his accessibility to my requests for help throughout my study at the

University of Ottawa. He introduced me to the research area of Internet and photonic net­

works and provided help to my family.

I would like to thank Prof. Gregor v. Bochmann for his partial financial support

(an RA for a year) to work on the control platform implementation of the AAPN project,

the fruitful discussions about the design the of protocols, the architecture of the software

and his guidance for part of Chapter 2 and whole Chapter 3 on signaling design and im­

plementation of this thesis.

The interface of the control platform to the scheduling algorithm and the input

buffer management is discussed with Dr. Cheng Peng and Dr. YiMing Zhang. QBvN al­

gorithm is implemented by Dr. Cheng Peng. The input buffer management and file trans­

fer are implemented by Dr. YiMing Zhang.

Thanks also go to Dr. Yang Hong, Dr. Yiming Zhang and Dr. Cheng Peng, for

their help, great suggestions and fruitful discussions on my thesis. I will remember the

happy time that we worked together.

The last but not the least, I would like to thank my family, my wife, QingHua, my

son Rickey, my daughter Judy, for their understanding and support without which my

study could never have started. I would also like to thank my parents, for their under­

standing and endless love, even though I have not visited them for a long time.

This research has been partially supported by University of Ottawa Admission

Scholarship 2005-2006 and the AAPN (Agile All-Photonic Networks) Research Net­

work through its industrial and government partners.

in

Table of Contents

Title i

Abstract ii

Acknowledgment iii

Table of Contents iv

List of Figures vii

List of Tables x

List of Acronyms and Abbreviations xi

List of Notations and Symbols xiii

Chapter 1. Introduction 1
1.1. Literature Review 1
1.1.1 Signaling 1
1.1.2 AAPN Architecture 2
1.1.3 Scheduling Algorithms 4
1.1.4 Congestion Control and Classification 5
1.2. Motivation 11
1.3. Thesis Objectives 11
1.4. Approaches and Methodologies 12
1.4.1 Design and Implement the Signaling Protocols under Linux 12
1.4.2 Cross-Layer Design on XCP as the Congestion Control Mechanism 13
1.4.3 NS2 to Simulate the XCP-CL Algorithm for Performance Evaluation 13
1.5. Thesis Contributions 14
1.6. Thesis Organization 15
1.7. Publications 15

Chapter 2. Network Architecture, Modeling, Operation and Assumptions..... 16
2.1. The Overlaid Star Topology and Operation 16
2.2. The Switch Architecture and Operation 18
2.3. AAPN Prototype 19
2.3.1 Slow AAPN Prototype 19
2.3.2 Fast AAPN Prototype: Work in Progress 21
2.3.3 Switch Control Interface in the Fast Prototype 23
2.3.4 Communication between the PC and FPGA. 23

iv

2.4. Network Model and Assumptions 25

Chapter 3. Signaling Design, Analysis and Implementation 27
3.1. Signaling Overhead Analysis 27
3.1.1 Frame-Based Signaling 28
3.1.2 Slot-Based Signaling 29
3.2. In-band Signaling and Out-band Signaling Discussion 30
3.3. Data Structure Design 31
3.3.1 Frame Structure < 31
3.3.2 Slot Structure ...32
3.4. Synchronization and Network Configuration Protocol 33
3.4.1 Synchronization Principle 33
3.4.2 Sample Signaling Timing Sequence 35
3.4.3 Slot Assignment Explanation 36
3.4.4 System Starts Up 37
3.4.5 Invitation Procedure 38
3.4.6 Configuration Procedure 38
3.4.7 Normal Working Procedure 39
3.5. Traffic Allocation Protocol 39
3.5.1 Traffic Request Message 39
3.5.2 Traffic Allocation Message 39
3.5.3 Traffic Request and Allocation Matrixes 39
3.6. Fault Monitor Protocol 40
3.7. Software Architecture 40
3.8. Measured System Parameters and Analysis 42
3.8.1 Synchronization Parameters 42
3.8.2 Slow Prototype Synchronization Problems and Solutions 46
3.8.3 Scheduling Time Measurement 47
3.9. Concluding Remarks 50

Chapter 4. AAPN Traffic Control 51
4.1. Crosse-Layer Design of XCP-CL Algorithm.. ..51
4.1.1 XCP-CL Congestion Header 51
4.1.2 Passing Real Time Bandwidth Information 52
4.2. The XCP-CL Algorithm 53
4.3. Simulation Network Modeling 54
4.4. Implementation Environment 56
4.5. Concluding Remark 57

Chapter 5. XCP-CL Performance Evaluation 58
5.1. Case 1: Link Bandwidth of 45Mbps : 59
5.1.1 Scenario 1: Using Original XCP Algorithm 60
5.1.2 Scenario 2: Using XCP-CL, the Modified XCP Algorithm 65
5.1.3 Comparison 70
5.2. Case 2: Link Bandwidth of 155Mbps 70
5.2.1 Scenario 1: Using the Original XCP Algorithm 71
5.2.2 Scenario 2: Using XCP-CL, the Modified XCP Algorithm 73

V

5.3. Case 3: Link Bandwidth of lGbps 75
5.3.1 Scenario 1: Using Original XCP Algorithm 76
5.3.2 Scenario 2: Using XCP-CL, the Modified XCP Algorithm 78
5.4. Performance Comparison of XCP and XCP-CL Algorithms 81
5.5. Impact of Buffer Size on Queue Length, Packet Drops, Link Utilization 81
5.6. End to End Delay Performance 85
5.6.1 Scenario 1: Using XCP-CL, the Modified XCP Algorithm 85
5.7. Fast Change Scenario #1: 45Mbps Bandwidth, 100 Flows..... 88
5.8. Fast Change Scenario #2: 45Mbps Bandwidth, 100 Flows 91
5.9. Concluding Remarks 93

Chapter 6. Design Guideline 94
6.1. Scheduling Design 94
6.1.1 Slot-Based Signaling 94
6.1.2 Frame-Based Signaling 94
6.2. Out-band and In-band Signaling... 95
6.3. Choosing Buffer Sizes 95
6.4. XCP-CL Algorithm Limitations 95

Chapter 7. Conclusions 97

7.1. Future Work 98

References 99

Appendix A: Summary of the XCP Algorithm 107

Appendix B: Flow Charts of Some Important Slot Processing Functions 110

Appendix C: Fluid Modeling 112

Appendix D: Impact of Buffer Size on Queue Length, Packet Drops, Link
Utilization 114

Appendix E: End to End Delay Performance 128

vi

List of Figures

Figure 1.1 APOSN Architecture (Courtesy from [JiYa06b]) 3
Figure 1.2 Congestion Control Mechanism Classification 5
Figure 2.1 AAPN Star Topology with N=2 Core Nodes and M=8 Edge Nodes 16
Figure 2.2 The AAPN Switch with One Core Node (Courtesy from [Peng07]) 18
Figure 2.3 Logical Architecture of Slow AAPN Prototype 19
Figure 2.4 View of the Slow AAPN Prototype 20
Figure 2.5 Core Switch of Slow AAPN Prototype 20
Figure 2.6 Edge Node Architecture of the Fast Prototype Based on FPGA 21
Figure 2.7 FPGA Board for an Edge Node in the Fast Prototype 22
Figure 2.8 2X2 Optical Switch in Fast Prototype 23
Figure 2.9 Interface between the PC and FPGA in the Fast Prototype 24
Figure 2.10 The AAPN Network Model with 2 Core Nodes and 2n Edge Nodes 25
Figure 3.1 Frame Based Signaling 28
Figure 3.2 Slot-Based Signaling 29
Figure 3.3 In-band and Out-band Signaling 30
Figure 3.4 Frame Structure 31
Figure 3.5 Slot Structure 32
Figure 3.6 Sending Time Computation 34
Figure 3.7 Timing Sequence of Frame-Based Signaling 35
Figure 3.8 AAPN Slot Assignment Explanation 36
Figure 3.9 Software Architecture of a Master Node and a Save Node 41
Figure 3.10 Logical Test Network Configuration (Core Switch is not Shown) 42
Figure 3.11 Synchronization Measurement Case 1 43
Figure 3.12 Synchronization Measurement Case 2 44
Figure 3.13 Synchronization Measurement Case 3... 44
Figure 3.14 Synchronization Measurement Case 4 45
Figure 3.15 System Architecture of FPGA Version A 46
Figure 3.16 Scheduling Time vs Frame Size 49
Figure 3.17 Scheduling Time vs System Size with Frame Size Fixed at 128 49
Figure 4.1 XCP-CL Congestion Header 51
Figure 4.2 AAPN Network Model, One Core Node and M=2n Edge Nodes 54
Figure 5.1 Window Size of Flow#l in Scenario 1, Case 1 60
Figure 5.2 Window Sizes of 5 Selected Flows in Scenario 1, Case 1 60
Figure 5.3 Sending Rate of Flow#l in Scenario l ,Casel 61
Figure 5.4 Running Average of Sending Rates of Flow #1 in Scenario 1, Case 1 62
Figure 5.5 Sending Rates of 5 Flows in Scenario l ,Casel 62
Figure 5.6 Link Utilization in Scenario 1, Case 1 63
Figure 5.7 Queue Length in Scenario 1, Case 1 64
Figure 5.8 Window Size of Flow#l in Scenario 2, Case 1 65

Vll

Figure 5.9 Window Sizes of 5 Flows in Scenario 2, Case 1 66
Figure 5.10 Sending Rate of Flow#l in Scenario 2, Case 1 67
Figure 5.11 Running Average Sending Rate of Flow#l in Scenario 2, Case 1 67
Figure 5.12 Sending Rates of 5 Flows in Scenario 2, Case 1 68
Figure 5.13 Link Utilization in Scenario 2, Case 1 69
Figure 5.14 Queue Length in Scenario 1, Case 2 69
Figure 5.15 Window Size of Flow#l in Scenario 1 Case 2 71
Figure 5.16 Window Sizes of 5 Flows in Scenario 1 Case 2 72
Figure 5.17 Link Utilization in Scenario 1 Case 2 72
Figure 5.18 Window Size of Flow#l in Scenario 2 Case 2 73
Figure 5.19 Window Sizes of 5 Flows in Scenario 2 Case 2 74
Figure 5.20 Link Utilization in Scenario 2 Case 2 75
Figure 5.21 Window Size of Flow#l in Scenario 1 Case 3 76
Figure 5.22 Window Sizes of 5 Flows in Scenario 1 Case 3 77
Figure 5.23 Link Utilization in Scenario 1 Case 3 78
Figure 5.24 Window Size of Flow#l in Scenario 2 Case 3 79
Figure 5.25 Window Sizes of 5 Flows in Scenario 2 Case 3 80
Figure 5.26 Link Utilization in Scenario 2 Case 3 80

'Figure 5.27 Queue Length (Buffer Size= 1,10, 100/1000 Packets, XCP-CL) 82
Figure 5.28 Number of Dropped Packets (Buffer Size= 1, 10, 100, 1000 Packets, XCP-

CL) 83
Figure 5.29 Link Utilization (Buffer Size = 1, 10, 100, 1000 Packets, XCP-CL) 83
Figure 5.30 End to End Delay of Flow#l (Buffer Size = 1 Packet, XCP-CL) 85
Figure 5.31 End to End Delay of Flow#21 (Buffer Size = 1 Packet, XCP-CL) 86
Figure 5.32 End to End Delay of Flow#41 (Buffer Size = 1 Packet, XCP-CL) 86
Figure 5.33 End to End Delay of Flow#61 (Buffer Size = 1 Packet, XCP-CL) 87
Figure 5.34 End to End Delay of Flow#81 (Buffer Size = 1 Packet, XCP-CL) 87
Figure 5.35 Window Size of Flow#l and its Expected Value of Fast Change#l 89
Figure 5.36 Window sizes of 5 Flows of Fast Change#l 90
Figure 5.37 Link Utilization of Fast Change#l 90
Figure 5.38 Window Sizes of 5 Flows of Fast Change#2 92
Figure 5.39 Link Utilization of Fast Change#2 93
Figure A.l CP Algorithm Principle 107
Figure A.2 XCP Header107
Figure B.l Flow Chart of Slot Sending Function 110
Figure B.2 Flow Chart of Slot Receiving Function 111
Figure B.3 Flow Chart of Slot Processing Function I l l
Figure C.l Fluid Model of TCP Window Based Congestion Control 112
Figure D.l Queue Length (Buffer Size =1 Packet, XCP) 114
Figure D.2 Queuing Delay (Buffer Size =1 Packet, XCP) 115
Figure D.3 Number of Dropped Packets (Buffer Size =1 Packet, XCP) 115
Figure D.4 Percentage of Dropped Packets (Buffer Size =1 Packet, XCP) 116
Figure D.5 Utilization (Buffer Size -1 Packet, XCP) 117
Figure D.6 Queue Length (Buffer Size =10 Packets, XCP) 118
Figure D.7 Queuing Delay (Buffer Size =10 Packets, XCP) 118
Figure D.8 Number of Dropped Packets (Buffer Size =10 Packets, XCP) 119

Vlll

Figure D.9 Percentage of Dropped Packets (Buffer Size =10 Packets, XCP) 119
Figure D.10 Link Utilization (Buffer Size =10 Packets, XCP) 120
Figure D.l 1 • Queue Length (Buffer Size =100 Packets, XCP) 121
Figure D.12 Queuing Delay (Buffer Size =100 Packets, XCP) 122
Figure D.13 Number of Dropped Packet (Buffer Size =100 Packets, XCP) 122
Figure D.14 Percentage of Dropped Packets (Buffer Size =100 Packets, XCP) 123
Figure D.15 Link Utilization (Buffer Size =100 Packets, XCP) 123
Figure D.16 Queue Length (Buffer Size =1000 Packets, XCP) 125
Figure D.17 Queuing Delay (Buffer Size =1000 Packets, XCP) 125
Figure D.18 Number of Dropped Packets (Buffer Size =1000 Packets, XCP) 126
Figure D.l 9 Percentage of Dropped Packets (Buffer Size =1000 Packets, XCP) 126
Figure D.20 Link Utilization (Buffer Size =1000 Packets, XCP) 127
Figure E.l End to End Delay of Flow#l (Buffer Size =1000 Packets, XCP) 129
Figure E.2 End to End Delay of Flow#21 (Buffer Size =1000 Packets, XCP) 130
Figure E.3 End to End Delay of Flow#41 (Buffer Size =1000 Packets, XCP) 130
Figure E.4 End to End Delay of Flow#61 (Buffer Size =1000 Packets, XCP)........ 131
Figure E.5 End to End Delay of Flow#81 (Buffer Size =1000 Packets, XCP) 131

IX

List of Tables

Table 3.1 Delay Parameters for Synchronization Measurement 43
Table 3.2 Synchronization Error Measurement 45
Table 3.3 Scheduling Time vs System Size and Frame Size 48
Table 4.1 Delay and Bandwidth Parameters of Case 1 55
Table 4.2 Delay and Bandwidth Parameters of Case 2 55
Table 4.3 Delay and Bandwidth Parameters of Case 3 56
Table 5.1 Delay and Bandwidth Parameters of Case 2 70
Table 5.2 Delay and Bandwidth Parameters of Case 3 75
Table 5.3 Performance Comparison of XCP and XCP-CL During Congestion 81
Table 5.4 Queue Length, Queuing Delay, Dropped Packets & Link Utilization vs

Different Buffer Size (XCP) 84
Table 5.5 Queue Length,'Queuing Delay, Dropped Packets & Link Utilization vs

Different Buffer Size (XCP-CL) 84
Table 5.6 Expected and Measured End to End Delay (Buffer Size =1 Packet, XCP-CL)

88
Table 5.7 Bandwidth Parameters of Fast Change#l 88
Table 5.8 Delay Parameters of Fast Change#l 89
Table 5.9 Bandwidth Parameters of Fast Change#2 91
Table 5.10 Delay Parameters of Fast Change#2 91
Table E.l Expected and Measured Delay (Buffer Size =1 Packet, XCP) 128
Table E.2 Expected and Measured Delay (Buffer Size =10 Packets, XCP) 128
Table E.3 Expected and Measured Delay (Buffer Size =100 Packets, XCP) 129
Table E.4 Expected and Measured Delay (Buffer Size =1000 Packets, XCP) 132

X

List of Acronyms and Abbreviations

AAPN
ACK
AMD
APOSN
AQM
ARED
AVQ
BDP
CAS
CCS
CIOQ
cwnd
DRED
DTMF
EC
ECN
ER
ET
ETEN
FC
FPGA
FTP
GCC
GNU
GPIO
GPL
IQ
LAN
LPF
MIMD
OBS
OEO
OQ
OS
OSE
OTcl
OTDM

Agile All-Photonic Networks
ACKnowledgement
Additive-Increase Multiplicative-Decrease
All-Photonic Overlaid-Star Network
Active Queue Management
Adaptive RED
Adaptive Virtual Queue
Bandwidth-Delay Product
Channel-Associated Signaling
Common Channel Signaling
Combined Input and Output Queue
Congestion WiNDow size
Dynamic RED
Dual-Tone Multi-Frequency
Efficiency Controller
Explicit Congestion Notification
Edge Receiving part
Edge Transmission part
Explicit Transport Error Notification
Fairness Controller
Field Programmable Gate Array
File Transfer Protocol
GNU Compiler Collection
GNU's Not Unix
General Purpose Input and Output pins
GNU General Public License
Input Queue
Local Area Networks
Low-Pass Filter
Multiplicative-Increase Multiplicative-Decrease
Optical Burst Switching
Optical-Electrical-Optical
Output Queue
Operating System
Operating System Embedded
Object Tel
Optical Time Division Multiplexing

Section # of
1st appearance

1
1.1.4
1.1.4
1.1.2
1.1.4
1.1.4
1.1.4
1.1.4
1.1.1
1.1.1

2.2
4.2

1.1.4
1.1.1
1.4.2
1.1.4
1.1.2
1.1.2
1.1.4
1.4.2
2.3.2

5
1.4.1
1.4.1
2.3.3
1.4.1

2.2
1.4.1
1.1.4
1.1.4
1.1.2

2.1
2.2

3.6.1
3.8.1
1.4.3
1.1.2

XI

PI
PSTN
PTP
QBvN
QFCP
QoS
RAP
RCP
RED
REM
RSVP
RTT
SIRENS
SONET
SRED
SS7
Tel
TCP
TCP SACK
TDM
TFRC
VCP
WDM
WXCP
XCP
XCP-CL
XCP-i

Proportional & Integrate
Public Switched Telephone Network
Performance Transparency Protocol
Quick Birkhoff-von Neumann
Quick Flow Control Protocol
Quality of Service
Rate Adaptation Protocol
Rate Control Protocol
Random Early Detect
Random Exponential Marking
Resource ReSerVation Protocol
Round Trip Time
Simple Internet REsource Notification Scheme
Synchronous Optical NETworking
Stabilized RED
Signaling System #7
Tool Command Language
Transmission Control Protocol
TCP Selective Acknowledgment Options
Time Division Multiplexing
TCP Friendly Rate Control
Variable structure Congestion Control
Wavelength Division Multiplexing
Explicit Congestion Control for Wireless
eXplicit Control Protocol
eXplicit Control Protocol of Cross-Layer Design
XCP incremental employ

4.1

1.4

1.1

List of Notations and Symbols

a, |8
a

r
n
</>

T(t)

5
d
fl.fi
h
minXh
maxth

P
pm
tj, t2, ti, t4
x(t)
w
BW
C
M
N
Nf

Ns

N(t)
P P
1 in, l jn
Q
Ri, Rn
Ru

s
Td

•» clockdiff

* delay

Tf
Tg
T
x master
* receive mastere

Ts

Constant parameter in XCP
Queue averaging parameter
Shuffling parameter in XCP
Protocol efficiency

XCP feedback
Average round-trip time
Sampling frequency
Average RTT, control interval
Marking probability factor
Shuffling traffic
Min queue threshold
Max queue threshold
Dropping probability
Marking probability
Time instants
Average queue length
Number of wavelengths
Bandwidth
Link capacity
Number of edge nodes
Number of core nodes
Number of frames
Number of assigned slots
Traffic load
Switch port number
Persistent queue
Router ID
Edge node ID
Spare bandwidth
Measured time difference, equals Tciockdiff+ Tdelay
Clock difference between a master and a slave
Propagation delay
Frame period
Time constraint, guard time
Master local time
Master receiving time
Slot period

Section # of
1st appearance

Appendix A
1.1.4

Appendix A
3.1.1

Appendix A
1.1.4

Appendix C
2.4

1.1.4
Appendix A

1.1.4
1.1.4
1.1.4
1.1.4
3.4.1
1.1.4

2.1
4.1.2
1.1.4

2.1
2.1

3.8.3
3.6.3
1.1.4

4.3
Appendix A

2.4
2.4

Appendix A
3.2.1
3.2.1
3.2.1
3.6.3
3.2.1
3.2.1
3.2.1
3.6.3

Xlll

http://fl.fi

Tsendj,ave Slave sending time 3.2.1
Tstave Slave local time i-ZA

W(t) Average window size * • * -4

XIV

Chapter 1 Introduction

Chapter 1. Introduction

All-Photonic Network is currently a hot topic in telecommunication network research. It

has a potential large bandwidth to meet our increasing Internet traffic demand. There are

many photonic test bed activities around the world, e.g. OMNI project [OMNI07] and

Starlight project [StLi07]. AAPN (Agile All-Photonic Networks) project [AAPN07]

[BoCo04] is one such network that aimed at providing bandwidth dynamically according

to the requests from edge nodes in order to improve the network bandwidth utilization

while avoiding blocking and starvation at edge nodes. This requires the core node (optical

switch) to change its bandwidth allocation dynamically and frequently. Much work has

been done on the network topology, switch architecture and bandwidth allocations, e.g.

[JiYa05a] [JiYa05b] [JiYa06b] [PeBo06] [Peng07] [RaYa05].

Since network resources such as bandwidth and router buffer space are limited,

senders usually compete to get more resources along the data path and this often results

in congestion at routers. Therefore networks must have some congestion control mecha­

nism to avoid traffic congestion [Jaco88]. The goal of a congestion control is to regulate

the source transmission rates based on the network traffic information in order to prevent

the network from congestion and collapse. This is very important for the efficient opera­

tion of the Internet to achieve high throughput, low delays of packet delivery and stable

network operation.

1.1. Literature Review

We shall review existing work of signaling, scheduling and then congestion control.

1.1.1 Signaling

In telecommunication, signaling has the following meanings:

1. The use of signals for controlling communications.

2. In a telecommunications network, the information exchange concerning the estab-

l

Chapter 1 Introduction

lishment and control of a connection and the management of the network, in con­

trast to user information transfer.

3. The sending of a signal from the transmitting end of a circuit to inform a user at

the receiving end that a message is to be sent.

Signaling can be classified as CAS (Channel-Associated Signaling) and CCS

(Common Channel Signaling) or in-band signaling and out-of-band signaling based on

the principal properties [LeWi04].

While CAS employs a signaling channel which is dedicated to a specific bearer

channel, CCS employs a signaling channel which conveys signaling information relating

to multiple bearer channels. These bearer channels therefore have their signaling channel

in common.

In the PSTN (Public Switched Telephone Network) in-band signaling is the ex­

change of signaling (call control) information within the same channel that the telephone

call itself is using. An example is DTMF (Dual-Tone Multi-Frequency) signaling, it is

also CAS signaling. Out-of-band signaling is telecommunication signaling (exchange of

information in order to control a telephone call) that is done on a channel that is dedicated

for the purpose and separated from the channels used for the telephone call. Out-of-band

signaling is used in SS7 (Signaling System #7), the standard for the signaling that has

controlled the world's phone calls for some twenty years. SS7 is also CCS signaling.

1.1.2 AAPN Architecture

The network topology and switching node are the elementary aspects of a network archi­

tecture we should take into consideration [JiYa06b] [ViBeOO]. The topology has lasting

impact on the network design, economics, operation and performance. The optical trans­

port network topology can be classified as mesh (core nodes are interconnected through

WDM, Wavelength Division Multiplexing, optic fiber). It allows for continuous connec­

tions and reconfiguration around broken or blocked paths by "hopping" from node to

node until the destination is reached.), ring (such as SONET ring, Synchronous Optical

NETworking) and star (for example PetaWeb [ViBeOO]) or multi-hop and single-hop

[BILeOl] [GreeOl] [Mukh92a] [Mukh92b]. Each topology has its pros and cons.

2

Chapter 1 Introduction

ETHNtr'ar T . 3 ER*N

Transmission
Side of an
Edge nods ©

Receiving 1
Side of an •
Edge node

H Core node

— • fibers

Figure 1.1 APOSN Architecture (Courtesy from [JiYa06b])

AAPN has adopted an overlaid star topology to overcome the core node failure

that is possible in a single star topology. Compared to complex mesh networks, this over­

laid star architecture simplification may result in software simplification, higher reliabil­

ity, and a reduction of overall network operation costs. There are also advantages of mesh

network and star network. While mesh network has been well studied and has less fiber-

distance value, it needs expensive wavelength converters and complex algorithm to find a

light-path between two edge nodes [ZhYa04]. It requires careful traffic engineering and

time-sharing switching modes such as TDM (Time Division Multiplexing) or OBS (Opti­

cal Burst Switching) can not be used to improve network utilization and to provide a fine

granularity tuning of bandwidth [BILeOl]. Star topology is simple, without the need to

perform wavelength conversion, nor wavelength routing while being scalable (by using

combiners and splitters [Peng07]). It is not sensitive to spatial traffic distribution and

does not need traffic engineering. It may use OTDM (Optical Time Division Multiplex­

ing) switching to increase link utilization which can greatly increase the network agility.

However, the failure of the core node is disastrous to the network since all the edge nodes

connect each other via the core node. It may require higher fiber-distance value [JiYa06b]

[ViBeOO].

APOSN (All-Photonic Overlaid Star Networks) [JiYa06b] is a proposal to AAPN

networks which introduces agile, microsecond switching device in the core node. It can

operate in OTDM or OBS mode. Under the OTDM operation, each optical channel is

3

Chapter 1 Introduction

sliced into time slots (time slot or slot for short, is a terminology of time division multi­

plexing technology which enables multiple users to share a data link, a user can put a

fixed length of traffic in each slot) with some guard time in between. Traffic aggregated

by an edge node is sent out through the ET (Edge Transmission part) to a core node. The

core node then relays the traffic to ER (Edge Receiving part) of the other desired edge

node. All the operation is coordinated through the synchronization unit by a control

channel. It provides a feasible and efficient solution for high-speed networks of near fu­

ture by making use of the currently available optical technologies.

When one edge node is connected to more than one core node, it should decide

which core node to transmit its traffic. This is a routing issue. The criteria may depend on

the work load of the core node, the cost of the connection, the delay and bandwidth.

These kinds of information are exchanged in the signaling protocol. If the edge node de­

cides to use one core node as the traffic relay device, it sends out traffic request to this

core node via signaling protocol. Random routing or least-congested-path routing strat­

egy [Stal06] could be used to select one core node to relay the traffic. This is not the topic

of this thesis.

1.1.3 Scheduling Algorithms

Notice that optical buffer is usually not provided in the core node of an all-optical net­

work due to the immature optical buffer technology. So we need a scheduling algorithm

to coordinate all the edge nodes to exchange traffic in a star network. Much work has

been done up to now.

Centralized and distributed scheduling algorithms were proposed [RaYa05b]

[RaYa05a]. Centralized scheduling has no collision but with some scheduling delay while

distributed scheduling has no scheduling delay but with collision. A parallel time-

wavelength assignment algorithm is then presented to solve the routing, wavelength as­

signment and time slot assignment problems simultaneously for the TDM operation

[JiYa06a] [JiYa05b] [JiYa05c]. It uses a heuristic method and a multi-processor concept

that reduces computing complexity. QBvN (Quick Birkhoff-von Neumann) decomposi­

tion based scheduling algorithm was proposed [PeBo06] [Peng07] with some added

computing complexity.

4

Chapter I Introduction

1AA Congestion Control and Classification

Congestion control is a vibrant topic for many researchers since the beginning. From the

first time when Jacobson found congestion in Internet in 1988 [Jaco88], many congestion

control algorithms have been proposed from then on. Congestion control becomes more

difficult as network BDP (Bandwidth-Delay Product) increases. Much work has been

done in congestion control such as [ChYa04] [HoYa04] [HoYa05] [HoYa06] [HoYa07]

[KaHa02]. Congestion control can be divided into three stages of development histori­

cally:

1. Congestion detection and avoidance by end system: In this early stage, no router

involves.

2. AQM (Active Queue Management): This can be further divided in two categories:

a) Detecting and controlling: When congestion occurs, we try to control it.

b) Predicting and controlling: Before congestion occurs (by using a threshold),

we indicate the sender to slow down.

3. Using modern control theory to model and control congestion: The end systems

and the routers are all involved in the control.

End System Based Control

Window
based

TCP Tahoe
TCP Reno
TCP Vegas

etc

"Rate
based

TFRC
RAP
etc

Congestion Control Mechanisms

Utility
based

Fast TCP
etc

End System and Router Joint
Desiqn

Window

based

ECN
ETEN

AntiECN
etc

Rate
based

XCP
XCP-I
WXCP
XCP-A

etc

VCP
PTP
RCP

SIRENS
etc

Router Based Control (AQM)

Window

based

RED
ARED
REM
SRED

etc

Rate
based

PI(R)
High Sped TCP

etc

Utility

based

PI(U)
etc

Figure 1.2 Congestion Control Mechanism Classification

According to where an algorithm is placed and whether an end system and/or a

router are involved, we classified all algorithms in three categories: end-system-based,

J

Chapter 1 Introduction

router-based (AQM), and the combination of the two.

Based on the control method, Figure 1.2 shows that each category can be further

classified into 3 categories, a) window-based: The source is given a maximum number of

credits i.e., the window size, to transmit its packets. Once the credits are exhausted, the

source has to withhold its transmission until acknowledgments are returned, b) rate-

based: The source adjusts its sending rate to support best-effort service traffic and to

make the maximum use of network resources, usually used in streaming media transmis­

sion, and c) utility-based: The source adjusts its transmission rate based on the feedback

of congestion information and its own utility function, in order to make the optimal use of

the network resources.

1.1.4.1 End System Based (Source Based)

An end system detects congestion through received ACK (ACKnowledgement) and time­

out. If it did not receive an ACK from the receiver in a time interval (timeout), the sender

assumes there is congestion in the network. Then it adjusts the sending rate to avoid con­

gestion. This can further be classified as follow (There are some overlaps of the classifi­

cation category because some authors use more than one method in their algorithms):

a) Window-based

TCP Tahoe [Jaco88] uses slow start with congestion avoidance techniques while TCP

Reno [Jaco90] added a new feature - the fast retransmit operation and fast recovery. TCP

Vegas [BrOM94] emphasizes on packet delay, rather than packet loss as a signal to help

determine the rate at which to send packets. TCP SACK (TCP Selective Acknowledg­

ment Options) [MaMa96] specifies exactly which bytes were missed, better measures the

"right edge" of the congestion window.

b") Rate-based

TFRC (TCP Friendly Rate Control) [FlHaOO] [HaF103] is an equation-based congestion

control scheme for unicast traffic with slowly changing rate, which is suitable for stream­

ing media applications. The RAP (Rate Adaptation Protocol) [ReHa99] employed an im­

proved AIMD (Additive-Increase Multiplicative-Decrease) source control scheme for

real-time stream transmission.

c) Utility-based

6

Chapter 1 Introduction

The utility-based control [HoYa05a] [JiWe04] [KeMa98] that has emerged recently is a

variation of the rate-based source control method. The sender adjusts its transmission rate

based on the feedback of the network congestion information and its own utility function,

hence is called utility-based control. Utility function is applied in the controller design in

order to make the optimal use of the network resources.

1.1.4.2 Router-Based (AQM)

Much work has been done in AQM. In this mechanism, the router runs the algorithm and

sends an early signal to the sender to indicate the anticipated congestion. The benefit is

congestion control action is taken before the buffer overflows and hence the packet loss is

kept as low as possible. Again this can be classified further as follow:

a) Window-based

RED (Random Early Detection) [FUa93] is the most important one. The basic idea is that

the router indicates the sender at a threshold queue value and asks the sender to slow

down before congestion occurs. It computes the p parameter (drop probability) based on

the current average queue length. This parameter is then used as a ratio to drop some

packets to indicate the sender to slow down. Because the parameters is hard to determine,

so various improvements were proposed.

Some variations include: REM (Random Exponential Marking) [AtLiOl], AVQ

(Adaptive Virtual Queue) [KuSrOl] [KuSr04], ARED (Adaptive RED) [FIGuOl], Dy­

namic RED [AwOuOl], Stabilized RED [OtLa99]. BLUE [FeSh02] performs queue man­

agement based on the packet loss and the link utilization. REM maintains a marking

probability pm to either mark or drop the packets. If the queue is continually dropping the

packets, pm is incremented by a factor of//. If the queue is empty or the link is idle, pm is

decremented by a factor of/?.

PI (Proportional Integral) [HoMiOl] [HoYa04], and pole placement [ChYa04] al­

gorithms use modern control theories to design the congestion controller. These methods

use the mature control theory that developed in one decade or more ago to model, design

and analyze the network controller which is a new branch in congestion control.

b) Rate-based

A rate-based control allows an end system to adjust its sending rate to support best-effort

7

Chapter 1 Introduction

service traffic and to make the maximum use of network resources. Thus it offers the

most effective solution under a network environment with long round trip delays and dy­

namic changes in available bandwidth where the AMD control performs poorly in terms

of sending rate fluctuation and queue oscillation. Much work has been done in [GeLo02]

[HaF103] [HoYa05b] [HuXu03] [KaKaOO].

c) Utility-based

In utility-based control [HoYa05a] [HoYa06] [JiWe04] [KeMa98], the source in the IP

networks adjusts its transmission rate based on the feedback network congestion informa­

tion and its own utility function. Again utility function is applied in the controller design

in order to make the optimal use of the network resources.

1.1.4.3 End System and Router Joint Design (Explicit Congestion Notification)

This design category combines the end system and the router together. The router sends

back congestion notification explicitly to the sender. The sender gets this information and

does some according adjustment to avoid congestion. The sub-categories are as follow:

a) Window-based

ECN (Explicit Congestion Notification) [RaFlOl], AntiECN [Kunn03] provide the infor­

mation on the queue length at the bottleneck link. ETEN (Explicit Transport Error Notifi­

cation) [KrSt04] provides a notification scheme of the packet loss rate especially for

wireless networks.

b) Rate-based

XCP (eXplicit Control Protocol, also categorized as a window-based protocol) [KaHa02]

[Kata03] is first introduced in 2002 and results in a shock wave in the Internet commu­

nity. In this algorithm, traffic is counted as an aggregated value. This value is used to

control the efficiency of the link capacity. The output, i.e. aggregated feedback, is used to

control the fairness. Then the per-packet feedback is brought back to the sender through

A C K to adjust its sending rate. It uses explicit feedback to tell the sender to what degree

is the congestion. Details are summarized in Appendix A.

Since XCP algorithm separates congestion control and fairness control, and uses

MIMD (Multiplicative-Increase Multiplicative-Decrease) and AIMD control laws sepa­

rately, it outperforms most of the up-to-date algorithms in high BDP (Bandwidth-Delay

8

Chapter 1 Introduction

Product) networks. It achieves full utilization and fairness very quickly, has almost zero

queue length with almost no queuing delay, at the same time there is almost no packet

loss. However, XCP algorithm needs to know all the congestion information through the

data path, and the link bandwidth should not change with time. In other words, XCP will

not work in the following two cases: (1) One of the routers in the path does not support

XCP and this router is the bottleneck of the path; (2) The bandwidth changes with time,

XCP can not get the actual required information to compute the feedback. However, usu­

ally photonic switch can not provide network information (such as the bandwidth pa­

rameter) to a router where XCP algorithm runs. So XCP algorithm can not be imple­

mented in these photonic networks. It needs some modification to make this algorithm to

work in these networks.

Much analysis and improvement work has been done since XCP was proposed.

As we can see from the XCP algorithm discussed in [AbRi06] [LoAn05] [LoPh05]

[ZhAh05] [ZhHe05], XCP needs supports from all routers through the whole packet path

and assumes the link capacity does not change with time. In [LoPh06a] and [SuGr05] the

authors use estimation method to estimate the bandwidth when it changes with time, and

make the XCP algorithm work. However, in all these proposals, the performance is based

on the accuracy of the estimation. If the estimation is bad, the performance is also bad.

This is also discussed in [[AbRi06]] [LoAn05] [ZhAh05], as the issue of difference be­

tween the real link capacity and the rated link capacity. We will describe our design in

details later.

For VCP (Variable structure Congestion Control) [XiSu05], we can say that it is a

simplified version of XCP. It uses the ECN bits to indicate the congestion degree as a

segment approximation of XCP. So it is simple but can achieve the same advantage to

some degree as the original XCP. The most important point is this algorithm uses the ex­

isting two bits already used in current TCP/IP RFC, so it does not need to change the cur­

rent Internet protocol too much.

WXCP (Explicit Congestion Control for Wireless) [YaGr05] gave a solution to

situations where bandwidth varies with time using estimation skill. XCP-i (XCP incre­

mental employ) [LoPh06] solved the problem of which XCP does not work when there is

a router in the data path that does not support XCP and this router is the congestion point.

9

Chapter I Introduction

It uses a bandwidth estimation technique to feedback congestion information. So the XCP

algorithm can be incrementally employed in our current Internet network without funda­

mental reconstruction.

SIRENS, an explicit notification framework for Internet congestion control

[NaKo06], proposes a framework to feedback everything (link bandwidth and available

bandwidth, packet loss rate and link error rate, queue length and link delay) of each

router (per hop information) to the sender. So the sender can decide which parameters to

use to get the optimum performance. It captures a snapshot of the path status on a per-hop

basis and enables the receivers to freely make use of this information and to perform

more precise and flexible congestion control.

RCP (Rate Control Protocol) [DuKo05] proposes to use per-flow rate instead of

per packet window adjustment as the feedback from routers. PTP (Performance Trans­

parency Protocol) [WelzOO] collects information from routers and determines the bottle­

neck bandwidth along the path from a sender to a receiver. QFCP (Quick Flow Control

Protocol) [PuHa06] allows flows to start with a high initial sending rate and to converge

to the fair-share rate quickly based on the feedback from routers.

1.1.4.4 Modeling

When we talk about congestion control, we should mention the fluid model for

TCP/AIMD/AQM [MiGoOO] [HoMiOla] [HoMiOlb] which is a milestone in this research

area. It introduces a mathematical model of congestion control that can be used when we

design and analyze the controller. The non-linear dynamic model is described by two

coupled, nonlinear differential equations. It shows how the average queue length x(t) re­

acts to the changes on the average window size W(t), the average round-trip time z(t), the

traffic load N(t), the link capacity n and the nonlinear mechanism of the AQM algorithm

(e.g., RED [FUa93]). Transfer functions are also used extensively in frequency-domain

modeling. More details can be found in Appendix B.

The compensator studied in [HoMiOlb] is the well-known RED controller

[FUa93] consisting of a LPF (Low Pass Filter) and nonlinear gain element. The form of

the LPF was derived in [HoMiOlb] while nonlinear gain element is a mechanism that

marks packets with a dropping probability p as a function of average queue length xavg.

The parameter/? is varying between two queue thresholds minth and maxth, with a slope of

10

Chapter 1 Introduction

LRED = Pmaxl(maxth-minth). Combining the two elements, the transfer function for RED

[FUa93] is CRED=LREDI{S/K+1) where K=loge(l-a)/S and a is the queue averaging pa­

rameter while 8 is the sampling frequency.

1.2. Motivation

Up to now, although much theoretical research work has been done on AAPN, there is no

commercial product or laboratory prototype to the best of our knowledge. It is desirable

to produce a prototype for demonstration, to evaluate the performance and verify the

theoretical work.

The implementation is also required by the AAPN project. All the partners expect

to see a state-of-the-art new prototype that works, not only theoretical research and publi­

cations. Therefore we would like to implement it and evaluate the performance of the

prototype system.

As congestion is not avoidable in real networks, congestion control is a must in

AAPN network. We need a technique to provide a mechanism of congestion control. As

we can see from the literature review, the XCP algorithm decouples the efficiency con­

troller and fairness controller. It has a good performance such as full utilization, almost

no queuing delay, almost no packer drop, and fairness that outperform the up-to-date

techniques. It does not need to tune any parameters, and there is no per-flow state. These

properties let it outperform most of other congestion control techniques up to now (ex­

cept for the Pi-rate controller [HoYa07] for example). Hence we are interested to use

XCP as the congestion control mechanism. However, XCP can not work when the link

bandwidth changes with time which is the case in our AAPN network. AAPN needs to

change the core switch dynamically to allocate the requested bandwidth as an edge node

desired, which results in the link bandwidth change with time. To solve this dilemma, we

need to modify and improve the XCP algorithm, so it can work successfully on our

AAPN networks.

1.3. Thesis Objectives

The general objective of our work is the research and development of AAPN signaling

11

Chapter 1 Introduction

and traffic control. Specifically we would like to:

1. Design and implement AAPN control platform (framework) signaling protocols.

2. Design and evaluate XCP congestion control on AAPN networks.

1.4. Approaches and Methodologies

In order to fulfill our objectives, we would like to implement the signaling protocol under

Linux environment to evaluate our design, modify XCP algorithm by using cross-layer

design as our congestion control mechanism then use NS2 as the simulation tool to

evaluate the modified algorithm.

1.4.1 Design and Implement the Signaling Protocols under Linux

We designed our signaling protocols according the AAPN specifics. In order to evaluate

our AAPN signaling protocols, we implemented our AAPN protocol design under Linux

operating system with an all-photonic space switch as the core node and a few PCs as the

edge nodes. A dynamic scheduling algorithm and a virtual input queue are integrated in

the software. Then we did some experiments to measure the synchronization performance

and provided some analysis.

Linux operating system is chosen because it is one of the most prominent exam­

ples of free software and open source development. It uses the GPL (GNU General Pub­

lic License). It is a Unix-like computer operating system. Its underlying source code can

be modified, used, and redistributed by anyone freely. We have full access to the kernel

of this operating system. The GCC (GNU Compiler Collection) compiler is the most

popular currently in Unix-like systems including some commercial compilers due to its

good compatibility.

C language is used for the programming because we want to move the whole sys­

tem in an FPGA (Field Programmable Gate Array), or an embedded system. We can use

System C to implement it easily in an FPGA. So we could reuse most of the source code

as we implemented in Linux and reduce the work load. C also reduces the object code

size that is critical in an embedded system which has limited memory. We measure the

synchronization error in order to evaluate our implementation. Scheduling time is meas­

ured with a different number of edge nodes and different frame sizes.

12

Chapter 1 Introduction

Real system implementation has the following advantages:

1. It can realistically reflect the physical constraints that exist in the real world, such

as the propagation delay, and various synchronization issues.

2. It can verify a protocol by sending real traffic between edge nodes. Through the

experiments with the prototype, we can improve it as a final commercial product.

3. It can test the current enabling technologies such as what is the fastest switching

time the current commercial optic switch can achieve. This is important because if

the enabling technology can not provide fast enough switching time, the switching

overhead may degrade the operation of AAPN.

While implementation has these advantages, it also has some shortcomings. It is

time consuming to implement the design, especially in the debug stage. The hardware

may not be stable as we expected. We need to debug the software and at the same time

debug the hardware. Due to technology constraints, we can not always test all theories

that published in recent years which made some assumptions that are quite different from

the current technology.

1.4.2 Cross-Layer Design on XCP as the Congestion Control Mechanism

As discussed before, despite the good features of XCP algorithm, it does not work with

AAPN whose bandwidth is constantly changing. Therefore we need to modify the origi­

nal XCP algorithm to let it work in our AAPN network (we call it XCP-CL algorithm).

We shall use a cross-layer design method to get the exact bandwidth information from the

core node through AAPN signaling. The detail will be discussed later.

Due to time limitation and hardware constraints, we do not have access to all the

hardware to implement a real system, we only implemented the algorithm by simulation

which is commonly used in the literature. Therefore, we shall use simulation to verify its

operation and demonstrate the capability of this design.

1.4.3 NS2 to Simulate the XCP-CL Algorithm for Performance Evaluation

In order to evaluate our XCP-CL algorithm and to compare the performance (link utiliza­

tion, window size and sending rate) of the original XCP and XCP-CL algorithms on

AAPN, we choose NS2 (Network Simulator version 2) [ISI07] as the simulation tool.

13

Chapter I Introduction

NS2 is chosen because it is free with an open source, and the license is GPL. Therefore,

we can have full access to the source code of the software, modify or add new features to

the simulator. Most of the newest designed protocols and algorithms are implemented

under NS2 and they have the source code available on the web. This reduces much of the

coding development effort.

We shall download the C source code of the original XCP under NS2, and modify

it according to our cross-layer design. We construct the simulation network as shown

Section 4.3. Tel script language is used to describe the network model. Then we run the

simulation with specified network parameters to obtain various performance measures.

Time-evolution plot is used to evaluate and analyze the performance of our XCP-

CL design. We compare the original XCP with our XCP-CL in terms of congestion win­

dow size, sending rate, link utilization, number of dropped packets, queue length and re­

quired buffer size. During the investigation of the time-evolving performance, we shall

also apply step changes to the environment such as big sudden changes in the bandwidth

and propagation delay. According to control theory, step response is a good approach to

test the capability of a system (e.g., stability and rise time) and therefore its performance

[Nise04].

To verify the system performance as designed, we compute the expected window

size and sending rate of the source which are dependent on the round trip time as well as

the congestion in the routers. If the simulation results are similar to the computed value,

we have good confidence that the simulation result is correct.

1.5. Thesis Contributions

The main contributions of this thesis are:

1. AAPN control platform design and implementation under Linux. Our experimental

results have shown that the whole system works very well.

2. Synchronization signaling performance measurement and signaling protocol over­

head analysis.

3. Cross-layer design of a congestion controller for AAPN.

4. NS2 simulation for the XCP-CL algorithm.

14

Chapter 1 Introduction

5. Performance evaluation and analysis of the XCP-CL algorithm. The results have

shown that XCP-CL algorithm has much better performance compared to the origi­

nal XCP algorithm.

1.6. Thesis Organization

This thesis is organized as follow: Chapter 2 describes the AAPN network architecture,

operation, modeling and some assumptions we used in our AAPN design and implemen­

tation. Chapter 3 presents detailed implementation, experimental result and analysis of

the AAPN signaling protocols. Chapter 4 details the XCP-CL design including cross-

layer design, network modeling. Chapter 5 presents simulation results and analysis.

Chapter 6 provides some design guidelines. Chapter 7 concludes our work and makes

some proposals for future work.

1.7. Publications

The following are the publications based on our work:

1. Yong Deng, Oliver Yang and Yang Hong, "Cross-Layer Design of XCP on Agile

All-Photonic Network (AAPN)", MilCom2007, Orlando, Oct 29-31, 2007

2. Yong Deng, Yang Hong, Oliver Yang and Gregor v. Bochmann, "Cross-Layer

Design of XCP on AAPN", AAPN's 2007 Annual Research Review Conference,

Nortel Networks, Ottawa, June 14-15, 2007

3. Jonathan Couturier, Yong Deng, and et al, "AAPN Demonstrator Prototype -

Control Platform", AAPN's 2007 Annual Research Review Conference, at Nortel

Networks, Ottawa, June 14-15, 2007

4. Gregor v. Bochmann, Yong Deng, and et al, "Software Development for the

AAPN Control Platform", AAPN's 2007 Annual Research Review Conference, at

Nortel Networks, Ottawa, June 14-15, 2007

75

Chapter 2 Network Architecture, Modeling, Operation and Assumptions

Chapter 2. Network Architecture, Modeling, Op­
eration and Assumptions

In this chapter we first describe the network topology, switch architecture, network model

and the assumptions we made in our design. Finally, the implemented network for the

AAPN signaling design was brought out.

2.1. The Overlaid Star Topology and Operation

Figure 2.1 AAPN Star Topology with N=2 Core Nodes and M=8 Edge Nodes

Figure 2.1 depicts the overlaid star topology of the AAPN network [JiYa06b]

[LoVi06] [MaVi06] [Peng07] to be investigated in our research. It consists of M edge

nodes communicating with each other through the N core nodes.

A core node is a non-blocking all-optical space switch (see next section). It relays

traffic between edge nodes. An edge node is an ordinary hybrid photonic/electronic

16

Chapter 2 Network Architecture, Modeling, Operation and Assumptions

router with buffers and runs the AAPN signaling protocol. It has connected to one or

more core nodes by optical fibers. It aggregates traffic from outside of AAPN and is re­

sponsible for distributing traffic to legacy networks. An edge node (called master node,

or master in short, other edge nodes are called slave edge nodes or slave in short) also co-

resides with a core node. It runs a scheduling algorithm to allocate bandwidth to each

edge node (including the master node itself) and controls the core switch through a direct

connection.

The network operation can be illustrated by Figure 2.1. Assume some traffic need

to go from a network which is extended to edge node E to a network which is extended to

edge node F. After edge node E receives traffic from the legacy network outside the

AAPN, it assemblies the traffic into slots. Then edge node E sends a traffic request to the

master node A (can also be B, depending on the routing result) through a signaling chan­

nel (see the signaling protocol later). Master node A co-resides with core node A which

has a scheduler. After master node A receives all the requests from all edge nodes, it runs

an algorithm to compute the bandwidth allocation based on the traffic request and sends

the results out to each edge node (the master node itself has the traffic information of its

own). After edge node E received the allocation, it knows the time and the slot number it

should use to send out traffic. When the slots arrive at core node A, master node A has

reconfigured the switch to relay the traffic to edge node F. Edge node F receives the traf­

fic and forwards the traffic to the destination.

All these operations within the network (shown by a grey cloud) are performed in

the photonic domain using WDM (Wavelength Division Multiplex) via w wavelengths.

We will talk about the signaling process in detail later. No routing is described here since

we only have one core node in our implementation.

Comparing to the current optical networks, AAPN performs not only transmission

but also switching in optical domain. The absence of OEO (Optical-Electrical-Optical)

conversion at the core nodes leads to two important advantages: greatly increased capac­

ity and the transparency of data format and bit rate. Good bandwidth sharing is achieved

through the "agile" property that allocating bandwidth on demand at fine granularity. It

also allows carriers to provide and deploy services rapidly.

17

Chapter 2 Network Architecture, Modeling, Operation and Assumptions

2.2. The Switch Architecture and Operation

Edge Node
#1

- — —

Edge Node

n

•'

•

Edge Node
#N-1

Upstream Switch Downstream
Links Fabric Links

I I I
© !'" " "
^ ^f-—f

JL/1

1 \AVY

r-'-f

^^ i l / \ / \

H L

1 ^
i

1

:3)

J

Edge Node #1

V 1

>-^f / • ^ - ^ f t

Core Node

i
i
t
i *

T—i

Edge Node #2

Edge Node
#N-1

Figure 2.2 The AAPN Switch with One Core Node (Courtesy from [Peng07])

Figure 2.2 depicts the detailed switching architecture of an AAPN core node that

is connected to three edge nodes [AAPN07] [JiYa06b]. The core switch is an optical non-

blocking space switch. At the input ports on the left, the WDM link is de-multiplexed and

each wavelength goes to a separate fabric for switching. Each switching fabric switches

only one wavelength. The wavelengths which go to the same output port (on the right

side) are then multiplexed onto a single fiber link to the dedicated edge node. The con­

troller receives control information and reconfigures the switch to the desired configura­

tion.

An ordinary electrical switch usually uses OQ (Output Queuing) or IQ (Input

Queuing) or CIOQ (Combined Input and Output Queuing). Unlike an ordinary electrical

switch, the core switch is made up of only a number of buffer-less transparent photonic

space switches (one for each wavelength). Hence traffic from edge nodes must be coordi­

nated to pass the core switch. This requirement induces much work about many schedul­

ing algorithms.

75

Chapter 2 Network Architecture, Modeling, Operation and Assumptions

2.3. AAPN Prototype

The design and implementation of the AAPN prototype has undergone two stages: the

slow AAPN prototype and the fast AAPN prototype.

2.3.1 Slow AAPN Prototype

AAPN switch
Core node

Ethernet cable

Scheduler

Figure 2.3 Logical Architecture of Slow AAPN Prototype

Figure 2.3 is the logical architecture of a slow AAPN prototype implemented with

a few PCs in our lab. It has one core node (the optical switch) and 6 edge nodes (PCo-

PC5). PCo is the master edge node with ID #0. It runs the scheduling algorithm and con­

trols the switch. PC1-PC5 are slave edge nodes. The core node is a 6-port optical switch

(BigBangWidth's light path accelerator) which connected to the master node through an

Ethernet cable. The master node can Telnet to this core node and control it to connect or

disconnect two ports. All edge nodes are connected together with optic fibers (lGbps

Ethernet port).

Figure 2.4 shows the equipment in our lab, and Figure 2.5 shows the optical

switch - the core node used in our network. We developed this slow AAPN prototype to

verify our signaling protocol design: the synchronization and bandwidth allocation proto­

col, the scheduling algorithm interface, the time constraints of the signaling and schedul­

ing. Signaling protocol and application software runs on all of these PCs. All our experi­

ment and measurement are based on this configuration.

19

Chapter 2 Network Architecture, Modeling, Operation and Assumptions

•ma

Figure 2.4 View of the Slow AAPN Prototype

lm*»:'»Mr!«ii»avsii"M««-wi»"N**

Figure 2.5 Core Switch of Slow AAPN Prototype

In this slow AAPN prototype, we use an Ethernet cable to control the core switch.

It has some delay because the command is sent out through Telnet to the core switch and

then the switch reconfigures the connection of the input-output port pairs. Also we can

not send one command to connect two or more pairs of edge nodes because of the limita-

20

Chapter 2 Network Architecture, Modeling, Operation and Assumptions

tion of the software design. Each command can only connect one pair of edge nodes. If

we need to connect two pairs of edge nodes, we need to send out two commands.

2.3.2 Fast AAPN Prototype: Work in Progress

In the slow AAPN prototype, the switching time is slow (in the order of seconds) and not

fast enough to achieve the benefits of the AAPN concept. The synchronization precision

is not good (it depends on the operating system, see analysis in Section 3.8 in later chap­

ter). The measurement and problems are presented later.

Currently we are designing and implementing an intermediate AAPN prototype

(Version A) to solve these problems by using a fast core switch (with a switching time of

lOus, and a slot period of 250us). We have moved the synchronization processing into the

FPGA part and let the PC part processes the protocols only. So the synchronization proc­

essing is deterministic and will not oscillate.

LAN

EDGE NODE

PC FPGA

traffic
aggregation

* / |

5001 iiyibps^ virtual
queues
of slots

bandwidth
request

functions

all other
control

functions
bandwidth

assignment
functions

1Gbps

T+

traffic
monitoring

slot queue
optical

transmissior

t
l Timing

precision)

I
I
J

1Gbps

traffic
extraction

500Mbps
— / slot queue

optical
reception

Other
AAPN node

Figure 2.6 Edge Node Architecture of the Fast Prototype Based on FPGA

21

Chapter 2 Network Architecture, Modeling, Operation and Assumptions

Figure 2.7 FPGA Board for an Edge Node in the Fast Prototype

The typical edge node architecture of FPGA version A is shown in Figure 2.6

while Figure 2.7 shows the FPGA board we are currently using.

The concept is the same as before, but the edge node function is realized jointly

by the PC and the FPGA. The PC aggregates data from outside the AAPN and assemblies

them into slots. Then it sends these slots to the FPGA in the order they are transmitted to

the core node with the desired FPGA sending time. The FPGA then sends them out

through optical fiber to other edge node via the core node at the exact sending time. For

the receiving part, it is in a reverse direction. Data (in AAPN slot format) from other edge

node is received and timestamped by the FPGA receiver, then it is sent to the PC. The PC

processes the signaling protocol and extracts and distributes the data to the networks out­

side of the AAPN. Now the sending and receiving functionality is finished by the FPGA

with fixed, deterministic processing time.

The function of virtual input queues, bandwidth requests and allocations are still

in the PC so we can take advantage of the PC's programming power, while precise timing

is in the FGPA in order to benefit from the quick processing power of the hardware. In

22

Chapter 2 Network Architecture, Modeling, Operation and Assumptions

the final design (Version B), we will put everything in the FPGA to produce an on-shelf

product which is the future work we aim to do.

2.3.3 Switch Control Interface in the Fast Prototype

The speed of a switch control interface depends on the switch that is used. Unlike the

slow AAPN prototype, we constructed the core switch by ourselves and have full access

to the switch. We use the FPGA to control the core switch directly through the GPIO

(General Purpose Input and Output pins) of the FPGA to increase the response time.

Figure 2.8 2X2 Optical Switch in Fast Prototype

Figure 2.8 shows the switch we used in our immediate prototype. We use this 2X2

switch to construct our own 4X4 no-blocking switch. This work is done by the other

members of the project.

2.3.4 Communication between the PC and FPGA

Figure 2.9 shows the data format and the interface between the PC and FPGA in our fast

prototype. A control information field (20 octets) is added to each slot data. Then this slot

is chopped into Ethernet packets and sent to FPGA board over an Ethernet interface.

FPGA takes out the switch control data information and reassemblies those packets into

the original slot. The switch control data is used to control the optical switch while the

original slot is sent out through an optical fiber. From the user's point of view, a slot is

sent to FPGA and is sent out to optical fiber as we can see the logical function on the bot-

23

Chapter 2 Network Architecture, Modeling, Operation and Assumptions

torn in this figure.

Data Block
Chop into

Ethernet packets

Ctrlnfo:20 [Slot Data • [[: packetlndex | : Data |

FPGA Board

Recover to Original
Data Block

Switch Control | Slot Data |

UART

Switch

| Switch Control

Send out
| Slot Data

StratixGx

EDGE NODE

SlotData h Ctrlnfo;20:; r SlotData

"
SlotData ;>

Figure 2.9 Interface between the PC and FPGA in the Fast Prototype

Below is the step-by-step procedure of the communication (assume traffic is ag­

gregated and some slots are allocated to send traffic):

1. Take a slot from the slot buffer.

2. Add the control information field (switch configuration parameter from schedul­

ing results) to this slot.

3. Segment the whole part into Ethernet packets with packet index at the head of

each packet.

4. Send out all packets to the FPGA.

5. Receives all packets at the receiving FPGA.

6. It takes out the control information field to control the switch.

7. It assembles the original slot by using the packet index.

8. Then it sends the slot out through the optical fiber to another edge node.

Note only the master node uses the "Switch_Control" field to control the switch,

the slave node does not use it. The receiving side does the reverse operation except the

control field. We do not need the switch control information in the reverse direction.

24

Chapter 2 Network Architecture, Modeling, Operation and Assumptions

2.4. Network Model and Assumptions

Figure 2.10 The AAPN Network Model with 2 Core Nodes and 2n Edge Nodes

Note: All the links are full-duplex. Each group of n senders and n receivers is different.

Figure 2.10 shows the network model with 2 core nodes and n edge nodes where

each link has a capacity C and a delay d. This is a typical AAPN application in metro

networks. Each edge node is connected to two core nodes via optic fiber. The edge node

is also connected to one or more legacy networks (sub-network) and aggregates traffic

from these sub-networks.

Based on our design, the following assumptions are used in our signaling imple­

mentation and XCP design & simulation.

1. A master node has negligible propagation delay to the core node because the mas­

ter node is co-located with the core node.

2. The time drift of two edge nodes within one frame is negligible. This is guaran­

teed by clock precision used in PC or FPGA.

3. The propagation delay may change due to temperature. However this is slow

when compared to the frame period as designed.

25

Chapter 2 Network Architecture, Modeling, Operation and Assumptions

4. There is no optic buffer in a core node. This is reasonable considering the current

optical enabling technology.

5. Each edge node is an ordinary electrical router connected to a legacy networks. It

uses an electronic buffer and has an E/O interface for transmission to the core

node.

6. The receiver buffer (advertised window) is big enough so it does not constraints

the transmission.

26

Chapter 3 Signaling Design, Analysis and Implementation

Chapter 3. Signaling Design, Analysis and Im­
plementation

In this chapter, we first present several choices of the signaling methods commonly used

in telecommunication. Based on this analysis and our specific situation, we describe the

frame and slot structures in our design, and introduce the synchronization method. These

are used to implement a slow prototype from which more experiment measurement and

their analysis are presented at the end. The following is the development environment we

use to develop the slow prototype. Network topology has been introduced in the previous

chapter.

1. Operating system is Linux with the following settings:

Distribution is Mandrake Linux 2005

Linux kernel version is 2.6.11

GCC version is 3.4.3

Eclipse version is 3.2

2. Edge nodes consist of 6 PCs equipped with optical Ethernet cards. One edge node

is assigned as the master node. The others are slave edge nodes.

3. The core node is a BigBangWidth's [BiBa07] light path accelerator - an optical

switch with optical Ethernet ports. It has an electrical Ethernet port that can be

controlled through Telnet protocol.

3.1. Signaling Overhead Analysis

In this section we analyze the signaling overhead which is the ratio of the payload to the

whole protocol data unit. We also compare the relationship of overhead and scheduling

delay between frame-based signaling and slot-based signaling. It is clear that we desire an

overhead as small as possible. Big scheduling delay degrades traffic estimation which we

rely on to get a good scheduling result. So a small scheduling delay is desirable. There

should be some trade off between signaling overhead and scheduling delay.

27

Chapter 3 Signaling Design, Analysis and Implementation

3.1.1 Frame-Based Signaling

Frame-based signaling means in each frame a slave node talks with a master node once to

get a schedule and send a request.

According to our frame structure, in one whole frame, some slots (the number

equals the system size) are reserved for signaling, the others are for data transmission.

We can compute the signaling overhead by using the following formula:

nodeSize
Vx (3.1)

frameSize

where frameSize is the number of slots in a frame, nodeSize is the number of nodes which

is the same with the number of slots reserved for signaling. This is because we reserve

one slot for each node.

CO
CD

.c
CD
>
O
c
75
c
co o

0.5

t--

T3

> . CD

jo a.

S°
•§"8

o To
W E

400

300

200

100

0

10 20 30 40 50 60 70 80

Ratio of Frame Size to Node Size
90 100

1 1 1 1 1 1 _L _ , ^ n ~ C 4
i i i i i i ^ ^ - - r " " i t

i i i ^ - r ^ " i t i i i

10 20 30 40 50 60 70 80
Ratio of Frame Size to Node Size

Frame Based

Figure 3.1 Frame Based Signaling

90 100

In Figure 3.1, the x-axis is normalized in terms of node number while y-axis is

normalized in terms of slot period. We can see from the figure, when frame size in­

creases, signaling overhead decreases too. It decreases very fast with the frame size in­

creases from 1 to 5 in terms of node number. After that it decreases slowly. Scheduling

delay is linearly proportional to the frame size. A good choice of the frame size is set it to

5 or 10 times of edge node number. For example, if we have 100 edge nodes, the frame

28

Chapter 3 Signaling Design, Analysis and Implementation

size should be more than 500 slots but lower than 1000 slots. This would balance the sig­

naling overhead and the scheduling delay. We also should choose a small slot period to

get a small absolute scheduling delay. Note that in this case we preferred to use the length

of the signaling protocol as the slot length. So there is no waste in the signaling slot be­

cause signaling data fully fills the whole slot. Another choice is that use different slot

lengths. A short slot is for signaling and a long slot is for data transmission. However,

this increases the complexity of the software.

3.1.2 Slot-Based Signaling

CO
CD

.c
CD >
o
O)
c

"cC
c

</)

T3
O

i 1 i 1 1 T 1 1 r ^ . - . - >

i i i i i i ^~^^~~^~ ' '

i i __^ - - i " " i i i i i i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio of Overhead to Slot Length

a a.

co E

1.5

1

0.5

E 0
o
2

1 I . I 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 . J 1 1 l_ _ I • I J

! ! ! ! ! ! ! ! !

i i i i i i i i i
i i i i i i i i i

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ratio of Overhead to Slot Length
Slot Based

Figure 3.2 Slot-Based Signaling

0.9

Slot-based signaling means in each slot, a slave node talks with a master node to

get schedule and send request. We can compute the signaling overhead using the follow­

ing formula (variables are in bytes):

overHead
Vi =- (3.2)

slotLength

where slotLength is the total length of a slot in bytes, overHead is the length of the over­

head in bytes.

29

Chapter 3 Signaling Design, Analysis and Implementation

As shown in Figure 3.2, the scheduling delay is fixed to one slot period, because

in each slot an edge node signals to a core node. Signaling overhead is based on the ratio

of the overhead to the total length of one slot. In our design, we have an overhead of 60

octets (the value we are currently using). If we desire a signaling overhead that is below

0.05, the slot length should be 60/0.05 = 1200 octets or larger.

In this case, the scheduling time is constrained to one slot period while in frame

based scheduling, the scheduling time is relaxed to frame size deducts the number of

edge node (equals the number of slots that reserved for signaling) times the slot period. If

the slot period is small and the scheduling algorithm is a little complex, a frame based

scheduling is preferred due to the scheduling time constraint.

Based on the discussion, frame-based scheduling has the flexibility of scheduling

time. We also desired to integrate QBvN algorithm which is based on frame-based

scheduling' to do some experiments and measurement, hence we use frame-based sched­

uling in our design.

3.2. In-band Signaling and Out-band Signaling Discussion

We have two choices for the signaling: one is in-band signaling which uses a dedicated

slot in the data transmission fiber to exchange control information between a slave node

and a master node. The other is out-band signaling which uses a dedicated control chan­

nel fiber or wavelength to exchange control information.

In-band signaling

/~

One frame
/ V _

A

/
Slot #0 Slot #1

signaling

Slot #2

\ /
Slot #5 Slot #6

data transmission

Slot #8 - slot #16

\
Slot #17

Out-band signaling

Signaling data

Figure 3.3 In-band and Out-band Signaling

30

Chapter 3 Signaling Design, Analysis and Implementation

Figure 3.3 shows the slot structures of these two signaling methods. In-band sig­

naling only uses some slots for signaling. The master node gets all the traffic information

at the end of slot 5 shown in this figure. There is always a frame period delay of traffic

information. In this case we should use an estimation method to predict traffic. The bene­

fit is that the design is simple and it is easy to implement it.

Out-band signaling uses an extra fiber. In each slot time the master node can get

the traffic information from all slave nodes. Hence the traffic information is "fresh" and

real-time compared to in-band signaling. The scheduler can be more accurate for band­

width allocation. But the design and implementation is complex and some bandwidth is

wasted (note we only use a very small part of bandwidth of the signaling fiber). Due to

our current core switch only has one wavelength for each fiber and there is no dedicated

extra fiber for control channel, we use in-band signaling in our design.

3.3. Data Structure Design

This section describes the details of the data structure design. In order to design and im­

plement the signaling protocol, we should design the frame structure, slot structure and

the related data structures. All the information exchanged between any two edge nodes

uses the corresponding data structures.

3.3.1 Frame Structure

frame structure one frame

slot
#0

slot
#n

slot
#n+1

slot
#n+2

slot
#n+2

slot
#m-1

slot
#m

for signaling for data transmision

Figure 3.4 Frame Structure

Frame structure is shown in Figure 3.4. Each frame is constituted with a number

of m slots. The first n slots are reserved for signaling while the other m-n slots are used to

31

Chapter 3 Signaling Design, Analysis and Implementation

transmit data (Assume the number of slave edge nodes is n). So in each frame each slave

node has one slot dedicated to communicate with the master node for signaling.

3.3.2 Slot Structure

Data is transmitted in slot format through optical fiber between any two edge nodes via a

core node.

Figure 3.5 Slot Structure

The structure of the slot format is shown in Figure 3.5. This structure defines how

the slot is constituted by different fields. It is implemented in C language as follow:

s t r u c t SLOT
{

int slotSequence; //slot sequence number
int SrcID; //source node ID number
int DestID; //destination node ID number
long long int sendingTime; //64 bits
long long int receivingTime; //64 bits
long int timeDifference; //master - slave
int dataLength; //data length in data[]
char data[MAX_SLOT_DATA];

};
The meaning of each field is usually self-explained by its name. "slotSequence" is the

slot sequence number. "srcID" and "DestID" are source node ID number and destination

node ID number separately, because we need to track where the slot comes and where it

32

Chapter 3 Signaling Design, Analysis and Implementation

should go. "sendingTime" and "receivingTime" (include second part and micro second

part, "timeDifference" is the same) are the sending time at a source and the receiving

time at a destination. We use these two fields to compute and update the time difference

field for synchronization purpose. They are 64 bits in length which is long enough to

avoid wrap back problem. "timeDifference" is the clock difference plus the propagation

delay between two edge nodes. This value is used for synchronization purpose.

"dataLength" is the length of the data in data[] field in bytes.

Note the field "data []". It self has a sub-structure architecture. The messages (de­

scribed in detail as follow) have code (indicates the type of data), length and data block

(the upper layer data) format. They are encapsulated in this field.

3.4. Synchronization and Network Configuration Protocol

This section describes the synchronization and the network configuration protocol. As we

said before, because the core node is buffer-less, all edge nodes should coordinate to

transmit their traffic. Otherwise the traffic passing through the core node will collide or

will be dropped by the core node. The principle of how to synchronize all the edge nodes

with different propagation delay is critical in AAPN design [RaYa03] [RaYa05c].

3.4.1 Synchronization Principle

Each time we require the slot from different edge nodes with different propagation delay

to arrive at the core node at exactly the same time. So the core node can connect the de­

sired connection and let the data slots go through it within the allocated time slot. Other­

wise, the data will be dropped or corrupt.

The first problem to solve is how to measure the propagation delay and the clock

difference between the master node and the slave nodes. These values are required by the

synchronization mechanism.

When a slave node sends a slot to the master node, it stamps the sending time

field Tsendjiave (slave local clock). This slot goes to the master node through the optical

fiber with some delay and arrives at the master node at time Treceivejnaster (master local

clock). Propagation delay plus time difference (sum together as Td) between these two

nodes is

33

Chapter 3 Signaling Design, Analysis and Implementation

•* d * receive master ~ 1 sendjslave •* clockdiff + Tdelay (3-3)

1 clockdiff- 1 master ~ 1 slave \^- V

where Treceivejnaster is the master receiving time, Tsendjiave the is slave sending time, Tci0Ck-

diff is the time difference between the master and the slave, Tdelay is the propagation delay,

Tmaster is the master's local time and Tsiave is the slave's local time. We do not need to

measure rc/oc^,y and Tdeiay separately, we only need their sum as we can see in the follow­

ing computation.

When a master asks a slave node to send data at time Tse„d_siave which is expected

to arrive at the core node at Tmaster (master local time) or Tsiave (slave local time), so the

slave node should send its data at:

1 send_slave ~ 1 master' Id — 1 master ~ (1 master ~ J-slave ' * delay) ~~ 1 slave " I delay \3-J)

This equation has two meanings. The first meaning is that the slave sending time

TSend slave is the master's desired receiving time Tmaster minus T<j (the sum of the time dif­

ference and the propagation delay), i.e. the second term in the equation. The second

meaning is a slave should send its data at Tsiave - Tdeiay After the data transmits a time of

Tdeiay, it arrived at the master at the expected time, which is Tmaster-

t2=t-|-Tciockdiff

tzt'tpTciealy

t4=t3-Tclockdiff

' i slave time ..

T, dealy

master time

ti t3

Figure 3.6 Sending Time Computation

Note: t means time instant, T means time variable with a specific value.

The computation is shown more clearly in Figure 3.6. Time instants tj and ̂ are

at the same time instants but in different axis (the same meaning in time zone); ts and ̂

are the same. Assume a slave sends a slot at t^ = t4 - Tdeaiy This slot will take Tdeaiy to

propagate and arrive at the core node at t4. This t4 will be the same instant as fj which is

34

Chapter 3 Signaling Design, Analysis and Implementation

we desired in master time scale.

Note that some clock drift with time can occur between two nodes. This is re­

solved by dynamically updating the Td value through our signaling in each frame. (We

assume that the time drift of two edge nodes within one frame is negligible.)

For the purpose of precise measurement, the sending time stamp must be set at

exactly the sending instant. The receiving time stamp must be set at exactly the receiving

instant. In a PC using Linux operating system, we can not get a precise measurement be­

cause of the processing delay and the operating system scheduling delay. We will talk

about this later.

3.4.2 Sample Signaling Timing Sequence

(e') (i)

Edge node B
(a) \ (e

Edge node A

Core node C (c) (9)

Figure 3.7 Timing Sequence of Frame-Based Signaling

Time axis

Figure 3.7 shows a typical timing diagram of the frame-based signaling for the

case of edge Node A sending some data bursts to edge Node B via a core Node C

[Peng07]. A sample signaling scenario is described as bellow.

(a) Node A collects the traffic information from outside, and aggregates it into slots

during the current frame.

(b) Node A sends this traffic information to Node C.

(c) Node C calculates the future schedule after it receives all the traffic information

from all slave edge nodes if any.

(d) Schedule is then sent to Node A.

(d') Schedule is also propagated to Node B who receives it at time e'. (Similarly to all

other nodes each with different propagation delays if any).

35

Chapter 3 Signaling Design, Analysis and Implementation

(e) Node A waits until the right time (after Node B receives the schedule) due to the

synchronization required between the edge nodes, i.e. some other edges may be

further away from the core node and requires more time to receive the schedule

(see line d').

(e1) If Node B has data to send to Node A, it should send it before Node A does.

Hence all the data will arrive at Node C at the exact time.

(f) Some data bursts are sent from Node A destined to Node B.

(g) When the bursts pass through the core node, it is re-configured as desired to trans­

fer these bursts to Node B.

(h) The bursts travel to Node B.

(i) Node B has the information at what time the bursts will come (according to the

schedule) and receives the data.

3.4.3 Slot Assignment Explanation

In AAPN, we desire the property of dynamically allocating bandwidth to traffic flows as

the traffic demand varies, which results in rapid reconfiguring the all-photonic space

switch in the core node.

We use a frame scheduling and consider 6 slave edge nodes, one master edge

node (which has a scheduler and co-resides with a core node) and one core node.

/ ^

One frame

"V
For signaling For data transmission

/ \

Slot #5 Slot #6

Figure 3.8 AAPN Slot Assignment Explanation

We use a frame scheduling to allocate bandwidth, and in-band signaling through a

dedicated slot to coordinate data transmission over a fiber. Figure 3.8 is an example of a

36

Chapter 3 Signaling Design, Analysis and Implementation

frame structure to support 6 slave edge nodes with ID#l-6 and a master node with ID #0.

We use the centralized OTDM method [Peng07] [RaYa05] and each frame has 18 slots.

The first 6 slots were reserved for signaling (note that a master node does not need a slot

for signaling) and the last 12 slots are for data transmission. Each signaling slot has a

control field (i.e. the slot header) and a traffic signaling field. The traffic signaling field

from a slave node to a master node is called "traffic request", and that from a master node

to a slave node is called "traffic allocation".

Each slave node signals in one slot of a frame in order to communicate with the

master node and uses some other slots for data transmission. For example, through slot#0

in a frame, edge node#l can send its traffic request to and receives traffic allocation from

the master node. Likewise, edge node#6 can communicate with the master through

slot#5, etc. After a master node receives all traffic requests (by the end of slot#5), it exe­

cutes the scheduling algorithm to allocate bandwidth to each slave node by assigning

slots. All these new scheduling information will be sent out in the next frame.

Since slave nodes only receive and use the schedule in the next frame, there is al­

ways some delay. That is, scheduler schedules the allocation according to the requests in

the previous frame. The edge nodes receive and use the schedule to send out traffic in a

future frame. This can be compensated by an estimation/prediction method [FeSh04]

[ShYu05] of future traffic. Anyway, an edge node can have the exact allocated bandwidth

information that it can use when sends out traffic.

3.4.4 System Starts Up

When the system starts up, the master version software prints out some system informa­

tion such as the software version, the software title. It reads out some configuration in­

formation such as system size (defined to be the number of edge nodes), switch size (de­

fined to be the number of ports), frame size (defined to be the number of slots in a frame),

slot period (defined to be the duration in seconds of a slot) etc. from a configuration file.

The slave version software prints out some system information and waits for invi­

tation message from a master node.

37

Chapter 3 Signaling Design, Analysis and Implementation

3.4.5 Invitation Procedure

After the AAPN master software starts up, the master node invites each slave edge node

to join the network. It sends an invitation message to each slave node at a time, waits for

the response from a slave edge node. When a slave node receives an invitation message,

it sends back response message (same structure as invitation message) immediately. If

within a time threshold, the master node can not receive a response, it thinks the slave

node is not start up and sets this slave node's status as inactive.

Edge Node ID field is used in the message to distinguish which edge node to be

invited in case there is a combiner/splitter. In this case, the number of edge nodes is lar­

ger than the number of switch ports, two or more edge nodes are connected to one switch

port. We must indicate which edge node is to be invited by using the ID number. Through

this method, we can solve the scalability problem.

In this process, we also measure the propagation delay from a slave edge node to

a core node plus their clock difference. When a slave node receives invitation message, it

puts its local clock Ts to the sending time field in respond message. When the master node

receives this message, it uses its local clock Tm minus Ts. This value Td is the propagation

delay plus clock difference between the master and the slave edge node. This value will

be sent to the slave node later for synchronization purpose.

3.4.6 Configuration Procedure

After all slave nodes are invited, the master node enters this process. In this process, the

master node sends configuration messages to all slave nodes. It tells the slave nodes what

system parameters were used currently.

The message includes slave node status (active or inactive), so each slave knows

who are currently presented in the networks. Hence salve edge nodes know how the net­

work is configured, to whom they can send traffic. It also includes switch size, slot pe­

riod, frame size, master start time information, hence slave nodes can compute the exact

sending time to synchronize to the master node. Other system parameters such as switch­

ing guard time are also sent to each slave node.

38

Chapter 3 Signaling Design, Analysis and Implementation

3.4.7 Normal Working Procedure

After the configuration process, all slave edge nodes can exchange control information

with the master and exchange data among themselves (including the master node) via the

core node. The master node would reconfigure the optical switch according to the sched­

ule result.

A master creates three threads: (1) a receiving thread to receive traffic including

signaling and data slots, (2) a sending thread to send traffic including signaling and data

slots, (3) a scheduling thread to schedule allocation after it receives all requests. These

threads repeat the "receiving request", "schedule", "sending allocation", "sending data",

"receiving data" iteration all the time until the system stops.

A slave node creates only sending and receiving threads to finish the "sending re­

quest", "receiving allocation", "sending data", "receiving data" iteration.

3.5. Traffic Allocation Protocol

All slave nodes and the master node exchange traffic request and allocation information

defined in this protocol.

3.5.1 Traffic Request Message

This message is sent from a slave node to a master node to report the traffic (in slot unit)

which it wants to send to other edge node (a master node has its own traffic information).

By this message, it asks the master to assign some time slots to send its traffic.

3.5.2 Traffic Allocation Message

This message is sent from a master to a slave node to tell it which slots in a frame are as­

signed it to send traffic. When slave nodes receive this message, they know in what slots

and at what time to send out traffic to whom.

3.5.3 Traffic Request and Allocation Matrixes

Traffic request matrix:

int trafficReq[NUM_EDGE_NODES][NUM_EDGE_NODES];

39

Chapter 3 Signaling Design, Analysis and Implementation

The first index indicates the traffic source, and the second index indicates the traf­

fic destination.

Traffic allocation matrix:

int allocation[NUM_EDGE_NODES][FRAMEJ3IZE];

The first index indicates the traffic source, and the second index indicates which

slot in a frame should send out the traffic.

A careful reader should notice the little difference of the second index in these

two matrixes. In allocation matrix, the slave node only needs to know which slot number

in a frame it should send out traffic. That's all. The master node will configure the core

node switch correctly, when the traffic comes from a slave node arrives, it will direct the

traffic to the desired destination edge node.

3.6. Fault Monitor Protocol

When a master node and slave nodes exchange control information, they can also ex­

change fault monitor message. More information on fault detection and localization can

befoundin[ZhPe06].

If a master needs to shut down or has some other faults, it broadcasts the message

to all slave nodes, so slave nodes can select another master if possible.

When a slave node has some faults such as power failure, no signal, synchroniza­

tion error to report to the master, it sends this message to the master node to report the

fault it has. So the master node can take some actions and broadcasts it to other slave

nodes.

3.7. Software Architecture

In the previous sections we described each protocol separately. Now we take a look at the

whole structure of the software.

Figure 3.9 shows the software architecture of a master node and a slave node.

Modular design method and software engineering [VlieOO] method are used in the whole

software design project. Each block is a module to decouple the functions for easy main-

40

Chapter 3 Signaling Design, Analysis and Implementation

tenance and software evolution. It is clear how all the functional modules are integrated

and in what way they interact with each other. We describe them as follow.

Master node architecture Slave node architecture

1
Input traffic

Virtual queue,
traffic monitor

I
Fault detection,

protection '.

'

Data slot
aggregate

i

Signaling
Vslot

1
i *

Slolsend

To Application
or forward

• t
; Rata |

distribution

• t
Data slot

processing

Signaling slot
f: processing

Slot receive

A

Input traffic

l
Virtual queue,
traffic monitor

I
Fault detection,

protection

• „sw»<r<:

1 f

Data slot |
aggregate |

t *.

Signaling
slot

1 1
Slot send

1

To Application
or forward

T
Data

distribution

Data slot
processing

.

Signaling slot
processing

!

k

Slot receive

i L

|
| Optical fiber | I

" Optical fiber |

Figure 3.9 Software Architecture of a Master Node and a Save Node

In the master node architecture, the "Input traffic" module receives traffic from

outside AAPN. Then the "Virtual queue, traffic monitor" module puts this traffic into a

queue, and records the traffic information for monitoring use. When the time comes for

this node to send data, the "Data slot aggregate" module takes an item from the queue,

adds some sending control information and aggregates them into a slot. This slot is then

sent out through the "Slot send" module via optical fiber.

The "Slot receive" module receives a slot if any. If one is received, then different

modules are used depending on the type of the received slot. The "Signaling slot process­

ing" module processes it if it is a signaling slot. The "Data slot processing" module proc­

esses it if it is a data slot. This module will deliver the data to the "Data distribution"

module, then passes it to the up layer or forwards it by the "To application or forward"

module. Further for the signaling slot, if it is about traffic information, this information is

sent to the "Scheduling" module. If it is about fault, it is sent to the "Fault detection, pro­

tection" module for further processing. The "Fault detection, protection" module also de­

tects any faults and passes this information to the "Signaling slot" module for further

processing.

The "Scheduling" module receives all the traffic requests from all slave edge

41

Chapter 3 Signaling Design, Analysis and Implementation

nodes, runs a scheduling algorithm to schedule traffic allocations. The results are passed

to the "Signaling slot" module for transmission. The scheduled result is also passed to the

"Switch control" module, which reconfigures the core switch connection as desired.

In the slave architecture, there is no "Scheduling" or "Switch control" module. All

the other modules have the same function as in the master node with the exception as fol­

low. The "Virtual queue, traffic monitor" module passes traffic information directly to

the "Signaling slot" module for processing. The "Signaling slot processing" module only

need to pass fault information to "Fault detection, protection" module.

The interface of virtual input queue and scheduling algorithm are clearly defined

in our software. It is easy to add new algorithms to them, so we can compare and evaluate

the performance of different algorithms.

3.8. Measured System Parameters and Analysis

Some system parameter measurements are shown in this section. We are interested in the

synchronization precision and scheduling time of each frame.

AAPN edge
node

Optic fiber

<

Delay
emulator

Optic fiber .
<

AAPN edge
node

Figure 3.10 Logical Test Network Configuration (Core Switch is not Shown)

3.8.1 Synchronization Parameters

Figure 3.10 shows the logical test network configuration. We developed a program to

simulate optical fiber propagation delay. The principle is like this: each time a receiver

receives a slot, it stores the whole slot in memory, wait for a specific time Tdeiay, then

sends it to another edge node. Tdeiay can be configured in the command line. The purpose

of this program is to simulate the propagation delay and see if our program works for dif­

ferent propagation delays. The better way is to use a fiber delay to measure the synchro­

nization parameter.

We set different delay parameters as shown in Table 3.1 to evaluate our synchro­

nization protocol.

42

Chapter 3 Signaling Design, Analysis and Implementation

Table 3.1 Delay Parameters for Synchronization Measurement

Case 1

Case 2

Case 3

Case 4

Set and Expected delay (s)

0.0000

2.0000

6.5000

17.0000

Measured delay(s)

0.0015

2.0144

6.5024

17.0031

Figure 3.11 to Figure 3.14 show measured synchronization errors (expected value

minus measured value) of the three cases. A negative error means a receive slot arrives at

the core node after the expected time, while positive error means slots received by the

core node are early than the desired time. Figure 3.11 shows large spike value than the

other two cases. Possibly this is because receiving and sending threads work at almost

exactly the same time, so squeeze the computer system processing capability.

0.005 -

0.015

^ 0.01
w

T5
c o
o
CD

CO

JS
CD
Q
c
••g -0.0051
CO
N

'c
2
s:
o
c
>^

CO

— i

i

>
1

- 1 3

1

i

i
i

i

i

i

i

:

— i

il
;

1

. _ _,
1 >

—

-0.01

-0.015

-0.02

-

X
i ;

'- |

;

>

1 <

c i

m
i

; c

!
1

>

:.

^ ;

i ;

>

w

>

> .

0 500 1000 1500 2000 2500 3000 3500 4000

Sampling Point (Slot Number)

Figure 3.11 Synchronization Measurement Case 1

43

Chapter 3 Signaling Design, Analysis and Implementation

x10

•o c o o
CD

CO
> .

_co
<D

a
c
o

' - 4 — •

CO
N
C
2 .c o c
co

0 500 1000 1500 2000 2500 3000 3500 4000

Sampling Point (Slot Number)

Figure 3.12 Synchronization Measurement Case 2

x 10'

1000 1500 2000 2500 3000

Sampling Point (Slot Number)
3500 4000

Figure 3.13 Synchronization Measurement Case 3

44

Chapter 3 Signaling Design, Analysis and Implementation

x1(T

w
"O
c
o
o
d)
W
>.
JS
<D

Q
c
o
"5
N
'c
2
.c
o
c >,

i — r i x ~ T T

J«&J jti ftflU&f J *i U JfcfclfflM I AIM

0 500 1000 1500 2000 2500 3000 3500 4000

Sampling Point (Slot Number)

Figure 3.14 Synchronization Measurement Case 4

Table 3.2 Synchronization Error Measurement

Case 1

Case 2

Case 3

Case 4

Maximum (ms)

12.303

1.757

15.180

0.658

Minimum (ms)

-19.111

-8.025

-21.696

-12.651

Average (ms)

-3.139

-3.148

-3.350

-3.978

Table 3.2 shows the synchronization error measurement of these threes cases. As

average values in all cases are negative, it means slots always arrived after the expected

time. This is intuitively correct due to that there is always a delay. This is because the

software processes the schedule first then sends out the data. It resulted in the processing

delay. The maximum and minimum values are random in a sense. This is because the OS

(Operating System) is not deterministic and we can not assure the timer function (a sys­

tem call) is fired as exact as we desired. In all cases slots arrive at the core node in toler­

ance range (the guard time must larger than the maximum value the oscillation), so they

45

Chapter 3 Signaling Design, Analysis and Implementation

can be transmitted through core node without any data loss.

Note the big peak shoot at times. This is because the operating system flushes

data to disk or runs other tasks at the same time. Sending and receiving timers can not be

fired at the exact desired time. Note also the propagation delay simulator is a piece of

software, it introduce another processing delay and uncertainty.

Linux is not a real time OS, so some critical timing is not as precise as we ex­

pected. System response such as timer is not deterministic. It depends on the workload of

the system. We set the threads related to time stamping in high priorities which mainly

impact the synchronization. However, this does not improve the performance as much as

we desired. Commercial real time OS such as VxWorks, QNX or OSE perhaps can fulfill

this requirement. Hardware solution is another possibility and a better one.

3.8.2 Slow Prototype Synchronization Problems and Solutions

As seen from the above section, synchronization precision is not good when we imple­

mented the system under Linux because of the undetermined processing delay and OS

scheduling uncertainty. Since the root reason is the indeterminate processing delay, our

solution is to use FPGA hardware for synchronization processing.

edge.no.de ., edge node

Optical fiber
PCi FPGAi

Time stamp
Optical fiber Core node FPGA2

Time stamp
PC2

Figure 3.15 System Architecture of FPGA Version A

Figure 3.15 describes the logical architecture of the system (detailed FPGA archi­

tecture was described in Section 2.3.2). PC and FPGA inside the dot line constitute the

edge node. In this case we only need to measure the time difference and propagation de­

lay between the two FGPA (each FPGA has a clock). This is because FPGA is the real

sending and receiving device that should coordinate with the core node.

The principle is as follow: PCi sends out a slot to FPGAi, FPGAi timestamps the

sending time. Then it sends out the slot to FPGA2 through the core node, FPGA2 receives

this slot and timestamps the receiving time. Note now the time stamping process is done

by FPGA, it is deterministic. This slot goes to PC2. PC2 then computes the time differ­

ed

http://edge.no.de

Chapter 3 Signaling Design, Analysis and Implementation

ence plus the propagation delay which sums to Td. At PC side, PC only computes Td and

processes signaling protocol. Note we do not care if there is some delay between PQ and

FPGA; on condition that PCi sends slot to FPGA; before the required sending time as in­

dicated by the scheduling at which the slot should be sent out. This assures the slot ar­

rives at the core node at the desired time.

A picky reader will ask if there is still some processing delay. Theoretically there

is some delay. However, this delay is negligible compared to our time precision which is

in micro-second order. The good thing is that even it is not negligible we can compensate

it. Notice this delay is determined by the design of the hardware system. When we fin­

ished the design, the delay is fixed. So we can compensate this delay by deducting this

value from our measured time difference.

The rule is using deterministic technique to process the timing, hence eliminate

the undetermined operating system processing time. If the processing time is fixed and

has some delay, we can compensate it to achieve a good synchronization. The other pro­

tocol is not time critical, and could use general purpose CPU or micro controller to proc­

ess it. Hence we can take advantage of the both: the quick and fixed processing time of

FPGA and the great computing power of CPU.

3.8.3 Scheduling Time Measurement

Table 3.3 shows the scheduling time with different system sizes and frame sizes with a

slot period of 250us. We will plot a curve of this data later for a clearer view and easier

analysis. We care about the maximum scheduling time because scheduling must be fin­

ished in each frame even in the worst case. The scheduling time is constrained by the slot

period and the ratio of the frame size to the system size.

The time constraint Tg (guard time) is the slot period multiplies the difference of

the frame size and the system size.

Tg = (Nf-Ns)*Ts (3.6)

If we set Nf (frame size) to 16, Ns (system size) to 32, Ts (slot period) to 250us, we

have Tg =(32-16)*0.25 = 4.0ms for the scheduler to finish the schedule algorithm (see the

first row in the table). Actually we can set the slot period to 0.203ms/16 = 12.7us in this

case. For a system size of 64 edge nodes and a frame size is 128, we have Tg = (128-

47

Chapter 3 Signaling Design, Analysis and Implementation

64)*250us = 16.0ms.

Table 3.3 Scheduling Time vs System Size and Frame Size

System
size

(nodes)
16

16

16

32

32

32

64

64

64

Note: 0¥

Frame
size

(slots)
32

64

128

64

128

256

128

256

512

l means n

Allowed
time (ms)

4

12

28

8

24

56

16

48

112

neasured sch

Max schedul­
ing time

(ms)
0.203

3.503

2.948

13.161

13.357

14.467

14.617

15.278

15.790

eduling time is

Min schedul­
ing time (ms)

0.072

0.102

0.141

0.909

1.185

1.849

3.206

3.347

5.441

Mean sched­
uling time

(ms)
0.103

0.130

0.177

11.158

11.297

11.319

12.058

12.104

12.546

ess than the allowed time.

Result

OK

OK

OK

OK

OK

OK

OK

OK

OK

Note we should use the maximum measured scheduling time to compare. This is

because we must finish the computing in the worst case. The time constraint can be re­

laxed if we use a larger frame size. As we will see later, the rule is that we should set the

frame size bigger than 3 times the system size to achieve high protocol efficiency and

scheduling flexibility. So the scheduler can have enough time to compute the allocation.

Our new switch aims at a slot period of 210us, the fastest speed it can has. When

the frame size is more than 3 times the system size, this requirement can be fully fulfilled.

It is computed as follow: Tg = (64*3-64) * 210us = 26.88ms

It is larger than any of the measured scheduling time. We draw a curve of this

data for a clearer view and easier analysis.

The curve of scheduling time vs the system size and the frame size is shown in

Figure 3.16. One can see from the figure, with a fixed number of nodes (16 nodes, the

bottom curve), the scheduling time increases when the frame size increases, from

0.103ms of 32 frame size to 0.130ms of 64 frame size, and 0.177ms of 128 frame size.

Curves with other system sizes have the same behavior.

Chapter 3 Signaling Design, Analysis and Implementation

12

i-
CO 4

r- t -
e-

i r+

- 9 — 32 nodes

- 4 — 64 nodes

100 300 400 500 600

Frame Size (Slots)

Figure 3.16 Scheduling Time vs Frame Size

«r 10

I

CO 4

1 — ; - 1 /- r i 1 i] 1

1 t- -/-— i t i 1 i i 1

l / i I l I I I I I
/ I l I I I I I I

/ j I I 1 I 1 4- - "- - I 1

15 20 25 30 35 40 45 50 55 60 65

Frame Size (Slots)

Figure 3.17 Scheduling Time vs System Size with Frame Size Fixed at 128

With a fixed frame size, the scheduling time also increases when the system size

increases. Also note that scheduling time increases very fast when system size increases

from 16 to 32. But it is much slower when it increases from 32 to 64. This is because of

the intrinsic property of the scheduler algorithm. See [Peng07] for more details.

Figure 3.17 shows the curve of scheduling time vs system size while we fixed

frame size to 128 for a clearer view. When system size increased from 16 to 32, the

scheduling time increased from 0.177ms to 11.159ms. The scheduling time increased

from this value to 12.058ms when system size increased from 32 to 64. This says when

49

Chapter 3 Signaling Design, Analysis and Implementation

system size is small, scheduling time increases very fast. When system size is big, it in­

creases much slower. Our measured result has the same trend as said in [Peng07].

3.9. Concluding Remarks

Based on the analysis of the frame-based and slot-based signaling overhead and discus­

sion of in-band signaling and out-band signaling, we have chosen frame-based and in-

band signaling as our design. We have successfully designed and implemented the AAPN

control platform, including synchronization signaling, bandwidth allocation signaling,

traffic monitor protocol and fault monitoring protocol. We have also integrated the QBvN

scheduling algorithm to test the scheduling time.

We measured the synchronization precision and the scheduling time with different

frame sizes and slot sizes. Both measurements meet our design requirement with a rea­

sonable guard time between slots for safe data transfer.

50

Chapter 4 AAPN Traffic Control

Chapter 4. AAPN Traffic Control

Having discussed the implementation of AAPN signaling protocol, we now consider the

design of our congestion control. We shall extend the XCP algorithm using a cross-layer

design. Simulation modeling and environment are provided.

4.1. Crosse-Layer Design of XCP-CL Algori thm

We first introduce the XCP congestion header, the method to pass the real time band­

width change information to the XCP algorithm by cross-layer design then provide step-

by-step procedure of the algorithm, an example is provided after. Simulation network

model is provided at the end.

4.1.1 XCP-CL Congestion Header

0 8 16 24 31

Protocol Length Version Fromat Unused

X

RTT

Reverse FeedBack

Delta_Throughput

Figure 4.1 XCP-CL Congestion Header

As discussed in motivation and methodology in Chapter 1, the original XCP algo­

rithm needs to know all the congestion information along the data path, and assumes the

link bandwidth does not change with time. However, AAPN core node works in TDM

mode and reconfigures according to the scheduling of edge node requests. As a result, the

core node bandwidth changes frequently. To resolve these problems, we need to modify

51

Chapter 4 AAPN Traffic Control

XCP algorithm and take advantage of AAPN signaling protocol. We use the same XCP

congestion header described as shown in Figure 4.1 to pass the bandwidth change infor­

mation to the XCP algorithm.

Our XCP-CL uses the "Delta_Throughput" field to bring congestion information

to the receiver. This field is initialized by the sender with the desired value and can be

modified by any routers through the path. At each router, the XCP-CL algorithm makes

use of an EC (Efficiency Controller) and an FC (Fairness Controller) to allocate band­

width based on congestion at the current router. The details of EC and FC can be found in

[KaHa02a] [KaHa02b] [Kata03], and are summarized in Appendix A. After receiving a

packet, the receiver sends this information back to the sender to adjust its sending rate

through "Reverse_Feedback" field. "RTT" field is the estimated RTT (Round Trip

Time). We do not use other fields of the header such as protocol type, length, version and

format. Their discussion is omitted.

4.1.2 Passing Real Time Bandwidth Information

As described before, a scheduler allocates bandwidth to each edge node using an AAPN

signaling protocol in the data link layer. Hence each edge node knows the bandwidth al­

location in terms of the number of time slots. We may take advantage of this signaling

protocol.

After receiving the allocation information, an edge node can compute the assigned

bandwidth using the frame period and the transmission speed. It computes an equivalent

BW (Bandwidth, the actual bandwidth) in Mbps using the following formula:

BW = N s * C * T s / T f (4.1)

where Ns is the number of assigned slots, C is link capacity in Mbps, 7} is frame period,

Ts is slot period. Note: 7/77$ is the frame size in slots. Then the XCP-CL algorithm can

use this equivalent BW to compute allowable bandwidth for each flow using the EC and

FC controllers. When an edge node receives an XCP-CL packet, it compares the com­

puted result with "Delta_Throughput" field in the XCP-CL header and updates this value

when the computed result is less.

So after the packet passes through the whole data path and returns to the sender, it

carries the bottleneck information of the path. The sender can adjust its sending rate ac-

52

Chapter 4 AAPN Traffic Control

cording to this information to avoid congestion. Hence XCP-CL algorithm can work cor­

rectly in AAPN.

Note that this design is a cross-layer design. The core node sends out bandwidth

information in data link layer, an edge node takes it out and uses it in transport layer for

the XCP algorithm. We can see the benefits of cross-layer design in the following chap­

ter.

4.2. The XCP-CL Algori thm

Below is a step-by-step procedure of the XCP-CL algorithm:

1. The core node receives bandwidth requests from all edge nodes.

2. It runs the scheduling algorithm to compute the bandwidth allocation in terms of

number of time slots for each edge node.

3. It uses the AAPN signaling protocol to send the bandwidth allocation to each

edge node.

4. An edge node (a router running the XCP-CL algorithm) receives the bandwidth

allocation, and converts it to data rate in bits per second.

5. It runs the XCP-CL algorithm to compute the allowable increase in data rate for

each flow.

6. When the edge node receives an XCP-CL packet from a traffic flow of a sender, it

extracts the "DeltaJThroughput" from the "Delta_Throughput" field in the XCP-

CL header. Then it compares the computed result with the "Delta_Throughput"

and updates this value when the computed result is less.

7. This XCP-CL packet passes the whole data path and arrives at the receiver.

8. The receiver copies the "DeltaJThroughput" in the "Reverse_Feedback" field and

sends it back to the sender via an ACK packet.

9. The sender uses this information and computes the allowable sending rate and the

congestion window size.

10. The sender uses the new computed window size to send traffic until the next up­

date.

For example, assume the link is 45Mbps, and the core node allocates 12 slots out

of 18 slots in one frame to one edge node. One can obtain an equivalent bandwidth BW =

53

Chapter 4 AAPN Traffic Control

45Mbps *12 /18 = 30Mbps. Let's assume RTT be 0.020s, packet size 1500 bytes. And

there are 10 flows. Then one flow should have a fair sending rate of 3Mbps. If the previ­

ous cwnd (Congestion WiNDow size) is 4 packets (sending rate of 2.4Mbps), then

Delta_Throughput = (3Mbps - 1500*8*4 /0.020) = 600Kbps (1 packet increment in

cwnd). This value will be copied to "Reverse_Feedback" by the receiver then sent back

to the sender to adjust its sending rate.

4.3. Simulation Network Modeling

Figure 4.2 AAPN Network Model, One Core Node and M=2n Edge Nodes

Figure 4.2 shows the general network model of an AAPN network application

with one core node in our simulation. The dot-lined part is the AAPN network with one

core node. As we introduced before, the AAPN optical switch is the core node. There are

2n edge nodes (routers running AAPN signaling protocol), Rn-Rin and Rji-Rjn, each of

which is connected to the core node via an optic fiber. A core node has 2n full-duplex

ports, Pii-Pjn and Pji-Pjn, each of which is connected to a corresponding edge node. One

edge node (R;n) co-resides with the core node and is designated as the master node. It

controls the core node switch and runs the scheduler. Other edge nodes are slave nodes.

Routers RLI-RUI and RRi-RRn are ordinary routers. The XCP-CL algorithm runs in these

edge nodes and routers so that it can compute congestion feedback to the senders. There

are n2 flows (sender-receiver pair) in the networks and each link has a capacity of C and a

54

Chapter 4 AAPN Traffic Control

delay of d.

The following tables provide the delay and bandwidth parameters of 3 cases of

network we are going to experiment. We set M=2 for simplification (the upper part in

Figure 4.2), because with M equals the other even number, the sub-network is the same.

So we can evaluate our design in different bandwidth from 45Mbps, 155Mbps to lGbps.

Table 4.1 Delay and Bandwidth Parameters of Case 1

Simulation time

Delay of flows 0-19

Delay of flows 20-39

Delay of flows 40-59

Delay of flows 60-79

Delay of flows 80-99

Bandwidth of Ru-Rji

0-200s

110ms

130ms

150ms

130ms

110ms

45Mbps

200-400s

170ms

190ms

250ms

290ms

150ms

40Mbps

400-600s

140ms

210ms

110ms

150ms

130ms

45Mbps

Table 4.1 shows the delays and bandwidth of 100 flows in Case 1. We choose 100

flows because it is a large number commonly used in most literature. All links have a

bandwidth of 45Mbps, the standard T3 speed. During the time interval 0-200s, conges­

tion occurs at Ru, due to 100 flows competing for the 45Mbps bandwidth. During 200-

400s, the core node re-allocates the bandwidth between Ru and Rji to 40Mbps. Since this

bandwidth is less than 45Mbps, then the bottleneck shifts to Ru. During 400-600s, the

bandwidth changes back to 45Mbps.

Table 4.2 Delay and Bandwidth Parameters of Case 2

Simulation time

Delay of flows 0-19

Delay of flows 20-39

Delay of flows 40-59

Delay of flows 60-79

Delay of flows 80-99

Bandwidth of Ru-Rjj

0-200s

110ms

130ms

150ms

130ms

110ms

155Mbps

200-400s

170ms

190ms

250ms

290ms

150ms

140Mbps

400-600s

140ms

210ms

110ms

150ms

130ms

155Mbps

55

Chapter 4 AAPN Traffic Control

Table 4.3 Delay and Bandwidth Parameters of Case 3

Simulation time

Delay of flows 0-19

Delay of flows 20-3.9

Delay of flows 40-59

Delay of flows 60-79

Delay of flows 80-99

Bandwidth of Rn-Rji

0-200s

110ms

130ms

150ms

130ms

110ms

lGbps

200-400s

170ms

190ms

250ms

290ms

150ms

980Mbps

400-600s

140ms

210ms

110ms

150ms

130ms

lGMbps

Table 4.2 shows the delays and bandwidth parameters in Case 2. In this case, we

set the link bandwidth to 155Mbps, the standard OC-3 speed. Table 4.3 shows the delays

and bandwidth parameters in Case 3. In this case we set the link bandwidth to lGbps

which is normal in the current optical networks. In these two cases, the delays are the

same in Case 1, we change the bandwidth to evaluate the system with larger bandwidth to

show that our algorithm works in high bandwidth cases.

4.4. Implementation Environment

We run our XCP-CL algorithm simulation on PCs with the following configuration:

1. PC Environment #1:

OS is Window XP SP2.
CPU is Pentium® 4, 3.2GHz
RAM is 1.24 GB
Cygwin Version is 1.5.24-2
NS2 version is 2.29

2. PC Environment #2:

CPU is Pentium® 4, 2.2GHz
RAM is 504 MB
Cygwin Version is 1.5.24-2
NS2 version is 2.29

We use two different PC configurations to ensure the simulation result of the al­

gorithm is independent on the simulation environment. Note that a free hard disk must

larger than 10GB to run the simulation, especially for the lGbps scenario. This is because

56

Chapter 4 AAPN Traffic Control

the trace files are very large. For example, the lGbps scenario, the original trace files are

about 4GB and the immediate analysis output files are about 2GB.

The simulated time is 600s which is the duration found to provide steady-state

value (approximately) for a performance measure. For the fast bandwidth change sce­

nario, simulation time can be shorted to 100s. It is still long enough to observe the behav­

ior of the system. The statistical mean value of a performance measure is obtained from

at least three measurements each with a different seed. We have also obtained the 95%

confidence intervals of these measures. However, these confidence intervals are usually

quite small compared with the mean. For example, see Table 5.5 in Section 5.6. There­

fore, we have omitted their presentations in others places for clarity purpose.

4.5. Concluding Remark

In our XCP-CL design and simulation (presented later), we use an out-band control chan­

nel for the signaling and assume there is only one core node and a fixed number of edge

nodes. However our algorithm can be extended easily to other settings. For example, it

can work with any number of edge nodes and signaling can be in-band. In any case, the

master node will send the bandwidth allocation information to each edge node. Each edge

node will send out traffic according to this allocation. Otherwise the non-committed traf­

fic will be dropped by the core node. For multiple core nodes configuration, each edge

node should first decide which core node as a master node to relay the traffic (the routing

problem). After the selection, the system works as the same as a one core node system.

In summary, as long as XCP-CL algorithm knows the bandwidth information, the

algorithm works (We can see the performance evaluation in later chapter). Our design of

the AAPN signaling protocols guarantees that the real time bandwidth information is

passed correctly to the routers which run the XCP-CL algorithm.

57

Chapter 5 XCP-CL Performance Evaluation

Chapter 5. XCP-CL Performance Evaluation

We have evaluated our system using a network of N=l core node and M=6 edge nodes,

each with 100 greedy FTP flows as described in previous chapter. The slot period is set

as 200us and the frame period is 3.6ms (that is 18 slots). NS2 simulation [ISI07] is used

to obtain the time evolution of the performance measures. To simulate the dynamics of

network, we change the propagation delay from each sender to each router RLn, and the

delay from each router RRH to each receiver periodically.

There are different performance measures used in our study. End-to-end delay is

defined to be the duration from the time the first bit of a packet is transmitted from the

sender until the last bit of the same packet is received at the receiver. RTT (Round Trip

Time) consists of the end-to-end delay of a packet and the end-to-end delay of its ac­

knowledgement packet. Link utilization is defined as the output sending rate of a router

port (in bps) divided by the maximum sending rate (the rated speed of a link). We meas­

ure the link utilization of each port of the router every RTT (use the highest value seen in

flow), and measure the congestion window size when an end system receives an ACK.

Flow sending rate is defined as window size divided by RTT. It is measured each time

when a packet of a flow departs the router. We also define the fair sending rate to be link

capacity divided by the number of flows. The queue length in the buffer is measure each

time a packet enters the queue or a packet leaves the queue. The congestion window size

is defined as the number of packets (as most of the literature did) that can be outstanding

at any time without the receiver's acknowledgement (through ACK packets). The sender

dynamically adjusts the cwnd according to the condition of the network. Basically the

size of the congestion window, to a large degree, controls the speed of transmission as

transmission pauses until there is an acknowledgment. End to end delay is defined as the

elapsed time from the instant that a packet is sent from a sender to the instant that it is

received by a receiver. It is measured each time when a packet is received by the receiver.

We first study three cases in our performance evaluations, with a link capacity of

58

Chapter 5 XCP-CL Performance Evaluation

C = 45Mbps, 155Mbps, and lGbps, to show our algorithm works in a wide range of link

capacity. The propagation delay d of each flow is shown in the table in the previous chap­

ter. In each case study, we also compared the scenarios when router Ru is aware of the

change in link capacity of the core node and the scenario that Rn is not. This would allow

us to study the benefit of the cross-layer design of our XCP-CL algorithm. Then we in­

vestigate the impact of different queue buffer size on queue length, queuing delay,

dropped packet and link utilization.

We evaluate two scenarios under each case. The scenario of using the original

XCP algorithm will be used as a reference for comparison with the scenario of using the

XCP-CL algorithm. For clearer presentation, we only draw 5 flows (#1, #21, #41, #61,

#81) from each group of different RTTs. They are representative of the performance of

the system.

5.1. Case 1: Link Bandwidth of 45Mbps

In this case, the rated bandwidth of the connection between Rii-Rji is 45Mbps and the

number of XCP flows is 100. More details of the network model can be found in the pre­

vious chapter. In particular, Table 4.1 (see previous chapter) provides the changes in de­

lay of different flows and link bandwidth during the 600s of simulation time. Congestion

occurs at Rn due to the core node scheduling.

The fair sending rate of each XCP flow is 0.45Mbps (45Mbps/100 which is

equivalent to 56.25 kilobyte/second) during 0-200s and 400-600s. The link bandwidth is

reduced to 40Mbps after bandwidth re-allocation by the core switch at time 200s. During

200-400s, the fair sending rate of each XCP flow should be 0.4Mbps (40Mbps/100 which

is equivalent to 50 kilobyte/second) in order to avoid congestion at Rn if XCP algorithm

knows such bandwidth change.

We use a buffer size of one at the edge node, because we plan to implement the

edge node in an FPGA which has limited memory (much less than in a PC). Buffer size

in other routers are set to the product (bandwidth * propagation delay * 2) as described in

some literatures. Our performance evaluation later supports this choice of buffer size and

the feasibility of implementing XCP-CL in FPGA.

59

Chapter 5 XCP-CL Performance Evaluation

5.1.1 Scenario 1: Using Original XCP Algorithm

Under this scenario, the edge node R;i has no knowledge of the change in link capacity of

the core node when congestion occurs. It has no way to inform the sender to adjust its

congestion window size (sending rate) correctly.

100 500 600 200 300 400

Time (Seconds)

Figure 5.1 Window Size of Flow#l in Scenario 1, Case 1

O FIOW#1

f Flow#21

* Flow#41

* Flow#61

» Flow#81

200 300 400

Time (Seconds)
500 600

Figure 5.2 Window Sizes of 5 Selected Flows in Scenario 1, Case 1

60

Chapter 5 XCP-CL Performance Evaluation

Window Size

Figure 5.1 shows the time evolution of the window size of Flow#l. Between time Os and

200s, this flow can quickly stabilize to a window size of 16 packets. There is a small peak

at time t=8s probably due to the system adjustment. However, it cannot respond to the

congestion and the dynamic changes of the network configuration between 200s and

400s, as it fluctuates heavily (the maximum is 34 packets and the minimum is 6 packets)

all the time and can not attain a stable window size. After the bottleneck is removed, one

can see that the congestion dissipates beyond t=400s and the window size quickly con­

verges to 17 packets in about 22s.

From Figure 5.2, one can see that other flows have a similar behavior and there­

fore follow a similar pattern in reaction to the congestion as we expected. Each flow has

attained a different window size. This is because the RTT values are different. One can

see the fairness in the sending rate performance in the following.

x 10

200 300 400
Time (Seconds)

500 600

Figure 5.3 Sending Rate of Flow#l in Scenario 1, Case 1

61

Chapter 5 XCP-CL Performance Evaluation

- 1 4
c
o
o

CO 1 2

~t/5

CD
•4—*

CO

| 6

CD
D>
CO
"- 4
CD 4

>
<

.E 2
c
c
DC

x10

I i i I L i i

—:—^—:— R - -ft-
i : i W

r I |

-Mi--iV-Jt:A-

1

"1
 1

i i i

i i i
i i i
i i i
i i i
i i i

i i i

i i i
i i i
i i i

i i i
i i t
i i i
1 ! 1

/ : ; l

U 1 J. 1

' ! ! !
i i i
i i i

i i J
i i i

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.4 Running Average of Sending Rates of Flow #1 in Scenario 1, Case 1

x 10

200 300 400

Time (Seconds)
600

Figure 5.5 Sending Rates of 5 Flows in Scenario 1, Case 1

Sending Rate

Figure 5.3 depicts the sending rate of Flow#l and Figure 5.4 shows the running average.

62

Chapter 5 XCP-CL Performance Evaluation

During the interval of 0-200s, this flow achieves its fair rate after 3s with a stable mean

sending rate of 56 kilobyte/second. There is only a very small fluctuation of about 1 kilo­

byte/second. During the congestion from 200s to 400s, the rate fluctuates heavily be­

tween its maximum of 105 kilobyte/second and its minimum of 2 kilobyte/second. After

the congestion disappears beyond 400s, the flow rate goes back to its fair share after a

few seconds. Other flows follow the same pattern as show in Figure 5.5.

0.8

o

S3 0.6

c
0.4

0.2

! ! !
1 1 1

J 1 . . . r
:.

.

:
L

•

mm

L

fmm

L

L

mm.

;

>

1 I 1 1

:

;

•

1 1

' I I I

t i i i

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 [t 1 t

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.6 Link Utilization in Scenario 1, Case 1

Link Utilization

Figure 5.6 depicts the output link utilization of the router (in Figure 4.2, there is only one

output and one input links). One can see that full utilization is attained very quickly

within 3s and has a very small fluctuation throughout the period of 0-200s. During the

congestion interval from time 200s to 400s, the utilization goes down to 0.4 abruptly and

stays there (with only a small fluctuation) due to the congestion and packet drops. This is

because Rn does not know the link capacity has been changed from 45Mbps to 40Mbps,

and therefore does not send back correct information to its sender. Since the sender does

not have the correct information and tries to send at a higher rate than the allowable one.

63

Chapter 5 XCP-CL Performance Evaluation

Thus congestion occurs in router Ru and some of the packets are dropped. The senders

can detect this information and half the congestion window size. The senders may detect

the packet-drop information and would have halved the congestion window size accord­

ingly. Unfortunately, XCP protocol is aggressive [KaHa02] to use all the spare bandwidth

indicated in the ACK no matter what congestion can occur in the router.

After the bottleneck disappears beyond 400s, XCP has the correct congestion in­

formation and the utilization goes back to 1 quickly again.

1

iQ 0.8
CD

o
CO a.
^ 0.6
4—»

c
CD
_1

§ 0.4
CD

o
0.2

0 = - - —
50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.7 Queue Length in Scenario 1, Case 1

Queue Length

Figure 5.7 shows the time evolution of queue length of the router buffer serving all 100

flows. As one can see, when XCP knows the congestion information (during time 0-200s

and 400-600s), XCP works well and there is no queue in the router. However, when there

is congestion and XCP does not know the exact congestion information during time 200-

400s, there is a queue in the router which oscillating between 0 and 1 (the maximum

buffer size) with a running average of about 0.1 packet. The running average has less

fluctuation as expected and its fluctuations correspond to the instantaneous influx of ran-

64

Chapter 5 XCP-CL Performance Evaluation

dom arrivals as shown.

5.1.2 Scenario 2: Using XCP-CL, the Modified XCP Algorithm

Under this scenario, the edge node Rn is aware of the change in link capacity of the core

node and therefore the congestion information. Rn advertises the correct congestion in­

formation to all senders in order to adjust their congestion window size (and sending

rate).

25

20

to
Q
O
cc 15
0.
CD
N

in

T 3
C

I I I I I

! I / ! !
: : / : \ :
: -if ; w 1
i _ | | j V . L_ _ ^

j -,- , | j r _

T . i t r T

100 200 300 400

Time (Seconds)
500 600

Figure 5.8 Window Size of Flow#l in Scenario 2, Case 1

Window Size

Figure 5.8 shows the time evolution of the window size of F l o w # l . Between t ime 0s and

200s, this flow can quickly stabilize to a window size of 16 packets with a little peak at

time t=8s due to the system adjustment. Between time 200s and 400s, this flow can attain

a stable window size of 23 packets in about 30s in response to the congestion and the dy­

namic change of the network configuration. When the congestion disappears beyond

65

Chapter 5 XCP-CL Performance Evaluation

t=400s, the window size also quickly converges to a window size of 17 packets after

about 20s.

200 300 400

Time (Seconds)
500 600

Figure 5.9 Window Sizes of 5 Flows in Scenario 2, Case 1

From Figure 5.9 one can see that other flows have a similar behavior and there­

fore follow a similar pattern in reaction to the congestion and the dynamic configuration

changes. Again each flow would attain a different window size because the RTT values

are different.

Sending Rate

Figure 5.10 depicts the sending rate of Flow#l and Figure 5.11 shows the running aver­

age. During 0-400s, Flow#l achieves its fair rate of 56 kilobyte/second after 5s which

reduces to 50 kilobyte/second during congestion and back up to 56 kilobyte/second after

the congestion. A dip is noticed at t=200s (with a sending rate of 37 kilobyte/second) and

a peak at t=400s (with a sending rate of 68 kilobyte/second). This is due to the effect of

the dynamic changes of the network configuration. Because at these points, there is some

approximation to the RTT measurement which is required to compute the sending rate

(remember it equals congestion window size divided by RTT).

66

Chapter 5 XCP-CL Performance Evaluation

x 10

T5
C
o
o

CO
w
CD

>»

CD
+-•
CO

DC
D)
C
T3
C
CD

CO

piilW
I

I

f

!

_ r JillliiJPI

l i
Wiiw^fJiBl^i^iff l t^

• ' i l l

100 200 300 400'

Time (Seconds)
500 600

Figure 5.10 Sending Rate of Flow#l in Scenario 2, Case 1

- 1 4
c
o
o
CD 1 9

CO 1 2

~co
CD

• * - * >,
£. 10
B

O) 8

C
•o

I 6
CD
O)
CO
CD 4
>
<
CO

.E 2
c c
DC

0

x 10

1 J r L J. J L 1 J I L ^

t ! , , 1 j ! r , , !

T i i r T i i T i i r

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.11 Running Average Sending Rate of Flow#l in Scenario 2, Case 1

67

Chapter 5 XCP-CL Performance Evaluation

x 10

•o

§ 6
o
03

^ 5
CD

- I—'

CD
-I—•

to

c
g 2

C/3

* ' , " - '

1+

itittl'^iiiiwp'

•

100 200 300 400

Time (Seconds)

O Flow#1

-f- Flow#21

t Flow#41

* Flow#61

Flow#81

500 600

Figure 5.12 Sending Rates of 5 Flows in Scenario 2, Case 1

The sending rate has a small fluctuation of 3 kilobyte/ second but only 2 kilo­

byte/second during the congestion. In addition to the argument on the approximate meas­

urement of the RTT in the router, this may probably be due to the fact that the router also

shuffles the throughput of each flow to achieve fairness among all the flows. Figure 5.12

depicts the sending rates of 5 flows. As one can see these flows have a similar behavior

and follow the same pattern except they have an undershoot or overshoot at the instant of

time 200s or 400s. This is due to the dynamic configuration changes.

Link Utilization

Figure 5.13 depicts the link utilization of the router. One can see that full utilization is

attained very quickly after 5s. Then it stays there all the time even during the congestion

interval. The two dips at time 200s (with utilization of 0.75) and 400s (with utilization of

0.97) are due to the dynamic change of the network configuration.

68

Chapter 5 XCP-CL Performance Evaluation

0.8

c
_o

N 0.6

0.4

0.2

0^

1 L

j^M|p!IPWWtWWiffM''Wil
l»<l»l j.anw.WJ"w,*w^w1

i i i i l i l

A. _L ± _l.

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.13 Link Utilization in Scenario 2, Case 1

<n 0.8
<D
o
CO

Q.
.c 0.6
O)
c
CD
_l
§ 0.4
CD

o
0.2

I I I ! ! ! ! ! ! ! !

-i
-1

1
1

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.14 Queue Length in Scenario 1, Case 2
Queue Length

As we can see in Figure 5.14, there is no queue (so no queuing delay) in the router. This

69

Chapter 5 XCP-CL Performance Evaluation

is because XCP-CL can obtain the correct congestion information all the time. Because of

this nice property of our algorithm, we will no longer present the queue length perform­

ance of each simulation result in the follow sections.

5.1.3 Comparison

Comparing Scenario 1 with Scenario 2, we can see that when the system has no conges­

tion both XCP and XCP-CL work very well: full utilization is achieved very quickly;

window size converges to steady state in a short time while sending rate converges to the

fair share. However, when the system encounters congestion, there is a big difference in

performance between theses two algorithms. The utilization of XCP goes down to 0.4

abruptly while XCP-CL stays at 1 all the time (except for a dip at the beginning of the

duration due to the dynamic network configuration). The window size and the sending

rate of XCP oscillate heavily but XCP-CL works well (with only dips or overshoots at the

dynamic network configuration instants). XCP has a queue in the router during the con­

gestion while XCP-CL has no queue all the time.

The reason for this big difference is that XCP can not obtain the actual bandwidth

information and feedbacks a wrong value to its senders. On the other hand XCP-CL can

obtain the correct bandwidth information. So it performs well.

5.2. Case 2: Link Bandwidth of 155Mbps

Table 5.1 Delay and Bandwidth Parameters of Case 2

Simulation time

Delay of flows 0-19

Delay of flows 20-39

Delay of flows 40-59

Delay of flows 60-79

Delay of flows 80-99

Bandwidth of Rn-Rji

0-200s

110ms

130ms

150ms

130ms

110ms

155Mbps

200-400s

170ms

190ms

250ms

290ms

150ms

140Mbps

400-600s

140ms

210ms

110ms

150ms

130ms

155Mbps

In this case, the rated bandwidth (the maximum sending speed) of Rn-Rji connec-

70

Chapter 5 XCP-CL Performance Evaluation

tion is 155Mbps and again the number of XCP flows is 100. As before, Table 5.1 (re­

peated for clarity) provides the change in delay of different flows during the 600s simula­

tion time. The link bandwidth change is also provided in the bottom row. Since sending

rate is redundant information with respect to congestion window, and queue length per­

formance has a similar behavior, we shall only show link utilization and congestion win­

dow size performance.

5.2.1 Scenario 1: Using the Original XCP Algorithm

Under this scenario, the edge node Rn has no knowledge of the change in link capacity of

the core node when congestion occurs. It has no way to inform the senders to adjust their

congestion window size correctly.

120

100

o
CD
0^
CD
N

CO

o
• o c

100 200 300 400 500
Time (Seconds)

600

Figure 5.15 Window Size of Flow#l in Scenario 1 Case 2

Window Size

Figure 5.15 shows the window size performance of Flow#l. During the interval of 0-

200s, Flow#l achieves a stable window size of 55 packets quickly after 3s. But it can not

respond properly to the congestion during time 200-400s, as the window size fluctuates

71

Chapter 5 XCP-CL Performance Evaluation

heavily (the maximum is 68 packets and the minimum is 13 packets) all the time and can

not attain a stable window size. After the bottleneck disappears, the window size quickly

converges to 59 packets after 26s with a peak at 400s. This is due to the system adjust­

ment to the dynamic network configuration.

120

200 300 400

Time (Seconds)

Figure 5.16 Window Sizes of 5 Flows in Scenario 1 Case 2

1

0.8

io
n

3 0.6

=3

3 0.4

0.2

0'

F """

^

I I

I

J -

n

_ i

i :

_L

I

T-i

t 1 1 -

C I J _

Î Mp
I [

— + —

i

i

- ±

i

m
i

i i i

•; i i
i i
i i
i i
i i
i i
I !
I I

; I J

!_ _____|_

|

_.[___

- -] - - -

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.17 Link Utilization in Scenario 1 Case 2

72

Chapter 5 XCP-CL Performance Evaluation

Figure 5.16 shows the time evolution of the window sizes of 5 flows. They have a

similar behavior and therefore follow a similar pattern in reaction to the congestion which

each has a different window size due to the different RTT values.

Link Utilization

Figure 5.17 depicts the link utilization of the router. One can see that full utilization is

attained very quickly within 3s. During congestion interval of 200-400s, the utilization

goes down to 0.14 abruptly and stays at 0.16 (with a small fluctuation) due to congestion.

After the bottleneck disappears beyond t=400s, XCP has the correct congestion informa­

tion and the utilization goes back to 1 quickly again.

5.2.2 Scenario 2: Using XCP-CL, the Modified XCP Algorithm

Under this scenario, the edge node Rn knows the change in the link capacity of the core

node and sends congestion information correctly back to the senders.

80

70

60
CO

•*—>
CD
O
CO

CD
N
C/)

o
C

50

40

30

20

10

i i * r i i

; ; .; ; i
i i / • i ii i
r r f- T TI T
I i / i i l i

i i i i [i 1 'J I |_ I
1 ij 1 1 1

/ 1 I 1 ! 1
i i < i i i

i
i

i
i

i
i

J_

100 200 300 400

Time (Seconds)
500 600

Figure 5.18 Window Size of Flow#l in Scenario 2 Case 2

73

Chapter 5 XCP-CL Performance Evaluation

&
CD
^.
O
cC

CD
N

CO

o
C

80

70

60

50

40

30

20

10$

^^*k$*>frW**4^-^^-*K3r >

i) v^>i^r^m&'^-VhV!y&r^i>hvi

•+••'-4---+'

100 200 300 400
Time (Seconds)

o

*

Flow#1
Flow#21
Flow#41
Flow#61
Flow#81

500 600

Figure 5.19 Window Sizes of 5 Flows in Scenario 2 Case 2

Window Size

Figure 5.18 depicts the window size performance of Flow#l under XCP-CL algorithm. It

attains a window size of 55 packets after 3s between 0s and 200s. Between 200s and

400s, this flow can get a stable window size of 78 packets in about 15s in response to the

congestion and the dynamic change of the network configuration. When the congestion

disappears beyond t=400s, the window size quickly converges to 59 packets in about 10s.

Other flows have a similar behavior and therefore follow a similar pattern as one can see

from Figure 5.19.

Link Utilization

Figure 5.20 depicts the link utilization of the router. Full utilization is attained

very quickly after 2.5s. Then it stays there all the time even during the congestion inter­

val. The two dips at time 200s (with utilization of 0.67) and 400s (with utilization of

0.96) are because of the dynamic change of the network configuration. It is the same as

74

Chapter 5 XCP-CL Performance Evaluation

before.

0.8

c o

H 0.6

0.4

0.2

0*

i i i i i i ; r

nmmm pwr*

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.20 Link Utilization in Scenario 2 Case 2

5.3. Case 3: Link Bandwidth of 1Gbps

In this case, the topology and number of flows are the same as in Case 1 but now the

rated bandwidth of RH-RJI connection is lGbps (the normal speed of photonic networks).

Table 5.2 (repeat for clarity) provides the change in delay of different flows dur­

ing the 600s simulation time. The link bandwidth change also provided in the bottom

row. A bottleneck is created at Rn-Rji during 200-400s when the link bandwidth changed

to 980Mbps due to scheduling.

Table 5.2 Delay and Bandwidth Parameters of Case 3

Simulation time

Delay of flows 0-19

Delay of flows 20-39

Delay of flows 40-59

Delay of flows 60-79

Delay of flows 80-99

0-200s

110ms

130ms

150ms

130ms

110ms

200-400s

170ms

190ms

250ms

290ms

150ms

400-600s

140ms

210ms

110ms

150ms

130ms

75

Chapter 5 XCP-CL Performance Evaluation

Bandwidth of Ru-Rji lGbps 980Mbps lGMbps

5.3.1 Scenario 1: Using Original XCP Algorithm

Under this scenario, the edge node Rn has no knowledge of the change in link capacity of

the core node when congestion occurs. It has no way to inform the senders to adjust their

congestion window size correctly.

600

200 300 400
Time (Seconds)

500 600

Figure 5.21 Window Size of Flow#l in Scenario 1 Case 3

Window Size

Figure 5.21 shows the time evolution of window size performance of Flow#l. During the

interval of 0-200s, this flow achieves a stable window size of 350 packets quickly after

3s. But it can not respond to the congestion properly during time 200-400s, as the win­

dow size fluctuates heavily (the maximum is 504 packets and the minimum is 55 packets)

all the time and can not attain a stable window size. After the bottleneck disappears be­

yond t=400s, the window size quickly converges to 376 packets after 26s. Again other

76

Chapter 5 XCP-CL Performance Evaluation

flows have a similar behavior and therefore follow a similar pattern in reaction to the

congestion as one can see from Figure 5.22.

600

200 300 400

Time (Seconds)
500 600

Figure 5.22 Window Sizes of 5 Flows in Scenario 1 Case 3

77

Chapter 5 XCP-CL Performance Evaluation

0.8

c
o

"§ 0.6

0.4

0.2

1 1 ! 1 1 1 i
1 1 I ! 1 1 1

[! \ i 1 i

1 1 . 1

K i l l

i i i i i i (f i i i

c

c i i •• i i i i i i i

i i i • n- i i i V- i i i

1 1 !

] (1 1

1 1 1

1 1 1 !

i I i j , i i i

1 1 ! 1 1 1 1

1 1 1 1 1 1 1

^ 1 1 i 1 1 1 1
1 1 1 1 1 1 1

i i i i- i i i i i i i
i i i I : i i i i i i i
i i i i i i i i i i

i i i i
: i i i r

f i l l !

1 'S 1 1 * *
1 1 t
1 1 1
1 1 1

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.23 Link Utilization in Scenario 1 Case 3

Link Utilization

Figure 5.23 depicts the link utilization of the router. One can see that full utilization is

attained very quickly within 3s. During time 200-400s when there is congestion, the utili­

zation goes down to 0.14 abruptly and stays at 0.12 (with a small fluctuation) due to con­

gestion. After the bottleneck disappears beyond t=400s, XCP has the correct congestion

information and the utilization goes hack to 1 quickly again.

5.3.2 Scenario 2: Using XCP-CL, the Modified XCP Algorithm

Under this scenario, the edge node RJI knows the change in the link capacity of the core

node and sends congestion information correctly back to the senders.

78

Chapter 5 XCP-CL Performance Evaluation

600

500

^ 400
O
CO

Q_

CO

o
1 200

100

0
0 100 200 300 400 500 600

Time (Seconds)

Figure 5.24 Window Size of Flow#l in Scenario 2 Case 3

Window Size

Figure 5.24 depicts the time evolution of the window size performance of Flow#l. As

one can see this flow attains a window size of 350 packets after 35s between time 0s and

200s. Between time 200s and 400s, this flow can get a stable window size of 538 packets

in about 8s in response to the congestion and the dynamic change of the network configu­

ration. When the congestion disappears beyond t=400s, the window size quickly con­

verges to 376 packets in about 10s. Other flows have a similar behavior and therefore fol­

low a similar pattern in reaction to the congestion as one can see from Figure 5.25.

1 1 1 1 1

! \ /- ! 1 1
i i f i i, i

! 1/ ! 1 ' i
i i . \ i i

j

i i I I i

, (+ + +
i i i i i

i I . I i i

i i i i i
i i i i i

Chapter 5 XCP-CL Performance Evaluation

600

500

O
CO

©
N

w
o
-a
c

400

300

200

100

<^ O O i ^ v - f i ') •(-} i" <-)-

0" -e-e-ee-e-e-e-ei

-6-iiMft-^fr-*-ti Si1

^ v \

• • (• •

Flow#1

Flow#21

Flow#41

Flow#61

Flow#81

100 200 300 400 500 600

Time (Seconds)

Figure 5.25 Window Sizes of 5 Flows in Scenario 2 Case 3

Link Utilization

0.8

c
o

S3 0.6

c
0.4

0.2

0 *

mm, pwEPgppw

50 100 150 200 250 300 350 400 450 500 550 600
Time (Seconds)

Figure 5.26 Link Utilization in Scenario 2 Case 3

Figure 5.26 depicts the link utilization of the router. Full utilization is attained

very quickly after 3s. Then it stays there all the time even in the congestion interval. The

80

Chapter 5 XCP-CL Performance Evaluation

two dips at time 200s (with utilization of 0.8) and 400s (with utilization of 0.9) are be­

cause of the dynamic changes of the network configuration.

5.4. Performance Comparison of XCP and XCP-CL Algorithms

Table 5.3 Performance Comparison of XCP and XCP-CL During Congestion

Speed

Algorithm

cwnd

Fairness

Queue Length

Utilization

45Mbps

XCP

Bad

Bad

Non-Zero

Bad

XCP-CL

Good

Good

Zero

Good

155Mbps

XCP

Bad

Bad

Non-Zero

Bad

XCP-CL

Good

Good

Zero

Good

lGbps

XCP

Bad

Bad

Non-Zero

Bad

XCP-CL

Good

Good

Zero

Good

Notes: 1. cwnd is the congestion window size

2. Good and Bad: the relative performance during the congestion

Compare the three cases of different data rates, when there is no congestion at the

edge node Rn, both algorithms work very well, with a good link utilization, a fair sending

rate, and a zero queue length. However, when there is congestion, there is a tyg differ­

ence between these two algorithms as shown in Table 5.3. XCP-CL still works very well

in any case as before, but for XCP during the congestion interval, each flow can no

longer achieve a stable window size, nor a fair sending rate. There is always an oscillat­

ing queue in the router. The link utilization is also not good. When the bandwidth is

45Mbps, the link utilization goes down sharply to 0.4, while in 155Mbps case, it is 0.16.

When the bandwidth is lGbps, the link utilization goes down to 0.1. It is worse than the

former two cases. The reason for this big difference is that XCP can not obtain the actual

bandwidth information and feedbacks a wrong value to its senders. On the other hand

XCP-CL can get the correct bandwidth information. So it performs well.

5.5. Impact of Buffer Size on Queue Length, Packet Drops, Link
Utilization

We use the simulation model in Figure 4.2 and the parameters in Table 4.1 (Case 1 study,

81

Chapter 5 XCP-CL Performance Evaluation

100 flows with a link bandwidth of 45Mbps) to investigate the impact of different queue

buffer sizes on the performance of queue length, packet drop, link utilization. With other

parameters, the system behavior is similar. We set the buffer size to 1, 10, 100 and 1000

packets and measure the queue length, the queuing delay, the number of dropped packets,

and the link utilization of our XCP-CL algorithm and summarize them in the following

section. Again the performance of our algorithm is much better than the original one. The

results of the original XCP algorithm can be found in Appendix D.

Figure 5.27 to Figure 5.29 show the performance of queue length, queuing delay,

number of dropped packets and link utilization performance when the buffer size is set to

1, 10, 100, or 1000 packets. Queue length, queuing delay, and number of dropped packets

are all zero all the time. Link utilization is 1 all the time (with dips during the network

dynamic configuration instants) with any buffer sizes. Our algorithm works well even

there is congestion and the bandwidth changes with time.

^^
(Q
%
.*: o
CO

0-
-«_»' sz
O)
cz
CD

_ l

CD
D
CD
3

o

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0;
50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.27 Queue Length (Buffer SIze= 1, 10, 100, 1000 Packets, XCP-CL)

82

Chapter 5 XCP-CL Performance Evaluation

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

*~ 0.2

0.1

0i
50 100 150 200 250 300 350 , 400 450 500 550 600

Time (Seconds)

Figure 5.28 Number of Dropped Packets (Buffer Size= 1,10,100,1000 Packets,
XCP-CL)

B
CD
O
CO

a.
T3
0
Q.
Q.
O

E
3

1
1

L

L

•
L

i
T

r
r

r

1 1 1 1 1 1 1 ! 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

I 1 1 I 1 1 1 1 1 1 1

L J_ 1 J _l l _ L _ L . i . X J

I I 1 1 [I I 1 I I 1

0.8

c
o

N 0.61-

0.4

0.2

Ok
50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.29 Link Utilization (Buffer Size = 1,10,100,1000 Packets, XCP-CL)

83

Chapter 5 XCP-CL Performance Evaluation

Table 5.4 Queue Length, Queuing Delay, Dropped Packets & Link Utilization
vs Different Buffer Size (XCP)

Buffer Size (Packets)

Queue Length (packets)

Queuing Delay(ms)

Number of Dropped Packets

Percentage of Dropped Packets

Link Utilization

1

0.1010.001

0.02±0.001

50

2.1

0.39

10

2.510.001

0.410.001

40

0.87

0.70

100

20±0.001

410.001

40

0.0016

0.80

1000

70010.001

12010.001

10

0.0001

1.0

Table 5-5 Queue Length, Queuing Delay, Dropped Packets & Link Utilization
vs Different Buffer Size (XCP-CL)

Buffer Size (Packets)

Queue Length (Packets)

Queuing Delay(ms) '

Dropped Packets

Percentage of Dropped
Packets
Link Utilization

1

0

0

0

0

1

10

0

0

0

0

1

100

0

0

0

0

1

1000

0

• o

0

0

1

Table 5.4 and Table 5.5 summarize the performance of the two algorithms. While

XCP-CL has no queue, no dropped packets, and full link utilization with any buffer size,

the original XCP has a queue, drops some packets in all cases. Link utilization is under 1

in all cases except when buffer size is 1000 packets. More details are in Appendix D.

Please also note that when we set larger buffer size in the original XCP algorithm,

the performance of packets drop and link utilization can be improved with the trade off

for a larger queue length and queuing delay. But the requirement of the physical memory

of the system design is much bigger than the XCP-CL algorithm. Note we need 1000

packets * 1000 bytes = 1000000 bytes (1MB) memory in this simple scenario (only with

one input port). In XCP-CL design, we only need 1KB memory for only one packet.

From a system design point of view, we prefer less memory size even the memory is not

expensive these days. This simplifies the system design and improves the reliability of

the whole system.

84

Chapter 5 XCP-CL Performance Evaluation

5.6. End to End Delay Performance

In this section we measured the performance of end to end delay of the system of our

XCP-CL algorithm with different buffer sizes. We allow the path between a source and

destination to change as time evolves. One scenario is an alternate path is found to by

pass a failed link, thus resulting in a longer path length and therefore longer propagation

delay. We summarize the results in the following section. The results of the original XCP

algorithm are provided in Appendix E.

5.6.1 Scenario 1: Using XCP-CL, the Modified XCP Algorithm

(S
ec

on
ds

)
o

M

en

c

CO

"5 0.15
o
"O
c
LU
o 0.1
"O
c
LU

0.05

0

I I I

1 1 1
! ! 1

1 1

1 1 1

1 1 1

1 1 1

• - - + 1 1 1

1 I [

1 I I I ;

i i 1 1 1 1 1 1

1 I 1 I 1 1 - I

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.30 End to End Delay of Flow#l (Buffer Size = 1 Packet, XCP-CL)

Figure 5.30 to Figure 5.34 show the end to end delay performance of 5 flows from

the 5 groups of different end to end delay. For example, Figure 5.31 shows the end-to-end

delay measurement of Flow#21 which, in each of the three time intervals of 0-200, 200-

400 and 400-600s intervals, has increased according to the changes in the propagation

delay. There is also an interesting spike at the 400s time point in Figure 5.34, which can

probably be attributed to the interaction with the few flows whose propagation delays

have increased. These are the expected values and we summarize them in the following

table.

85

Chapter 5 XCP-CL Performance Evaluation

0.3

0.25

T3
c
o
8 °-2

CO,

>.
CC
"cb" 0.15
Q
TJ
c
LU

£ 0 1

TJ
C
111

0.05

i I I

r
n

i
1

i ! !

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

_.__ J 1 1 1 1 L 1

I I 1 1 1 t 1

1

1 1 1 1 1 1 I

1 1 1 1 1 1 1 1

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.31 End to End Delay of Flow#21 (Buffer Size = 1 Packet, XCP-CL)

0.3

0.25

"oT
TJ
c
o

8 °-2

CO,

CO
CD 0.15
Q
T3
c
LU
O 0.1
"O
c
LU

0.05

r [- - [[• - - I
I i I

!

! !
I I I

I I I

I I 1

1 ! !
f ~ l i i

r i i

F T !

i i i i i i i

i i i i i i . i

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.32 End to End Delay of Flow#41 (Buffer Size = 1 Packet, XCP-CL)

86

Chapter 5 XCP-CL Performance Evaluation

0.3

0.25

'5T
x>
c
o

CO,

>.
CO
"© 0.15
Q
"O
C
LU
5 0.1
x>
c

LU

0.05

i I !

1 T 1

r T T

i i i

r L

1 1 1 1 I !

1

1
,

1

1-
J

l_

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.33 End to End Delay of Flow#61 (Buffer Size = 1 Packet, XCP-CL)

0.3

0.25

'en"
•O
c
o
o 0.2

CO,

CO

CD 0.15
D
T3
C
LU
O 0.1
T3
c
LU

0.05

1 1 1 1

1 1 t • [

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure 5.34 End to End Delay of Flow#81 (Buffer Size = 1 Packet, XCP-CL)

Table 5.6 summarizes these mean delay performance. As one can see from the ta-

87

Chapter 5 XCP-CL Performance Evaluation

ble, the measured end to end delays are almost the same as the expected delay (i.e. the

end to end propagation delay.). This is because there is no queue in the system. The end

to end delay should be the same as the propagation delay. The reason of the little differ­

ence between the expected and the measured value is probably due to the processing de­

lay coming from the simulation software. With a buffer size of 10, 100 or 1000 packets,

the end to end delay is almost the same as with a buffer size of 1. This is because there is

no queue in the system in these experiments. For clarity, the results are not provided here.

Table 5.6 Expected and Measured End to End Delay (Buffer Size =1 Packet,
XCP-CL)

Simulation

Time

Delay

Flow#l(s)

Flow#21(s)

Flow#41(s)

Flow#61(s)

Flow#81(s)

0-200s

Expected

0.1100

0.1300

0.1500

0.1300

0.1100

Measured

0.1117

0.1316

0.1516

0.1316

0.1117

200-400s

Expected

0.1700

0.1900

0.2500

0.2900

0.1500

Measured

0.1705

0.1905

0.2504

0.2904

0.1506

400-600s

Expected

0.1400

0.2100

0.1100

0.1500

0.1300

Measured

'0.1422

0.2120

0.1129

0.1528

0.1322

5.7. Fast Change Scenario #1: 45Mbps Bandwidth, 100 Flows

We further evaluated the system with much faster bandwidth changes in order to deter­

mine the system capability under a stressful situation. In this case, we let the bandwidth

change every 25 seconds between 40Mbps and 45Mbps. The other configuration is the

same as before, including the dynamic change of propagation delay.

Table 5.7 and Table 5.8 provide the change of the link bandwidth and the change

in delay of different flows during the 600s simulation time. A bottleneck is created at Rn

every 25s when the link bandwidth changed to 40Mbps due to scheduling.

Table 5.7 Bandwidth Parameters of Fast Change#l

Simulation time

Bandwidth of R'n-Rji

0-25s

45Mbps

25-50s

40Mbps 45Mbps 40Mbps

550-550s

45Mbps

575-600s

40Mbps

88

Chapter 5 XCP-CL Performance Evaluation

Table 5.8 Delay Parameters of Fast Change#l

Simulation time

Delay of flows 0-19(s)

Delay of flows 20-39(s)

Delay of flows 40-59(s)

Delay of flows 60-79(s)

Delay of flows 8 0-99(s)

0-200s

0.11

0.13

0.15

0.13

0.11

200-400s

0.17

0.19

0.25

0.29

0.15

400-600s

0.14

0.21

0.11

0.15

0.13

L r_j p . j ~ — I

1 !J ' fl

' i 9 ! !

- XCP-CL window size
- expected window size
_i i

0 100 200 300 400 500 600

Time (Seconds)

Figure 5.35 Window Size of Flow#l and its Expected Value of Fast Change#l

Figure 5.35 shows the window size of Flow#l with its expected window size.

Window size of Flow#l follows the change of the bandwidth. In the first 200s, the win­

dow size goes to 17 packets after 5 s, then 15 packets and so on according to the changes

in bandwidth. During the next 200s, it changes to 25 packets due to the dynamic change

of the network configuration, then 22 packets and so on until 400s. After that it goes to

17 packets and 19 packets according to bandwidth changes and configuration change un­

til simulation finished. It follows the expected window size well, while at start up 0s and

200s, 400s there is some disparity due to the dynamical delay changes. The other flows

J U

25

M
o
ro Q.

N—̂*

ze

CO
5
o "O

20

15

10

89

Chapter 5 XCP-CL Performance Evaluation

follow the same pattern as one can see from Figure 5.36. Notice that each flow has a dif­

ferent RTT so each of them has a different window size.

t

o
+

•ft

Flow#1
Flow#21
Flow#41
Flow#61
Flow#81

100 200 300 400

Time (Seconds)
500 600

Figure 5.36 Window sizes of 5 Flows of Fast Change#l

mmmm,iWmm^

0.8

q

S3 0.6

0.4

0.2

_ j j _ ~1 T ~

it
S I L X

- • + -t-

T T r r

50 100 150 200 250 300 350 400 450 500 550

Time (Seconds)

Figure 5.37 Link Utilization of Fast Change#l

90

Chapter 5 XCP-CL Performance Evaluation

Link utilization goes up to 1 quickly and stays there all the time as shown in

Figure 5.37. However it has dips at the instants (every 25s) of bandwidth change and the

network dynamic changes at 200s and 400s.

Under this algorithm, the edge node Rn knows the link capacity change as the

same as before. The simulation results of the original XCP algorithm are worse than that

of XCP-CL and are not provided.

5.8. Fast Change Scenario #2: 45Mbps Bandwidth, 100 Flows

We consider a more stressful situation to evaluate our system. In this case we let the

bandwidth change every 1 second. The other configuration is the same as before, includ­

ing the dynamic change of propagation delay.

Table 5.9 Bandwidth Parameters of Fast Change#2

Simulation time

Bandwidth of Rji-Rji

0-ls

45Mbps

l-2s

40Mbps 45Mbps

90-91s

30Mbps

99-100s

45Mbps

Note: during time 90-91 s, the bandwidth changes to 30Mbps.

Table 5.10 Delay Parameters of Fast Change#2

Simulation time

Delay of flows 0-19(s)

Delay of flows 20-3 9(s)

Delay of flows 40-59(s)

Delay of flows 60-79(s)

Delay of flows 80-99(s)

0-33.3s

0.11

0.13

0.15

0.13

0.11

33.3-66.7s

0.17

0.19

0.25

0.29

0.15

66.7-100s

0.14

0.21

0.11

0.15

0.13

Table 5.9 and Table 5.10 provide the link bandwidth change and the change in de­

lay of different flows during the 600s simulation time. A bottleneck is created at Rn dur­

ing every Is when the link bandwidth changed to 40Mbps due to scheduling. At t=90s,

we changed the bandwidth from 45Mbps to 30Mbps for one second then changed it back

to 45Mbps. Each group of flows change their delays to different value every 33.3s as

shown in the Table 5.10.

Figure 5.38 shows the window sizes of 5 flows. The window size of Flow#l goes

91

Chapter 5 XCP-CL Performance Evaluation

to 14 packets after 3 s and converges to 15 packets with small fluctuation (same with

other flows) during 0-33.3s. It goes to 20 packets and down to 18 packets slowly. Then it

goes to 19 packets and converges there with small fluctuation during 33.3 - 66.6s. From

66.6s to 100s, it goes to 16 packets slowly and converges to 19 packets with small fluc­

tuation. At t=90s, it has a dip of 17 packets due the big change of the bandwidth. Conges­

tion window size converges well but with some oscillations. Other flows have a same be­

havior and follow the same pattern but with different window size due to different RTT.

Q I I i I i i I i i i I

0 10 20 30 40 50 60 70 80 90 100

Time (Seconds)

Figure 5.38 Window Sizes of 5 Flows of Fast Change#2

Link utilization goes to 1 after 3 s and stay there with only a small fluctuation as

shown in Figure 5.39. At time 33.3s, the network configuration changes which results in

a dip in the utilization with a value of 0.62. At the sharp bandwidth change at time 90s, it

results in a dip in the utilization with 0.81, due to the system adjustment to this change.

The reason is the system needs some time to adjust its performance due to the delay of

feedback. However, the bandwidth changes faster than the algorithm can handle as we

can see from these figures.

92

Chapter 5 XCP-CL Performance Evaluation

1,0 20 30 40 50 60 70 80 90

Time (Seconds)

Figure 5.39 Link Utilization of Fast Change#2

XCP-CL algorithm works in this stressful scenario but with degraded perform­

ance (window size has disparity from the expected one, some packets are dropped, not

shown here). The reason is that the bandwidth changes too fast and the algorithm need

some time to adjust to the changes.

5.9. Concluding Remarks

In this chapter, we showed the simulation results of the network model as described in the

beginning of this chapter with different link capacity. We then investigated the impact of

different buffer size on the queue length, number of dropped packets, and link utilization.

In both cases XCP-CL works very well, while the original XCP algorithm can not work

during the congestion period as we can see from the results shown before. Finally we

evaluated the XCP-CL when bandwidth changes much faster. The performance of the

system degraded in this situation but our XCP-CL is still better than the original XCP.

The faster the change of the bandwidth is, the worse the performance will be.

93

Chapter 6 Design Guideline

Chapter 6. Design Guideline

In this chapter we summarize the design guideline of AAPN signaling implementation

and congestion control.

6.1. Scheduling Design

We desire a fast yet effective scheduling algorithm. "Fast" means the algorithm should be

finished as quickly as possible in each iteration. "Effective" means the algorithm can

maximizes the throughput of the network and deals with the traffic load of each edge

node. These are two conflicting requirements. "Fast" requires the algorithm as simple as

possible, but "effective" usually requires a high computation complexity. There should be

some trade off between these two requirements. If the algorithm is based on frame signal­

ing, it should also use some techniques to estimate the arrival traffic of each edge node to

decrease the impact of the scheduling delay.

6.1.1 Slot-Based Signaling

When we choose a slot-based signaling method with a fixed amount of overhead, we pre­

fer a larger slot length to get a better signaling efficiency. Remember that efficiency

equals the length of payload (in bytes) divided by the slot length (in bytes). See Section

3.1 for details. In this signaling method, the scheduling has to be completed within one

slot period. In fast switches such as the AAPN switch, the time slot is usually set to a

very short period. Hence it is difficult to complete a computationally intensive scheduling

algorithm.

6.1.2 Frame-Based Signaling

From our previous analysis and experience on frame-based signaling, one needs to use a

large frame size to get a good signaling efficiency (defined to be the number of slots as­

signed to data transmission divided by frame size in number of slots). When frame size

94

Chapter 6 Design Guideline

increases with a fixed number of slots for signaling, the efficiency increases. See Section

3.1 for details. However the scheduling delay (i.e. the frame period, which depends on

the frame size) has to be lengthened. This is a trade off between signaling efficiency and

scheduling delay. If scheduling delay is too big, the scheduling result is not good to han­

dle the traffic arrives at the edge nodes. At the same time, queue length in the edge nodes

will be increased to absorb the traffic. A longer scheduling delay is usually good for non-

bursty traffic. We can use the estimator of the scheduler to handle the scheduling delay

by estimating the future traffic. Now the scheduling time in frame-based signaling is re­

laxed to the interval of the frame period minus the time used in signaling (i.e. the number

of slots that reserved for signaling times the slot period). Hence frame-based scheduling

is preferred.

6.2. Out-band and In-band Signaling

As analyzed before, our XCP-CL algorithm needs the actual bandwidth in real time and

our AAPN signaling protocol can pass the bandwidth information to the edge nodes

(where XCP-CL algorithm runs) in each frame period in either out-band or in-band sig­

naling. By using the cross-layer design technique, and passing the link layer information

to the upper layer, our XCP-CL can use either out-band or in-band signaling (see Section

3.2 for details).

6.3. Choosing Buffer Sizes

As we can see from our simulation results and the original paper [KaHa02], XCP algo­

rithm needs much less buffer memory than the other algorithms. This is ideal for FPGA

implementation which requires as little memory as possible. According to our simulation

results in previous chapter, even a buffer size of one is adequate for the modified XCP-

CL algorithm. There is no queue and no dropped packet in our simulation. We only need

one buffer to hold the arriving packet. For safety reason, we should set the buffer size to

the pipe size if we could.

6.4. XCP-CL Algorithm Limitations

95

Chapter 6 Design Guideline

As we can see from the simulation results in Chapter 5, when the bandwidth changes too

fast for the algorithm to handle, our XCP-CL algorithm does not work very well (even

though it is still better than the original XCP algorithm). For example, a minimum inter­

val of 25s to update the bandwidth is still acceptable. After experimenting with different

update intervals, our finding is that the control interval d from the XCP controller unit has

to be shorter than the interval of bandwidth change so that the system can stabilize to a

new operation point. Presently the control interval is used as the feedback delay and is set

to the average RTT. The value is 0.28s during the period of 0-200s, 0.36s during the pe­

riod of 200-400s and 0.30s during the period of 400-600s. In other words, if bandwidth is

fluctuating at interval shorter than the above value during those periods, the performance

of the system would suffer greatly.

96

Chapter 7 Conclusions

Chapter 7. Conclusions

We have successfully designed and implemented AAPN control platform and signaling

protocol (including synchronization protocol, traffic allocation protocol, fault monitor

protocol etc) under the Linux operating system (with more than 6000 lines of C source

code). We did experiments to evaluate our system synchronization precision and schedul­

ing time. Experiments have shown that our synchronization protocol and our traffic allo­

cation protocol work well. Signaling overhead analysis was carried out, and design guide­

lines are given for our current in process fast type design.

Scheduling algorithm and edge node input buffer were successfully integrated to­

gether. Experiments have shown that the scheduling algorithm can be finished in time as

required by our design. We have verified the system by correctly transferring a file be­

tween two edge nodes.

Based on the AAPN signaling protocol and by using cross-layer design, we have

successfully modified and improved XCP algorithm (called XCP-CL) and let it work on

our AAPN network. We have evaluated and analyzed our design through NS2 simulation

in terms of window size, throughput, link utilization. The impact of different buffer size

on these performance metrics is also investigated. Simulation results have shown that

XCP-CL has much better performance results compared to the original XCP algorithm.

There are some lessons we have learned from our research which should be taken

care of in the future research: a) A stable hardware (the optical switch in this case) would

have saved us much time on debugging. Therefore we should have a full specification of

the hardware for us to understand well to start with, b) We should be very careful to re­

duce the number of careless mistakes; for examples, the variable definition and initializa­

tion. On the other hand, more advanced debugging skills could have saved much time and

effort, c) NS2 is not so well documented on its usage and requires the user to be familiar

with both C++ and OTcl languages. OPNET simulator [Opne97] is probably better in this

respect.

97

Chapter 7 Conclusions

7.1. Future Work

We can extend our study to the following interesting items:

1. Implement the synchronization protocol in FPGA to eliminate the processing de­

lay of operating system. This is in progress.

2. Implement the whole AAPN signaling protocols in FPGA, so it can be an on-shelf

commercial product.

3. Modify the XCP-CL algorithm, so it can work when the bandwidth changes very

fast.

4. Implement the XCP-CL algorithm in the whole network as the congestion control

mechanism, and measure the performance of the real networks.

98

References

References

[802.3ah] IEEE 802.3ah, Ethernet in the First Mile Task Force,
http://www.ieee802.Org/3/efm/index.html, accessed 2007

[AAPN07] AAPN project, http://www.aapn.mcgill.ca/, accessed 2007
[AbRi06] Filipe Abrantes, and Manuel Ricardo, "XCP for Shared-Access Multi-Rate

Media," Proceeding of ACM SIGCOMM, pp27-38, Pisa, Italy, Sep 11-15,
2006.

[AgBo05] Agusti-Torra, Gregor v. Bochmann, Cristina Cervello-Pastor, "Retransmis­
sion schemes for optical burst switching over star networks", Proc. 2nd IFIP
Intern. Conf. on Wireless and Optical Communications Networks (WOCN),
March 3-2, 2005, Dubai, United Arab Emirates

[AlAr06] Onur Alparslan, Shin'ichi Arakawa, and Masayuki Murata, "Paced XCP for
Small Buffered Optical Packet Switching Networks", pp.35-40, PFLDnet,
February 20, 2006

[AtLiOl] Sanjeewa Athuraliya, Victor H. Li, Steven H. Low, Qinghe Yin. "REM: Ac­
tive Queue Management". IEEE Network, 15(3):48-53, May 2001.

[AWK07] AWK software http://www.gnu.org/software/gawk/manual, accessed 2007.
[BiBa07] BigBangwidth's Lightpath Accelerator,

http://www.bigbangwidth.com/accelerator.htm, accessed 2007
[BILeOl] Francois J. Blouin, Andrew W. Lee, Andrew J.M. Lee, Maged Beshai,

"Comparison of two optical-core networks", Journal of Optical Network
(1), March 23, 2001, pp. 56-65.

[BoCo04] Gregor v. Bochmann, Mark J. Coates, Trevor Hall, L. Mason, R. Vickers
and Oliver Yang, "The Agile All-Photonic Network: An architectural out­
line", Proceeding of Queen's University Biennial Symposium on Communi­
cations, May 31-June 3, 2004

[ChYa04] Qiang Chen and Oliver W. W. Yang, "On Designing Self-Tuning Control­
lers for AQM Routers Supporting TCP Flows Based on Pole Placement, "
IEEE Journal on Selected Areas in Communications, Vol. 22, No. 10, Dec.
10, 2004, pp. 1965-1974.

[Clar82] David Clark, "Window and acknowledgment strategy in TCP", Internet Re­
quest For Comments, RFC 813, July 1982

[DeSa04] Jules Degila, Brunilde Sanso, "Topological design optimization of a yot-
tabit-per-second lattice network", IEEE Journal on Selected Areas in Com­
munications, vol. 22, no. 9, pp. 1613 - 1625, Nov 20, 2004.

[Dixi03] Sudhir Dixit (Editor),'TP over WDM: Building the Next-Generation Optical
Internet", ISBN: 978-0-471-21248-5, March 2003, Wiley InterScience

[DuKo05] Nandita Dukkipati, Masayoshi Kobayashi, Zhang-Shen Rui, "Processor
Sharing Flows in the Internet", International Workshop on Quality of Ser­
vice, 2005

99

http://www.ieee802.Org/3/efm/index.html
http://www.aapn.mcgill.ca/
http://www.gnu.org/software/gawk/manual
http://www.bigbangwidth.com/accelerator.htm

References

[ElMoOO] Jaafar M.H. Elmirghani, Hussein T. Mouftah, "All-Optical Wavelength
Conversion: technologies and Applications in DWDM Networks", IEEE
Communication Magazine, vol. 38, no. 3, pp. 86-92, March 2000.

[ElMoOOb] Jaafar M.H. Elmirghani, Hussein T. Mouftah, "Technologies and architec­
tures for scalable dynamic dense WDM networks," IEEE Communication
Magazine 38, pp.58-66 (2000).

[FaPr05] Aaron Falk, Dina Katabi, Yuri Pryadkin, Internet Draft, "Specification for
the Explicit Control Protocol (XCP) draft-falk-xcp-spec-02.txt",
http://www.isi.edu/isi-xcp/docs/draft-falk-xcp-spec-02.html, accessed 2007

[FeSh02] Wu-chang Feng, Kang G. Shin, Dilip D. Kandlur, Debanjan Saha, "The
Blue: Active Queue Management Algorithms", IEEE/ACM Transactions on
Networking, Vol. 10, No. 4, August 2002, pp. 513-528.

[FeSh04] Huifang Feng, Yantai Shu, Oliver W.W. Yang and Hua Wang, "Prediction-
based dynamic bandwidth allocation in WiFi", Proceed. SPIEITCOM2004
(International Symposium IT COM Information Technology and Communi­
cation), Vol. 5598, pp. 246-253, Oct 25-28, 2004, Philadelphia.

[FIGuOl] Sally Floyd, Ramakrishna Gummadi, and Scott Shenker, "Adaptive RED:
An Algorithm for Increasing the Robustness of RED," ICIR Technical Re­
port, Available at http://www.icir.org/floyd/papers/adaptiveRed.pdf, August,
2001.

[FUa93] Sally Floyd and Van Jacobson, "Random Early Detection Gateways for
Congestion Avoidance", IEEE/ACM Transactions on Networking, Vol. 1,
No. 4, August 4, 1993, pp. 397-413.

[Floy03] Sally Floyd. "High Speed TCP for Large Congestion Windows". IETF RFC
3649, December 2003.

[GreeOl] Paul Green, "Progress in optical networking," IEEE Commun. Mag. 39, 54-
61 (2001).

[Grov03] Wayne D. Grover, "Mesh-based Survivable Transport Networks: Options
and Strategies for Optical, MPLS, SONET and ATM Networking", Prentice
Hall PTR, Upper Saddle River, New Jersey, Aug 24, 2003.

[HaF103] Mark Handley, Sally Floyed, John Padhye and Joerg Widmer,"TCP
Friendly Rate Control (TRFC): Protocol Specification", Internet Engineer­
ing Task Force, RFC 3448, January 2003.

[HaSo05] Trevor J. Hall, Sofia A. Paredes, Gregor v. Bochmann. "An Agile All-
Photonic Network", The International Conference on Optical Communica­
tions and Networks, ICOCN 2005; Bangkok, Thailand, 14-16 December
2005, pp. 365-368.,

[HoMiOla] Chris V. Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong, "On De­
signing Improved Controllers for AQM Routers Supporting TCP Flows",
Proceedings oflEEE/INFOCOM, pp. 1726 - 1734, April 22-26, 2001.

[HoMiOlb] Chris V. Hollot, Vishal Misra, Don Towsley, Wei-Bo Gong, "A Control
Theoretic Analysis of RED", Proceedings of IEEE/INFOCOM, April 22-26,
2001,pp.l510-1519

[HoYa04] Yang Hong, Oliver Yang and Changcheng Huang, "Self-Tuning PI TCP
Flow Controller for AQM Routers with Interval Gain and Phase Margin As­
signment", Proceedings of IEEE Global Telecommunications Conference

100

http://www.isi.edu/isi-xcp/docs/draft-falk-xcp-spec-02.html
http://www.icir.org/floyd/papers/adaptiveRed.pdf

References

(Globecom 2004), Dallas, U.S.A, November 1-2, 2004, pp. 1324-1328.
[HoYa05] Yang Hong, Oliver Yang, "Design of Utility-Based Congestion Controller

for Internet Traffic Based on Pole Placement", Proceedings of 39th annual
conference on Information Sciences and Systems (CISS 2005), Johns Hop­
kins University, U.S.A, March 12, 2005.

[HoYa06] Yang Hong and Oliver Yang, "Self-Tuning Utility-Based Controller for
End-to-End Congestion in the Internet", IEEE BROADNETS 2006, San
Jose, California, USA, October 1, 2006.

[HoYa07] Yang Hong and Oliver Yang, "Design of Adaptive PI Rate Controller for
Best-Effort Traffic in the Internet Based on Phase Margin", IEEE Trans.
Parallel and Distributed Systems, vol. 18, no. 4, April 2007, pp. 550-561.

[IEEE03] IEEE-1588 Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, July 16 2003,
www.ieee.org/scv/ims/Meetings/IM_Society_IEEE_1588.pdf

[IrMa98] Rainer R. Iraschko and M. H. MacGregor, "Optimal Capacity Placement for
Path Restoration in STM or ATM Mesh Survivable Networks", IEEE
Transactions on Networking Vol. 6 No.3, June 1998, pp. 325-335

[ISI07] NS2 simulator software, http://www.isi.edu/nsnam/ns/, accessed 2007.
[Jaco88] Van Jacobson, "Congestion Avoidance and Control", Proceedings of ACM

Sigcomm 1988. pp. 314-329, Stanford, CA, August 16-18, 1988.
[Jaco90] Van Jacobson, "Modified TCP Congestion Avoidance Algorithm", message

to end2end-interest mailing list, Apr. 1990.
[JaF105] Amit Jain, Sally Floyd, Mark Allman, and Pasi Sarolahti. "Quick-Start for

TCP and IP". Internet Draft, draft-ietf-tsvwg-quickstart-00.txt, May 2005.
[JiWe04] Cheng Jin, David X. Wei, Steven H. Low, "FAST TCP: motivation, archi­

tecture, algorithms, performance", INFOCOM 2004. Twenty-third Annual
Joint Conference of the IEEE Computer and Communications Societies,
Volume 4, Issue , March 7-11, 2004 Page(s): 2490 - 2501 vol.4

[JiYa05a] Mushi Jin and Oliver W. W. Yang, "An integrated architecture enabling dif­
ferent resource sharing schemes for AAPN networks", Proceeding Interna­
tional conference on Optical Communication Systems and Networks, SPIE
Photonics North, Toronto, Canada, Sep 27-29, 2005.

[JiYa05b] Mushi Jin, Oliver Yang, YimingZhang, A.G.P. Rahbar, Wei Yang, "Apply­
ing time-division multiplexing in star-based optical networks", Electrical
and Computer Engineering, 2005, Canadian Conference, May 1-4 2005
Page(s):1141-1144

[JiYa06a] Mushi Jin, Oliver Yang, "A TDM Solution for All-Photonic Overlaid-Star
Networks", Proceeding CISS2006, Princeton, New Jersey, Mar 22-24,
2006.

[JiYa06b] Mushi Jin, Oliver Yang, "APOSN: Operation, Modeling and Performance
Evaluation", Computer Networks, Volume 51, Issue 6, 25 April 2007, Pages
1643-1659

[JoChOl] Amaury Jourdan, Dominique Chiaroni, and Emmanuel Dotaro, et al., "The
perspective of optical packet switching in IP-dominant backbone and met­
ropolitan networks", IEEE Commun. Mag. 39 (3) (2001) 136-141.

[KaHa02] Dina Katabi, Mark Handley, and Chalrie Rohrs. "Congestion Control for

101

http://www.ieee.org/scv/ims/Meetings/IM_Society_IEEE_1588.pdf
http://www.isi.edu/nsnam/ns/

References

High Bandwidth-Delay Product Networks". Proc. ACM SIGCOMM '02,
August 19-23, 2002, Pittsburgh, Pennsylvania, USA, Pages: 89 - 102.

[Kata03] Dina Katabi, "Decoupling congestion control from the bandwidth allocation
policy and its application to high bandwidth-delay product networks," Ph.D.
dissertation, Massachusetts Institute of Technology, Cambridge, MA, Mar.
2003.

[KrSt04] Rajesh Krishnan, James Sterbenz, Wesley M. Eddy, Craig Partridge, and
Mark Allman. "Explicit Transport Error Notification (ETEN) for Errorprone
Wireless and Satellite Networks". Computer Networks, 46(3):343-362, Oc­
tober 22, 2004.

[Kunn03] Srisankar S. Kunniyur, "AntiECN Marking: A Marking Scheme for High
Bandwidth Delay Connections". Proceeding ICC '03, Anchorage, Alaska,
USA, May 11-15,2003.

[KuSrOl] Srisankar Kunniyur and R. Srikant, "Analysis and Design of an Adaptive
Virtual Queue (AVQ) Algorithm for Active Queue Management".
SIGCOMM'01, August 11-13, 2001, San Diego, CA, USA.

[KuSr04] Srisankar Kunniyur and R. Srikant "An adaptive virtual queue (AVQ) algo­
rithm for active queue management", IEEE/ACM Transactions on Network­
ing, Vol. 12, No. 2, April 2, 2004, pp. 286-299.

[LeWi04] Alberto Leon-Garcia, Indra Widjaja, "Communication Networks: Funda­
mental Concepts and Key Architectures", McGraw Hill, second edition,
2004

[LiCh03] Soung Y. Liew, H. Jonathan Chao, "On slotted WDM switching in buffer-
less all-optical networks", Proceeding, the 11th Symposium on High Per­
formance Interconnects (HOTI'03), Aug 03, 2003, pp. 96-101.

[Linu07] Linux website, http://www.linux.org/, accessed 2007
[LoAn05] Steven H. Low, Lachlan L. H. Andrew, Bartek P. Wydrowski, "Understand­

ing XCP: equilibrium and fairness", Proceeding Of IEEE INFOCOM, Mi­
ami, FL, March 13-17, 2005, Volume: 2, pp 1025- 1036 vol. 2.

[LoPa02] Steven H. Low, Fernando Paganini, Jiantao Wang Sachin Adlakha John C.
Doyle, "Dynamics of TCP/RED and a scalable control", Proceeding Of
IEEE INFOCOM, New York, NY, June 23-27, 2002, pp 239- 248 vol. 1.

[LoPh05] Dino M. Lopez Pacheco, Congduc Pham, "Robust Transport Protocol for
Dynamic High-Speed Networks: enhancing the XCP approach", Proceeding
ofthelEEEMICC-ICON, Nov 16-18, 2005. Volume: 1, pp.404-409.

[LoPh06a] Dino M. Lopez-Pacheco, Congduc Pham, "XCP-i: eXplicit Control Protocol
for heterogeneous inter-networking of high-speed networks", IEEE
GLOBECOM 2006, San Francisco, CA, Nov 10, 2006, ppl-6.

[LoPh06b] Dino M. Lopez-Pacheco, Congduc Pham, "Enabling Large Data Transfers
on Dynamic, Very High-Speed Network Infrastructures;" Networking, In­
ternational Conference on Systems and International Conference on Mobile
Communications and Learning Technologies, 2006, International Confer­
ence, April 23-29, 2006 Page(s):40 - 46.

[LoWy05] Steven H. Low, Lachlan L. H. Andrew, Bartek P. Wydrowski. "Under­
standing XCP: equilibrium and fairness", Proceeding Of IEEE INFOCOM,
Miami, FL, March 13-17, 2005, Pasadena, CA, USA.

102

http://www.linux.org/

References

[MaGa93] Francesco Masetti, Paulette Gavignet and Dominique Chiaroni, "Fiber De­
lay Lines Optical Buffer for ATM Photonic Switching Applications", Pro­
ceeding of INFOCOMMarch 28-April 1, 1993, San Francisco, CA, USA.

[MaLa07] MatLab software, http://www.mathworks.com/, accessed 2007.
[Mand07] Mandrake Linux distribution, http://www.mandriva.com/, accessed 2007.
[MaSiOl] Mike J. O' Mahony, Dimitra Simeonidou, David K. Hunter, and Anna

Tzanakaki, The application of optical packet switching in future communi­
cation networks, IEEE Commun. Mag. 39 (3) (2001) 128-135.

[MaThOl] Carmen Mas Machuca, Patrick Thiran, "A review on fault location methods
and their application to optical networks," SPIE Optical Networks Maga­
zine, Vol. 2, No. 4, Jul 19-Aug 1, 2001, pp. 73-87.

[MaVi06] Lome Mason, Anton Vinokurov, Ning Zhao, David Plant, "Topological de­
sign and dimensioning of Agile All-Photonic Networks", Computer Net­
works, Volume 50, No.2, 2006, pp.268-287.

[MiGoOO] Vishal Misra, WeiBo Gong, Don Towsley, "Fluid-Based Analysis of a Net­
work of AQM Routers Supporting TCP Flows with an Application to
RED," Proceeding ACM SIGCOMM 2000, August 28 - September 1, 2000,
Stockholm, Sweden, Pages: 151 - 160.

[Mose05] Petter Mosebekk, "A Linux implementation and analysis of the eXplicit
Control Protocol (XCP)", Master thesis, University of OSLO, Norway, May
2005.

[Mukh92a] Biswancrth Mukherjee, WDM-based local lightwave networks. I. Single-
hop systems, IEEE Network 6 (3) (1992) 12-27.

[Mukh92b] Biswancrth Mukherjee, WDM-based local lightwave networks. II. Multihop
systems, IEEE Network 6 (4) (1992) 20-32.

[NaDa04] Kshirasagar Naik, David S. L. Wei, et.al., "A Reservation-Based Multicast
Protocol for WDM Optical Star Networks", IEEE Journal on Selected Areas
in Communications, vol. 22, no. 9, pp. 1670-1680, Nov 2004.

[NaKo05] Kiyohide Nakauchi and Katsushi Kobayashi. Studying Congestion Control
with Explicit Router Feedback Using Hardware-based Network Emulator.
Proceeding PFLDnet '05, February 3^1, 2005, ppl84-190.

[NaKo06] Kiyohide NAKAUCHI Katsushi KOBAYASHI, SIRENS: An Explicit Noti­
fication Framework for Internet Congestion Control, ICC2006, Sep. 20-25,
Istanbul, Turkey, page(s): 12-17.

[NaWe04] Kshirasagar Naik, David S.L. Wei, et al., "A reservation based multicast
protocol for WDM optical star networks", IEEE J. Selected Areas Commun.
22 (9)(2004) 1670-1680.

[Nise04] Norman S.Nise, Control System Engineering, John Willey &Sons, Inc, 2004
[OMNI07] OMNI project, http://www.icair.org/omninet/, accessed in 2007.
[Opne07] Opnet Simulator, http://www.opnet.com accessed in 2007.
[Otcl07] Object Tel, http://www.otcl.org/, accessed 2007.
[OtLa99] Teunis J. Ott, T.V. Lakshman, Larry Wong, "SRED: stabilized RED," Pro­

ceedings of IEEE/INFOCOM, New York, March 21-25, 1999, pp. 1346 -
1355.

[PeBo06] Cheng Peng, Gregor v. Bochmann and Trevor J. Hall, "Quick Birkhoff-von
Neumann Decomposition Algorithms for Agile All-Photonic Network

103

http://www.mathworks.com/
http://www.mandriva.com/
http://www.icair.org/omninet/
http://www.opnet.com
http://www.otcl.org/

References

Cores", proceeding of 2006 IEEE International Conference on Communica­
tions (ICC 2006), Istanbul, Turkey, pp.11-15, Sep. 20-25, 2006.

[Peng07] Cheng Peng, "Frame-Based Bandwidth Allocation for Agile All-Photonic
Networks", PhD thesis, University of Ottawa, Ottawa, Canada, April 2007.

[PuHa06] Jian Pu and Mounir Hamdi, "QFCP: a Router-Assisted Congestion Control
Mechanism for Heterogeneous Networks", IEEE SITIS 2006, Marco Polo
Hotel, Tunisia, Dec 17-21, 2006, pp. 144-193

[QiYo99] Chunming Qiao, Myungsik Yoo, Optical burst switching (OBS) - a new
paradigm for an optical Internet, Journal of High Speed Networks 8 (1999),
pp 69-84.

[RaFlOl] Kadangode K. Ramakrishnan, Sally Floyd, and David L. Black. The Addi­
tion of Explicit Congestion Notification (ECN) to IP. RFC3168, September
2001.

[RaYa03] Akbar Ghaffar Pour Rahbar and Oliver Yang, "Distributed vs Centralized
TDM in AAPN ", CCNR presentation, Oct 1, 2003

[RaYa05a] Akbar Ghaffar Pour Rahbar and Oliver Yang, "An Integrated TDM Archi­
tecture for AAPN Networks," Proceeding of International conference on
Optical Communication Systems and Networks, SPIE Photonics North, To­
ronto, Canada, Sep 27-29, 2005, pp. 727-734..

[RaYa05b] Akbar Ghaffar Pour Rahbar, Yiming Zhang, Oliver Yang, and Sayeed
Choudhury, "An integrated TDM architecture for AAPN networks", Pro­
ceedings of SPIE", pp. 727-734, Vol. 5970, Feb 27, 2005, Photonic Appli­
cations in Biosensing and Imaging.

[RaYa05c] Akbar Ghaffar Pour Rahbar and Oliver Yang, "Distributed vs Centralized
Scheduling in AAPN ", UO AAPN meeting, Jan 27, 2005

[ReHa99] Reza Rejaie, Mark Handley, Deborah Estrin, "RAP: An End-to-end Rate-
based Congestion Control Mechanism for Real-time Streams in the Inter­
net", Proceedings of IEEE INFOCOM, pp 1337-1345 vol.3, March 21-25,
1999, New York, NY, USA.

[RFC2210] RFC2210 - The Use of RSVP with IETF Integrated Services, September
1997

[RFC3448] RFC3448 - TCP Friendly Rate Control (TFRC): Protocol Specification,
January 2003

[RyRu04] Seungwan Ryu, Christopher Rump and Chunming Qiao, "Advances in Ac­
tive Queue Management (AQM) Based TCP Congestion Control", Journal
of Telecommunication Systems, Volume 25, Numbers 3-4 / March, 2004,
Pages 317-351

[SaCh06] Sabit Sayeed, Sadrul H. Chowdhury, Oliver Yang, Yong Deng, "The Peking
Express Problem and its Applications", 23rd Biennial Symposium on Com­
munications, Queen's University, Kingston, Ontario, Canada, May 29 - June
1,2006

[SeBe96] Seung-Woo Seo, K. Bergman, P.R. Prucnal, Transparent optical networks
with time-division multiplexing, IEEE Journal of Selected Areas Commun.
14(5)(1996)1039-1051.

[ShYu05] YanTai Shu, Oliver Yang, Jiakun Liu, et al, "Wireless Traffic Modeling and
Prediction Using Seasonal ARIMA Models", IEICE Transactions on Com-

104

References

mun, V0I.E88-B No.10, Oct 15, 2005, pp.3992-3999.
[Stal06] William Stallings, Data and Computer Communications, 8th Edition, Pren­

tice Hall, Aug 2006.
[StBaOO] Thomas E. Stern and Krishna, "Multiwavelength Optical Networks: A Lay­

ered Approach", Addison-Wesley, 2000.
[StLi07] StarLight project, http://www.startap.net/starlight/, accessed 2007
[StSh03] Ion Stoicay, Scott Shenkerz , Hui Zhang; "Core-stateless fair queuing: a

scalable architecture to approximate fair bandwidth allocations in high­
speed networks", Networking, IEEE/ACM Transactions on Volume 11, Is­
sue 1, Feb. 2003 Page(s):33 - 46

[SuGr05] Yang Su, Thomas Gross, "WXCP: Explicit Congestion Control for Wireless
Multi-hop Networks", Proceedings of the 13th International Workshop on
Quality of Service (IWQoS), Passau, Germany; June 21-23, 2005.

[TCL07] TCL software, http://www.tcl.tk/, accessed 2007.
[TLDP07] The Linux Documentation Project, http://www.tldp.0rg//, accessed 2007.
[TuTe99] Jonathan Turner, "Terabit burst switching", Journal of High Speed Net­

works?,^) (1999) 3-16.
[ViBeOO] Richard Vickers and Mike Beshai, "PetaWeb Architecture," presented at

Networks 2000—Toward Natural Networks: 9th International Telecommu­
nication Network Planning Symposium, Toronto, Canada, pp. 10-15, Sept.
10-15,2000.

[VlieOO] Hans Van Vliet, "Software Engineering Principles and Practice", John
Wiley & Sons Inc, Second edition, 2000

[WelzOO] Michael Welzl, PTP: Better Feedback for Adaptive Distributed Multimedia
Applications on the Internet. Proceeding of IEEE IPCCC 2000, February
20-22, 2000, pp: 330-336.

[WuLa90] Tsong-Ho Wu and Richard C. Lau, "A Class of Self-Healing Ring Architec­
tures for SONET Network Applications", Proceeding of IEEE GLOBECOM
'90, San Diego, Dec 2-5, 1990, USA, pp. 444-449.

[XiSu05] Yong Xia, Lakshminarayanan Subramanian, Ion Stoica, Shivkumar Kaly-
anaraman. "One More Bit Is Enough". Proceeding ACM SIGCOMM '05, pp
37-48, Philadelphia, PA, August 21-26, 2005.

[YaMuOO] Shun Yao, Biswanath Mukherjee and Sudhir Dixit, Advances in photonic
packet switching: an overview, IEEE Commun. Mag. 38 (2) (2000) 84-94.

[ZhAh05] Yongguang Zhang and Mohin Ahmed, "A control theoretic analysis of
XCP, Proceeding of IEEE GLOBECOM', pp.73-77, Miami, Florida, Mar
13-17,2005

[ZhHe04] Bin Zhou, Peng He, and Gregor v. Bochmann," Blocking analysis for time-
space switched all-optical networks ", pp. 756-761, proceedings of the 4th
IASTED international multi-conference wireless and optical communica­
tion, July 8 -10, 2004, B anff, Canada

[ZhHe05] Yongguang Zhang and Thomas R. Henderson. "An implementation and ex­
perimental study of the explicit control protocol (XCP)". Proceeding of
IEEEINFOCOM, pp. 1037-1048, Miami, Florida, March 13-17, 2005.

[ZhMo04] Jun Zheng and Hussein T. Mouftah, "Optical WDM Networks: Concepts
and Design Principles", Wiley-IEEE Press, New Jersey, Jul. 2004.

105

http://www.startap.net/starlight/
http://www.tcl.tk/
http://www.tldp.0rg//

References

[ZhPe06] Jun Zheng, Cheng Peng, and Gregor v. Bochmann, "A fault detection and
localization scheme for all-optical overlaid-star TDM networks," Proc. of
2006 International Conference on Communications and Networking in
China (CH1NACOM'06), Beijing, China, Oct. 25-27, 2006

[ZhYa04] Yiming Zhang, Oliver Yang and Haomei Liu, "A Lagrangean Relaxation
and Subgradient Approach to the Routing and Wavelength Assignment
Problem in WDM Networks", IEEE J-SAC OCN Series Nov 2004, pp.
1752-1765.

106

Appendix A: Summary ofthe XCP Algorithm

Appendix A: Summary of the XCP Algorithm

XCP algorithm was first proposed in [Kata03]. It decouples efficiency control from fair­

ness control, so we can use different control law for each controller and each flow ac­

quires the spare bandwidth quickly while achieving good fairness.

Aggregate
trafic

Efficiency Controller
Aggregate>

feedback
Fairness Controller

Per-packet
feedback

Figure A.l CP Algorithm Principle

Figure A. 1 shows the main idea of the algorithm. Traffic is counted as an aggre­

gated value. This value is used to control the efficiency of the link capacity. The output,

aggregated feedback, is used control fairness. Then the "per packet" feedback is brought

back to the sender through ACK to adjust the window size. It uses explicit feedback to

tell the sender to what degree is the congestion.

0 8 16 24 31

Protocol Length Version Format Revered

RTT

X (Throughput)

Delta_Throughput

Reverse FeedBack

Figure A.2 XCP Header

Figure A.2 show the basic idea of XCP algorithm. XCP introduces a new conges­

tion header. The important filed is the "Reverse_Feedback". It is initialized by the sender

as the desired value and modified by the routers through the path if the allowed band-

107

Appendix A: Summary of the XCP Algorithm

width is lower than the previous set value. So after the packet has passed through the

whole path and returned to the sender, it has the bottleneck information of the path. The

sender then adjusts its sending rate according to this information to avoid the congestion.

EC: Efficiency Controller

The efficiency controller aims at maximizing link utilization while minimizing packet

drop rate and persistent queues without considering the fairness issue. The EC computes

a desired increase or decrease in the aggregate traffic rate as the input traffic changes.

This aggregate feedback can be computed at each control interval as follow:

«ta^,=«-S-/?-§ (A1)

In the equation, a and 18 are the control parameters, with constant values 0.4 and

0.226 as set in [KaHa02]. S is spare bandwidth (i.e. link capacity C minus input band­

width y). Q is the persistent queue. And d is the average RTT, the control interval. As we

can see from the equation, the feedback takes the information of the spare bandwidth and

the persistent queue length into consideration. It uses an MIMD (Multiplicative-Increase

Multiplicative-Decrease) control law to quickly adapt to the spare bandwidth and drain

the queue. So XCP algorithm can converge to the full utilization in a short time with al­

most no queue waiting in the router with comparison to TCP.

FC: Fairness Controller

The goal of the FC is to allocate the feedback to individual packets of each flow to

achieve fairness.

The FC uses an AIMD (Additive-Increase Multiplicative-Decrease) control law

and computes the per-packet feedback for each flow according to the following rules:

1. If *W<»»C*> > 0, allocate feedback equally to each flow

2. If V(Feedback) < (̂ a u o c a t e feedback to flows proportionally to their current through­

puts

As long as the aggregate feedback is not zero, controller will tell the sender to ad­

just the traffic until each flow converges to their fairness.

When efficiency is close to optimal, (that is, the feedback is near zero) the above

policy becomes inefficient. In this case, the algorithm uses bandwidth shuffling technique

108

Appendix A: Summary of the XCP Algorithm

to converge to fairness further. The shuffled traffic is computed as follows:

h = max(0,y.y-\<f>\) (A2)

where y is the input bandwidth, ^ is the feedback. The control parameter y is usually set

to 0.1, so that the utilization can be better than 90% in the shuffling stage when (j) ~0. In

this stage the controller allocates and de-allocates some of the bandwidth to each flow in

order to allow it to obtain its fair share of the bandwidth (i.e., the fairness issue), and to

ensure its utilization to be near 100% (with some fluctuation due to adjustment) while

keeping the total allocated traffic constant.

Since XCP algorithm separates the congestion control and fairness control, and it

uses MIMD and AIMD control law separately, it outperforms most of the up-to-date al­

gorithms in high bandwidth-delay product networks.

109

Appendix B: Flow Charts of Some Important Slot Processing Functions

Appendix B: Flow Charts of Some Important Slot
Processing Functions

We list some important flow charts to understand more about the implementation of

AAPN signaling protocol.

Begin of sending a slot

Slot header filling)

Cut whole slot into
packets

Send out packets one
by one

End of sending a slot

Figure B.l Flow Chart of Slot Sending Function

Figure B.l shows the slot sending flow chart (in slow type and FPGA version A).

Each slot is taken from the virtual queue buffer, filled with slot header. It then is chopped

into Ethernet packets and sent to another PC or FPGA.

Figure B.2 shows the receiving flow chart in slow prototype. It uses the packet

sequence, source ID and destination ID as the magic numbers to find the beginning of

slot header, then receives the whole slot.

110

Appendix B: Flow Charts of Some Important Slot Processing Functions

c Begin of receiving a
slot

(

)

Receive an Ethernet
packet

c
)

Check SrcID and \ _
DestID (slot header) J

C Get length of the slot J

c Receive all the slot
data)

C Slot processing j

(End of receiving a slot J

Figure B.2 Flow Chart of Slot Receiving Function

c Slot processing, calls sub
functions based on code field)

(Invitation Proccessing

f Config Proccessing

(Fault Data Proccessing

(Management Data
V Processing

IP Data Processing J

MPLS Data Processing)

FTP Data Processing j

Traffic Data Processing)

Figure B.3 Flow Chart of Slot Processing Function

Figure B.3 shows the flow chart when the scheduler receives a slot. It first checks

the code field to see what type of slot it received and then takes related actions by calling

the sub-functions to finish the processing.

ill

Appendix C: Fluid Modeling

Appendix C: Fluid Modeling

When we talk about congestion control, we should mention fluid model [MiGoOO]

[HoMiOla] [HoMiOlb] which is a milestone in this research area. It introduces a math-

ematic model of congestion control that can be used when we design and analyze the

controller.

The non-linear dynamic model for TCP/AIMD/AQM is described by the follow­

ing coupled, nonlinear differential equations:

0%) : 1 W{t)W(t-t{t))

t{t) 2 r0 - r (0)
p(t-r(t))

r(t)

(CI)

(C3)

where J& is the time-derivative of x, ju is link capacity in packets/sec. It shows how the

average queue length x(t) reacts to the changes on the average window size W(t), the av­

erage round-trip time i{t), the traffic load N(t), the link capacity ju and the nonlinear

mechanism of the AQM algorithm (e.g., RED [FUa93]).

1 1 Rt> N <¥+

Figure C.l Fluid Model of TCP Window Based Congestion Control

Figure C.l shows the compensator studied in [HoMiOlb], the well-known RED

controller [FUa93]. It consists of an LPF (Low-Pass Filter) and nonlinear gain element.

112

Appendix C: Fluid Modeling

The form of the LPF was derived in [HoMiOlb] while nonlinear gain element is a

mechanism that marks packets with a dropping probability p as a function of average

queue length xavg. Parameter p is varying between two queue thresholds minlh and max,/,,

with a slope of LRED=zPmaxKmaxth-minth)- Combining the two elements, the transfer func­

tion model for RED [FUa93] is CRED=LREDI{S/K+1) where K=\oge(l-a)ld and a is the

queue averaging parameter while <5"is the sampling frequency.

Based on the linearized mathematic model, we can use advanced control tech­

niques to design the controller and analyze our design.

113

Appendix D: Impact of Buffer Size on Queue Length, Packet Drops, Link Utilization

Appendix D: Impact of Buffer Size on Queue
Length, Packet Drops, Link Utilization

This appendix shows performance of queue length, queuing delay, packet drops and link

utilization of the original XCP algorithm with different buffer sizes. The performance of

our XCP-CL is provided in Section 5.5.

Buffer Size = 1 Packet

1

Q
ue

ue
 L

en
gt

h
 (

P
ac

ke
ts

)
p

p

p

p

o

ho

j*.

c>

bo

L L L L

r i i r \

i !

i

ill '11 1 i
11|| 111 11

i l l 1 8
1

1
lilffl

Hi ii

§ i l l 1
I I I IPI

11

- instantaneous

i i i i

i M I
50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure D.l Queue Length (Buffer Size =1 Packet, XCP)

Note: the thick line during time interval 0-100s and 420-600s is due to the over

crowding of 'X' in the running average curve. It does not mean there is a nonzero queue

length. It is likewise for other figures later on.

114

Appendix D: Impact of Buffer Size on Queue Length, Packet Drops, Link Utilization

x 10

100 300

Time (Seconds)
600

Figure D.2 Queuing Delay (Buffer Size =1 Packet, XCP)

(/) -*-• m

CO
D-
-a
0)
Q.
n
o
%— Q
O
l ~

a>

e
3

z

100

90

RO

70

60

hO

40

30

20

10

0 J

I r

I

1 1
r r

— - ' r -
r

— - 1 -

- - I—

r

_ L _

--'r--\

r

r r r

ill
' i i 1

f i

1 ;

I !
\\ I1

II V1

III
' l

1

I "I | m

r r T -

• ! ! !
i i i
i i i

. i i i _ .

i i i
i i i

1 1 1 1

instantaneous

—>^— running awrage
i < i i

-

i i i i

1 i i i i

i i i i
Pi it ' ' '
IJ l | i i i

III If; ' ' '

i i i

4ti4-
50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure D.3 Number of Dropped Packets (Buffer Size =1 Packet, XCP)

115

Appendix D: Impact of Buffer Size on Queue Length, Packet Drops, Link Utilization

200 300 400
Time (Seconds)

600

Figure D.4 Percentage of Dropped Packets (Buffer Size =1 Packet, XCP)

Figure D.l and Figure D.2 show the queue length and queuing delay respectively.

We plot the running average and the instantaneous queue length and queuing delay to

have a good view of these parameters. Running average is used to smooth out short-term

fluctuations, thus highlighting longer-term trends. As one can see from these figures,

there is no queue during the interval 0-200s and 400-600s when the system has the cor­

rect capacity information. However, during the interval 200-400s, when the system has

wrong capacity information, it has non-zero queue length. The instantaneous queue

length oscillates between 0 and 1 packet with a running average of about 0.1 packet. Be­

cause the instantaneous queue length is random oscillation, the running average is also

random between the maximum and minimum boundaries (the other curves are the same).

Consequently, the instantaneous queuing delay oscillates between zero and 1.8xl0"4s with

the running average of about 0.2x1 O^s.

During the congestion interval, the senders are overloading the system and there

are not enough buffers to absorb the overloaded traffic since we set the buffer size as one

in this experiment. As a result, it incurs a high packet drop with a running average of 50

116

Appendix D: Impact of Buffer Size on Queue Length, Packet Drops, Link Utilization

packets as shown in Figure D.3. The number of dropped packets shown in this figure is

defined as the accumulated dropped packets in a time interval of d, the control interval.

One can see there are always a number of packets are dropped. We plot the curve of the

percentage of dropped packets in Figure D.4 as well. The percentage is defined as the

number of dropped packets in a time interval divided by the total number of packets the

router should receive in this time interval. It has the same pattern of the number of

dropped packets (it is a scale down version). The running average is 2.1%.

o

S3 0.6

XL

50 100 150 200 250 300 350 400 450 500 550

Time (Seconds)

Figure D.5 Utilization (Buffer Size =1 Packet, XCP)

Figure D.5 shows the link utilization performance. During interval 0-200s, the

utilization goes to 1 in about 3 s and stays at full utilization. During congestion interval of

200-400s, when the system does not have the correct congestion information, the router

drops packets and the utilization goes down to about 0.39. During time 400-600s, the

congestion disappeared, and the utilization goes back to 1 again very quickly.

Buffer Size =10 Packets

117

Appendix D: Impact of Buffer Size on Queue Length, Packet Drops, Link Utilization

v>
• * — »

CD
J*
O
CO

Q .

c
CD

_ l

CD

CD

a

11

10

9

8

7

6

5

4

3

2

1

01

instantaneous

running average

- + +

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure D.6 Queue Length (Buffer Size =10 Packets, XCP)

x 10'

C/>
T3
C
o
o CD

w * • — * •

>^
CO
CD
Q
O)
c

' D
CD
3

o

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

01
100 200 300 400

Time (Seconds)

instantaneous

running average

500 600

Figure D.7 Queuing Delay (Buffer Size =10 Packets, XCP)

118

Appendix D: Impact of Buffer Size on Queue Length, Packet Drops, Link Utilization

150

125

J?
o «
•o

Q.
Q.
P

e

100

75

50

25

01

instantaneous

running average

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure D.8 Number of Dropped Packets (Buffer Size =10 Packets, XCP)

100 200 300 400

Time (Seconds)
500 600

Figure D.9 Percentage of Dropped Packets (Buffer Size =10 Packets, XCP)

Figure D.6 to Figure D.7 show the queue length, queuing delay, packets drop per-

Appendix D: Impact of Buffer Size on Queue Length, Packet Drops, Link Utilization

formance separately. The system appears to have the similar performance as before.

Again, one can see from these figures, there is no queue during time 0-200s and 400-600s

when the system has the correct capacity information. Again there is no queuing delay.

During time 200-400s, when the system has wrong capacity information, it has non-zero

queue length. The instantaneous queue length oscillates between 0 and 10 packets (the

largest buffer size) with a running average of about 2.5 packets. This is due to the buffer

size is set to 10 packets and the system has the wrong congestion information, so it tries

to send much traffic and uses up all the buffers. Consequently, the instantaneous queuing

delay oscillates between zero and 1.8xl.0"3s with the running average of about 4xl0"4s.

During time 0-200s and 400-600s, there is no dropped packet as before. During

congestion period of 200-400s, there are also many packets dropped with a running aver­

age of 40 packets as shown in Figure D.8. The running average of the percentage of

dropped packets is 0.87% as shown in Figure D.9. Since we set the buffer size as 10

packets in this experiment, fewer packets are dropped compared to the situation as we set

the buffer size as 1. Notice during this congestion period, at some points there is no

dropped packet while there are always dropped packets in the previous experiment. The

reason is that the system now has a buffer size of 10 packets. At these sample points the

system has the ability to absorb all the arrived traffic when needed.

1

0.8

c o

I 0.6

c

Zi 0.4

0.2

0- — -- -

50 100 150 200 250 300 350 400 450 500 550

Time (Seconds)

Figure D.10 Link Utilization (Buffer Size =10 Packets, XCP)
120

' i i i

i i i

i i i

-i u -i

1 r

—
-,

1 1 1

1 1 1

'1 1 1

1 .. - _ | ! _ I1

;) f 1 i 1

- X

Ml

! 1

1 I 1

-1 l_ J

1 1 1

1 1 1

: j i !

1 1

Appendix D: Impact of Buffer Size on Queue Length, Packet Drops, Link Utilization

Figure D.10 shows the link utilization performance. Again as before, during time

0-200s, utilization goes to 1 in about 3s and stays at full utilization. During congestion

interval of 200-400s, when the system does not have the correct congestion information,

the router drops some packets. However, in this experiment the buffer size is set to 10

packets. So the system can buffer more packets when there is some overload and drops

less packets. Hence the utilization only goes down to about 0.7 (with heavy oscillation),

much better than with a buffer size as 1 packet (with the utilization as 0.39). This is the

trade off for longer queuing delay. During time 400-600s, the congestion disappears, and

the utilization goes back to 1 very quickly again.

Buffer Size = 100 Packets

110

100

90

35" so

1 70

a.
^ 60
"5)
O 50

_ l
§ 40
0)
O 3 0

20

10

0:
50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure D.ll Queue Length (Buffer Size =100 Packets, XCP)

Figure D.l 1 to Figure D.12 show the queue length, queuing delay, dropped pack­

ets performance separately. Again, it has the similar behavior as previous experiments as

one can see from these figures. There is no queue during time 0-200s and 400-600s when

the system has the correct capacity information. Again there is no queuing delay. During

time 200-400s, when the system has wrong capacity information, it has non-zero queue

121

instantaneous
running average

Appendix D: Impact of Buffer Size on Queue Length, Packet Drops, Link Utilization

length. The instantaneous queue length oscillates heavily between 0 and 100 packets with

a running average of about 20 packets. Consequently, the instantaneous queuing delay

oscillates between zero and 1.8xl0"2s with a running average of about 3.6xl0"3s.

200 300 400

Time (Seconds)
500 600

Figure D.12 Queuing Delay (Buffer Size =100 Packets, XCP)

300

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure D.13 Number of Dropped Packet (Buffer Size =100 Packets, XCP)

122

Appendix D: Impact of Buffer Size on Queue Length, Packet Drops, Link Utilization

0.012

0.01

o_

<D
Q.
Q.
O

0.008

0.006

B 0.004
c
0)
2
0)
a. 0.002

100 200 300 400 500 600

Time (Seconds)

Figure D.14 Percentage of Dropped Packets (Buffer Size =100 Packets, XCP)

There are also many packets dropped with a running average of 40 packets as

shown in Figure D.13. This value is approximately the same as when we set the buffer

size to 10 packets. The possible reason is the system now have a bigger buffer (100 pack­

ets) to absorb the traffic but still has the wrong congestion information. The net result is

similar to the situation of setting the buffer size to 10 packets. Figure D.14 shows the per­

centage of dropped packets which has running average of 0.002%.

0.8

c
o

0.4

0.2

0*

1 1 1 1
1 1 1 1

' ' ' Sffl
' ' I -ill

- — 1 1 1 i l l
i i i i * i

! ! ! ! 1
i i i i i

i i
i i

ISMS
Hliiiiliaffili

1 Pf i1
i * 1 '

i

| ySj NN

Nil
' Jr

i * 1 ;•

i t i

i i I

i — i . —

50 100 150 200 250 300 350 400 450 500 550

Time (Seconds)

Figure D.15 Link Utilization (Buffer Size =100 Packets, XCP)

123

Appendix D: Impact of Buffer Size on Queue Length, Packet Drops, Link Utilization

Figure D.15 shows the link utilization performance. Again as before, during time

0-200s, utilization goes to 1 in about 3 s and stays at full utilization. During congestion

interval of 200-400s, when the system does not have the correct congestion information,

the router drops some packets. However, in this experiment the buffer size is set to 100

packets. So the system can buffer more packets when there is some overload and drops

less packets. Hence the utilization only goes down to about 0.8, a little better than with a

buffer size as 10 packets (with the utilization as 0.7). During time 400-600s, the conges­

tion disappeared, and the utilization goes back to 1 again very quickly.

Buffer Size = 1000 Packets

Figure D.16 to Figure D.17 show the queue length, queuing delay separately. Again the

system has a similar behavior with some difference after the congestion disappears. One

can see from these figures, there is no queue during time 0-200s when the system has the

correct link capacity information. Again there is no queuing delay. During time 200-4Q0s,

when the system has wrong capacity information, it has non-zero queue length. The in­

stantaneous queue length oscillates heavily between 0 and 1000 packets with a running

average of about 700 packets. Consequently, the instantaneous queuing delay oscillates

between zero and 1.8xl0"'s with a running average of about 1.2xl0"'s.

During time 400-600s, the congestion disappears, however, there is a huge queue

in the system. It takes a long time for the router to drain this queue as one can see from

the figure (we did not plot the curve after the queue is completely drained out, it is

enough to show the performance of the system). This phenomenon is much obvious com­

pared to the results as we set the buffer size to 1, 10, and 100 packets.

There are much fewer packets were dropped during congestion with a running av­

erage of 10 packets as shown in Figure D.18. This is because we set the buffer size as

1000 packets, so the system can absorb much traffic as needed. There is again the trade

off for much longer queuing delay. During time interval 400-600s when the congestion

disappears, even there is a huge queue in the system there is still no dropped packet. The

algorithm has the correct congestion information (including the queue length), so the sys­

tem works very well.

124

Appendix D: Impact of Buffer Size on Queue Length, Packet Drops, Link Utilization

50 100 150 200 250 300 350 400 450 500 550 600
Time (Seconds)

Figure D.16 Queue Length (Buffer Size =1000 Packets, XCP)

200 300 400

Time (Seconds)
600

Figure D.17 Queuing Delay (Buffer Size =1000 Packets, XCP)

Appendix D: Impact of Buffer Size on Queue Length, Packet Drops, Link Utilization

instantaneous

running average

50 100 150 200 250 300 350 400 450 500 550 600
Time (Seconds)

Figure D.18 Number of Dropped Packets (Buffer Size =1000 Packets, XCP)

2.5
x 10'

CD

o
co a.

T3
CD
Q .
O L
O

O
CD
O)
CO

-t—•
c
CD

2
CD

Q .

1.5

0.5

01
100

instantaneous

running average

200 300 400

Time (Seconds)
500 6 0 0

Figure D.19 Percentage of Dropped Packets (Buffer Size =1000 Packets, XCP)

126

Appendix D: Impact of Buffer Size on Queue Length, Packet Drops, Link Utilization

0.8

q

N 0.6

^
c 0.4

0.2

1 1 1 1

1 ! 1 ! [n

i r i

j.

i —

i i

i 1 :
1-

i

50 100 150 200 250 300 350 400 450 500 550

Time (Seconds)

Figure D.20 Link Utilization (Buffer Size =1000 Packets, XCP)

Figure D.20 shows the link utilization performance. Again as before, during time

0-200s, utilization goes to 1 in about 3 s and stays at full utilization. During congestion

interval of 200-400s when there is congestion, the router drops some packets. However,

in this experiment the buffer size is set to 1000 packets, the number of dropped packets is

less than the experiments before. Sine the system can buffer more packets when there is

some overload. The buffered packets keep the link almost as full utilization with some

points of dips. As we said before, this is at the cost of longer queuing delay. During time

400-600s, the congestion disappears, and the utilization goes back to 1 again very

quickly.

727

Appendix E: End to End Delay Performance

Appendix E: End to End Delay Performance

In this appendix we show the measured end to end delay performance of the system of

the original XCP algorithm with different buffer sizes (1, 10, 100 and 1000 packets). We

use the network model as shown in Case 1. Detailed parameters are shown in Table 4.1.

Because the queuing delay is small compared to the propagation delay, the figures

of the end to end delay of the original XCP with a buffer size of 1, 10, 100 packets are

almost the same with that of our XCP-CL and with not much interests. We omitted here.

Table E.l Expected and Measured Delay (Buffer Size =1 Packet, XCP)

Simulation

Time

Delay

Flow#l(s)

Flow#21(s)

Flow#41(s)

Flow#61(s)

Flow#81(s)

0-200s

Expected

0.1100

0.1300

0.1500

0.1300

0.1100

Measured

0.1117

0.1316

0.1516

0.1316

0.1117

200-400s

Expected

0.1700

0.1900

0.2500

0.2900

0.1500

Measured

0.1705

0.1907

0.2503

0.2907

0.1505

400-600s

Expected

0.1400

0.2100

0.1100

0.1500

0.1300

Measured

0.1415

0.2114

0.1119

0.1519

0.1315

Table E.2 Expected and Measured Delay (Buffer Size =10 Packets, XCP)

Simulation

Time

Delay

Flow#l(s)

Flow#21(s)

Flow#41(s)

Flow#61(s)

Flow#81(s)

0-200s

Expected

0.1100

0.1300

0.1500

0.1300

0.1100

Measured

0.1117

0.1316

0.1516

0.1316

0.1117

200-400s

Expected

0.1700

0.1900

0.2500

0.2900

0.1500

Measured

0.1713

0.1916

0.2517

0.2917

0.1515

400-600s

Expected

0.1400

0.2100

0.1100

0.1500

0.1300

Measured

0.1419

0.2118

0.1121

0.1524

0.1317

128

Appendix E: End to End Delay Performance

Table E.3 Expected and Measured Delay (Buffer Size =100 Packets, XCP)

Simulation

Time

Delay

Flow#l(s)

Flow#21(s)

Flow#41(s)

Flow#61(s)

Flow#81(s)

0-200s

Expected

0.1100

0.1300

0.1500

0.1300

0.1100

Measured

0.1117

0.1316

0.1516

0.1316

0.1117

200-400s

Expected

0.1700

0.1900

0.2500

0.2900

0.1500

Measured

0.1763

0.1959

0.256

0.2959

0.1557

400-600s

Expected

0.1400

0.2100

0.1100

0.1500

0.1300

Measured

0.1422

0.2119

0.1131

0.1541

0.1325

Table E.l to Table E.3 show the expected and the measured end to end delay of

the same 5 flows with a buffer size of 1, 10 or 100 packets respectively. Again note that

the queuing delay is so small compared to the propagation delay that the figures are al­

most the same as with a buffer size of 1 in XCP-CL algorithm simulation. During time

interval 0-200s and 400-600s, the measured end to end delays are almost the same as the

expected values. During the time of 200-400s when there is congestion in the system in

these experiments, the measured values are a little bigger compared to the expected one.

This is because of the queuing delay and the processing delay.

0.4

0.35

-8 0.3
c
o

I 0.25

re
"53 0.2
D
TJ

lS 0.15

1 0.1
LU

0.05

\
.

T
-.

.
.

1
J

r
-i

i
i

i
1

.j-j.-i.-irBnisui.
-:-j~;--f-:-rri"rrr
E , r , 1 r , ! , j ! ,

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure E.l End to End Delay of Flow#l (Buffer Size =1000 Packets, XCP)

129

Appendix E: End to End Delay Performance

0.4

0.35

T3
r
o
o CD

>. CO
CD
Q
T3

UJ
o
T>
c
1X1

0.3

0.25

0.2

0.15

0.1

0.05
J

J

r T T n r i

1 i : i ; ;

L 1 .1 J J

i ! . ! i i

i i i i i
i i i i i

1 ! 1 1 - 1

1 l« I i 1

L

r r T i -

I 1 J

50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure E.2 End to End Delay of Flow#21 (Buffer Size =1000 Packets, XCP)

0.4

0.35

-g 0.3
c
o

I 0.25

CO

CD 0.2
Q
•o

|S 0.15

T5
C 0.1
UJ

0.05

I r r
T

L

1

1

: : ; : ! : : : i i i
50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure E.3 End to End Delay of Flow#41 (Buffer Size =1000 Packets, XCP)

Appendix E: End to End Delay Performance

0.4

0.35

CO

c
o C)

(S
e

>*
CO

o
Q
-o
r
LU
O

T5
c
LU

0.3

0.25

0.2

0.1b

0 1

0.05

-, , , p.

I I I ;

! • i | |

i r r

;

i i t i Hfrfrai ' l

I I i I I I I
I I I I I I I
i i i i i i i
i i i i i i i

t i i i i i i
i i i i i i i
i i i i i i i
i i i i i i i

i i . i i i i i

i i i i i i i
i i i i i i i
i i i i i i i

i i i i i i i
i i i i i i i
r i I t i I t

50 100 150 200 250 300 350 400 450 500 550 600

time (Seconds)

Figure E.4 End to End Delay of Flow#61 (Buffer Size =1000 Packets, XCP)

0.4

0.35

•o
r
o
C)

>.
ca
CD
Q
T3
c:

LU
o

•n
c
LU

0.3

0.25

0.2

0.15

0 1

0.05

_ I 4 . U - I 4 - 1 - 1 4 - I - L L _ ^

[
1

1
1

1
t

1

1
1

I

t
!

1

1
1

1

1
1

1

i
i

i

. — ! — - f — . — ! — f — 1 — i — f — I — I — I —
50 100 150 200 250 300 350 400 450 500 550 600

Time (Seconds)

Figure E.5 End to End Delay of Flow#81 (Buffer Size =1000 Packets, XCP)

Figure E.l to Figure E.5 show the end to end delay of the same 5 flows with the

buffer size set as 1000 packets. During time 0-200s, the end to end delays are almost the

131

Appendix E: End to End Delay Performance

same as the expected values. During time 200-400s, because of the huge queuing delay in

the system in this experiment, the end to end delays oscillate heavily above the expected

values (notice the end to end delay equals the propagation delay plus the queuing delay

and the processing delay). During time 400-600s the congestion disappears, the system

drains the huge queue that left in the previous time. This makes the curves of the end to

end delay in these figures have a long trail.

Table E.4 Expected and Measured Delay (Buffer Size =1000 Packets, XCP)

Simulation

Time

Delay

Flow#l(s)

Flow#21(s)

Flow#41(s)

Flow#61(s)

Flow#81(s)

0-200s

Expected

0.1100

0.1300

0.1500

0.1300

0.1100

Measured

0.1117

0.1316

0.1516

0.1316

0.1117

200-400s

Expected

0.1700

0.1900

0.2500

0.2900

0.1500

Measured

0.2396

0.2583

0.3192

0.361

0.218

400-600s

Expected

0.1400

0.2100

0.1100

0.1500

0.1300

Measured

0.2102

0.2801

0.1834

0.2234

0.2003

Table E.4 shows the end to end delay of the same 5 flows with the buffer size set

to 1000 packets. One can see that during time 0-200s, the end to end delays are almost

the same as the expected values. During time 200-400s, because the huge queuing delays,

the end to end delays are much longer than the expected one. During time 400-600s, the

congestion disappears. However, because of the previous huge queue and the router need

some time to drain this queue, each flow has a much longer end to end delay.

132

