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Abstract 

This thesis presents a prism- and gap-based approach for modelling shopping destination choice 

in the Travel/Activity Scheduler for Household Agents (TASHA). The gap-location choice 

model improves upon TASHA’s existing destination choice model in 3 key ways: 1) Shifting 

from a zone-based to a disaggregate location choice model, 2) Categorizing shopping trips into 

meaningful types, and 3) Accounting for scheduling constraints in choice set generation and 

location choice. The model replicates gap and location choices reasonably well at an aggregate 

level and shows that a simple yet robust model can be developed with minimal changes to 

TASHA’s existing location choice model. The gap-based approach to destination choice is 

envisioned as a small but significant step towards a more comprehensive location choice model 

in a dynamic activity scheduling environment. 
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1 Introduction 

Travel demand models are important tools used by transportation planners to predict future 

growth in transport demand, forecast traveller responses to various policies, and assess 

socioeconomic and environmental impact of the transportation system. Insights from travel 

demand model results are used by decision makers to answer key questions to complex 

transportation issues. Some of these questions include: 

• How effective are different demand management strategies in reducing congestion? 

• Will there be sufficient demand to warrant investment in new infrastructure? 

• What is the environmental impact of traffic pollution? 

As urban regions continue to expand, modellers will need to adapt travel demand models to 

address the variety of questions posed by regional transportation authorities. Conventional trip-

based models of travel demand, used in the standard four-stage modelling approach, are limited 

in representing traveller behaviour and testing transportation policies.  

Transportation is a derived demand, arising from the need to participate in activities, such as 

work, school, and shopping activities. Travel patterns, such as congestion and time-of-day 

variations of traffic conditions, arise from different individuals participating in activities over 

space and time. To capture the complex behaviour of travellers, travel demand needs to be 

modelled at the activity level. 

Activity-based approaches to travel demand modelling have proven to be better than 

conventional approaches in transportation policy analysis and forecasting traveller behaviour 

responses (Habib, 2011). Activity-based models have been implemented in different parts of the 

world: South Florida (FAMOS) (Pendyala et al., 2005), Portland (Bowman et al., 1998), Texas 

(CEMDAP) (Bhat et al., 2004), Netherlands (ALBATROSS) (Arentze and Timmermans, 2000), 

and Toronto (TASHA) (Roorda et al., 2008).  

While the strength of the activity-based approach is clearly recognized and used in many regions 

in the United States (e.g. San Francisco, Columbus, Atlanta, and Denver), many Canadian 

regions still use trip-based or simple tour-based methods. In Canada, researchers have developed 

a fully operational activity-based model for Toronto, known as the Travel/Activity Scheduler for 
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Household Agents (TASHA). While activity-based models have not been adopted in the Toronto 

region, there are several improvements that can be made to TASHA to better represent traveller 

behaviour. One of the most significant improvements that can be made is to improve the 

behavioural realism of TASHA’s location choice model, since location choice is a fundamental 

decision that influences other travel choices, such as choices of mode and route.  

The main purpose of this thesis is to develop a robust shopping location choice model for the 

TASHA. TASHA is a fully operational activity-based microsimulation model based on the 

Transportation Tomorrow Survey (TTS) (Data Management Group, 1996). As with most 

activity-based models, TASHA consists of an activity generation component and an activity 

scheduling component. While TASHA can exploit data from activity diaries, TASHA simulates 

the activity generation and scheduling process using the same trip-based data used for 

conventional four-stage models and is robust enough to be used as an alternative to conventional 

models currently used in the Greater Toronto Area (GTA) (Roorda et al., 2008). 

The motivation behind improving TASHA’s shopping location choice model is twofold: 

1.  Location choice is a foundational choice in the activity scheduling process. Many choices, 

such as mode and route choices, derive from location choice. The current implementation 

of TASHA’s location choice model predicts destination choices at the zone level, whereas 

subsequent choices depend on the individual, scheduling constraints, and household 

interactions. To align with the overall microsimulation framework of TASHA, a natural 

modification to the location choice model is to change from an aggregate model to a 

disaggregate model. 

2. While shopping comprises only a small percentage of total trips, shopping trips are 

growing more rapidly than any other shopping type (Buliung et al., 2007). With the 

growing number of shopping trips and the development of new urban centres, it is 

important that shopping activities are properly modelled in addition to other trip purposes, 

such as Work and School. Furthermore, unlike work and school trips, shopping trips 

exhibit a great deal of heterogeneity.  

This thesis aims to develop a model to answer the question: How do individuals choose shopping 

locations? This behavioural model can be used to predict shopping location choices at an 
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individual level. While this research was inspired by the need to improve TASHA’s shopping 

location choice model, the main objective is to explore location choice behaviour and examine 

some simplifying assumptions made in choosing locations in the activity-based modelling 

framework.   

One of the key assumptions in TASHA is the independence of location choice from other 

choices in the activity generation and scheduling process. In this thesis, we propose that 

shopping location is chosen in the context of an individual’s schedule. In particular, we postulate 

that an individual first chooses a time window (or gap); the choice of shopping location depends 

on the gap chosen. This notion arises from our understanding that individuals exhibit different 

shopping location choice behaviours depending on the type of shopping, individual scheduling 

constraints, time of day, and the day of week. Chapter 3 will give additional details to our 

proposed prism- and gap-based shopping location choice model. 

The remainder of the thesis is organized as follows: Chapter 2 presents a review of TASHA, 

shopping location choice models, and choice set formation models; Chapter 3 presents TASHA’s 

current location choice model and the proposed approach, along with a description of the data; 

Chapter 4 presents the specification of the model and parameter estimates; Chapter 5 presents 

simulates how well the model predicts shopping location choices; Chapter 6 presents 

opportunities for future research; and Chapter 7 concludes with the main contributions of this 

research. 
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2 Literature Review 

2.1 Approaches to Travel Demand Modelling 

Two main approaches exist in Travel Demand Modelling:  

1. Four-Stage Model (Urban Transportation Modelling System), and 

2. Activity-based Models. 

A large body of literature discusses these models in great depth, including Meyer and Miller 

(2001) and Timmermans (2005). For this review, these approaches will be discussed in relation 

to the Travel/Activity Scheduler for Household Agents (TASHA). 

2.1.1 Four-Stage Model 

TASHA was designed to improve the existing four-stage travel demand modelling system used 

in the Toronto area. The four-stage model, or the Urban Transportation Modelling System 

(UTMS), was developed in the mid-20th century and is still the state-of-practice in many urban 

regions, including the Greater Toronto Area (GTA) (Meyer and Miller, 2001). The UTMS 

models different components of travel demand, including trip generation, trip distribution, mode 

choice, and route choice. A key difference between TASHA and the UTMS is that the UTMS 

models travel demand at an aggregate level of zone-to-zone flows, whereas TASHA models 

activity and travel choices at a disaggregate level of trips by individual persons. Individual 

choices modelled in TASHA can be aggregated to give similar output to the conventional four-

stage models (Bowman and Ben-Akiva, 1996). 

Furthermore, four-stage models predict trip outcomes, while disaggregate models such as 

TASHA predict travel and activity choices, thereby capturing the underlying behaviour leading 

to trip outcomes. These behavioural models are more sensitive to transportation policies and are 

more transferable to different spatial and temporal contexts than the conventional four-stage 

models. 
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2.1.2 Activity-based Models 

Activity-based models take into account the behavioural component of travel demand, which is a 

derived demand arising from basic needs or desires that lead to individual participation in 

activities over space and time (Ettema and Timmermans, 1997). These models are more sensitive 

to policies and travel behaviour responses. There are two main approaches to activity-based 

models of travel demand: 

1. An Econometric Approach 

2. A Rule-based Scheduling Process Approach 

2.1.2.1 Econometric Approach 

The econometric approach uses random utility maximization (RUM) models to capture the 

choices resulting in schedule formation. These models usually involve a series of sequential 

discrete choice models to predict activity travel and activity patterns. Ben-Akiva and Lerman 

(2001) provide a good overview of random utility and discrete choice theories. 

The Comprehensive Econometric Microsimulator for Daily Activity travel Patterns (CEMDAP) 

is one of the few operational activity-based models relying mostly on an econometric approach 

to model activity scheduling (Bhat et al., 2004). CEMDAP’s activity scheduling component 

consists of a number of sub-models, which consider a fixed sequence of activity scheduling, 

defined by the modeller. This approach efficiently captures various components of travel 

behaviour in the econometric model components.  

One shortfall of CEMDAP, and other econometric models, is that these models do not provide a 

comprehensive framework to handle the dynamics of the scheduling process. Rather, these 

econometric models generally seek to replicate activity and travel patterns without considering 

the schedule formation process itself. Habib and Miller (2008, 2009) and Habib (2011) propose a 

unified econometric framework to address some of these issues; however this model is not yet 

operational. A few operational activity-based models addressing the scheduling formation 

process are discussed in the next section. 
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2.1.2.2 Rule-based Scheduling Process Approach 

The rule-based scheduling process approach uses a variety of computational techniques to model 

the activity scheduling process. As many travel behaviour researchers have long recognized, to 

capture the underlying behaviour in schedule formation, researchers need to model the process 

behind activity schedule formation leading to travel and activity patterns (Pas, 1985; Axhausen 

and Garling, 1992; Bhat and Lawton, 2000). Most fully operational process models use one of 

two approaches:  

1. Computational process models, such as ALBATROSS (Arentze and 

Timmermans, 2000), or 

2. Simple empirical rules, as in TASHA (Roorda et al., 2008). 

ALBATROSS uses data mining techniques and probabilistic decision trees to capture the 

sequence of decisions leading to activity schedule formation. The core of ALBATROSS is 

driven a scheduling engine, which is a system of models connected by a comprehensive set of 

conditional IF-THEN statements. The activity schedule is built by assuming fixed activities, such 

as work, and simulating schedule formation through probabilistic decision trees. The fixed 

activities and conditional heuristics derive from travel diary data, meaning that this model will 

need similar resources for implementation in other contexts. 

TASHA is an activity-based model, which uses some simple empirical rules to represent the 

scheduling process. These rules are informed by the CHASE data, which is a weeklong travel 

and activity dataset containing individual and household scheduling information. Unlike 

ALBATROSS, TASHA uses simpler rules and can be implemented without activity diary data. 

More recently, Auld and Mohammadian (2009) proposed an activity-based modelling 

framework, which is a hybrid of behavioural schedule process rules and econometrics. This 

model builds on the TASHA framework and makes significant improvements in activity 

planning and scheduling dynamics. Habib (2011) suggests a more unified econometric modelling 

framework to address the fundamental issues related to scheduling dynamics. 

Nevertheless, TASHA represents a significant advance in activity-based modelling. The next 

section will provide a general overview of the TASHA framework. 



 

2.2 TASHA 

TASHA is an agent-based microsimulation model that captures the schedule formation process 

and complex interactions such as vehicle allocation, household allocation, 

Figure 2.1 provides a high level

Figure 2.1 Conceptual Framework of TASHA

One of the key concepts in TASHA is that of a project. A 

connected activities with a common goal or 

extends this concept to argue that all personal and household activities can be logically formed in 

a smaller set of projects, such

approach in the schedule formation process.

Each project generates a set of potential activity episodes. An 

particular activity with the following attributes: activity 

based microsimulation model that captures the schedule formation process 

and complex interactions such as vehicle allocation, household allocation, 

Figure 2.1 provides a high level overview of TASHA’s conceptual framework.

Conceptual Framework of TASHA 

One of the key concepts in TASHA is that of a project. A project is defined as a set of logically 

connected activities with a common goal or purpose (Axhausen, 1998). Miller (200

extends this concept to argue that all personal and household activities can be logically formed in 

, such as a Work or School project. TASHA uses this project

approach in the schedule formation process. 

Each project generates a set of potential activity episodes. An episode is an instance of a 

with the following attributes: activity type, duration, location, start time, end 

7 

based microsimulation model that captures the schedule formation process 

and complex interactions such as vehicle allocation, household allocation, and tour formation. 

overview of TASHA’s conceptual framework. 

is defined as a set of logically 

purpose (Axhausen, 1998). Miller (2005a, 2005b) 

extends this concept to argue that all personal and household activities can be logically formed in 

. TASHA uses this project-based 

is an instance of a 

type, duration, location, start time, end 
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time, and a set of participants. A conceptual example of a project can be “cleaning up the house”. 

A set of potential activity episodes may include: cleaning the dishes, doing the laundry, washing 

the floor, and rearranging the living space. Each of these episodes would have associated 

attributes, including start time, duration, and a set of participants.  

For this thesis, the focus is on the Shopping project, which generally only has one episode (i.e. 

shopping). In this case, the project concept can be disregarded without loss of generality. This 

organizing principle is more useful in more complicated projects, such as the Work project, and 

in projects that involve other individuals. 

As shown in Figure 2.1, the TASHA framework consists of two key components: activity 

generation and activity scheduling. Activities are generated from empirical distributions of 

activity type, frequency, and duration. These activities are grouped into agendas and inserted into 

an individual’s provisional schedule, defined as the set of episodes scheduled for execution at 

any time t. In the current version of TASHA, empirical rules derived from the CHASE dataset 

are used to define the scheduling priorities of different projects (Roorda et al., 2008). 

An important point to notice in Figure 2.1 is that activity location is also modelled as an attribute 

of the activity rather than an outcome of the scheduling process. While this assumption holds 

true for fixed and routine activities, for many other activities, location is chosen as part of the 

schedule formation process. TASHA’s location choice model is discussed further in Section 3.1. 

As activities are inserted into an individual’s provisional schedule by project priority, there is no 

consideration of the existing schedule and time budget, leading to conflicts. In TASHA, simple 

heuristics are developed that shift, split, shorten, or delete activities to resolve conflicts. Recent 

work in other models, such as ADAPTS, have incorporated a conflict resolution model in the 

scheduling process (Auld and Mohammadian, 2009). Nevertheless, the underlying issue of time 

budget considerations in the schedule formation process remains unsolved. 

Once activities from all projects have been scheduled, travel mode is chosen using a household 

tour-based model that incorporates joint mode choice for joint activities, vehicle allocation, and 

carpooling. A more detailed description of the mode choice model can be found in Roorda et al. 

(2006).  
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Finally, TASHA’s modelling system interacts with a traffic assignment model to forecast 

demand for the transportation infrastructure. TASHA is designed to interact with conventional 

traffic assignment models, such as EMME/2 as shown by Roorda et al. (2008), and dynamic 

traffic assignment models, such as MATSIM as shown by Hao et al. (2011). In either case, the 

system is run iteratively, and includes feedback of travel times into the activity scheduling and 

mode choice models. 

2.3 Shopping Location Choice Models 

Location (or destination) choice is an important and often neglected component of travel demand 

models. Within the activity-based framework, the scheduling and travel decisions are influenced 

by the choice of activity location. Unlike Work or School activities, which usually have fixed 

locations, Shopping activity locations are generally more flexible in space and time. 

Researchers have been investigating destination choice models for non-work activities for many 

years. Ansah (1977) used generalized choice sets to develop functional classifications of 

shopping destinations. In this formulation, shopping destinations were represented and classified 

at the store level and exploit retail store data, which is not always available. Furthermore, most 

operational travel demand models including TASHA capture activity location choices at the zone 

level. 

Fotheringham (1983) developed the competing destinations model to better represent spatial 

choice behaviour. This model accounts for systematic similarities and differences between 

destinations and has been extended to various applications, including the destination choice 

model in the recently developed ADAPTS activity-based model (Auld, 2011). 

Destination choice models have also been extended to include more advanced model 

formulations, including a model accounting for error correlation in workplace location (Bolduc 

et al, 1996), a unified econometric framework for non-work locations incorporating spatial 

cognition, heterogeneity in preference behaviour, and spatial interaction (Sivakumar and Bhat, 

2003), and the development of mixed generalized extreme value models for residential location 

choice (Sener et al., 2009). 
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The location choice model developed in this thesis does not account for many of the shopping 

behaviour variability that these more advanced models incorporate. Rather, the proposed model 

offers a simple approach to capture the heterogeneity in shopping activities while considering 

time and space constraints within an individual’s activity schedule. 

2.4 Choice Set Formation Models 

While significant advances have been made in location choice models, many of these models do 

not adequately consider (if at all) choice set formation. This is not an issue for problems 

involving smaller choice sets, where the actual choice set can be approximated by the universal 

set. Examples include mode choice problems and location choice problems involving the choice 

between several shopping centres. 

However, choice set formation is a greater issue in destination choice models, where the set of 

locations are much larger than the actual zones considered. For example, the universal choice set 

used in this thesis is the 1548 traffic zones in the GTA. It is behaviourally unrealistic for an 

individual to consider all 1548 locations, let alone compare each location with respect to all other 

locations. 

Several models have been developed to address choice set formation for destination choice 

(Thill, 1992; Pagliara and Timmermans, 2009). Some approaches to choice set formation 

include: 

1. Problem decomposition into choice-set generation and choice generation sub-problems 

(Burnett and Hanson, 1979; 1982), with an econometric formulation of these two 

processes by Manski (1977), 

2. Models that account for limited information processing ability, such as the satisficing 

model (Simon, 1955) and the elimination-by-aspects model (Tversky, 1972), 

3. Models that incorporate learning to incorporate the influence of information gathering 

(Meyer, 1980),  

4. Behavioural theory of random constraints to explain the probabilistic nature of choice 

sets (Swait and Ben-Akiva, 1987),  
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5. Latent choice sets models to predict the unobserved set of considered locations (Ben-

Akiva and Boccara, 1995), and 

6. Time-space prisms, conceptualized by Hagerstränd (1970), to constrain the choice set 

to the set of feasible alternatives based on scheduling constraints, as in the PCATS and 

FAMOS models (Kitamura and Fujii, 1998; Pendyala et al., 2005). 

Many of these choice set formation models require additional data of alternatives available and / 

or considered by the individual, or impute assumptions on choice set behaviour. In this thesis, 

choice set is handled by incorporating scheduling constraints defined by time-space prisms and 

availability constraints defined by land use data. This approach is purely deterministic and does 

not make any assumptions in the choice set formation process, while significantly reducing the 

choice set size (see Section 4.4).  

2.5 Research Gaps and Contributions 

An overview was provided above of TASHA in the context of some operational activity-based 

travel demand models. TASHA is an agent-based microsimulation model that uses simple rules 

to model the schedule formation process for individuals and households. Finally, a review of 

location choice and choice set formation models were provided in the context of shopping 

destination choice. 

The aim of the model developed in this thesis is to improve the behavioural realism of TASHA’s 

location choice model for shopping trips. The contributions of this research can be summarized 

as follows: 

• Destination choice sets are constrained using time-space prisms, as in ADAPTS and 

PCATS (Auld and Mohammadian, 2009; and Kitamura and Fijii, 1998). See Section 

3.2.3 for details. 

• The Shopping activity type is further disaggregated to capture the heterogeneity inherent 

in shopping trips. See Section 3.3.2 for details. 

• A gap-location choice model is developed using a nested logit model to model the 

location choice dependency on the chosen gap or time window. This modelling relaxes 
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the assumption of location choice being independent of the schedule formation process. 

To our knowledge, the gap-location choice model presented in this thesis is an innovative 

approach to modelling shopping destination choice. See Chapter 3 for details. 

3 A Prism- and Gap-based Approach to Shopping 
Destination Choice 

This chapter introduces a gap-based approach to modelling shopping location choice based on 

Hagerstrand’s time-space prism. Section 3.1 introduces the current implementation of the 

location choice model in TASHA. The subsequent sections present the motivation for the 

proposed gap-location choice model, and a description of the modelling framework and data 

used to test this model. 

3.1 TASHA’s Current Location Choice Model 

The current location choice model in TASHA uses an entropy formulation as documented in 

Eberhard (2002). In this formulation, the probability that a person living in zone i chooses 

location j is defined by Equation 3.1:  

��|� = ��� (∑ �
�[����� �����
���� �����
������
])�
∑ ��� (∑ �
 �[����� �����
 ���� �����
 ������
 ])�
   [3.1] 

where δjk  = 1 if zone j belongs to activity category k; 0 otherwise   

Ej  = employment in zone j 
Pj  = population in zone j 
dij  = distance from zone i to zone j  
αk, βk, φk, γk  = parameters to be estimated 
k  = 1, if the zone is the city core 
 = 2, if shopping mall floor space > 100,000 sq. ft. 

 = 3, otherwise 

The location choice model shown in Equation 3.1 is equivalent to a zone-based logit model and 

does not consider the location prior or posterior to the shopping episode, using a distance 

variable based on an individual’s home location. This assumption is valid for simple tours where 

the home location serves as the anchor point(s) in the trip chain. However, for more complicated 

tours or trip chains, which do not involve home-based trips, the location choice model needs to 

account for the possibility of different anchor point locations. 
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Additionally, the current location choice model does not consider choice set formation; the 

choice set for the shopping location choice model is the universal set of all zones in the study 

boundary. While selecting from the universal set is a reasonable assumption for mode choice 

models, this assumption is behaviourally unsound for destination choice models, where there can 

often be over 1000 alternatives. Individuals rarely consider all alternatives nor do they have the 

computational capacity to evaluate each alternative with respect to all other locations. The 

current model also includes locations that do not have retail stores and locations that are not 

accessible by the individual due to scheduling constraints. The proposed model aims to address 

these issues in an effort to improve the behavioural realism of the shopping location choice 

model. 

3.2 Proposed Gap-Location Choice Model 

The proposed model simulates location and gap choices at the individual level, while accounting 

for time budget constraints. The location choice model retains the same basic model structure of 

the multinomial logit model with two key differences: 

1. The revised model predicts location choice at an individual level, instead of the zone-

based model currently implemented in TASHA. This approach is better suited for the 

microsimulation framework in TASHA and better captures the heterogeneity inherent 

in shopping activities. 

2. A nested logit model is used to model gap and location choices. Rather than choosing 

location exogenously to the scheduling process, this model considers scheduling 

constraints in location choice by choosing an available time window (gap) from an 

individual’s provisional schedule. The chosen shopping location depends on the gap 

chosen. 

3.2.1 Motivation for Gap Choice 

The main premise for the proposed gap-location choice model is that location choice is not an 

independent process. Location can be chosen jointly with activity type, transportation mode, 

and/or start time, among other activity attributes. In this thesis, we propose that location choice is 

dependent on gap choice: Where you shop depends on when you choose to shop.  
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Further, we propose that an individual chooses from a set of discrete time windows (gaps) rather 

than choosing a specific start time. The decision is more likely “I will shop in the evening” 

instead of “I will shop at 7:36pm”. Eventually a specific start time will be chosen; however, 

when choosing a shopping location, an individual’s start time is usually more vaguely defined 

and subject to change. From our review of the literature, the gap-location choice model is a novel 

approach to modelling shopping destination choice. 

3.2.2 Revisiting the Scheduling Process 

Shopping location choice is currently modelled exogenously to the activity scheduling process. 

For example, in Figure 2.1, the location of the “New Episode” (e.g. shopping episode) is 

determined without considering prior or posterior episodes in the provisional schedule (e.g. 

Episodes 1 and 2). Once the location has been determined by the zone-based logit model, this 

location remains fixed during the activity scheduling process. 

The proposed model considers location endogenously to the scheduling process. Referring to 

Figure 2.1 as an example, the location of the “New Episode” would be determined when the 

episode is inserted into the provisional schedule. The choice of location would not only depend 

on the attractiveness of shopping zones, but would also depend on the current provisional 

schedule, which would consist of other higher priority activities that were inserted before the 

new shopping episode. 

3.2.3 Choice Set Generation  

In the gap-location choice model, an individual’s choice set (consideration set) is defined by the 

intersection between the awareness set and the feasible set (i.e. Consideration Set = Feasible Set 

∩ Awareness Set). For a location to be considered, the location needs to be known to the 

individual (in the awareness set) and the location must be accessible given individual scheduling 

constraints (in the feasible set). The time-space prism conceptualized by Hägerstrand (1970) is 

used to define the set of feasible locations. 

As shown in Figure 3.1, an individual’s choice of shopping location must fall within the feasible 

region, which is the projection of the time-space prism on the spatial plane. An individual’s time 

space path must lie within the time-space prism, which is defined by an individual’s speed and 

the anchor points of the chosen gap. These anchor points are defined by the prior and posterior 
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boundaries of time-space prisms (Kitamura et al., 2000; Pendyala et al., 2002; Yamamoto et al., 

2004). Furthermore, as mentioned in the literature review, an individual’s choice set can be 

modelled using latent choice sets to represent an individual’s unobserved awareness of available 

alternatives (Ben-Akiva and Boccara, 1995). Additional data collection would be required to 

develop a probabilistic awareness set model. Both stochastic frontier models and latent choice 

sets are areas for further research. 

3.3 Exploiting Travel Activity Data 

TASHA is currently calibrated using data from the 2001 Transportation Tomorrow Survey (TTS) 

(Data Management Group, 2001). TASHA uses TTS data to create a synthetic population and 

simulates activity participation and travel decisions for individuals and households. However, 

when the proposed gap-location choice model was still under development, TASHA was not 

modular – the location choice model could not be run independently from the rest of TASHA.  

As the modelling capabilities of TASHA were being developed, we designed a standalone 

program to test our gap-location choice model. However, since we did not have access to the 

synthetic population and the scheduling model, we needed to generate provisional schedules for 

each individual to test our location choice model, which depends on the gaps in the provisional 

schedule. Conventional travel surveys (e.g. TTS) do not contain activity scheduling information. 

Therefore, to generate provisional schedules, we needed data from a detailed activity diary. 

3.3.1 Using CHASE Data 

The gap-location choice model was developed using data based on the 2002-2003 Computerized 

Household Activity Scheduling Elicitor (CHASE) survey conducted in Toronto. This dataset was 

used because it captures an individual’s scheduling decisions over the course of an entire week. 

The CHASE dataset contains activity diary data for 416 individuals from 262 households, with 

361individuals from 244 households engaged in at least one shopping episode throughout the 

weeklong survey. A detailed description of the survey methodology and the data are available in 

Doherty et al. (2004) and Doherty and Miller (2000).  
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The 2001TTS zone system (Data Management Group, 2001) is used to define location 

alternatives. All geocoded data are mapped to the 2001 TTS zone system using Geographic 

Information Systems (GIS) software. The study area chosen was the Greater Toronto Area 

(GTA) with 1548 zones because it provided sufficient coverage for most of the 1194 observed 

shopping locations in the CHASE data. Figure 3.2 shows the TTS zone system, GTA region, and 

the observed shopping locations in CHASE. It is noted that not all shopping locations fall within 

the GTA region (<1%). These 11 shopping episodes are ignored in the shopping location choice 

model since the observed location is not in the universal set of possible locations. 

Figure 3.2 Observed Shopping Locations in the GTA  

Another reason that the GTA boundary was chosen for the study area is data availability. Data on 

commercial floor space by TTS zone was generously provided by Tony Hernandez from 

Ryerson’s Centre for the Study of Commercial Activity (CSCA). Data from the CSCA is 

available only for the GTA region.  
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3.3.2 Shopping Activity Types 

The CHASE dataset defines eight generic activity types within the Shopping activity category: 

Convenience Store, Minor Groceries, Major Groceries, Houseware, Clothing / Personal, Drug 

Store, Internet, and Other. Internet shopping episodes, accounting for 2 of the 1196 shopping 

episodes, were ignored in this analysis since TASHA only models out-of-home activities. The 

remaining seven generic activity types were analyzed to see if any generic types could be 

grouped based on similarities in trip characteristics, including trip distance and travel time.  

3.3.2.1 Travel Time vs Activity Duration 

As shown in Kitamura et al. (1998), time of day, activity duration, and home location have a 

significant influence on destination choice for non-home-based trips. Hence, a preliminary 

examination of the generic shopping types began with examining the relationship between travel 

time and activity duration. As shown in Figures A1.1 to A1.7 in Appendix A, there is a slight 

indication that individuals are willing to travel farther for activities with longer durations. Also, 

as shown in Table A1, the average travel time is significantly less than the average activity 

duration for all shopping types, reinforcing the disutility of travel time. However, these results 

could not be used to group the existing generic shopping types as it would require new activity 

types to be defined based on the relationship between travel time and activity duration. 

3.3.2.2 Mode Share and the Assumption of Auto Travel Times 

As shown in Figure A2 in Appendix A, Auto dominates as the main mode of transportation for 

shopping trips across all shopping types. Since mode choice is not considered in the gap-location 

choice model, the model specification for the location choice model presented in this thesis uses 

travel times for the Auto mode only. Based on Figure A2, this is a reasonable assumption for 

Transit trips. However, this assumption may not be valid for other types of modes, such as Walk, 

as shown in Table A2 and reinforced in Table A5. Conceptually, one could include walk times 

by calculating the distance travelled and using an assumed walk speed. However, many of the 

shopping trips accessed by walking are short distance trips and include intrazonal trips. These 

intrazonal trips would have walk travel times of 0 min (using conventional zone-based 

assignment methods to compute travel times), which is unrealistic. Thus, given the lack of a 

pedestrian network and an integrated mode and location choice model, auto travel times were 

used for all shopping trips for consistency. 
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3.3.2.3 Activity Planning 

As shown in Figure A3 in Appendix A, many of the shopping trips are spontaneous or planned 

on the same day, with relatively few routine shopping trips. While the activity planning horizon 

influences shopping destination choice, the location choice model developed in this thesis does 

not explicitly account for the planning horizon, unlike more recently developed models (Auld 

and Mohammadian, 2009). For further research, the activity planning horizon can be investigated 

as an attribute for shopping activity type classification. However, the goal of the classification 

approach used in this thesis is to use the existing classification provided in the CHASE dataset 

and group similar generic activity types. 

3.3.2.4 Final Activity Type Classification 

For the final activity type classification, Kolmogorov-Smirnov tests were used to compare the 

similarities and differences in the distributions of trip characteristics. Given the small dataset of 

416 individuals and 262 households, these tests were used to guide the activity type 

classification. Table 3.1 shows the results of these statistical tests comparing the travel times 

between different generic activity types. The table lists the ratio between the D-statistic and the 

threshold statistic using a significance level of α = 0.1. Ratios greater than 1 show that the 

generic activity types have different travel time distributions at the 0.1 significance level, while 

ratios less than 1 suggest that these types share similar travel time characteristics.  

Table 3.1 Kolmogorov-Smirnov Tests of Travel Times by Shopping Activity Type 

D(Travel Time) :  
D(α = 0.1)  40 41 42 43 44 45 47 
40: Convenience Store    1.0297 1.6371 1.2242 1.6424 0.4038 1.2236 
41: Minor Groceries      1.1666 0.4552 1.1195 1.0704 0.6299 
42: Major Groceries        0.4271 0.2781 1.7354 0.8392 
43: Houseware          0.4377 1.2634 0.2318 
44: Clothing / Personal            1.7171 0.8190 
45: Drug Store              1.2772 
47: Other                

The final activity type classifications used in this model are shown in Table 3.2. As shown in 

Table 3.1, Convenience Store trips share similar travel time characteristics as Drug Store trips 

and are significantly different from the other generic activity types. Also, while Minor and Major 

Groceries have different travel time distributions at α = 0.1, the difference was fairly small (ratio 
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= 1.2). Kolmogorov-Smirnov tests were also performed for travel distance distributions for short 

distance trips (<1km) (see Table A4) and reinforced this classification for Convenience trips, yet 

showed significant differences between Minor and Major Grocery trips. The final groupings 

were chosen to reflect different types of shopping activities (e.g. Convenience trips are 

categorized under Type 1). It is noted that there are some overlaps in the generic activity 

classifications (e.g. Minor Groceries can include Convenience Store trips, Drug Store trips, and 

even Major Grocery trips) and the proposed classification is ultimately imputed. 

This shopping activity classification is supplemented by Enhanced Point of Interest (EPOI) data 

provided by DMTI Spatial (2003). The EPOI data contains geographic locations of retail stores 

in Canada, disaggregated by 64 types. These types were mapped to the 2001 TTS zone system 

and to the shopping types to provide the number of stores by shopping type per zone (see Figures 

A4.1 to A4.6 in Appendix A). Table 3.2 shows the summary of the activity type mapping 

between the shopping types, the CHASE generic activity types, and the EPOI data. Table A6 

provides a more detailed mapping of the shopping activity types. 

Table 3.2 Shopping Types Mapped to CHASE and Retail Location Datasets 

Shopping 
Type 

CHASE EPOI (SIC Codes) 
Number of Types Generic Activity Type Number of Trips 

1  40: Convenience Store 
45: Drug Store  

40 
46  

4  

2  41: Major Groceries 
42: Minor Groceries 

284 
234 

9 

3  44: Clothing / Personal  190  12  
4  43: Houseware  89  14  
5  47: Other  262  19  

The EPOI data provide two key pieces of information: 1) Available zones for shopping by type, 

and 2) Number of stores by shopping type and zone. Shopping type availability is used to 

constrain the choice set, while the number of stores is included in the location choice model as an 

attraction variable. 
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3.4 Using CHASE to Simulate Location Choice Behaviour 

The current operational model of TASHA is not modular. Hence, to test the proposed location 

choice model, a standalone model was developed in C# using the same class structure as 

TASHA. This model is developed using the CHASE dataset, instead of the much larger TTS 

dataset, to take advantage of the detailed activity and scheduling information in CHASE. 

Three main tables are used from CHASE: 1) Person table, 2) Household table, and 3) Schedule 

table. Data from the Person and Household tables were used to synthesize the sample population. 

The Schedule table was used to generate the provisional schedule and the list of shopping 

episodes per individual. The details of the input files derived from the CHASE tables are shown 

in Appendix B. 

3.4.1 Generating the Provisional Schedule  

The provisional schedule is an individual’s list of scheduled activities at a particular instance in 

time (Miller, 2005a). In this application, the instance in time is right before the shopping episode 

is scheduled. CHASE has ten general activity types: Basic Needs, Work / School, Household 

Obligations, Drop-off / Pick-up, Shopping, Services, Recreation / Entertainment, Social, Just for 

Kids, and Other. The following activity types were assumed to take priority over Shopping: 

Work / School, Household Obligations, Drop-off / Pick-up, and Services (see Figure 3.3). This is 

similar to the project priority used in TASHA (Roorda et al., 2008). 

These higher priority activities are inserted into an individual’s provisional schedule and are 

blocked periods. Open periods (or gaps) are time windows where the shopping episode can be 

scheduled (see Figure 3.3). The gaps in an individual’s weekly schedule form the basis for the 

gap choice set and the temporal boundaries for the time-space prism (see Figure 3.4) 

It is important to note that simple and sensible heuristics are used to generate the provisional 

schedule (or activity skeleton schedule), rather than explicitly modelling the schedule formation 

process. Habib and Miller (2006) have developed hazard-based models to represent the daily 

skeleton schedule formation for workers. While activity skeleton formation is an important 

behavioural process, modelling the schedule formation process is left for further research. The 

simple heuristics used in this implementation attempt to replicate the schedule formation process 

in TASHA and show the significance of small changes to the existing location choice model. 



 

Figure 3.3 Adding Activities to the Provisional Schedule

Figure 3.4 Open Periods in Provisional Schedule Generate Feasible Set of Locations

Adding Activities to the Provisional Schedule 

Open Periods in Provisional Schedule Generate Feasible Set of Locations
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Finally, only out-of-home activities are scheduled in an individual’s provisional schedule. 

TASHA only models out-of-home activities, assuming an individual is at home otherwise. The 

only in-home activities scheduled are Night Sleep and Wash-up, which ensure that an activity is 

not scheduled while an individual is sleeping. In the future, this can be replaced by retail store 

availability constraints on shopping time by shopping type (retail store hour information at the 

zone level was unavailable).  

Of the 34,279 episodes in the Schedule table, 17,502 episodes were scheduled, including out-of-

home activities and the in-home activities mentioned above. There is a total of 1194 shopping 

episodes (and observations) between 416 individuals, with each shopping episode scheduled 

being assumed to be an independent event. This is a strong assumption since individuals have 

been observed to group some shopping activities and to shop with others. Joint shopping 

activities can be handled when this model is integrated into the modelling framework. Trip 

chaining effects arising from shopping activities grouped with other activities are not handled in 

the proposed model. However, in this model, trip chaining behaviour is accounted for in the 

location choice model by using the travel time to and from the prior and posterior episodes in the 

provisional schedule. 

3.4.2 Modelling Framework 

The software is designed to allow for model estimation and simulation to test the proposed gap-

location choice model. The modelling framework uses an object-oriented approach, adopting 

many of the classes used in TASHA. Class diagrams of the key classes are shown in Figures 

C1.1 to C1.6 in Appendix C, with additions to the TASHA classes shown in red. To ensure 

consistency with the current implementation of TASHA, this program was developed in C# and 

was designed to emulate TASHA’s scheduling process using travel diary data.  

3.4.2.1 ALOGIT for Model Estimation 

The gap and location choice models were estimated using ALOGIT 4.2C (ALOGIT, 2007), 

which can estimate the multinomial logit (MNL) and nested logit (NL) models used in this 

thesis. ALOGIT allows for both sequential and simultaneous estimation of the nested logit 

model. However, the models presented in this thesis use a sequential approach.  
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While it is desirable to exploit ALOGIT’s ability to simultaneously estimate nested logit models 

with unlimited choice set sizes, we found that the constraints imposed on the gap-location choice 

model were not sufficient to allow for model estimation. With a maximum choice set size of 

63,468 choices, arising from a maximum of 41 gaps and up to 1548 locations within each gap, 

we found ourselves returning to the issue of unrealistic choice set sizes. It is behaviourally 

unrealistic for individuals to choose from a set of over 60,000 alternatives, let alone 

meaningfully distinguish one alternative from another. Further research can be done to model the 

choice sets of gaps and locations.  

3.4.2.2 Location Choice Set Generation 

The consideration set (C) is the union between the feasible set (F) and the awareness set (A). The 

feasible set of locations is defined by Hägerstrand’s time-space prisms. The temporal boundaries 

of the time-space prisms are defined by the gaps that arise from the generation of the provisional 

schedule. Auto travel times (to and from the shopping location) and shopping episode duration 

are used to define the time-space prisms. In the current model, the awareness set is assumed to be 

the set of all available shopping zones as defined by the EPOI data (i.e. assumption of perfect 

information of retail store availability at the zone level). Section 4.4 shows the significant 

reduction in choice set size resulting from these feasibility and availability constraints.  

The choice set (consideration set) is defined by the set of all zones that are in the prism’s feasible 

region and have at least one store of the same shopping type as the shopping episode to be 

scheduled. The computer program generates this choice set by selecting from a set of zones (see 

Figure B1, Appendix B, for the attributes of the zone file) that satisfy the individual’s scheduling 

constraint. 

 Figure 3.5 shows the modules and data sources used to generate the choice sets of locations 

(from the Choice Set Generator) and gaps (from the Provisional Schedule). Figure C2 in 

Appendix C shows the program flow chart, with each component described in pseudocode in 

Figures C3.5 to C3.8. 
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4 Gap-Location Choice Model for Shopping Trips 

The gap-location choice model is a unique approach to modelling shopping location choice 

decisions. In this modelling framework, we propose that individuals choose locations in the 

context of a time period choice (e.g. “I will do grocery shopping Thursday night and will go to 

the No Frills since I will be in the area”). While individuals exhibit different travel and activity 

behaviour, this approach makes a step forward in improving the behavioural realism of location 

choice decisions for shopping activities.  

Furthermore, we hypothesize that gap choice is more realistic than a specific start time choice 

(e.g. “I will shop in the evening”, rather than “I will shop at 7:26pm”). It is more likely than 

individuals choose from a discrete set of time periods, rather than along a continuous time 

interval. Ultimately, an activity start time will need to be generated when the episode is 

scheduled. However, in the context of location choice decisions, the activity “start time” is 

usually chosen from a set of time windows or gaps. 

We began by testing a nested choice structure of gap and location, with gap choice in the upper 

level and location choice in the lower level. This assumes gap is chosen first, with location 

choice conditioned upon the gap chosen. This assumption is examined in Section 4.2. 

To test this theory, we use the nested logit (NL) formulation to model the location choice 

conditioned by the gap choice. The NL model is based on the multinomial logit (MNL) models, 

which originate from econometric theory used to predict a consumer’s choice from a set of 

discrete alternatives. The MNL and NL models are explained in greater depth by Ben-Akiva and 

Lerman (1985).  

One of the drawbacks behind MNL models is the assumption of the error terms in the utility 

functions of all alternatives. The MNL model assumes that these errors are independently and 

identically distributed (IID) with a Type I Extreme Value (Gumbel) distribution. The NL model 

relaxes the independence assumption by allowing correlation between alternatives within a nest, 

with each nest being IID. In the context of the gap-location choice problem, this implies that 

locations within a nest share some unobservable attribute(s) related to the gap. It is important to 

note that this assumption does not always hold (e.g. when the gaps exhibit similar characteristics, 

such as weekday evening gaps with similar time window lengths). 
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In mathematical terms, an individual’s choice of a gap and location for a shopping activity can 

be represented by Ugl, the utility of location l in gap g (Note: the subscript specific to the 

individual is implicit and omitted for simplicity). From random utility theory, the actual utility 

perceived by the individual (U) is the sum of the systematic utility (V) and a random component 

(ε), which accounts for random unobserved variables influencing utility. Furthermore, as shown 

in Equation 4.1, the systematic utility of alternative l in nest g (Vgl) can be decomposed as the 

utility common to all locations in the gap (Vg), the utility specific to each location within the gap 

(Vl), and the utility specific to a location within a particular gap (Vgl). 

Ugl = Vl + Vg + Vgl + εl + εg + εgl = Vl + Vg + Vgl + εg + εgl = Vg + Vl|g + εg + εl|g [4.1] 

The nested logit structure used in this thesis (gaps in the upper level and locations in the lower 

level) assumes that the errors arising from the utility attributed location alternatives alone are 

negligible (i.e. εl = 0). Unobserved random components attributed to location choices are 

captured in the error term of the total utility (εgl , which reduces to εl|g). The error term for the 

gap utility (εg) captures the unobserved attributes shared by alternatives within each gap nest. 

The full derivation of the nested logit model is explained in depth in Ben-Akiva and Lerman 

(1985). The key results of this derivation are the systematic utility specifications of the upper 

(gap, Vg) and lower (location, Vl|g) levels, and their associated choice probabilities. 

The general specifications for systematic utilities of the gaps (Vg) and locations (Vl|g) are as 

follows (Sections 4.1 and 4.3 provide the exact specifications used for the location and gap 

location utilities respectively): 

Vg = α1EpGapDurRatiog + α2TimePeriodDayDummysg + φgLogSum [4.2] 

α1 is the vector of parameters associated with the EpGapDurRatio based on income and 

gender. 

EpGapRatiog is the ratio between the shopping episode duration to the gap duration. The 

episode duration includes auto travel times to and from the shopping location. 

α2 is the vector of parameters associated with TimePeriodDayDummys, based on whether 

the gap is on a weekday or weekend, and whether it falls within one of four time 

periods (Morning – 6am to 12pm, Afternoon – 12pm to 5pm, Evening – 5pm to 9pm, 

Late – 9pm to 6am). 
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TimePeriodDayDummysg are dummy variables that indicate whether a portion of the gap 

falls within a certain time period.  

φg is the parameter for the logsum variable or inclusive value 

LogSum is the inclusive value, which is the expected maximum utility derived from the 

location alternatives in nest g. In this model, a simplifying assumption is made by 

assuming the inclusive value parameter is same across all nests 

Vl|g = β1AutoCostgl + β2AutoTimegl + β3Log(NumRetailStoresl) + β4Log(RetailAreal) [4.3] 

β1 is the vector of parameters associated with AutoCostgl 

AutoCostgl is the auto cost ($) associated with travelling to location l from the prior 

location and from location l to the posterior location. The prior and posterior 

locations are defined by the start and end locations of the time window. 

β2 is the vector of parameters associated with AutoTimegl 

AutoTimegl is the auto travel time (minutes) associated with travelling to location l from the 

prior location and from location l to the posterior location. The prior and posterior 

locations are defined by the start and end locations of the time window.  

β3 is the vector of parameters associated with Log(NumRetailStoresl) 

Log(NumRetailStoresl) is the natural logarithm of the number of retail stores by shopping 

type defined by EPOI data 

β4 is the vector of parameters associated with Log(RetailAreal) 

Log(RetailAreal) is the natural logarithm of the commercial area (sq ft) from CSCA data 

Notice that the auto travel time variable (AutoTimegl) considers trip chaining behaviour by using 

the prior and posterior episodes as anchor points. Another variable used in explaining trip 

chaining is the deflected or incremental travel time, which is the total travel time minus the travel 

time without the shopping episode. In the final choice probabilities, this total travel time gives 

the same results as the incremental travel time, since the travel time from the prior to posterior 

episodes is constant across all alternatives within a gap.  

Equations 4.4 to 4.6 define the choice probabilities and are used by ALOGIT for model 

parameter estimation (see Tables D1 and D2 in Appendix D for ALOGIT code), and by the C# 

program for simulation of gap and location choice decisions (see Chapter 5). The probability that 

an individual chooses location l given the choice of gap g is 
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Where β is the scale parameter for the upper level and normalized to 1, and 

λg is the scale parameter associated with gap g, and assumed to be the same across all 

nests. 

4.1 Location Choice Model 

As previously discussed in Section 3.4.2.1, the nested logit model developed in this thesis is 

estimated sequentially. The first step in estimating the gap-location choice model is to develop a 

model specification and estimate model parameters for the lower level model.  

We began by testing the travel time variable and found that the travel time for the entire trip 

chain (to and from the shopping location) was a significant variable. Auto cost for the entire trip 

chain was added to improve the model specification.  

The number of retail stores and commercial area were then included in the model. These 

variables are size variables; hence the natural logarithm of each of these variables entered the 

final model specification. This logarithmic relationship is sensible as one can imagine a zone 

being very attractive with a certain amount of commercial space and retail stores; however, the 

marginal benefit decreases for an individual interested in choosing a shopping location. 

The final model specification shown in Table 4.1 also accounts for individual attributes, such as 

income and gender. A more detailed model was developed for the actual simulation, as shown in 

Table D1 in Appendix D. The models in Table 4.1 and in Table D1 give similar behavioural 

results. The specification presented in Table 4.1 is shown here as it is simpler without making 

too many strong assumptions. 
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The key difference between the two models is that the model presented in Table D1 assumes 

both auto cost and auto travel time vary by both gender and income. The model presented in 

Table 4.1 assumes that gender does not significantly impact the influence of auto cost and 

income does not significantly impact the influence of auto travel time. Rather, the similarities 

and differences of gender perceptions of travel time and the influence of income on the impact of 

auto cost were investigated. 

Table 4.1 Final Location Choice Model 

 All Types Type 1 Type 2 
Parameter Estimate T-Ratio Estimate T-Ratio Estimate T-Ratio 
Auto Cost 

Low Income  
(<$30,000) 
Med Income 
($30,000 to $60,000) 
High Income  
(≥$60,000) 

 
-0.09840 

 
-0.05826 

 
-0.007534 

 
-2.8 

 
-1.8 

 
-0.2 

 
-0.06497 

 
-0.06771 

 
- 

(0.2913) 

 
-0.4 

 
-0.5 

 
- 

(1.2) 

 
-0.1535 

 
-0.06123 

 
- 

(0.08433) 

 
-2.4 

 
-1.2 

 
- 

(1.6) 
Auto Travel Time 

Male 
Female 

 
-0.1824 
-0.1800 

 
-19.4 
-23.5 

 
-0.4027 
-0.3893 

 
-7.2 
-8.2 

 
-0.2152 
-0.2311 

 
-14.7 
-17.5 

Log(number of retail stores) 0.7590 21.5 - 
(-0.1864) 

- 
(-1.3) 

0.8723 
 

14.8 

Log(retail floor space) 0.1179 12.8 0.04761 1.7 0.1008 8.2 
 

Log-Likelihood -2661.9360 -286.9652 -1199.2636 
Rho-Squared w.r.t. Zero 0.5378 0.4923 0.5619 

Table 4.1 Final Location Choice Model, cont’d 

 Type 3 Type 4 Type 5 
Parameter Estimate T-Ratio Estimate T-Ratio Estimate T-Ratio 
Auto Cost 

Low Income  
(<$30,000) 
Med Income 
($30,000 to $60,000) 
High Income  
(≥$60,000) 

 
-0.1718 

 
-0.09991 

 
-0.2651 

 
-2.4 

 
-1.5 

 
-2.9 

 
-0.2474 

 
-0.3843 

 
-0.2139 

 
-1.6 

 
-2.3 

 
-1.4 

 
0.03575 

 
0.06912 

 
-0.02273 

 
0.5 

 
1.1 

 
-0.2 

Auto Travel Time 
Male 
Female 

 
-0.09564 
-0.1139 

 
-4.9 
-7.6 

 
-0.1034 
-0.07943 

 
-3.6 
-3.0 

 
-0.1557 
-0.1476 

 
-8.2 
-10.6 

Log(number of retail stores) 1.020 12.9 0.7125 5.5 0.6113 9.6 
Log(retail floor space) 0.1680 6.8 0.2476 4.2 0.1469 6.5 

 
Log-Likelihood -429.9943 -123.1604 -488.6452 
Rho-Squared w.r.t. Zero 0.5303 0.7055 0.5650 
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As Table 4.1 shows, given the small dataset of 1194 observations, the model predicts location 

choices reasonably well. Most variables are statistically significant at the 90% confidence 

interval for the two-tailed t-statistic (T-Ratio, t = 1.64). Given the small dataset, some parameters 

that did not meet the statistical criterion were retained in the model as they provided behavioural 

insight into the location choice decision process. The model parameters are also reasonable with 

negative values for auto travel time and auto cost, and positive values for the zone-specific 

accessibility variables (i.e. number of retail stores and retail floor space). 

The goodness-of-fit test used is the adjusted Rho-squared value taken with respect to zero, since 

the model does not have any alternative specific constants. These adjusted Rho-squared values 

are very strong compared to typical destination choice models, indicating the value of modelling 

at the individual level and of using schedule-based time-space prisms to define choice sets. 

The model parameter estimates shown in Table 4.1 reveal the following insights into shopping 

location choice behaviour: 

• Convenience and Grocery shoppers exhibit greater sensitivity to the total travel time 

than individuals making shopping trips of other types. This suggests that trips made to 

zones that incur minimal additional travel time, while shopping locations of other types 

(including Personal, Houseware, and Others) are chosen more for the specific shopping 

purpose rather than for trip convenience. 

• Individuals are also more generally sensitive to travel time than travel costs. Personal 

and Houseware shopping trips are an exception to this, with larger values of travel cost 

parameters. The difference likely lies in the purpose-specific nature of the shopping 

trips. Convenience and Grocery trips are likely to occur more regularly as they satisfy 

more fundamental human needs such as health (e.g. drug store) and the need for food 

(e.g. grocery store). Personal and Houseware trips can be viewed as ‘lower priority’ 

trips that satisfy other “needs” such as comfort and luxury. Further investigation on 

shopping type priority will be required to validate this theory. 

• The number of retail stores is positive for all models with the exception of the 

Convenience shopping location model. This variable was omitted for the Convenience 

trip model since a negative parameter was not realistic for the number of retail stores 
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variable. This suggests that the number of convenience stores does not have a 

significant influence on the location choice of convenience stores trips. Rather, the 

influence of travel time dominates, indicating the importance of scheduling constraints 

on convenience store location choice. 

• Commercial floor space (used as a proxy variable for retail floor space) is statistically 

significant for all models. Personal and Houseware trips are especially sensitive to retail 

floor space. This makes sense since many stores that sell clothes or house items have 

large stores or are part of large department stores. On the other hand, convenience store 

trips are not strongly influenced by floor space, as suggested by the small parameter for 

floor space. 

• In this model, both males and females (from the CHASE dataset) show very similar 

degrees of sensitivity to travel time, with the gender-specific parameters not being 

significant from one another at the 99% confidence level. This suggests that the 

distinction between males and females are less pronounced compared with the early 

20th century, where gender roles were more defined. Gender may not be sufficient or 

adequate to explain the heterogeneity in the value of travel time, which may now 

depend on other variables such as individual income, marital status, and employment 

type. These influences can be investigated in further research. 

• On the other hand, individuals with different income levels showed varying sensitivity 

to auto travel cost. In particular, individuals with lower income showed higher 

sensitivity to travel costs for Convenience and Grocery trips, while Personal and 

Houseware trips showed less pronounced (and even reversed) differences. The auto 

cost parameters for the Convenience and Grocery location choice models show that 

auto cost is not significant for those with higher incomes (as shown by the positive 

values of high income auto cost parameters). On the other hand, both Low and High 

income individuals exhibit higher degrees of sensitivity to auto cost for Personal and 

Houseware trips. This suggests that there are other unobserved factors influencing the 

perception of auto cost for these two shopping types apart from auto cost relative to 

individual income.  
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Stepping away from these behavioural insights, the key point is that these parameter estimates 

show that a very robust and behavioural location choice model can be developed by 

disaggregating shopping trips by type and by constraining choice sets. This in itself is a 

significant improvement to TASHA’s current location choice model, described in Section 3.1. 

The next two sections will describe the insights gained by considering time window choice 

directly in the proposed gap-location choice modelling framework. 

4.2 Gap Choice Considerations 

The next step in the sequential estimation of the gap-location choice model is to estimate the 

upper level gap choice model. The model development began with testing different variables that 

would characterize the gap, including the gap length and the shopping episode duration relative 

to the gap length. The final gap model used the ratio between the shopping episode duration, 

including the auto travel times to and from the shopping location, and the gap duration. The start 

and end locations and times of these gaps are defined by the prior and posterior episodes in an 

individual’s provisional schedule. 

The final model included dummy variables for time of day and day of week. Due to the relatively 

small sample, weekday and weekend dummies were used for day of week dummies. Time of day 

was divided into four periods: Morning (6am to 12 pm), Afternoon (12pm to 5pm), Evening 

(5pm to 9pm), and Late (9pm to 6am). The dummy variables used in the final model accounted 

for day of week and time of day interactions.  

Finally, the inclusive value was added to the gap choice model to account for the utilities of the 

available locations in each gap. It is important to note that the number of locations in each nest 

varies depending on the gap length, since locations are constrained by time-space prisms. This 

difference in choice set size biases the results, since the gap duration influences the size of the 

inclusive value, which should only be influenced by the utility of the location alternatives within 

each gap and not the utility of attributed to the gap itself. Improving the choice set formation of 

the gap and location choice sets is an important area of future research. 

Table D2 in Appendix D shows the parameter estimates for the gap choice model, with the 

inclusive value included for all types. This is shown to test the proposed gap-location choice 

model structure (i.e. gaps in the upper level, and locations in the lower level). Table 4.2 
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summarizes the inclusive value parameter estimates for each model (by type and gender). For the 

gap-location model structure, the inclusive value parameter needs to be between 0 and 1. The 

inclusive value parameter is also the ratio between the scale parameters for the lower (location) 

and the upper (gap) levels. Since the scale parameters need to be greater than 0, the inclusive 

value also needs to be greater than 0. Further, the inclusive value parameter needs to be less than 

or equal to one to ensure consistency with random utility theory (e.g. if the inclusive value 

parameter was greater than one, this would imply an inverted model with location choice in the 

upper level and gap choice in the lower level). 

Table 4.2 Inclusive Value Estimates for Upper Level Gap Model 

Shopping Type 
IV 

Num Obs Model Structure Value T-Ratio 
All Types 

Male 
Female 

 
0.6714 
-0.06495 

 
1.6 
-0.5 

 
471 
670 

 
Nested: Gap-Location 
Independent (IV = 0) 

Type 1 
Male 
Female 

 
2.576 
-0.4958 

 
0.3 
-1.3 

 
37 
46 

 
Independent (IV = 0) 
Independent (IV = 0) 

Type 2 
Male 
Female 

 
-0.8319 
0.6861 

 
-0.7 
1.0 

 
225 
287 

 
Independent (IV = 0) 
Nested: Gap-Location 

Type 3  
Male 
Female 

 
1.575 
-0.2385 

 
2.5 
-0.7 

 
60 
136 

 
Nested: Location-Gap – Re-estimate! 
Independent (IV = 0) 

Type 4  
Male 
Female 

 
1.522 
1.227 

 
0.8 
1.4 

 
51 
37 

 
Nested: Location-Gap – Re-estimate! 
Nested: Location-Gap – Re-estimate! 

Type 5  
Male 
Female 

 
-0.5093 
-0.1495 

 
-0.6 
-0.5 

 
98 
164 

 
Independent (IV = 0) 
Independent (IV = 0) 

Therefore, based on the value of the inclusive value parameter (IV), there are 3 possible model 

structures: 

1. Independent Models (IV ≤ 0): Estimate the gap and location choices separately, 

removing the inclusive value from the gap choice model specification. 

2. Nested Model, Gap-Location (0 < IV ≤ 1): Keep the current model. Note that in the 

case where IV = 1, this would suggest gap and location are chosen simultaneously and 

as independent gap and location choice bundles. 
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3. Inverted Nested Model, Location- (IV > 1): Test inverted model by using the gap 

model to calculate inclusive values for the location choice mode and re-estimate the 

location choice model. 

Table 4.2 shows the model structure suggested by the IV for each model. The two-tailed t-

statistic (t = 1.645, 90% confidence level) was used to help guide the significance of the 

inclusive value parameter.  

IV estimates for Types 3 (Personal) and 4 (Houseware) suggest that an inverted model would be 

more appropriate. This suggests location is chosen before gap for these types of trips. This is not 

unreasonable since one could imagine having a particular store associated with a shopping type 

(e.g. “I need to pick up some house items at the Home Depot [location decided]. Now when is a 

good time to do this?”).  

However, when the inverted model was tested, inclusive values were not estimable from the 

data. A larger dataset and an improved choice set model would help with additional testing. 

Further, in the location-gap approach, location choices are constrained only by availability and 

not by the time-space prism constraints. Shopping location would be chosen exogenously to the 

scheduling of the shopping episode, as is currently done in TASHA. 

While additional research would be required to test the theory of gap-location choice, it is noted 

that only the “All Types – Male” and “Type 2 (Grocery) – Female” had significant inclusive 

value parameter estimates. While this might suggests that the gap-location choice framework 

applies to males and not females when predicting shopping location, it is important to look at the 

IV parameters for males for other shopping types. From examining the IV parameters of males 

across the 5 shopping types, one can see that the “sensible” IV estimate for the “All Types – 

Male” model is due to the aggregation of negative and >1 IV estimates. 

On the other hand, the nested gap-location choice model seems to apply to females doing 

groceries (i.e. the choice of time period take precedence over the choice of grocery shopping 

location). However, even this model is only somewhat significant, since the T-Ratio is only 1.0 

despite the relatively larger number of observations. In the final model validation, only female 

grocery trips adopt the nested gap-location choice model. The other shopping location models 

predict gap choice independently of the available shopping locations in each gap. 
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While this may seem discouraging, it is also encouraging since it suggests that the independent 

treatment of location choice in TASHA is not entirely unreasonable. The prism- and gap-based 

approach to shopping location choice would help constrain choice set and improve behavioural 

realism by modelling at the individual level. However, to validate the proposed nested gap-

location choice structure, this model should be tested in the current TASHA implementation with 

the much larger TTS dataset. 

4.3 Final Model Parameter Estimates 

Table 4.3 presents the final gap model estimates based on the model structures. For the final 

model, the gap model was re-estimated without the IV parameter for all models that did not have 

the nested gap-location model structure, as shown in Table 4.2. The final gap choice model 

parameters reveal the following insights into gap choice behaviour for shopping trips: 

• Episode-to-gap duration ratio parameters were significant and negative for all shopping 

types. The negative ratio value is sensible and implies that gaps are more attractive if 

they have a relatively larger time window length than the total time spent on the 

shopping activity (including shopping duration and travel time). A ratio parameter with 

a larger negative value implies an increased sensitivity to scheduling constraints, 

favouring gaps with longer time windows. 

• Based on the ratio parameter estimates, individuals with lower income exhibit a higher 

sensitivity to scheduling constraints. This can be attributed to more fixed work hours or 

commitments. Interestingly, male convenience shoppers are very sensitive to 

scheduling constraints for Convenience trips, preferring longer relative gap lengths for 

their Convenience trips. 

• Another interesting observation is the increasing sensitivity experienced by higher 

income males for Houseware trips. This trend suggests that males with higher income 

would choose gaps that allowed for greater flexibility for the shopping activity. Males 

with lower incomes may have a pre-planned list of house items to be bought (need-

based spending), while males with higher incomes would presumably have more 

discretionary income to spend on items as they encounter them (need-based + 

discretionary spending). 
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• Notice, for larger negative values of this ratio, the model alone is not sufficient to 

distinguish between an individual operating on tight scheduling constraints, and an 

individual choosing larger gap lengths to accommodate the greater variability 

associated with the shopping activity. The previous explanations were assumptions 

based on higher income individuals having greater flexibility in work schedule and 

larger amounts of discretionary income. An area to be examined in further research is 

the influence of income on shopping duration variability by shopping type. 

• Based on the time period dummies, individuals generally favour shopping in the 

Evening and Late periods for weekday trips and the Morning and Afternoon periods for 

weekend trips. This is reasonable since individuals usually have work commitments 

during the weekday. In the weekend, stores generally close earlier and individuals may 

have personal non-shopping commitments in the later parts of the day. 

• Time period dummies are not very significant for the gap choice of Convenience trips, 

which depend more on individual scheduling constraints or on the variance of the 

shopping activity duration. 

Overall, the gap choice model provides insight into gap choice behaviour for shopping trips, 

despite the relatively low Rho-squared goodness-of-fit values. To improve upon this model in the 

future, a larger dataset and an improved gap choice set generation model would be required.  

The theory of time window choice should be further investigated and considered for 

implementation in an activity-based model, such as TASHA. When considering location choice, 

individuals usually consider from a set of discrete time windows, rather than choosing from a 

continuous time domain. Assigning a specific activity start time better reflects the execution of 

the activity episode rather than an activity start time choice jointly made with location choice. 

Discrete time window (gap) choice should be considered in activity-based models seeking to 

model schedule formation more dynamically. 
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Table 4.3 Final Gap Choice Model 

Parameter Male Female 
Estimate T-Ratio Estimate T-Ratio 

All Types 
Episode Duration (+Auto 
Travel Time) to Gap Duration  

Low Income 
(<$30,000) 
Medium Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

 
 

-2.007 
 

-1.668 
 

-1.842 

 
 

-3.0 
 

-4.3 
 

-4.2 

 
 

-2.078 
 

-1.446 
 

-1.476 

 
 

-5.1 
 

-4.5 
 

-3.0 

Weekday 
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 

-0.2964 
2.134 
1.287 

 
- 

-0.5 
3.2 
6.5 

 
- 

-0.1870 
1.370 
1.228 

 
- 

-0.4 
2.3 
7.2 

Weekend  
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 

1.232 
-1.010 

-0.5236 

 
- 

2.4 
-2.2 
-1.3 

 
- 

0.7143 
-1.048 

-0.8021 

 
- 

1.7 
-2.5 
-2.6 

IV 0.6714 1.6 - - 
 

Log-Likelihood -1101.5916 -1662.8219 
Rho-Squared 0.0924 0.0595 
Num. Observations 471 670 
Parameter Male Female 

Estimate T-Ratio Estimate T-Ratio 
Type 1 
Episode Duration (+Auto 
Travel Time) to Gap Duration  

Low Income 
(<$30,000) 
Medium Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

 
 

-8.329 
 

-3.448 
 

-9.655 

 
 

-0.7 
 

-2.2 
 

-1.4 

 
 

-3.757 
 

-1.223 
 

-1.088 

 
 

-1.8 
 

-1.1 
 

-0.5 

Weekday 
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 
- 
- 
- 

 
- 
- 
- 
- 

 
- 
- 
- 
- 

 
- 
- 
- 
- 

Weekend  
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 

2.034 
- 
- 

 
- 

3.0 
- 
- 

 
1.770 

- 
- 
- 

 
2.5 
- 
- 
- 

IV - - - - 
 

Log-Likelihood -87.4168 -123.5878 
Rho-Squared 0.1340 0.0663 
Num. Observations 37 46 
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Table 4.3 Final Gap Choice Model, cont’d 

Parameter Male Female 
Estimate T-Ratio Estimate T-Ratio 

Type 2 
Episode Duration (+Auto 
Travel Time) to Gap Duration  

Low Income 
(<$30,000) 
Medium Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

 
 

-2.574 
 

-1.183 
 

-1.397 

 
 

-2.5 
 

-2.4 
 

-2.6 

 
 

-3.886 
 

-1.986 
 

-2.195 

 
 

-4.3 
 

-3.6 
 

-3.0 

Weekday 
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 

0.2671 
0.5272 

- 

 
- 

0.4 
0.9 
- 

 
- 

-0.5267 
1.100 
0.9313 

 
- 

-0.7 
1.2 
3.7 

Weekend  
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
1.280 
0.7854 

- 
- 

 
4.6 
1.4 
- 
- 

 
- 

1.434 
-0.8287 

- 

 
- 

2.3 
-1.2 

- 
IV - - 0.6861 1.0 

 
Log-Likelihood -540.0725 -710.5559 
Rho-Squared 0.0854 0.0809 
Num. Observations 225 287 
Parameter Male Female 

Estimate T-Ratio Estimate T-Ratio 
Type 3 
Episode Duration (+Auto 
Travel Time) to Gap Duration  

Low Income 
(<$30,000) 
Medium Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

 
 

-1.610 
 

-1.159 
 

-0.6341 

 
 

-1.3 
 

-1.0 
 

-0.6 

 
 

-1.701 
 

-1.705 
 

-0.8295 

 
 

-2.1 
 

-2.3 
 

-0.9 

Weekday 
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 
- 
- 
- 

 
- 
- 
- 
- 

 
- 
- 

2.079 
- 

 
- 
- 

1.7 
- 

Weekend  
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 

0.9886 
-0.9182 
-0.8679 

 
- 

1.4 
-1.0 
-1.1 

 
- 

0.5034 
-2.131 

-0.9229 

 
- 

0.9 
-2.0 
-1.6 

IV - - - - 
 

Log-Likelihood -138.6488 -316.0355 
Rho-Squared 0.0291 0.0352 
Num. Observations 60 136 
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Table 4.3 Final Gap Choice Model, cont’d 

Parameter Male Female 
Estimate T-Ratio Estimate T-Ratio 

Type 4 
Episode Duration (+Auto 
Travel Time) to Gap Duration  

Low Income 
(<$30,000) 
Medium Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

 
 

-1.366 
 

-2.684 
 

-5.633 

 
 

-0.7 
 

-1.8 
 

-2.8 

 
 

-2.287 
 

-1.869 
 

-1.602 

 
 

-1.2 
 

-1.2 
 

-0.4 

Weekday 
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 
- 
- 
- 

 
- 
- 
- 
- 

 
- 

-2.776 
2.389 
-1.038 

 
- 

-1.5 
1.2 
-0.7 

Weekend  
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 

2.183 
-1.598 

-0.6953 

 
- 

1.8 
-1.3 
-0.5 

 
3.190 
2.117 

- 
- 

 
2.0 
1.7 
- 
- 

IV - - - - 
 

Log-Likelihood -113.0698 -83.2299 
Rho-Squared 0.1302  0.1434  
Num. Observations 51 37 
Parameter Male Female 

Estimate T-Ratio Estimate T-Ratio 
Type 5 
Episode Duration (+Auto 
Travel Time) to Gap Duration  

Low Income 
(<$30,000) 
Medium Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

 
 

-3.521 
 

-3.865 
 

-5.365 

 
 

-1.7 
 

-3.4 
 

-3.2 

 
 

-0.9608 
 

-1.048 
 

-0.6641 

 
 

-1.5 
 

-1.8 
 

-0.6 

Weekday 
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 
- 
- 
- 

 
- 
- 
- 
- 

 
- 

-0.8257 
0.6039 
1.445 

 
- 

-0.9 
0.4 
4.1 

Weekend  
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 

1.508 
-1.316 
0.4042 

 
- 

2.3 
-1.5 
0.4 

 
- 

1.211 
-0.8242 
-0.3973 

 
- 

1.6 
-1.0 
-0.6 

IV - - - - 
 

Log-Likelihood -220.5617 -418.9921 
Rho-Squared 0.1159 0.0430 
Num. Observations 98 164 
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4.4 Impact of Choice Set Constraints 

TASHA’s existing location choice model uses the universal set as the considered choice set (e.g. 

1548 zones in the GTA). The choice set constraints used in this application generate more 

realistic choice sets, without making any behavioural assumptions on the choice set formation 

process. To illustrate the reduction in choice set from these constraints, time-space prisms were 

generated for each gap in an individual’s provisional schedule for an entire week. Figure 4.1 

shows the reduction in choice set from just the time-space prism constraints (i.e. average of 1193 

zones per nest). Figure 4.2 shows the significant improvement from adding the activity type 

constraint, which removes a zone from the choice set if it does not have a retail store (i.e. 

average of 90 zones per nest). 

While the choice set sizes are still unrealistic for some gaps, these figures show the reduction in 

choice set with time-space prism and retail availability constraints. Further research will be 

required to investigate the choice set formation process of how gaps are considered and which 

locations enter the choice set in each considered gap. Additional data will help in gaining 

insights into an individual’s awareness of gap and location alternatives. 

 

Figure 4.1 Time-Space Prism Constraints 
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Figure 4.2 Time-Space Prism and Activity Type Constraints 
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5 Model Validation 

As shown in the previous chapter, the gap-location choice models have fairly reasonable Rho-

squared values. While this “goodness-of-fit” measure shows that the model reasonably replicates 

the data, what do these values actually mean? While modellers may be interested in these 

statistical measures, practitioners and policy makers are more likely to be interested on how well 

the model predicts gap and location choices. Given the data available, a natural step would be to 

attempt to replicate the gap and location choice patterns observed in the CHASE dataset. 

5.1 Method 

To validate the model against observed gaps and locations choice patterns in the CHASE data, 

the gap and location choices were simulated using Equations 4.5 and 4.6 and taking random 

draws from a uniform distribution. The pseudocode for the simulation component is shown in 

Figure C3.8 in Appendix C. As shown in Figure C2, the same program is used for choice set 

generation for both model estimation and simulation. 

To determine a reasonable number of iterations for model simulation, the distributions of 

distances from the chosen zone were generated for each shopping type using 1, 10, 100, and 

1000 iterations (see Table E1 and Figures E1.1 to E1.5 in Appendix E). The shapes of the 

distributions were visually inspected and observed to converge at 100 iterations. Hence the 

number of iterations chosen was 100.  

5.2 Percent Right for Gap and Location Choices 

Table 5.1 summarizes the percent right of gap and location choices for each shopping type. 

Table 5.1 Percent Right of Simulated Gap and Location Choices 

Iterations: 100 

Shopping Type  1 2 3 4 5 

Num Total  6883 53400 20400 8900 26700 

Num Loc Right  296 1362 350 206 414 

% Loc Right  4.30% 2.55% 1.72% 2.31% 1.55% 

Num Gap Right  822 5376 2189 1418 2619 

% Gap Right  11.94% 10.07% 10.73% 15.93% 9.81% 

Avg Dist (km) from Pred to Chosen 7.22 8.01 10.23 9.92 9.46 

Max Dist (km) from Pred to Chosen 83.08 104.00 93.52 89.30 94.15 
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As Table 5.1 shows, the proportions of gap and location choices predicted correctly are quite 

low. This result shows one of the weaknesses of destination choices models (and the proposed 

gap choice model). Models of this type have a large number of alternatives and are likely to 

share some unobserved attributes. For example, location choice is modelled at the zone level, 

whereas individuals choose a store or retail centre.  

Also, gaps were generated using simplistic rules to build a provisional schedule. This allows for 

gaps to be concentrated on certain days and for meaningless gaps to be generated. Moving 

forward, two key questions to answer are: 1) What defines a gap? and 2) What defines a 

shopping location? The problem of choice set characterization is nontrivial.  

5.3 Gap Choice Predictions 

Despite the low percent right values for predicting the exact gaps chosen, Tables 5.2 and 5.3 

show the model predicts gap choice reasonably well at an aggregate level. Additional data can be 

found in Tables E2.1 to E2.4 in Appendix E. 

Table 5.2 Gap Choice Predictions by Time Period 

Chosen Time Period 
Shopping Type Mor Aft Eve Lat 

Type 1 8% 6% 5% 7% 
Type 2 43% 48% 53% 44% 
Type 3 19% 17% 18% 18% 
Type 4 9% 10% 8% 7% 
Type 5 22% 19% 16% 24% 

Total 26% 12% 8% 55% 
Predicted Time Period 
Shopping Type Mor Aft Eve Lat 

Type 1 11% 11% 7% 8% 
Type 2 46% 43% 44% 45% 
Type 3 15% 18% 29% 17% 
Type 4 10% 14% 9% 7% 
Type 5 18% 14% 11% 24% 

Total 22% 11% 9% 58% 
Difference Time Period 
Shopping Type Mor Aft Eve Lat 

Type 1 3% 4% 2% 0% 
Type 2 3% -5% -9% 1% 
Type 3 -4% 1% 11% -1% 
Type 4 2% 4% 0% -1% 
Type 5 -4% -5% -5% 0% 

Total -4% 0% 1% 3% 



45 

 

Table 5.3 Gap Choice Predictions by Day of Week 

  Chosen Predicted Difference 
Shopping Type Weekday Weekend Weekday Weekend Weekday Weekend 

Type 1 9% 5% 5% 12% -3% 7% 
Type 2 45% 44% 44% 48% -1% 4% 
Type 3 17% 18% 21% 9% 4% -10% 
Type 4 7% 8% 5% 14% -3% 6% 
Type 5 22% 25% 25% 17% 3% -7% 

Total 61% 39% 70% 30% 8% -8% 

An interesting point to note is that the gap choice model exhibits the creates degree of variability 

on Saturday (see Table E2.4). This reinforces the importance of developing a strong weekend 

model to account for the heterogeneity in weekend shopping and travel behaviour. 

5.4 Location Choice Predictions 

Similarly, for location choice predictions, despite the low percent right values, the model predicts 

the general spatial patterns reasonably well as shown in Figure 5.1. Similar figures are shown in 

Figures E3.1 to E3.5 in Appendix E for the spatial distribution of predicted locations by 

shopping type. 

Furthermore, average distance from the chosen shopping locations ranged from 7 km to 10 km. 

When examining the distributions of these average distances, a relatively strong peak is observed 

around 3km to 6km (refer to Figures E1.1 to E1.5). These are fairly reasonable results given the 

large choice set and small dataset.  

Furthermore, a significant amount of trips were observed to be 25 km or more away from the 

chosen location. This is likely due to the inclusion of all zones in the GTA and the random 

variability inherent in the model. It is also possible that individuals are choosing between 

shopping malls or power retail centres (Buliung et al., 2007), instead of the choosing between 

retail stores, which is simulated at the zone level.  

Finally, the attractiveness of each zone could be better characterized by including other 

variables, such as commercial area by shopping type, and price of goods by zone and shopping 

type. The data for these variables were not available during model development. 
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Figure 5.1 Spatial Distribution of Predicted and Chosen Shopping Locations 

5.5 Travel Time Distributions  

As a final goodness-of-fit measure, the travel time distributions were examined and compared 

using t-tests to compare the means and visual inspection, which provide an approximate measure 

of the similarity between the two distributions. The travel time distributions presented below are 

for the “All Types” model (Figures 5.2 to 5.4). Travel time distributions by shopping type are 

shown in Figures E2.1 to E2.3 in Appendix E. 

Figure 5.2 shows the impact of using zone-based travel times by comparing the observed travel 

times to the shopping locations recorded in the CHASE dataset with the travel times to the 

shopping locations generated using zone-to-zone travel times. Figure 5.2 shows that zone-based 

travel times have smaller frequencies for travel times between 0-10 min, and significantly higher 

travel times for 10-15 min travel times. This anomaly can be explained by intrazonal trips being 
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recorded as 0 min and the threshold travel time for interzonal shopping trips being around 10 

min. This accounts for the significantly higher travel time observed in the CHASE dataset. 

 

Figure 5.2 Auto Travel Time Distribution to Shopping: CHASE vs Chosen 

Figures 5.3 and 5.4 compare the auto travel times between the predicted and chosen locations. 

Figure 5.3 only considers the travel time to the shopping location, while Figure 5.4 considers the 

total travel time to and from the shopping location. 

 

Figure 5.3 Auto Travel Time Distribution to Shopping: Predicted vs Chosen 
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As Figure 5.3 shows, the model under-predicts short distance trips (0-5 min) and slightly over 

predicts medium distance trips (5-15 min). As Figure 5.4 shows, this same trend is observed for 

the travel time distributions that include trip chaining effects (i.e. under-predicting in the 0-10 

min range, and over-predicting in the 15-30 min range). Despite some biases from using zone-

based travel times, the similar travel time distributions show that the model predicts travel times 

at an aggregate level reasonably well. 

 

Figure 5.4 Auto Time Distribution to/from Shopping: Predicted vs Chosen 
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6 Future Directions 

The gap-location choice model presented in this thesis is a novel approach to modelling shopping 

destination choice in an activity-based modelling framework. This model has the potential to add 

to the behavioural realism in activity schedule formation models. As mentioned throughout this 

thesis, there are many assumptions and limitations in the gap-location choice model presented in 

this thesis. The areas of future work can be categorized as follows: 

1. Improving choice set formation 

2. Moving towards dynamic scheduling 

3. Integrating with TASHA 

6.1 Improvements to Choice Set Formation 

Choice set formation remains unaddressed in this thesis. Rather, the choice sets were constrained 

using time-space prisms and the availability of shopping opportunities. While this improves the 

realism of the choice set by reducing the choice set size, the process of choice set formation is an 

important area of future research. 

First, gap choice set formation is based on simple rules used to generate a provisional schedule. 

Improvements to the gap choice set formation would require a model to generate the provisional 

schedule. This requires an understanding of activity priority and how this translates to 

precedence in activity scheduling. Generic store hours by shopping type would help constrain the 

gap choice set.  

Second, location choice set formation is based on deterministic time-space and availability 

constraints. Full awareness was assumed in this model. To improve upon this, stated preference 

data could be collected to gauge an individual’s awareness of shopping opportunities for 

different shopping types. 

Finally, the characterization of shopping alternatives remains a challenge. How should locations 

be modelled? At the zone level? At the store level? At the shopping mall or power retail centre 

level? What are gaps? What constitutes “peak period”, “Morning”, “Late”, and other time 

periods?  
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6.2 Integration with TASHA 

The gap-location choice model developed in this thesis was designed to be integrated with the 

C# version of TASHA. TASHA should be modified to test just the location choice model and 

also the gap-location choice model. To do this, there needs to be a provisional schedule available 

to TASHA prior to the location choice decision.  

Currently, TASHA schedules inserts shopping activities into the schedule with a predetermined 

location and start time, using simple heuristics for conflict resolution. Rather, TASHA should 

account for an individual’s provisional schedule prior to assigning a location and start time. This 

would allow TASHA to account for the dynamics of the schedule formation process and provide 

a better opportunity to test the theory of choosing from a discrete set of time windows. 

Finally, TASHA uses the TTS data, which has significantly more observations than the CHASE 

dataset. Using a larger number of observations would improve the model validity and provide 

stronger model estimates. While TTS only has one “Shopping” type, additional research can 

examine ways of disaggregating the shopping type or using the “All Types” model developed in 

this thesis. 

6.3 Use of Time-Space Prisms 

In the process of integrating with TASHA, improvements can be made with the C# code 

developed for this thesis. One improvement to highlight is how time-space prisms are generated 

and stored. In particular, time-space prisms are generated each time the software is run. While 

storing zone-to-zone travel times in a cache file help with program efficiency, these prisms 

should also be stored as well.  

Furthermore, it may not be necessary to generate time-space prisms for every gap. As Figure 4.1 

in Section 4.4 showed, time-space prisms only helped limit choice sets for certain gaps. Gaps 

that are too large do not need time-space prism constraints. Also, some shopping activities do not 

need time-space prisms and may take higher priority than previously scheduled activities, which 

have higher precedence. For example, if finding the finding the right set of tools (i.e. Shopping) 

takes longer than expected, and happens to be more important (higher priority) than a previously 

scheduled (higher precedence) School activity (e.g. finishing this thesis), the School activity 

would be shortened to accommodate the unexpected change in shopping duration. 
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The time-space prisms in this thesis assumed that the temporal boundaries were fixed by 

previously scheduled activities and the prism shape defined by auto travel times. Flexibility in 

temporal vertices can be modelled using stochastic frontier models, as in the operational activity-

based model, FAMOS (Pendyala et al., 2005). Further, auto times used to define the time-space 

prisms can be defined by mode; however, this would require integration with the mode choice 

model. Integrating location choice with TASHA’s tour-based mode choice model is a very 

nontrivial problem and is left as a problem for the future generation. 

6.4 Shopping Activity Type 

The shopping type classifications here were based on the CHASE dataset. However, this 

classification has many shortfalls since it is based on the user’s entry into the travel and activity 

diary. For example, an individual going to the Shoppers’ Drug Mart may be making a 

“Convenience” trip or “Minor Grocery” trip. While the classification improves the model’s 

explanatory power, there remains a lot of unexplained heterogeneity in shopping behaviour. 

Activity attributes can be used to help better classify shopping trips. For example, activity 

duration and planning horizon can be considered to define types (e.g. Convenience – Short, 

Spontaneous – Long, Spontaneous – Short, Routine – Short, etc.). 

Relationships between activity attributes can also be examined. For example, Figures A1.1 to 

A1.7 show travel times with respect to shopping episode durations for different shopping types. 

This relationship can be used as a basis to classify activities based on how far individuals are 

willing to travel for different activity durations. 

Using trip attributes for shopping activity type classification would be extremely valuable for 

disaggregating the Shopping trip type used in the TTS. The challenge for future research would 

be to develop meaningful classifications that can be validated with detailed descriptions found in 

activity diary data (i.e. CHASE). 
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7 Conclusions and Contributions 

A prism- and gap-based approach was developed to model shopping location choice decisions. In 

the current implementation of TASHA, location choice is treated as an independent process, 

chosen exogenously to the scheduling process. To improve the behavioural realism of schedule 

process formation, location choice needs to be considered in the context of scheduling decisions. 

The gap-location choice model adds to the behavioural realism TASHA’s existing location 

choice in three key ways: 

First, destination choices are modelled at an individual level. Location choice is a fundamental 

decision which influences the entire scheduling process. Subsequent decisions, such as mode and 

route choices, depend on the choice of shopping location. To ensure consistency with the agent-

based modelling approach used in TASHA and other activity-based models, it is necessary to 

also model location choices at the individual level. 

Second, shopping trips are disaggregated into 5 shopping types. Shopping location choice 

behaviour varies by the type of shopping trip. The preliminary shopping types used in this model 

emphasize the importance of categorizing shopping trip behaviour to capture some of the 

heterogeneity in shopping location choice.  

Finally, a nested logit model is developed to model gap and location choices. To our knowledge, 

predicting location choice based on gap choice is a novel approach to modelling shopping 

location choice. This prism- and gap-based approach is a step forward towards a more 

comprehensive model of shopping location choice behaviour that would integrate with a 

dynamic scheduling model. 

The gap-location choice model developed in this thesis is a simple yet robust model developed 

through a few small changes that add to the behavioural realism of shopping location choice. The 

software application has been designed using the same architecture as the current C# version of 

TASHA to facilitate seamless integration into the existing model. The relatively simple and 

intuitive changes proposed in this thesis will improve TASHA’s behavioural modelling 

capability by addressing one of its fundamental weaknesses: modelling shopping destination 

choice behaviour. 
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Appendices 

Appendix A: Activity Type Analysis 

Figure A1.1 Distributions: Travel Time vs Duration (Generic Type = 40) 

 

Figure A1.2 Distributions: Travel Time vs Duration (Generic Type = 41) 
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Figure A1.3 Distributions: Travel Time vs Duration (Generic Type = 42) 

 

Figure A1.4 Distributions: Travel Time vs Duration (Generic Type = 43) 
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Figure A1.5 Distributions: Travel Time vs Duration (Generic Type = 44) 

 

Figure A1.6 Distributions: Travel Time vs Duration (Generic Type = 45) 
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Figure A1.7 Distributions: Travel Time vs Duration (Generic Type = 47) 

 

Table A1 Travel Time and Activity Duration Summary 
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Count Average Variance Min Max Count Average Variance Min Max

Convenience Store 40 11.9 132.5 1 60 40 19.8 272.6 1 75

Minor Groceries 234 16.9 1647.9 1 610 240 35.3 789.4 3 165

Major Groceries 284 15.0 82.3 1 45 295 58.3 1332.5 5 225

Houseware 89 15.9 165.4 1 60 91 61.6 2191.3 5 210

Clothing / Personal 190 18.5 555.3 1 255 207 100.7 5232.1 5 445

Drug Store 46 10.8 115.3 1 60 49 27.5 390.8 3 105

Internet Shopping 0 #DIV/0! #DIV/0! 0 0 2 100.0 2450.0 65 135

Other 262 17.4 341.1 1 180 273 65.2 5286.7 1 430

Undefined 0 #DIV/0! #DIV/0! 0 0 2 107.5 312.5 95 120

Activity DurationTotal Travel Time
Shopping Type
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Table A2 Detailed Mode Share for Shopping Trips by Type 
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Mode Generic_Type 40 41 42 43 44 45 47 Total

Car 1 10 13 131 189 51 101 24 152 661

Van 1 11 2 24 46 18 33 7 31 161

Truck 1 12 1 7 1 1 1 11

<name>'s Car 1 14 2 1 1 6 10

SUV 1 15 1 15 15 9 12 2 11 65

Other automobile 1 29 1 1 2

GO Train 3 31 1 1

TTC 3 35 1 13 2 9 8 33

Mississauga Transit3 39 1 3 4

Other public 3 49 1 1

Walk 9 91 22 41 17 10 27 11 44 172

Taxi 9 93 1 1 2 2 6

Bike 9 94 1 6 2 4 13

Other walk 9 99 2 3 5

Total 40 234 284 89 190 46 262 1145

910

39

196
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Figure A2 Mode Share Summary for Shopping Trips by Type 

 

 

 

 

 

 

 

0

50

100

150

200

250

300

C
ou

nt

Shopping Trips by Mode

1: Auto

3: Transit

9: Other

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

%

Shopping Trips by Mode

1: Auto

3: Transit

9: Other



63 

 

Figure A3 Activity Planning by Shopping Type 
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Table A3 Kolmogorov-Smirnov Tests: Travel Time Distributions 

D_TT 40 41 42 43 44 45 47 

40   0.2150 0.3373 0.2843 0.3489 0.1065 0.2534 

41     0.1258 0.0692 0.1339 0.2107 0.0692 

42       0.0633 0.0319 0.3365 0.0877 

43         0.0687 0.2799 0.0347 

44           0.3446 0.0955 

45             0.2491 

47               

 
D_alpha 40 41 42 43 44 45 47 

40   0.2088 0.2060 0.2322 0.2124 0.2638 0.2071 

41     0.1078 0.1520 0.1196 0.1968 0.1099 

42       0.1482 0.1147 0.1939 0.1045 

43         0.1570 0.2215 0.1497 

44           0.2007 0.1166 

45             0.1950 

47               

 

D_TT : 

D_alpha 40 41 42 43 44 45 47 

40   1.0297 1.6371 1.2242 1.6424 0.4038 1.2236 

41     1.1666 0.4552 1.1195 1.0704 0.6299 

42       0.4271 0.2781 1.7354 0.8392 

43         0.4377 1.2634 0.2318 

44           1.7171 0.8190 

45             1.2772 

47               
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Table A4 Kolmogorov-Smirnov Tests: Travel Distance Distributions (<1km) 

D_0-1 40 41 42 43 44 45 47 

40   0.3368 0.5329 0.4449 0.3829 0.3299 0.3833 

41     0.2388 0.2054 0.1629 0.2708 0.0917 

42       0.1667 0.1943 0.3526 0.1878 

43         0.1851 0.2738 0.2012 

44           0.2159 0.1137 

45             0.2250 

47               

 
D_alpha 40 41 42 43 44 45 47 

40   0.2384 0.2368 0.2863 0.2556 0.2964 0.2427 

41     0.1410 0.2139 0.1708 0.2273 0.1508 

42       0.2121 0.1685 0.2256 0.1481 

43         0.2330 0.2771 0.2187 

44           0.2453 0.1768 

45             0.2318 

47               

 
D_0-1 : 

D_alpha 40 41 42 43 44 45 47 

40   1.4126 2.2508 1.5541 1.4978 1.1130 1.5791 

41     1.6938 0.9600 0.9537 1.1912 0.6081 

42       0.7860 1.1533 1.5631 1.2678 

43         0.7945 0.9881 0.9199 

44           0.8801 0.6432 

45             0.9705 

47               
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Table A5 Kolmogorov-Smirnov Tests: Shopping Mode 

 

Distance Travel Time

n D_TT 1 3 9 n D_TT 1 3 9

40 1 0.1015 0.3946 40 1 0.0454 0.1204

233 3 0.4027 233 3 0.5676

284 9 284 9

684 222 239 684 222 239

D_alpha 40 41 42 D_alpha 40 41 42

684 40 0.0942 0.0917 684 40 0.0942 0.0917

222 41 0.1137 222 41 0.1558

239 42 239 42

D_TT : 

D_alpha 40 41 42

D_TT : 

D_alpha 40 41 42

40 1.0771 4.3045 40 0.4818 1.3134

41 3.5412 41 3.6431

42 42

Speed

n D_TT 1 3 9

40 1 0.0833 0.3842

233 3 0.3805

284 9

684 222 239

D_alpha 40 41 42

684 40 0.0942 0.0917

222 41 0.1137

239 42

D_TT : 

D_alpha 40 41 42

40 0.8839 4.1911

41 3.3460

42
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Table A6 Activity Type Mapping 

Shopping 
Activity 
Type 

CHASE Generic Activity 
Types 

SIC Codes  
(See DMTI manual for description of SIC 
codes1) 

1 40: Convenience Store 
45: Drug Store 

5311, 5331, 5912, 5921 

2 41: Minor Groceries 
42: Major Groceries 

5311, 5411, 5421, 5431, 5441, 5451, 5461, 5499, 
5921 

3 44: Clothing / Personal 5311, 5611, 5621, 5631, 5641, 5651, 5661, 5699, 
5731, 5734, 5735, 5736 

4 43: Houseware 5211, 5231, 5251, 5261, 5271, 5311, 5531, 5712, 
5713, 5714, 5719, 5722, 5731, 5734 

5 47: Other 5311, 5399, 5932, 5941, 5942, 5943, 5944, 5945, 
5946, 5947, 5948, 5949, 5961, 5962, 5992, 5993, 
5994, 5995, 5999 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 

1 DMTI Spatial (2003). Enhanced Point of Interest Version 2.2 User Manual. DMTI Spatial Inc., 
Markham, Ontario. 
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Figure A4.1 Spatial Distribution of the Number of Retail Stores (All Types)  
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Figure A4.2 Spatial Distribution of the Number of Retail Stores (Type 1) 
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Figure A4.3 Spatial Distribution of the Number of Retail Stores (Type 2) 
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Figure A4.4 Spatial Distribution of the Number of Retail Stores (Type 3) 
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Figure A4.5 Spatial Distribution of the Number of Retail Stores (Type 4) 
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Figure A4.6 Spatial Distribution of the Number of Retail Stores (Type 5) 
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Appendix B: Input Files from CHASE  

Figure B1 GTA Zone File (“Toronto2001Zone-GTA.csv”) 

Variable 
No. 

Variable Name Description (TASHA Variable) 

1 TTSZone ZoneNumber 
2 PD PlanningDistrict 
3 Pop Population 
4 Work-G WorkGeneral 
5 Work-M WorkManufacturing 
6 Work-P WorkProfessional 
7 Work-R WorkRetail 
8 Work-Unk WorkUnknown 
9 Emp Employment 
10 Emp-G EmploymentGeneral 
11 Emp-M EmploymentManufacturing 
12 Emp-P EmploymentProfessional 
13 Emp-R EmploymentRetail 
14 Emp-Unk EmploymentUnknown 
15 X X 
16 Y Y 
17 Internal_Dist InternalDistance 
18 RetailActLevel RetailActivityLevel 
19 OtherActLevel OtherActivityLevel 
20 WorkActLevel WorkActivityLevel 
21 Internal_Dens InternalDensity 
22 ParkingCost ParkingCost 
23 ArtirialPercentage ArtirialPercentage 
New Variables 
24-29 TypeN_Dummy A dummy variable indicating whether a TTS Zone has a store 

of Type N, N = {ALL, 1, 2, 3, 4, 5}, based on EPOI data 
30-35 Count_TTS_N Number of stores of Type N in the TTS Zone, N = {ALL, 1, 

2, 3, 4, 5}, based on EPOI data 
36-41 Count_PD_N Number of stores of Type N in the Planning District (PD), N 

= {ALL, 1, 2, 3, 4, 5,}, based on EPOI data 
42 TotalCommSqFt Total Commercial Square Footage from CSCA 
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Figure B2 Person File (“CHASE_Persons.csv”) 

Variable 
No. 

Variable Name Description 

1 PersonID Unique Person identifier based on household and member IDs 
2 HH_ID Household ID 
3 TTSZone TTS 2001 Zone Number 
4 PD TTS 2001 Planning District 
5 Region TTS 2001 Region 
6 H_Size Household Size 
7 H_kids Number of kids in household 
8 H_teens Number of teens in household 
9 H_Adlts Number of adults in household 
10 H_Autos Number of vehicles of household 
11 H_Dwel Type of dwelling 
12 H_OwnRnt Household ownership type 
13 H_Type Household Type 
14 H_ResDur Years Living in Residence 
15 H_CitDur Years Living in City 
16 H_RegDur Years Living in Region 
17 Status Individual’s status 
18 I_Role Role of individual in household 
19 I_Gender Gender (1: Male, 2: Female) 
20 I_Type Person Type 
21 I_Autos Number of vehicles of individual 
22 I_Age Age 
23 I_Income Annual Income ($) 
24 I_License Driver’s Licence 
25 I_EmpSta Employment Status 
26 I_StuSta Student 
27 I_Education Education Level 
28 I_TranPs Transit pass ownership 
29 I_Cell Cell phone ownership 
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Figure B3 Schedule File (“CHASE_Schedule-OOH.csv”)* 

Variable 
No. 

Variable Name Description 

1 PersonID Unique Person identifier based on household and member IDs 
2 HH_ID Household ID 
3 ScheduleID Schedule ID 
4 member_oi Household member ID 
5 CellCo Type of coordination involved 
6 Day_ Activity Day (0:First Day, …, 6:Last Day) 
7 Weekday Weekday (1:Sunday, …, 7:Saturday) 
8 StartH Start Time (hhmm, 24 hour) 
9 EndH End Time 
10 Duration Activity Duration 
11 TTT Total Travel Time 
12 Activity Activity Type 
13 ActivityGeneric Generic Activity Type 
14 Shopping Shopping Dummy (1: Episode is a Shopping Activity, 0: 

Otherwise) 
15 ShoppingType Shopping Type (1:Convenience, 2:Groceries, 3:Personal, 

4:Houseware, 5:Other) 
16 Mode Mode used 
17 Discussed Activity involved other individuals 
18 ChildrenTotal Activity involved children 
19 Location Location  
20 PD TTS 2001 Planning District based on geocoded location 
21 GTA01 TTS 2001 Zone based on geocoded location 

*OOH = out-of-home, in-home activities excluded except for night-sleep / washing-up 
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Appendix C: Modelling Framework  

Figure C1.1 Class Diagrams: AutoData  

 

Figure C1.2 Class Diagrams: Episode 

Episode

+chosenGap : TimeWindow

+GapChoiceSet : List<TimeWindow>

+ChosenAlt : int = -999

+ChosenAlt_Gap : int = -999

+ChosenAlt_Zone : int = -999

+IV2

+IV2sim

+shopCDF_MNL : double [1548]

+gapCDF : double[41]

+Episode ( personid : int, hh_id : int, scheduleid : int, member_oi : int, cellco : int, days : 

int, weekday : int, starth : int, endh : int, duration : int, ttt : int, activity : int, activitygeneric 

: int, shopping : int, shoppingtype : int, mode : int, discussed : int, childrentotal : int, 

location : int, pd : int, gta01 : int ) : Episode
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Figure C1.3 Class Diagrams: Person 

 

Figure C1.4 Class Diagrams: TashaTime 
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Figure C1.5 Class Diagrams: TimeWindow 
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Figure C1.6 Class Diagrams: Zone 
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Figure C2 Program Flow Chart 
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Figure C3.1 Pseudocode: Generate Cache File 

// === Cache File Generator === 
// This method uses the cache file generator in TASHA  
 
ZoneRetriever.Object = zoneRetriever 
zoneRetriever.LoadCacheFile(inputfile = “Data/Toronto2001Zones-GTA.csv”,  

cachefile = “CacheData/Zones2001-GTA.zfc”) 
AutoData.Object = autodata 
autodata.GenerateODdata(file = “CacheData/Auto.odc”) 

Figure C3.2 Pseudocode: Synthesize Sample Population 

// === Generate Population === 
 
// Person Attributes 
ReadInput.PersonFile(inputfile = “CHASE_Persons.csv”) 
NEW SortedList = people<int, Person> 
FOREACH entry IN inputfile 

people.Add(PersonID, CSV_ConvertToPerson()) 
NEXT entry 

Figure C3.3 Pseudocode: Generate Provisional Schedule 

// === Generate Provisional Schedule === 
 
// Convert schedule file to list of Episode objects 
ReadInput.ScheduleFile(input = “CHASE_Schedule-OOH.csv”) 
NEW List = all_episodes<Episode> 
FOREACH entry IN inputfile 

all_episodes.Add(CSV_ConvertToEpisode()) 
NEXT entry 
 
// Add Episode objects to individual provisional schedule (EpisodeMap) 
NEW SortedList = EpisodeMap<TashaTime, Episode> 
FOREACH e IN all_episodes 
 IF (e == Shopping) 
  people[e.PersonID].ShoppingDummy = true 
  people[e.PersonID].ListOfShoppingEpisodes.Add(e) 
 ELSE IF (e.Activity == 1 OR 2 OR 3 OR 4 OR 6) 
  TashaTime.Object = start_time() 
  people[e.PersonID].EpisodeMap.Add(start_time, e) 
 END IF 
NEXT e 
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Figure C3.4 Pseudocode: Identify Gaps 

// === Identify Gaps === 
 
FOREACH p IN people 
 // Define anchor points in weekly schedule 
 TashaTime.Object = t_last(0,0,0,0,0) 
 TashaTime.Object = t1(StartTimeOfFirstEpisodeOfEpisodeMap) 
 int loc1 = StartLocationOfFirstEpisode 
 int loc2 
 FOREACH e in p.EpisodeMap 
  IF (firstEpisode) 
   skip 
  ELSE 
   TashaTime.Object = t2(EpisodeStartTime) 
   TashaTime.Object = t_last1(EpisodeEndTime) 
   t_last = t_last1 
   loc2 = e.GTA01 
   TimeWindow.Object = gap(t1, t2) 
   gap.StartLocation = loc1 
   gap.EndLocation = loc2 
   p.GapList.Add(gap) 
   t1 = t_last1 
   loc1 = loc2 
   loc2 = p.TTSZone 
   IF (secondLastEpisode) 
    TashaTime.Object = t_end(2359,2350,0,6,7) 
    TimeWindow.Object = lastGap(t_last,t_end) 
    p.GapList.Add(lastGap) 
   END IF 
  END IF 
 NEXT e 
NEXT p 
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Figure C3.5 Pseudocode: Generate Choice Set 

// === Generate Choice Set === 
// Gaps: GapChoiceSet, List of TimeWindow objects (gaps) in choice set 
// Zones: FeasibleZones, List of zone numbers of zones in consideration set 
// Consideration set = Awareness Set AND Feasible Set 
// Awareness Set = all zones with shopping (of type n) available 
// Feasible Set = all zones within time-space prism 
 
int nZ = 0 // Tracks chosen zone FOR ALOGIT input file 
int nG = 0 // Tracks chosen gap FOR ALOGIT input file 
FOREACH p IN people 
 FOREACH sh_ep in p.ShoppingEpisodes 

 nG = 0 
nZ = zonelist.IndexOf(sh_ep.GTA01) + 1 
sh_ep.ChosenAlt_Zone = nZ 
TashaTime.Object = start_time(ShoppingEpisodeStartTime) 

  FOREACH g in p.GapList 
   g.FeasibleZones.Clear() 

float aTime1 = 0 
float aTime2 = 0 
IF (g.DurationF > sh_ep.Duration) 

 FOREACH z IN zonelist 
atime1 = autodata.GetTravelTime( 
  zoneRetriever.GetZone(g.StartLocation), 
  zoneRetriever.GetZone(z), 
  start_time.ToFloat3()) 
atime2 = autodata.GetTravelTime( 
  zoneRetriever.GetZone(z), 
  zoneRetriever.GetZone(g.EndLocation), 
  start_time.ToFloat3()) 
// Generate Choice Set 
// Time-Space Prism Constraint (Feasibility) 
IF (aTime1+aTime2+sh_ep.Duration <= g.DurationF) 

// Shopping Type Constraint (Awareness) 
int zoneShopType = z.ShoppingType 
IF (zoneShopType == sh_ep.ShoppingType) 

g.FeasibleZones.Add(z) 
inGapChoiceSet = true 

END IF 
ELSE IF (z ==  sh_ep.GTA01) 

// Include chosen zone in choice set 
g.FeasibleZones.Add(z)  

END IF 
NEXT z 
IF (inGapChoiceSet) 

sh_ep.GapChoiceSet.Add(g) 
nG++ 
IF (start_time >= g.StartTime AND  

start_time <=g.EndTime) 
sh_ep.chosenGapDuration = g.DurationF 
sh_ep.chosenGap = g // TimeWindow object 
sh_ep.ChosenAlt_Gap = nG // Gap Index   

END IF 
END IF 

END IF 
  NEXT g 
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// Index of chosen location FOR simultaneous estimation 
IF (sh_ep.ChosenAlt_Gap > 0 AND sh_ep.ChosenAlt_Zone > 0) 

 sh_ep.ChosenAlt = (sh_ep.ChosenAlt_Gap – 1)*1548 + 
    sh_ep.ChosenAlt_Zone 

 ELSE 
 sh_ep.ChosenAlt = -999 

END IF 
 NEXT sh_ep 
 
NEXT p 

Figure C3.6 Pseudocode: Generate Inclusive Values 

// === Generate Inclusive Values – Lower Level: Locations === 
FOREACH p IN people 

FOREACH sh_ep IN p.ShoppingEpisodes 
FOREACH g in sh_ep.GapChoiceSet 

FOREACH z in g.FeasibleZones 
InitializeVariables() 
InitializeParameters() 
SetParameters() 
float aCost1 = autdata.GetCost( 

zoneRetriever.GetZone(start_loc), 
zoneRetriever.GetZone(z), 
start_time.ToFloat3()) 

float aCost2 = autdata.GetCost( 
zoneRetriever.GetZone(z), 
zoneRetriever.GetZone(end_loc), 
start_time.ToFloat3()) 

float aTime1 = autdata.GetTravelTime( 
zoneRetriever.GetZone(start_loc), 
zoneRetriever.GetZone(z), 
start_time.ToFloat3()) 

float aTime2 = autdata.GetTravelTime( 
zoneRetriever.GetZone(z), 
zoneRetriever.GetZone(end_loc), 
start_time.ToFloat3()) 

acost = aCost1 + aCost2 
atime = aTime1 + aTime2 
// Set LnstoreT 
IF (z.ShoppingTypeCount ==  0)  
  LnstoreT = 0 
ELSE 
  LnstoreT = Math.Log(z.ShoppingType.Count) 
END IF 
// Set LCSCAarea 
IF (z.TotalCommSqFt ==  0)  
  LCSCAarea = 0 
ELSE 
  LCSCAarea = Math.Log(z.TotalCommSqFt) 
END IF 
// Calculate Utilities 
tempUtility = p_acost * acost + 

p_atime * atime + 
p_LnstoreT * LnstoreT + 
p_LCSCAarea * LCSCAarea 

sumUtility = tempUtility + sumUtility 
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NEXT z 
IF (sumUtility == 0 OR doubleIsNaN(Math.Log(sumUtility)) 
  g.IV = 0 
ELSE 
  g.IV = Math.Log(sumUtility) 
END IF 

NEXT g 
NEXT sh_ep 

NEXT p 
 
// === Generate Inclusive Values – Lower Level: Gaps (Inverted Model) === 
FOREACH p IN people 

 FOREACH sh_ep IN p.ShoppingEpisodes 
sumUtil = 0 
 FOREACH g in sh_ep.GapChoiceSet 

InitializeVariables() 
InitializeParameters() 
EpGap_Numerator = sh_ep.Duration +  
     autoTravelTimeToFromChosenZone() 
EpGap_Denominator = g.DurationF 
float EpGapRatio = EpGap_Numerator / EpGap_Denominator 
SetDayTimeDummys() 
SetParameters() 
SetVariables() 
 
expUtil = Math.Exp(p_EpGapTTGapRatio * EpGapTTGapRatio + 

p_DayTimeWKD_MOR * DayTimeWKD_MOR + 
p_DayTimeWKD_AFT * DayTimeWKD_AFT + 
p_DayTimeWKD_EVE * DayTimeWKD_EVE + 
p_DayTimeWKD_LAT * DayTimeWKD_LAT + 
p_DayTimeWDY_MOR * DayTimeWDY_MOR + 
p_DayTimeWDY_AFT * DayTimeWDY_AFT + 
p_DayTimeWDY_EVE * DayTimeWDY_EVE + 
p_DayTimeWDY_LAT * DayTimeWDY_LAT) 

sumUtil = sumUtil + expUtil 
NEXT g 
sh_ep.IV2 = Math.Log(sumUtil) 

NEXT sh_ep 
NEXT p 
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Figure C3.7 Pseudocode: Generate ALOGIT Input Files 

// === Generate ALOGIT Input File – Location Choice === 
StreamWriter alogit_MNL (outputfile = “shopMNL.dat”) 
int nObs = 0 
int nShEp  
bool[] avail = new bool[1548] 
FOREACH p IN people 
 nShEp = 0 

FOREACH sh_ep IN p.ShoppingEpisodes 
TashaTime.Object = start_time(EpisodeStartTime) 
nObs++ 
alogit_MNL.Write(“{0},{1}{2},{3}”, nObs, p.PersonID, nShEp, 
      zonelist.IndexOf(sh_ep.GTA01)+1) 
nShEp++ 
// === Set Availability === 
IF (sh_ep.chosenGapDuration == 0) 

FOR (int i = 0; i < 1548; i++) 
avail[i] = false; 
alogit_MNL.Write(",1") 

LOOP 
 

ELSE 
FOREACH z IN zonelist 

IF (sh_ep.chosenGap.FeasibleZones.Contains(z)) 
alogit_MNL.Write(",1") 

ELSE 
alogit_MNL.Write(",0") 

END IF 
NEXT z 

END IF 
 
// === Episode and Individual Attributes === 
// Shopping Type 
alogit_MNL.Write(",{0}", sh_ep.ShoppingType) 
// Household Size 
alogit_MNL.Write(",{0}", p.H_Size) 
// Gender 
alogit_MNL.Write(",{0}", p.I_Gender) 
// License 
alogit_MNL.Write(",{0}", p.I_License) 
// Number of Cars 
alogit_MNL.Write(",{0}", p.I_Autos) 
// log(Income) 
IF (p.I_Income > 0)  

alogit_MNL.Write(",{0}", Math.Log(p.Value.I_Income)) 
ELSE 

alogit_MNL.Write(",0") 
END IF 
// Income Level 
IF (p.I_Income >= 60000) 

alogit_MNL.Write(",3") 
ELSE IF (p.I_Income >= 30000)  

alogit_MNL.Write(",2")  
ELSE 

alogit_MNL.Write(",1")  
END IF 
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// === Zone Attributes === 
int start_loc 
int end_loc; 
IF (sh_ep.chosenGapDuration != 0) 

start_loc = sh_ep.chosenGap.StartLocation 
end_loc = sh_ep.chosenGap.EndLocation 

ELSE 
start_loc = p.TTSZone 
end_loc = p.TTSZone 

END IF 
// aTime1 
FOREACH z IN zonelist 

float aTime1 = autodata.GetTravelTime( 
zoneRetriever.GetZone(start_loc), 
zoneRetriever.GetZone(z), start_time.ToFloat3()) 

alogit_MNL.Write(",{0}", aTime1) 
NEXT z 
// aTime1 + aTime2 
FOREACH z IN zonelist 

float aTime1 = autodata.GetTravelTime( 
zoneRetriever.GetZone(start_loc), 
zoneRetriever.GetZone(z), start_time.ToFloat3()) 

float aTime2 = autodata.GetTravelTime( 
zoneRetriever.GetZone(z), 
zoneRetriever.GetZone(end_loc), 
start_time.ToFloat3()) 

alogit_MNL.Write(",{0}", aTime1 + aTime2); 
NEXT z 
// aTime1 + aTime2 - aTime3 
FOREACH z IN zonelist 

float aTime1 = autodata.GetTravelTime( 
zoneRetriever.GetZone(start_loc), 
zoneRetriever.GetZone(z), start_time.ToFloat3()) 

float aTime2 = autodata.GetTravelTime( 
zoneRetriever.GetZone(z), 
zoneRetriever.GetZone(end_loc), 
start_time.ToFloat3()) 

float aTime3 = autodata.GetTravelTime( 
zoneRetriever.GetZone(start_loc), 
zoneRetriever.GetZone(end_loc), 
start_time.ToFloat3()) 

float aT_Inc = aTime1 + aTime2 - aTime3; 
IF (aT_Inc < 0) 

alogit_MNL.Write(",0"); 
ELSE 

alogit_MNL.Write(",{0}", aT_Inc); 
END IF 

NEXT z 
// aCost 
FOREACH z IN zonelist 

float aCost1 = autodata.GetCost( 
zoneRetriever.GetZone(start_loc), 
zoneRetriever.GetZone(z), start_time.ToFloat3()) 

float aCost2 = autodata.GetCost( 
zoneRetriever.GetZone(z), 
zoneRetriever.GetZone(end_loc), 
start_time.ToFloat3()) 

alogit_MNL.Write(",{0}", aCost1 + aCost2); 
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NEXT z 
// aCost/Income 
FOREACH z IN zonelist 

float aCost1 = autodata.GetCost( 
zoneRetriever.GetZone(start_loc), 
zoneRetriever.GetZone(z), start_time.ToFloat3()) 

float aCost2 = autodata.GetCost( 
zoneRetriever.GetZone(z), 
zoneRetriever.GetZone(end_loc), 
start_time.ToFloat3()) 

IF (p.Value.I_Income > 0)  
alogit_MNL.Write(",{0}",  

(aCost1 + aCost2) / p.Income) 
ELSE 

alogit_MNL.Write(",0") 
END IF 

NEXT z 
// Num Stores 
FOREACH z IN zonelist 

float temp 
IF (zoneRetriever.GetZone(z).Count_TTS_ALL == 0)  

temp = (float)Math.E 
ELSE  

temp = zoneRetriever.GetZone(z).Count_TTS_ALL 
END IF 
alogit_MNL.Write(",{0}", Math.Log(temp)) 

NEXT z 
// Num Stores by Type 
FOREACH z IN zonelist 

float temp = 0; 
IF (shop_type == 1)  

temp = zoneRetriever.GetZone(z).Count_TTS_1 
ELSE IF (shop_type == 2)  

temp = zoneRetriever.GetZone(z).Count_TTS_2 
ELSE IF (shop_type == 3)  

temp = zoneRetriever.GetZone(z).Count_TTS_3 
ELSE IF (shop_type == 4)  

temp = zoneRetriever.GetZone(z).Count_TTS_4 
ELSE IF (shop_type == 5)  

temp = zoneRetriever.GetZone(z).Count_TTS_5  
END IF 
IF (temp == 0)  

alogit_MNL.Write(",0") 
ELSE  

alogit_MNL.Write(",{0}", Math.Log(temp)) 
END IF 

NEXT z 
// CSCA - Retail Area 
FOREACH z IN zonelist 

IF (zoneRetriever.GetZone(z).TotalCommSqFt == 0)  
alogit_MNL.Write(",0"); } 

ELSE 
alogit_MNL.Write(",{0}",  
    Math.Log(zoneRetriever.GetZone(z).TotalCommSqFt)) 

END IF 
NEXT z 
// Population 
FOREACH z IN zonelist 
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IF (zoneRetriever.GetZone(z).Population == 0)  
alogit_MNL.Write(",0"); } 

ELSE  
alogit_MNL.Write(",{0}",     
     Math.Log(zoneRetriever.GetZone(z).Population)) 

END IF 
NEXT z 
// Employment 
FOREACH z IN zonelist 

IF (zoneRetriever.GetZone(z).Employment == 0) 
 alogit_MNL.Write(",0") 
ELSE  

alogit_MNL.Write(",{0}",  
    Math.Log(zoneRetriever.GetZone(z).Employment)); } 

NEXT z 
 
// === Inclusive Values === 
alogit_MNL.Write(",{0}", sh_ep.IV2) 
alogit_MNL.Write("\n") 
alogit_MNL.Flush() 

NEXT sh_ep 
NEXT p 
 
// === Generate ALOGIT Input File – Gap Choice === 
StreamWriter alogit_NLSeq (outputfile = “shopNLSeq.dat”) 
int nShEp = 0 
int maxNumGaps = 41 
int nGap = 0 
FOREACH p IN people 

FOREACH sh_ep IN p.ShoppingEpisodes 
nShEp++ 
alogit_NLSeq.Write("{0},{1},{2}", nShEp, p.Value.PersonID,  

sh_ep.ShoppingType); 
 
// == Chosen gap == 
alogit_NLSeq.Write(",{0}", sh_ep.ChosenAlt_Gap); 
 
// === Availability === 
nGap = 0 
FOREACH g IN sh_ep.GapChoiceSet 

nGap++ 
alogit_NLSeq.Write(",1") 

NEXT g 
FOR (int i = nGap; i < maxNumGaps; i++) 

alogit_NLSeq.Write(",0") 
LOOP 
 
// == Individual Attributes 
// Gender 
alogit_NLSeq.Write(",{0}", p.Value.I_Gender); 
// Income 
IF (p.Value.I_Income >= 60000)  

alogit_NLSeq.Write(",3") 
ELSE IF (p.Value.I_Income >= 30000)  

alogit_NLSeq.Write(",2") 
ELSE  

alogit_NLSeq.Write(",1") 
END IF 
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// === (Episode+TravelTime):Gap Duration Ratio === 
nGap = 0 
float attime = 0 
float atime1 = 0 
float atime2 = 0 
TashaTime.Object = start_time(EpisodeStartTime) 
FOREACH g IN sh_ep.GapChoiceSet 
    nGap++ 

atime1 = autodata.GetTravelTime( 
   zoneRetriever.GetZone(g.StartLocation),  
   zoneRetriever.GetZone(sh_ep.GTA01), start_time.ToFloat3()) 
atime2 = autodata.GetTravelTime(   
   zoneRetriever.GetZone(sh_ep.GTA01),   
   zoneRetriever.GetZone(g.EndLocation),   
   start_time.ToFloat3()) 

    attime = atime1 + atime2 
IF (sh_ep.Duration > 0)  

alogit_NLSeq.Write(",{0}",  
(sh_ep.Duration+attime) / g.DurationF )  

ELSE 
  alogit_NLSeq.Write(",0") 

      END IF  
NEXT g 
FOR (int i = nGap i < maxNumGaps i++) 
    alogit_NLSeq.Write(",0") 
LOOP 
 
// === Day of Week Dummies === 
// -- Sunday 
nGap = 0 
FOREACH g IN sh_ep.GapChoiceSet 
    nGap++ 
    IF (sh_ep.Weekday == 1) { alogit_NLSeq.Write(",1") } 
    ELSE { alogit_NLSeq.Write(",0") } 
NEXT g 
FOR (int i = nGap i < maxNumGaps i++) 
    alogit_NLSeq.Write(",0") 
LOOP 
// -- Monday 
nGap = 0 
FOREACH g IN sh_ep.GapChoiceSet 
    nGap++ 
    IF (sh_ep.Weekday == 2) { alogit_NLSeq.Write(",1") } 
    ELSE { alogit_NLSeq.Write(",0") } 
NEXT g 
FOR (int i = nGap i < maxNumGaps i++) 
    alogit_NLSeq.Write(",0") 
LOOP 
// -- Tuesday 
nGap = 0 
FOREACH g IN sh_ep.GapChoiceSet 
    nGap++ 
    IF (sh_ep.Weekday == 3) { alogit_NLSeq.Write(",1") } 
    ELSE { alogit_NLSeq.Write(",0") } 
NEXT g 
FOR (int i = nGap i < maxNumGaps i++) 
    alogit_NLSeq.Write(",0") 
LOOP 
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// -- Wednesday 
nGap = 0 
FOREACH g IN sh_ep.GapChoiceSet 
    nGap++ 
    IF (sh_ep.Weekday == 4) { alogit_NLSeq.Write(",1") } 
    ELSE { alogit_NLSeq.Write(",0") } 
NEXT g 
FOR (int i = nGap i < maxNumGaps i++) 
    alogit_NLSeq.Write(",0") 
LOOP 
// -- Thursday 
nGap = 0 
FOREACH g IN sh_ep.GapChoiceSet 
    nGap++ 
    IF (sh_ep.Weekday == 5) { alogit_NLSeq.Write(",1") } 
    ELSE { alogit_NLSeq.Write(",0") } 
NEXT g 
FOR (int i = nGap i < maxNumGaps i++) 
    alogit_NLSeq.Write(",0") 
LOOP 
// -- Friday 
nGap = 0 
FOREACH g IN sh_ep.GapChoiceSet 
    nGap++ 
    IF (sh_ep.Weekday == 6) { alogit_NLSeq.Write(",1") } 
    ELSE { alogit_NLSeq.Write(",0") } 
NEXT g 
FOR (int i = nGap i < maxNumGaps i++) 
    alogit_NLSeq.Write(",0") 
LOOP 
// -- Saturday 
nGap = 0 
FOREACH g IN sh_ep.GapChoiceSet 
    nGap++ 
    IF (sh_ep.Weekday == 7) { alogit_NLSeq.Write(",1") } 
    ELSE { alogit_NLSeq.Write(",0") } 
NEXT g 
FOR (int i = nGap i < maxNumGaps i++) 
{ 
    alogit_NLSeq.Write(",0") 
LOOP 
// -- Weekend Dummy 
nGap = 0 
FOREACH g IN sh_ep.GapChoiceSet 
    nGap++ 

IF ((sh_ep.Weekday == 1) || (sh_ep.Weekday == 7))  
{ alogit_NLSeq.Write(",1") } 

    ELSE { alogit_NLSeq.Write(",0") } 
NEXT g 
FOR (int i = nGap i < maxNumGaps i++) 
    alogit_NLSeq.Write(",0") 
LOOP 
 
// === Time of Day Dummies === 
#region 
FOREACH g IN sh_ep.GapChoiceSet 
{ 
    float gapStart = g.StartTime.ToFloat() * 100 
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    float gapDuration = g.DurationF 
    IF ((gapStart >= 600) && (gapStart < 1200)) 
    { 
        g.morning = true 
        // Duration criteria (g.DurationF) 
        IF (gapDuration >= 360) { g.afternoon = true } 
        IF (gapDuration >= 660) { g.evening = true } 
        IF (gapDuration >= 900) { g.late = true } 
    } 
    ELSE IF ((gapStart >= 1200) && (gapStart < 1700)) 
    { 
        g.afternoon = true 
        // Duration criteria 
        IF (gapDuration >= 300) { g.evening = true } 
        IF (gapDuration >= 540) { g.late = true } 
        IF (gapDuration >= 1080) { g.morning = true } 
    } 
    ELSE IF ((gapStart >= 1700) && (gapStart < 2100)) 
    { 
        g.evening = true 
        // Duration criteria 
        IF (gapDuration >= 240) { g.late = true } 
        IF (gapDuration >= 780) { g.morning = true } 
        IF (gapDuration >= 1140) { g.afternoon = true } 
    } 
    ELSE IF ((gapStart >= 2100) || (gapStart < 600)) 
    { 
        g.late = true 
        // Duration criteria 
        IF (gapDuration >= 540) { g.morning = true } 
        IF (gapDuration >= 900) { g.afternoon = true } 
        IF (gapDuration >= 1200) { g.evening = true } 
    } 
NEXT g 
 
// -- Morning 
nGap = 0 
FOREACH g IN sh_ep.GapChoiceSet 
    nGap++ 
    IF (g.morning) { alogit_NLSeq.Write(",1") } 
    ELSE { alogit_NLSeq.Write(",0") } 
NEXT g 
FOR (int i = nGap i < maxNumGaps i++) 
    alogit_NLSeq.Write(",0") 
LOOP 
// -- Afternoon 
nGap = 0 
FOREACH g IN sh_ep.GapChoiceSet 
    nGap++ 
    IF (g.afternoon) { alogit_NLSeq.Write(",1") } 
    ELSE { alogit_NLSeq.Write(",0") } 
NEXT g 
FOR (int i = nGap i < maxNumGaps i++) 
    alogit_NLSeq.Write(",0") 
LOOP 
// -- Evening 
nGap = 0 
FOREACH g IN sh_ep.GapChoiceSet 
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    nGap++ 
    IF (g.evening) { alogit_NLSeq.Write(",1") } 
    ELSE { alogit_NLSeq.Write(",0") } 
NEXT g 
FOR (int i = nGap i < maxNumGaps i++) 
    alogit_NLSeq.Write(",0") 
LOOP 
// -- Late 
nGap = 0 
FOREACH g IN sh_ep.GapChoiceSet 
    nGap++ 
    IF (g.late) { alogit_NLSeq.Write(",1") } 
    ELSE { alogit_NLSeq.Write(",0") } 
NEXT g 
FOR (int i = nGap i < maxNumGaps i++) 
    alogit_NLSeq.Write(",0") 
LOOP 
#endregion 
 
// Inclusive Value (FOR each gap)  
#region 
// -- This value should be calculated FOR each gap in the 
GapChoiceSet 
nGap = 0 
FOREACH g IN sh_ep.GapChoiceSet 
    nGap++ 
    alogit_NLSeq.Write(",{0}",g.IV) 
NEXT g 
FOR (int i = nGap i < maxNumGaps i++) 
    alogit_NLSeq.Write(",0") 
LOOP 
#endregion 
 
alogit_NLSeq.Write("\n") 
alogit_NLSeq.Flush() 

 
NEXT sh_ep 

NEXT p 
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Figure C3.8 Pseudocode: Simulate Gap and Location Choices 

// Gap Choice Model 
double[] gapUtilities = new double[41]  
double sumGapUtil = 0  
double[] gapPDF = new double[41]  
double[] gapUtilitiesall = new double[41]  
 
// Location Choice Model 
int[] choiceSet = new int[1548]  
double[] tempUtilities = new double[1548]  
double[] Utilities = new double[1548]  
double sumUtilities = 0  
double[] tempPDF = new double[1548]  
 
// === Calculate probabilities and utilities === 
FOREACH p IN people 

FOREACH sh_ep IN p.ShoppingEpisodes 
// Gap Choice Model 
Initialize.GapVariables() 
Initialize.GapParameters() 
// -- Calculate Gap Utilities 
int i = 0 
FOREACH g IN sh_ep.GapChoiceSet  

Initialize.GapVariables() 
Initialize.GapParameters() 
// Ratio includes travel time in numerator 
Calculate.EpGapDuration()  
Set.DayTimeDummys() 
Set.VariablesParameters() 
// Calculate Utility 
expUtil = Math.Exp(p_EpGapTTGapRatio * EpGapTTGapRatio + 

p_DayTimeWKD_MOR * DayTimeWKD_MOR + 
p_DayTimeWKD_AFT * DayTimeWKD_AFT + 
p_DayTimeWKD_EVE * DayTimeWKD_EVE + 
p_DayTimeWKD_LAT * DayTimeWKD_LAT + 
p_DayTimeWDY_MOR * DayTimeWDY_MOR + 
p_DayTimeWDY_AFT * DayTimeWDY_AFT + 
p_DayTimeWDY_EVE * DayTimeWDY_EVE + 
p_DayTimeWDY_LAT * DayTimeWDY_LAT) 

sumGapUtil = sumGapUtil + expUtil 
gapUtilities[i] = expUtil 
i++ 

NEXT g 
// -- Calculate Gap Choice Probabilities 
// -- -- PDF 
FOR (int k = 0; k < 41; k++) 

IF (sumGapUtil != 0)  
{ gapPDF[k] = gapUtilities[k] / gapUtilities.Sum()} 
ELSE { gapPDF[k] = 0; } 

LOOP 
// -- -- CDF 
sh_ep.gapCDF[0] = gapPDF[0]; 
sh_ep.gapCDFall[0] = gapPDFall[0]; 
FOR (int k = 1; k < 41; k++) 
 sh_ep.gapCDF[k] = sh_ep.gapCDF[k - 1] + gapPDF[k]; 
LOOP 
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// Location Choice Model (gap-dependent) 
Set.LocationParameters() 
IF (zonelist.Contains(sh_ep.GTA01) 

FOREACH g IN sh_ep.GapChoiceSet 
i = 0 
Set.GapStartEndLocations() 
TashaTime.Object start_time(g.StartTime) 
 
 
// Calculate location utilities and probabilities 
// -- Calculate Utilities 
i = 0; 
FOREACH z IN zonelist 

Calculate.AutoTravelTimes() 
Calculate.AutoTravelCosts() 
Calculate.LogShoppingStoreCountType() 
Calculate.LogRetailArea() 
// Calculate Utilities 
tempUtilities[i] = Math.Exp(p_acost * acost 

+ p_atime * atime 
+ p_LnstoreT * LnstoreT 
+ p_LCSCAarea * LCSCAarea) 

Utilities[i] = tempUtilities[i] * choiceSet[i] 
i++; 

NEXT z 
sumUtilities = tempUtilities.Sum(); 
 
// -- Calculate CDF 
IF (sumUtilities <= 0) 

SumUtilErrorCount++; 
ELSE IF (sumUtilities > 0) 

double CDF_prior = 0; 
FOR (i = 0; i < 1548; i++) 

tempPDF[i] = tempUtilities[i] /  
sumUtilities; 

g.locCDF[i] = tempPDF[i] + CDF_prior; 
CDF_prior = g.locCDF[i];                     

LOOP  
END IF 

NEXT g 
END IF 

NEXT sh_ep 
NEXT p 
 
// === Simulate Gap and Location Choices === 
int numIterations = 1 // Tested 1, 10, 100, 1000 
Random.Object = randObj(seed = 1) 
float rand_num 
TimeWindow.Object = predGap 
Initialize.DistributionArrays() 
 
// Travel Time Distributions – CHASE, Chosen; Chosen Zone Distribution 
FOREACH p IN people 

FOREACH sh_ep IN p.ShoppingEpisodes 
 CHASE_traveltime.WriteLine(“{0},{1}”, sh_ep.ShoppingType, 
       sh_ep.TTT) 
 Chosen_zone.WriteLine(“{0},{1}”, sh_ep.ShoppingType, 
       sh_ep.GTA01) 
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 IF (sh_ep.chosenGap != null) 
TashaTime.Object = start_time(EpisodeStartTime) 
float atime1 = autodata.GetTravelTime(  

zoneRetriever.GetZone(sh_ep.chosenGap.StartLocation),   
zoneRetriever.GetZone(sh_ep.GTA01),   
start_time.ToFloat3()) 

float atime2 = autodata.GetTravelTime(  
zoneRetriever.GetZone(sh_ep.GTA01),   
zoneRetriever.GetZone(sh_ep.chosenGap.EndLocation),   
start_time.ToFloat3()) 

Chosen_traveltime.WriteLine = (“{0},{1},{2}”,  
sh_ep.ShoppingType, 

     aTime1, aTime1 + aTime2) 
 END IF 
NEXT sh_ep 

NEXT p 
 
// Simulate for n iterations 
FOR (int iter = 0; iter < numIterations; iter++) 

int nobs = 0 
FOREACH p IN people 

FOREACH sh_ep IN p.ShoppingEpisodes 
nobs++ 
IF (zonelist.Contains(sh_ep.GTA01) 

// Predict Gap 
rand_num = (float)randObj.NextDouble() 
predGapIndex = -1 
FOR (int i = 0; i < 41; i++) 

IF (rand_num <= sh_ep.gapCDF[i] 
 // Index for GapChoiceSet 
 predGapIndex = i 
 i = 41 
END IF 

LOOP 
IF (predGapIndex = -1) 
 Error(NoGapPredicted) 
END IF 
predGap = sh_ep.GapChoiceSet[predGapIndex] 
// Initialize Time Periods 
bool mor = false 
bool aft = false 
bool eve = false 
bool lat = false 
Set.TimePeriodDummy(predGap) // Accounts for overlap 
// Array for distribution of PredictedGap 
// Time Period Distribution 
IF (mor)  

timeOfDayList[sh_ep.ShoppingType – 1, 0]++ 
END IF 
IF (aft)  

timeOfDayList[sh_ep.ShoppingType – 1, 1]++ 
END IF 
IF (eve)  

timeOfDayList[sh_ep.ShoppingType – 1, 2]++ 
END IF 
IF (lat)  

timeOfDayList[sh_ep.ShoppingType – 1, 3]++ 
END IF 
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// Weekday distribution 
dayOfWeekList[sh_ep.ShoppingType – 1, 
predGap.StartTime.Weekday – 1]++ 
 
// Predict Zone based on Predicted Gap 
numTotal++ 
rand_num = (float)randObj.NextDouble() 
predZone = -1 
FOR (int i = 0; i < 1548; i++) 

IF (rand_num <= predGap.locCDF[i]) 
predZone = zonelist[i] 
zoneOutPredicted.WriteLine("{0},{1}", 
 sh_ep.ShoppingType, predZone) 
float atime1 = autodata.GetTravelTime(  

zoneRetriever.GetZone( 
predGap.StartLocation),                                            
zoneRetriever.GetZone(predZone), 
predGap.StartTime.ToFloat3())                                      

float atime2 = autodata.GetTravelTime( 
zoneRetriever.GetZone(predZone),                                            
zoneRetriever.GetZone( 
predGap.EndLocation), 
predGap.StartTime.ToFloat3() 
+ (sh_ep.Duration/60)) 

// Predicted Travel Time Distributions 
ttOutPredicted.WriteLine(("{0},{1},{2}", 
 sh_ep.ShoppingType, atime1, 
 atime1 + atime2) 
i = 1548 

END IF 
LOOP  
IF (predGap == sh_ep.chosenGap) 
 numGapRight[sh_ep.ShoppingType]++ 
END IF 
IF (predZone == -1) 
 Error(NoZonePredicted) 
ELSE  
 // lineDist: distance from predicted zone 
 //   to chosen zone 

IF (predZone == sh_ep.GTA01) 
 numRight[sh_ep.ShoppingType]++ 
 lineDist = 0 
ELSE 
 lineDist = zoneRetriever.GetZone( 

sh_ep.GTA01).GetStraightLineDistance( 
zoneRetriever.GetZone(predZone)) 

END IF 
// Array for distance distributions 
IF (sh_ep.ShoppingType == 1) 
 lineDistList1.Add(lineDist) 
ELSE IF (sh_ep.ShoppingType == 2) 
 lineDistList2.Add(lineDist) 
ELSE IF (sh_ep.ShoppingType == 3) 

lineDistList3.Add(lineDist) 
ELSE IF (sh_ep.ShoppingType == 4) 
 lineDistList4.Add(lineDist) 
ELSE IF (sh_ep.ShoppingType == 5) 
 lineDistList5.Add(lineDist) 
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END IF 
END IF 

ELSE 
 numError2++ // Chosen zone not in GTA region 
END IF 

NEXT sh_ep 
NEXT p 

LOOP 
Calculate.PercentRight_Gap() 
Calculate.PercentRight_Location() 
Calculate.AverageDistance() 
Output.DistanceDistributions() 
Output.TimeOfDayDistributions() 
Output.DayOfWeekDistributions() 
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Appendix D: Gap-Location Choice Model 

Figure D1 ALOGIT Code: Location Choice Model 

---------------------------------------------------------- 
--------------------------------------------------------- 
- MNL Model of Location Choice to generate IV parameter FOR Upper Level 
- Also used to estimate inverted model (Location-Gap Choice) 
--------------------------------------------------------- 
$title Shopping Location Choice  
$subtitle (@shopMNL.alo) 
$print transFORms 
$gen.stats utilities all 
$estimate 
 
-************* C O E F F I C I E N T S *********************** 
------ location coefficients 
-- auto travel time by income and gender 
$coeff taincrM1 
+      taincrM2 
+      taincrM3 
+      taincrF1 
+      taincrF2 
+      taincrF3 
-- auto travel cost by income and gender 
+      tacostM1 
+      tacostM2 
+      tacostM3 
+      tacostF1 
+      tacostF2 
+      tacostF3 
-- land use variables (num stores by type and retail area) 
+      LnstoreT=0 
+      LCSCAarea=0 
-- inclusive value (to test location-gap model, inverted gap-location model) 
+      pIV 
 
-************* D A T A  I N P U T **************************** 
$keep nzones = 1548 
$array AVAILT(nzones) ATIME1(nzones) ATTOT(nzones) ATINCR(nzones) 
$array ACOST(nzones) acstINC(nzones) 
$array NSTORES(nzones) NSTOREST(nzones) AREA(nzones) POP(nzones) EMP(nzones) 
file (name=shopMNLv6.dat, handle=shopMNL6) 
OBS_NUM P_SHEP_ID ALT AVAILT 
SH_TYPE H_SIZE I_GENDER I_LIC I_AUTO L_INC INC_LEV 
ATIME1 ATTOT ATINCR 
ACOST acstINC 
NSTORES NSTOREST AREA POP EMP 
IV IVall 
 
-************* A V A I L A B I L I T Y *********************** 
------ location availability 
 
Avail(1) = ifeq(AVAILT(1),1) 
Avail(2) = ifeq(AVAILT(2),1) 
... 
Avail(1548) = ifeq(AVAILT(1548),1) 
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------ C H O I C E 
choice = ALT 
id = OBS_NUM 
 
------ E X C L U S I O N 
- Exclude an observation if the chosen location is not in the prism 
exclude(1) = ifeq(ALT,0) 
- Include only observations of certain shopping types (i.e. the line below 
would only include observations of shopping type = 1) 
exclude(2) = ifne(SH_TYPE,1) 
- Include only observations of a certain gender (i.e. the line below would 
include only male observations, gender = 1) 
exclude(3) = ifne(I_GENDER,1) 
 
-************* V A R I A B L E   T R A N S F O R M A T I O N S *** 
 
------ declare arrays 
-- auto travel time 
$array ATINCRM1(nzones) ATINCRM2(nzones) ATINCRM3(nzones) 
$array ATINCRF1(nzones) ATINCRF2(nzones) ATINCRF3(nzones) 
-- auto travel cost 
$array ACOSTM1(nzones) ACOSTM2(nzones) ACOSTM3(nzones) 
$array ACOSTF1(nzones) ACOSTF2(nzones) ACOSTF3(nzones) 
 
do dest = 1, nzones 
    ifeq(I_GENDER, 1) then 
 ifeq(INC_LEV, 1) then 
  ATINCRM1(dest) = ATINCR(dest) 
  ATINCRM2(dest) = 0  
  ATINCRM3(dest) = 0 
  ATINCRF1(dest) = 0 
  ATINCRF2(dest) = 0  
  ATINCRF3(dest) = 0 
  ACOSTM1(dest) = ACOST(dest) 
  ACOSTM2(dest) = 0  
  ACOSTM3(dest) = 0 
  ACOSTF1(dest) = 0 
  ACOSTF2(dest) = 0  
  ACOSTF3(dest) = 0 
 end 
 ifeq(INC_LEV, 2) then 
  ATINCRM1(dest) = 0 
  ATINCRM2(dest) = ATINCR(dest)  
  ATINCRM3(dest) = 0 
  ATINCRF1(dest) = 0 
  ATINCRF2(dest) = 0  
  ATINCRF3(dest) = 0 
  ACOSTM1(dest) = 0 
  ACOSTM2(dest) = ACOST(dest)  
  ACOSTM3(dest) = 0 
  ACOSTF1(dest) = 0 
  ACOSTF2(dest) = 0  
  ACOSTF3(dest) = 0 
 end 
 ifeq(INC_LEV, 3) then 
  ATINCRM1(dest) = 0 
  ATINCRM2(dest) = 0  
  ATINCRM3(dest) = ATINCR(dest) 
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  ATINCRF1(dest) = 0 
  ATINCRF2(dest) = 0  
  ATINCRF3(dest) = 0 
  ACOSTM1(dest) = 0 
  ACOSTM2(dest) = 0  
  ACOSTM3(dest) = ACOST(dest) 
  ACOSTF1(dest) = 0 
  ACOSTF2(dest) = 0  
  ACOSTF3(dest) = 0 
 end 
    end 
    ifeq(I_GENDER, 2) then 
 ifeq(INC_LEV, 1) then 
  ATINCRM1(dest) = 0 
  ATINCRM2(dest) = 0  
  ATINCRM3(dest) = 0 
  ATINCRF1(dest) = ATINCR(dest) 
  ATINCRF2(dest) = 0  
  ATINCRF3(dest) = 0 
  ACOSTM1(dest) = 0 
  ACOSTM2(dest) = 0  
  ACOSTM3(dest) = 0 
  ACOSTF1(dest) = ACOST(dest) 
  ACOSTF2(dest) = 0  
  ACOSTF3(dest) = 0 
 end 
 ifeq(INC_LEV, 2) then 
  ATINCRM1(dest) = 0 
  ATINCRM2(dest) = 0  
  ATINCRM3(dest) = 0 
  ATINCRF1(dest) = 0 
  ATINCRF2(dest) = ATINCR(dest)  
  ATINCRF3(dest) = 0 
  ACOSTM1(dest) = 0 
  ACOSTM2(dest) = 0  
  ACOSTM3(dest) = 0 
  ACOSTF1(dest) = 0 
  ACOSTF2(dest) = ACOST(dest)  
  ACOSTF3(dest) = 0 
 end 
 ifeq(INC_LEV, 3) then 
  ATINCRM1(dest) = 0 
  ATINCRM2(dest) = 0  
  ATINCRM3(dest) = 0 
  ATINCRF1(dest) = 0 
  ATINCRF2(dest) = 0  
  ATINCRF3(dest) = ATINCR(dest) 
  ACOSTM1(dest) = 0 
  ACOSTM2(dest) = 0  
  ACOSTM3(dest) = 0 
  ACOSTF1(dest) = 0 
  ACOSTF2(dest) = 0  
  ACOSTF3(dest) = ACOST(dest) 
 end 
    end 
end 
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-********** U T I L I T Y   F U N C T I O N S ************************** 
 
------ utilities  
----------- Note: Had estimation issues when trying to index utilities and 
alternative availability. 
 
------ Location Utilities 
U(1) = LnstoreT*NSTOREST(1) +LCSCAarea*AREA(1) 
 +tacostM1*ACOSTM1(1) +tacostM2*ACOSTM2(1) 
 +tacostM3*ACOSTM3(1) +tacostF1*ACOSTF1(1) 
 +tacostF2*ACOSTF2(1) +tacostF3*ACOSTF3(1) 
 +taincrM1*ATINCRM1(1) +taincrM2*ATINCRM2(1) 
 +taincrM3*ATINCRM3(1) +taincrF1*ATINCRF1(1) 
 +taincrF2*ATINCRF2(1) +taincrF3*ATINCRF3(1) 
 +pIV*IV +pIVall*IVall 
U(2) = LnstoreT*NSTOREST(2) +LCSCAarea*AREA(2) 
 +tacostM1*ACOSTM1(2) +tacostM2*ACOSTM2(2) 
 +tacostM3*ACOSTM3(2) +tacostF1*ACOSTF1(2) 
 +tacostF2*ACOSTF2(2) +tacostF3*ACOSTF3(2) 
 +taincrM1*ATINCRM1(2) +taincrM2*ATINCRM2(2) 
 +taincrM3*ATINCRM3(2) +taincrF1*ATINCRF1(2) 
 +taincrF2*ATINCRF2(2) +taincrF3*ATINCRF3(2) 
 +pIV*IV +pIVall*IVall 
... 
U(1548) = LnstoreT*NSTOREST(1548) +LCSCAarea*AREA(1548) 
 +tacostM1*ACOSTM1(1548) +tacostM2*ACOSTM2(1548) 
 +tacostM3*ACOSTM3(1548) +tacostF1*ACOSTF1(1548) 
 +tacostF2*ACOSTF2(1548) +tacostF3*ACOSTF3(1548) 
 +taincrM1*ATINCRM1(1548) +taincrM2*ATINCRM2(1548) 
 +taincrM3*ATINCRM3(1548) +taincrF1*ATINCRF1(1548) 
 +taincrF2*ATINCRF2(1548) +taincrF3*ATINCRF3(1548) 
 +pIV*IV +pIVall*IVall 
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Figure D2 ALOGIT Code: Gap Choice Model 

 
---------------------------------------------------------- 
--------------------------------------------------------- 
- Gap Choice Model: Upper Level in Nested Logit Sequential Estimation 
- Also used to estimate Lower Level to test Inverted Model 
---------------------------------------------------------- 
$title Shopping Location Choice  
$subtitle (@shopNLSeq.alo) 
$print transFORms 
$gen.stats utilities all 
$estimate 
 
-************* C O E F F I C I E N T S *********************** 
 
------ location coefficients 
------ episode duration (+travel time) to gap duration ratio 
$coeff pEpGap=0 
+      pEpGap1 
+      pEpGap2 
+      pEpGap3 
------ weekday 
+      pMor=0 
+      pAft 
+      pEve 
+      pLat 
------ weekend 
+      pWkd1=0 
+      pWkd2 
+      pWkd3 
+      pWkd4 
------ inclusive value 
+      pIV=0 
 
-************* D A T A  I N P U T **************************** 
 
$keep ngaps = 41 
$array AVAILT(ngaps) EpGap(ngaps)  
$array WKD(ngaps)  
$array SAT(ngaps) SUN(ngaps) 
$array MON(ngaps) TUE(ngaps) WED(ngaps) THU(ngaps) FRI(ngaps) 
$array MOR1(ngaps) AFT1(ngaps) EVE1(ngaps) LAT1(ngaps) 
$array IV(ngaps)  
file (name=shopNLSeq.dat, handle=shopNLS) 
 
OBS_NUM P_ID SH_TYPE 
ALT AVAILT I_GENDER I_INCOME EpGap 
SUN MON TUE WED THU FRI SAT WKD 
MOR1 AFT1 EVE1 LAT1 
IV 
 
-************* A V A I L A B I L I T Y *********************** 
 
------ location availability 
 
Avail(1) = ifeq(AVAILT(1),1) 
Avail(2) = ifeq(AVAILT(2),1) 
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... 
Avail(41) = ifeq(AVAILT(41),1) 
 
------ C H O I C E 
choice = ALT 
id = OBS_NUM 
 
------ E X C L U S I O N 
- Exclude an observation if the chosen location is not in the prism 
exclude(1) = ifeq(ALT,0) 
- Exclude by gender (i.e. line below excludes all observations except female, 
gender = 2) 
exclude(2) = ifne(I_GENDER, 2) 
- Exclude by income (i.e. line below is commented out, and if included in the 
code, would only include individuals with high income, income = 3) 
-exclude(2) = ifne(I_INCOME, 3) 
- Exclude by shopping type (i.e. line below only includes shopping type 5 in 
the model estimation) 
exclude(3) = ifne(SH_TYPE,5) 
 
-************* V A R I A B L E   T R A N S F O R M A T I O N S *** 
$array EpGap1(ngaps) EpGap2(ngaps) EpGap3(ngaps) 
$array MOR(ngaps) AFT(ngaps) EVE(ngaps) LAT(ngaps) 
$array WKD1(ngaps) WKD2(ngaps) WKD3(ngaps) WKD4(ngaps) 
$array WDY(ngaps) 
 
------ EpGap by Income 
ifeq(I_INCOME,1) then 
 do gap = 1, ngaps 
  EpGap1(gap) = EpGap(gap) 
  EpGap2(gap) = 0 
  EpGap3(gap) = 0 
 end 
end 
ifeq(I_INCOME,2) then 
 do gap = 1, ngaps 
  EpGap1(gap) = 0 
  EpGap2(gap) = EpGap(gap) 
  EpGap3(gap) = 0 
 end 
end 
ifeq(I_INCOME,3) then 
 do gap = 1, ngaps 
  EpGap1(gap) = 0 
  EpGap2(gap) = 0 
  EpGap3(gap) = EpGap(gap) 
 end 
end 
 
------ DayOfWeek and TimeOfDay interaction 
-- WKD1(gap): Morning-Weekend 
do gap = 1, ngaps 
 WKD1(gap) = Mor1(gap)*WKD(gap) 
end 
-- WKD2(gap): Afternoon-Weekend 
do gap = 1, ngaps 
 WKD2(gap) = Aft1(gap)*WKD(gap) 
end 
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-- WKD3(gap): Evening-Weekend 
do gap = 1, ngaps 
 WKD3(gap) = Eve1(gap)*WKD(gap) 
end 
-- WKD4(gap): Late-Weekend 
do gap = 1, ngaps 
 WKD4(gap) = Lat1(gap)*WKD(gap) 
end 
 
-- Define Weekday 
do gap = 1, ngaps  
 ifeq(WKD1(gap),1) then 
  WDY(gap) = 1 
 else 
  WDY(gap) = 0   
 end 
end 
 
-- Mor(gap): Weekday-Morning 
do gap = 1, ngaps 
 Mor(gap) = Mor1(gap)*WDY(gap) 
end 
-- Aft(gap): Weekday-Afternoon 
do gap = 1, ngaps 
 Aft(gap) = Aft1(gap)*WDY(gap) 
end 
-- Eve(gap): Weekday-Evening 
do gap = 1, ngaps 
 Eve(gap) = Eve1(gap)*WDY(gap) 
end 
-- Lat(gap): Weekday-Late 
do gap = 1, ngaps 
 Lat(gap) = Lat1(gap)*WDY(gap) 
end 
 
-********** U T I L I T Y   F U N C T I O N S ************************** 
 
------ Gap Utilities 
U(1) = pEpGap*EpGap(1) 
 +pEpGap1*EpGap1(1) +pEpGap2*EpGap2(1) +pEpGap3*EpGap3(1) 
 +pWkd1*WKD1(1) +pWkd2*WKD2(1) 
 +pWkd3*WKD3(1) +pWkd4*WKD4(1) +pMor*Mor(1) 
 +pAft*Aft(1) +pEve*Eve(1) +pLat*Lat(1) 
 +pIV*IV(1) 
U(2) = pEpGap*EpGap(2) 
 +pEpGap1*EpGap1(2) +pEpGap2*EpGap2(2) +pEpGap3*EpGap3(2) 
 +pWkd1*WKD1(2) +pWkd2*WKD2(2) 
 +pWkd3*WKD3(2) +pWkd4*WKD4(2) +pMor*Mor(2) 
 +pAft*Aft(2) +pEve*Eve(2) +pLat*Lat(2) 
 +pIV*IV(2) 
... 
U(41) = pEpGap*EpGap(41) 
 +pEpGap1*EpGap1(41) +pEpGap2*EpGap2(41) +pEpGap3*EpGap3(41) 
 +pWkd1*WKD1(41) +pWkd2*WKD2(41) 
 +pWkd3*WKD3(41) +pWkd4*WKD4(41) +pMor*Mor(41) 
 +pAft*Aft(41) +pEve*Eve(41) +pLat*Lat(41) 
 +pIV*IV(41) 
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Table D1 Location Choice Model used for Simulation 
 
 All Types Type 1 Type 2 
Parameter Estimate T-Ratio Estimate T-Ratio Estimate T-Ratio 
Auto Cost 

Male 
Low Income 
 (<$30,000) 
Med Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

Female 
Low Income  
(<$30,000) 
Med Income 
($30,000 to $60,000) 
High Income  
(≥$60,000) 

 
 
- 
 
- 
 
- 
 
 

-0.09635 
 

-0.09380 
 
- 

 
 
- 
 
- 
 
- 
 
 

-2.2 
 

-2.0 
 
- 

 
 
- 
 
- 
 
- 
 
 
- 
 

-0.1171 
 
- 
 

 
 
- 
 
- 
 
- 
 
 
- 
 

-0.6 
 
- 
 

 
 
- 
 
- 
 
- 
 
 

-0.2232 
 

-0.1105 
 
- 

 
 
- 
 
- 
 
- 
 
 

-2.6 
 

-1.5 
 
- 

Auto Travel Time  
Male 

Low Income 
 (<$30,000) 
Med Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

Female 
Low Income  
(<$30,000) 
Med Income 
($30,000 to $60,000) 
High Income  
(≥$60,000) 

 
 

-0.2478 
 

-0.2283 
 

-0.1491 
 
 

-0.1833 
 

-0.1595 
 

-0.2594 

 
 

-9.2 
 

-15.9 
 

-14.8 
 
 

-14.3 
 

-13.0 
 

-11.1 

 
 

-1.152 
 

-0.3902 
 

-0.3692 
 
 

-0.4124 
 

-0.3258 
 

-0.6087 

 
 

-1.5 
 

-6.6 
 

-3.6 
 
 

-6.5 
 

-5.2 
 

-2.7 

 
 

-0.2525 
 

-0.2673 
 

-0.1624 
 
 

-0.2441 
 

-0.1839 
 

-0.2623 

 
 

-6.6 
 

-12.1 
 

-9.9 
 
 

-10.3 
 

-8.9 
 

-8.3 

Log(number of retail stores) 0.7681 21.7 - - 0.8817 14.9 
Log(retail floor space) 0.1205 13.0 0.04994 1.8 0.1044 8.4 
 
Log-Likelihood -2661.9369 -290.7554 -1211.1822 
Rho-Squared w.r.t. Zero 0.5378 0.4856 0.5576 

 
 
 
 
 
 
 
 



108 

 

Table D1 Location Choice Model used for Simulation, cont’d 
 
 Type 3 Type 4 Type 5 
Parameter Estimate T-Ratio Estimate T-Ratio Estimate T-Ratio 
Auto Cost  

Male 
Low Income 
 (<$30,000) 
Med Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

Female 
Low Income  
(<$30,000) 
Med Income 
($30,000 to $60,000) 
High Income  
(≥$60,000) 

 
 
- 
 
- 
 

-0.2470 
 
 

-0.1684 
 

-0.1070 
 

-0.4584 
 

 
 
- 
 
- 
 

-1.9 
 
 

-1.9 
 

-1.1 
 

-1.7 

 
 
- 
 

-0.3743 
 

-0.1667 
 
 

-0.2033 
 

-0.4503 
 
- 

 
 
- 
 

-1.3 
 

-0.8 
 
 

-1.2 
 

-1.6 
 
- 

 
 
- 
 

-0.2857 
 
- 
 
 
- 
 
- 
 
- 
 

 
 
- 
 

-1.3 
 
- 
 
 
- 
 
- 
 
- 
 

Auto Travel Time  
Male 

Low Income 
 (<$30,000) 
Med Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

Female 
Low Income  
(<$30,000) 
Med Income 
($30,000 to $60,000) 
High Income  
(≥$60,000) 

 
 

-0.2467 
 

-0.1346 
 

-0.05319 
 
 

-0.08488 
 

-0.1339 
 

-0.1758 

 
 

-4.8 
 

-3.9 
 

-1.8 
 
 

-3.6 
 

-5.2 
 

-2.6 

 
 
- 
 

-0.07491 
 

-0.1041 
 
 

-0.06774 
 

-0.06927 
 
- 

 
 
- 
 

-1.4 
 

-2.4 
 
 

-1.7 
 

-1.3 
 
- 

 
 

-0.1569 
 

-0.1070 
 

-0.1469 
 
 

-0.1616 
 

-0.1259 
 

-0.2261 

 
 

-3.6 
 

-2.9 
 

-6.6 
 
 

-8.9 
 

-8.7 
 

-3.8 

Log(number of retail stores) 1.041 13.0 0.8006 6.3 0.6234 9.7 
Log(retail floor space) 0.1649 6.7 0.2786 4.9 0.1534 6.6 
 
Log-Likelihood -419.8102 -143.8703 -484.8085 
Rho-Squared w.r.t. Zero 0.5414 0.6560 0.5684 
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Table D2 Gap Choice Model Estimated with Inclusive Values 

Parameter Male Female 
Estimate T-Ratio Estimate T-Ratio 

All Types 
Episode Duration (+Auto Travel 
Time) to Gap Duration  

Low Income 
(<$30,000) 
Medium Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

 
 

-2.007 
 

-1.668 
 

-1.842 

 
 

-3.0 
 

-4.3 
 

-4.2 

 
 

-2.078 
 

-1.446 
 

-1.476 

 
 

-5.1 
 

-4.5 
 

-3.0 

Weekday 
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 

-0.2964 
2.134 
1.287 

 
- 

-0.5 
3.2 
6.5 

 
- 

-0.1915 
1.371 
1.227 

 
- 

-0.4 
2.3 
7.2 

Weekend  
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 

1.232 
-1.010 
-0.5236 

 
- 

2.4 
-2.2 
-1.3 

 
- 

0.7194 
-1.050 
-0.8016 

 
- 

1.7 
-2.5 
-2.6 

IV 0.6714 1.6 -0.06495 -0.5 
 

Log-Likelihood -1101.5916 -1662.7207 
Rho-Squared 0.0924 0.0595 
Num. Observations 471 670 
Parameter Male Female 

Estimate T-Ratio Estimate T-Ratio 
Type 1 
Episode Duration (+Auto Travel 
Time) to Gap Duration  

Low Income 
(<$30,000) 
Medium Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

 
 

-8.329 
 

-3.372 
 

-9.503 

 
 

-0.7 
 

-2.2 
 

-1.4 

 
 

-4.203 
 

-1.267 
 

-2.439 

 
 

-1.9 
 

-1.2 
 

-1.0 

Weekday 
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 
- 
- 
- 

 
- 
- 
- 
- 

 
- 
- 
- 
- 

 
- 
- 
- 
- 

Weekend  
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 

2.019 
- 
- 

 
- 

2.9 
- 
- 

 
1.731 

- 
- 
- 

 
2.5 
- 
- 
- 

IV 2.576 0.3 -0.4958 -1.3 
 

Log-Likelihood -87.3058 -122.5120 
Rho-Squared 0.1351 0.0744 
Num. Observations 37 46 
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Table D2 Gap Choice Model Estimated with Inclusive Values, cont’d 

Parameter Male Female 
Estimate T-Ratio Estimate T-Ratio 

Type 2 
Episode Duration (+Auto Travel 
Time) to Gap Duration  

Low Income 
(<$30,000) 
Medium Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

 
 

-2.547 
 

-1.186 
 

-1.421 

 
 

-2.5 
 

-2.4 
 

-2.6 

 
 

-3.886 
 

-1.986 
 

-2.195 

 
 

-4.3 
 

-3.6 
 

-3.0 

Weekday 
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 

0.2681 
0.5286 

- 

 
- 

0.4 
0.9 
- 

 
- 

-0.5267 
1.100 

0.9313 

 
- 

-0.7 
1.2 
3.7 

Weekend  
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
1.742 
2.532 

- 
- 

 
3.4 
6.7 
- 
- 

 
- 

1.434 
-0.8287 

- 

 
- 

2.3 
-1.2 

- 
IV -0.8319 -0.7 0.6861 1.0 

 
Log-Likelihood -539.8232 -710.5559 
Rho-Squared 0.0858 0.0809 
Num. Observations 225 287 
Parameter Male Female 

Estimate T-Ratio Estimate T-Ratio 
Type 3 
Episode Duration (+Auto Travel 
Time) to Gap Duration  

Low Income 
(<$30,000) 
Medium Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

 
 

-1.009 
 

-1.465 
 

-2.043 

 
 

-0.8 
 

-1.1 
 

-1.7 

 
 

-1.684 
 

-1.740 
 

-0.8685 

 
 

-2.1 
 

-2.3 
 

-0.9 

Weekday 
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 
- 
- 
- 

 
- 
- 
- 
- 

 
- 
- 

2.076 
- 

 
- 
- 

1.7 
- 

Weekend  
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 

0.9627 
-0.8252 
-0.8852 

 
- 

1.4 
-0.8 
-1.1 

 
- 

0.5051 
-2.137 
-0.9319 

 
- 

1.0 
-2.0 
-1.6 

IV 1.575 2.5 -0.2385 -0.7 
 

Log-Likelihood -135.7255 -315.8100 
Rho-Squared 0.1416 0.0359 
Num. Observations 60 136 
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Table D2 Gap Choice Model Estimated with Inclusive Values, cont’d 
Parameter Male Female 

Estimate T-Ratio Estimate T-Ratio 
Type 4 
Episode Duration (+Auto Travel 
Time) to Gap Duration  

Low Income 
(<$30,000) 
Medium Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

 
 

-0.4420 
 

-2.715 
 

-5.652 

 
 

-0.2 
 

-1.8 
 

-2.9 

 
 

-2.903 
 

-2.166 
 

-1.053 

 
 

-1.5 
 

-1.4 
 

-0.2 

Weekday 
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 
- 
- 
- 

 
- 
- 
- 
- 

 
- 

-2.823 
2.303 
-1.173 

 
- 

-1.5 
1.2 
-0.8 

Weekend  
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 

2.227 
-1.572 
-0.6120 

 
- 

1.8 
-1.2 
-0.4 

 
3.284 
2.117 

- 
- 

 
2.0 
1.7 
- 
- 

IV 1.522 0.8 1.227 1.4 
 

Log-Likelihood -112.6431 -82.4077 
Rho-Squared 0.1335 0.1518 
Num. Observations 51 37 
Parameter Male Female 

Estimate T-Ratio Estimate T-Ratio 
Type 5 
Episode Duration (+Auto Travel 
Time) to Gap Duration  

Low Income 
(<$30,000) 
Medium Income 
($30,000 to $60,000) 
High Income 
(≥$60,000) 

 
 

-3.511 
 

-3.883 
 

-5.439 

 
 

-1.7 
 

-3.4 
 

-3.3 

 
 

-0.9937 
 

-1.036 
 

-0.6943 

 
 

-1.6 
 

-1.8 
 

-0.6 

Weekday 
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 
- 
- 
- 

 
- 
- 
- 
- 

 
- 

-0.8488 
0.6179 
1.450 

 
- 

-0.9 
0.4 
4.1 

Weekend  
Mor (6am-12pm) 
Aft (12pm-5pm) 
Eve (5pm-9pm) 
Lat (9pm-6am) 

 
- 

1.496 
-1.321 
0.3918 

 
- 

2.3 
-1.5 
0.4 

 
- 

1.244 
-0.8383 
-0.3890 

 
- 

1.6 
-1.0 
-0.6 

IV -0.5093 -0.6 -0.1495 -0.5 
 

Log-Likelihood -220.4235 -418.8653 
Rho-Squared 0.1165 0.0433 
Num. Observations 98 164 
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Appendix E: Simulation Output 

Table E1 Goodness of Fit Tables 

Iterations: 1 

Shopping Type  1 2 3 4 5 

Num Total  67 534 204 89 267 

Num Loc Right  5 15 2 1 13 

% Loc Right  7.46% 2.81% 0.98% 1.12% 4.87% 

Num Gap Right  7 56 17 8 33 

% Gap Right  10.45% 10.49% 8.33% 8.99% 12.36% 

Avg Dist (km) from Pred to Chosen 5.82 8.59 10.17 10.73 9.75 

Max Dist (km) from Pred to Chosen 32.24 81.45 78.00 64.28 65.04 

Iterations: 10 

Shopping Type  1 2 3 4 5 

Num Total  685 5340 2040 890 2670 

Num Loc Right  29 143 37 19 43 

% Loc Right  4.23% 2.68% 1.81% 2.13% 1.61% 

Num Gap Right  82 523 199 139 262 

% Gap Right  11.97% 9.79% 9.75% 15.62% 9.81% 

Avg Dist (km) from Pred to Chosen 7.05 7.95 10.35 10.26 9.55 

Max Dist (km) from Pred to Chosen 73.93 88.73 78.00 79.00 70.31 

Iterations: 100 

Shopping Type  1 2 3 4 5 

Num Total  6883 53400 20400 8900 26700 

Num Loc Right  296 1362 350 206 414 

% Loc Right  4.30% 2.55% 1.72% 2.31% 1.55% 

Num Gap Right  822 5376 2189 1418 2619 

% Gap Right  11.94% 10.07% 10.73% 15.93% 9.81% 

Avg Dist (km) from Pred to Chosen 7.22 8.01 10.23 9.92 9.46 

Max Dist (km) from Pred to Chosen 83.08 104.00 93.52 89.30 94.15 

Iterations: 1000 

Shopping Type  1 2 3 4 5 

Num Total  68862 534000 204000 89000 267000 

Num Loc Right  2850 13191 3705 2216 4096 

% Loc Right  4.14% 2.47% 1.82% 2.49% 1.53% 

Num Gap Right  8013 53631 22493 14155 26644 

% Gap Right  11.64% 10.04% 11.03% 15.90% 9.98% 

Avg Dist (km) from Pred to Chosen 7.35 7.99 10.29 9.94 9.57 

Max Dist (km) from Pred to Chosen 96.58 104.00 104.45 103.28 100.27 

 



113 

 

Figure E1.1 Distributions of Distance from Predicted to Chosen Zones (Type 1) 
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Figure E1.2 Distributions of Distance from Predicted to Chosen Zones (Type 2) 
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Figure E1.3 Distributions of Distance from Predicted to Chosen Zones (Type 3) 
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Figure E1.4 Distributions of Distance from Predicted to Chosen Zones (Type 4) 
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Figure E1.5 Distributions of Distance from Predicted to Chosen Zones (Type 5) 
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Figure E2.1 Auto Travel Time Distribution to Shopping: CHASE vs Chosen 

 

 

 

0%

20%

40%

60%

80%

D
is

tr
ib

u
ti

o
n

Travel Time (min)

Travel Time Distribution (Type 1) 

CHASE vs Chosen

CHASE

Chosen

Average (CHASE): 10.92 min

Average (Chosen): 4.52 min

T-Stat: 4.77

0%

20%

40%

60%

D
is

tr
ib

u
ti

o
n

Travel Time (min)

Travel Time Distribution (Type 2) 

CHASE vs Chosen

CHASE

Chosen

Average (CHASE): 15.36 min

Average (Chosen): 6.68 min

T-Stat: 7.05 

0%
10%
20%
30%
40%
50%

D
is

tr
ib

u
ti

o
n

Travel Time (min)

Travel Time Distribution (Type 3) 

CHASE vs Chosen

CHASE

Chosen

Average (CHASE): 16.98 min

Average (Chosen): 7.50 min

T-Stat: 5.63 



119 

 

Figure E2.1 Auto Travel Time Distribution to Shopping: CHASE vs Chosen, cont’d 
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Figure E2.2 Auto Travel Time Distribution to Shopping: Predicted vs Chosen 
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Figure E2.2 Auto Travel Time Distribution to Shopping: Predicted vs Chosen, cont’d 
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Figure E2.3 Auto Travel Time Distributions to/from Shopping: Predicted vs Chosen 

 

 

 

0%

20%

40%

60%

D
is

tr
ib

u
ti

o
n

Travel Time (min)

Travel Time Distribution (Type 1) 

Predicted vs Chosen

Predicted

Chosen

Average (Predicted): 13.93 min

Average (Chosen): 8.21 min

T-Stat: 5.98

0%

10%

20%

30%

40%

D
is

tr
ib

u
ti

o
n

Travel Time (min)

Travel Time Distribution (Type 2) 

Predicted vs Chosen

Predicted

Chosen

Average (Predicted): 14.48 min

Average (Chosen): 12.46 min

T-Stat: 4.81

0%

10%

20%

30%

D
is

tr
ib

u
ti

o
n

Travel Time (min)

Travel Time Distribution (Type 3) 

Predicted vs Chosen

Predicted

Chosen

Average (Predicted): 18.26 min

Average (Chosen): 15.52 min

T-Stat: 2.82



123 

 

Figure E2.3 Auto Travel Time Distributions to/from Shopping: Predicted vs Chosen, 

cont’d 
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Table E2.1 Predicted Gap Choices (Counts) – by Time Period 

Chosen Time Period 
Shopping Type Mor Aft Eve Lat Total 

Type 1 40 14 8 74 136 
Type 2 207 104 78 451 840 
Type 3 90 36 26 181 333 
Type 4 43 21 12 74 150 
Type 5 106 42 23 245 416 

Total 486 217 147 1025 1875 
Predicted Time Period 
Shopping Type Mor Aft Eve Lat Total 

Type 1 4629 2259 1223 8043 16154 
Type 2 18637 9055 7256 48178 83126 
Type 3 5990 3704 4748 17513 31955 
Type 4 4258 2938 1426 7024 15646 
Type 5 7111 2976 1811 25309 37207 

Total 40625 20932 16464 106067 184088 

 

Table E2.2 Predicted Gap Choices (Counts) – by Day of Week 

Chosen Day of Week 
Shopping 
Type Sun Mon Tue Wed Thu Fri Sat Total 

Type 1 13 7 13 16 12 16 11 88 
Type 2 67 60 60 63 71 76 135 532 
Type 3 39 22 19 20 25 35 45 205 
Type 4 16 14 8 8 11 13 20 90 
Type 5 45 31 15 38 37 37 68 271 

Total 180 134 115 145 156 177 279 1186 
Predicted Day of Week 
Shopping 
Type Sun Mon Tue Wed Thu Fri Sat Total 

Type 1 2223 819 883 878 873 986 2238 8900 
Type 2 8662 6904 7035 7306 7563 7335 8595 53400 
Type 3 1639 3029 3753 3403 3352 3712 1512 20400 
Type 4 2178 736 880 691 830 840 2745 8900 
Type 5 2913 4108 3722 3977 4128 4532 3320 26700 

Total 17615 15596 16273 16255 16746 17405 18410 118300 
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Table E2.3 Predicted Gap Choices (Distribution) – by Time Period 

Chosen Time Period 
Shopping Type Mor Aft Eve Lat Total 

Type 1 2% 1% 0% 4% 7% 
Type 2 11% 6% 4% 24% 45% 
Type 3 5% 2% 1% 10% 18% 
Type 4 2% 1% 1% 4% 8% 
Type 5 6% 2% 1% 13% 22% 

Total 26% 12% 8% 55% 100% 
Predicted Time Period 
Shopping Type Mor Aft Eve Lat Total 

Type 1 3% 1% 1% 4% 9% 
Type 2 10% 5% 4% 26% 45% 
Type 3 3% 2% 3% 10% 17% 
Type 4 2% 2% 1% 4% 8% 
Type 5 4% 2% 1% 14% 20% 

Total 22% 11% 9% 58% 100% 
Difference Time Period 
Shopping Type Mor Aft Eve Lat Total 

Type 1 0% 0% 0% 0% 2% 
Type 2 -1% -1% 0% 2% 0% 
Type 3 -2% 0% 1% 0% 0% 
Type 4 0% 0% 0% 0% 0% 
Type 5 -2% -1% 0% 1% -2% 

Total -4% 0% 1% 3% 0% 
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Table E2.4 Predicted Gap Choices (Distribution) – by Day Of Week 

Chosen Day of Week 
Shopping 
Type Sun Mon Tue Wed Thu Fri Sat Total 

Type 1 1% 1% 1% 1% 1% 1% 1% 7% 
Type 2 6% 5% 5% 5% 6% 6% 11% 45% 
Type 3 3% 2% 2% 2% 2% 3% 4% 17% 
Type 4 1% 1% 1% 1% 1% 1% 2% 8% 
Type 5 4% 3% 1% 3% 3% 3% 6% 23% 

Total 15% 11% 10% 12% 13% 15% 24% 100% 
Predicted Day of Week 
Shopping 
Type Sun Mon Tue Wed Thu Fri Sat Total 

Type 1 2% 1% 1% 1% 1% 1% 2% 8% 
Type 2 7% 6% 6% 6% 6% 6% 7% 45% 
Type 3 1% 3% 3% 3% 3% 3% 1% 17% 
Type 4 2% 1% 1% 1% 1% 1% 2% 8% 
Type 5 2% 3% 3% 3% 3% 4% 3% 23% 

Total 15% 13% 14% 14% 14% 15% 16% 100% 
Difference Day of Week 
Shopping 
Type Sun Mon Tue Wed Thu Fri Sat Total 

Type 1 1% 0% 0% -1% 0% -1% 1% 0% 
Type 2 2% 1% 1% 1% 0% 0% -4% 0% 
Type 3 -2% 1% 2% 1% 1% 0% -3% 0% 
Type 4 0% -1% 0% 0% 0% 0% 1% 0% 
Type 5 -1% 1% 2% 0% 0% 1% -3% 0% 

Total 0% 2% 4% 2% 1% 0% -8% 0% 
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Figure E3.1 Spatial Distribution of Predicted Shopping Locations (Type 1) 
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Figure E3.2 Spatial Distribution of Predicted Shopping Locations (Type 2) 
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Figure E3.3 Spatial Distribution of Predicted Shopping Locations (Type 3) 
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Figure E3.4 Spatial Distribution of Predicted Shopping Locations (Type 4) 
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Figure E3.5 Spatial Distribution of Predicted Shopping Locations (Type 5) 
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