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Abstract

With the advent of faster computer processors and better optimization algorithms,

Model Predictive Control (MPC) systems are more readily used for real-time applications.

This research focuses on the application of MPC to trajectory generation of autonomous

vehicles in an online manner. The operating environment is assumed to be unknown with

various different types of obstacles. Models of simplified 2-D dynamics of the vehicle are

developed, discretized and validated against a nonlinear CarSim vehicle model. The de-

veloped model is then used to predict future states of the vehicle. The relationship of the

weight transfer to the tire slip angle is investigated. The optimal trajectory tracking problem

is formulated in terms of a cost function minimization with constraints. Initially, a gradient

descent method is used to minimize the cost function. A MATLAB based MPC controller

is developed and interfaced with CarSim in order to test the controller on a vehicle operat-

ing in a realistic environment. The effects of varying MPC look-ahead horizon lengths on

the computation time, simulation cost and the tracking performance are also investigated.

Simulation results show that the new MPC controller provides satisfactory online obstacle

avoidance and tracking performance. Also, a trajectory tracking criterion with goal point in-

formation is found to be superior to traditional trajectory tracking methods since they avoid

causing the vehicle to retreat once a large obstacle is detected on the desired path. It is fur-

ther demonstrated that at a controller frequency of 20Hz, the implementation is real-time

implementable only at shorter horizon lengths.

Keywords: Model Predictive Control, CarSim, MATLAB, Simulink, Trajectory Track-

ing, Autonomous Vehicles, Real-Time
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Chapter 1

Introduction and Overview

The worldwide interest on autonomous vehicles (airborne, space borne, ground and sub-

mersible) has been increasing rapidly. Autonomous ground vehicles have found wide range

of applications ranging form mine clearance to saving human lives in hostile environments.

Alot of researchers are focusing on active steering methods to reduce the number of motor

vehicle accidents and make driving experience safer. Autonomous vehicle research is in

international domain with notable projects form Germany, Italy and European Union. But

most notable is the DARPA Grand Challenge, an autonomous vehicle competition funded

by the United State’s Defense Advanced Research Projects Agency. With hefty spending

in research, U.S. Department of Defense aims to make one thirds of its ground forces au-

tonomous by year 2015. Another famous research project focusing on autonomous vehicles

is the BErkeley AeRobot (BEAR) project [1]. The BErkeley AeRobot Team uses Model

Predictive Control for real-time trajectory tracking of autonomous vehicles. The vision

statement form Berkeley Aerobot Team’s website is:

“We believe the autonomous systems are much more than a simple automaton, which

performs the given task in a same routine ad nauseum. A simple waypoint navigation of

an UAV is such an example: we believe an UAV should be a UAAV: unmanned, aerial, and

autonomous vehicle. We have showcased such a capability for an UAV to sense the sur-
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rounding, compute the most optimal trajectory that avoids nearby obstacles while flying

towards the original destination using a real-time trajectory generation layer using model

predictive control scheme” [1].

Other projects of interest from the BErkeley AeRobot Team are the Vision-based Landing

project [1] which focuses on autonomous landing of aerial vehicles by using active sensors,

another project is the Swarms: SmartBAT Development project which stresses on the possi-

bility of deployment of a large number of autonomously functioning vehicles in the form of

a swarm (swarming behavior in biology) to carry out a prescribed mission and to respond

as a group to high-level management commands, and the Formation Flight project which

targets to enhancing the techniques used for coordinating flights of helicopter teams [1].

This thesis presents such an application of Model Predictive Control (MPC) (Section 2.2)

applied to the online trajectory generation of a ground vehicle. First, an understanding MPC

is developed in a systematic way, starting form the definition of the optimal control to the

evolution of the MPC from Linear Quadratic Regulator (LQR). A detailed discussion is pre-

sented on the various concepts required for the optimal control systems design such as cost

function, mathematical model and constraints. Then a survey on the application of MPC

to the trajectory generation of autonomous robots are presented. A detailed chapter on the

methods used for this research are also presented.

A nonlinear mathematical model for a nonholonomic vehicle is developed (Section 3.2).

For validity of the developed model, it is tested against a fully nonlinear CarSim [2] vehicle

model. Tests are performed to study the effect of weight transfer on the tire slip angles. Gra-

dient Descent Algorithm (Section 3.5) is used to find the optimal solution of the trajectory

tracking problem and optimization of the cost function is subjected to vehicle dynamics.

Additionally, steering angle constraint is directly incorporated into the cost function.

The simulations are performed in MATLAB’s Model Based Design Environment, Simulink.

CarSim vehicle model is embedded as a Simulink S-function and NMPC (Nonlinear Model

Predictive Control) controller is coded in MATLAB script file and imported to Simulink by

100387227
Sticky Note
MigrationConfirmed set by 100387227

100387227
Sticky Note
MigrationNone set by 100387227
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using MATLAB Function Block. The operating frequency of predictive controller is set to

20Hz and no low level control is used. Various types of scenarios are simulated to validate

the controller’s performance against a fully nonlinear vehicle model. The operating envi-

ronment is assumed to be unknown with various types of stationary obstacles.

An important parameter in MPC controller design is the prediction horizon or the look-

ahead horizon. The effect of varying the horizon length on the overall simulation cost and

the anticipated turning is explored. Then a real-time analysis is presented based on the

simulation results. The effect of cold-start and warm-start initialization methods on the

controller’s computation time and iteration count is also investigated. Robustness testing

is performed by varying the vehicle parameters and keeping the controller parameters un-

changed. Two methods of vehicle’s trajectory tracking criteria (Section 3.4.3) are presented

and each of the method is simulated to find the best of the two methods.

1.1 Thesis Problem Statement

In this research, we explore the application of Model Predictive Control to perform trajec-

tory tracking of a nonholonomic vehicle. We focus on the application of Nonlinear Model

Predictive Control (MPC) for trajectory tracking of the vehicle because it allows for a trade

off between the tracking performance and the computation cost. Additionally input and

state constraints can be easily included in the control formulation which makes the method

attractive for implementation in practical situations.

Some aspects which will be focused in this thesis are:

• Controller should be able to perform efficiently on a fully nonlinear vehicle model.

• Control and states constraints should be considered within the control formulation.

• Test the limits of the controller and its robustness to change in the vehicle parameters.

• Explore real-time aspects of the developed predictive controller.
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• Vehicle should be able to re-plan trajectory once an obstacle is detected on the pre-

planned path.

1.2 Organization of the Thesis

This thesis is divided into five chapters. Chapter 1 provides a brief introduction to the

research objective and thesis contents. Chapter 2 develops an understanding of Optimal

Control and how it lead to the development of the Model Predictive Control systems. Then

a comprehensive review of the MPC implementation in industry and for trajectory tracking

of autonomous vehicles is presented. Chapter 3 gives a detailed account of all the methods

used in the development of the MPC controller. First, development of a vehicle dynamic

model is presented, then this model is validated against a fully nonlinear CarSim vehicle

model. Then a trajectory tracking framework for MPC is described and two different meth-

ods of the reference trajectory following are explained. A short description of the gradient

descent method is provided together with the properties of the algorithm. Concept of weight

transfer and discretization is also explained in this chapter.

Chapter 4 presents simulations results of the MPC tracking controller performed on a fully

nonlinear CarSim vehicle model. Different scenarios are considered for validation of the

controller in different types of environments with obstacles. Controller robustness is ver-

ified by changing the vehicle’s mass, track width, center of gravity and the yaw inertia.

Based on these results a real-time analysis on the controller’s performance is presented.

Chapter 5 concludes the thesis and provides guideline about the possible future work.



Chapter 2

Background and Literature Review

Control systems have penetrated every aspect of our lives. We rely on them in our daily

lives in one form or another. Aerospace engineers have used them to control the position of

spacecrafts [3], Civil engineers have used them to control active mass dampers for seismic

protection [4], Mechanical engineers have used them to control complex milling machines

[5] and Electrical engineers have used them to control the precise motion of a motor [6].

Mechanization of goal-oriented policies has grown into a hierarchy of goal-oriented control

system strategies [7]. There are at least six different distinct control strategies i.e., 1) Adap-

tive control, 2) Hierarchical control, 3) Intelligent control, 4) Stochastic control, 5) Robust

control, 6) Optimal control. Each of these strategies is explained in the following:

Adaptive control systems are the most popular in the aerospace industry. Adaptive

controllers employ plant model identification methods to tune the controlled process pa-

rameters on-the-fly, which makes them adaptive to the systems whose parameters vary with

time. An adaptive controller can automatically upgrade its structure or parameters to match

the changes of dynamics of the controlled plant model [8].

Hierarchical control systems are comprised of control devices which are arranged in

the form of a hierarchy and are connected together like a network. The control of large

systems is always organized in a distributed hierarchy. This hierarchy takes the form of

5
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a tree in which each device performs its task independently. Each control element is a

linked node in a hierarchical tree. Control tasks flow down the tree from superior nodes

to subordinate nodes, whereas measured states flow up the tree from subordinate nodes to

superior nodes. Each higher layer of nodes operates at slower operating frequency then its

lower layer. Such a control technique is popular in the field of unmanned vehicles where

each higher layer performs more intelligent tasks as compared to its immediate lower layer

[9].

Intelligent control systems use artificial intelligence (AI) approaches such as neural

networks, fuzzy logic and genetic algorithms to find the solution to a control problem [10].

According to Saridis [11], “An intelligent controller would replace a human mind in making

decisions, planning control strategies, and learning new functions by training and perform-

ing other intelligence functions whenever the environment doesnt allow or doesnt justify

the presence of a human operator”. Intelligent control systems have found large application

areas ranging from exploratory robots to mineral processing plants [12].

Stochastic control deals with the control of model based systems in which there exists

some deviations in the data obtained from the plant. Such deviations occur when random

noise and disturbance processes are present in a control system, so that the system does

not follow its prescribed course but deviates from the latter by a randomly varying amount

[13]. The exact disturbance function is unknown to the system designer but only some of its

average properties are known before hand. A random signal may be generated by nature’s

processes like wind.

Robust control systems deal directly with uncertainty in control design. Its function

is similar to Adaptive Control but there is an important difference. Robust Controllers are

designed to be insensitive to the uncertainty of the controlled plant, whereas Adaptive Con-

trollers are sensitive to plant uncertainty but they can adapt to changes on-the-fly. It should

be noted that it is impossible to design a robust controller which can work for all times of

uncertainties. A robust controller can be designed which is insensitive to plant uncertainties
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only in a bounded region [8]. So it is necessary to provide some information regarding the

environment to the control designer [14] such as process model, model uncertainty bounds,

types of inputs (setpoints and disturbances) and performance criteria. Such systems are pop-

ular in the areas where the environmental conditions can change from the assumed nominal

operating conditions during the design process. Robust control theory measures the perfor-

mance changes of a control system with changing system parameters.

Optimal control systems is a control technique in which a certain performance index

is minimized. It is popular in applications where constrains (input or state) need to be

considered in control formulation. This chapter focuses on the study of optimal control

systems, more specifically Model Predictive Control systems. Then a survey is presented

on the existing approaches for trajectory planning of autonomous vehicles.

2.1 Optimal Control Systems

Conventional control theory has allowed man to control and automate his environment for

decades. More recently, optimal control techniques have allowed the engineers to optimize

the control systems they build for cost and performance. Donald Kirk [15] in his book

defines classical and optimal control techniques as:

“Classical control system design is generally a trial-and-error process in which var-

ious methods of analysis are used iteratively to determine the design parameters...The ob-

jective of optimal control theory is to determine the control signals that will cause a process

to satisfy the physical constraints and at the same time minimize (or maximize) some per-

formance criterion.”

Classical control theory can be traced back to as early as 1930s with the works from Nyquist

[16], Nicholas [17] and Bode [18]. They introduced the frequency response analysis meth-

ods for single-input single output (SISO) systems. In 1949, Weiner [19] introduced the first

optimal control approach focusing on minimization of variance of signals. It was designed
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to reduce the amount of noise present in a signal by comparing it with an estimated de-

sired noiseless signal. This filter was known as the “Weiner Filter”, however, there was a

limitation to his designed filter i.e., it was applicable to the continuous-time domain only.

Later, discrete-time equivalent of the Weiner Filter was derived by Kolmogorov. The com-

bined theory of Kolmogorov and Weiner was named Weiner-Kolmogorov filtering theory.

Weiner-Kolmogorov filter theory was the first statistically designed filter theory, and it lead

to the development of advanced filters such as the Kalman filters.

Optimal control and estimation research gained lots of attention during the Space Race

(a part of the larger Cold War between the United States and Soviet Russia for supremacy

in space exploration) which was ignited by Soviet launch of Sputnik 1 on 4th October 1957.

The Space Race resulted in enormous increase in research spending. It was during this time

when two ground-breaking papers by Rudolf E. Kálmán [20, 21] appeared in 1960. First of

these two papers, deals with linear-quadratic feedback control which later came to be known

as Linear Quadratic Regulator (LQR) (see next Section for further details). His second paper

introduced the Kálmán Filter (it was formulated only for linear systems and assumed zero-

mean gaussian noise). The combination of the first and the second paper formed the basis

for Linear Quadratic Gaussian (LQG) control theory. Major contributions of these papers

were the introduction of the concept of state space representation (including controllability

and observability) and filtering theory for optimal control. The Kálmán filter was designed

to produce estimates of the true values of the measurements (provided the plant is linear

and continuous-time), estimating the uncertainty of the predicted value, and computing a

weighted average of the predicted value and the measured value. Initially, Kálmán faced

wide skepticism on his ideas. But later his developed LQ problem was included in famous

textbooks [22, 23, 24, 25]. Kálmán filters were also used in the Apollo program, NASA

Space Shuttle, Navy Submarines and the Cruise Missiles.

Basic Kálmán filter was limited to linear plant models, however complex systems can

have nonlinear models. So Kálmán’s filter has been extended to the nonlinear plants, and
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Figure 2.1: Configuration of a typical optimal control system

the extended version came to be known as the Extended Kálmán Filter (EKF). Another

widely used variant of Kálmán filter is Unscented Kalman Filter (UKF) which captures a

more accurate mean value of the signal by picking a minimal set of the points around the

mean.

Referring to Figure 2.1, the main objective of optimal control is to determine the op-

timal plant (process) control input u(t)∗ (superscript ∗ denotes optimal condition) which

drives the system from some initial state to reference signal r(t) value while minimizing (or

maximizing) a performance index J . The formulation of an optimal control system at least

requires the following:

• A mathematical model of the plant to be controlled

• Performance index (cost function)

• Constraints (optional)

2.1.1 Plant Description

A plant is described by a set of linear differential equations or nonlinear differential equa-

tions. For example a linear plant equation is written as:
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ẋ(t) = Ax(t) +Bu(t) (2.1)

y(t) = Cx(t) +Du(t) (2.2)

where dot(̇) on x(t) in Equation 2.1 represents the differential of x(t) with respect to

time t. x(t), y(t) and u(t) are state (n dimension), output (m dimension) and control (r

dimension) vectors respectively. A is a n × n matrix, B is a n × r matrix, C is a m × n
matrix and D is a m× r matrix.

2.1.2 Cost Function Description

A cost function is a performance index which needs to be minimized (or maximized). The

most basic form of a cost function is the Time Optimal cost function in which we want the

system to move from some initial state x(t0) to final state x(tf ) in minimum amount of

time [26]. Such a cost function is written as:

J =

∫ tf

t0

dt = tf − t0 = t∗ (2.3)

A second type of cost function is the Minimum-Effort cost function which minimizes

the actuator effort |u(t)| to minimize the actual cost of a process [26]. Such a cost function

is formulated as:

J =

∫ tf

t0

R|u(t)|dt (2.4)

where R is a weight factor. For example, in a spacecraft the control input amount u(t)

is equivalent to the amount of fuel spent. Minimizing the cost function in Equation 2.4

ensures minimum fuel consumption for a control move. A third and most common type

of cost function is the General Optimal Control cost function or LQR cost function [26].

Mathematically it is written as:

J = x′(tf )Fx(tf ) +

∫ tf

t0

[x′(t)Qx(t) + u′(t)Ru(t)]dt (2.5)
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where R, Q and F are the tuning matrices and determine the weight of each element

in the cost function. The cost function 2.5 is called a quadratic cost function because terms

of states and control are squared. Superscript prime (′) denotes transpose of a term. So the

term x′(t)Qx(t) is the matrix form of qx(t)2. In Linear Quadratic Regulator, linear refers

to the plant being linear and the term quadratic refer to the cost function with squared

or quadratic factors. The term x′(tf )Fx(tf ) is called terminal cost and the integral term
∫ tf
t0

[x′(t)Qx(t) + u′(t)Ru(t)]dt is the running cost.

The structure of the quadratic cost function signifies the type of the problem faced [27].

An optimal solution depends on the values of states, values of control variable and the form

of the cost function [28]. If the cost function contains only terminal cost, the problem is

called a Mayer problem. If the cost function contains only running cost, such a problem is

called a Lagrange problem. The problem which contains both running and terminal cost

in cost function is called a Bolza problem (this type of cost function has been used in this

research work). For a detailed discussion on the history of these problem types and their

solutions, the reader is refered to Peskir [29]

2.1.3 Constraints Description

One of the main problem with the LQR was its inability to deal with constraints. In real life

situations, the states x(t) and the control inputs u(t) can have constraints on them. Simplest

constraints are linear and have the following form:

Umin ≤ u(t) ≤ Umax (2.6)

Xmin ≤ x(t) ≤ Xmax (2.7)

where Umax and Umin, Xmax and Xmin are the upper and the lower limits on control input

and states respectively. According to Qin [30] the maximum yield of process industries

occurs when the plant is operated closed to the constraints boundary.



2.2. MODEL PREDICTIVE CONTROL 12

2.2 Model Predictive Control

In the late 1960s, LQR/LQG became immensely popular approach to solve the general

control problems especially those related to the aerospace field. According to Goodwin [31]

there are thousands of practical applications of LQG and around 400 registered patents. But

LQR/LQG failed to make an impact on process industries. Some of the reasons of failure

include [30]:

• inability to handle constraints

• inability to handle process nonlinearities

• lack of robustness

• unique cost function

• cultural reasons

A successful industrial controller must consider the constraints limitation during its opera-

tion [32]. As in process industries maximum yield is achieved when a process is operated

near the constraints boundary [30]. No constraints were considered in LQR formulation.

Industrial processes are nonlinear whereas LQG only handles linear processes. Also in-

dustrial processes change with time, and their exact model is hard to obtain as compared

to the aerospace systems which have a well defined accurate mathematical model. The

quadric cost associated with the LQR was not modifiable which limited the LQR applica-

tions. Processes need some extra elements in cost function to optimize production. But most

important reason cited for LQR’s failure is that the control engineers and technicians had

limited knowledge of optimal control systems, so the process control community remained

unaware of LQG benefits [30].

During the early 1970s the first few industrial applications of MPC were reported. Two

of the most famous papers were by Richalet [33] and Cutler [34]. Richalet called his imple-
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mentation as Model Predictive Heuristic Control (MPHC) and Cutler called his technology

as Dynamic Matrix Control (DMC). Early MPC implementations solved constrained opti-

mal control problem over finite and receding horizon (known as look-ahead horizon).

LQR + constraints + finite horizon = simple linear MPC

Since dynamics of the industrial processes are slow, it was possible to solve the resulting

optimization problem in an online manner even with limited computational power. It was

possible to use any cost function formulation and the plant dynamic model could take any

mathematical form. Constraints were included directly in the cost function to optimize

performance. With the passage of time, MPC became enormously popular in the process

control industry [30].

2.2.1 MPC Theory

A very general architecture of a Model Predictive Controller is given in Figure 2.2. MPC

controller contains three basic functional blocks. The Optimizer finds the optimal control

input u∗(t) which when applied to the plant, gives the minimum value of the cost J . Of

course, this optimization must be done in the presence of the constraints and the cost func-

tion. The State estimator is used to predict unmeasured states x̂(t) form the plant.

Model Predictive Control optimizes the output of a plant over a finite horizon in an

iterative manner (Refer to Figure 2.3). Suppose the step size of the controller is T . At

time step k the current plant state is sampled and the optimizer computes a cost minimizing

control strategy u∗(t) for finite time steps in future k = t + 0T, t + 1T, ..., t + pT where

p is the number of look ahead prediction horizon steps. In practical situations, the whole

optimal control sequence cannot be applied to the process. This is due to the inaccurate

process model and added disturbances in the process which can cause error between the

predicted output and the actual process output. If only a mathematical model was used for

prediction and state calculation, prediction errors could accumulate. Thus only the first step
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Figure 2.2: Model Predictive Controller block diagram

of the control strategy is applied to the plant and the plant state is measured again to be used

as the initial state for the next time step. This feedback of the measurement information to

the optimizer adds robustness to the control [35]. The plant state is sampled again and the

whole process is repeated again with the newly acquired states. The prediction time window

[t + 0T, t + 1T, ..., t + pT ] shifts forward at every time step (reason why MPC is also

known as Receding Horizon Control [36]). Other names like Rolling-Horizon Planning,

Dynamic Matrix Control (DMC) [37] and Generalised Predictive Control (GPC) [38] have

also been used for MPC.

MPC is a growing field and attracts many researchers around the world. Figure 2.4

depicts the number of publications available in IEEE database whose abstract or title con-

tains the term “Model Predictive Control”. It is evident from the Figure 2.4 the number of

research publications have been increased during this period, from only 2 publications in

1985 to 654 publications in 2010. During the period 1985 − 2000, we see a linear rise in

research publications, but after 2000 the increase is exponential. This is due to the rapid

development of faster computers and advanced algorithms. It should be noted that these are

only the publications with the name “Model Predictive Control”. There are several publi-
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Figure 2.3: Model Predictive Control scheme. Modified form [39]

cations with various other names of the MPC. Also there are many publications other than

IEEE. Looking at the fitted curve, one can predict that the publications will reach above

1000/year mark in 2015.

2.2.2 Modern Industrial MPC

MPC is extensively used in the oil refinery industry where it is implemented in the form of

a hierarchy (Figure 2.5). The control structure is a four layered structure. Top layer is the

Plant Wide Optimizer which finds the optimal settings for each individual unit in an indus-

trial plant. The Local Economic Optimizer [40] calculates the steady-state operating points

for a particular unit. These steady state points are sent to Dynamic constraint control layer

where the intelligent MPC exists. The Dynamic Constraint Control (MPC) must move the

unit from one set point to another in minimum amount of time without violating constraints

[40]. MPC commands are then sent to the Basic Dynamic Control which contains low-level

control systems like PID controller to command individual actuators. For further informa-

tion on industrial predictive control practices, the reader is referred to an excellent survey

by Qin [30].
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2.2.3 Explicit MPC

Online execution of the MPC requires substantial computation effort. Such an implemen-

tation is easy for slow processes like oil refineries, but may be hard for faster dynamical

systems like automotive systems. There is a variant of MPC where optimization is com-

puted offline and results are stored for each possible value of the states x(t) in the form of a

look-up table. A piece-wise linear feedback control law f(x) is determined which generates

the optimal control input u(k) = f(x(k)) such as shown in Figure 2.7. So online effort is

reduced to finding the appropriate control solution from a lookup table [41]. Such solutions

exists for linear systems with quadratic cost function which marks a limitation for this ap-

proach. The optimization problem is formulated as a multi-parametric program by treating

the current state x(t) as a parameter. Solving this multi-parametric program yields an ex-

plicit solution, i.e. an optimal look-up table, for the MPC problem. This is a suboptimal

optimal solution for the considered problem and each of the region in the resulting solution

can be treated as a separate LQR. Thus time-consuming computation is done offline [42].

The benefits of Explicit MPC can be summarized as [43]:

• Explicit MPC can be implemented at higher sampling rates (due to less computation

effort required)

• Explicit MPC can be implemented on inexpensive hardware with fixed-point arith-

metic

• Reliability of the Explicit MPC can be verified since we have solutions for all possible

states and inputs (within a bounded region). Thus it can be used for safety-critical

applications.

Numbers of the explit affine regions and consequently the complexity of the explicit

solution increases exponentially with an increase in the number of the states and the control

inputs. Other trade-off for explicit solution are the offline pre-calculation overheads can be
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Figure 2.6: MPC-Explicit offline solution.

significant, and this method can only be applied for regulation only to specified setpoint

where partition has been calculated in advance [44]. Also explicit MPC cannot be applied

to plants with time-varying dynamics/cost function/constraints [45]. Researchers are work-

ing to reduce the complexity of explicit solutions [46, 47, 47, 48]. A user friendly and free

Multi-Parametric Toolbox (MPT) for MATLAB [49] is also available which is helpful in de-

sign, analysis and deployment of optimal control systems and more specifically the explicit

MPC systems.

2.3 MPC for Trajectory Tracking

The purpose of trajectory tracking is to minimize the deviation between a vehicle’s traveled

path and the desired path. PID controllers have been widely used for trajectory tracking of

industrial robotic systems. Many other approaches for trajectory tracking of ground, under-

water, water surface, aerial and space borne vehicles have been proposed. Divelbiss [51]

used time-varying LQR approach for trajectory tracking of a car-trailer system. Wen [52]
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Fig. 3. The optimal control law u.

To find P and Kr satisfying (75), we use techniques presented in [5], resulting in

P =


8.8933 0.0265

0.1588 14.2315


 . (77)

Next, we take a level set of the Lyapunov function ‖Px‖∞, which also satisfies input and state constraints for

the auxiliary control law uk = Krxk, uk ∈ Sr, r = 1, 2, as the terminal set XN . To be precise, we search for

a ce ≥ 0 such that

XN = {x ∈ Rnx | ‖Px‖∞ ≤ ce} , (78a)

is inside the safe set {x ∈ X | Kx ∈ U}. In this case, ce = 13.3 is the maximum number defining such a set.

Using the parameters above, and a prediction horizon N = 7, we compute the corresponding explicit MPC

control law u, shown in Figure 3, having 277 regions. Note that the controller can be simplified to 57 regions

by merging regions containing the same control law. Using ideas in [12], the point location problem on this

irregular partition can be represented by a binary search tree with a maximum depth of 9 levels, where a single

boundary (i.e. a linear inequality) is evaluated at each node.

We will now apply the approach as discussed in Subsection VI-A using global Lipschitz continuity of the

value function. The value function V is a continuous PWA function and satisfies

V (f(x,u))− V (x) ≤ −‖Qx‖∞,x ∈ Xf (79)

(a)
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Fig. 4. The approximate control law ũ.

as follows from the basic proof of the terminal cost and set method [46]. Using the idead in Subsection VI-A

we obtain for all x ∈ Xf and e ∈ E with f(x,u(x)) ∈ Xf

V (f(x,u(x) + e)− V (f(x,u)) ≤ σc‖e‖∞, (80)

because of Lipschitz continuity of V , where σc can be computed as in (51). Adding (79) and (80) yields

V (f(x,u(x) + e))− V (x) ≤ −γc‖x‖∞ + σc‖e‖∞, (81)

with γc = 1 (since Q = I) and σc = 4.23. Hence, we can make use of Lemma 2 and the procedure described

in Section V (in short, solving (41)). Hereto, we program Algorithm V-G in Matlab with ρmax = 0.23 < γc
σc

and

make use of Yalmip [50] (version R14SP3) and glpkmex [51] (version 2.8) as interfaces to the GLPK linear

solver library [44] (version 4.38). We use a rectangular partition and binary refinement procedure (meaning

that each rectangle is split in 22 equally sized rectangles at the refinement step (step 12) of the algorithm in

Subsection V-G).

The resulting approximate control law ũ is displayed in Figure 4. It was calculated in 154 sec. (on a single

core of an Intel Core 2 Duo P8400, running 64-bit versions of Ubuntu 10.04 and Matlab R2009a), and has 55

regions over 5 levels of refinement. To verify the performance of this approximate control, simulations were

performed with a starting point x0 =
[
9.97 9.97

]>
close to the boundary of Xf , as displayed in Figure 5.

As can be seen, the closed-loop system responses of the high- and low-complexity controller are similar and

(b)

Figure 2.7: (a) 277 region explicit MPC control law obtained for a an example in [50] by
using MATLAB based MPT toolbox. (b) Simplified 55 region explicit MPC control law for
the same application.
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used iterative model predictive control for a nonholonomic vehicle’s trajectory tracking. He

used the gradient based method without constraints and proved that the online computation

load is reduced significantly if no constraints are present.

Tsiotras [53] proposed a linear controller for a satellite’s trajectory tracking by utiliz-

ing a non-quadratic Lyapunov function. Stability of the controller was proved by using a

quadratic plus a logarithmic term.

Gordon [54] considered the problem involving a constrained submarine in order to ex-

plore the practicalities of NMPC implementation. An online gradient optimizer followed by

an Extended Kalman Filter state estimator was used to control a continuous time submarine

system while the controller embedded a discretized nonlinear model. Gordon also explored

the effect of tuning matrices on optimization process.

Kim [55] investigated the feasibility of Nonlinear Model Predictive Tracking Control

(NMPTC) for autonomous helicopters. NMPTC algorithm was formulated for planning

paths under input and state constraints, and implemented online using a gradient-descent

method. No obstacle avoidance was considered in this case.

Eklund [56] proposed a supervisory controller for pursuit and evasion of two fixed-

wing autonomous aircrafts. NMPTC was used for real-time trajectory tracking of an evader

as well as a pursuer aircraft. The NMPTC controller was then integrated in a UAV which

participated in the Pursuit Evasion Games (PEGs) against a US Air Force Pilot operated

F-15 aircraft. NMPTC controller was used as a high level trajectory generation layer and

the low level control was performed by the aircraft’s autopilot interface. Simulation/field

test results showed that encoding of the PEGs into the cost function proved successful and

the behavior of the NMPTC controlled aircraft was similar to what a pilot is taught to do in

a flight school for that situation.

Fahimi [57] designed a Nonlinear Model Predictive Control law for controlling multi-

ple autonomous surface vessels in arbitrary formations and in environment containing ob-

stacles. A decentralized leader-follower approach was used for the vessel tracking and the
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effectiveness of the developed controller was tested in the presence of model uncertainties

and external disturbances. Vougioukas [58, 59] used NMPC for precision guidance of agri-

cultural tractors to assist farmers in their day to day activities. He further demonstrated

through simulations the effect of different horizon lengths on the tracking performance of

autonomous tractors.

Yoon [60] used model predictive approach for obstacle avoidance of car like unmanned

ground vehicle (UGV). Two kind of potential functions were applied for obstacle avoidance,

distance based and Modified Parallax. Simulation results proved that both methods worked

equally well in simple environments but in complex environments the vehicle equipped with

MP method produces better results in terms of tracking performance and computation time.



Chapter 3

Methods

This chapter focuses on the development of the controller and model formulations which

are used in the rest of this thesis.

3.1 Work Methodology

In order to apply control to vehicle modeling in the CarSim environment, several stages

of development were required. First vehicle dynamics were analyzed in order to develop

an accurate vehicle model. This developed model was validated in the Simulink environ-

ment against a realistic CarSim model. Once this was accomplished, NMPC controller was

developed in Matlab and tested with CarSim model.

3.2 Vehicle Modeling

The main requirement in any model predictive control (MPC) application is the plant model.

MPC optimizer uses this model to predict plant future behavior and plan an optimized tra-

jectory. At each control interval an MPC algorithm attempts to optimize future plant be-

havior by computing a sequence of future manipulated variable adjustments. Conventional

MPC schemes use linear models to predict dynamic behavior of plant. Linear models can

be inadequate in modeling highly nonlinear plants, such as a nonholonomic vehicle [61].

22
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When dynamics can not be accurately modeled by linear models, nonlinear models may be

essential to capture the full dynamics of the plant to be controlled. This section provides an

overview of nonlinear and nonholonomic systems. With this framework, the mathematical

modeling of the vehicle model is validated against a fully nonlinear CarSim vehicle model.

A dynamical system is one in which the states are undergoing changes as the time

progresses. In this case the states X evolve and then Y can be described by differential

equations (DE) or partial differential equations (PDE). A linear syatem is one in which

input-output relationship is a linear map. For example, if input x1(t) produces response

y1(t), and input x2(t) produces response y2(t), then the input a1x1(t) + a2x2(t) (summed

and scaled) produces the scaled and summed response a1y1(t) + a2y2(t). Now if we apply

input x(t) to a system at time t, the output is y(t). Time invariance means an input applied

T seconds form now (x(t−T )) will produce identical output except with a time delay of T

seconds (y(t− T )). The standard linear time invariant (LTI) system is given by the form:

ẋ = Ax+Bu

where states (x) and controls (u) form a linear combination but this is a very stringent

requirement and many real life systems can not be accurately described by such models.

3.2.1 Nonlinear Systems

A nonlinear system is a system where the variables to be solved for cannot be written as

a linear combination of independent components. The most general nonlinear system is

described by the DE:

ẋ = f(x, u, t)

where the RHS is a function of both states, controls and time. These systems can become

complicated and can not always be explicitly solved. This thesis deals with such a nonlinear

system whose dynamics can be represented in the state space form. The state space repre-

sentation models dynamic of the plant as a set of differential equations in a set of variables



3.2. VEHICLE MODELING 24

known as state variables. State variables or in short states are a set of variables that fully

describe the system’s response to any given set of inputs. According to Derek [62]

“A mathematical description of the system in terms of a minimum set of variables xi(t), i =

1, ...., n, together with knowledge of those variables at an initial time t0 and the systems in-

puts for time t ≥ t0, are sufficient to predict the future system state and outputs for all time

t ≥ t0.”

State Equations

When multiple states and controls are present in a system, the general nonlinear equations

of dynamical system are expressed in the form of n coupled differential equations known

as state equations. Suppose we have n state variables x1(t), ...., xn(t) and r system inputs

u1(t), ...., ur(t). In this case we should have n state equations:

ẋ1 = f1(x, u, t)

ẋ2 = f2(x, u, t)

... =
...

ẋn = fn(x, u, t) (3.1)

where ẋi = dxi/dt and fi(x, u, t) with (i = 1, ...., n) is nonlinear function of states, inputs

and time. These state equations are written in vector form:

ẋ = f(x,u, t)

y = h(x,u, t) (3.2)

where x = [x1(t), x2(t), ...., xn]T , u = [u1(t), u2(t), ...., un]T and f(x,u, t) is a vector of

fi(x, u, t) with (i = 1, ...., n). The output vector is y = [y1(t), y2(t), ...., ym(t)]T . Often,

the outputs can be described as linear combination of the states. In this case y = Cx where

C is a m× n filter matrix which limits output to states of interest only (Figure 3.1).
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Figure 3.1: Block diagram of a state space system

The system of Eq. 3.2 models most physical systems encountered in engineering prac-

tice including linear systems of the form:

ẋ = Ax +Bu

y = Cx +Du (3.3)

which are obtained from Equation 3.2 when f(x,u, t) is a linear combination of x and

u. Linear control theory is a well developed field with many analysis methods of linear

control systems [63]. However, most systems are nonlinear and we have to make following

assumptions to apply linear control theory:

• the system is assumed linear around a specific operation point, x̂, and

• the system will remain in a small region around that operation point during operation.

Both of these conditions must be satisfied, otherwise a nonlinear control strategy is

needed. In this thesis we limit our attention to time invariant systems.

3.2.2 Nonholonomic Systems

“Nonholonomic systems are, roughly speaking, mechanical systems with constraints on

their velocity that are not derivable from position constraints. They arise, for instance,

in mechanical systems that have rolling contact (for example, the rolling of wheels without

slipping) or certain kinds of sliding contact (such as the sliding of skates).” [64]
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In a nonholonomic the directions of motion are limited so that although all of the spaces are

reachable, maneuvers are required to reach many states and these become path dependent.

States of a nonholonimc depend on the path taken to achieve it. A car is classic example of

nonholonomic system. The vehicle has three degrees of freedom i.e., x,y position and its

orientation. But it has only two controllable degrees of freedom i.e., acceleration and front

tire steering angle, hence an under actuated system. A car must travel in the same direction

as its heading and cannot move in any other direction (unless there is some slipping). Every

path cannot be achieved by a nonholonomic vehicle. This nonholonimity of a vehicle makes

turning and parallel parking a challenging maneuver. Since a nonholonomic system cannot

move in arbitrary directions in its configuration space [65].

Parking a van is a great example of the maneuvers required by a nonholonomic system.

This is illustrated in Figure 3.2. A van driver wants to parallel park between two cars and

a limited space is available for parking. The driver cannot move into the parking space

perpendicularly because the van can only roll in the direction of its heading (or 180 deg

if he is reversing). This makes it a challenging maneuver and the driver has to move the

van back and forth with different steering angles in order to optimally parallel park the van

between the two cars.

3.2.3 Mathematical Modeling

Lateral vehicle models describe the dynamics along the width of the vehicle which can be

used to track coordinates of the vehicle in an inertial frame. Longitudinal vehicle mod-

els describe dynamics along the length of the vehicle which is used to track the velocity

of the vehicle. Lateral vehicle models were studied as early as 1950s by Segel [66] and

Kasselmann [67]. Model Predictive Control requires an analytical and accurate dynamic

mathematical model of the system to be controlled. Our current implementation uses a non-

linear model of vehicle dynamics to predict the future trajectory of system states. A lateral

model for vehicle motion can be developed by using some assumptions. Wang [68] used
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Figure 3.2: Rolling without slipping nonholonomic constraint of a vehicle. Top: Vehicle
cannot parallel park directly due to nonholonomic constraint. Bottom: Driver has to plan a
trajectory in order to parallel park the vehicle in the limited space.
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a bicycle model to represent a four wheel vehicle. In a bicycle model, the front left and

front right wheels are lumped into one wheel (Point A in Figure 3.4). Therefore the steering

angle of front left and front right wheel become δf . Similarly the rear left and rear right

wheels are lumped into one wheel (Point B in Figure 3.4). The rear wheel is considered

fixed to the vehicle frame and does not steer. Point C is the center of gravity of the vehicle,

the distance CA is lf and distance BC is lr, the vehicle wheel base is l = lf + lr. The

vehicle is moving in a two dimensional plane and (X,Y ) are the coordinates of the vehicle

in this frame. Vehicle orientation is encoded in terms of roll, pitch and yaw angles, each

of which is measured against three principal axes of the vehicle X, Y and Z respectively.

An illustration of the three angles is given in Figure. 3.3. It is assumed that small friction

Figure 3.3: Body Frame Axis System: x, y and z axis of the vehicles body frame, with
rotational degrees of freedom, pitch, roll and yaw. Modified from Melonee [69]

coefficients exist between the tire and the road, and weight transfer between front and rear

end of the vehicle is negligible (low CG) which means that body roll and pitch behavior can

be neglected. The yaw angle ψ is orientation of vehicle in X-Y frame and is measured with

respect to global X axis. The velocity of the vehicle v makes an angle β (vehicle slip angle)
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with the longitudinal axis of the vehicle. vx is the longitudinal velocity and ψ̇ is the yaw

rate of the vehicle. Fyf and Fyr are the lateral forces on front and rear tires respectively.

The overall force at point A and B is 2Fyf and 2Fyr because each of these point represents

two tire forces. It is the most important model used for lateral vehicle dynamics studies.

In principle, any vehicle model can be described as a bicycle model [70] [71]. The lateral

vehicle dynamics can be modeled by applying Newton’s second law of motion along the

Y-axis.

Figure 3.4: Simplified Bicycle Model [72]

∑
(Forces acting along Y axis) = may

2Fyf + 2Fyr + Fbank = may (3.4)

where Fbank is the force due to the banking angle of the road, m is the mass of the

vehicle and ay = (d
2y
dt2

) is the acceleration of center of gravity of the vehicle along Y-axis.

The force due to banking angle of the road is assumed zero in this case. A detailed model

considering banking angles of the road can be found in [73]. The lateral acceleration ay is
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composed of two terms which are: the acceleration due to vehicle motion along y-axis ÿ

and the centripetal acceleration vxψ̇.

ay = ÿ + vxψ̇

So Eq. 3.4 becomes

2Fyf + 2Fyr = m(ÿ + vxψ̇) (3.5)

The vehicle side slip angle is written as β = ẏ
vx

. Eq. 3.5 now becomes

2Fyf + 2Fyr = mvx(β̇ + ψ̇) (3.6)

  

CG

yfF

yrF

zI

zM

fl

rl

Figure 3.5: Vehicle momentum

Now consider the Figure3.5 where it is assumed that a moment Mz acts on the vehicle.

This momentum is created by wind or road roughness. Also an inertial torque Izψ̈ acts

on the vehicle. The lateral forces on front and rear tires also produce moment (lfFyf and

lrFyr). Total moment at center of gravity (CG) yields:
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∑
Mcg = Izψ̈ −Mz − 2Fyf lf + 2Fyrlr = 0 (3.7)

where Iz is yaw moment of inertia. Assuming the torques due to wind Mz is zero:

Izψ̈ = 2Fylf + 2Fylr (3.8)

A further discussion on modeling of vehicle momentum forces is give by Andrzejewski [74]

Tire Model

Vehicle lateral dynamics and state estimations are highly dependent on the tire characteris-

tics. The primary forces during lateral maneuvering, acceleration, and braking are generated

by tires as a function of the driver input. The linear analysis of a tire model commonly con-

siders constant tire side force coefficients at small force output range. The linear tire model

doesn’t consider longitudinal tire forces due to the complex interactions between lateral and

longitudinal tire forces. Thus, linear tire model is suitable for analyzing a stable vehicle

behavior under the assumption of small steering and acceleration [75]. Accurate tire mod-

eling is quite complex, therefore numerous approximate methods have been developed for

tire modeling. Svedenius [76] has provided a thorough survey on type of tire models used.

A relatively simple but widely used tire model known as Pacejka [77] tire model is used

by Borrelli [78] and Falcone [79], [80] for trajectory generation of a vehicle using MPC.

The Pacejka tire model is a semi-empirical static model which involves the longitudinal and

lateral forces acting on a tire.

Fc = fc(α, s, µ, Fz)

Fl = fl(α, s, µ, Fz) (3.9)

where Fc is lateral or cornering tire force and Fl is longitudinal tire force. Each of the force

is a complex function (fc, fl) of tire slip angle α, longitudinal slip ratio s, friction µ and

normal force Fz . Slip angle α is the angle between a rolling wheel’s actual direction of
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travel and the direction towards which it is pointing (Figure 3.6). Slip ratio s is the ratio of

rotational velocity of a tire to its translational longitudinal velocity. Mathematically:

s =

{
rwω
vl
, if vl > rwω

1− vl
rwω

, if vl < rwω
(3.10)

Figure 3.6: Tire slip angle [81]

where vl is the tire longitudinal velocity, rw is the wheel radius and ω is the radial

velocity of the tire.

Our main interest is to model the lateral tire forces Fyf and Fyr. In some literature,

lateral force is considered linearly proportional to the slip angle of tire. This is due to the

experimental data obtained from the vehicle tires as shown in Figure 3.7. It can be seen

that at low slip angles (which is found to be 5 deg or less by Gillespie [82] and Stone [83]),

the lateral forces Fy vary proportionally to the slip angle α. The transitional region is the

region where maximum tire forces exist (usually 4 deg−6 deg). Typical Anti-Lock Braking

Systems (ABS) try to keep slip angle with-in this maximum force region to obtain maximum

possible braking force. In the frictional region, the tire starts skidding and it can not provide

as much lateral force. Cornering Stiffness Cf,r is defined as the ratio between Fy and α.

Subscript f and r denote front and rear tire respectively. SAE defines cornering stiffness as

modulus of the slope which means it can never be negative [84]. Cornering stiffness depends
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upon the manufacturing features of the tire e.g., radius, width, tread, inflation pressure etc.

In this research, this linear model of tire lateral dynamics will be used since it is very simple

(hence suitable for online application) as compared to complex tire models and at the same

time sufficiently accurate. Specifically:

Fyf,yr = Cf,rαf,r (3.11)

Figure 3.7: Typical slip angle vs. normal load curve obtained from experimental data [85]

From Figure 3.8, the front tire slip angle can be written as:

αf = δf − θV f (3.12)

where θV f is the angle of velocity vector with longitudinal axis of the vehicle. δf is front

tire steering angle. Similarly rear tire slip angle can be given as
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Figure 3.8: Vehicle velocity vector

αr = −θV r (3.13)

Using Equations 3.11,3.12 and 3.13 the front and rear lateral tire forces now become:

Fyf = Cf (δf − θV f )

Fyr = Cr(−θV r) (3.14)

The velocity angles of front and rear tires can be written by the following relation:

θV f = β +
lf ψ̇

vx

θV r = β − lf ψ̇

vx
(3.15)

Substituting above set of Equations in Equation 3.14 gives us the final relationship of

tire longitudinal forces:

Fyf = Cf (δf − (β +
lf ψ̇

vx
))

Fyr = Cr(−(β − lrψ̇

vx
)) (3.16)
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Next kinematic model of the vehicle motion is developed which tracks motion of the

vehicle in earth fixed coordinate system without considering the forces causing the motion.

In order to do so, geometric transformation equations in 2-D must be considered.

CG

Y

X

X

Y




xvx 

yvy 

v
 F

ro
n
t 
T

ir
e

R
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r T
ire

Figure 3.9: Kinematic motion of the vehicle

In Figure 3.9 a vehicle moves in the earth-fixed X-Y inertial frame of reference. As

the vehicle turns, the velocity vector v makes an angle β (side slip angle) with the vehicle’s

longitudinal axis. Orientation of the vehicle in X-Y frame is ψ i.e., its yaw. It is assumed

that the slip angle of both the tires is zero for simplicity. The equations of motion can be

described by the following geometric expressions:

Ẋ = v cos(ψ + β)

Ẏ = v sin(ψ + β) (3.17)

where (ψ+ β) is the angle velocity vector v makes with global X-axis. Expanding the
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above set of equations by angle sum identities gives:

Ẋ = v cos(β) cos(ψ)− v sin(β) sin(ψ)

Ẏ = v cos(β) sin(ψ) + v sin(β) cos(ψ) (3.18)

Ẋ and Ẏ are the X and Y components of vehicle’s velocity in earth-fixed frame. Such

an equation with derivative is easy to implement since it can easily be written in state-

space form 3.2. Now the vehicle’s velocity vector can be written in the terms of vehicle’s

longitudinal velocity i.e., vx = v cosβ. Equation 3.18 becomes:

Ẋ = vx cos(ψ)− vx tan(β) sin(ψ)

Ẏ = vx sin(ψ) + vx tan(β) cos(ψ) (3.19)

State vector can be written as ξ = [β ψ ψ̇ X Y ], where

• β = Vehicle side slip angle

• ψ = Vehicle yaw angle

• ψ̇ = Vehicle yaw rate

• X = x-coordinate of vehicle’s CG in inertial frame

• Y = y-coordinate of vehicle’s CG in inertial frame

and u = [δf ] where δf is front tire steering angle.

Combining Equations 3.6, 3.8 and 3.19 gives the following vector form of dynamic

model:

ξ̇ = fcont(ξ(t),u(t))

η = Cξ (3.20)
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C is filter matrix which eliminates states not required for the tracking. In this case, the

output η is set to track X and Y coordinates of the vehicle in inertial frame. C matrix

becomes:

C =

[
0 0 0 1 0
0 0 0 0 1

]

with this choice of C matrix the output states become

η = [X Y ]T

Detailed model equations can be found in Appendix B.

3.3 Model Validation

“Model verification and validation are essential parts of the model development process if

models to be accepted and used to support decision making” [86].

One of the most important question to ask after model development is that Is this model

valid? Especially when some assumptions have been made while developing the model, it

becomes necessary to validate the model against a fully non-linear vehicle model. For the

purpose of this research, CarSim (Figure 3.10) a commercial software package developed

by Mechanical Simulations Corporation has been used [2]. It can simulate fully nonlinear

and close to reality vehicle models in response to driver controls such as steering angle.

3.3.1 Validation Setup

Developed model (Equation 3.20) can be validated by applying sine, sawtooth or step input

at the steering input. However it should be noted that the steering angle is being applied only

to tires on the road and not to the steering wheel. At lower-level a steering system model can

be used to model the relationship between steering wheel turning angle and actual wheel

steer angle [87]. For validation, a setup similar to Figure 3.11 has been used. A test input

steering angle δf is applied to both developed mathematical model and the CarSim model at
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Figure 3.10: CarSim user interface

the same time. Output states from both the models are saves and plotted for further analysis

and comparison. It should be noted that this is an open-loop test and there is no feedback of

any sort to the input steering angle.

For model validation a test similar to Park[72] has been performed with a growing

sinusoidal steering signal. An arbitrary car with specifications given in Table3.1 has been

used.

3.3.2 Validation Results

The model was validated for different speeds and steering angles. Higher the speed, lower

is the steering angle. First validation test was performed at the speed of 20 km/h and the

results are presented in Figure 3.12. The bicycle model and the CarSim model side slip

angle and yaw rate angle agree with each other at smaller steering angles (< 20 degrees).

However, the front tire slip angles are different between the two models. The bicycle model
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input
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Figure 3.11: Model validation structure

Table 3.1: Parameters of vehicle used for model validation

Parameter Value
Vehicle Mass m = 1723 kg

Inertia Iz = 4175 kg.m2

Vehicle Dimensions L = 4m,W = 1.988m
Axle Length lf = 1.232m, lr = 1.468m

Cornering stiffness Cf = 66900N/rad,Cr = 62700N/rad

tire slip angle output is very smooth because it is produced from a linearized mathematical

tire model. CarSim model left and right tire slip angles disagree from each other (Figure.

3.12d) demonstrating the turning effect in real cars. This fact is further investigated in the

next subsection.

Second test was performed at 40 km/h speed with a relatively small steering angle

input (Figure 3.13a) as compared to previous test. Reason for decreasing steering angle is

that the tire slip angle should remain small in order to operate closer to linear region. It

can be seen from Figure 3.13d that the CarSim tire slip angles operate very close to that

obtained from the bicycle model. Also CarSim left and right tire slip angles closely match
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Figure 3.12: Model validation results at vx = 20km/h (a) Steering angle input applied to
both bicycle model and CarSim model (b) Lateral acceleration CarSim model, (c) Vehicle
side slip angles, (d) Front tire slip angles, (e) Vehicle yaw rate
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each other since the steering angle and consequently load transfer is small. There is small

variation in vehicle side slip angle (Figure 3.13c) and vehicle yaw rate (Figure 3.13e) due

to speed increase.

Third test was performed at constant speed of 70 km/h and decreased steering angle

(Figure 3.14a) input as compared to previous test. It was observed from these three tests that

as the speed increased, CarSim model vehicle yaw rate and side slip angle disagreed more

from the bicycle model but the CarSim tire slip angles agreed closely with the bicycle model

tire slip angle (Refer to next section for an explanation of why this happens). Overall the

model is considered usable since tire slip angles are not directly used in MPC formulation.

At higher speeds (> 40km/h) and higher steering angles both model outputs disagree with

each other so steering angle needs to be more limited.

Realistic Vehicle Model

The CarSim tire model is a nonlinear model that takes into consideration the interaction

between the longitudinal and the cornering forces. For the purpose of this research, 225/60

R18 tire model has been used which is a realistic tire model available in the CarSim libraries.

This model is defined in terms of look-up table (slip angle vs lateral tire force) and is plotted

for different values of load in Figure 3.15. It can be seen from the plot that lower vertical

load produces less lateral force. A higher value of vertical load moves the tire in higher

curve of the plot. When the vertical load is not equal to one of the values in the lookup table,

the lateral force values are calculated by interpolation of the two nearest plots. Further, it

can be seen that the tire forces are linear in 0−1 deg slip angle region. At larger slip angles,

the tire forces become increasingly non-linear functions of the slip angle.

From the validation results, it is seen that the vehicle tires show asymmetric behavior

during turning. When the vehicle is at rest, there is a constant weight on each tire. Once

the vehicle starts moving, more specifically turns, the weight of the vehicle on each of the

individual tires changes. Figure 3.16 shows the tire lateral and longitudinal forces when the
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Figure 3.13: Model validation results at vx = 40km/h (a) Steering angle input applied to
both bicycle model and CarSim model (b) Lateral acceleration CarSim model, (c) Vehicle
side slip angles, (d) Front tire slip angles, (e) Vehicle yaw rate
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Figure 3.14: Model validation results at vx = 70km/h (a) Steering angle input applied to
both bicycle model and CarSim model (b) Lateral acceleration CarSim model, (c) Vehicle
side slip angles, (d) Front tire slip angles, (e) Vehicle yaw rate
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Figure 3.16: Notice that while turning left, right tire lateral force is much larger than the left
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vehicle is turning. Turning to the left causes more right tire forces and turning to the right

causes more left tire forces. Reason for this asymmetric tire lateral force in the CarSim

model is the Weight Transfer (explained in next paragraph). It is worth noting here that

the weight of the car does not change but transfers from one tire to another. According to

Newton’s first law:

“Every body persists in its state of being at rest or of moving uniformly straight forward,

except insofar as it is compelled to change its state by force impressed” [88]

Tendency of a vehicle to move in a straight line is the inertia of the vehicle, it is due to this

property of the vehicle’s body that it tries to maintain its linear motion. While turning, road

exerts a sideway force on the vehicle to divert it from its linear path and turn. The force that

is exerted on the vehicle is centripetal force or lateral G force (as in Figure 3.17) it is always

directed orthogonal to the velocity of the body, toward the instantaneous center of curvature

of the path [89].

Figure 3.17: Sideways weight transfer [90]

In the Figure 3.17, cornering or lateral G-force acts on the center of gravity. h is the

height of CG from roll center and a is the shortest distance between the roll center and the

ire. The upward and downward weight transfer force in case of a right turn can be found as:
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Left tire weight transfer downward force =

G− Force × V ehicle mass× h

a
(3.21)

Right tire weight transfer upward force =

G− Force × V ehicle mass× h

a
(3.22)

The amount of weight transfer depends upon the vehicle’s mass, speed, steering angle,

center of gravity and the distance of center of gravity from the left and right tires (a in

Figure 3.17) [91]. More mass results in more weight transfer so does a higher center of

gravity (h in Figure 3.17). This is the reason why SUV’s (vehicles having higher CG) are

more prone to roll over. Increasing the track width (a+a) will decrease the weight transfer.

That is why racing cars are wide and low. Reducing weight transfer provides more grip

and sharp cornering. It is worth noting that the vehicle’s springs, dampers and suspension

have no effect on amount of steady state weight transfer but they effect the weight transition

dynamics (overshoot, transition time, damping etc).

To elaborate why the CarSim left and right tire slip angles disagree at 20 km/h test but

agree at 70 km test, a simple test was performed to approximate sideways weight transfer

at these speeds. In the first test a step steering input of 22 deg magnitude (Figure 3.18a)

was applied to the CarSim vehicle moving at 20 km/h and weight transfer was observed.

Average weight transfer in this case was found to be around 30N (Refer to Figure 3.18d,

3.18e).

For second test a step steering input of 28 deg (3.19a) was applied to CarSim vehicle

moving at a faster speed of 70 km/h. An average weight transfer of 450N was observed

(Refer to Figure 3.19d, 3.19e). With these weight transfer results at different speeds Figure

3.12d and Figure 3.14d are reconsidered. In 20 km/h test (Figure 3.12) weight transfer

was less but the left and right tire slip angles were found to be off whereas at 70 km/h

test where weight transfer was large, the left and right tires slip angles agreed with each

other. This interesting effect can be explained by looking at tire model (Figure 3.15). At
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Figure 3.18: CarSim weight transfer test at 20 km/h: (a) Steering angle, (b) Front tires
weight, (c) Rear tires weight, (d) Front weight transfer, (e) Rear wright transfer
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20 km/h speed when the vehicle turns left, the right tire should provide more lateral force

than right tire which can be provided either by increasing the weight (normal load) on tire or

by increasing the slip angle. Since the weight transfer is small so the slip angle is increased

to provide more lateral force than the left tire.

On the other hand during 70 km/h validation test right tire has a lot of added weight

due to higher weight (resulting from large weight transfer) therefore it can provide required

lateral force without increasing slip angle. i.e., the tire forces move in an upper region of

the curve with higher lateral forces corresponding to high weight.

3.4 Trajectory Tracking using Model Predictive Control

The trajectory tracking architecture (Figure 3.20) used for control of a ground vehicle has

long been used in the aerospace systems where it was known as Guidance and Navigation

Control (GNC) system. Lu [92] and Smith [93] [94] used this architecture for simulations

of Mars atmosphere entry and automatic landing of a spacecraft.

In Figure 3.20 top layer is the offline trajectory generation layer. The trajectory is gen-

erated in offline manner only once before the start of the mission. Usually this trajectory is

planned by joining the start point and the end point (or way points) of desired travel with a

straight line. However, other approaches can be used as well for offline trajectory genera-

tion. For example a driver wants to reach certain destination and enters the coordinates of

the destination in his GPS navigation unit. The GPS navigation unit has many variables to

customize such as: avoid toll or avoid congested areas which must be decided by the driver

before travel so that the GPS navigation unit plans the trajectory accordingly.

Second layer in this architecture is the online trajectory generation layer which replans

the trajectory during runtime. In case of a vehicle traveling on the road, it can be replanned

based on happening of certain events such as: an obstacle is detected in path of the travel

or a turn is missed by the driver. This is the layer where most intelligence and computation
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Figure 3.19: CarSim weight transfer test at 70 km/h: (a) Steering angle, (b) Front tires
weight, (c) Rear tires weight, (d) Front weight transfer, (e) Rear wright transfer
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Figure 3.20: Vehicle Guidance System Architecture

is required in order to steer the vehicle efficiently through driving space. Model predictive

controller trajectory controller works at this intelligent layer.

Third layer is the low level control layer which contains the basic control algorithms

like PID and LQR to perform low level control on actuators (brakes and throttle etc) based

on command from higher level control. Also the low level control uses different level of

information from the high level control. High level controller can use the information avail-

able form satellites, cameras etc. Whereas the low level control uses the information from

friction, throttle angle sensor etc.

The high level controller operates at much lesser frequency than the low level control.

Typically the trajectory replanning module operates at in the range of 1Hz-50Hz and the

low level controller operates in the range of 100Hz-1KHz depending upon the dynamics of

the vehicle to be controlled.

The trajectory tracking problem is formulated as constrained optimization problem

which minimizes a weighted sum of deviation from the desired trajectory, the state values

and the control values. Consider the model developed in Equation 3.20, for the sake of MPC
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implementation this model need to be discretized first.

3.4.1 Discretization of Continuous-Time System

There are many methods for model discretization like Euler’s forward differentiation method,

Euler’s backward differentiation method, Tustin’s method, Bilinear transformation and Runge-

Kutta method [95]. Higher order methods are much more accurate than the first order meth-

ods like Euler’s method (Euler’s method is explicit method). With Euler’s method there

is always an associated integration error which is proportional to the sampling interval Ts.

However, a simple discretized model is key requirement for online-MPC implementation

because for each controller step the model needs to be evaluated for planned trajectory tens

of times. Higher order methods are more accurate but complicate the dynamics model un-

necessarily [96]. So in this work the Euler’s forward method is used for the simplicity of

calculations. Continuous-time dynamics model is given by:

ξ̇(t) = fcont(ξ(t), u(t)) (3.23)

where subscript cont denotes that ξ̇ is a continuous time function of the previous states.

This function is discretized using the Euler’s forward integration method for discretization

interval Ts and time step t = k or tk. Replacing ξ̇(t) with its discrete-time equivalent

ξ̇(tk) ≈ ξ(tk+1)−ξ(tk)
Ts

ξ(tk+1)− ξ(tk)
Ts

≈ fcont(ξ(t), u(t))

⇓

ξ(tk+1) ≈ ξ(tk) + Tsfcont(ξtkk, utk)

⇓

ξ(tk+1) ≈ fdisc(ξtk , utk) (3.24)

for simplicity of notation tk will be denoted by k. Detailed discretized model can be

found in Appendix B. Value of the sampling interval Ts can be determined by the bandwidth
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of the vehicle to be used or by an experimental exercise. The latter strategy is used to

determine the sampling interval in this case. A constant steer angle of 0.1 rad is applied

to the steering input and results are plotted for the different sampling interval values and

compared with the corresponding output from a continuous time model in Simulink A.

Figure 3.21a and Figure 3.21b are plots of continuous time model with 0.1 rad steering

angle input. These plots serve as a reference while discretization of the model. A discretized

model output should ideally be closer to the continuous time model plots.

−10 0 10 20 30
0

10

20

30

40

X (m)

Y
 (

m
)

(a)

0 1 2 3 4 5
0

0.02

0.04

0.06

Time (sec)

B
et

a 
(r

ad
)

(b)

0 50 100
−80

−60

−40

−20

0

X (m)

Y
 (

m
)

(c)

0 1 2 3 4 5
−1

−0.5

0

0.5

1
x 10

10

Time (sec)

B
et

a 
(r

ad
)

(d)

Figure 3.21: Stability Anaylsis: (a)Reference Trajectory obtained from continuous time
model simulated in Simulink, (b) Beta (Vehicle side slip angle) obtained from continuous
time model simulated in Simulink, (c) Vehicle trajectory at Ts = 0.1s, (d) Vehicle side slip
angle Ts = 0.1s
, Note: Figures (c) and (d) demonstrate unstable results due to too slow sampling frequency.
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Dynamic model is discretized by making some sensible choices of sampling frequency

i.e., (1Hz -100Hz). We start from a 1Hz sampling frequency. Figures 3.21c and 3.21d show

that for sampling frequency of 1Hz, the trajectory is randomly generated and the system is

unstable. So the sampling frequency needs to be faster than 1Hz. Figures 3.22a and 3.22b

are the model’s outputs at 33.33Hz sampling frequency and the output is much close to

the continuous time model frequency. Although there is some overshoot in the vehicle’s

side slip angle at 0.1s. This overshoot is decreased when the model is simulated at 100Hz

sampling frequency, as seen in Figures 3.22c, 3.22d, and the discrete-time model outputs

closely matches the continuous time model output. Therefore the ceiling of safe operating

range of model is slightly above 33Hz. The sampling frequency can be lowered but at the

cost of more integration error.

3.4.2 Cost Function Formulation

For the trajectory generation with our required specifications we define the following generic

cost function:

J = φ(η̃N ) +
N−1∑

k=0

L(ξk, η̃k, uk) (3.25)

where φ(ηN ) = 1
2η

T
NQ0ηN is the terminal cost function and penalizes the trajectory

deviation at the last time step (k = N) of look-ahead horizon and η̃k = ηd,k − ηk. In this

equation ηd,k is the desired trajectory. L(ξk, ηk, uk) is the running cost and is defined as:

L(ξk, η̃k, uk) =
1

2
(η̃TkQη̃k + ξTk Sξk + uTkRuk) (3.26)

The running cost penalizes the trajectory deviation at each time step (k = (1, ..., N − 1))

during the entire horizon. The cost function (Equation 3.25) will be augmented later to suit

our need. This is an advantage over traditional control techniques like LQR and PID which

allows us to customize the controller cost according to our requirements. The matrices Q0,

Q, R and S are the penalty weighing matrices. The matrices Q0(2 × 2) and Q(2 × 2)
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Figure 3.22: Stability Anaylsis: (a)Vehicle trajectory at Ts = 0.03s, (b) Vehicle side slip
angle Ts = 0.03s, (c) Vehicle trajectory at Ts = 0.01s, (d) Vehicle side slip angle Ts =
0.01s
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penalize the terminal trajectory deviation and the running trajectory deviation respectively.

The matrices S(5 × 5) and R(1 × 1) penalize the large state values and the large input

values. All the penalty weighing matrices are diagonal matrices.

For obstacle avoidance a point-wise repulsive potential function Pk is used as shown

in Figure. 3.23
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Figure 3.23: Point-wise repulsive function Pk

Pk =
1

(x− x0)2 + (y − y0)2 + ε
(3.27)

where (x, y) is the current location of the vehicle and (x0, y0) is the location of the

obstacle to be avoided. ε is a small positive number for non singularity. Fahimi [57] and Xi

[97] used such potential function for obstacle avoidance. The advantage with such simple

function is that it is easily differentiable and does not lead to complex differential terms in

the optimization part. It is notable here that the cost function in Figure. 3.23 can behave as

a circular object function depending on where the trajectory tracking and object avoidance
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weight balance each other. For example the function of Equation 3.27 when cut from the

base appears as in Figure 3.24. Radius of the circle in this figure can be increased by

increasing the weight of potential function as compared to the trajectory tracking weights.

With this choice of potential function, running cost becomes:

L(ξk, η̃k, uk) =
1

2
(η̃TkQη̃k + ξTk Sξk + uTkRuk) + Pk + constraint (3.28)

Figure 3.24: Top view of repulsive potential function Pk cut from bottom

The cost function 3.28 can be generalized to include as many obstacles as desired. Any

obstacle shape can be generalized by this simple point obstacle method Pk if the nearest

point on that obstacle is determinable. For example if a linear object is to be avoided,

method in Section 3.4.3 can be used to find the nearest point on the obstacle’s surface and

then treat this point as Pk. Similar is the case with the circular obstacles. With multiple

objects 3.28 becomes:
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Figure 3.25: Time defined reference trajectory tracking. Error accumulates once the vehicle
lags time step k

L(ξk, η̃k, uk) =
1

2
(η̃TkQη̃k + ξTk Sξk + uTkRuk) +

n∑

i=0

Pki + constraint (3.29)

where i = 0, ..., n is the total number of the obstacles.

3.4.3 Reference Trajectory Criteria

Most important parameter of the cost function Equation 3.26 is the reference trajectory error

η̃k which needs to be minimized. However, an interesting issue rises when the controller

needs to know the desired trajectory point ηd,k to calculate the error value η̃k = ηd,k − ηk.

Simplest solution is to define the desired trajectory as fixed function of the time.

Consider a vehicle starts from start point and proceeds towards goal point. Initially the

vehicle trajectory ηk and the reference trajectory ηd,k is synchronized because the vehicle

is moving in a straight line (Figure 3.25a). But once the object is detected, the vehicle

steers to avoid the obstacle and the vehicle CG fixed trajectory coordinate ηk lags but the

reference trajectory ηd,k keeps on moving along the straight line thus accumulating the error

(Figure 3.25b). This error accumulation can be avoided by using some alternate method of
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the error calculation. Two possible method are considered in this thesis and each explained

as following:

Method 1

One way is to find the nearest point on the reference line by using some trigonometric

identities and treat this point as the desired trajectory point for current controller step. Such a

method has been used by Eklund [56] to repel an aircraft from closest point on the boundary

in order to keep it inside a predefined fixed boundary. However during this research work,

a problem was found with this method. It can work well to repel vehicle from a boundary

but if used for trajectory following this method can cause the vehicle to retreat once a big

obstacle is detected. This method does not incorporate the goal point information. When

retreating, the vehicle will follow the same line but will go backwards towards starting point.

This effect will be shown later in the simulation results.
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Figure 3.26: Method 1 for trajectory error calculation
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Method 2

To overcome the problem with Method 1 another method developed by Yoon [98] has been

used. At each time step ηd,k is calculate as a point which lies on straight lines from vehicle

CG to the reference line and selecting the one which is closer to the goal point. In Figure

3.27 when the vehicle is at point ηk,1, two points are found on the reference line correspond-

ing to this point ηd,k,1,X and ηd,k,1,Y which are calculated by a horizontal and a vertical line

from the vehicle CG to the reference line. But only point ηk,1,X is considered to be the

desired point ηd,k,1 because it is closer to the goal point. Thus the reference trajectory cri-

terion has considered the approach to the goal point rather than just following the trajectory

in any direction. Similarly when the vehicle is at point ηk,2, only ηk,2,Y is considered the

desired point ηd,k,2 due to its proximity to the goal point.
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Figure 3.27: Method 2 for trajectory error calculation

3.5 Gradient Descent Algorithms

Gradient descent algorithm has played an important role in the progress in control sci-

ence [99]. The actual gradient based optimization method dates back to as early as 1969
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when they appear in Bryson’s book [100]. Later Mehra [101] augmented the gradient based

method with constraints. Gradient descent is used to minimize NMPC problem’s Hamil-

tonian [15]. It is also known as Steepest descend and Gradient method. Plant input is the

decision variable of this optimization problem. This method is valid only if the gradients

can be calculated (i.e., J is differentiable with respect to every decision variable).

d

duk
J, k = 1, ...,M (3.30)

where M is the total number of the decision variables. To illustrate the concept further,

consider a function f(x) as shown in Figure 3.28. It is desired to find the minimum of this

function. Optimization process is started by taking an initial guess on the function. Then

slope of the function is calculated ∂f(x)
∂x and a step ∆ in negative direction of the slope is

taken and the value of f(x) is calculated for each point. The process is repeated until the

variation in f(x) is zero, and it is said that local minimum of function is reached at point

x = m.

Equation(3.13) is incorporated into the cost function (Equation(3.12) by introducing

a sequence of Lagrange multiplier vectors λk(k = 1, ..., N) . The modified cost function

becomes:

J = φ(η̃N ) +
N−1∑

k=0

L(ξk, η̃k, uk) + λTk+1[fdisc(ξk, uk)− ξk+1] (3.31)

Since [u∗k]
N−1
k=0 needs to be determined such that the cost function J is minimized.

Therefore dJ needs to be calculated as:

dJ = [
∂φ

∂ξN
− λTN ]dξN +

∂H0

∂ξ0
dξ0 +

∂Hk

∂η̃0
dη̃0 +

∂Hk

∂u0
du0

+
N−1∑

k=0

[(
∂Hk

∂ξ
− λTk )dξk +

∂Hk

∂η̃k
dη̃k +

∂Hk

∂uk
duk] (3.32)

Since ξk+1 − fdisc(ξk, uk) = 0 the term λTk+1[fdisc(ξk, uk)− ξk+1] is also zero. λTk+1

can be chosen arbitrarily since it is being multiplied by a zero term. For this research, a
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Figure 3.28: Gradient descent algorithm

costate equation similar to Fahimi [57] has been used but with corrections. Equation 23 in

his paper was found to have error and the subtraction sign in second part of the equation

should be replaced by equality. The author of the paper was contacted verified the error in

publication. Costate values selected are:

λTN =
∂φ

∂ξN
= −ξ̃TNQ0C (3.33)

λTk =
∂Hk

∂ξk
+
∂Hk

∂η̃k

∂η̃k
∂ξk

(3.34)

= xTk S + λTk+1 + λTk+1

∂fdisc,k
∂ξk

− η̃TQC +
∂Pk
∂ξk

(3.35)

With these choices Eq.(3.32) is simplified to following form:

dJ =
N−1∑

k=0

∂Hk

∂uk
duk + λT0 dξ0 (3.36)
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where

∂Hk

∂uk
= ukR+ λTk+1

∂fdisc,k
∂uk

(3.37)

Algorithm

The current state at which optimization is being solved, ξ0 remains constant. So dξ0 = 0,

Equation 3.36 becomes dJ =
∑N−1

k=0
∂Hk
∂uk

duk. Therefore the partial derivative ∂Hk
∂uk

is es-

sentially the gradient of cost function J with respect to uk assuming that the state ξ0 remains

constant during this interval. At local minimum of J partial derivative (∂Hk
∂uk

) ≈ 0 which

serves as a condition for terminating the optimization loop.

Following optimization problem is solved at each sampling instant [55]:

• At initial state ξ0, assume a candidate input [u∗k]
N−1
k=0 (k = 0, ...., N − 1).

• Calculate co-states backward in time (k = N, ...., 1) using Eq.(3.35)

• Obtain gradients from Equation(3.37)

• Update candidate input [u∗k]
N−1
k=0 by taking a small step downhill the cost function (in

negative direction of gradient) i.e., [u∗k]
N−1
k=0 = [u∗k]

N−1
k=0 − [∆∂H

∂u ]N−1k=0

• Repeat above four steps until dJ u 0.

• Apply first element of optimized input vector [u∗k]
N−1
k=0 to the plant under control.

• Repeat the whole problem for next sampling instant.

Only the first element in optimized input vector [u∗k]
N−1
k=0 is applied because of the difference

in identified prediction model and system to be controlled. The actual closed-loop input

and state trajectories differ from the predicted open-loop trajectories, even if no model plant
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mismatch and no disturbances are present. This prediction error can accumulate over time

if only identified model is used for the predictions over the entire horizon N .

3.6 Properties of Gradient Descent Algorithms

Initial Guess For good initial guess of [u∗k]
N−1
k=0 , physical insight about the system should

be utilized. One way is to use initial state of the system ξ0 to find LQR control input vector

and then initialize [u∗k] with this vector. In this research, another method has been used.

At the first sampling instant [u∗k]
N−1
k=0 is initialized to 0(1 × N). Then at each subsequent

sampling instant the input vector is initialized by [u∗k]
N−1
k=0 = (u2, ..., uN , uN ). Doing so the

iteration count is reduced significantly [55].

Memory Requirements At each iteration the candidate control sequence [u∗k]
N−1
k=0 , cor-

responding state vector [ξ∗]Nk=1 and cost function J history must be stored. However if the

storage space is limited, [ξ∗]Nk=1 can be calculated again when required which increases the

computation cost. But it can increase the accuracy of algorithm because we no longer need

to assume that initial condition ξ0 should remain constant [15].

Convergence This optimization is not novel but is computationally feasible. The algo-

rithm can trap into local minima instead of the global minima thus giving a suboptimal

solution. But a quick and sub-optimal solution is preferred for the real-time systems as a

delayed solution is wrong solution no matter how accurate it is. Also, as a minimum is

approached, the algorithm converges slowly because step size ∆ decreases.

Computation Requirement At each iteration S × N state equations need to be solved

to compute the planned trajectory. Where S is the number of states and N is the predic-

tion horizon. But gradient calculation takes most of the computation time. For each input

perturbation we need (N+1) simulation steps times prediction horizon nN .
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Stopping Criteria The iterations can be stopped when the stopping criteria ||∂H∂u || ≤ ε1

or |J i−1 − J i| ≤ ε2 is satisfied. ε1 and ε2 are small positive constant values and i is the

iteration number. In this research only second criterion is used.

Effect of tuning R Tuning of the input weighing matrix R has noticeable effect on fine

tuning of the optimization. With smaller value of R, first elements of candidate control

vector are found more accurately which is desirable since only the first element is applied

to the system to be controlled. This issue has been further explored in detail by Sutton

[102].

Constraints Handling A simple method of implementing constraints is by projecting the

candidate input [u∗k]
N−1
k=0 on the constraint set. If a particular value of [u∗k]

N−1
k=0 violates

the constraint, it becomes the value at which the constraint was violated. An accurate but

slightly more computationally expensive way of constraint handling is by using the penalty

functions. This method has been used for constraining the steering angle in this research.



Chapter 4

Results

This chapter presents the results obtained from simulations performed on Carsim model.

Pros and cons of multiple reference trajectory criteria (outlined in Sections 3.4.3, 3.4.3) are

demonstrated with simulations performed on the fully nonlinear CarSim model. Then some

light is shed on the real-time suitability of this implementation. Various types of objects

(point, circular and linear) are simulated in different scenarios. Finally, tests are presented

to demonstrate how far controller can tolerate the variations in vehicle’s parameters without

the need of being re-tuned.

4.1 Simulation Environment

MATLAB was selected for NMPC implementation because the matrix operations are easy

to implement. Also, CarSim math model of the whole vehicle system (aerodynamics, driver,

ground) can be extended to Simulink/MATLAB in order to add advanced controllers. Car-

Sim vehicle model is exported as an S-function into the Simulink. NMPC controller is coded

as MATLAB script file and imported to Simulink by using MATLAB Function block. Thus

the Simulink acts as a bridge between the MATLAB and the CarSim. It is worth noting

here that CarSim must be running during the simulations as the S-function embedded inside

Simulink uses CarSim math model at the runtime and does not contain a math model in it-

65
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Simulink

MATLAB

CarSim

Figure 4.1: Simulation environment

self. Sampling time of the NMPC controller can be set by changing the sampling time value

in the Function Block parameter and the external ADC/DAC are not required. Simulation

is initiated by the Start Simulation button in the Simulink control buttons which calls both

the MATLAB and the CarSim S-Fuction block (Figure 4.1).

4.2 Comparison of Multiple Reference Trajectory Criteria

The multiple reference trajectory following criterion explained in the Section 3.4.3 are ex-

plored here with simulations performed using the point and linear obstacles. Parameter of

the vehicle are same as those given in the Table 3.1. The vehicle starts from South West
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corner and goal point is located on the North East corner of the simulation area. Reference

trajectory is a straight line joining the start point to the goal point.

4.2.1 Scenario I: Point Obstacle

In Scenario I, a point obstacle was placed on the planned path of the vehicle and controller

was tuned according to the parameters in Table 4.1. First simulation was performed with

Method 1 trajectory following criterion. Vehicle clearly avoided the obstacle by steering

away from the obstacle and reached goal point successfully (Figure 4.2).

Table 4.1: Parameters used in Scenario I

Parameter Value
Horizon Length N = 20steps
Sampling Time Ts = 0.05s

Steering Angle Limit −20 deg ≤ u ≤ 20 deg
Speed vx = 5.5m/s

Simulation Time 20s
Q0 [0.1 0; 0 0.1]
Q [0.1 0; 0 0.1]
R [0.01]
S 0(5× 5)

Second simulation was performed using the same controller tuning matrices but chang-

ing the trajectory following criterion to Method 2. Other simulation parameters were the

same. Resulting simulation results are give in the Figure 4.3. Vehicle successfully avoided

the obstacle by steering away from the planned path. There was a slight difference in how

the vehicle approached the reference trajectory after avoiding the obstacle but the vehicle

heading, side slip and the steering angle remained the same in both cases.
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Figure 4.2: Scenario I: Point obstacle avoidance using Method 1 trajectory following crite-
rion. (a) Trajectory (b) Steering input angle, (c) Vehicle side slip angle, (d) Vehicle heading,
(e) Computation time per controller step
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Figure 4.3: Scenario I: Point obstacle avoidance using Method 2 trajectory following crite-
rion. (a) Trajectory, (b) Steering input angle, (c) Vehicle side slip angle, (d) Vehicle heading,
(e) Computation time per controller step
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4.2.2 Scenario II: Linear Obstacle

In Scenario II a linear obstacle was placed on path of the vehicle and the controller was tuned

according to the parameters in Table 4.2. First simulation was performed with Method 1

trajectory following criterion. Purpose of placing a linear object was so that the vehicle

sees a larger obstacle as compared to a point obstacle. Also, the steering angle constraint

was relaxed to 10 degrees. From Figure 4.4 it is observed that vehicle retreats because the

trajectory following criterion does not have information about the goal point. Objective of

the vehicle was to follow the linear trajectory only and not to reach the goal point. The

obstacle was so large that NMPC algorithm prefered to follow the trajectory in opposite

direction.

Table 4.2: Parameters used in Scenario II

Parameter Value
Horizon Length N = 20steps
Sampling Time Ts = 0.05s

Steering Angle Limit −20 deg ≤ u ≤ 20 deg
Speed vx = 5.5m/s

Simulation Time 20s
Q0 [0.1 0; 0 0.1]
Q [0.1 0; 0 0.1]
R [0.01]
S 0(5× 5)

Retreating situation was avoided by using Method 2. With the same controller tuning

matrices, the car did not retreat but rather steered away from the object. Results for this

simulation are shown in Figure 4.5
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Figure 4.4: Scenario II: Linear obstacle avoidance using Method 1 trajectory following
criterion and vehicle retreat (a) Trajectory, (b) Steering input angle, (c) Vehicle side slip
angle, (d) Vehicle heading, (e) Computation time per controller step
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4.2.3 Discussion

Both methods of the trajectory following work well for small obstacles but once a large

obstacle is detected, vehicle can retreat in case of Method I. Method 2 works for every

scenario regardless of the size of obstacle.

4.3 Obstacle Avoidance Simulations

Some advanced tests were conducted to demonstrate NMPC controller’s ability to steer

vehicle in unknown environment with obstacles. This section focuses on the obstacle avoid-

ance simulations with combination of point and linear objects. Simulations results are pre-

sented considering the linear obstacle as the curb of the road and point object as an obstacle

on the path. All simulations were performed on actual CarSim vehicle model.

4.3.1 Scenario I: Horizontal Road

In Scenario I, the vehicle was simulated on a realistic horizontal road with two lanes. Width

of the road was set to 7.0m (7.23m is the average width of two lane roads in North America).

Length of the road was 250m. It should be noted that as opposed to previous tests, the

trajectory plot for this section are not proportional. y-coordinates of the vehicle trajectory

are exaggerated as compared to x-coordinates of the vehicle trajectory. The tests were

performed at three different speeds and two different horizon lengths. Tuning matrices and

other parameters were same for all Scenario I simulations and are given in Table 4.3

The vehicle started at far West corner of the road and on the right lane. Two linear

obstacle were placed at the boundaries of the road to represent the curb of the road. Target

of the vehicle was to reach the East end of the road on the left lane while avoiding hitting the

obstacles and the curb of the road. Lane change was planned to take place atX = 150m. Of

course vehicle was allowed to change lane before X = 150 mark if there was any obstacle

on right lane but had to return to original lane immediately after. Location of the obstacle
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Figure 4.5: Scenario II: Linear obstacle avoidance using Method 2 trajectory following
criterion. (a) Trajectory, (b) Steering input angle, (c) Vehicle side slip angle, (d) Vehicle
heading, (e) Computation time per controller step
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Table 4.3: Parameters used in Scenario I

Parameter Value
Sampling Time Ts = 0.05s

Q0 [0.1 0; 0 0.1]
Q [0.1 0; 0 0.1]
R [0.5]
S 0(5× 5)

was (0, 50) which was unknown to the vehicle unless it came within look-ahead horizon of

the vehicle.

20km test

First test was performed at slower speed of 20km/h. Length of simulation was set to 40s so

that vehicle could cover 250m length of the road. For this speed and sampling time, look-

ahead horizon distance at N = 20 and N = 40 was 5.5m and 11m respectively. Steering

angle was constrained to ±20 deg as the mathematical model has been demonstrated to

work for this steering angle and speed in validation tests.

From Figure 4.6a it is evident that the vehicle successfully avoided the obstacle by

steering to the left and then returned to its right lane. With longer lookahead horizon (N =

40), the vehicle did not turn to the left immediately but rather turned to the right first. This

effect is called anticipated move. It might look like there is more error for this maneuver

using longer horizon, but the net error is lesser as compared to shorter horizon test. This

effect will be demonstrated further in Scenario II. Such effect was not seen with shorter

horizon length of N = 20 because when the vehicle detected object, it did not have enough

time to make anticipated move. Figure 4.6e shows how computation cost increases with

larger look-ahead horizon. Thus look-ahead horizon (N ) is a trade-off between tracking

performance and computation effort. Larger the horizon, better the tracking performance
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Figure 4.6: Scenario I: Horizontal Road test results, (a) Vehicle Trajectory, (b) Steering
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and increased computation cost. Then the vehicle changed the lane successfully at X =

150m and merged into the left lane. Tracking performance for both the horizon lengths was

almost equal in this case.

40km test

Second test was performed at the speed of 40km/h. Length of the simulation was cut

shorter to 20s so that vehicle could cover entire 250m length of the road. For this speed

and sampling time, look-ahead horizon distance at N = 20 and N = 40 was 11m and

22m respectively. Steering angle constraint was tightened to ±10 deg for these simulations

due to higher speed. Again vehicle successfully avoids obstacle and later turns to the left

for lane change. More anticipated turning is seen in the case of N = 40 horizon length.

Apart from computation time, longer horizon simulations show superior performance as

compared to shorter horizon simulations.

60km test

Third test was performed at speed of 60km/h. Length of simulation was 13s so that the

vehicle could cover 250m length of the road. For this speed and sampling time, look-ahead

horizon distance at N = 20 and N = 40 was 16.6m and 33.2m respectively. Steering

angle constraint was further tightened to ±5 deg for these simulations due to higher speed.

It was observed that at horizon length N = 20, the vehicle moved too close to the

boundary with only 1m distance form curb of the road in order to avoid the obstacle. Where

as at N = 40 the vehicle avoided the obstacle clearly while keeping a safe distance form

curb. More anticipated turning was seen in this case due to higher speed and tighter steering

constraints. The MPC controller took advantage of extra planning time available to further

optimize the move and plan the path intelligently.
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Figure 4.7: Scenario I: Horizontal Road test results, 40km test results, (a) Vehicle Trajec-
tory, (b) Steering angle input, (c) Vehicle side slip angle, (d) Vehicle heading, (e) Computa-
tion time per controller step
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Figure 4.8: Scenario I: Horizontal Road test results, 60km test results, (a) Vehicle Trajec-
tory, (b) Steering angle input, (c) Vehicle side slip angle, (d) Vehicle heading, (e) Computa-
tion time per controller step
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4.3.2 Scenario II: Anticipated Move

To demonstrate the effect of anticipated move, some additional tests were performed. In

Scenario II, the vehicle started at a speed of 40km/h headed towards the East, a 60 deg

left turn was planned at X = 60m and a 90 deg right turn at X = 95m. Different horizon

lengths ranging from N = 20 to N = 100 were selected to observe their effect on the

tracking performance of the controller. Steering constraint was ±20 deg and other tuning

parameters of the controller were the same as those in the Table 4.3. Figure 4.9a shows

the planned and the actual trajectory for the Scenario II with all horizon lengths i.e., N =

20, 40, 60, 80, 100. 60 deg and 90 deg turns are zoomed in Figure 4.9b and Figure 4.9c

respectively to clearly demonstrate the fine details in the turning maneuver.

Discussion

It is seen from Figure 4.9b and Figure 4.9c that the instantaneous tracking error before

the turn is greater with longer horizon lengths than with turns at shorter horizon lengths.

At N = 20 the vehicle did not make anticipative move and had to overshoot from the

designed path. Whereas at horizon lengths greater than 20 vehicle made anticipated moves

before the turn. This is because the MPC minimizes tracking error over the entire horizon

resulting in overall lower cost for the test. A bar graph with the aggregate cost for whole

simulation resulting form each horizon selection is shown in Figure 4.10. It was seen that

as the look-ahead horizon increased from N = 20 to N = 100, simulation cost decreased

from 291.80 to 67.21 (77 % decrease) and average computation time increased from 0.015s

to 0.274s (1797 % increase). This test results prove how N is a trade-off between tracking

performance and computation cost.
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N=20 N=40 N=60 N=80 N=100

Simulation Cost 291.89 206.63 119.41 91.74 67.21

Max. comp. time per
controller step

76.8 362.1 561.9 794.4 1018.5

Avg. comp. time per
controller step

15.3 42 96.1 182.3 274.9
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Figure 4.10: Scenario II: Anticipated move, Bar graph comparing total cost for simulation,
average computation time (in ms) per controller step and maximum computation time (in
ms) per controller step
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4.4 Controller Robustness Testing

It’s good practice to test controller’s sensitivity to prediction errors and its robustness to

changes in operating conditions. Robust feasibility is a concern for MPC applications be-

cause it operates the system closer to the constraints boundary. While it is a fact that max-

imum performance is achieved from operation near the constraints boundary, small distur-

bances and prediction errors (due to model mismatch) could push the vehicle out of control.

In this section some test results are presented which demonstrate the current controller’s

ability to withstand changes in vehicle’s parameters without the need to be re-tuned. Sim-

ulations were performed with same controller tuning values but changing vehicle’s mass,

center of gravity, yaw inertia and track width. Vehicle was made to move on a track with

varying width and two turns, two obstacles and linear obstacles as curb of the road.

4.4.1 Center of Gravity Variation

As explained in Section 3.3.2, weight transfer depends upon the height of the vehicle’s

center of gravity (CG). Higher the CG, more the weight transfer resulting in loss of traction.

So some simulations were performed by changing the vehicle’s CG value from 460mm to

260mm,660mm and 760mm. It is seen from the Figure 4.11 that vehicle with CG = 760

rolled over at location (50, 30). This is due to the fact that higher CG makes vehicle more

prone to roll over due to higher weight transfer. Vehicles with all other CG heights reached

endpoint safely while avoiding the objects and curb of the road. However, to deduce which

test was better, the simulation cost was calculated and plotted as in Figure 4.12. It is seen

that as the CG height increases, simulation cost increases. No cost exists at CG = 760mm

because the simulation stopped prematurely due to vehicle roll over. Figure 4.13 is a CarSim

time lapse screen shot of the vehicle’s roll over with higher CG height.
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Figure 4.11: Vehicle trajectories with different center of gravity (CG) heights. Notice the
vehicle roll over with CG = 760mm
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Figure 4.12: Cost of simulation with different CG heights. Notice the vehicle roll over with
CG = 760mm so no cost value calculated for this simulation

Figure 4.13: CarSim vehicle roll over scene with CG = 760mm
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Figure 4.14: Vehicle trajectories with different mass values of the vehicle

4.4.2 Mass Variation

For this test, different values of vehicle mass were simulated to analyze controller’s perfor-

mance with vehicle’s mass variations. Vehicle was able to steer away from obstacles and

curb of the road with all the mass values used (as shown in Figure 4.14). But when vehicle

was lighter (m = 1223kg) it narrowly escaped the curb of the road at X = 80m. Bar

graph 4.15 shows that total cost of the simulation decreased with increasing weight. This is

because tires produce more lateral force which is helpful for steering the vehicle quickly.
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Figure 4.15: Cost of the simulation with different mass values of the vehicle

4.4.3 Track Width Variation

For third test, the vehicle track width (distance between left and right wheels) was varied

and results are plotted in Figure 4.16. The vehicle with narrow track width (1056mm)

rolled over due to large weight transfer during cornering maneuver. Figure 4.17 shows the

cost of simulation for different track widths.

4.4.4 Yaw Inertial Variation

Yaw inertia has a great effect on turning of the vehicle. Higher yaw inertia causes difficulty

in sharp cornering maneuvers. Simulations were performed by changing the default yaw

inertia value 4175kg − m2 to 2175kg − m2 and 6175kg − m2 as shown in Figure 4.18.

It was observed that the cost of the simulation increased as the yaw inertia increased from

its original value. Similarly, cost of the simulation decreased with decrease in yaw inertial

value 4.19.
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Figure 4.17: Cost of simulation with different track widths of vehicle. Notice no cost exists
for track width 1056mm due to simulation termination because of roll over

4.5 Real-Time Analysis

For real-time implementation it is very important that the whole controller processing is

completed within one controller time step. Delayed solution can destabilize the system so

it is preferable to have a suboptimal solution rather that an optimal and delayed solution.

Time per controller step (k) is an important performance metric which tells us weather if

the NMPC algorithm is suitable for online and real-time application. It is evident from

the previous simulation results that the computation time is variable and depends upon the

simulation scenario. If there is an obstacle in range or the vehicle is away from the de-

sired trajectory, computation time per controller step increases. Also it is worth mentioning

that these time measurements are highly variable depending on the processor speed and

presented here for reference purposes.

All simulations were performed on IBM ThinkPad Laptop Computer with Intel R©

CoreTMi7-2620M 2.27GHz dual core processor, 4GB RAM and running 32-bit Windows R©

7 Operating System. First the effect of warm initialization (as explained in Section 3.6) on
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the controller computation time is investigated. A test similar to the Figure 4.2 was per-

formed and computation time per controller step and number of iterations per controller

step were stored and plotted. Figure 4.20 is a plot of computation load for a typical simu-

lation scenario without warm initialization of input vector u∗. It is seen that computation

time exceeds the controller step size (0.05s) multiple times and average computation time

is closer to the boundary.

When the same test was performed with the identical controller parameters and tun-

ing matrices but initializing the input vector with previous step’s input vector, the average

computation time decreased visibly as compared to previous test.

4.5.1 Discussion

The same test was performed 10 times and average results were compared in Table 4.4. Its

is evident that initializing optimization process with previous optimization results decreased

iteration count significantly (32.5%) thus aiding the gradient algorithm for real-time appli-

cation. Still there were occurances of the controller limit violations in warm start case.
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Figure 4.20: Cold start: (a) Computation time for each controller time step, (b) Number of
iterations per controller step
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Figure 4.21: Warm start: (a) Computation time for each controller time step, (b) Number of
iterations per controller step
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Table 4.4: Comparison between cold start and warm start methods

Parameter Cold
Start

Warm
Start

Comparison

Total optimizer iterations
for a 20s run

6539 4410 32.5% decrease in iteration
count

Average computation
time per controller step

0.0393s 0.0275s 30% decrease in average compu-
tation time per controller step

Number of times 0.05s
limit is violated

70 38 45% decrease in controller limit
violations

Large compuation time steps occur at complicated points of the simulation such as when

an object is encountered on the path or the vehicle is steering to approach the reference

trajectory. These violations can be avoided by limiting the iteration count to a certain value

so the optimization loop terminates as soon as that iteration number is reached. e.g., in

these simulations the time for each algorithm iteration can be found by dividing the time

taken for computation of each controller step by the number of iterations per controller step

(time per iteration = computation time
iteration count ). In this particular case the time per iteration

count is found to be 0.0025s. Which means the optimizer can iterate for a maximum of
0.05

0.0025 = 25 times per controller time step without exceeding the 0.05s time ceiling. Thus

if a strict real-time implementation is intended, a counter can be used which terminates the

loop if iteration count increases 25 thus keeping the overall processing time within 0.05s.

However, doing so can cause stability problems the effect of which is not considered in this

research and is left for future work. Also, this time calculation is true only for the current

processor speed and should be recalculated for any other processor type.



Chapter 5

Conclusion and Future Work

5.1 Discussion

In this thesis, we have presented the application of Model Predictive Control to perform

trajectory tracking of nonholonomic vehicles. Mathematical model of the vehicle was de-

rived and then a nonlinear MPC framework was formulated using this model. The MPC

controller was then interfaced with CarSim simulation software to perform simulations on

a fully nonlinear vehicle model. Steering angle of the vehicle was constrained in the cost

function formulation and the obstacle avoidance information was directly formulated inside

the cost function. Operating environment of the vehicle was assumed to be unknown with

various different types of the obstacles.

The controller was tested with CarSim vehicle model in different types of simulation sce-

narios at different speeds and varying horizon lengths. We show that proposed controller

can successfully avoid the obstacles by steering away from the designed path and replan the

trajectory online. Two methods of trajectory tracking i.e., the Method 1 (Section 3.4.3) and

the Method 2 (Section 3.4.3) were tested in simulations.

The controller was operated at 20Hz frequency and the real-time applicability of this con-

troller was tested in various scenarios with various horizon lengths. Discretization analysis

was performed to find the suitable sampling frequency of the discrete time plant.

93
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The robustness of the controller was tested against the variations in the vehicle parameters

such as the mass, yaw inertia, track width and the center of gravity height. The effect of

warm initialization on the controller’s processing time was discussed. Also the effect of

weight transfer on tires slip angles was explored.

Most of the relevant research papers discussed in the background research section use the

same mathematical model for trajectory generation which has been used in the NMPC con-

trol formulation. This works well in the simulation environment, but for practical imple-

mentation, the controller needs to be implemented on a real vehicle (which is a nonlinear

plant). So a realistic nonlinear vehicle model was used which had dynamics similar to that

of a real vehicle, to validate the controller in real environment.

5.2 Conclusions

We conclude that the Method 2 (Section 3.4.3) for obstacle avoidance is superior to the

Method 1 (Section 3.4.3) since it can keep the vehicle on the course even in the presence

of large obstacles. We further demonstrated that the current algorithm (operated at 20Hz)

is suitable for real-time application at lower speeds and shorter horizon lengths. As an in-

crease in the horizon length causes the computation cost to increase considerably. Discrete

model sampling rates around 100Hz produced exactly the same states output as the contin-

uous time model output. However, slower sampling rates around 20Hz produced states with

some small integration error. Model ouput was unstable at 1Hz sampling frequency.

We found that the controller is quite robust to the vehicle’s parameters changes. With mis-

tuned parameters, the vehicle was able to navigate in complex environment, but cost of

the simulation increased. However, with greater parameters change, the vehicle rolled over

which was due to the excessive side-weight transfer. Warm Starting the optimization re-

sulted in 32.5% decrease in iteration count, 30% decrease in average compuattion time and

a 45% decrease in the controller limit violations as compared to the Cold Start initialization
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method. We conclude that the MPC controller can be systematically designed and imple-

mented to control a nonlinear plant with constraints on the states and the control input.

Novel contribution of this thesis is the introduction of a NMPC controller to fully control a

nonlinear realistic vehicle model.

5.3 Future Work

Abrupt changing of the steering angle can cause a stress on the components in a vehicle

steering system. One possible future work can be the implementation of the rate of change

constraints to limit the sudden variations in steering angle. Also implementing such a con-

straint will enhance the rider comfort level.

In this research, actuation was considered to be applied directly to the vehicle’s wheels. A

mathematical model of steering system can be implemented so that actuation is applied to

the steering wheel itself. Doing so we can also limit the amount of torque transmitted to the

wheel from the steering wheel by adjusting the steering ratio when the rate of change of the

steering angle exceeds a maximum rate.

As is seen from the simulation results, the steering angle constraint has to be tightened with

the increase in vehicle speed. This makes sense in practical situations as a driver tends to

steer vehicle lesser at higher speeds. An automatic method can be implemented inside con-

troller code which will tighten the steering constraint automatically as the speed changes.

During the offline trajectory generation process, a better method can be used to find effi-

cient traversable path between two way-points by using A* algorithm which has proved to

achieve better performance by the use of heuristics.

An important design metric for real-time implementation of the proposed controller is the

computation time. According to MATLAB manual, MATLAB function block is slower

than an S-Function block, so instead the code can be written in the form of an S-function.

Further increase in simulation speed can be achieved by writing the controller in C/C++ and
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interfacing it directly with CarSim.

It has been observed that the controller computation time spikes suddenly once an obstacle

is detected within the prediction horizon. These high spikes decide the worst case timing

calculation for the controller. The effect of terminating the optimization loop prematurely

once a large spike occurs on stability, needs further investigation.

Moving obstacles or other vehicles can be simulated to implement accident avoidance ca-

pability in MPC.

Instead of distance based method, Parallax based method [60] is known to produce better

results in terms of tracking performance and computation cost. This method can be incor-

porated into the control formulation.

Practical hardware implementation of such an MPC controller is also a possible future work.

It will be interesting to document the real-time effects of the controller when the code is ex-

ecuted on a dedicated hardware or a Digital Signal Processor. The controller can be used to

automate the steering system of Go-Kart project at UOIT.

The controller can be tested on real-time CarSim simulator available on UOIT premises.

This thesis has contributed for autonomous vehicle research at UOIT and the developed

code/methods/simulation results can be used by future students to enhance the work in this

interesting field.
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Simulink Model
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Simulink model with CarSim S-function and MATLAB based NMPC controller
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Appendix B

Detailed Vehicle Model Equations

State vector = [β ψ ψ̇ X Y ]

where

β= Vehicle side slip angle

ψ= Vehicle roll angle

ψ̇= Vehicle roll rate

X= X-coordinate of vehicle’s C.G.

Y = Y-coordinate of vehicle’s C.G.

B.1 Continuous-time equations

β̇ =
2Cf
mvx

[δf − β −
lf ψ̇

vx
] +

2Cr
mvx

[−β +
lrψ̇

vx
]− ψ̇ (B.1)

ψ̇ = ψ̇ (B.2)

ψ̈ =
2lfCf
Iz

[δf − β −
lf ψ̇

vx
]− 2Crlr

Iz
[−β +

lrψ̇

vx
] (B.3)

Ẋ = vx cosψ − vx tanβ sinψ (B.4)

Ẏ = vx sinψ − vx tanβ cosψ (B.5)
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B.2 Discretized equations

β(k + 1) = β(k) + Ts ∗ [
2Cf
mvx

[δf (k)− β(k)− lf ψ̇(k)

vx
] +

2Cr
mvx

[−β(k)

+
lrψ̇(k)

vx
]− ψ̇(k)] (B.6)

ψ(k + 1) = ψ(k) + Ts ∗ ψ(k) (B.7)

ψ̇(k + 1) = ψ(k) + Ts ∗ [
2lfCf
Iz

[δf (k)− β(k)− lf ψ̇(k)

vx
]− 2Crlr

Iz
[−β(k) +

lrψ̇(k)

vx
]]

(B.8)

X(k + 1) = X(k) + Ts ∗ [vx cosψ(k)− vx tanβ(k) sinψ(k)] (B.9)

Y (k + 1) = Y (k) + Ts ∗ vx sinψ − vx tanβ(k) cosψ(k) (B.10)
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