Design and Implementation
of Wide Band Quadrature Demodulators
on Field Programmable Gate Arrays

by

Lieutenant(N) Joseph Mathieu Pierre Langlois, CD, rmc, BEng
Canadian Armed Forces

A thesis
Presented to the School of Graduate Studies in the
Department of Electrical and Computer Engineering
Royal Military College of Canada
Kingston, Ontario

In partial fulfillment of the requirements for the degree
Master of Engineering
April 1999

Copyright © 1999 by Joseph Mathieu Pierre Langlois, Kingston, Ontario
This thesis may be used within the Department of National Defense
but copyright for open publication remains the property of the author

l*. National Library Bibliotheque nationale

of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada ‘
Your fie Volre reference
Our file Notre reférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-44914-9

Canada

Abstract

Traditional digital implementations of high performance, wide band quadrature
demodulators have targeted gate arrays and custom Application Specific Integrated
Circuit (ASIC) technologies. These technologies involve significant non-recurring
engineering costs. In this thesis, it is demonstrated that Field Programmable Gate Arrays
(FPGASs) are a viable alternative, providing system performance in the same order of

magnitude, with a significant reduction in non-recurring engineering costs.

Considerations relevant to the design and implementation of wide band quadrature
demodulators are described. Fundamental principles for their digital realization are
discussed and different theoretical approaches are presented. Specific attention is paid to
the selection of digital filter architectures that map well to FPGA Configurable Logic
Blocks (CLB), and to constant coefficient multiplier implementation.

The delayed-carry chain concept is proposed as an extension to traditional pipelining
methods for multi-operand adders. The proposed concept was specifically applied to
digital filter implementations following the so-called transposed form. The concept
presents a significantly reduced overhead for a given performance criterion, especially for
high filter orders. It is ideally suited to FPGA implementations and to other register-rich

hardware technologies.

Four VHDL-based designs meeting different sets of specifications are described. One
particular design implemented in a low speed grade FPGA is suitable for the processing
of input signals on a 160 MHz Intermediate Frequency (IF) with a maximum theoretical
bandwidth of 53.3 MHz. Implementation in a faster FPGA family would support a 100
MHz bandwidth signal centered on a 100 MHz IF.

Keywords: Quadrature Demodulation, Field Programmable Gate Arrays, Digital
Filtering, VHDL Design Synthesis

Acknowledgements/
Remerciements

Many people deserve my sincere gratitude for their direct or indirect help and support
related to this thesis. First, Dr. Dhamin Al-Khalili of RMC and Mr. Robert Inkol of
DREO, for their time and patience with my endless streams of questions, for their
countless useful suggestions and for their wise guidance.

Au CMR, le Dr. Jean Fugére; c'est grace a sa flexibilité que j'ai pu poursuivre ces études;
merci beaucoup. Dr. Y.T. Chan, for interceding in my favour.

At CRC, Dr. Valek Szwarc, for his cooperation and support. Mr. Luc Désormeaux for
his insights into CRC's designs. Mr. Richard Wojcik, for coming in even though he had a
cold. Ms. Huong Ho, for her useful suggestions.

At RMC, Mrs. Nancy Turkington for her outstanding service in the library. Mr. Pierre
Adam, Mr. Scott Sararas, Ms. Kim Sararas, Mr. Wolf Rogal, and Mr. Chris Lai for their
support, ideas, suggestions and great service.

Mr. Bob Stevenson of CMC for my invasion of his office.

My colleagues Capt. John Buitenga, Capt. Bryan Wright, Capt. Don Shaw, Maj. Stéfan
Richard and Dr. Derrick Bouchard, for the free sharing of ideas. Maj. Frangois
Laboissoniére pour les discussions, LCdr Mike Bourassa for getting me back on my
board, Capt. Stéfan Fournier pour le squash, le support et le disque dur, Capt. Hughes
Latour pour le support avec Unix, les diverses licences et le squash, et Lt(M) Claude
Bernard, pour quand nous voulions prendre des ris mais que nous ne le pouvions pas.

Mon épouse, Caroline, pour tout le reste; sans elle, ¢a n'en aurait pas valu la peine.

Dédicace

A Caroline, mon épouse et meilleure amie,

et a Etienne, que j'attendais depuis si longtemps
qu epu P

Vita

Pierre Langlois was born in Sherbrooke, Québec, in 1967. After completing high school
at Le Séminaire de Sherbrooke, he enrolled in the Canadian Forces and reported to the
Collége Militaire Royal de St-Jean in 1985. He graduated from the Royal Military
College, in Kingston, Ontario, in May 1990 with a degree in Electrical Engineering.

After completing Combat Systems Engineering training in various shore establishments
and naval destroyers on Canada's both coasts, he served as project engineer with the
Tribal Upgrade and Modemization Program (TRUMP), at the MIL Davie Shipyard in
Lévis, Québec, from 1992 to 1994. He returned to sea in 1995 on board HMCS
IROQUOIS, based in Halifax, Nova Scotia, to complete the Head of Department
qualification. He then served as an instructor for radar and Electronic Warfare systems at
the Canadian Forces Naval Engineering School, in Halifax, from January 1996 until
August 1997, when he came back to RMC to undertake graduate studies.

Upon completion of his studies, he will remain at RMC as a lecturer in the Mathematics

and Computer Science Department.

Contents

ABSTRACT I
ACKNOWLEDGEMENTS/ REMERCIEMENTS m
DEDICACE v
VITA vl
LIST OF FIGURES Xv
LIST OF TABLES Xvil
ACRONYMS XIX
CHAPTER 1 INTRODUCTION 1
1.1 OVERVIEW I
1.2 MOTIVATION - 3
1.3 OBIJECTIVES..... 4
1.4 SYNOPSIS 4
CHAPTER 2 DIGITAL IMPLEMENTATION OF QUADRATURE DEMODULATIONccoereeeeee. 7
2.1 INTRODUCTION . 7
2.2 BASIC DIGITAL APPROACH TO QUADRATURE DEMODULATION 10
2.2.1 Sampling Frequency Selection 11
2.2.2 In-Phase and Quadrature Digital Filters 12

2.2.3 Decimation of Filter Outputs 13

2.3 IMPROVED DIGITAL APPROACHES 16
2.3.1 Low-Pass Filter Approach 16

2.3.2 High-Pass Filter Approach

24

2.5

2.6

3.1
3.2
33
34

3.5

3.6

4.1

4.2

19

2.3.3 Polyphase Filter Approach 20
2.3.4 Duplicated Polyphase Filters Approach 23
2.3.5 Other Cases 25
ODD-LENGTH, N™-BAND PROTOTYPE LOW-PASS FILTER 26
2.4.1 Half-Band Filter 26
24.2 Third-Band Filter 27
2.4.3 Quarter-Band Filter. 28
2.44 General Case 29
FREQUENCY TRANSLATION BY UNDERSAMPLING 29
DECISION . 31
CHAPTER 3 MULTIPLIER IMPLEMENTATION FOR DIGITAL FILTERING 33
INTRODUCTION 33
POWER-OF-TWO COEFFICIENTS 34
SIGNED DIGIT REPRESENTATION OF COEFFICIENTS 36
MINIMUM NUMBER OF ADDERS FOR MULTIPLIER IMPLEMENTATION.38
LOOK-UP TABLE APPROACH FOR FPGA MULTIPLICATION ... 40
3.5.1 Advantages of LUT Approach to Multiplication in FPGAs .41
3.5.2 Comparison of the Area Used by LUT and CSD Approaches 43
3.5.3 Comparison of the Speed Between the LUT and CSD Approaches 45
192101 13 (o) (1S P RO 45
CHAPTER 4 FILTER ARCHITECTURE SELECTION 47
INTRODUCTION 47
BAsIC FIR FILTER ARCHITECTURES 47
4.2.1 Direct Form Realizationccoiimeiicicceienrrererenneeirreresnresssresarenseosssnsresesssesses 48
4.2.2 Transposed Form Realization 49
4.2.3 Cascade Form Realization 50

CHAPTER S DETAILED DESIGN DESCRIPTIONS

4.3 LINEAR-PHASE FIR FILTER ARCHITECTURES

4.4 TRANSPOSED FORMS WITH MULTIPLIER BLOCK: EXPLOITING COEFFICIENT REDUNDANCY

4.5 PIPELINED ARCHITECTURES

4.5.1 Pipelined Adder Tree for the Direct Form (Version I)

4.5.2 Alternate Pipelined Direct Form (Version II)

4.5.3 Transposed Form with Pipelined Input for Facilitated Placing and Routing

454 Pipelined Multiplier Block for the Transposed Form

4.6 FAST ADDITION FOR DIGITAL FILTER ARCHITECTURES

4.6.1 Carry Select Adder

4.6.2 Pipelined Ripple Carry Adder

4.6.3 Delayed-Carry Chain

4.7 ANALYSIS OF THE ALTERNATIVE FILTER ARCHITECTURES

4.8 DECISION

5.1 INTRODUCTION

5.1.1 Overview of Designs Considered
5.1.2 Filter Coefficients and Frequency Response Characteristics

5.2 POLYPHASE FILTER APPROACH: BASIC DESIGN

5.2.1 General Overview.

5.2.2 Multiplier Block Description.

5.2.3 Adder Chain Block Description

5.2.4 Internal and External Timing Considerations....

5.2.5 [Implementation in Other FPGA Families and Speed Grades

5.2.6 Final Comments on the Design

5.3 POLYPHASE FILTER APPROACH DESIGN WITH DELAYED-CARRY ADDER CHAIN

5.3.1 General Overview.

5.3.2 Design Structure..

5.3.3 Implementation Considerations and Comparison with Basic Design

51
53
55
56
57
57

59

61

61

67
70

n

71

.71

73
75
75
77
80
82
82
83
84
84
84

5.4 POLYPHASE FILTER APPROACH DESIGN WITH DATA CONVERSION.

54.1
54.2
543
5.4.4
54.5

5.5.1
5.5.2
553
554
55.5
556

5.6.1
5.6.2

5.6.3

5.7 SUMMARY

6.1 INTRODUCTION

6.2 STRATEGY

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5

86

General Overview 86
Analog-to-Digital Converter (ADC) Block 87

Data De-Interleaving Process and Timing Requirements 88

Data Conversion Process 90

Final Comments on the Design 91

5.5 Low-PAss FILTER APPROACH DESIGN 91
General Overview .91
Analog-to-Digital Converter (ADC) Block 92

Data Conversion Block 92
Modulator Blocks 93

In-Phase and Quadrature Filter Blocks 93

Final Comments 95

5.6 VHDL DESCRIPTION CONSIDERATIONS 95
Building Blocks ...96
Optimizing the Hardware Realization from the VHDL Description 97
Automated Structural VHDL Code Generation 98

100

CHAPTER 6 DESIGN VERIFICATION AND TESTING 101
101

101

6.3 TEST VECTOR SELECTION 102
Fundamental Tests 102

Impulse Response Test 103

Extreme Outputs Test... 103
Pseudo-Random Sequence Test ...104
De-Interleaving and Data Conversion Tests 105

xii

6.4
6.5
6.6
6.7

6.8

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS

7.1

7.2

REFERENCES

APPENDIX A FILTER BUS WIDTH ANALYSIS

APPENDIX B CHARACTERIZATION OF RIPPLE-CARRY ADDERS IN XILINX FPGAS

FUNCTIONAL VERIFICATION OF VHDL CODE

10s

SYNTHESIS, MAPPING, PLACING AND ROUTING VERIFICATION

TIMING ANALYSIS AND IDENTIFICATION OF CRITICAL PATHS

105

107

HARDWARE TESTING

108

SUMMARY

109

111

CONCLUSIONS

1931

RECOMMENDATIONS FOR FUTURE WORK

113

118

Xiv

List of Figures

Figure 1-1 - Conceptual Block Diagram of RF Portion of EW Receiver

Figure 2-1 — Analog Quadrature Demodulator Block Diagram

Figure 2-2 - Spectra for Analog Quadrature Demodulation

Figure 2-3 - Digital Quadrature Demodulator

Figure 2-4 - Spectra for Decimation-by-Two Case.............

Figure 2-6 — In-Phase Channel for Decimation by Two.....

Figure 2-7 - Quadrature Channel for Decimation by Two

Figure 2-8 - Digital Quadrature Demodulator with f; = 4 x f. and Decimation by Two

Figure 2-9 - Digital Quadrature Demodulator with High-Pass Filter Approach

.....

Figure 2-10 - Quadrature Demodulator Polyphase Filter Approach (M =4)

Figure 2-11 - Duplicated Polyphase Filter Architecture........

Figure 2-12 - Example of Frequency Translation by Undersampling

Figure 3-1 - MultiplicQtion by 45...........eeeeeeeerneveseveeencenesnecsennsaneas

Figure 3-2 - LUT Muitiplication Block Diagram

Figure 4-1 - Direct Form Realization

Figure 4-2 - Transposed Form Realization

Figure 4-3 - Cascade Form Realization

Figure 4-4 - Direct Form Architecture, FIR linear phase filter, N even

Figure 4-5 - Transposed Form Architecture, FIR linear phase filter, N even

Figure 4-6 - Transposed Form FIR Filter with Multiplication Block...........

Figure 4-7 - Transposed Form Symmetric FIR Filter, N Even, with Multiplication Block...........................

Figure 4-8 - Pipelined Direct Form, Version I: Adder Tree

Figure 4-9 — Pipelined Direct Form, Version Iloouuuueeeeeecn

Figure 4-10 - Transposed Form with Pipelined Input...................................

XV

10
11

.14

15
17
18
18
19
23

25

31
40
42

...48
.49

50
52
52
54

54

.56

57

.58

60

Figure 4-11 - Pipelined Multiplier Block Example

Figure 4-12 - Carry Select Adder Example

62

63

Figure 4-13 - Pipelined Ripple Carry Adder Example

Figure 4-14 - Pipelined Delayed-Carry Adder Chain Example (Transposed Form)

Figure 5-1 - Prototype Filter Frequency and Phase Response

..... 64

.74

76

Figure 5-2 - Top Level Block Diagram (Basic Design)

Figure 5-3 - Sub-Filter Block Diagram

77

78

Figure 5-4 - Qp Sub-Filter Multiplier Block.

Figure 5-5 — Qg Sub-Filter Adder Chain Block Diagram

80

Figure 5-6 - Top Level Block Diagram (Full Design with Data Conversion)

87

.88

Figure 5-7 - De-Interleaving Block, In-Phase Channel

Figure 5-8 - Data De-Interleaving Timing Diagram

89

Figure 5-9 - Top-Level System Block Diagram (Low-Pass Filter Approach)

Figure 5-10 - Modulator Block

Figure 5-11 - Structure of the Filter Blocks (N even)

Figure 6-1 - Hardware Test Setup.....

Figure B-1 Latencies for X4000 Adders

List of Tables

Table 2-1 - Upper Bounds for Prototype Filter Subsampling into Polyphase Filters (M =4) 22
Table 2-2 - Alternative Undersampling Frequencies, Low-Pass Filter Approach........................ 30
Table 3-1 - Range of Values for Different Number Representations With 0 Bitsocooovceeomovennnvnnene. 37
Table 3-2 - 8-bit CSD Coefficient (-128 to +127) Multplier Statistics 44
Table 4-1 - Filter Architecture AIlernQIives.................ooueeeeeeeeeeereeeeresvesasenmrnsessatememaeasnseesnnsnssssssssnesssssssnns 68
Table 5-1 - Prototype Filter Coefficient Mappingcoueeeeeeeecareennnen. 75
Table 5-2 - Bus Width of the Sub-Filter Adder Chains 81
Table 5-3 — Comparison of the Basic and Delayed-Carry Designs 85
Table B-1 Approximate Latency Increase for X4000 FPGA adders, ns/bit ... 125

ASIC
BIST
CLB
CMC
CMOS
CMR
CRC
CSD
DC
DREO
DUT
ECL
EDA
EW
FIR
FPGA
HDL
HMCS

IMS
IOB
KCM
LFSR
LSB
LUT

Acronyms

Analog-to-Digital Converter
Application-Specific Integrated Circuit
Built-In Self Test

Configurable Logic Bloc

Canadian Microelectronics Corporation
Complementary Metal Oxide Semiconductor
Collége Militaire Royal
Communications Research Center
Canonical Signed Digit

Direct Current

Defence Research Establishment Ottawa
Device Under Test

Emitter Coupled Logic

Electronic Design Automation
Electronic Warfare

Finite Impulse Response
Field-Programmable Gate Array
Hardware Description Language

Her Majesty's Canadian Ship
Intermediate Frequency

Infinite Impulse Response

Integrated Measurement System
Input/Output Block
Constant-Coefficient Multiplier

Linear Feedback Shift Register

Least Significant Bit

Look-Up Table

Megahertz

MIL

RMC
ROM
TRUMP

VHDL
VHSIC
VLSI

Marine Industries Limited

Radio Frequency

Royal Military College

Read-Only Memory

Tribal Upgrade and Modemization Program
Transistor-Transistor Logic

VHSIC Hardware Description Language
Very High Speed Integrated Circuit

Very Large Scale Integration

Chapter 1

Introduction

1.1 Overview

Quadrature demodulation is a process for obtaining a complex baseband representation of
a real bandpass signal. It has a wide variety of applications in areas such as radar and
sonar signal processing, digital communications, and biological signal analysis. The real
signal obtained from a transducer such as an antenna, a hydrophone or a biological probe,
is amplified, filtered, and possibly shifted to an appropriate Intermediate Frequency (IF)
before quadrature demodulation. Once this process is done, the resulting complex signal
representation contains the information present in the original signal, and its format
facilitates subsequent processing, such as spectral analysis or the extraction of

modulation information.

This thesis addresses the implementation of quadrature demodulators in Field
Programmable Gate Array (FPGA) technology. FPGAs offer some attractive advantages
over other implementations of Application Specific Integrated Circuits (ASICs). They
are easily programmable, which means that a design can be implemented and tested in a
very short time, reducing development time and cost dramatically. They are also re-
programmable, so modifications can be made and tested in the field. A single chip may

even have multiple purposes on one board, as it can be reprogrammed in-situ. Non-

recurring engineering costs are also orders of magnitude lower than for other ASICs.

One disadvantage of FPGAs over full-custom design ASICs is the speed of operation.
The achievable data rates have traditionally been well below the performance attainable
with other technologies such as Gallium Arsenide. Therefore, a major challenge for the
designs considered here will be to meet performance requirements normally associated
with full custom designs on a FPGA. An additional disadvantage is the limitations in the
acceptable input signal format. While other technologies allow level translation to be
done on chip, most FPGAs require external hardware to do this.

The quadrature demodulators considered in the present research are primarily aimed at
radar and Electronic Warfare (EW) applications. These fields pose particular design
challenges when compared to sonar, communications or bio-medical applications. The
most obvious differences are the high frequency and wide bandwidth requirements. The
IF is typically in the MHz range, and the signal bandwidth may extend from DC to twice
the [F. In many applications, there is a need for real-time operation. Consequently,
techniques such as parallelism and pipelining may be necessary to achieve adequate
processing speed. Another system requirement is the preservation of the input signal

waveform and of any information contained in the signal modulation.

In an EW receiver, for which a conceptual block diagram is shown in Figure 1-1,
intercepted radar pulses are first picked up by an antenna before being amplified and pre-
filtered by a Radio-Frequency (RF) amplifier. They are then mixed down to a convenient
Intermediate Frequency (IF), in one or more frequency conversion stages. The signal is
then further amplified and sum frequency components are suppressed by an IF amplifier.
After this step, quadrature demodulation is performed to convert the IF signal to a
complex baseband representation with in-phase and quadrature components. This
complex representation facilitates further processing to extract information contained in
the radar pulses.

1.2 Motivation

Quadrature demodulation has been the subject of a collaborative research programme
involving the Defense Research Establishment Ottawa (DREO), the Communications
Research Center (CRC) and the Royal Military College (RMC). Significant contributions
have been made to the field. A number of hardware implementations of wide band
receivers with progressively improving performance have been developed using CMOS
and GaAs ASIC technologies. The most recent designs have provided considerable
additional functionality in addition to quadrature demodulation.

[- in-phase to further processing:
X - component
RF Amplifier | IF Amplifier | g Quadratwre L 5n;jjitude and Phase
Demodulator Measurement,
Pulse Width Measurement,
— > p

Q - quadrature eS::;ecual Analysis (FFT),
component "

local oscillator

Figure 1-1 - Conceptual Block Diagram of RF Portion of EW Receiver

The advent of FPGAs, with their ability to implement complex systems with ever
increasing performance [1] and low non-recurring engineering costs, opens up a wealth
of new possibilities. In-system, on-board re-programmability means that designs can go
from concept to field application in a very short time. Further, design changes can be
quickly put in place and results observed.

There are many reasons to pursue further research in this specific field. Programmable
logic poses special problems, but also presents appealing advantages over custom ASIC
VLSI designs. A number of novel approaches to quadrature demodulation have surfaced
in recent years, as have ingenious ways to implement digital filtering with increased
efficiency. Ideas that have been previously discarded as being impractical with
technologies available at the time deserve new consideration for programmable logic

implementations. Finally, there has been on-going research at DREO into the selection

of filter coefficients for quadrature demodulation specifically, and there is a need to
validate results in hardware. The implementation of quadrature demodulation using

FPGA technology is therefore a pertinent and promising area of research.

1.3 Objectives

Given the present subject, the research emphasis must be focused in a few specific
directions. First, it is intended to assess the viability of using FPGAs for wide-band, high
performance quadrature demodulators. This means that the effective data processing rate
must be as high as possible so that the input signal bandwidth can be maximized. The
designs should be optimized as well to minimize power consumption. For FPGA
realizations, this means that special consideration will have to be given to architectural

issues.

It is also desired to make a contribution to DREQ's filter coefficient research, with the
specific aim of producing filter designs whose coefficients minimize the hardware costs.
This aim would also be in line with contributing to the general problem of fast digital
filtering, with the specific considerations that apply to FPGA-based designs.

Finally, the design entry method selected for this research will be a Hardware Description
Language (HDL). A synthesis tool will then be used to generate a design netlist. This
will pose special challenges given that stringent performance requirements must be met.
It is therefore hoped that a contribution can be made to the problem of optimizing the
hardware realization of HDL-based designs.

1.4 Synopsis

This thesis is divided into 7 chapters. Chapter 2 will present fundamental principles for
the digital realization of a quadrature demodulator. In Chapter 3, the specific problem of
multiplier implementation will be presented. Chapter 4 will cover the very important

4

topic of selection of a filter architecture. It is in Chapter 5 that a detailed description of
quadrature demodulator designs will be made. Chapter 6 will deal with design
verification and testing. In Chapter 7, conclusions will be drawn and recommendations

for further work will be made.

Chapter 2

Digital Implementation of
Quadrature Demodulation

2.1 Introduction

The input signal to a quadrature demodulator can be described by:

x(2) = A(t)cos(w t +9(2) -1

where A(%) is the signal amplitude, w. its carrier frequency (in radians/second), and ¢(r)
its time varying phase angle. The signal x(¢) is assumed to be a real bandpass' signal.

The goal of quadrature demodulation is to express the signal x(¢) as a function of the in-
phase and quadrature components /(¢) and O(z) as follows:

x(£) = I(t) cos(@ 1) — O(t) sin(w, ¢) 2-2)

where /(?) and Q(¢) are both functions of 4(7) and ¢(#), and are equal to

! A bandpass signal is centered on a frequency other than 0 Hz and has a finite bandwidth.

I(t) = A(t) cos(@(2)) (1) = A@)sin(d (1)) 2-3)

Once the in-phase and quadrature components are available, the amplitude and phase
information in the signal x(¢) can be calculated as

e (3)
A@t) =10 + 00 0@ =tan" (G) -4

The traditional analog approach to quadrature demodulation is shown in Figure 2-1. The
signal to be demodulated (in this case the output of the IF amplifier) is multiplied by two
sinusoids with a 90 degree phase angle difference. This effectively creates quadrature
versions of the signal nominally centered around zero frequency and at twice the carrier
frequency. The signal component centered about 2@ is then removed by low-pass
filtering to leave a complex baseband signal. If a digital representation of the in-phase
and quadrature components is desired, analog-to-digital conversion is performed.

From the block diagram, the in-phase component, /(z), is equal to:

[(¢) = LPF{x(t) x 2cosm,t }
= LPF{ A(t) cos(w_t +(2)) x cos(w) }
= LPF{A(f)[cos(2 ¢ +§(2)) + cos(0 ()]}
= A(t) cos(¢ (1)) (2-5)

Similarly, the quadrature component, O(¢), is equal to:

O(t) = LPF{x(t) x (-2sinw_t) }
= LPF{- 2 A(t) cos(w ¢ + ¢ (£)) x sin(w_t) }
= LPF{A(:)[-sin(20¢ +(2)) +sin@ ()]}
= A(t)sin(¢ (1)) (2-6)

By substituting equations (2-5) and (2-6) in equation (2-2), we get:

x(¢t) = I(¢) cos(w_t) — O(t) sin(®,)

= A(r) cos(®,£) cos(® (7)) — A(?) sin(@,) sin((7))

= % A@®)[cos(@, £ +6(8) + cos(@_t ~ ()]

- % AW®cos@,¢ —0(2)) - cos(@ ¢ +6(£))]

= A(t) cos(@, + (1))

which is the same as the original equation (2-1).

Ko

I(n)

x —p{ LPF

2cos st
x(1)

-2 sin @

X LPF

2.0

Xn)

Figure 2-1 — Analog Quadrature Demodulator Block Diagram

(2-7)

In Figure 2-1, the modulating signals cos and sin are shown with an amplitude of 2 to

make the input and output power levels equal. In practice, however, this factor is often

neglected and it will not be considered in subsequent discussion.

The quadrature representation of signals can also be viewed from a complex number

perspective. The received signal x(?) can be expressed as:

x(t) = A(t)e’

2-8)

and the two quadrature components /() and Q(r) are the baseband real and imaginary

parts of x(¢), respectively.

Figure 2-2 shows two spectra relevant to the analog implementation of the quadrature
demodulator. The top spectrum represents the bandpass signal x(¢), centered on a
frequency f;, with a bandwidth B. The lower spectrum is the magnitude of x(¢) shifted in
frequency down to baseband, showing the high-frequency modulation products having

been removed by low-pass filtering and the remaining bandwidth B/2.

» X627
—— B —»
4 $ + + >
2% £ £ ”% p
4 Pinn + Foemy”
:
|
]
+ + $ 1 + »
Py £ -Bn B2 f % r
—————— removed by LPFs

Figure 2-2 - Spectra for Analog Quadrature Demodulation

2.2 Basic Digital Approach to Quadrature Demodulation

The traditional analog implementation of quadrature demodulation, shown in Figure 2-1,
suffers from many problems, especially to gain and phase mismatches between the I and
Q channels and the presence of DC offsets [2]. In such an implementation, all
processing, with the exception of the Analog-to-Digital Converters (ADC) used to
digitize the [and Q signals, is carried out by analog circuits.

A more robust implementation is all digital, as shown in Figure 2-3. In this case, only
one ADC is used, and the processes of down-conversion and filtering are done digitally.

The last step is usually a decimation by an integer factor M, where only 1 out of M

10

samples are kept. The value of M depends on the initial sampling rate and on the
bandwidth of the signal x(¢).

digital oscillator for cos
x(r) x(n) i Digital I(n) ™ I{(Mn)
b

—_{ ADC
'\>_<J Low Pass Filter
digital multiplier
digital multiplier Do o) o OM»)
L »
Low Pass Filter

digital oscillator for -sin

Figure 2-3 - Digital Quadrature Demodulator

2.2.1 Sampling Frequency Selection

The first processing step after conversion of the input analog signal to a digital format is
frequency shifting to baseband. It involves multiplying the input data by cosine and sine
sequences at the center frequency of the input signal, as shown previously. This step can
be quite complex, first requiring the generation of the two sinusoids (possibly with a
Look-Up Table approach), then their multiplication with the stream of input data.
However, a careful selection of the sampling frequency can greatly simplify this problem.
If it is selected such that f; = 4 x £, then the two sequences are represented by cos(rtn/2)

and —sin(ntn/2), which reduce to:
cos: 1,0,-1,0,1,0,-1,0, ...
-sin: 0,-1,0,1,0,-1,0, 1, ...

Obviously, multiplications by 0 or 1 are trivial. For multiplication by -1, the only
processing required is sign inversion, an operation whose complexity depends on the

number representation of the data. However, in the worst case (for 2's complement

11

representation), the operation is simpler than the addition of two numbers, with each bit
inverted and a carry added to the Least Significant Bit.

2.2.2 In-Phase and Quadrature Digital Filters

The second step after multiplication of the input data by quadrature sinusoids is low-pass
filtering, where unwanted high-frequency mixing products are removed to obtain the
results of equations (2-5) and (2-6). In a digital implementation of quadrature
demodulation, digital filters are used.

The phase linearity of the filters used in the quadrature demodulator is an issue. For
many applications such as those targeted for this research (radar and EW receivers), it is
essential to preserve the information contained in the original signals. A non-linear phase

filter is therefore unsuitable for the quadrature demodulator designs considered here.

While Infinite Impulse Response (IIR) filters usually have sharper transition bands than
Finite Impulse Response (FIR) filters for a given filter order, they cannot have a linear
phase characteristic [3], and thus they are not considered further in this document. FIR
filters, however, can exhibit ideal linear phase under some conditions that will be
described later. Therefore, the quadrature demodulator designs considered here will be
restricted to linear-phase FIR filters.

The output y(n) from a FIR filter with impulse response A(n), filter length N, and input
sequence x(n) is given by the convolution of the input sequence and the filter impulse
response:
$(1) = x(n) * h(n) = h(n) * x(n) = 3. h(m)x(n — m)

m=0 2-9)
In the basic quadrature demodulation approach, the two low-pass filters are identical, and
the filter they reproduce is called the prototype filter. The impulse response of the low-
pass prototype filter will hereafter be denoted by h.s(n). Its cutoff frequency, transition
bandwidth and stopband attenuation are selected according to the characteristics of the

12

signal to be demodulated, and especially the signal bandwidth. From the spectra shown
in Figure 2-2, it should be obvious that the passband of the filter should be at least equal

to B/2, where B is the bandwidth of the signal prior to demodulation.

From equation (2-9), given that the system sampling frequency is selected as f; = 4 X 1.,
and that the prototype low-pass filter has an impulse response k. x(n), the output of the in-

phase channel can be expressed as:
T
I(n)=hp(n)* [X(n) . cos(;n)]

= Nz—lhu, (m) -x(n—m)- cos(ltz-(n = m))

(2-10)
and the output of the quadrature channel can be expressed as:
Q(n) = hyp (m) * [x(n) -=sin(- n)}
3 hep(m) - x(n - m) -sin(=" (- m)
= m) - x(n —m) - sin(——(n —
- " 2" (2-11)

2.2.3 Decimation of Filter Outputs

The input to the quadrature demodulator is a bandpass signal centered on a frequency of
fe- Hence, its maximum bandwidth B is 2 x f;. After demodulation, all the signal's
information content is stored in the in-phase and quadrature channel outputs, and each

has a maximum bandwidth B/2 =f£..

Ideally, the prototype low pass filters in the in-phase and quadrature channels should
remove all frequency components outside of the bandwidth of interest. Therefore,
according to the Nyquist criterion, the minimum sampling rate that could be used to
process the in-phase and quadrature signals, without aliasing, is 2 X f.. However, since
the sampling frequency was selected as f; = 4 X f: for the advantages already mentioned,

13

this implies that the filter outputs are oversampled by a factor equal or greater to two, and
thus that every other sample, at least, can be discarded. The process of retaining only a
fixed proportion of data samples is known as decimation. It is rarely advantageous to
carry redundant information about a signal, and decimation should generally be done to

maintain the lowest possible processing and communications rates in a system.

Figure 2-4 shows the signal spectra at various stages in the demodulation process for the

case of decimation by a factor of two.

'y
— B8<2fe —0 »
T v T T v T T T T T >
S §A 2f 3% e
f
7 a)
— B
] 1] v L] v 4 >
2 n2 T 3n2 2x
(0]
r'y b)
— B2<n2 —p
1 o I v T T 1 >
-n2 2 4 3n2 2r
[«+]
<)
'y
T v ¥ v T T 1 >
2 r2 T 3n2 2x
()]
4 d)
¥] T v T] A
3 -2 2 T In2 2rn Sn2 3x =2 4

€)

Figure 2-4 - Spectra for Decimation-by-Two Case

a) analog input signal. b) digitized signal, with the sampling frequency equal to four
times the carrier frequency. c) digitized signal shifted to baseband. d) result after ideal
low-pass filtering. e) result after decimation by two.

14

The signal bandwidth of 2 x f. discussed above represents a maximum for a signal
centered on a frequency f.. If the signal bandwidth is sufficiently smaller, then
decimation by a factor greater than two is possible. For example, if the input signal to the
quadrature demodulator has a maximum bandwidth of f., then after demodulation to
baseband all that will remain will be one sideband of bandwidth f./2. According to the
Nyquist criterion, the corresponding minimum sampling rate without aliasing is thus f..
Following the approach already described, if the sampling frequency is selected as f; = 4
X fz, then the un-decimated filter outputs are oversampled by a factor of four. Figure 2-5
shows signal spectra at different points of the processing for this case.

&

|
]

v T v
L 2 % e

w2 x2 In2 2r
o
S b)
BR <4
T [] [1
I T o ! T]] >
2 .77 4 3n2 2

<)

p
11 [1
T T T T Y T T >
-®2 =2 4 In2 2r
o

» F))
1| 1 . N I — —
2x .4 < 2x k} 4 4n St (1 K}.g 8x

)

Figure 2-5 - Spectra for Decimation-by-Four Case

a) analog input signal. b) digitized signal, with the sampling frequency equal to four
times the carrier frequency. c) digitized signal shifted to baseband. d) result after ideal
low-pass filtering. e) result after decimation by four.

15

2.3 Improved Digital Approaches

In the basic digital approach to quadrature demodulation, presented in the previous
section, data is processed throughout the system at the sampling rate of the ADC, then
decimated at the output of the filters. This situation is a case of multirate signal
processing [4]. Since it is a waste to expend resources to calculate signal data only to
discard it later, a much more efficient approach is to decimate before the multiplication

and filtering are done. This section discusses designs based on this concept.
2.3.1 Low-Pass Fiiter Approach

If the bandwidth of the input signal to the quadrature demodulator is such that the filter
outputs are oversampled by a factor of two (B < 2 x /), then the filter processing rate can
be reduced by half [5].

Referring back to equation (2-10), decimating the output of the in-phase filter by 2 gives:

IQ2n) = ghu, (m) -x(2n — m) - cos(—’;-(zn —m)) 212

Noting that the summation terms will be null for odd values of the summation index m, a

change of variable is made such that m =2k to give:
£ T
12ny =Y h,, (2k)-x(2n-2k)- cos(-(2n—2k)
k=0
K
=’ hip (26)- X2~ k))-cos(m (n— k)
k=0

= Ki hLP (2k) . x(2(n - k)) . (__l)(n-k)
k=0

= Ay (m)*+j=1)" x(2m)) 2-13)

where K] is equal to (V - 1)/2 for N odd, and to (NV/2) — 1 for N even. Effectively, the

input data is decimated by two and sign changes are applied to alternate remaining

16

samples. The resulting data stream is filtered by a new low-pass filter. The impulse

response of the new in-phase low-pass filter 4.p(n) is given by:

hypy () = h,p (21) (2-149)

forn=20,1, 2, ..., Ki. A block diagram of the resulting realization of the in-phase
channel is given in Figure 2-6. It must be noted that the new filter processing speed is

half of the input data rate.
— o aDC 42 | Y
fi=4f
g

Figure 2-6 — In-Phase Channel for Decimation by Two

Similarly, starting from equation (2-11), decimating the output of the quadrature channel
by 2 gives:
N-1

0@2n)= ¥ hy(m) -x(2n —m) --sin(-%(Zn —m))

m=0

(2-15)

Noting that the summation terms will be null for even values of the summation index m, a

change of variable is made such that m =2k +1 to give:
KQ T
O@2n) =Y h,p(2k +1D-x(2n — 2k +1)) - sin(—-2—(2n -k +1))
k=0

Ko
= b2k +1)-x(2(n - k) - 1) -sin(% - (n—k))
= (2-16)

Ko
=3 ek +1)- 22— k) =) - (D"

k=0

= oy () = k=1 x(2n - D]

where Kq is equal to (N-3)/2 for N odd, and to N/2 — | for N even. Effectively, the input

data is decimated by two and sign changes are applied to alternate remaining samples. It

17

must be noted that there is one sample relative delay between the in-phase and quadrature
channels. The resulting data stream is filtered by a new low-pass filter. The impulse
response of the new quadrature low-pass filter /4;,g(n) is given by:

hipp(M)=h,(2n+1) 2-17)

forn=0,1,2, ..., Kg- A block diagram of the resulting realization of the quadrature
channel is given in Figure 2-7. Again, the processing rate is half of the input data rate.

o@n)

x(¢) x(n-1) x(2n-1) 1Yxn-1) LPF“Q~
— o anc T 12] rea ——
fi=4f
r> 1P

Y/C73)

Figure 2-7 - Quadrature Channel for Decimation by Two

Combining Figure 2-6 and Figure 2-7 gives an overall digital quadrature demodulator
block diagram already presented in [6]. Itis shown in Figure 2-8.

0 x(n) *2n) Low Pass Filter e
——»{ ADC 2) ¢ ——
fi=4f) "
Lt L= L, ..
T *@n-1) Low Pass Filter o)
o 12 X ‘ . —
v —> “Q

Figure 2-8 - Digital Quadrature Demodulator with f; = 4 x f. and Decimation by Two

From this block diagram, it is important to note that the input signal is still sampled at
four times its carrier frequency. However, all samples are not passed to both digital
filters. The "even" samples are passed to the in-phase filter, with every other one

18

undergoing a sign change. Similarly, the "odd" samples are passed to the quadrature

filter, and every other one also undergoes a sign change.

The advantage of this quadrature demodulator configuration is that it accommodates the
widest possible input signal bandwidth (B < 2 x f;) while keeping the processing rate at
half of the input data rate in the two low-pass filters.

2.3.2 High-Pass Filter Approach

This approach, proposed in [5], is applicable where the input signal bandwidth B is less
than f., and when it is appropriate to decimate the filter outputs by a factor of 4. A
slightly modified version of the proposed block diagram is shown in Figure 2-9. The
approach has the advantage that the filters can operate at a quarter of the input data rate,
since the last decimation step should be done inside the filters. It is also interesting to

note that the multiplications by +1 and -1 are imbedded in the filter coefficients.

i2n) i(4n)
x(¢) x(n) x(2n) High Pass Filter
[apc I7) 2l
fi=af T
W *@n -1 High Pass Fier | 20— 27
D > Q" '

Figure 2-9 - Digital Quadrature Demodulator with High-Pass Filter Approach

It can be shown that the impulse response of the in-phase high-pass filter AxpA(n) is given
by:

e (n) = (=1)" by, (2n) 2-18)

forn=0, 1, 2, ..., Ki, where K] is equal to (N-1)/2 for N odd, and to N/2 - 1 for N even.

19

Similarly, the impulse response of the quadrature high-pass filter Azpp(n) can be shown to
be equal to:

hypo (1) = (=1)" hyp (2n +1) (2-19)

forn=20, 1, 2, ..., Kqg, where Kg is equal to (N-3)/2 for N odd, and to (M/2) — | for N

even.
2.3.3 Polyphase Filter Approach

It has been suggested in [6] that a polyphase filter architecture ([7] [8] [4]) be used for
quadrature demodulation. This approach has the advantage of keeping the filter
processing rate at its lowest for all cases. The derivation included here will assume a
decimation factor of four. For this case, the approach is equivalent to the High Pass Filter
approach. However, it leads to a system description that is more readily translatable to a

hardware realization.
Starting from equation (2-10), decimating the output of the in-phase channel by 4 gives:

I(4n) = Nz-':hu, (m) - x(4n —m)- cos(l‘z-(4n —m))

m=0

N-1 mT
=>h - x(4n — . —_—
Z 1p () - X(4n — m) - cos(—) 2.20

This summation can be expanded to find underlying symmetry:

I[(4n)=h,,(0)x(4n) — h, . (2)x(4n - 2)
+ h,,(4)x(4n — 4) — h,, (6)x(4n — 6)
+h,, (8)x(4n —8) — h,, (10)x(4n —10)
+h,,(12)x(4n - 12) — h,,(14)x(4n - 14)
+... 2-21)

and it can then be re-written as the difference between two distinct summations:

20

R;o Ry

I(4n)=Y h,(4r) - x(4(n = r)) = Y ko (4r +2)-x(4(n—r) - 2)
r=0 r=0 (2. 2 2)
=R, pro * x(40) — hyppy * x(4n —2)

which is the difference between the outputs of two new low-pass polyphase filters of

impulse responses h;p(n) and h;pr(n) given by:
hypro(n) = hyp(4n) (2-23)
forn= 0, I, 2, ceey RIO, and:
hu,“(n) =hu,(4n+2) (2_24)
forn=0, 1, 2, ..., R. The values of the constants Ry and Ry, are given in Table 2-1.
For the quadrature channel, starting from equation (2-11) and decimating by 4 gives:
N=1 T
Q(4n) =Y ko (m) - x(4n—m)- sin(—3(4n —m))
m=0

- | (2-25)
=3 ke (m)-x(an—m).- sm(i"zi)

m=0

This summation can be expanded to find underlying symmetry:

Q(4n)=h,,()x(4n —1) = h,, (3)x(4n - 3)
+ h,p (5)x(4n = 5) = h,, ()x(4n-17)

+ h,, (9)x(4n —9) — h, (11)x(4n —11) (2-26)
+ h,p (13)x(4n ~13) — h,, (15)x(4n — 15)
+...

and it can then be re-written as the difference between two distinct summations

Rao Ro
Q(4n) = hp(4r+1)-x(4(n—r) =1 = Y ko (4r +3) - x(4(n —r) - 3)
r=0 r=0 a. 2 n

=hypgo * x(4n —1) — hypy, * x(4n —3)

21

which is the difference between the outputs of two new low-pass polyphase filters of

impulse responses Azpgg(n) and h;pg(n) given by:

hipgo(n) = hyp(4n +1) (2-28)

forn=0,1,2, ..., Ry, and:

hipgi () = hyp (40 +3) 229

forn=0,1,2, ..., Rqi.

Table 2-1 below gives the index upper bounds for the sub-sampling of the prototype low-
pass filter into the new I and Q polyphase filters, depending on the filter order.

N/4-1 Ni4-1

N4 -1

N/4 -1

(N—1)/4 WN-1)4-1 N-1)4-1 W-1)4-1
(N —2)/4 (N-2)/4 N-2)4-1 N-2)/4-1
(N-3)/4 (N-3)/4 (V-3)4 WN-3)4-1

Table 2-1 - Upper Bounds for Prototype Filter Subsampling into Polyphase Filters
M=4)

The resulting quadrature demodulator block diagram is shown in Figure 2-10. It can be
seen that all processing is done at a quarter of the input sampling rate. Each branch and
sub-branch processes data that is de-interleaved from the output of the ADC, with two
successive steps of decimation by 2. An interesting consequence of the polyphase filter
approach, when compared to the low-pass filter approach with decimation by two, is that
the multiplication step for frequency conversion has been eliminated. For the present

22

case with a decimation by four, this approach to quadrature demodulation is functionally
equivalent to the High-Pass approach suggested in [5].

0 X x2n) PO N rprp—
— o anc 2 12 fimf
fi= + ¥ I4n)

x(2n-2) x(4n-2) LPF “[1™

Ve
x(n-1) x(2n-1) x(4n-1) LPF Q0™
| 12 {2 f=f
<X Q)
V) R e I s Ll
Vel

Figure 2-10 - Quadrature Demodulator Polyphase Filter Approach (M = 4)

2.3.4 Duplicated Polyphase Filters Approach

In the previous section, an appealing use of polyphase filters was made to keep the data
processing rate as low as possible when decimating by four. Here, a method proposed in
[9] will be described. It has the advantage of doubling the maximum theoretical input
signal bandwidth while maintaining the processing rate at a quarter of the sampling rate.
This case would therefore be equivalent to the Low-Pass Filter approach in terms of input

signal bandwidth, but to the Polyphase Filter approach in terms of processing rate.

Equations (2-22) and (2-27) give expressions for /(4n) and Q(4n), the decimated-by-four
filter outputs. If an overall decimation by two is desired instead, then the number of
calculated output samples must be doubled. Since /(4n) and Q(4n) are available, then

23

I(4n - 2) and Q(4n - 2) must be calculated. Following the same approach as before, the
in-phase component is calculated to be:

T

I(an—2)= ghu(m) - x(4n =2~ m)cos((4n ~ 2~ m)
= -gh” (m) -x(4n -2 —m) cos(in—;—)
- _2 hyp (4r) - x(4(n — 1) = 2)
+R£hu,(4r+2)-x(4("-")-4)
= .:;Z,,o * x(4n —2) + hypyy * x(4n - 4) (2-30)

Similarly, the quadrature component is expressed as:

0(4n—2)=S hyp(m)-x(4n -2~ m)sin(’;—(4n ~2-m)

T\‘l)-l . . .mit
= —;hu, (m)-x(4n—2—m) sm(—z—)
Roo
= -Zhu,(4r +1)-x(4(n—-r)-3)
r=0
Ror
+ 3 hp(4r+3)-x(4(n—r)-5)
r=0
= -hu,Qo *x(4n-3) + hu;Ql * x(4n —5) (2-31)

This means that the approach of Figure 2-10 can be expanded whereby hardware area is
traded for speed of operation. The four polyphase filters are duplicated. The input to the
second set of filters is a delayed version of the input to the first set by exactly two clock
periods, and the signs of the adder branches are reversed. A resulting block diagram,
derived from [9], is given in Figure 2-11. In such a configuration, the processing rate in
the filters can be halved or the achievable bandwidth doubled for a given technology, and
the hardware implementation problem now becomes one of data de-interleaving and re-

interleaving.

24

x(0) — 4 L
fi=4f ¥
Delay T = Lff,
1
)3 4 Qe
Delay T = Lif;
I 4 I
3 1
Delay T = 1/f,
L 14 Q
v
i3 L
v
Delay T = 1/f;
 — 1 K4nT-2)
3 4 Q
Delay T = Lf,
i 14 I
Delay T = Iff,
L 4 Q

Figure 2-11 - Duplicated Polyphase Filter Architecture

Alternatively, trading area for speed can be advantageous from a power consumption
perspective. Lowering the processing rate may allow a reduction in the supply voltage.
Since power is directly proportional to clock frequency, but to the square of the supply
voltage, halving the frequency while doubling chip area can still lead to a power
reduction. For an FPGA implementation, however, this would not be the case since the

supply voltage cannot be reduced.
2.3.5 Other Cases

In the previous sections, only two specific cases were considered for input signal
bandwidth and corresponding permissible decimation factor. These two cases, where M
is equal to 2 and 4, are the most common. However, it would certainly be possible to

extend the discussion to cover cases where M is another power of 2, or an odd value.

25

2.4 Odd-Length, N"-Band Prototype Low-Pass Filter

2.4.1 Halif-Band Filter

A low-pass filter can be designed such that its frequency response is symmetric around
the digital frequency m/2, and that the normalized magnitude response gain at this
frequency is 0.5:

H(E®)+H(@E™) =1
H(e™?)=0.5 (2-32)

If a FIR filter is designed with these specification and with equal pass and attenuation
band ripples, the filter is called a half-band filter [7]. An odd-length, half-band filter has
the additional properties that nearly half its coefficients are zero, and its center coefficient

is equal to one half:

1/2, n=0 }

hl/2 (n) = {0’ n= i-z, 1-4’ N (2-33)

These properties make the odd-length half-band filter economical to implement; there is
a reduction of almost 50% in computational cost. The symmetry of the impulse response
about the origin allows a further halving of the number of necessary multiplications.

In the case of the low-pass approach of section 2.3.1, an interesting consequence arises if
the low-pass prototype filter is designed to be an odd length, half-band filter. Using
equations (2-14) and (2-17) to obtain the impulse response of the in-phase and quadrature
filters, it is found that the in-phase filter is an odd-length filter with only one non-zero
coefficient, and the quadrature filter is an even-length filter:

by (M)=[... 0 0 0 hpp(0) 0 0 O ...]
hipg () =[... hip (=5) p (=3) o (<D b () Bip (3) s (5) ...] (2-34)

Implementing the in-phase filter can then be done at very low cost. Its all pass

characteristic, however, is a disadvantage in the presence of DC offsets from the ADC.

26

2.4.2 Third-Band Filter

An odd-length, third band FIR filter has similar properties to the half-band filter. Its pass
band and stop band ripples are again the same, but the cut-off frequency is /3. Nearly a

third of the filter coefficients are equal to zero:

_ 1/3, n=0
k=14 n=4+3, +6,... (2-35)

There is an interesting consequence from designing the prototype filter to be an odd-
length, third-band filter. If the low-pass approach of section 2.3.1 is again followed,
equations (2-14) and (2-17) show that the zero coefficients will be distributed evenly
between the in-phase and quadrature filters:

hip ()= oo h(=8) O hp(—0) hp(-2) hp(0) hp(®) hyp(®) O hyp(®) ...]
R =0 <o hp(=T) hp(=5) 0 hp(=D) hp@) 0 hy(S) k(D ...] (2-36)

Compared with the half-band prototype filter approach, this would increase the total
number of non-zero coefficients, and hence chip area requirements and power
consumption, but it would even out the amount of computation between the two filters.
If the order N of the prototype filter is large, then there are approximately N/2 and 2N/3
non-zero coefficients for the half- and third-band filters, respectively. For the half-band
prototype filter case, the in-phase filter has one non-zero coefficient and the quadrature
filter has N72. For the third-band filter, both the in-phase and quadrature filters have
approximately N/3 non-zero coefficients. Hence, the total area and dissipated power are
increased by a factor of 4/3 for the third-band filter compared to the half-band case.
However, the largest sub-filter length is multiplied by a factor of 2/3.

Thus, using the third-band prototype filter would reduce the maximum filter size, at the
expense of total chip area and power dissipation. Alternatively, if the two sub-filters are

distributed on two different chips, it may be better from a system perspective if the

27

overall computation effort is spread out evenly, and again the third-band filter approach

may be a better choice.

From a hardware implementation point of view, there is an important disadvantage to
following the Low-Pass Filter approach of section 2.3.1 when the prototype filter is a
third-band filter. This choice implies that the output of the quadrature demodulator
would be oversampled by a factor of 3/2, and thus that computing resources inside the
quadrature demodulator would be wasted. Communications with the next device in the

system would also have to take place at a data rate potentially greater than is necessary.

However, there are important advantages to the third-band case. Compared to the half-
band case, the filters provide a bandpass filtering function. In quadrature demodulator
system design, this function is often useful to remove unwanted signals such as DC
offsets from the ADC, and to compensate for non-ideal performance of the IF amplifier
[10]. The requirements for a separate digital bandpass filter can be relaxed or eliminated.
The allowable input signal bandwidth and number of zero coefficients is also greater than

for the quarter-band case, discussed in the following section.
2.4.3 Quarter-Band Filter

Following the half- and third-band cases, designing the prototype low-pass filter as an
odd-length, fourth-band filter would imply that almost one out of four coefficients would
be zero. This approach would be alternative for a case where the input signal bandwidth

is such that decimation by four is appropriate.

If the polyphase approach of section 2.3.3 is followed, it can be shown that all zero
coefficients would be mapped to only one of the four polyphase sub-filters. This filter
would only inherit of the center coefficient of the prototype filter, and would therefore be
reduced to a weighed delay line. All other polyphase sub-filters would become even-
length filters.

28

Therefore, the quarter-band prototype filter presents interesting advantages. As for the
third band case, a quarter band prototype filter provides useful stop bands when
compared to the half-band case. The number of zero coefficients is reduced when
compared to the third-band case. Additionally, the computational efficiency is greater,
since a reduction in processing rate is possible because the reduced pass band allows an

additional decimation by two of the output data.
2.4.4 General Case

In general, the cutoff frequency of an odd-length N*_band low-pass filter is equal to N,
and its impulse response is symmetric about the origin and is given [11] by

L ,n=0

N
h,y(n)= _l_xsin(mt/N)
N (nr/N)

,otherwise (2-37)

By inspection, the term sin(n/N) will be null for all values of n that are integer
multiplies of N, and therefore an odd-length N*-band filter will have almost | out of N
zero coefficients (the center coefficient is never null). Equation (2-37) can be used to
design an N“-band filter, in conjunction with an appropriate window function which is

selected to trade-off transition bandwidth for reduced pass and stop band ripples.

2.5 Frequency Translation by Undersampling

The discussion of quadrature demodulation so far has assumed a sampling frequency
equal to four times the carrier frequency. The obvious difficulty with this choice is the
high sampling rate that is thus required. For example, if the target center frequency is f. =
160 MHz, this would imply a sampling frequency f; = 640 MHz. The system
architectures described in the previous chapters have shown that if the signal bandwidth
is small enough, then the processing rate in the filters can be reduced to their minimum.

However, effort must be expended to de-interleave the ADC output data into multiple

29

streams, not to mention the potentially high cost and complexity of the ADC itself since it
must work at a high sampling rate. An alternative approach, suggested in [6], is that
undersampling be used to translate a signal from a high frequency to a lower one, when
allowable by the signal bandwidth.

If the sampling frequency f; is chosen such that

£=t
o 2m+1 (2-38)
where m is a positive integer, then the center frequency of the signal, £, will be aliased to
f+/4. The advantages of satisfying f; = 4 X /. are therefore effectively maintained, without
the costs of a correspondingly high sample rate. All system architectures presented so far

are therefore suitable to input signal undersampling.

Table 2-2 lists possible sampling frequencies for a carrier frequency of 160 MHz, for the

Low-Pass Filter approach. The corresponding maximum filter processing rates and

resulting signal bandwidth after demodulation are also given. For example, with f. = 160
MHz and m = 1, we have f; = 4/3x160 MHz = 213.3 MHz, which is one third of the 640
MHz calculated previously. Figure 2-12 illustrates this example.

160 0 | 6400 320.0 T 1600

160 1 2133 106.7 53.3
160 2 128.0 64.0 32.0
160 3 914 45.7 229
160 4 71.1 35.6 17.8

Table 2-2 - Alternative Undersampling Frequencies, Low-Pass Filter Approach

30

A necessary condition for this scheme to work, obviously, is that the Nyquist criterion be
respected such that f; remain at least twice the input signal’s bandwidth. In our present
case, a sampling frequency of 213.3 MHz means that the quadrature demodulator would
work with signals on a center frequency of 160 MHz with a maximum possible input
bandwidth of 106.7 MHz. After decimation by two, the processing rate in each digital
filter would also be 106.7 MHz, which lends itself well to implementation in some of the
faster FPGAs available.

The results of Table 2-2 can also be used to specify a sampling frequency given an
expected signal bandwidth. As a general rule, the lowest acceptable processing rate

should always be chosen in order to minimize power dissipation.

l l I l L I Al —[T _.
533 106.67 160 2133 266.6
f(MHzZ)
2)
| T T v T T T —»
2 r In2 pa 4 S22

b)

Figure 2-12 - Example of Frequency Translation by Undersampling

a) positive spectrum of an analog bandpass signal centered on 160 MHz. b) spectrum of
the same signal, sampled at a frequency of 213.3 MHz, with an effective frequency shift to
a quarter of the sampling rate.

2.6 Decision

In this chapter, fundamental principles for the digital realization of quadrature

demodulators were presented. This included a review of basic and improved digital

31

approaches, a discussion on prototype filter design to minimize hardware impact, and the

description of a strategy to minimize signal sampling rate by undersampling.

As discussed in the previous sections, the selection of an implementation approach
depends on a number of factors, but principally on the passband width of the prototype
filter and on the desired output decimation factor. The chosen set of filter coefficients for
the designs described in this thesis is discussed in Chapter 5. The prototype filter is a
quarter-band filter, and a decimation by four is desired. Therefore, either of the High-
Pass or Polyphase Filter approaches would be suitable since they are equivalent. The
Polyphase Filter approach is selected since it leads to a system description that is more
readily translatable to a hardware realization. It can also serve as a basis for the

Duplicated Polyphase Filters approach.

Undersampling will be used to reduce the signal sampling rate. The 160 MHz IF signal
will be sampled at 213.3 MHz. After decimation by four, the filter processing rate will
be 53.3 MHz and the maximum theoretical input signal bandwidth will also be 53.3
MHz.

32

Chapter 3

Multiplier Implementation
for Digital Filtering

3.1 Introduction

The equation for the output y(n) of a FIR filter of order N, with impulse response A(n) and
input data sequence x(n) was given (equation (2-9)) as:
Y(n) = x(n) * h(n) = h(n) * x(n) = 3 h(m)x(n—m)
m=0

For a filter of order N, there are N multiplications performed for every filter output data
sample. Zero-valued coefficients reduce this number, and so does the exploitation of the
symmetry of the impulse response. However, for large N, many multiplication operations
still have to be performed.

A n-bit, two operand unsigned multiplier generally requires a silicon area proportional to
n’. Since multiplication is a computation intensive process, a major portion of the
quadrature demodulator design effort should be expended on selecting the best possible

approach to implement the mulitipliers. In this chapter, different approaches will be

33

studied with the goal of reducing the number of adders and shifters required to implement

multiplication.

When discussing multipliers, it is customary to use the terms multiplicand and multiplier
to identify the two numbers being multiplied together, with multiplier meaning the
multiplication factor applied to the multiplicand. However, in this discussion, the
following terminology will be adopted. Multiplier will refer to the device, architecture or
circuit performing the multiplication operation. Since the action of the multipliers will be
to multiply input data by fixed filter coefficients, the term coefficient will be used to
represent the multiplication factor. The term multiplicand will be used with its usual

meaning.

3.2 Power-of-Two Coefficients

Since multiplication can be thought of as a shift-and-add process, a multiplier can be built
from a two-dimensional array of shifted adders. As an example, consider the
multiplication of the two 4-bit unsigned numbers 1001, and 1101,. It is accomplished as
follows:

1001

x1101

1001

00000

100100

+1001000
1110101

From this example, it is seen that the multiplication requires that 4 rows be added because
the coefficient, 1101,, has four bits. Each row is either a shifted version of the
multiplicand, 1001,, or made up of all zeroes. The choice is made based on the value of
the corresponding bit in the coefficient. In fact, each bit of the adder rows is the result of
the AND operation between a coefficient bit and a multiplicand bit. In the present

34

example, three two-operand adders would be necessary to perform the multiplication.
Many texts describe such general-purpose multipliers in detail [12].

The multipliers of the quadrature demodulator filters do not need to be array multipliers,
because the filter coefficients are fixed for a given design. Each multiplier is therefore a
so-called constant coefficient multiplier, or KCM. In the previous example, if the
coefficient 1101, is fixed, there is no need to consider the shifted row of zeros and the
multiplication process can be reduced as follows.

1001

x1101

1001

100100

+1001000
1110101

In this case, only three rows are added together, which means that only two adders are
required. The three rows correspond to the three non-zero bits of the multiplicand. In
general, if the coefficient has d non-zero digits, then d-1 two-operand adders are required
in the multiplier.

A logical extension of this last example is that a multiplier with a coefficient that is
represented by a single power of two is "free" since the coefficient has only one non-zero
bit. The multiplication result is a simple shifted version of the multiplicand, and no
addition is required. Therefore, from an implementation point of view, ideal filter
coefficients would be selected such that they are equal to a power of two. The
multiplications in the quadrature demodulator would then require no additions.
Alternatively, coefficients should be equal to the sum of a few (say 2 or 3) powers of two.
For every additional non-zero digit in a coefficient, one extra adder will be required in its

corresponding multiplier.

35

3.3 Signed Digit Representation of Coefficients

In the previous section, the point was made that a reduction in the number of non-zero
digits used to represent the filter coefficients would lead to smaller multipliers.
Representing the coefficients with signed digits can reduce the number of non-zero digits
necessary to represent a given number. In such a case, each digit is allowed to take a
value from the set {-1, 0, 1}, which means that numbers can now be represented by a sum
and/or a difference of powers of two. As an example, the number 127 is represented by
01111111, in the standard 8-bit binary format. Multiplication by a filter coefficient equal
to 1270 would therefore require 6 two-operand adders. Alternatively, allowing signed
digits means that 127 can be represented by 10000001, (where 1 means -1), or 1280 -
1. A multiplier using this representation for the coefficient 1279 would thus require only

one two-operand subtracter.

Intuitively, there may be many possible valid signed digit representations for a given
coefficient, and some of them may require even more non-zero digits than the standard
binary approach'. It may be shown, however, that the signed digit approach allows the
representation of any number with the least amount of non-zero binary digits. Further, if
it is chosen such that no two non-zero digits are adjacent, the representation is called the
Canonical Signed Digit (CSD) representation for that number. The proof of minimal
representation and a corresponding algorithm to calculate the CSD representation of

numbers can be found in [13].

Another advantage of using CSD is that a broader range of numbers can be represented
with a given number of bits, as compared to sign & magnitude or two's complement

approaches. With 8 bits, any number between +255 and -255 can be represented with

! As an example, 5,9 =4 + 1 = 00000101, = 128,9 - 123,0=11111011.

36

CSD. With sign & magnitude, the range is between +127 and -127. For two's
complement, it is between +127 and -128. Table 3-1 illustrates the range of values for

different number representations, given a fixed number of bits n.

One's Complement -2"-1) 2.1
Two's Complement 2 21
CSD -2"-1) 2"-1

Table 3-1 - Range of Values for Different Number Representations with n bits

Since coefficients encoded in CSD require the fewest nonzero digits, they lead to
multipliers with a reduced number of necessary shift and add operations. However, the
inclusion of negative coefficient digits adds complexity, because shifted versions of the
muitiplicand may now need to be subtracted as well as added. The binary number format
chosen to represent the multiplicand is therefore critical. The one leading to the simplest
multiplier implementation is 2's complement. When a negative signed digit is
encountered in the coefficient, the bits of the multiplicand must be inverted and a carry
must be added, then the result must be shifted as before by an appropriate number of bits.
Sign extension of the number is also necessary, which means that the Most Significant
Bit is repeated as necessary to fill the row to the left such that each row has the same
number of digits. Once all these operations are done, simple addition will produce the

correct result.
The following example illustrates multiplication by a constant CSD coefficient. The

multiplicand is a two's complement number equal to -113;0 (10001111;) and the
multiplier coefficient is +159;4 (10100001 in CSD). The expected result is -17967,.

37

10001111

x 10100001
0000000001110001
1111000111100000
+1100011 110000000
1011100111010001

Four important aspects of multiplication implementation arise from this example. First,
when one of the coefficient's digits is negative, the two's complement of the multiplicand
must be taken. In the example, the result of the sign inversion is shown directly in the
first adder row. In a digital implementation, however, each digit would be first inverted,
then a carry would be added. Second, sign extension is required when adding two's
complement numbers together. The Most Significant Bit must be repeated left as many
times as necessary to make the length of the number equal to the widest possible
expected sum. Third, using two's complement representation for the multiplicand means
that regular addition can be done on the shifted rows. Fourth, as expected, only two
additions would be required since the multiplier has three non-zero digits.

3.4 Minimum Number of Adders for Multiplier
Implementation

In the approach to multiplier implementation considered so far, the effort expended
depends on the number of non-zero digits required to represent the multiplier coefficient.
If there are 4 non-zero digits, then 4-1 adders are necessary. Since the CSD
representation requires the least number of digits to represent a given number, one would
think that CSD encoding of multipliers should yield the lowest cost multipliers (where
cost is defined as the number of two-operand adders in the multiplier). However, a
method proposed in [14] and [15] achieves an average improvement in the number of
two-operand adders of 26.6% and 16% for 32 and 12-bit word multipliers, respectively,
over a CSD approach. The following example illustrates the principle of the method.

38

Consider multiplication by the coefficient 45;o. The normal binary representation of this
coefficient, using 8 bits, is 00101101, for 45 = 2° + 2°+ 2% + 2°. The CSD representation
is 01010101 (where *1” represents a —1), for 45=25—2* — 22 +2° Thus, in both cases
there are 4 non-zero digits and consequently 3 adders should be required'. However, 45,9
can also be expressed as 45 =9 x 5 = (2% + 1)(22 + 1). Thus, the multiplicand can first be
multiplied by 9, which requires only one addition. The intermediate result is then
multiplied by 5, which also requires only one addition. Therefore, only 2 adders are
required for the complete operation. Figure 3-1 illustrates this example.

Algorithms for decomposing multiplier coefficients such that the multiplication process is

minimum are given in [14], [15], [16] and [17].

Obviously, a reduction in the required number of adders between this method and the
standard one with CSD representation will depend on the value of the filter coefficients.
Coefficients equal to a power of two, and those represented by a sum or a difference of
two power of two numbers cannot be reduced any further. Intuitively, the greatest
reduction should be attained for coefficients which can be decomposed into many factors.

In Chapter 4, a filter architecture that exploits redundancy in the factors that repeat in a
set of coefficients will be presented. For example, the coefficients 45 and 18 each share
the factor 9, which is implemented with only one adder. If the partial product
corresponding to the factor 9 could be reused somehow, a further reduction in the total

number of adders necessary to implement a digital filter could be gained.

! For this specific example, there is no advantage gained from using a CSD representation for the multiplier
coefficient instead of the standard binary format.

39

x 2% 24 22 2° x o 2°
-— -— -— - -— «—
45xc 2* 2°
-—— shift operation
45x
(a) (®)

Figure 3-1 - Multiplication by 45
(a) Standard approach, with CSD. (b) Minimum number of adders approach.

3.5 Look-Up Table Approach for FPGA Multiplication

FPGA Configurable Logic Blocks (CLB) can be programmed to behave as Read-Only
Memory (ROM). This feature offers an interesting alternative technique to multiplier

implementation with constant coefficients.

For the Look-Up Table (LUT) approach, the order of the multiplication process is
reversed such that the coefficient is multiplied by the multiplicand. For example, say that
the 12-bit multiplicand 4A9y must be multiplied by the 8-bit coefficient BSyex. Instead,
we multiply BSyex by 4A94x. The process is as follows:
BS
X 49A
AxBS

16,, X9xBS
+256,, X4xBS

40

It is obvious from this example that a stored table with the values of the 16 hexadecimal
digits multiplied by the constant BSy.x would be very useful. If such a table existed, then
the multiplication process could be reduced to two additions of pre-calculated values with
the appropriate shifts.

Each CLB in the Xilinx 4000 series can be programmed as a 16 x 2-bit memory, by using
the F and G function generators as 16 x 1-bit memories. This is the basic building block
for the LUT multiplier. In general, for a coefficient expressed with c bits, then ¢ + 4 bits
are required to express all possible results from the multiplications of that coefficient
with a 4-bit number. Since each CLB can store 2 bits, then (¢ + 4)/2 CLBs are required
for each LUT.

The multiplicand is decomposed into slices of 4 bits. These four bits select one of the 16
possible pre-calculated products of a LUT. If the multiplicand is expressed with m bits,
then [m/4] LUTs will be required, where the brackets signify rounding up to the nearest

integer.

Therefore, in the previous example (4A9x X BSue), three LUTs (because the
multiplicand is expressed with three slices of four bits) each composed of 6 CLBs
(storing 12 bits = 4 + 8 for the coefficient) would be required. The three LUTs would be
identical, and would store the 16 possible products of x times BS, forx=0,1, 2, ... E, F.
Two adders would complete the design of the LUT multiplier.

Figure 3-2 below gives a block diagram for a LUT multiplier where both the multiplicand
M and the coefficient C are expressed with 8 bits, with a product P of 16 bits [18].

3.5.1 Advantages of LUT Approach to Multiplication in FPGAs

The LUT approach to multiplication by a constant coefficient presents many advantages
in FPGAs.

41

M(7:0) M(7:4)
., P LUT
78 “a £xC 12 P(15:4)
12-bit >
adder 12
, P(15:0)
78
M3:0) LUT
7 Z P30)
7 2 xC 7 2 Yyl
74

Figure 3-2 - LUT Multiplication Block Diagram

When compared to a general-purpose multiplier, there is obviously a great area utilization
advantage to the LUT approach, as there was for the CSD method for constant
coefficients. The LUT approach is very compact, and greatly reduces the number of
arithmetic operations that must be performed to calculate a product.

When creating a system with many multipliers, or when designing many systems that will
utilize multipliers, the LUT approach can greatly simplify the design process. For a
given set of multiplicand and coefficient size, the multiplier only needs to be designed
once. The placement of CLBs and routing of signals internal to the multiplier can be
carefully optimized for speed, area and/or power consumption, then the multiplier can be
considered as a building block. Modifying the value of the coefficient doesn’t involve
any structural changes, only the stored values in the CLBs need to be replaced. The
multiplier building block can then be reused as necessary. While this would be true for a
general-purpose multiplier building block, the advantage of the LUT approach is again
the great reduction in necessary resources. Alternatively, CSD encoding of the
coefficient requires the designer to optimize the multiplier for every coefficient.

For FIR filter designs, the LUT approach has a few interesting advantages over the CSD
method discussed previously. First, the number of non-zero digits used to represent a

coefficient is irrelevant, and this simplifies the filter design greatly since no time need be

42

spent on optimizing the quantization of floating point coefficients'. Second, since all
multipliers in the filter are structurally identical (same placement and routing), the LUT
approach favors filter architectures that exploit the repetition of a regular structure. This
will be discussed further in section 4.5.3. This approach not only increases design
density on the chip, it also makes the design process much more simple. Finally, for a
given filter order, changing the filter coefficients simply requires that the LUTs be
reprogrammed: there is no need for mapping, placing and routing the design again. In
fact, an optimized version of the filter can itself be considered a building block from that

point on.
3.5.2 Comparison of the Area Used by LUT and CSD Approaches

The LUT approach to multiplier implementation has one significant disadvantage. For
trivial coefficients, such as zero, one, and any power of two, it produces a multiplier that
is grossly inefficient. The multiplier is also far from optimum for coefficients equal to
the sum of a few powers of two. The analysis presented in this section will assume that
the multiplicand is represented in two’s complement using 8 bits, and that the coefficient

is restricted to values between —128,¢ and +1274,.

In the CSD approach, the number of CLBs used to implement a multiplier depends
directly on the number of non-zero digits used for the coefficient. It was mentioned
already that if a CSD coefficient has 4 non-zero digits, then d — 1 two-operand additions
will have to be performed by the multiplier. The number of bits that need to be added at
every step of the shift-and-add process is equal to the number of bits in the multiplicand
plus one, for two’s complement addition. At every step, a portion of the least significant
bits do not require an adder, since they would be added to zero. If the multiplier is fully
pipelined, however, then these least-significant bits will need to be pipelined.

! However, the choice of a suitable scale factor prior to rounding may still be helpful.

43

Implementing the addition of two 2’s-complement, 8-bit numbers requires S CLBs for a
9-bit result [19]. Therefore, following our assumptions, the number of CLBs in a non-
pipelined multiplier is equal to (d — 1) x 5, where d is the number of non-zero digits in the

coefficient.

If the multiplier is pipelined, the required number of CLBs varies depending on the
coefficient. In the worst case, the coefficient has non-zero digits in extreme positions.
The coefficients 01010101 and 10000001 are examples of this. For the coefficient
10000001, the seven least significant bits of the multiplicand need to be registered, which
requires 3.5 CLBs. Table 3-2 gives worst-case quantities of CLBs for non-pipelined and
fully pipelined CSD multipliers with a coefficient between -128 and +127. Column 2 of
the table lists the distribution of these 256 possible coefficients according to the number

of non-zero digits they have, and column 3 gives the amount as a percentage of the total.

For example, zero is the only coefficient with no non-zero digits.

3 120 46.9% 10 20.0
2 72 28.1% 5 8.5
1 15 5.9% 0 4.0
0 1 0.4% 0 0

Table 3-2 - 8-bit CSD Coefficient (-128 to +127) Multiplier Statistics

For the LUT approach, the calculation of the number of required CLBs is much more
straightforward. For an 8-bit multiplicand, and a coefficient expressed with 8 bits (i.e.
between —128 and +127), we have the situation of Figure 3-2. Each 12-bit LUT occupies
6 CLBs. The 12-bit, two-operand adder requires 7 CLBs. The total is therefore 19 CLBs
for a non-pipelined case. If one level of pipelining is added between the LUTs and the
adder, then the four least-significant bits must be registered, necessitating two more
CLB:s for a total of 21.

Therefore, from the strict point of view of area utilization, the LUT approach to
multiplier implementation is preferable for only 19% of the coefficients between -128
and +127. As long as a CSD coefficient has less than 4 non-zero digits, the CSD

approach is better.
3.5.3 Comparison of the Speed Between the LUT and CSD Approaches

In both the LUT and CSD approaches to multiplier implementation, the maximum
processing rate ultimately depends on the width of the adders within the multiplier. As
before, it will be assumed that both the multiplicand and the coefficient are 8-bit

numbers.

For the LUT approach shown in Figure 3-2, there is one 12-bit wide adder, and typically
only one level of pipelining. For the CSD approach, the addition of any two shifted
replicas of the multiplicand requires a 9-bit adder. Therefore, the CSD approach is
generally always faster than the LUT approach by a small margin. It would be possible
to improve the speed of the LUT approach by pipelining its adder, but its implementation

cost would then increase further.

3.6 Decision

The selection of a multiplier approach depends on a number of factors, and especially the
level of design optimization that is required in terms of chip area used, power

45

consumption and target processing rate. If those are unimportant, then the Look-Up
Table approach should be followed because it simplifies the design process greatly and
enhances design reusability. However, for the quadrature demodulators related to the
present research, design optimization is of prime consideration. The chosen set of filter
coefficients for the design was carefully selected to minimize the total number of non-
zero digits. A more detailed description of these coefficients and the design constraints
followed to obtain them will be given in Chapter 5. It was also essential to maximize

processing speed.

Therefore, the CSD approach to multiplication is selected in order to minimize the total

area occupied by the design and to maximize processing speed.

Chapter 4

Filter Architecture Selection

4.1 Introduction

Since the in-phase and quadrature digital filters perform virtually all of the computations
in the quadrature demodulator, they are therefore the subject of most of the design effort.
An appropriate filter architecture must be selected with great care, as it will have a major
impact on many hardware realization performance metrics, such as speed of operation,
power consumption, ease of placement and routing of mapped blocks, register

requirements, overall CLB count, and ease of pipelining of the data processing paths.

4.2 Basic FIR Filter Architectures

The output y(n) from a FIR filter with impulse response A(n), filter length », and input
sequence x(n) was given in equation (2-9) and is repeated here. It is equal to the
convolution of the input sequence and the filter impulse response:

N-1

y(n) = x(n)*h(n) = h(n) *x(n) = Y h(m)x(n—m)
m=0

47

4.2.1 Direct Form Realization

From equation (2-9), it can be seen that the filter output is 2 weighted sum of a finite
number of present and past filter inputs. The direct hardware realization of this equation
is presented in many texts [20] and consists of a chain of data registers, with taps between
each register leading to a constant-coefficient multiplier. The multiplier coefficients are
equal to the filter’s discrete impulse response values. The outputs of all multipliers are
added together to form the filter output. This filter realization is appropriately named the
direct or canonic form, and a block diagram is given in Figure 4-1.

x(n-1) x(n-2) x(n-(V-2)) x(n-(N-1))
Delay T Delay T Delay T |

x(m) Delay T

k(0)

v

Figure 4-1 - Direct Form Realization

The multiple operand adder in this architecture will pose a problem when the processing
rate is a critical factor. There are a number of ways to solve this problem, including

pipelining, and these techniques will be discussed in the following sections.

The multi-operand adder can also present an interesting design alternative. Instead of
adding individual products, all shifted versions of the multiplicands can be added
together in a larger multi-operand adder. This approach is the one adopted in the existing
version of a quadrature demodulator by CRC [21]. The resulting adder therefore grows
in complexity, and is ideally implemented with pipelined blocks of Carry-Save Adders.

Since the coefficients are fixed, the number of sign changes is known a priori, and the

48

carries generated from the sign inversions can also be added a priori. Data multiplied by
a negative coefficient therefore only needs to have all its bits inverted prior to addition.

4.2.2 Transposed Form Realization

Altermnatively, the Transposition Theorem [3] can be used to realize equation (2-9)
differently. The resulting architecture is known as the transposed or inverted form. In
this case, only the present filter input is processed. Other previous inputs are not kept in
memory. Instead, partial results are computed and registered for every filter input. Each
partial result is a sum of a previous partial result and of the multiplication of a filter
coefficient with the present input. The architecture is shown in Figure 4-2.

x(n)

KN-1) h(N-2) h(N-3) LU h(0)

y(n)

Delay T Delay T ————p{ DelayT Delay T

Figure 4-2 - Transposed Form Realization

A major advantage of the transposed form is the inherent pipelining built within the filter
structure. Consequently, there are no multi-operand adders in the filter, except possibly
inside the multipliers. This is ideal for an FPGA implementation targeting the Xilinx
4000 series, which favors the implementation of two-operand ripple carry adders.

In the same vein, the registers embedded in the adder chain do not require extra silicon
area in the FPGA, since each CLB’s output can be of a registered type. The adders are
therefore converted into registered-output adders. This is a much more efficient
utilization of FPGA resources than for the direct form realization, where the delayed
input chain requires that a large number of CLBs be set aside solely for their output flip-

49

flops. Other resources within these CLBs, such as function generators and carry chains,

are not used and are not available for other purposes.

4.2.3 Cascade Form Realization

A third filter architecture is the cascade form [3]. It is characterized by a chain of
independent filters, with the output of a given filter being fed as input to the next one in
the chain. For such a realization, the overall filter transfer function, H(Z), must be broken

down into a product of other transfer functions of lesser order:

K
H(Z)=gﬂt(2) @l

The most simple breakdown would be one where each sub-filter transfer function is a
quadratic expression, but there is no restriction to the transfer function order. In fact,
there is also no restriction on the particular architecture (direct or transposed) selected for
each one of the sub-filters. In that respect, the selection of the cascade form realization
would imply that an independent architecture selection can be done for each of the sub-
filters. A block diagram of the cascade realization is given in Figure 4-3.

x(n) wn)

Figure 4-3 - Cascade Form Realization

Given an overall filter impulse response, the task of calculating coefficients for each of
the sub-filters is non-trivial. The overall transfer function must be calculated, then a
separation among the sub-filters must be done, and finally filter coefficients can be
calculated. For the case where the sub-filters are low-pass, one advantage of this
approach is that decimation operations can be distributed among the various stages to

obtain the optimal trade-off between accuracy and computational cost.

50

The selection of the cascade form must be made in conjunction with the design of the
desired filter transfer function and corresponding coefficient search. From a hardware
point of view, each sub-filter should then be designed based on either of the direct or

transposed forms, as appropriate.

4.3 Linear-Phase FIR Filter Architectures

As discussed previously, a linear phase characteristic is very desirable for wide band
quadrature demodulator filters, to preserve information contained in the input signal. A
linear phase characteristic also presents a potential advantage from a hardware realization

point of view, as will be seen shortly.

It can be shown that FIR filters with linear phase characteristics can be obtained by
constraining the filter coefficients to be symmetrical about the center coefficient.

Specifically, for a filter of length N, if the filter impulse response satisfies
h(n) = h(N- 1- fl) (4.2)

then the filter has linear phase [3].

This condition can be applied to equation (2-9) to take advantage of the impulse response
symmetry. For a linear phase, even length filter (N even), the output of the filter is given
by:

N12-1

ym) = S hen k) + x(n - (N =1~ k)] -3

From this equation, it is obvious that there is a reduction by a factor of 2 in the number of
multiplications when compared to the non symmetrical case. This is likely to be a clear
advantage for a hardware realization. A similar equation can be derived for an odd-
length filter.

51

Two alternate filter architectures can be derived from the basic direct and transposed
forms for linear phase FIR filters, each exploiting the symmetry property of the impulse
response. Since two samples are multiplied by any one coefficient (except the center
coefficient of an odd-length filter), it can be much more effective to add the two samples
together before multiplication. The equivalent realizations, for direct and transposed
forms, are shown in Figure 4-4 and Figure 4-5, respectively.

x(n) x(n-1) x(n-2) x(n-(N-2)) x(n-(N-1))

‘)..‘ Delay T l__.l Delay T { [Deiay T | I Ddaqu_‘_.{odayr

Non)

)

4

-
Figure 4-4 - Direct Form Architecture, FIR linear phase filter, N even

x(n)

#(0) h(1) m2) h(NT2-1)
% —
—p{ Delay T Delay T | Delay T
Delay T
)
.___dzb. Delay T Delay T _+ DelayT |

Figure 4-5 - Transposed Form Architecture, FIR linear phase filter, N even

For the transposed architecture, there is an additional benefit in that the fanout of the
input data is reduced by a factor of two. For the direct form architecture, a small

52

disadvantage may arise for high filter orders. Long interconnects may be required to add
signals that are at opposite ends of the register chain (for example, x(n) and x(n — (N ~
1))). The long interconnects will complicate routing, increase power consumption, and
possibly increase overall delay. Placement of the register chain components would

therefore be critical.

4.4 Transposed Forms with Multiplier Block:
Exploiting Coefficient Redundancy

In section 3.4, the principle of decomposing filter coefficients in their factors to reduce
the number of adders for multiplication was presented. It was also suggested that
redundancy of factors in a set of coefficients could be exploited, as reported in [14]. This
approach could then ensure that the total multiplication effort to implement a filter would

be minimized.

If the transposed form realization shown in Figure 4-2 is used, then all multiplications of
the input data occur at the same time. Using the minimum representation of multipliers,
it may be possible to reuse partial products between coefficients. For example, say that
coefficient A(7) is 45, and coefficient 4(j) is 18. The total multiplication effort for the two
coefficients requires only 2 adders. The input data x is first multiplied by 9, as in Figure
3-1(b), to give the interim result 9x. It is then multiplied by 5 to yield 45x. The interim
result is also shifted one bit to the left to yield 18x. Thus, both multiplications are
accomplished using only 2 adders.

The individual multipliers of the transposed form can be combined in one major
multiplication block, as shown in Figure 4-6 and Figure 4-7. The direct form realization
of Figure 4-1 does not lend itself well to exploiting coefficient redundancy, because each
multiplier in the filter is operating on a different data sample. The reuse of partial results
would require a complex registering mechanism that would make the approach

inefficient.

53

x(n)

Multiplication Block

wn)
Delay T Delay T | Delay T Delay T

Figure 4-6 - Transposed Form FIR Filter with Multiplication Block

x(n)

Multiplication Block

o4 Delay T Delay T | Delay T

¥n)

,_Czb, Delay T Delay T Delay T |

Figure 4-7 - Transposed Form Symmetric FIR Filter, N Even, with Multiplication
Block

When realizing a filter in hardware, a legitimate question is therefore: Is the effort
required to extract coefficient redundancy worth it? Dempster and Macleod [17] have
studied this question by applying their redundancy-finding algorithm to a large number of
random sets of coefficients of different sizes. Their first result is intuitive: the larger the
set of coefficients, the more likely that some redundancy can be found and exploited.
The second result is also intuitive: a smaller word length for the coefficients is likely to
yield more redundancy as well, since the coefficients are more likely to have similar
values. Thirdly, the improvement over the standard filter design will depend on how
many adders are required for the multipliers before redundancy is exploited. As the

54

authors point out, most FIR filters have many small coefficients that can often be
represented by only one signed digit with acceptable accuracy. In these situations, no
adders are required and little redundancy can be exploited. The final conclusion from the
paper is that the multiplier block technique can lead to filter realizations where the
contribution of the multipliers in the overall complexity is far less significant than the
contribution from the structural adders and delay elements.

4.5 Pipelined Architectures

In order to process data at the highest possible rates on a FPGA, pipelining of the data
paths is essential in the quadrature demodulator. This technique consists of breaking up
data paths into smaller blocks, with processing done in parallel among the blocks. The
latency of the overall operation is increased, but the output data rate can be increased
significantly. Latency is defined as the number of clock cycles required between the time
a given data appears at the input, and the time its effect is first seen at the output. In
some applications, an increase in latency is not acceptable, and other design and
optimization techniques must be used to increase processing speed. This is generally not

the case for quadrature demodulators.

FPGAs are also prime candidates for extensive pipelining because they are register-rich.
As mentioned already, each CLB output has an attached flip-flop that only needs to be
activated at chip programming time, and these flip-flops can therefore be considered

“free”” from a chip real-estate point of view.

It is true that adding flip-flops in a data path requires that setup and hold times be
considered, and that the extra circuitry increases power consumption. However, it may
be the only way to meet a stringent timing requirement. In many ASIC technologies, the
problem of clock distribution is increased with register count. For FPGAs, however,
dedicated clock distribution networks are available on the chip at no additional routing
cost. Therefore, pipelining techniques are the method of choice to increase processing

55

rate, especially in FPGAs, and they can be used extensively throughout fast quadrature
demodulator designs.

4.5.1 Pipelined Adder Tree for the Direct Form (Version I)

The main disadvantage of the direct form realization of Figure 4-1 and Figure 4-4 is the
multi-operand adder. For high-speed applications such as the quadrature demodulator,
this adder must be broken down into a number of pipelined stages. As discussed
previously, an existing quadrature demodulator design at CRC breaks the large adder into
a series of pipelined 3-to-2 compression stages [21]. For an implementation on a Xilinx
4000-series FPGA, however, the dedicated carry logic favors two-operand adder
configurations based on ripple carry. For the direct form, an adder tree configuration,
shown in Figure 4-8, is therefore the most appealing approach.

) Delay T Delay T Delay T Delay T Delay T Delay T
HO) K1) ") 3 #4) KS))
Delay T Delay T Delay T Delay T
Delay T
Delay T
y(n)
Delay T >

Figure 4-8 - Pipelined Direct Form, Version I: Adder Tree

56

There are two main disadvantages to the adder tree. The first one is that the tree only
scales optimally for filter orders that are a power of 2. For example, in Figure 4-8 the
right-most multiplier output must be registered prior to addition to an intermediate sum.
The second disadvantage is that the tree interconnects get progressively longer with
higher filter orders, and the structure is not easily compacted in a regular array of CLBs
on an FPGA.

4.5.2 Ailtemnate Pipelined Direct Form (Version i)

An alternate pipelined direct form architecture is shown in Figure 4-9. It doesn’t suffer
from interconnects that get progressively longer as in the tree structure described above.
It is very similar to the basic transposed form of Figure 4-2, but requires a second, half-
rate clock for the input delay chain (or, alternatively. twice as many registers). In either
case, an increase in the number of registers over the basic transposed form is necessary.
There are no significant advantages to using this architecture, and it will not be
considered further.

() x(n-1) x(n-2) x(n(N-2)) (n<(N-1))
Delay 2T . Delay 2T T Delay 2T . Delay 2T
h(0) A1) h2) MN-2) R(N-1)
X X —_
¥(n)
| Delay T Delay T Z Delay T Delay T

Figure 4-9 — Pipelined Direct Form, Version II

4.5.3 Transposed Form with Pipelined Input for Facilitated Placing and Routing

One of the drawbacks of the transposed form realizations of Figure 4-2 and Figure 4-5 is
the high fanout of the input data stream for high filter orders. The consequences of such
a high fanout is a longer propagation delay, and possible difficulty in routing
interconnects on the chip. The input data is not only routed to many multipliers, it must

57

also drive a number of adders within each multiplier. Pipelining can be used to reduce
this problem by adding a data register before each of the multipliers, as shown in Figure
4-10. The fanout of the input data is then reduced to the order of the filter, or to half of
the filter order for the linear-phase case. Each added register now acts as a data buffer to
drive its adjoining multiplier. If the input data fanout is still too high, a further
improvement would involve a “tree” distribution, a technique often used to distribute a
clock signal in a chip. An alternative approach would be to break the input data and
addition paths at the same level and insert additional pipeline registers.

x(n)

[
t
|
Delay T ; Delay T Delay T Delay T Delay T
- E - -
A(N-1) | A(N-2) h(N-3) D) A(0)
! X —
| S .
f ¥(n)
Delay T S) DelayT wr———p Delay T Delay T

b

Figure 4-10 - Transposed Form with Pipelined Input

This architecture also presents the advantage of a regular block structure, highlighted in
the figure, which is a most desirable feature for FPGA realization and for other VLSI
implementation approaches'. Once a block has been optimized, a high order filter is built
by simply connecting together many blocks, which involves simple placement and
routing. It also increases the density of the design on the FPGA since the blocks can be
neatly stacked one beside the other. For optimal input data distribution, all sub-blocks

! This assumes that all multipliers in the filter have the same physical structure on the FPGA (i.e. number
and relative position of CLBs, and routing). Since interesting filters have coefficients that are not all
identical to each other, this implies a Look-Up Table approach for the realization of the multipliers.

58

must be aligned horizontally so that one of the long distribution lines can be used for
routing. The technique is easily extendable to implementation across multiple chips, and
is equally applicable to the realization of linear-phase filters.

4.5.4 Pipelined Multiplier Biock for the Transposed Form

The transposed architecture with multiplier block was presented in section 4.4 and the
advantages of exploiting coefficient redundancy were explained in section 3.4. There is

another advantage to the multiplier block architecture.

In all cases, if pipelining of the multipliers is introduced, then each mulitiplier’s latency
must be identical. Since some multipliers may be reduced to a simple shift of the input
data, they would not normally require pipelining. However, if some coefficients require
multipliers with many stages of pipelining, then for the standard approach even the
simple shift-multiplier will require a large number of pipelining stages. For a high order

filter, there would be a considerable overhead in extra registers.

With the multiplier block approach, the input data can be registered to a depth
corresponding to the number of pipelining stages required by the most complex
coefficient. Each multiplier then “extracts” the input data at the required pipeline depth
for its own processing. For the most simple multipliers, whose coefficients are expressed
by one or two non-zero digits, the input data is taken from the last pipeline stage. For the
multipliers with coefficients expressed by three non-zero digits (i.e. requiring two
additions), data is taken from the two last pipeline stages. Multipliers with more complex

coefficients progressively take data sample from more pipeline stages.

An example of a pipelined multiplier block is shown in Figure 4-11.

59

x(n)

Delay T
3 553‘ gEE gzg
Delay T 2e¢ 23 EEH
CER 53§ EE5
Delay T §£§ %5% %6?
$=2 - S=g
S —p"ET I —ep T E

Delay T

| 4=r _T

-
Voo

multiplier results to adder chain

Figure 4-11 - Pipelined Multiplier Block Example

4.6 Fast Addition for Digital Filter Architectures

In this section, the specific problem of increasing the speed of the additions in the filter

architecture will be considered.

The Dedicated Carry Logic in the Xilinx 4000 series FPGAs leads to very fast two-
operand ripple carry adders. The dedicated carry paths usually make sophisticated adder
configurations such as the Carry Bypass and Carry Look-Ahead adders unnecessary. For
the 4000XL family of chips with a “-09” speed grade, the fastest ripple carry adders run
at 139 MHz for 8 bits, 115 MHz for 16 bits, 98 MHz for 24 bits and 86 MHz for 32 bits
[22]. While impressive, these results may not be enough for quadrature demodulator
designs with high filter orders that require adders that are both fast and wide.

60

Because the Dedicated Carry Logic is so fast compared with the rest of the propagation
characteristics in the Xilinx FPGA, it makes sense to take advantage of it as much as
possible. Three alternative adder architectures that are based on the ripple carry will be
considered: the Carry Select Adder, the pipelined ripple carry adder, and a proposed
delayed-carry adder chain.

4.6.1 Carry Select Adder

The Carry Select Adder configuration is a prime candidate to accelerate the additions in
the filter. In this adder configuration, the addition is broken among a number of stages
each dealing with a fraction of the total number of bits to be added. At all stages except
the least-significant one, two adders are active at any one time, each assuming a different
value for the carry from the previous stage (‘0’ for one adder, ‘1’ for the other). Once the
carry out from the previous stage is available, it controls a multiplexer to select the
appropriate present stage adder output. All adders at all stages are ripple carry adders.
An example for a 32-bit Carry Select Adder segmented in two stages is presented in
Figure 4-12.

The advantage of the Carry Select Adder is that the delay on its critical path is much
reduced when compared to the ripple carry adder, since the carry doesn’t need to
propagate as far. It also doesn’t require pipeline registers. However, it requires more

silicon real-estate for the extra adder and multiplexer at every stage.
4.6.2 Pipelined Ripple Carry Adder

If chip area is limited, the Carry Select Adder loses its appeal. In such a case, a pipelined
ripple carry can offer the same performance [23]. The disadvantage is an increased
latency and a requirement for extra registers. For quadrature demodulators, increased

latency is not a concern, and registers are available at low cost in the targeted FPGAs.

As for any other pipelining strategy, the idea is to break the addition into different stages
and to add a level of registers at each stage. The addition in each stage is delayed in time

61

by one clock cycle from the previous stage. The carry from one stage is also delayed,
and fed to the next stage as it begins processing its data. The results of each stage are
also registered as many times as required to ensure that the adder output bits are
synchronized. Figure 4-13 illustrates the method for a 32 bit adder segmented into two
16-bit adder stages.

Carry [n
¢
Cin
AUS0) —
16-bit Adder 16 , o Sum(i5:0)
vé —-»>
B(15:0) C out

I

R}
A(31:16) .L e

16-bit Adder
BOLIE) Cout
16 .
L // » Sum@l:16)
l Multiplexer
Cin
AQ@GL:16) o 16/ i & > Carry Out
16-bit Adder VA
8(3‘:16)——0 Cout
I

Figure 4-12 - Carry Select Adder Example

In the first stage of the adder, the least significant halves of the two operands are added
together. The sum is registered, together with the last carry out. The most significant
halves of the two operands are registered as well. In the second stage of the adder, the
registered most significant halves of the operands are added together with the carry out

62

from the previous stage. The most significant half sum is then combined with the
registered least significant half sum for the final resuit.

CarryIn
Cin
A(15:0 —»
) R Sum(15:0) Sum(15:0)
16-bit 16, - 16/
T |—»
Adder / /
B(15:0) . 3 p
Cout
Delayed Carry
T
p
Cin
AG1L:16) T o Sum(31:16)
16-bit 16 ,
D T | —»
Adder 7
D
C out
B(31:16), T r Carry Out
p T p———p
P

Figure 4-13 - Pipelined Ripple Carry Adder Example

The advantage of the pipelined ripple carry adder is that the processing rate is now only
limited by the speed of one of the adder stages (as for a Carry Select approach with two-
level segmentation). With the previous Xilinx specifications given, and for the example
illustrated above, this means that a 32-bit adder could run at almost the 16-bit adder speed
of 115 MHz, with a small reduction due to the extra routing delay between the stages and
through the registers. The main disadvantage, other than an increased latency, is an
obvious increase in the storage requirements. For the present example, 33 extra registers
are required to delay the most significant portion of the operands and the delayed carry.
In general, for an N-bit adder segmented into & stages of equal size, the extra register
requirement grows as the square of the stage size N/k. A 32-bit adder segmented into 4
stages of 8 bits would require 147 extra registers.

63

In the case of an FPGA implementation, this means that a great number of extra CLBs
would have to be dedicated to registering data without performing any processing, which
is far from an efficient device utilization. A high packing ratio could probably not be
attained. The pipelined ripple carry adder should therefore not be considered to increase
design performance of the quadrature demodulator.

4.6.3 Delayed-Carry Chain

Although considered too expensive in overhead, the pipelined ripple carry adder concept
opens up an interesting alternative, only alluded to in [23]. In the case of FIR filters
implemented with one of the transposed forms, the whole pipelined adder chain can be
segmented into a number of adder sub-chains. A simple example with a 4" order filter is

shown in Figure 4-14, with a segmentation into two stages.

x(r)

k)

\/

Most
T X
Least

Least Significant
Chain

wn)
i ’ (Least Significant)
T

Most Significant
Chain

|
Delayed Carry {
|

Figure 4-14 - Pipelined Delayed-Carry Adder Chain Example (Transposed Form)

Each adder in the adder chain is decomposed into a number of stages corresponding to

portions of the data to be processed. Results from each adder in a stage are not

64

synchronized but passed immediately along the chain. Adder stages of more significant
levels must receive the previous level’s carry out before proceeding, and the carry is
therefore delayed as in the pipelined ripple carry adder. Synchronization is done only at
the end of the adder chain, with the consequence that a very high device utilization
density can be reached. Except for the end of the adder chain, no CLBs need to be

reserved for registering only.

The input data to the adder chains must be properly segmented and skewed in time. In
the example of Figure 4-14, it is seen that the multiplier outputs are divided into most and
least significant halves. Each half is fed to its corresponding adder chain, but the most
significant data is first delayed by one clock cycle. This is necessary to ensure that the
carry from the least significant chain arrives at the same time as the most significant

multiplier result to be added in the most significant adder chain.

The pipelined delayed-carry adder chain concept described here for the transposed form
could be easily adapted to the adder tree structure of the direct form shown in Figure 4-8.
In either case, the adders can be segmented into as many stages as required, down to the

case where they reduce to half- and full-adders.

The system overhead has two components: the additional registers in the multiplier block
required to delay the arrival of operands to the adder chain, and the additional registers in
the adder chain itself. The first overhead component depends on the value of the filter
coefficients, since the number of registers required will depend on the width of the
multiplication product. If a multiplication product is expressed with a number of bits
smaller than the adder chain bus width at this stage, then only one bit needs to be carried

for sign extension.

For the adder chain, the overhead can be calculated as a function of the number of
segmentation levels, S, the order of the filter N, and the number of bits in each level, n;.
This value is assumed to be constant for every segmentation level, but a generalization
could be made. First, N - 1 registers are required per segmentation level for the delayed

65

carries. Second, the overhead due to the final synchronizationis equalto (0 + 1 +2 + ...
+ (8 — 1)) x n;. The total adder chain overhead in registers, R, is therefore equal to:

R=S-(N-D)+n,-(0+1+2+...+(S-1)

=S (N=D)+n,-SE=D

n n
=L g2 sV -1-22
2 (2) (4-4)

It is seen that for the adder chain the overhead is proportional to N and to the square of S.

The increase in processing rate significantly depends on the ripple carry adder timing
characteristics of the target chip. An adder characterization study was performed for
different X4000 families of FPGAs, and the results are presented in Appendix B.
Disregarding routing delays to the adder, the latency for different ripple carry adders is
approximately linear with a coefficient k, for adders wider than 4 bits. Applying the
delayed-carry concept to an adder chain reduces the widest adder widths from ng to (n; +

1). Given that the initial latency was 7,, the new latency is therefore approximated to:

I.=T,-k(ny—n_-1), ny>n_+1 (4-5)

5

The latency decrease can be expressed as a ratio to the initial adder latency:
k(n,—n_—1)
T, 4-6)

Alternatively, the increase in processing rate is expressed as the ratio of the new

processing rate to the initial processing rate:

{2

speedup = TLXT

0 “-7)

It should be obvious from this relation that the increase in processing rate will be greater
if k is large and if the number of segmentation levels is increased such that n; gets very
small in relation to ny. From the results of Appendix B, the value of k gets progressively
smaller for the faster X4000 FPGA families, and smaller as well for faster speed grades
within a family. The increase in processing rate for a digital filter in which the delayed
carry adder chain is implemented would therefore be greatest for the slowest FPGA
families, and for cases where the initial adder chain width is widest. This last condition
will occur most likely for high filter orders.

The delayed-carry adder chain has a few additional advantages other than speed. A high
device density is maintained because few CLBs are reserved for their flip-flops only. A
digital filter to which this approach is applied also benefits from facilitated placing and
routing, for X4000 FPGAs. This is a consequence from the fact that using the dedicated
carry logic requires ripple carry adders to be placed as a column for maximum speed.
Segmenting large adders into smaller ones makes their placement easier. Finally, as
shown in Figure 4-14, an additional advantage comes from the regular structure that can
be easily repeated across an FPGA, as discussed in section 4.5.3.

4.7 Analysis of the Alternative Filter Architectures

Various alternative filter architectures were described, and some of their relative merits
and disadvantages were identified. A summary of these merits is presented in Table 4-1.
It is difficult to make an exact comparison between most of the architectures, however,
because the set of specific coefficients chosen for a filter will have a direct impact on
whether a certain architecture is preferable over another one. For example, if a set of
coefficients exhibits a lot of redundancy, as described previously, then it would make
sense to use a transposed form with multiplier block. Alternatively, in most cases
coefficient symmetry should be exploited to reduce the number of multipliers in half, and
to reduce input data fanout in the transposed forms.

67

<N |

Direct

linear phase No Yes No <N No No 1
Direct standard No No No <N Yes No 1
Pipelined Ver. I
(Adder Tree) linear phase No Yes No e« N Yes No I

3 standard No No No <N Yes Yes |

Direct
Pipelined Ver. 2 linear phase No Yes No <N Yes Yes 1

standard No No No No Yes Yes N+
Transposed

linear phase No Yes No No Yes Yes Ni2+
Transposed standard Yes No Yes No Yes Yes | See2
w/ Multiplication
Block linear phase Yes Yes Yes No Yes Yes | See2
T osed standard No No No No Yes Yes N
w/ Pipelined Input o e T No | Yes | No | No | Yes | Yes | N2
Cascade not considered

Table 4-1 - Filter Architecture Alternatives

Notes:

1. N is the filter order.

2. For the Transposed Form with Multiplication Block, the input data fanout depends on
the coefficients and on whether pipelining of the multipliers is used or not.

! ‘Standard’ refers here to the basic, non-linear phase architecture, e.g. Figure 4-1.

68

The “best” architecture is also technology dependent. In the present case, FPGAs are
specifically targeted, and the case has already been made with respect to the advantages
of two-operand, ripple carry adders. This specific argument definitely favors the
transposed forms in general, as it does the direct form with adder tree. Version II of the
pipelined direct form is also rich in two operand adders, but it suffers from disadvantages
that have already been highlighted.

The use of FPGAs should also favor architectures that enhance device utilization density.
A high density has two immediate advantages: a smaller device may be required for a
given filter design, and routing paths will be shorter from sub-block to sub-block. This
latter point implies a reduction in routing capacitance, which will lead to lower power

dissipation and lower propagation delays.

Decomposing the design into smaller blocks with a regular structure enhances density,
because these sub-blocks can be neatly stacked one beside the other. The first
architecture to favor a regular block structure is the pipelined transposed form, which
doesn 't exploit coefficient redundancy because the multipliers are part of the sub-blocks.
Secondly, all transposed forms using the pipelined delayed-carry adder chain, with the
multipliers kept outside of the repeated sub-blocks, also favor a regular block structure.

The alternate approach to increase device utilization density is to ensure as many
resources as possible are used within each and every CLB. For a Xilinx 4000 series
FPGA, this means that the two-operand adder with registered output is a very efficient
building block, since it uses the F and G function generators, the dedicated carry logic
circuitry, and the output flip-flops. A very poor CLB utilization comes from the
utilization of the register elements only. In that respect, all direct forms are inefficient,
since the delayed input data chain uses a great number of flip-flops from otherwise
unused CLBs. This problem is exacerbated in high filter orders.

69

4.8 Decision

Based on this analysis, the preferred filter architecture for quadrature demodulation
implemented in Xilinx FPGAs is based on a transposed form. Since linear-phase filters
will be used, the architecture of Figure 4-5 is the best candidate. If the coefficient set
exhibits enough redundancy, or if a considerable amount of pipelining is required in the
multipliers, then the use of a multiplier block is warranted and the architecture of Figure
4-7 should be selected. Finally, if the adder chain has a wide bus width, due to either the
specific set of coefficients or simply to the high order of the filter, and if a high data rate
is required, then the pipelined delayed-carry adder chain form shown in Figure 4-14 is the
most suitable. It must be noted that the multiplier block, symmetry utilization and
pipelined delayed-carry adder chain are all “orthogonal” to each other, which means that
they can be used alone or in conjunction with others, as most appropriate depending on

the specific filter coefficients.

70

Chapter 5

Detailed Design Descriptions

5.1 Introduction

In this chapter, a detailed description of four quadrature demodulator designs will be
given. The designs follow decisions made in previous chapters on implementation
approach, multiplication realization and architecture selection. Two of the designs were
implemented and tested in a Xilinx X4010E-3 chip, while the other two were only
simulated. Each design reflects a different set of specifications, and together the four
designs demonstrate the viability of using FPGAs for high performance quadrature
demodulation. The four designs are similar in the sense that they are all based on the
same building blocks.

5.1.1 Overview of Designs Considered

The first three designs described here are based on the polyphase filter approach
discussed in section 2.3.3. The input signal bandwidth is limited to f;, the prototype filter
is a quarter-band filter, and the outputs of the in-phase and quadrature channels are

decimated by four.

71

Three variations of this design were considered. For the first one, the sampling frequency
was set at 213.3 MHz, as described in section 2.5, which implies a filter processing rate
of 53.3 MHz. The adders in the filter adder chains were implemented as simple ripple-
carry adders, because the targeted FPGA family was fast enough for this processing rate.
It was assumed that the output signal from the Analog-to-Digital Converter (ADC) was
de-interleaved outside of the FPGA. Consequently, four input ports and a single clock
were required. This design was implemented and tested in a Xilinx 4010E-3 chip, and
simulations were run for other FPGA families and speed grades.

For the second variation, the goal was to demonstrate the delayed-carry adder chain
discussed in section 4.6.3, and to verify the speed increase and overhead costs when
compared to the basic design. A 4010E-3 chip was again targeted, and it was assumed
that all signal de-interleaving was done off-chip.

The third variation of the polyphase-filter design is identical to the second one, with the
exception that it was assumed that data from the ADC would come in two interleaved
streams. The de-interleaving into four streams, one for each of the polyphase sub-filters,
was done inside the FPGA, as was gray code-to-2's complement conversion. A suitable
ADC was selected, together with appropriate logic level translators to convert the ECL
/O logic levels used by the ADC to TTL logic levels used by the FPGA. The de-
interleaving process requires very fast I/Os, and a 4000XL family chip was selected. The
extra logic also required the selection of a larger chip, the 4013. This design was not

implemented but was simulated.

The last design described here is based on the Low-Pass Filter Approach discussed in
section 2.3.1. This design maximizes input signal bandwidth and consequently only a
single decimation by two is allowed. It is suitable for any prototype filter design, but
specifically for the half-band and third-band cases which correspond to a maximum
output decimation factor of 2. This design was not implemented, because optimized filter

coefficients were not available. As such, it is described only in general terms.

72

5.1.2 Filter Coefficients and Frequency Response Characteristics

For the polyphase filter approach designs, signed digit filter coefficients identical to those
of a previously realized quadrature demodulator implemented in Gallium Arsenide gate
array technology [6][24] were used. The coefficients were obtained using a two stage
search strategy similar to that described in [25].

Although a relatively small number of signed digits was used, good performance was
obtained, in part through the use of an optimization criterion concerning frequency
response matching of the I and Q filters [26]. This optimization criterion dramatically
improves system performance for quadrature demodulation filtering over a standard
design approach such as the Hamming window method. The phase error resulting from
the frequency response mismatch between the in-phase and quadrature channels is
smaller than the error resulting from the effects of quantizing the input signal to 8-bit

resolution.

The resulting prototype filter is a quarter-band, linear-phase FIR filter of order 29. Six
coefficients are null, and eighteen are equal to a single power of two. Four coefficients
are represented with four signed digits each, and one is represented with only three
signed digits. The prototype filter impulse response is given here, with a normalization
factor of 256:

{-1,-2,0,4,8,8,0, -16, -32, -32, 0, 64, 141, 206, 232, 206, 141, 64, 0, -32, -32, -16, 0, 8, 8,4, 0, -2, -1}

The normalization factor was applied so that all coefficients would be integers. This has
no impact on the system output other than a known gain, which must be accounted for
when interpreting the resulting data. However, it greatly simplified the design since
integer arithmetic could be used throughout.

A normalized frequency and phase response plot of the prototype filter is given in Figure
5-1. The pass band matching properties for the resulting I and Q filters are discussed

further in [6].

73

lllllllllll

lllll

lllll

P e e LR R R R I R R R R el ddtads

R L S

lllllllll

lllllllllllllll

llllll

e e e L T R

lllll

lllll

09

06 07 08

05
Normalized fequency (Nyquist

9

= -

- - -

[SR T S S s e LT ey AP

lllllllllllllll

Y E -

- - -
-

llllllllllllll

g ——— -

- -

lllllllll

llllllllllllll

lllllllllllllll

e s altt et s ettt T

Normalized fequency (Nyquist = 1)

Figure 5-1 - Prototype Filter Frequency and Phase Response

Table 5-1 lists the mapping of the coefficients to the four polyphase sub-filters, according
to equations (2-23), (2-24), (2-28) and (2-29). It is noted that all zero coefficients are

mapped to sub-filter /;, that sub-filter /; is an odd-length symmetric filter, and that sub-

It is also noted that the

coefficients for the two Q sub-filters can be divided by two, which reduces the

filters Qp and Q; are non-symmetric even-length filters.

implementation cost further.

74

1 8 0 8 -16
2 32 0 32 64
3 141 232 206 206
4 141 0 64 32
5 32 0 -16 8
6 8 0 4 2
7 -1

Table 5-1 - Prototype Filter Coefficient Mapping

5.2 Polyphase Filter Approach: Basic Design

5.2.1 General Overview

The first implemented quadrature demodulator design follows the polyphase filter
approach discussed in section 2.3.3. The input signal bandwidth is limited to f;, the
prototype filter is a quarter-band filter, and the outputs of the in-phase and quadrature
channels are decimated by four. The target sampling frequency is 213.3 MHz, as
described in section 2.5, which implies a filter processing rate of 53.3 MHz. This in turn
implies a maximum processing delay on the critical paths of 18.75 ns. An additional goal
was to implement the design in a Xilinx 4010E-3 chip, which was readily available, and
to perform hardware testing.

In order to simplify the implementation and to ensure that the design would fit in the
X4010, it was assumed that the data would be supplied to the FPGA in four de-
interleaved streams. A block diagram of the design is given in Figure 5-2.

75

-

Iy stream: x(4n) i Sub-Filter /o |
ADC : + {(4n)
—
) Block I, stream: x(4n-2)
Sub-!"illerlg
—
Qp stream: x(4n - 1) SubFilter O ,
+ | owum
i
01 stream: x(4n - 3) i
Sub-Filter Ql e |
:
H

Figure 5-2 - Top Level Block Diagram (Basic Design)

The design is effectively broken up into 4 major blocks, corresponding to each of the four
sub-filters defined in Table 5-1. The output from sub-filter /; is subtracted from the
output from sub-filter /;, and similarly for the Q sub-filters. Each sub-filter block
receives its input directly from the ADC block which is outside of the FPGA. It is
assumed that the ADC block performs de-interleaving into the four data streams in
addition to analog-to-digital conversion, and that its data is in two's complement

representation.

The four sub-filter blocks are very similar in structure, although filter 7, is reduced to a
single multiplication followed by adequate registering for proper synchronization with
the other sub-filters. As discussed in Chapter 4, the transposed form with multiplier
block was selected for the filter architectures. A block diagram applicable to either of the
sub-filters is given in Figure 5-3.

For the implementation, there is an important advantage to breaking the design into four
well-defined blocks. Each block's design can be optimized independently, and the
placement in an FPGA is also simplified. Since there is no communication between the
blocks, other than for the output of the I and Q sub-filter pairs, this translates to reduced

communications across the chip, and hence to a design that can run faster.

76

input data
—_—) ..
Multiplier Block

M0 Ml M M(N-1)2

data out
Adder Chain Block ————p

Figure 5-3 - Sub-Filter Block Diagram

5.2.2 Multiplier Block Description

The four multiplier blocks are very similar in structure. In each case, they implement
only one multiplication requiring more than one addition. The other partial products are
simple shifted replicas of the input data. Since the additions that implement the
multiplication are pipelined, the input data must also be pipelined by the same amount so
that it can be used for the partial products corresponding to power-of-two coefficients. In
order to minimize the overall computation effort, no sign inversion of the input data was
performed and all trivial multiplication results are positive. To properly implement
negative coefficients, the partial products were added or subtracted, as appropriate, in the
adder chain blocks.

Figure 5-4 below shows the structure of the multiplier block Qp sub-filter, which
implements multiplication by 206 and delays the input data for the power-of-two
coefficients. The Q; multiplier block is identical, and the two / sub-filter multiplier block
are very similar, although they implement multiplication by different coefficients. The
multiplier results corresponding to power-of-two coefficients are simple shifts of the
input data, and are taken care of by shifting the connections to the adder chain block by
the appropriate number of positions. The multiplication result 206x is more difficult to

77

calculate and requires three adders-subtracters since the coefficient 4(3) has four non-

zero digits.

input data x

P
>

-7x 9x

-103x

Delay T Delay T

RabRad

multiplier results to adder chain

Figure 5-4 - Qo Sub-Filter Multiplier Block

In order to reduce the necessary computations, the product -103x is calculated instead of
206x. The sign inversion is acceptable, as long as it is taken into account in the design of
the adder chain. There, the corresponding adder must be changed into a subtracter.
There is no timing impact to this change since subtraction and addition operations have
exactly the same latencies in Xilinx FPGAs. Dividing the coefficient by two also has no
consequence if the result is interpreted correctly. Calculating the negative of the desired

product allows a reduction in computation since it becomes possible to reduce the

78

number of added bits at each multiplication stage. Consider the following typical
example to illustrate this point.

Given an integer p and two four-bit numbers x and y represented in two's complement,
the addition x + (27 x y) for p = 3 is done as follows:

6NN X X5 X X X X
+Y; Vs Ya Yo O 0 O

which means that only four bits need to be added for the eight bit result. Similarly, the

subtraction x — (22 x y):

Hn x5 5 53 X5 X5 XX X
Vs Y35 Y» N Yo 0 0 O

is in fact implemented as follows:

X X5 Hh X XN X X5 X
Y5 ¥ Y2 ¥ ¥ 0 0 0
+0 0 0 O 1 0 o0 o0

and again only four bits need to be added, with a carry in position 3, for the eight bit
result. Such a simplification is not possible, for the operation (2° x x) - y which requires
that all eight bits be added with a carry in position O:
» o5 x5 x x 0 0 0
s Y5 Vs Vs ¥i 2 N Yo
+0 0 0 0 O O O 1

Therefore, if applicable, the subtraction operands should be reversed to simplify
calculations. The product corresponding to coefficient 206 =2 x (16 x 7 —9) is such a
case. The first partial product is 9x = 8x + x. The second partial product is 7x = 8x - x,
but instead -7x = -8x + x is calculated. Finally, calculating -103x = 9x — 16 X 7x requires
less effort than calculating 103x = 16 X 7x - 9x. It is unimportant whether -103x or +103x

79

is passed to the adder chain block, as long as the proper operation, addition or
subtraction, is performed there.

5.2.3 Adder Chain Block Description

The three sub-filters Jp, Oy and Q, have similar adder chains composed of two-operand
registered adders. The adder operands are the previous adder's output and a multiplier
block output. However, there are significant differences between the three sub-filters.
The Q sub-filters' impulse responses are non-symmetric and have even length, while the
Iy sub-filter has an odd-length, symmetric impulse response. The value and order of the
filter coefficients also make the three adder chains different with respect to their bus
widths at every stage. Figure 5-5 illustrates the adder chain block for the Oy sub-filter.

x(n)
—_ Multiplier Block

Figure 5-5 — Qg Sub-Filter Adder Chain Block Diagram

A filter bus width analysis was performed for each sub-filter, as described in Appendix
A. The aim of the analysis was to calculate the number of bits required in the adders and

registers of the adder chain to prevent overflow.

An important simplification was made by placing a restriction on the allowable input data

to each of the filters. If the input data is allowed to take all possible two's complement

values, then effectively an extra bit is required at every stage of the adder chain, for the

unlikely case where x = -2""'. Further, allowing this input value implies a bias in the

input to the ADC, and it was assumed that the input signal would have equal amplitude
80

swings around a zero value. For the design, it was therefore decided to disallow such an
input and restrict the input data to the range (2" - 1) to +2"" - 1), or —127 to +127 in
this case. This effectively saves one registered bit for every stage of the adder chain, and
one bit for every pipeline level of every multiplier block as well. This was considered an

acceptable design compromise.

Following the terminology given in Appendix A, the restriction on input data implies that
Sneg(?) Will be equal to Sp.(i), here denoted as S(i). Equation (A-9), giving the number of
bits required at every stage, can therefore be reduced to:

b()=[log,(S@)+1)+1] (5-I)

with S(i) given by a simplification of equation (A-6):

S@ ="' -x f,lh(k)l (5-2)

k=N-1

The results from these equations are given in Table 5-2 for each of the four sub-filters.

6 12 0 9 8
5 14 0 12 11
4 16 0 14 13
3 17 16 16 15
2 17 16 16 16
1 17 16 16 16
0 17 16 16 16

Table 5-2 - Bus Width of the Sub-Filter Adder Chains

81

5.2.4 Intemnal and External Timing Considerations

The target processing rate for the design was 53.33 MHz in each of the sub-filters and for
the system outputs. The maximum delay on any path was therefore set at 18.75 ns. The
two widest adders in the design are the final adder chain adder for the /; sub-filter and the
final adder for the Q channel, and both are 17-bits wide. As per the adder
characterization resuits reported in Appendix B, a 17-bit ripple carry adder implemented
in the X4000E-3 family of chips requires 15.26 ns to produce a result, including the
propagation delay of the registers supplying the operands. This therefore left 3.49 ns for
the routing of the operands from the previous registers to the 17-bit adders.

The Xilinx automatic Placement and Routing tool was unable to meet the 18.75 ns
constraint. It was therefore necessary to manually constrain the placement of critical
components in the sub-filter adder chains and multiplier blocks. For the final placement,
a maximum routing delay of 1.74 ns to the widest adders was attained, with a

corresponding minimum clock period of 17 ns and maximum clock rate of 58.8 MHz.

For the targeted device, the Input-Output Block (IOB) flip-flops have a setup time of 7.0
ns and a hold time of 0.0 ns, due to the addition of a delay in the flip-flop's clock line.
For the target clock rate, this leaves a full 11.75 ns to account for propagation delays
from the ADC block and for any clock skews between that block and the FPGA.

5.2.5 Implementation in Other FPGA Families and Speed Grades

A timing analysis for the implementation of the design in a X4010XL device with the -09
speed grade indicates that an internal clock frequency of 102 MHz would be achievable.
This implies that the design could achieve a 408 MHz sampling rate and a 102 MHz
intermediate frequency, a result similar to the performance of a previous quadrature
demodulator design reported in [24] and implemented in a GaAs gate array. The I/Os,
however, are significantly slower and special consideration would have to be given to

them.

82

The input flip-flop setup and hold times for the X4010XL device can be selected from
three sets of values, depending on the amount of delay that is added to their clock lines.
The possible choices are 0.8ns/2.0ns, 7.3ns/0.0ns and 5.8ns/0.0ns. The two latter choices
may preclude operation at 102 MHz depending on the ADC block's performance and
system clock skews. The first choice has a very small setup time but has a positive hold
time, which may create timing difficulties.

Alternatively, implementation in a slightly larger device, the X4013XL, may solve
system timing problems. This device supports significantly faster I/O rates, as do the
X4036X1. and X4062XL.. For the X4013XL, a setup and hold time combination of
4.8ns/0.0ns can be selected. This could be an economical implementation alternative,

since the X4013's array of 24 x 24 CLBs is the closest to the X4010's 20 x 20 array.
5.2.6 Final Comments on the Design

The mapping of the design requires 333 CLBs, including 589 CLB flip-flops. This
represents 83.3% of the device's CLBs, and 73.6 % of its CLB flip-flops. The X4010
chip size is therefore a perfect match for this design.

The available X4010E-3 chip was packaged in an 84 pin grid array, for which the number
of I/O pins is limited to 61. Given that 32 pins are required for the inputs, and that a
clock and reset input signals are also necessary, this left only 27 pins for the outputs.
Both the in-phase and quadrature channel outputs are 18 bits wide, so they were truncated
to 12 bits for a total number of used pins of 58. The selection of 12 bits was made to
simplify debugging, as the output signals fit neatly in a 3-digit hexadecimal
representation. The extra 6 bits for both channels are calculated and are available inside

the chip, and could be routed outside if a larger device package were selected.

83

5.3 Polyphase Filter Approach Design with Delayed-
Carry Adder Chain

5.3.1 General Overview

The goals of this design were to increase the maximum data rate by implementing the
pipelined delayed-carry adder chain described in section 4.6.3, and to demonstrate the
viability of this approach. A 2-level segmentation was selected, which reduced the width
of the widest adders in the system from 17 to 11 bits, including overhead. Although it
would have been possible to segment the adders in three or four levels, it was considered
uneconomical to do so. Further, a secondary goal of this design was to implement it in
the available X4010E-3 chip and perform hardware tests. The overhead associated with
an increase in the number of segmentation levels would have made it impossible to fit the

design in this chip.
5.3.2 Design Structure

This design is identical in large-grain structure to the basic polyphase filter approach
design. The adder chains were modified to accommodate the delayed carries, as per the
example of Figure 4-14, and two modifications were made to the multiplier blocks. The
first modification required that the most significant portion of the products be delayed by
one clock cycle for proper synchronization in the chain. The second modification
entailed ensuring that no additions in the multiplier blocks were wider than I1 bits, since
wider additions would defeat the purpose of reducing the width of additions in the adder
chain. This forced the "tree" structure for the multiplications by 103, 141 and 232, shown
in Figure 5-4, to be replaced with a sequence of pipelined 9-bit adders.

5.3.3 Implementation Considerations and Comparison with Basic Design

Manual placement of the design blocks was again necessary to reduce propagation delays
on all critical paths as much as possible. For an 11-bit adder in the X4000E family, the
propagation delay is 12.92 ns, including the propagation delay through the operand

84

registers, but excluding the net delays between the operand registers and the adder. This
net delay was kept down to 1.83 ns in the worst case, for a minimum resulting clock
period of 14.75ns and an equivalent data rate of 67.8 MHz. This represents an
improvement in performance of more than 15% when compared to the basic design
described previously. The final CLB count was 392, or 98% of the device. The CLB
flip-flop count was 742, or 92.8% of the available flip-flops. Table 5-3 below compares
the delayed-carry design with the basic one in terms of used flip-flops, CLBs, and

performance.

PO AN

crmc ponen l7—b1t-W1d) -bit-wide adder

critical component delay 15.26 ns 12.92 ns -15.3%
max. routing 1.74 ns 1.83 ns +5.2%
minimum period 17 ns 14.75 ns -13.2%
maximum data rate 58.8 MHz 67.8 MHz +15.3%
CLB count 333/400 392/400 +17.2%
flip-flop count 589/800 742/800 +26.0%

Table 5-3 — Comparison of the Basic and Delayed-Carry Designs

The modest increase in CLLBs compared to the flip-flop increase can be explained. In the
basic design, unrelated logic is almost never packed in a given CLLB. The effect is that
the design density is decreased but the CLB count is increased. Reducing the design
density significantly facilitates routing, although it somewhat complicates placement. In
comparison, the delayed-carry design has a much higher density because it was literally
impossible not to pack unrelated logic together in some CLBs. Almost every CLB in the
device is used, and "airing out" the placement was not an option. Therefore, a better
metric of comparison between the basic and delayed-carry designs is the number of flip-

flops used.

85

As discussed in Chapter 4, the overhead for the delayed-carry chain would be
significantly less for a design with wider adders, and the performance improvement

would be much greater.

5.4 Polyphase Filter Approach Design with Data
Conversion

5.4.1 General Overview

A third design was produced and simulated, but not implemented. It is based on the
polyphase approach with delayed-carry. For this design, an additional requirement was
that no hardware outside of the FPGA was to be used to perform data de-interleaving or
representation format conversion. A "front-end" was therefore added to the previous
delayed-carry design and a larger FPGA was selected to support this increased amount of
logic.

A number of ADCs were considered for this design. Their first requirement was a
minimum sampling rate of 213.3 MS/s. ADCs meeting this requirement normally have
ECL outputs, but the FPGA families considered for the implementation require TTL or
CMOS inputs. Level translation from ECL to TTL was therefore required, and this
limited the maximum data rate between the ADC and the FPGA. It was therefore
decided to choose an ADC with two interleaved data outputs. The fundamental
difference for this design, when compared to the two previous ones, is that the input data

is interleaved in two streams, each coming in at a rate of 106.67 MHz from the ADC.

The selected ADC for this design outputs data encoded with an 8-bit Gray code. Since
all filtering operations are done on two's complement data, it was necessary to effect
conversion inside the FPGA. In order to keep all processing in the device at the lowest
possible level, the two input data streams are split into four at half the data rate prior to

conversion.

86

The device requires only one clock at a quarter of the sampling data rate, 53.3 MHz in
this case. All processing is maintained at this rate as per the previous designs. A block
diagram of the design is given in Figure 5-6.

ADC Block FPGA
r r 1
| ; xt4n) :
1
! ECL/ data conversica Sub-Filter o i
H (2 - TIL de- + an)
] i ati interieaving
H —
xn 3 x(4n -2)
ADC dam conversion 1 Sub-Filter [;
i n-1) '
1 ECL/ data conversion | Sub-Filler Go H
x2n- 1) TIL. | de + 1 o
Translation ! mterleaving
H ——
] (41 -3)
dam conversion | Sub-Fiiter Q; —_

Figure 5-6 - Top Level Block Diagram (Full Design with Data Conversion)

5.4.2 Analog-to-Digital Converter (ADC) Block

The ADC block comprises an Analog-to-Digital Converter and ECL-to-TTL logic level

translators for interface to the FPGA.

For this system, a sampling frequency of 213.3 MHz was necessary, with the even and
odd samples being output on two different ports at a rate of 106.7 MHz each. The ADC
selected is the SPT7750 from Signal Processing Technologies. It is an 8-bit, 500
megasamples per second FLASH ADC. Each ECL-compatible output port has an
associated data-ready strobe signal which can be used to control a system clock.

To interface with the FPGA, it is necessary to perform logic level translation. The
selected ECL/TTL level translator is the National Semiconductor 100325. Each 100325
can translate 6 signals, so three chips would be required for the 16 bits of ADC output
data. One of the two remaining channels can be used to translate the FPGA clock, if

necessary.

87

5.4.3 Data De-interleaving Process and Timing Requirements

The two de-interleaving blocks each accept a 106.7 MHz data stream from the ADC
block and split it into two streams at 53.3 MHz. Only one 53.3 MHz clock is necessary,
and it is the same clock as the rest of the system. A block diagram of the in-phase
channel de-interleaving block is given in Figure 5-7. The quadrature channel de-

interleaving block is identical.

xQ2n) (at data rate 2 x CLK) x(4n)
4.
K l > '\
/reg.
x(4n -2)
— = | e

ar:l_.> CLK l_-’>

Figure 5-7 - De-Interleaving Block, In-Phase Channel

Three registers are used. In the lower path, the first register's clock is inverted. It
therefore latches on data that leads the upper path data by one-half clock period. The
second flip-flop synchronizes this data with the upper path's.

For the selected ADC, a difficulty arises in that the data on the two output ports is not
synchronized, but delayed by one clock period of the sampling data rate. Since the
quadrature demodulator output is clocked at a quarter of the sampling data rate, this
would imply a quarter period lag between the I and Q filter outputs, and the requirement
for two distinct system clocks. The outputs would also have to be re-synchronized.

Instead, both data streams are de-interleaved from a single clock which is synchronized
with the ADC's 'A' data stream. This places an additional timing constraint on the

88

sampling of the 'B' data stream, but it can be met by the selected FPGA. The following
timing diagram, shown in Figure 5-8, illustrates the situation.

CLK@f; l

system CLK @ f/4
{ | {
{ | 1
l [I
i i 1
{
! I
ke v
taua toa =
tholaa.

X Y

.W___><__

i
;
E
e -

tos tun thotdB

Figure 5-8 - Data De-Interleaving Timing Diagram

The propagation delays tpa and tpg are specified independently between 1.25 and 2.25 ns
in the ADC's data sheet. With the sampling interval equal to 4.69 ns, this means that the
minimum setup and hold times for the de-interleaving registers are 7.13 and 1.25 ns for
data'A'. For data '‘B', the figures are 2.44 and 5.94 ns. These setup and hold times can be
met by many of the X4000XL family of chips, including the X4013XL-3. For the in-
phase channel, adding a delay in the input flip-flop clock line would ensure setup and
hold times equal to 7.4 and 0.0 ns, adequate for data 'A'. For the quadrature channel,
switching the same delay element off would lead to setup and hold times equal to 1.2 and
3.2 ns, adequate for data 'B'. Other combinations are possible, and the figures vary with
chip family, size, and speed grade. The clock line delay elements are internal to the
FPGA and are switched on or off during configuration.

89

It has been assumed here that the system clock is supplied by a device external to the
FPGA. The timing diagram of Figure 5-8 also assumes that the clock signals are passed
through the same ECL-to-TTL converters as the data, or through delay elements that
produce identical delays. It is further assumed that all other sources of skew outside of

the FPGA have been compensated for.

The timing proposed here is only one of many possibilities, although synchronization of
signals at such high data rates is not simple. However, the goal here was to demonstrate
that FPGAs can accommodate these high data rates if all system considerations are

properly accounted for.
5.4.4 Data Conversion Process

The conversion from the ADC's output format to the one used for processing in the

quadrature demodulator filers requires three conceptual steps.

First, conversion of gray code to unsigned binary is straightforward. Given that a number

is gray coded with n bits G,, the two's complement representation digits B, are given by:

B,=G.®G,, ®...8G,_, 5-3)

Secondly, the resulting unsigned binary number, ranging here from 0 to 255, must be
converted to two's complement, from -128 to +127. This is done by adding a bias of
-128, or simply by inverting the Most Significant Bit. Finally, as discussed previously it

is necessary to change any occurrences of —128 to —127.

All the conversion process is easily coded in VHDL with a few statements. It is
interesting to note that the realization of the converter on the FPGA is fairly slow, in the
order of an 8-bit adder, because it requires communication between multiple CLBs. No
pipelining was required, however, because this conversion is not in the critical path. This
shows again how fast the dedicated carry logic makes ripple carry addition in X4000
series FPGAs.

90

5.4.5 Final Comments on the Design

The overall design requires 467 CLBs and 796 flip-flops. A 4013 chip, which has 576
CLBs, was therefore selected. In order to meet the /O timing requirements described
here, it was necessary to target the X4000XL family since the X4000E family was too
slow. However, the -3 speed grade, the slowest for the XL chips, is still fast enough,
especially the X4013XL which benefits from special I/O optimization.

The achieved data rate for this design was 77.2 MHz in a X4013X1-3 chip. The smallest
package for this chip has 144 pins, and 53 of the [13 IOB are used. Although
implementation in a faster chip grade would increase this data rate, the external timing
considerations would have to be completely reviewed to ensure that the de-interleaving
process would function correctly. Alternatively, the same front-end processing could be

kept but the filters changed to those described in the basic design.

5.5 Low-Pass Filter Approach Design

5.5.1 General Overview

A fourth design is described here in general terms. It was not implemented because
appropriate filter coefficients were not available. The design is suitable for any case
where the decimation factor is 2, so it could accommodate half-band or third-band
prototype filters.

The proposed design is made up of the following major blocks: the Analog-to-Digital
Converter block, two data conversion blocks, two modulator blocks, the In-Phase Filter
Block, and the Quadrature Filter Block. A block diagram is shown in Figure 5-9. The
Low-Pass Filter approach described in section 2.3.1 was selected for the system.
Therefore, two filters work in parallel on different data. The even samples of the input
signal are processed by the in-phase portion of the system, and the odd samples are
processed by the other. In each path, a data converter transforms the data from the ADC

91

output format to two's complement representation. A modulator then multiplies the input
data with the sequence {1, -1, I, -1, ... }, effectively inverting the sign of every other
sample. The resulting data is passed to the in-phase and quadrature low-pass filters.

The data converters, modulators and filter blocks can be implemented together on a

single FPGA.

FPGA
r 1
]]
{ Filter Block]
even samples:
(2n) i
Data Conversion i Modulator I Multiplier Block !
H
v 2n)
I Adder Chain Block -
H
1 1
) [}
x(0) : i
ADC :
— Block E Q Filter Block
E
I Ll
-1 1
X2n-1) H Dma Conversion |3 Modulator Q Multiplier Block ' !
| P
s ' { oun |
: QAdderChainBlock [L !
t]
: : :
' 1 ;
1
1
1
!

S —

Figure 5-9 - Top-Level System Block Diagram (Low-Pass Filter Approach)

5.5.2 Analog-to-Digital Converter (ADC) Block
The ADC block is identical to the one described in section 5.4.2.
5.5.3 Data Conversion Block

The Data Conversion Block is identical to the one described in section 5.4.4.

92

5.5.4 Modulator Blocks

The two modulator blocks are identical, although they work on different data with
different clock signals. They are fed from the Data Conversion blocks' outputs. The
even samples are passed to the in-phase channel modulator and the odd samples are
passed to the quadrature channel modulator. Their output is made up of two signals
which have the same value except for a sign inversion, "data plus" and "data minus". The
two signals are required by the multiplier block. A block diagram of a modulator block is
shown in Figure 5-10.

damin (@/,/2)
|) ,N
8
_’> p; data plus
8 .
data minus
£ >

\‘

N

CLK @/, /2

CLK@/, /4

Figure 5-10 - Modulator Block

The second clock signal, with a frequency of f/4, is used to control two multiplexers.

Their outputs therefore alternate between positive and negative versions of the input data.

5.5.5 In-Phase and Quadrature Filter Blocks

The in-phase and quadrature filter blocks have an identical large-grain structure, and
differ only due to the different sets of coefficients for the two filters. They are
decomposed into two smaller blocks, a multiplier block and an adder chain block,

93

following the transposed form discussed in section 4.4. The structure is shown in Figure
5-11, with the modulator block output.

The multiplier block takes for input the positive and negative version of a number in
two's complement representation, using 8 bits. It outputs one product of this number with
each of the filter coefficients A(n). The corresponding products are labeled Mn. They are
passed to the adder chain.

I or Q Filter Block
H i
! i
! i
]
data in dataplus | !
— »| Modulator Block + t Multiplier Block !
data minus i :
! f |
I
! Mol M le MN-1)2 l |

{

! {
| == i
! {
! i
data out : :
-— 1 Adder Chain Block H
' {
! i
! i
! I
L H

Figure 5-11 - Structure of the Filter Blocks (N even)

Supplying the positive and negative versions of the input data simplifies the design of the
multiplier blocks since only additions need to be performed.

The adder chain blocks take for inputs the results of the multiplication of the filter block
input data with the different filter coefficients, produced by the multiplier blocks. They
produce the filter output, which is also a system output. The delayed-carry adder chain
discussed in section 4.6.3 can be implemented in the adder chain blocks to maximize

operating speed.

94

5.5.6 Final Comments

It should be obvious that this design is very similar to either of the polyphase filter
designs. The most significant difference is the addition of the modulator blocks. A final

subtraction between sub-filters is also unnecessary.

Given the availability of very large FPGAs holding more than 3000 CLBs, very high
filter orders could be supported. Additionally, using the delayed-carry chain approach
would make it possible to maintain the processing rate at the level attained for the simpler

designs.

5.6 VHDL Description Considerations

VHDL was chosen to describe the quadrature demodulator designs instead of schematic
entry. There are many reasons to use a Hardware Description Language (HDL) for
design entry. Very complex design descriptions manageable by allowing the designers to
describe objects at higher levels of abstraction. Compared with schematic entry, they
also make it much simpler to modify many parts of a design simultaneously according to
a given design parameter, such as a bus width. The consequence of using HDLs,
however, is that the designer generally loses some control over the resulting hardware as
implemented from the output of synthesis tools. The quadrature demodulator designs
described here had stringent timing and performance requirements. It was therefore
necessary to use a coding style that would allow as much control as possible to be kept
over the resulting design description.

Consequently, it was decided early on in the design process to use a structural VHDL
description. This complicates the design process in that the description is closer to one
from a schematic entry. However, the design is much simpler to modify, and the

advantage over higher-level descriptions (such as behavioral) is that the designer retains

95

much more control over the implemented product. This was deemed more important in

this case since high performance was desired.
5.6.1 Building Blocks

Signals are the most basic building block. They involve no processing, but defining them
generally ensures that a particular line or connection will be implemented in the FPGA.
There are important exceptions. When two signals carry the same information, one is
normally optimized away. Similarly, a signal which has no load, inside or outside of the
FPGA, is also optimized away by the synthesis or mapping tools. There are cases where
such an optimization is not desired. An exampie would be the routing of a signal to two
different blocks physically separated across a large distance in the FPGA. If only one
signal driver is used, then the propagation delays can be unacceptably high. In such a
case, registering the signal with two distinct register components generally ensures that
two drivers will be available, even after optimization.

The next basic building block is the n-bit register. Its description must be made with a
behavioral description that specifies whether the device latches data on a clock level or
transition, and whether this transition is active high or low. Clock enables can be added
in the behavioral description, as can specific set or reset values. The following code
excerpt is for an n-bit register with asynchronous active-low reset which latches the input
on the clock’s rising edge.
process (CLK, reset)
begin
if reset = '0' then --asynchronous RESET active LOW
Q <= (others => '0');
elsif (CLK'event and CLK='l') then --CLK rising edge
Q <= D;

end if;
end process;

The behavioral description of a register element can require a few dozen lines of code.
Since a typical register is often reused through a design, it is much more efficient to

encode the description only once in a parameterized entity, then to instantiate this entity

96

as necessary later. For the quadrature demodulator designs, four distinct register

elements were defined, each with its idiosyncrasies such as a different reset value.

An even more complex building block is the registered adder, which builds on the
register building block. Again, many such adder descriptions were required in the
designs so that various cases could be accommodated. These cases included a standard
adder, a standard subtracter, an adder and a subtracter with input carry, and a specialized
subtracter for the delayed-carry adder chain. The following code excerpt is for a standard
registered adder with active-low asynchronous reset. The sum is stored on the clock’s
rising edge. Of note is the special consideration given to sign extension for two’s
complement addition.
process (CLK, reset)

variable tempA : STD_LOGIC_VECTOR (Sumwidth - 1 downto 0);
variable tempB : STD_LOGIC_VECTOR (Sumwidth - 1 dowmnto 0);

begin
tempA := (others => A(A'left)); -- sign extension
tempB := (others => B(B'left)); -- sign extension
tempA(A'left downto 0) := A;
tempB(B*left downto 0) := B;

if reset = 'Q’' then --asynchronous RESET active LOW
Sum <= (others => °'0°);

elsif (CLK'event and CLK='l') then --CLK rising edge
Sum <= tempA + tempB;

end if;

end process;

The larger design building blocks, including the sub-filters, filters and data converters,
were then put together for the different designs. This approach had the consequence that
using a block that had been previously tested greatly reduced the design time.

5.6.2 Optimizing the Hardware Realization from the VHDL Description

It was found that well optimized logic could be obtained from a VHDL description once
the behavior of the synthesis tool was understood. Two specific examples will be

97

considered here. The first example concerns the realization of a simple two-operand
adder with input carry. The second example deals with the specification of extra registers

to reduce logic placement constraints.

A most simple building block is the registered added with input carry, which one may
codein VHDL as Sum = A + B + Cin. However, the synthesis tool that was used,
FPGA Express, incorrectly synthesizes this statement with two distinct two-operand
adders instead of a single two-operand adder with input carry. In order to obtain the
properly optimized logic, the operation had to be specified by the addition of only two
operands. The input carry was therefore appended to the right of the LSB of each input
vectors A and B by using a temporary signal. The resulting extra bit in the sum was then
discarded. A similar artifice is required to properly obtain an adder with output carry or

with overflow indication.

The second example concerns the pipelining of data paths. For all designs described in
this chapter, two extra stages of pipelining had to be specifically declared at the input
data ports. This strategy ensured that the synthesis tool used the IOB flip-flops for the
first pipelining stage. Since the physical distance on the FPGA between a given input pin
and the location where the data is first processed may be significant, the second level of
pipelining is implemented in any CLB that is preferably closer to the data processing
location than to the input pin. The interconnect between the pipeline IOB and CLB may
be large and may in fact cross the whole FPGA from one side to the other, but since no
processing is done the propagation delay is much lower than the delay on the critical
paths. Not adding these two pipeline levels generally constrained the placement of the
input pins so much that timing requirements could not be met. A similar strategy was

followed for the output pins.
5.6.3 Automated Structural VHDL Code Generation

The quadrature demodulator designs described in this chapter are directly dependent on a

few design parameters. These parameters include the input data format and bus width,

98

the filter length, the selected filter architecture, and the value of the filter coefficients.
For example, the description of the filter adder chain can be fully automated. First,
following the equations given in Appendix A, an adder chain bus width analysis is
performed for the given set of filter coefficients. The resulting adder and register widths
then completely specify the bounds of each signal in the adder chain, and signal
declaration statements can then be automatically generated. Similarly, interconnection

statements can be automatically generated based on the filter order.

Such an automated process was investigated and developed at a rudimentary level for the
quadrature demodulator designs. Many programming languages could have been used,
but Microsoft Excel was selected due to its highly visual interface, ease of use and
powerful text processing capabilities. A worksheet was developed and successfully used
for the filter bus width analysis, and from this analysis' results signal declarations were
generated. The main advantage was that modification of one of the fundamental filter
parameters allowed the design description to be automatically modified. Further, it was
possible to generate basic VHDL descriptions for all sub-filters from the same worksheet
by simply modifying the filter coefficients.

Using this automated process, a designer could easily produce many digital filter designs
based on greatly varying sets of coefficients in very little time. If timing requirements are
not critical, then little extra design work is involved. However, if optimized designs are
desired, manual editing was essential when going from one design to another. As a case
in point, the very fine grain multiplier implementation optimizations described in section

5.2.2 were not automatically generated.

In order to obtain such fine grain optimization from a few simple design parameters, two
routes present themselves. One would be a dramatic improvement of the synthesis tools,
especially the provision for automatic inclusion of pipeline stages in a design. This
approach would be advantageous because it could be applied to a wider range of designs.
The other route is the one proposed here, where a tool would be optimized to generate

99

structural VHDL descriptions for a specific design or class of designs. However, the
basic approach that was taken here would require significantly more sophistication to
produce the level of optimization attained through human intervention.

5.7 Summary

In this chapter, four quadrature demodulator designs were described. The first three
designs are appropriate for the decimation-by-four case. Each one meets a different set
of performance or interfacing requirements. The fourth design proposed would be
appropriate for the decimation-by-two case, whether a half- or third-band prototype filter
is used. Specific high-speed interfacing considerations were described. Together, the
four design descriptions demonstrate the viability of FPGAs for high-performance
quadrature demodulation. Finally, specific remarks concerning the VHDL description of

the designs were made.

The code for the three implemented designs will be included in a technical report to be

submitted at a later date.

100

Chapter 6

Design Verification and Testing

6.1 Introduction

In this chapter, the verification and testing of the quadrature demodulator designs are
described. The verification and testing strategy is first outlined, then the test vectors used
to stimulate the design are defined. The approach taken for the functional verification of
the VHDL code is then explained, followed by a description of the applicability of the
design realization process to design verification. Timing analysis is then discussed, and a

proposed hardware testing setup is outlined.

6.2 Strategy

Design verification first entailed confirming the correctness of the VHDL description
through functional simulation testing. Since this description was modular, each building
block was tested independently. Major blocks made from building blocks were produced
and then tested, then the correct operation of the overall design was confirmed. A second
major step of design verification concerned the successful synthesis of the VHDL code,
then the mapping, placing and routing of the synthesized logic in a selected FPGA
device. Finally, a timing analysis of the placed and routed design confirmed whether

101

timing requirements were met. Any problem in one of these three steps generally
required a design modification and the beginning of a new verification loop.

Design testing consisted of confirming that the implemented design in a FPGA met
functional and timing requirements. The designs were downloaded to a FPGA, test
stimuli were applied, and output vectors were compared to expected results.

Testing of the filter characteristics per se was not done in the present research, since the
goal of the produced designs was to implement quadrature demodulators based on a
prototype filter with given filter coefficients. The ultimate goal of the design verification
and testing process was therefore to confirm that correct computations were performed
given a set of input vectors. This made this process robust and reliable, and, due to the
nature of the processing, the selection of test vectors was simplified.

Testing of the FPGA device for the full range of operating conditions was not considered,

since these characteristics are available from the device manufacturer.

6.3 Test Vector Selection

For both functional and device testing, the selection of an appropriate set of test vectors

was crucial.
6.3.1 Fundamental Tests

The first step of verification consisted of ensuring that test vectors were received by the
system, and that system outputs could be monitored. In these basic tests, the proper
operation of the reset signals was also confirmed. A few randomly selected test vectors

were also chosen for an initial performance assessment.

102

6.3.2 Impulse Response Test

This vector consists of a single pulse of unit time duration. This is a standard test used to
verify digital filters. After a system reset, or after a "long” stream of zeros was input to
the digital filter, the input is set to the value 'one' for one clock cycle, then set to zero'
afterwards. The expected output is made up of the filter coefficients in sequence, one for
every clock cycle. The number of clock cycles between the non-zero input and the first

output corresponds to the number of pipelined stages in the filter.

This test vector is both simple and effective, and it gives a quick indication of the
correctness of the filter description. However, the fault coverage of this test is limited,

and its use is therefore restricted to the early design stages.

A simple variation on this test consists of extending the length of the pulse. The expected
output is then a sequence of sums of filter coefficients, and the number of coefficients in
each sum depends on the length of the pulse. This test variation was not used to test
individual filters since its effectiveness is limited. However, it could be useful to verify

the operation of selected adders in a transposed form filter's adder chain.

While this test is primarily aimed at single filters, it can also by used to test the whole
quadrature demodulator design. However, it is then necessary to extend the length of the
pulse, or to apply pulses of unit duration at precise times so that only one sub-filter is

stimulated.
6.3.3 Extreme Outputs Test

The goal of this test is to verify that the system is able to accommodate the greatest
positive and negative intermediate and final results. The input vector sequence consists
of a vector whose length is the same as that of the set of filter coefficients and whose
elements consist of either the extreme positive or negative values of the input data. The
input vector is selected so that the signs of its elements correspond to the signs of the

corresponding filter coefficients.

103

This test confirms whether the analysis described in Appendix A was done correctly and
whether the results were correctly implemented by replicating the analysis process during

the test.
6.3.4 Pseudo-Random Sequence Test

This test is more involved but its coverage is also greater. A pseudo-random sequence is
applied to the input of the system under test, and the actual output sequence is compared
with the expected output sequence. An exact match of these two sequences indicates a
successful test. This kind of test is well suited for integrating test functionality into the

system.

This test is well adapted to the present system, since its function is to process a sequence
of input numbers. A suitably long input data sequence of pseudo-random numbers can
give a high level of confidence that the appropriate arithmetic operations are performed.
It must be noted, again, that the goal here is not to test the implemented filter
performance, but rather to test that a particular filter has been correctly implemented in

hardware.

Three methods were used to generate pseudo-random sequences and to calculate the
expected system outputs with them as stimuli. Microsoft Excel worksheets were first
used for basic tests with relatively short sequences, as were MATLAB script files. The
random numbers were generated from Excel's or MATLAB's internal pseudo-random
sequence generators. Secondly, a MATLAB script was again used, but with a
customized random sequence generator scratch-built from a Linear Feedback Shift
Register (LFSR) simulator. Thirdly, for hardware tests, a LFSR generator design was
coded in VHDL, then synthesized, mapped, placed, routed and downloaded to an FPGA
that was used to stimulate the Device Under Test (DUT).

104

6.3.5 De-Interleaving and Data Conversion Tests

The tests described in the previous sections were aimed at verifying the digital filter
operations. It was equally important to test the design's front end.

For the de-interleaving process, timing diagrams were carefully plotted based on the
ADC's specifications. Test vectors were then constructed to reproduce the ADC's
behavior, and applied to the DUT. The four resulting data streams were then compared
to the expected output, and so was the overall system output.

For the data conversion process, it was possible to devise a complete test since only 256

cases had to be covered.

6.4 Functional Verification of VHDL Code

Coding of the three polyphase filter based designs of Chapter 5§ was divided according to
the designs' major blocks. In all cases, the code for the four sub-filter blocks was tested
independently. The in-phase and quadrature channel sub-filter pairs were then tested
together. The data de-interleaving and conversion blocks were also tested independently.

Finally, the whole design was combined and tested as one unit.

Code testing was an integral part of the design process. This way, errors were quickly
found, identified and corrected. The modularity of the design enhanced testability at
every step. The test vectors described in section 6.3 were used in each case. For the

pseudo-random sequence test, a test length of 20 000 vectors was used.

6.5 Synthesis, Mapping, Placing and Routing
Verification

After successful functional testing of the VHDL code, the next steps in the design process
led to implementation in a FPGA device. Other than hardware testing, no further testing

105

was done via the application of input stimuli and the comparison of output data with
calculated values. However, an important part of the verification process was to ensure
that the design could be implemented in the target device.

The first step consisted of the synthesis of the VHDL code into a netlist describing,
among other things, the interconnections between building blocks such as pins, buffers,
gates and adders. In some cases, errors were found in the design description because
certain VHDL constructs could not be synthesized. For example, synthesis tools will not
allow a signal to have multiple drivers. Other errors involved different VHDL standards
used by the design description environment and the synthesis tool. Xilinx’ FPGA
Express synthesis tool was used.

Mapping of the synthesized netlist was the following step. This consisted of translating
the netlist into functions implemented by Configurable Logic Blocks (CLBs) of the
specified family of devices. The tool used was Xilinx’ MAP. A possible design error
reported at this step was the selection of a device too small to accommodate the design's
logic. In such a case, the description of the design was modified to reduce the amount of

logic required, or a larger device was selected.

Placing of the mapped CLBs on a target device and routing of interconnections between
them was the next step, and this was done by a combination of manual intervention and
the action of Xilinx’ automated Place-and-Route tool PAR. The main error at this step
was the impossibility to meet a timing requirement. Many problems could lead to this
error. The most fundamental one was the existence of logic function whose delay was
greater than the minimum clock period specified. In this case, it was necessary to break
the logic into pipelined blocks, which required a modification of the VHDL code.

The most common problem, however, was the impossibility to route interconnections
given a certain block placement. There were three main approaches to alleviate this
problem. The first one was to insert an additional level of pipelining. This gave greater
flexibility in bringing a signal from one location to another. Reproducing a signal so that

106

it was generated from two distinct CLBs was another possibility, for cases where a signal
had a very large fanout. Alternatively, manual placement of CLBs such that signals had
as short a path as possible to travel generally solved the problem.

The visual inspection of placed CLBs was another method to verify the correct
description of the design. The Floorplanner tool from Xilinx allows this to be done, in
addition to allowing location constraints to be manually specified. By tracing a given
signal across the FPGA, it was possible to verify that intended building blocks had
correctly been synthesized from the VHDL description. This method also allowed a
detailed study of the synthesis tool behavior to be done. In general, the errors found this
way would have affected the performance of a design, not its functional correctness.

The example of the two-operand adder with carry-in was given in 5.6.2.

6.6 Timing Analysis and ldentification of Critical Paths

The EDA tools used for the quadrature demodulator designs allow the specification of
timing requirements as part of the synthesis options, or through a user constraint file prior
to mapping. The specifications take the form of maximum propagation delays between
groups of selected logic, such as between any two flip-flops in a data path, or from the

clock pin to any flip-flop in the device.

The place-and-route tool uses the timing specifications to guide its placement and routing
choices, and will report on whether the specifications have been met or not. The Xilinx
Timing Analyzer can then be used on the resulting design file to analyze each data path in
turn. All paths not meeting the constraint can then be easily identified.

When timing constraints were not met, two main options were available. First, if a logic
block's delay alone was longer than the timing constraint, this block was broken up into a
number of pipelined sub-blocks. Similarly, if the timing constraint could not be met due

107

to the excessive fanout on a given signal, this signal had to be divided among multiple
drivers in the VHDL description.

Whenever a timing constraint was not met, however, it was because of the limitations of
the automated placement and routing tool. In such a case, it was necessary to manually
constrain the placement of communicating CLBs so that they would be physically close

to each other.

6.7 Hardware Testing

The selection of FPGAs as a target technology meant that it was possible to realize and
test the designs in a reasonable time frame. Various hardware test setups available at the
Royal Military College, the Communications Research Center, and at the Canadian
Microelectronics Corporation were considered. Testing at the CRC or CMC would have
involved the use of the Integrated Measurement System (IMS) test fixture. This in turn
would have required the wiring of a test board with the appropriate FPGA device. Since

time was limited, an alternative avenue was selected.

The availability of FPGA demonstration boards with X4010E-3 chips at RMC motivated
the design of a test setup shown in Figure 6-1. The stimulator used to test the DUT is
constructed from a separate FPGA of the same family and speed grade. It implements a
Linear Feedback Shift Register that is initialized to a known value, and generates a
known pseudo-random output sequence to implement the test described in section 6.3.4.
A logic analyzer collects the DUT's output data and stores it for off-line comparison with

the expected output sequence. If the two sequences are identical, the test is a success.

A separate FPGA demonstration board with a X4003E-3 chip was used for the stimulator.
The selection of the same device family and speed grade ensures a compatible interface
between the stimulator and DUT and that the stimulator will support testing at the DUT’s
highest clock frequency. However, actual hardware testing was limited because of a lack

108

of an adequate clock generator that could support frequencies in excess of 20 MHz.
Various sources were investigated with no success. Still, functional testing was
successful at 20 MHz, and the test setup would be simple to reproduce once an adequate

clock generator is available.

11® order LFSR
design

known
sequence

LFSR ouT Logic Analyzer output data
= storage

FPGA

pass/fail

Clock
Generator

Figure 6-1 - Hardware Test Setup

6.8 Summary

In this chapter, the issues of design verification and testing were discussed. The
verification and testing strategy was outlined, as were specific considerations relating to
test vector selection and the integration of the verification and design implementation

processes. A proposed FPGA hardware test setup was presented.

109

110

Chapter 7

Conclusions and
Recommendations

7.1 Conclusions

This thesis has addressed issues relevant to the design and implementation of wide-band
digital quadrature demodulators in Field-Programmable Gate Arrays. Fundamental
principles for the digital realization of quadrature demodulators were discussed and
different theoretical approaches were first presented.

Due to their ubiquity in digital filter designs, the problem of implementing constant-
coefficient multipliers in FPGAs was given special attention. The popular Look-Up
Table approach for multiplication greatly simplifies the design process, but requires
significantly more chip resources and somewhat increases critical path latency. The
viability of optimizing coefficients by reducing the number of signed digits required to
represent them was confirmed for FPGA implementations as well as for other ASIC

technologies.

The selection of a filter architecture that maps well to FPGA Configurable Logic Blocks
is a major issue. In general, the transposed form architecture was found to increase

design density when compared to the direct form architecture. It was also suggested that

111

future quadrature demodulation filter designs should include coefficient redundancy as a
hardware cost optimization criterion. A technique that exploits the speed of the X4000's
dedicated carry logic, the delayed-carry adder chain, was proposed to keep the system's
critical path delay constant regardless of the filter order.

Four quadrature demodulation design examples meeting different sets of specifications
were used to demonstrate the viability of using FPGAs for wide-band digital quadrature
demodulators. Processing and interfacing rates above 100 MHz were demonstrated in the
faster Xilinx X4000 FPGA families. The designs were limited more by the speed of the
I/Os than by the achievable internal rates. This implies that it may be desirable to de-

interleave data outside of the FPGA.

Very high device utilization was obtained; two of the designs use 85% and 98% of the
device’s CLBs while maintaining near-maximal data rates. This resulted from the largely
local nature of the intercommunications inherent to the selected system architecture, and

by the careful imposition of manual constraints on the placement of CLBs.

The issue of providing designer control over the implementation of a design from a
VHDL description was considered, and examples of coding style to enhance this control
were given. An automated digital filter design process was briefly investigated and was

found to decrease design time. Suggestions were given on how to improve the process.

Finally, the issues of design verification and testing were discussed. In addition to
functional testing, the merging of the design verification process into the design
implementation process was considered, and cases where the design's optimization could
be improved were presented. A hardware test setup was proposed utilizing an FPGA
based stimulator separate from the Device Under Test.

112

7.2 Recommendations for Future Work

Many promising avenues for further research have been identified.

A detailed analysis of the delayed-carry adder chain should be undertaken, and its
applicability to other ASIC technologies should be investigated. The case was made that
utilizing an FPGA CLB solely for its flip-flops wasted valuable resources. Such is not
the case for custom or gate array ASICs, and the overhead costs presented here would
probably be significantly smaller. A search for such an analysis was made with no

success.

It may be possible to devise analytical formulae to describe the implementation cost of a
particular digital filter based on the value of its coefficients, the desired filter architecture,
and the target technology. Such results would facilitate the evaluation of different
coefficient sets when comparing possible quadrature demodulator designs. Additionally,
it is believed that the issue of coefficient redundancy has not been exploited for the
design of quadrature demodulator filters in general, or for FPGA implementations in

particular. This would therefore be a promising research area.

A quantitative analysis of power consumption by the filter architectures studied here
should be performed to determine the validity of the quantitative assessments that were
made. Again, specific considerations should be given to FPGA-relevant issues, such as

the use of low supply voltage FPGAs.

Variations on the proposed designs are possible. Prime candidates include the duplicated
polyphase filter approach, for which the data-interleaving process would be more
complicated, and the low-pass approach with a third-band prototype filter. For the
existing designs, the inclusion of Built-In Self Test (BIST) functionality may prove
useful. The development of a VHDL description of BIST circuitry that could be easily
included to any quadrature demodulator design would facilitate the implementation of
this design enhancement. An interesting feature for many FPGAs is the availability of an

113

internal clock that could be used to run the BIST circuitry completely independently from
the outside. Wave Pipelining {27] should be investigated, as it could push FPGA

performance beyond what conventional synchronous designs can accomplish.

Novel FPGA architectures with increased CLB performance and resources will likely be
available in the near future. While the direct re-implementation of the existing designs is
possible, the full exploitation of advances in FPGA devices may require new

implementation approaches.

Finally, much more remains to be done with Electronic Design Automation tools. The
automation of VHDL design description for digital filter designs was briefly mentioned,
and is seen as a promising area of research. Alternatively, the development of a synthesis
tool with automatic pipelining inclusion should be (and may in fact be) a major area of
development for the EDA tool industry. Significant improvements remain to be made
with the automatic Placement and Routing Tools, especially for designs with a regular
block structure such as digital filters.

114

References

(1]

[2]

(4]

(5]

(6]

B. Von Herzen, “Signal Processing at 250 MHz using High-Performance
FPGASs”, IEEFE Transactions on VLSI Systems, Vol. 6, No. 2, June 1998.

J. Lee, "Effects of Imbalances and DC Offsets on I/Q Demodulators”, DREO
Report No. 1148, Dec. 1992.

A.V. Oppenheim and R.W. Schafer, Digital Signal Processing, Prentice-Hall,
1975.

R.E. Crochiere and L.R. Rabiner, Multirate Digital Signal Processing, Prentice-
Hall, 1983.

G. Zhang, D. Al-Khalili, R. Inkol, Saper, “A Novel Approach to the Design of I/Q
Demodulation Filters”, IEE Proceedings on Vision, Image and Signal Processing,
Vol. 141, No. 3, pp. 154-160, June 94.

R. Inkol, L. Désormeaux, and V. Szwarc, “Proposed Design Improvements for the
Coherent Processor ASIC”’, DREO Technical Memorandum 13/94, October 1994.

115

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

M.G. Bellanger, J.L. Daguet and G.P. Lepagnol, “Interpolation, Extrapolation,
and Reduction of Computation Speed in Digital Filters”, JEEE Transactions on
Acoustics, Speech and Signal Processing, Vol. 22, No. 4, August 1974.

M.G. Bellanger, G. Bonnerot and M. Coudreuse, “Digital Filtering by Polyphase
Network: Application to Sample-Rate Alteration and Filter Banks”, IEEE
Transactions on Acoustics, Speech and Signal Processing, Vol. 24, No. 2, August
1976.

Inkol, R. Duplicated Polyphase Architecture Block Diagram. Private

communication.

R. J. Inkol. "Novel FIR Filter Designs for Digital Quadrature Demodulation”, to
appear in Proceedings of Canadian Conference on Electrical and Computer
Engineering, May 1999.

V. Anastassopoulos, T. Deliyannis, , “Efficient Implementation of N*-band FIR
Filters Based on a Simple Window Method”, IEE Proceedings, Vol. 137, Pt. G,
No. 4, pp- 302-308, Aug. 1990.

V.C. Hamacher, Z.G. Vranesic, and S.G. Zaky, Computer Organization, 4" Ed.
McGraw-Hill, 1996.

G.W. Reitwiesner, “Binary Arithmetic”, Advances in Computers, Vol. 1, F.L. Alt,
Ed. Academic Press, 1960.

D.R. Bull and D.H. Horrocks, “Primitive Operator Digital Filters”, IEE
Proceedings-G, Vol. 138, No. 3, pp. 401-412, June 1991.

A.G. Dempster and M.D. Macleod, “Constant Integer Multiplication Using
Minimum Adders”, IEE Proceedings-Circuits, Devices, Systems, Vol. 141, No.5,
pp. 407-413, Oct. 1994.

116

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

D. Li, “Minimum Number of Adders for Implementing a Multiplier and Its
Application to the Design of Multiplierless Digital Filters”, IEEE Transactions on
Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 42, No. 7,
pp- 453-460, July 1995.

A.G. Dempster and M.D. Macleod, “Use of Minimum-Adder Multiplier Blocks in
FIR Digital Filters”, IEEE Transactions on Circuits and Systems-1I: Analog and
Digital Signal Processing, Vol. 42, No. 9, pp. 569-577, Sep. 1995.

K. Chapman, “Constant Coefficient Multipliers for the XC4000E”, Xilinx
Application Note 054, version 1.1, 11 December 1996.

B. New, “Using the Dedicated Carry Logic in XC4000E", Xilinx Application
Note 013, Version 2.0, 4 July 1996.

L.C. Ludeman, Fundamentals of Digital Signal Processing, John Wiley & Sons,
1986.

L. Désormeaux, Communications Research Center, private communication, June

10%, 1998.

“Speed Metrics for High-Performance FPGAs™. Xilinx Application Brief
XBRFO015, version 1.0, November 1997.

L. Dadda and V. Piuri, "Pipelined Adders", IEEE Transactions on Computers,
Vol. 45, No. 3, March 1996, pp. 348-356.

M.O. Esonu and D. Al-Khalili, “Design and VLSI Implementation of a Coherent
Processor ASIC”, Department of Electrical and Computer Engineering, Royal
Military College of Canada, March 1994.

117

[25] H. Samueli, “The Design of Multiplierless Digital Data Transmission Filters with
Powers-Of-two Coefficients”, Proceedings of IEEE Telecommunications

Symposium, Sep. 1990.

[26] R.J. Inkol, R. Clouston, M. Herzig and R. H. Saper, "A New Approach to the
Design of Multiplierless FIR Digital Filters for Quadrature Demodulation”,
Proceedings of Canadian Conference on Electrical and Computer Engineering,
May 1996.

[27] E.L Boemo, S. Lopez-Buedo and J.M. Meneses, “Some Experiments About Wave
Pipelining on FPGASs”, I[EEE Transactions on VLSI Systems, Vol. 6, No. 2, June
1998.

118

Appendix A

Filter Bus Width Analxsis

A filter bus width analysis must be performed as part of the design of a digital filter. The
analysis described here assumes that the filter is implemented following the transposed
form. The aim of the analysis is to calculate the number of bits required in the adders and

registers of the adder chain to prevent overflow.

To obtain this number of bits, the greatest possible positive and negative sums must be
calculated for every stage in the chain. The greatest number of bits required to represent
either sum is then the bus width for this stage's adder and register.

Each adder in the adder chain has two inputs. The first one is the partial sum up to this
point, coming from the previous adder in the chain, and the second input is the result of
the multiplication of the present input data with a filter coefficient.

Let Spos(f) and S,.¢(i) be the greatest positive and negative sums that can exist at the i
adder stage. Let Mp.(i) and M,.(i) be the greatest positive and negative results that can
come from the i multiplier, whose coefficient is A(f). Note that in either case, i actually
runs from N down to 0, where N is the filter order, to follow the order of the filter

coefficients. S,.4(f) is given by:

119

) Jd=N
S’“(l)-{sm(i+l)+Mm(i) ,N—lZiZO}
k=i (‘4.1)
= 2 M, (k)

k=N-1

and S,g(i) is given by

N Jd=N
S"‘g(l)-{sm(i+l)+Mug(i) ,N-lzizo}
k=i (44'2)
= M, (k)

k=N-
The values of Mp.(i) and M,.g(i) depend on the value of the coefficient A(i) and on the
greatest positive or negative values that the input data can take. This value depends on
the selected number representation and on the sign of A(i). For two’s complement
representation, the greatest positive and negative numbers that can be represented with
bits were given in Table 3-1 as +(2"' - 1) and -(2""). For a negative coefficient, the
greatest positive multiplier result is obtained from taking the greatest negative input
number, and the greatest negative multiplier result is obtained from taking the greatest
positive input number. The situation is reversed for a positive coefficient. The
expression for Mp.(i) is therefore:

Mo ()= h@)x (" -1) ,h(i)zo}
s A(H)x(-2"") Lh(@) <O

: (4-3)
where:
sgn[x]= 1 ,x=20
BLX=121 x<0 (4-4)

Similarly, the expression for Mp.(i) is given by:

120

M ()= h(H))x(-2""Y) Lh@{@=20
i h(@H)x(2"' -1 ,h@{#)<O0

sgalh() -1, -9

=-{r@)|x2"" + >

Substituting equation (A-3) into equation (A-1) gives the expression for S,.s(i):

. < - h(k)]+1
S ()= h(k)x<(2" 1_sgalh(k)]+1
s () 3;'..' (k) (>) 4-6)
and substituting equation (A-5) into equation (A-2) gives the expression for S,eg(i) :
. < - h(k)]-1
S = — (k)| x (2" ‘+ﬂ—
) ENL IR) A7
From Table 3-1, the number of bits b required to represent a given value V in two's

complement can be calculated as:

{rlogz(V+l)+l1 ,Vzo}

“og,rh+1] <o (4-8)

Therefore, the number of bits (i) required to represent any sum at stage / in the adder
chain is equal to:

bG) = max{[10g, (S o,) + D +1] [log, (=5, M +1]} (A-9)

From this expression, a measure of the complexity of the adder chain can be found. The
number of registered bits R, in the adder chain is equal to the sum of every b(i):
i=N-1

R, = Zb(i)

i=0

(4-10)

121

122

Appendix B

Characterization of Ripple-Carry
Adders in Xilinx FPGASs

Detailed simulations were performed with the implementation of ripple-carry adders in
three Xilinx FPGA families, for all available speed grades. These simulations were
necessary because the Xilinx databooks do not provide timing information that is as
accurate as the one obtained from the Timing Analyzer tool.

In all cases, the adders were described with sufficient levels of pipelining in order to
properly isolate them from IOB performance and chip size considerations. Figures were
obtained for the latency of addition for various adder sizes, from 4 to 64. The targeted
FPGA families were the X4000E, X4000XL, and X4000XLA.

In all cases, the latency of the adder itself was considered, as was the delay of the
registers supplying the adder operands. The routing delay from these registers to the
adder depend on their relative placement and on the amount of routing resources used in

this particular area, and they were therefore not included in the figures obtained.

As expected, it was found that the latency of ripple carry addition is generally linear with
the width of the adder. However, some peculiar characteristics were also discovered.
For the 'E' and 'XLA' families, adders of width » and n + 1 have the same latency, for n
even. This is explained by the fact that in both cases the adders fit in the same number of

123

CLBs. While the mapping is identical for the XL' family, there is a regular latency
increase for all width increases, for the -3, -2 and —1 speed grades.

The behavior of the —08 and —09 speed grades for the "XL' family is even more peculiar,
however, as the latency is found to be non-monotonically increasing. For n even, the

latency is smaller for an adder of width » than it is for an adder of width n — 1.

Another conclusion from these simulations is that the rate of increase in adder latency,
between narrow and wide adders, is not constant and depends on the FPGA family and
speed grade. It was found that the faster chips had a lower rate of latency increase with
adder width.

The following graph shows the adder latencies for different FPGA families and speed
grades.

25

20

adder latency (nanoseconds)

-
w

Figure B-1 Latencies for X4000 Adders

124

The following table gives an approximation of the rate of increase in latency with respect
to adder width for different FPGA families and speed grades.

n/a n/a

-3 0.390 0.293 n/a
-2 0.335 0.259 0276
-1 0.264 0.225 0.240
-09 n/a 0.188 0.216
-08 n/a 0.167 n/a

Table B-1 Approximate Latency Increase for X4000 FPGA adders, ns/bit

125

126

