
Design and Implementation
of Wide Band Quadrature Demodulators

on Field Programmable Gate Arrays

Lieutenant(N) Joseph Mathieu Pierre Langlois, CD, rmc, BEng
Canadian Armed Forces

A thesis
Presented to the School of Graduate Studies in the

Department of Electrical and Cornputer Engineering
Royal Military College of Canada

Kingston, Ontario

in partial fùlfibent of the requirements for the degcee
Master of ~n~ineering

Aprii 1999

Copyright 8 1999 by Joseph Mathieu Pierre Langlois, Kingston, Ontario
This thesis may be used within the Department of National Defense
but copyright for open publication remains the property of the author

National Library 1*1 of Canada
Bibîiihèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services senrices bibliographiques
395 Wellington Street 395. nie Weüington
Ottawa ON K I A ON4 OttawaON K I A W
Canada CaMda

The author has granted a non-
exclusive licence aiiowing the
National Library of Canada to
reproduce, loan, distribute or seil
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant a la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/nlm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation-

Abstract

Traditionai digital implementations of high performance, wide band quadrature

demodulators have targeted gate arrays and custom Application Specific htegrated

Circuit (ASIC) technologies. These technologies involve signïficant non-recurring

engineering costs. In this thesis, it is demonstrated that Field Programmable Gate Arrays

(FPGAs) are a viable aitemative, providing system performance in the same order of

magnitude, with a significant reduction in non-recUrriLlg engineering costs.

Considerations relevant to the design and implementation of wide band quadraîure

dernodulators are described. Fundamentai principles for their digital realization are

discussed and different theoretical approaches are presented. Specific attention is paid to

the selection of digital filter architectures that map well to FPGA Configurable Logic

Blocks (CLB), and to constant coefficient multiplier implementation.

The delayed-carry chah concept is proposed as an extension to traditional pipelining

methods for multi-operand adders. The proposed concept was specifically applied to

digital filter implementations following the so-calied transposed form. The concept

presents a significantly reduced overhead for a given performance criterion, especidy for

high filter orders. It is ideally suited to FPGA implementations and to other register-rich

hardware technologies.

Four VHDL-based designs meeting different sets of specifications are descriied. One

particular design implemented in a low speed grade FPGA is suitable for the processing

of input signals on a 160 MHz Intermediate Frequency (IF) with a maximum theoretical

bandwidth of 53.3 MHz. Implementation in a faster FPGA family would support a IO0

MHz bandwidth signal centered on a 100 MHz IF.

Keywords: Quadrature Demodulation, Field Programmable Gate h y s , Digital

Filtering, VHDL Design Synthesis

Acknowledgementsl
Remerciements

Many people deserve my sincere gratitude for their direct or indirect help and support
related to this thesis. First, Dr. Dhamin Al-Khalili of RMC and Mr. Robert Inkol of
DREO, for their tirne and patience with my endless sireams of questions, for their
countiess usefül suggestions and for their wise guidance.

Au CMR, le Dr. Jean Fugère; c'est grâce à sa flexibilité que j'ai pu poursuivre ces études;
merci beaucoup. Dr. Y.T. Chan, for intercehg in my favour.

At CRC, Dr. Valek Szwarc, for his cooperation and support. Mr. Luc Désonneaux for
his insights into CRC's designs. Mr. Richard Wojcik, for corning in even though he had a
cold. Ms. Huong Ho, for her useful suggestions.

At RMC, Mrs. Nancy Turkington for her outstanding service in the h'brary. Mr. Pierre
Adam, Mr. Scott Sararas, Ms. Kim Sararas, Mr. Wolf Rogal, and Mr. Chris Lai for their
support, ideas, suggestions and great service.

Mr. Bob Stevenson of CMC for my invasion of his office.

My wlleagues Capt. John Buitenga, Capt. Bryan Wright, Capt Don Shaw, Maj. Stéfm
Richard and Dr. Derrick Bouchard, for the fke sharing of ideas. Maj. François
Laboissonière pour les discussions, LCdr Mïke Bourassa for getting me back on my
board, Capt. Stéfan Fournier pour Le squash, le support et le disque dur, Capt. Hughes
Latour pour le support avec Unix, les diverses licences et le squash, et Lt(M) Claude
Bernard, pour quand nous voulions prendre des r i s mais que nous ne le pouvions pas.

Mon épouse, Caroline, pour tout le reste; sans elle, çà n'en aurait pas valu la peine.

Dédicace

À CuroZine. mon épouse et meilleure amie,

et O Étienne, que j'aîtenduis depus si longtemps

Vita

Pierre Langlois was bom in Sherbrooke, Québec, in 1967. Afier wmpleting high school

at Le Séminaire de Sherbrooke, he enroileci in the Canadian Forces and reporteci to the

Collège Militaire Royal de St-Jean in 1985. He graduateci fkom the Royal Military

College, in Kingston, Ontario, in May 1990 with a degree in Electrical Engineering.

After completing Combat Systems Engineering training in various shore establishments

and naval destroyers on Canada's both coasts, he served as project engineer with the

Tribal Upgrade and Modemization Program (TRUIMP), at the MIL Davie Shipyard in

Lévis, Québec, fiom 1992 to 1994. He retumed to sea in 1995 on board IllMCS

IROQUOlS, based in Halifax, Nova Scotia, to complete the Head of Department

qualification. He then served as an instnictor for radar and Electronic Warfare systerns at

the Canadian Forces Naval Engineeting School, in Halifax, from Jmuary 1996 util

August 1997, when he came back to RMC to undertake graduate studies.

Upon completion of his studies, he wiil remain at RMC as a Iecturer in the Mathematics

and Cornputer Science Departmat

Contents

VITAo....... w... YII

................ LIST OF FIGURES-....................M.. XV

.... LIST OF TABLES-. XVKi

ACRONYMSr...0

CHAPTER 1 INTRODUCTION , ... 1

1.1 OVERVEW .. 1

.. 1.2 M o r r v ~ n o ~ 3

1.3 OBJEC~~VES .. 4

... 1.4 SYNOPSIS, ,., 4

CHAPTER 2 DIGlTAL IMPLEMElYTATION OF QUADRATURE DEMODULATION-........ 7

2.1 INTRODUCTION ... 7

... 2.2 BASIC DIGITAL APPROACH TO QUADRATURE DEMODULATION 10

.. 2.2.1 Sampling Frequency Selection 11

2.2.2 In-Phase and Quadrature Digital Fiiters .. 12

... 2.2.3 Decimation of Filter Outputs 13

.. 2.3 hWROVED DIGITAL APPROACHES 16

.............*............ ... 2.3.1 Low-Pass Filter Approach 1 6

2.3 2 High-Pass Filter Approach .. 19

2.3.3 Polyphase Filter Approach .. 20

2.3.4 Duplicated Polyp hase Filters Approach .. 23

2.3 -5 Other Cases .. 25

2.4 ODD-LENGTH, ~ ~ B A M) PROTOTYPE LOW-PASS FILTER .. 26

2.4.1 Half-Band Filter ... 26

2.4.2 Thhd-Band Filter ... 27

... 2.4.3 Quarter-Band Fate ri 28

2.4.4 General Case .. 29

... 2.5 FREQUENCY TEMNSLATION BY UNDERSAMPLING 29

2.6 DECEION 31

CHAPTER 3 MULTIPLIER IMPLEMENTATION FOR DIGITAL FILTERING*....... 3 3

3.1 INTRODUCTION ... 33

3.2 POWER-OF-WOCOEFFICIENTS .. 34

3.3 SIGNED D I G ~ REPRESENTATION OF COEFFICIENTS .. 36

3 -4 MIN- NUMBER OF ADDERS FOR MULTIPLIER IMPLEMENTATIONO............... 38

3.5 LOOK-UP TABLE APPROACH FOR FPGA MUL~LICATION .. 40

3.5.1 Advanmges of LUT Approach to Multiplication in ETGAs .. 41

3.5.2 Cornparison of the Area Used by LUT and CSD Approaches ... 43

3.5.3 Cornparison of the Speed Between the LUT and CSD Approaches .. 45

3.6 DECEION .. 45

CHAPTER 4 FILTER ARCHITECTURE SELECTION 47

4.1 ~NTRODUC~ION 47

4.2 B A ~ I C F ~ R F ~ L T E R A R C H I T E ~ 47

4.2.1 Direct Form Reaiization -48

4.2.2 Transposed Fonn Realimtion ... -49

... 4.2.3 Cascade Form Reaiization ... 50

4.3 L~EAR-PHASE FIR FILTER ARCHITE- ... 5 1

4.4 TRANSPOSED FORMS w r r ~ MULTIPLIER B ~ K : E X P L O ~ G COEFFICIENT REDUNDANCY 53
4.5 PIPEL~NED ARCH~C~Z~RES ... 55

4.5. L Pipelined Adder Tree for the Direct Form (Version 9 .. 56

.. 4.5.2 Alternate Pipelineci Direct Form (Version II) 57

4.5.3 Transposed Fonn with Pipehed Input for Facilitateci Placing and Routmg 57

4.5.4 Pipehed Multiplier Block for the Trazlsposed Form .. 59

.................................. 4.6 FAST ADDITION FOR DIGITAL FILTER ARCHITECTURES 6 0

.. 4.6. 1 Carry Select Adder 61

4.6.2 Pipeiined Ripple Carry Adder ... 61

4.6.3 Delayed-Carry Chain_ .. 64

4.7 ANALYS IS OF THE ALTERNAT IVE FILTER A ~ m c r C l R E s ... 67

4.8 DECISION ,. ... 70

... CHAPTER 5 DETAILED DESIGN DESCRIPTIONS 71

5.1 I ~ O D U C T I O N ... 71

5.1.1 Overview of Designs Considered .. 71

5.1.2 Filter Coefficients and Frequency Response Characterisacs .. 73

.. 5.2 POLYPHASE FLTER APPROACH: BASIC DESIGN 75

5.2.1 General Overview 75

5.2.2 Multiplier Block Descrïptio n. .. 77

5.2.3 Adder Chain Block Description .. 80

5.2.4 intemal and Extemal Timing Considerations .. 82

.............*.................... 5.2.5 hplementation in Other FPGA Famifies and S peed Grades ...-. 82

5.2.6 Final Comments on the Design ... 83

............................. 5.3 POLWHASE FILTER APPROACH DESIGN W~TH DEIAYED-CARRY ADDER CHAIN 84

5.3.1 G e n d Overview .. 84

.. 5 -3 -2 Design Structure 84

..................................... 5 -3 3 Implementation Considerations and Cornparison with Basic Design. 84

... 5.4 POLYPHASE FILTER APPROACH DESIGN WITH DATA CONVERSION 86

5.4.1 GeneralOverview .. 86

5 .4.2 Analog-to-Digital Converter (ADC) Block ... 87

5.4.3 Data De-interleaving Process and Timing Requirements .. 88

5.4.4 Data Conversion Process ... 90

5.4.5 Finai Comments on the Design .. 91

5.5 LOW-PASS FILTER APPROACH DESIGN91

... 5 S.1 Generd O v e ~ e w 1

5.5.2 Analog-to-Digital Converter (ADC) Block ... 92

5.5.3 Data Conversion Block .. 92

... 5 -5 -4 Modulator Blocks -93

5.5.5 In-PhaseandQuadratureFilterBlocks-.. .. 93

5.5.6 Final Comments .. -95

5.6 VfEDL D E S C ~ O N CONSIDERATIONS .. 95

5.6.1 Building Blocks ... 96

5.6.2 Optimjzhg the Hardware Realization h m the VHDL Description 97

5.6.3 Automated Structural VHDL Code Generation ... 98

5.7 SuMMARy ... 100

..................... CHAPTER 6 DESIGN VERIFICATION AND TESTING " 101

.. 6 INTRODUCTION 101

6.2 STRATEGY ... 101

... 6.3 TEST VECTOR SELECIION L02

.. 6.3.1 Fundamental Tests 102

.. 6.3.2 Impulse Response Test 103

.. 6.3.3 Extreme Outputs Test 1 03

6.3.4 Pseudo-Random Sequence Test ..-.............................--. 1 0 4

6.3.5 De-interleaving and Data Conversion Tests .. 105

xii

6.4 F U N ~ O N A L VERDICATION OF VHDL CODE~.~.~~~~~~.~~~~~~~~......~....~..~~~......~..~.....~..~~~.~~ LOS

6.5 SYNTHESIS, MAPPtNG. PLACING AND ROUlWG VEIUFICATION ... 10s
6.6 TIMING ANALYSIS AND ~"ENT~CATION OF CIUTICAL P ~ n i s .. 107

6.7 HARDWARE T E S ~ G .. 108

6.8 SUMMARY .. 109

C H M E R 7 CONCLUSIONS AND RECOMMENDATIONS,..oo..~...o.o~~~.o.~~~.~o~......... 111

............................ APPENDIX A FILTER BUS WLDTH ANALYSIS , ...n..n.*....*....*....*.......... I l 9

....... APPENDM B CHARACTERLZATION OF RIPPLE-CARRY ADDERS IN XILINX FPGAS 123

xiii

xiv

List of Figures

.. Figure 1- I . Conceptual Block Diagram of RF Portion of E W Receiver 3

Figure 2-1 - Analog Quadrature Demodulator Block Diagram ... 9

.. Figure 2-2 - Speciru for Andog Quadrature Demodulation 10

.. Figure 2-3 - Dip-tal Quaakature Demodulator II

.. Figure 2-4 - Specrra for Decimation-by-Two Case. 14

... Figure 2-5 - Spectrafor Decimation-&-Four Cme- 15

... Figure 2-6 - In-Phase Channel for Deciinanon by Two 17

.. Figure 2-7 . Quadrature Channel for Decimation by Two ... 18

............................. Figure 2-8 - Digital Quadrature Demodulator with t; = 4 x & a d Decimation by Two 18

... Figure 2-9 - Digital Quadrature Dernodulator with High-Pass Fiiter Approach 19

F m r e 2-10 - Quadrature Demodulator Polyphase Filrer Approach (M = 4) ... 23

Figure 2-11 - Duplicated Polyphase Filter Architecture .. 25

Figure 2-12 . Example of Frequency Trmlation by Undersampling .. 31

. . . Figure 3-1 . h4ulhphcation by 45 40

... Figure 3-2 . LUT MU ftzjdication Block Diagram -42

Figure 4-1 - Direct Form Realizaîion ... 48

... Figure 4-2 - Tramposed Fonn Realization 49

... Figure 4-3 . Cascade Fonn Realkation 50

Figure 4-4 - Direct Form Architecture, FiR linear phasemer. N ~ e v e - ... -52

Figure 4-5 - Transposed Fonn Architecture . F m linearpha~efilter~ N men .. 52

Fr'gure 4-6 - Transposed Form FIR Filter with Multiplication Block ... 54

Figure 4-7 - Tramposed Fonn S'etric FllP Filter. N Even. with Multr'plcation Blo ck. 54

Fiwre 4-8 . Pipelined Direct Fonn. Version 1: Ader Tree .. 56

Figure 4-9 - Pipelined Direct Fonn, Version 11 ... 57

.. Figure 4-10 - Transposed Fonn with PIpelined Input 58

... Figure 4-1 1 . Pgelined Multiplier B k k Example 60

... Fijpre 4-12 . Cany Select Adder E x m p le 62

.. Fijpre 4- 13 . P @elined Ripple Carry Adder Erample 63

Figure 4-14 . Pl'pelined Delayed-Cany Adder Chain fiample (Transposed Fonn) 64

Figure 5-1 . Prototype Filrer Frequency and Phase Response 74
Figure 5-2 . Top Level BIock Diagram (Baric Design) ... 76

Figure 5-3 . Sub-Filrer BIock Diagram ... 77

.. Figure 5-4 . Qo Sub-Fifter Multiplier Bl oc&. 7 8

Figure 5-5 - Qo Sub-Filter Adder Chain Block Diagram .. .80

Figure 5-6 . Top Level Block Diagram mll Desi'gn wirh Data Comemion}A7

Figure 5- 7 . De-lnterleaving Blo& In-Phase Channel .. 88

Figure 5-8 . Data De-lnterleaving lîming Diagram -89
Figure 5-9 . Top-Level System BIock Diagram (LOW-Pas Fiffer Approach} .. -92

Figure 5- 10 . Modulator Block ,, .. 93

Figure 5-1 1 . Structure of the Fifter BIocks (Neven) .. 94

... Figure 6- I . Hardware Test Setrrp IO9

.. Figure B-I Latencies for X4000 Aciaers 124

..................... Table 2- I . Upper Bmnds for Prototype Filter Subsampling into Polypke Fihem (M = 4) 22

........................... Table 2-2 . Alternative Undemampling Frequencies, Low-Pass Filter Approach 30

... Table 3- 1 - Range of Vuiues for Different Niunber Reprtsentations with n bits 37

Table 3-2 - 8-bit CSD Coeflcient (-1 28 to t127) rMu1tipIier StatrStrës .. 44

Table 4- 1 . Filfer Architecture AlternanYes .. 68

... Table 5- 1 . Prototype Filter Coeficient Mapping 75

..................................... Table 5-2 . Bus Kdth of the Sub-Fiiter Adder Chains .. 81

.. Table 5-3 - Cornparkon of the Basic and Delayed-Cuny Designs 85

.. Table B-1 Approxima te Lutency Increae for X4000 FPGA aruiers, nr/oit 125

Acronyms

ADC

ASIC

BIST

CLB

CMC

CMOS

CMR

CRC

CSD

DC

DREO

DUT

ECL

EDA

EW

F R

FPGA

HDL

HMCS

LI:

m
IMS

IOB

KCM

LFSR

LSB

LUT

MHz

Analog-to-Digital Converter

Application-Specific htegrated Circuit

Built-in Self Test

ConfigurabIe Logic Bloc

Canadian MicroeIectronics Corporation

Complementary Metal Oxide Semiconductor

Collège Militaire Royal

Communications Research Center

Canonical Si& Digit

Direct Current

Defence Research Establishment Ottawa

Device Under Test

Emitter Coupled Logic

Electronic Design Automation

Electronic Warfare

Finite Impulse Response

Field-Programmable Gate Array

Hardware Description Language

Her Majesty's Canadian Ship

htennediate Frequency

riifinite impulse Response

htegrated Measurement System

Input/Output Block

Constant-Coefficient Multiplier

Linear Feedback Shift Register

Least Significant Bit

Look-Up Table

Megahertz

MIL

RF

RMC

ROM

TRUMP

?TL

VHDL

VHSIC

VLSI

Marine Industries Limited

Radio Frequency

Royal Military College

Read-Only Memory

Tribal Upgrade and Modemization Program

Transistor-Transistor Logic

VHSIC Hardware Description Language

Very High Speed lntegrated Circuit

Very Large Scale Integration

. . - .. -- -

Chapter 1

Introduction

1.1 Overview

Quadrature demodulation is a process for obtaining a complex baseband representation of

a real bandpass signal. It has a wide variety of applications in areas such as radar and

sonar signal processing, digital communications, and biological signal analysis. The real

signai obtained fiom a transducer such as an antenna, a hydrophone or a biological probe,

is ampli fied, filtered, and possibl y s h i M to an appropriate Intermediate Frequency (IF)

before quadrature demodulation. Once this process is done, the resulting complex signal

representation contains the information present in the original signal, and its format

facilitates subsequent processing, such as spectral anaiysis or the extraction of

modulation information.

This thesis addresses the implementation of quadrature dernodufators in Field

Programmable Gate Array (FPGA) technology. FPGAs offer some attractive advantages

over other implementations of Application Specific Integrated Circuits (ASICs). They

are easily programmable, which means that a design c m be implemented and tested in a

very short tirne, reducing development time and oost dramatically. They are also re-

programmable, so modifications can be made and tested in the field. A single chip may

even have multiple purposes on one board, as it c m be reprogrammed in-situ. Non-

recunbg engineering costs are also orders of magnitude lower than for other ASICs.

One disadvantage of FPGAs over full-custom design ASXCs is the speed of operation.

The achievable data rates have traditionally been well below the performance attainable

with other technologies such as Gallium Arsenide. Therefore, a major challenge for the

designs considered here will be to meet performance repuirements nomally associated

with fidl custom designs on a FPGA. An additional disadvantage is the limitations in the

acceptable input signal format. While other techaologies allow level translation to be

done on chip, most FPGAs require extemal hardware to do this.

The quadrature demodulators considered in the present research are primarily aimed at

radar and Electronic Warfare (EW) applications. These fields pose particular design

challenges when compared to sonar, w~~llllunications or bio-medical applications. The

most obvious ciifferences are the high frequency and wide bandwidth requirements. The

IF is typically in the MHz range, and the signal bandwidth may extend fiom DC to twice

the IF. In many applications, there is a need for red-time operation. Consequently,

techniques such as parallelism and pipelining may be necessary to achieve adequate

processing speed. Another system requirement is the preservation of the input signai

waveform and of any information wntained in the signal modulation.

In an EW receiver, for which a conceptual block diagram is shown in Figure 1-1,

intacepted radar pulses are nrst picked up by an antenna before being amplifiecl and pre-

filtered by a Radio-Frequency (RF) amplifier. They are then mixed down to a convenient

lutermediate Frequency (IF), in one or more fiequency conversion stages. The signal is

then fllrther amplified and sum kquency components are suppressed by an IF amplifier.

After t h i s step, quadrature demodulation is performed to convert the IF signal to a

complex baseband representation with in-phase and quadrature components. This

complex representation faditates m e r processing to extract information contained in

the radar pulses.

1.2 Motivation

Quadrature demodulation has been the subject of a collaborative research programme

involving the Defmse Research Establishment Ottawa (DREO), the Communications

Research Center (CRC) and the Royal Military Coilege (RMC). Significant contn'butions

have been made to the field. A number of hardware implementations of wide band

receivers with progressively improving performance have been developed using CMOS

and GaAs ASIC technologies. The most recent designs have provided considerable

additional hctionality in addition to quadrature demodulation.

Figure 1-1 - Conceptual BlUck Diagram of RF Portion of EW Receiver

The advent of FPGAs, with their ability to implement complex systems with ever

increasing performance [Il and low non-recurring engineering costs, opens up a wealth

of new possibilities. In-system, on-board re-programmability means that desigris can go

fiom concept to field application in a very short t he . Further, design changes can be

quickly put in place and resulr observed-

There are many reasons to pume M e r research in this specific field. Programmable

logic poses special problems, but also presents appealing advantages over custom ASIC

VLSI designs. A number of novel approaches to quadrature demodulation have surfaceci

in recent years, as have ingenious ways to implement digital filtering with increased

efficiency. Ideas that have been previously discarded as

technologies available at the time deserve new consideration

implementations. Finally, there has been on-going research at

being impractical with

for programmable logic

DREO into the selection

of filter coefficients for quadrature demodulation specifïcally, and there is a need to

validate results in hardware. The implementation of quadrature demodulation using

FPGA technology is therefore a pertinent and promising area of research.

1.3 Objectives

Given the present subject, the research emphasis must be focused in a few specific

directions. First, it is intendeci to assess the viability of using FPGAs for wide-band, high

performance quadrature demodulators. This means that the effective data processing rate

must be as hi& as possible so that the input signal bandwidth can be maximized. The

designs should be optimized as well to rninimize power wllsumption. For FPGA

realizations, this means that special consideration will have to be given to architectural

issues.

It is also desired to make a contri'bution to DREO's filter coefficient research, with the

specific aim of producing filter designs whose coefficients minirnize the hardware costs.

This aim would also be in line with contributhg to the general problem of fast digital

filtering, with the specific considerations that apply to FPGA-based designs.

Finally, the design entry method selected for this raearch will be a Hardware Description

Language (HDL). A synthesis tool will then be used to generate a design netlist. This

will pose special challenges given that stringent performance requirements must be met.

It is therefore hoped that a contribution cm be made to the problem of optimizing the

hardware realization of HDL-based designs.

1.4 Synopsis

This thesis is divided into 7 chapters. Chapter 2 will present hdamental principles for

the digital reaiizaîion of a quadrature demoduiator. In Chapter 3, the specific probiem of

multiplier implementation w d l be presented. Chapter 4 will cover the very important

topic of seLation of a filter architecture. It is in Chapter 5 that a detailed description of

quadrature demodulator designs will be made. Chapter 6 will deal with design

verification and testing. In Chapter 7, conclusions will be drawn and recommendations

for M e r work ml1 be made.

- - --

Chapter 2

Digital Implementation of
Quadrature Demodulation

2.1 Introduction

The input signal to a quadrature demodulator can be desmied by:

x(t) = A(t) cos(cu,t +@ (t))

where A(t) is the signal amplitude, oc its carrier fkquency (in radians/second), and &t)

its time varying phase angle. The signal x(t) is assumed to be a real bandpassl signal.

The goal of quadrature demodulation is to express the signal x(t) as a fhction o f the in-

phase and quadrature components I(t) and Mt) as follows:

where I(t) and Mt) are both functions of A(t) and &t), and are equal to

A bandpass signal is centered on a frequency 0th- than O Hz and has a nnite bandwidth.

Once the in-phase and quadrature components are avaiiable, the amphde and phase

information in the signal x(t) can be calculated as

The traditionai analog approach to quadrature demodulation is shown in Figure 2-1. The

signal to be demoddated (in th-s case the output of the IF amplifier) is multiplied by two

sinusoids with a 90 degree phase angle Merence. This effectively creates quadrature

versions of the signal nominally centered around zero fiequency and at twice the carrier

fiequency. The signal wmponent centered about 2oc is then removed by low-pass

filtering to lave a complex baseband signal. I f a digital representation of the in-phase

and quadrature components is desireci, analog-todigital conversion is perfonned.

From the block diagram, the in-phase component, I(t), is equal to:

Similady, the quadrature component, Ht) , is equal to:

~ (t) = L P F ~ (~) x (-2 sin q t) }
= LPF& 2A(t) cos(o,r + @ (t)) x s in(~ , t) }
= LPF{A(~)[- s in(îq t + @ (t)) + sin(+ (t))]}

= 4) sin(@ (t))

By substituting equations (2-5) and (2-6) in equation (2 4 , we get:

which is the same as the original equation (2- 1).

Qu) - - Q(4
+ LPF . # A D , b

In Figure 2-1, the modulating sîgnds cos and sin are shown with an amplitude of 2 to

make the input and output power levels equd. In practice, however, this factor is ofien

neglected and it wilZ not be considered in subsequent discussion.

The quadrature representation of signals can also be viewed fiom a complex number

perspective. The received signal x(t) can be expressed as:

and the two quadrature components I(r) and Q(r) are the baseband real and irnaginary

parts of x@, respectively.

Figure 2-2 shows two spectra relevant to the analog implementation of the quadrature

demodulator. The top spectnmi represents the bandpass signal x(t), centered on a

fiequencyf,, with a bandwidth B. The lower specîrum is the magnitude of x(t) shifted in

fiequency down to baseband, showing the high-kquency modulation products having

been removed by low-pass filtering and the remaining bandwidth 812.

rem oved by LPFs

Figure 2-2 - Specba for Analog Quadrature Demodulation

2.2 Basic Digital Approach to Quadrature Demodulation

The traditional analog impiementation of quadrature demodulation, shown in Figure 2-1,

suffers from many problems, especidy to gain and phase mismatches between the 1 and

Q charnels and the presence of DC offsets [2]. In such an implementation, al1

processing, with the exception of the Analog-to-Digital Converters (ADC) used to

digitize the 1 and Q signals, is carried out by analog circuits.

A more robust implementation is ali digital, as shown in Figure 2-3. In this case, only

one ADC is used, and the processes of down-conversion and filtering are done digitally.

The 1 s t step is usudy a dechnation by an integer factor M, where only 1 out of M

samples are kept. The value of M depends on the initial sampling rate and on the

bandwidth of the signal Ht).

Q digitai oscillator for car

Figure 2-3 - Digital Quadrature DemoduUrtor

2.2.1 Sampling Frequency Selection

I W)
w

The first processing step after conversion of the input analog signal to a digital format is

fiequency shifbg to baseband. It involves multiplying the input data by cosine and sine

sequences at the center fiequency of the input signal, as shown previously. This step can

be quite complex, first requiring the generation of the two sinusoids (possibly with a

Look-Up Table approach), then their multiplication with the Stream of input data.

However, a careful selection of the sampling frequency can greatly simplify this problem.

If it is selected such thatf, = 4 x f , then the two sequences are represented by cos(ml2)

and -sin(m/2), which reduce to:

digitai ilmultiplia

r(t) 44
ADC

cos: 1,0,-1,0, I,O,-1,o ,..*

Digital

Low Parr Film

(1
b

Obviously, multiplications by O or 1 are trivial. For multiplication by -1, the only

processing required is sign inversion, an operation whose complexity depends on the

number representation of the data However, in the worst case (for 2's completnent

- JM

repraentation), the operation is simpler than the addition of two numbers, with each bit

inverted and a carry added to the Least Significant Bit.

2.2.2 In-Phase and Quadrature Digital Filters

The second step after multiplication of the input data by quadrature sinusoids is low-pass

filtering, where unwanted high-fiequency mixing products are removed to obtain the

results of equations (2-5) and (2-6). In a digital implementation of quadrature

demodulation, digital £üters are useci,

The phase linearity of the filters used in the quadrature demodulator is an issue. For

many applications such as those targeted for this research (radar and EW receivers), it is

essential to preserve the information contained in the original signais. A non-linear phase

filter is therefore unsuitable for the quadrature demodulator designs considered here.

While Infinite Impulse Response (IIR) filters usuaily have sharper transition bands than

Finite Impulse Response (FE) filters for a given filter order, they cannot have a linear

phase characteristic [3], and thus they are not considered M e r in this document. FE2

filters, however, can exhibit ideal linear phase under some conditions that w u be

described later. Therefore, the quadrature demodulator designs wnsidered here will be

restricted to linear-phase FIR filters.

The output y(n) nom a FIR filter with impulse response h(n), filter length N, and input

sequence x(n) is given by the convolution of the input sequence and the filter impulse

response:

In the basic quadrature demodulation approach, the two low-pass fllters are identical, and

the filter they reproduce is calleci the prototype filter. The impulse response of the low-

pass prototype filter will hereafter be denoted by h&). Its cutoff kqunccy, transition

bandwidth and stopband attenuation are selected accordhg to the characteristics of the

12

signal to be demoduiated, and espeçially the signal bandwidth. From the spectra shown

in Figure 2-2, it should be obvious that the passband of the filter should be at least equal

to B/2, where B is the bandwidth of the signal prior to demodulation.

From equation (2-9), given that the system samphg fiequency is selected as = 4 x f,

and that the prototype low-pass flter has an impulse response h d n) , the output of the in-

phase channel can be expressed as:

C f

N-1 K = h, (nt) -x(n - m) . cos(- (n - m))
m=O 2

and the output of the quadrature channel can be expressed as:

Q(n) = h,p (n) *
N-1 K = h, (m) - x(n - m) - sin(-; (n - rn))

2.2.3 Decimation of Filter Outputs

The input to the quadrature demodulator is a bandpass signal centered on a fiequency of

f,. Hence, its maximum bandwidth B is 2 x f,. Mer demodulation, alï the signal's

information content is stored in the in-phase and quadrature channel outputs, and each

has a maximum bandwidth B/2 =A.

Ideally, the prototype low p a s filters in the in-phase and quadrature channels should

rernove al1 fiequency components outside of the bandwidth of interest. Therefore,

according to the Nyquist criterion, the minimum sampling rate that could be used to

process the in-phase and quadrature signals, without aliasing, is 2 xf,. However, since

the sampling Fequency was selected asf, = 4 xf, for the advantages already mentioned,

this irnplies that the filter outputs are oversampled by a factor e q d or pater to two, and

thus that every other sample, at least, c m be discarded. The pmcess of retaining only a

fixed proportion of data samples is lcnown as decimation. It is rarely advantageous to

cary redundant information about a signai, and dechation should generally be done to

maintain the lowest possible processing and communications rates in a system.

Figure 2 4 shows the signai spectra at various stages in the demodulation pcess for the

case of decimation by a factor of two.

Figure 2-4 - Spectra for Decimafi'on-by-Two Case
a) analog input signal. b) digitized signaI, with the sampling fiequency equal fo four
rimes the cam-errfiquency c) digitked signai shifed to baseband. 4 r m l t afer ideril
low-pas filtering. e) result afier decimation by two.

The signal bandwidth o f 2 x /, discussed above represents a maximum for a signai

centered on a fiequency fc. If the signai bandwidth is sufficientiy smaiier, then

decimation by a factor greater than two is possible. For example, if the input signal to the

quadrature demodulaor has a maximum bandwidth off,, then d e r demodulation to

baseband di that will remab will be one sideband of bandwidth fJ2. According to the

Nyquist criterion, the corresponding minimum sampüng rate without aliasing is thus f,.

Following the approach aiready described, if the sampling fiequency is selected as& = 4

xf , , then the un-decimate- filter outputs are oversampled by a factor of four. Figure 2-5

shows signal spectra at différent points of the processing for this case.

figure 2-5 - Specira for Decimation-&y-Four Case
a) analog input signal. 6) digitized signal. witfi the sampling fiequency equal to four
tirna the cam*erfiequency. c) digitized signal shzjted to buseband. d) result afrr ideal
low-pass filtering. e) resu If ufier decimation by four.

2.3 lmproved Digital Approaches

In the basic digital approach to quadrature demodulation, presented in the preMow

section, data is processeci throughout the system at the sampling rate of the ADC, then

decirnated at the output of the filters. This situation is a case of multinite signal

processing [4]. Since it is a waste to expend resources to calculate signal data ody to

discard it later, a much more efficient approach is to decimate before the multiplication

and filtering are done. This section discusses designs based on this concept.

2.3.1 Low-Pass Filter Approach

If the bandwidth of the input signal to the quadrature demodulator is such that the fllter

outputs are oversampled by a factor of two (B < 2 xf;), then the filter processing rate can

be reduced b y half [SI.

RefWing back to equation (2-1 O), decimating the output of the in-phase filter by 2 gives:

N-1 It
1(2n) = h,(m) - 4 2 n - m) - cos(-(2n - ni))

m=O 2

Noting that the summation tenns will be nuil for odd values o f the summation index m, a

change of variable is made such that m = 2k to give:

= 2 & (2k) - x(2(n - k)) - cos(n (n - k))

where Ki is equal to (N - 1112 for N odd, and to (N2) - 1 for N even. Effectively, the

input data is decimated by two and sign changes are applied to altemate r e m M g

samples. The resulting data Stream is filtered by a new low-pass filter. The impulse

response of the new in-phase low-pass filter hLpdn) is givm by:

for n = 0, 1, 2, . . ., Ki . A block diagram of the resulting realization of the in-phase

channel is given in Figure 2-6. It must be noted that the new filter processing speed is

half of the input data rate.

Figure 2-6 - In-Phase Channel for Decimuîion by Two

Similarly, starting fiom equation (2-1 1), decimathg the output of the quadrature channel

by 2 gives:

N-1 1L:
M2n) = hrp (m) x(2n - m) sin(-: (2n - m))

Noting that the summation terms will be nuil for even values of the summaîion index m, a

change of variable is made such that m = îk +l to give:

KQ 3 t
= h, (2k + 1) - x(2(n - k) - 1) -sin(T, -r (n - R))

where KQ is equal to (N-3112 for N odd, and to N/2 - 1 for N even. Effdvely, the input

data is decimated by two and sign changes are applied to alternate remaining samples. It

must be noted that there is one sample relative delay between the in-phase and quadrature

channels. The resulting data Stream is filtered by a new low-pass filter. The impulse

response of the new quadrature low-pass filter h d n) is given by:

hwQ (n) = h, (2n + 1)

for n = 0, 1, 2, . . ., KQ. A block diagram of the resulting realization of the quadrature

charnel is given in Figure 2-7. Again, the processing rate is half of the input data rate.

Figure 2- 7 - Quadraîure Channelfor Decimcrftôn by Two

Combining Figure 2-6 and Figure 2-7 gives an overall digital quadrature demodulator

block diagram already presented in [6]. It is shown in Figure 2-8.

Figure 2-8 - D i ' a i Quadrature DemoduIator witk f, = 4 x f, and Dechation by T m

From this block diagram, it is important to note that the input signal is still sampled at

four t h e s its camier frequency. However, al l samples are not passed to both digital

filters. The "even" samples are passed to the in-phase filter, with every other one

undergoing a sign change. Similarly, the "oddn samp1es are passed to the quadrature

filter, and every other one also undergoes a sign change.

The advantage of this quadrature demodulator configuration is that it accommodates the

widest possible input signal bandwidth (B < 2 xf ;) while keeping the processing rate at

half of the input data rate in the two low-pass f?lters.

2.3.2 High-Pass Filter Approach

This approach, proposed in [SI, is applicable where the input signal bandwïdth B is l e s

than f, and when it is appropriate to decimate the filter outputs by a factor of 4. A

slightiy rnodified version of the proposed block diagram is shown in Figure 2-9. The

approach has the advantage that the filters can operate at a quarter of the input data rate,

since the 1 s t decimation step should be done inside the filters. It is also interesthg to

note that the multiplications by +l and - 1 are imbedded in the filter coefficients.

Figure 2-9 - Digital Qudraîure Demodulator nM High-Pms FFilL Approach

It can be shown that the impulse response of the in-phase higb-pass flter ~HP&) is given

b y:

hm[(n) = (-1)" h&n) (2-18)

for n = 0, 1,2, . . ., Ki, where Kr is equal to (N-1112 for Nodd, and to NI2 - 1 for N even.

Similarly, the impulse response of the quadrature hi&-pass filter h d n) can be shown to

be equal to:

hHpQ (n) = (-1)" h, (2n + 1) (2-19)

for n = 0, 1, 2, . . ., KQ, where & is equal to (N-3112 for N odd, and to (M2) - 1 for N

even.

2.3.3 Polyphase Filter Approach

It has been suggested in 163 that a polyphase filter architecture ([7] [8] [4]) be used for

quadrature demodulation. This approach has the advantage of keeping the nIter

processing rate at its lowest for ai i cases. The derivation included here will assume a

decimation factor of four. For this case, the approach is equivalent to the High Pass Filter

approach. However, it leads to a system description that is more readily tramlatable to a

hardware realization.

Starting from equation (2-IO), decirnating the output of the in-phase channel by 4 gives:

N-1 Ir 1(4n) = x h, (m) - x(4n - rn) - cos(-(4n - m))
m=O 2
N-1 rmt

= C h , (m) - x(4n - m) - MT)

This summation c m be expanded to fhd underlying symmetry:

and it can then be re-written as the difference between two distinct summations:

RIO Rf1

I(4n) = h, (4r) - x (q n - r)) - hp (4r + 2) - x (q n - r) - 2)
r=O r=O (2-22)

= hprO * x(4n) - hprl * x(4n - 2)

which is the difference between the outputs of two new low-pass polyphase fïlters of

impulse responses hW&) and hwr,(n) given by:

for n = 0, 1, 2, . . -, RIO, and:

for n = 0, 1,2, . . ., RI,. The values of the constants Rw, and RI, are given in Table 2-1.

For the quadrature channel, starting fkom equation (2- 1 1) and decimaihg by 4 gives:

N-1 IC
Q(4n) = ç h, (m) x(4n - m) sin(-$4n - m))

N - l mz = h, (m) - x(4n - m) - sui(-)
m=O 2

This summation can be expanded to fïnd underlying symmetry:

and it can then be rewritten as the difference between two distinct sumrnations

which is the difference between the outputs of two new low-pas polyphase filters of

impulse responses hLPpo(n) and hrPpl(n) given by:

hmo (n) = b (4n + 1)

for n = 0, 1,2, ..., RQo, and:

Table 2-1 below gives the index upper bounds for the sub-sampling of the prototype low-

pass filter into the new 1 and Q polyphase fïiters, depending on the filter order.

Table 2-1 - Upper &un& for Roto* Filter Subsampkïng in20 Po&phase Fiïters

(1M = 4)

The redting quadrature demoduiator block diagram is shown in Figure 2-10. It can be

seen that al1 processing is done at a quarter of the input sampling rate. Each branch and

sub-branch processes data that is de-interleaved h m the output of the ADC, with two

successive steps of decimation by 2. An interesthg consequeme of the polyphase iïlter

approach, when compareci to the low-pass filter approach with decimation by two, is that

the multiplication step for fhqueacy conversion has been eliminated. For the present

case with a decimation by four, thïs approach to quadrature demodulation is bctionally

equivalent to the High-Pass approach suggested in [SI.

Figure 2-10 - Quadrature Demodulator Po@pAase Filer Approach (M = 4)

2.3.4 Duplicated Polyphase Filters Approach

In the previous section, an appealing use of polyphase filters was made to keep the data

processing rate as low as possible when decimating by four. Here, a method proposed in

[9] will be described. It has the advantage of doubiing the maximum theoretical input

signal bandwidth while maintaining the processing rate at a quarter of the sampling rate.

This case wodd therefore be equivalent to the Low-Pass Filter approach in terms of input

signal bandwidth, but to the Polyphase Filter approach in terms of processing rate.

Equaîions (2-22) and (2-27) give expressions for I(4n) and Q(4n), the decimateci-by-four

filter outputs. If an o v d decimation by two is desired instead, then the nurnber of

calculated output samples must be doubled. Since I(4n) and Q(4n) are available, then

1(4n - 2) and Q(4n - 2) must be calculated. Following the same approach

in-phase component is calculateci to be:

IV-1 lt
1(4n - 2) = h, (m) - x(4n - 2 - m) COS(-(^^ - 2 - m))

m=o 2

R..

Similarly, the quadraîure component is expressed as:

N- l Ir
Q(4n - 2) = ç h , (m) 4 4 n - 2 - rn)sin(+ - 2 - m))

m=O 2
N-1 mR

= -x h, (m) - x(4n - 2 - m) sin(-)
m=O 2

as before, the

This means that the approach of Figure 2-10 can be expanded whereby hardware area is

traded for speed of operation. The four polyphase niters are duplicated. The input to the

second set of nIters is a delayed version of the input to the k t set by exactly two clock

periods, and the signs of the adder branches are reversed. A resulting block diagram,

derived fiom [9], is given in Figure 2- 1 1. in such a configuration, the processing rate in

the filters can be halved or the achievable bandwidth doubled for a given technology, and

the hardware implementation problem now becornes one of data de-interleaving and re-

int erleaving.

Figure 2-11 - Duplicated Polyphase Fitter Archaecfrcre

Altematively, trading area for speed can be advantageous nom a power consumption

perspective. Lowering the processing rate may allow a reduction in the supply voltage.

Since power is directly proportional to clock fiequency, but to the square of the supply

voltage, halving the fiequency while doubhg chip area can stiii lead to a power

reduction. For an FPGA implementation, however, this wouid not be the case since the

supply voltage cannot be reduced.

2.3.5 Other Cases

In the previous sections, only two specific cases were comidered for input signal

bandwidth and corresponding permissible decimation factor. These two cases, where M

is equal to 2 and 4, are the most common. However, it would certainly be possible to

extend the discussion to cover cases where Mis another power of 2, or an odd value.

2.4 Odd-Length, p-band Prototype Low-Pass Filter

2.4.1 Half-Band Filter

A low-pass filter cm be designed such that its fkquency response is symmetric mund

the digital fiequency rt12, and that the normaiized magnitude response gain at this

fYequency is 0.5:

If a FIR filter is designed with these specification and with qua i pass and attenuation

band npples, the filter is cailed a half-bandElter [7]. An odd-length, half-band fïiter has

the additional properties that nearly half its coefficients are zero, and its center coefficient

is equal to one halfi

These properties make the odd-length haWband filter economical to implement; there is

a reduction of almost 50% in wmputational cost. The symmetry of the impulse response

about the ongin allows a fbrther halving of the number of necessary multiplications.

In the case of the low-pass approach of section 2.3.1, an interesting consequence arises if

the low-pas prototype filter is designed to be an odd length, hdf-band filter. Using

equations (2- 14) and (2- 17) to obtain the impulse response of the in-phase and quadrature

filters, it is found that the in-phase filter is an odd-length filter with only one non-zero

coefficient, and the quadrature filter is an even-length filter:

Implementing the in-phase filter can then be done at very low cost. Its a l l pass

characteristic, however, is a disadvantage in the presence of DC offsets fiom the ADC.

2.4.2 Third-Band Filter

An odd-lengîh, third band FIR filter has similar properties to the h&band iïiter. Its pass

band and stop band ripples are again the same, but the cut-off fkequency is x/3. Nearly a

third of the filter coefficients are equal to zero:

There is an interestirig consequence h m designhg the prototype filter to be an odd-

length, third-band filter. If the low-pass approach of section 2.3.1 is again followed,

equations (2-1 4) and (2-1 7) show that the zero coefficients will be distniuted evenly

between the in-phase and quadrature filters:

Compared with the half-band prototype filter approach, this would increase the total

number of non-zero coefficients, and hence chip area requirements and power

consumption, but it would even out the amount of computation between the two filters.

If the order N of the prototype fïiter is large, then there are approxirnately N/2 and 2N/3

non-zero coefficients for the half- and third-band nIters, respectively. For the half-band

prototype filter case, the in-phase fZ1ter has one non-zero coefficient and the quadrature

filter has N/2. For the third-band filter, both the in-phase and quadrature filters have

approximately N/3 non-zero coefficients. Hence, the total area and dissipated power are

increased by a factor of 4/3 for the third-band fiiter compared to the half-band case.

However, the largest sub-filter length is multiplied by a factor of 2/3.

Thus, using the third-band prototype filter would reduce the maximum filter sue, at the

expense of total chip area and power dissipation. Altematively, if the two sub-nlters are

distributeci on two different chips, it may be better h m a system perspective if the

overall computation effort is spread out evenly, and again the third-band filter approach

may be a better choice.

From a hardware implementation point of view, there is an important disadvantage to

following the Low-Pass Filter approach of section 2.3.1 when the prototype filter is a

third-band filter. This choice implies that the output of the quadrature demodulator

would be oversampled by a factor of 312, and thus that computing resources inside the

quadrature demodulator would be wasted. Communications with the next device in the

systern would also have to take place at a data rate potentially greater than is necessary.

However, there are important advantages to the thud-band case. Compared to the half-

band case, the filters provide a bandpass filtering fiindon. In quadrature demodulator

system design, this function is often useful to remove unwanted signals such as DC

offsets firom the ADC, and to compensate for non-ideal performance of the IF amplifier

[1 O]. The requirexnents for a separate digital bandpass filter can be relaxed or eliminated.

The allowable input signai bandwidth and number of zero coefficients is also greater than

for the quarter-band case, discussed in the following section.

Following the half- and third-band cases, designing the prototype low-pass filter as an

odd-length, fourth-band filter wodd imply that almost one out of four coefficients would

be zero. This approach would be alternative for a case where the input signal bandwidth

is such that decimation by fou. is appropnate.

If the polyphase approach of section 2.3.3 is followed, it c m be shown that al l zero

coefficients would be mapped to ody one of the four polyphase sub-filters. This filter

wodd only inherit of the center coefficient of the prototype filter, and wouid therefore be

reduced to a weighed delay line. All other polyphase ab-fllters would become even-

length filters.

Therefore, the quarter-band prototype nIter presents interesting advantages. As for the

third band case, a quarter band prototype filter provides useful stop bands when

compared to the haif-band case. The number of zero coefficients is reduced when

compared to the third-band case. Additionally, the computational efficiency is greater,

since a reduction in processing rate is possible because the reduced pass band ailows an

additional decimation by two of the output data.

2.4.4 General Case

In general, the cutoff fiequency of an odd-length p-band low-pass fiiter is equal to n/N,

and its impulse response is symmetric about the ongin and is given 1111 by

By inspection, the term s in(ndw will be nul1 for al1 values of n that are integer

multiplies of N, and therefore an odd-length @-band filter will have almost 1 out of N

zero coefficients (the center coefficient is never null). Equation (2-37) c m be used to

design an Mh-band filter, in conjunction with an appropnate window fbnction which is

selected to trade-off transition bandwidth for reduced pass and stop band npples.

2.5 Frequency Translation by Undersampling

The discussion of quadrature demodulation so far has assumeci a sampIing fkequency

equal to four times the carrier fiequency. The obvious difficulty with this choice is the

high sampling rate that is thus required. For example, if the target center fiequency isf, =

160 MHz, this would imply a sampling fiequency f, = 640 MHz. The systern

architectures d e s c n i in the previous chapters have shown that if the signal bandwidth

is smail enough, then the processiag rate in the fS1ters cm be reduced to their minimum.

However, effort must be expended to de-interleave the A I X output data into multiple

streams, not to mention the potentially high cost and complexity of the ADC itself since it

must work at a high sampling rate. An alternative approach, suggested in [6], is that

undersampling be used to translate a signal fiorn a high fiequency to a lower one, when

allowable by the signal bandwidth.

If the sampling fiequencyf, is chosen such that

where m is a positive integer, then the center Gequency of the signal,&, wiii be aliased to

fJ4. The advantages of satidjingf, = 4 x f , are therefore effectively maintained, without

the costs of a correspondingIy high sampie rate. Ail system architectures presented so far

are therefore suitable to input signal undersampling.

Table 2-2 lists possible sampling f?equencies for a carrier fkquency of 160 MHz, for the

Low-Pass Filter approach. The corresponding maximum filter processing rates and

resulting signal bandwidth after demodulation are also aven. For example, withf, = 160

MHz and m = 1, we havef, = 4/3x160 MHz = 2 13.3 MHz, which is one third of the 640

MHz calcdated previously. Figure 2- 12 illustrates this exampIe.

Table 2-2 - AIrernative Undersamplhg Frequencies, LowPoss Filter Apprwclir

A necessary condition for this scherne to work, obviously, is that the Nyquist criterion be

respected nich thatf, m a i n at least twice the input sigaal's bandwidth. In our present

case, a sampiing fiequency of 2 13.3 MHz means that the quadrature demodulator would

work with signals on a center fkequency of 160 MHz with a maximum possible input

bandwidth of 106.7 MHz. Mer decimaîion by two, the processing rate in each digitaI

filter would also be 106.7 MHz, which 1ends itself well to implementation in some of the

faster FPGAs available.

The results of Table 2-2 c m dso be used to specim a samphg fiequency given an

expected signal bandwidth. As a g e n d d e , the lowest acceptable processing rate

should always be chosen in order to minimize power dissipation.

t

Figure 2-12 - Exumpde of Frequency TransMorr by Un&rsamplhg
a) positive specîmm of an analog bandpass signal centered on 160 MHz- b) spectrum of
the same signai, sampled at afiequency of 213.3 M;HZ, with an effective fiequency shtjl to
a quarter of the sampiing rate.

2.6 Decision

In this chapter, fundamental principles for the digital reaiization of quadrature

demodulators were presented. This included a review of basic and improved digital

approaches, a discussion on prototype fïiter design to minimize hardware impact, and the

description of a strategy to minimize signal sampling rate by undersampling.

As discussed in the previous sections, the selection of an implementation approach

depends on a number of factors, but principaliy on the passband width of the prototype

filter and on the desired output decimation factor. The chosen set of filter coefficients for

the designs descnibed in this thesis is disnissed in Chapter 5. The prototype filter is a

quarter-band filter, and a decimation by four is desired. Therefore, either of the High-

Pass or Polyphase Filter approaches would be suitable shce they are equivaîent. The

Polyphase Filter approach is selected since it leads to a system description that is more

readily tramlatable to a hardware realization. It c m also serve as a basis for the

Duplicated Pol yphase Filters approach.

Undersarnpling will be used to reduce the signai sampling rate. The 160 MHz IF signal

will be sampled at 213.3 MHz. After decimation by four, the flter processing rate will

be 53.3 MHz and the maximum theoreticai input signal bandwidth will also be 53.3

m.

Chapter 3

Multiplier lmplementation
for Digital Filtering

3.1 Introduction

The equation for the output y(n) of a F R filter of order N, with impulse response L(n) and

input data sequence x(n) was given (equation (2-9)) as:

For a filter of order N, there are N multiplications perfonned for every filter output data

sample. Zero-valued coefficients reduce this number, and so does the exploitation of the

symmetry of the impulse response. However, for large N, many multiplication operations

still have to be performed.

A n-bit, two operand unsigned multiplier generally requires a silîcon area proportional to
2 n . Since multiplication is a computation intensive process, a major portion of the

quadrature dernodulator design effort shodd be expended on selecting the best possible

approach to impiement the multipliers. In this chapter, different approaches will be

studied with the goal of reducing the number of adders and shifters required to implement

multiplication.

When discussing multipliers, it is customary to use the temis ntuItip1icand and multiplier

to identify the two numbers being multiplied together, with multiplier meaning the

multiplication factor applied to the multiplicand. However, in this discussion, the

following terminology will be adopted. Multiplier will refer to the device, architecture or

circuit performing the multiplication operation. Since the action of the multipliers will be

to multiply input data by £ixed filter coefficients, the term co@cient will be used to

represent the multiplication factor. The temi nrultiplicand wili be used with its usual

meaning.

3.2 Power-of-Two Coefficients

Since multiplication can be thought of as a shift-and-add process, a multiplier can be built

f?om a two-dimensional array of shified adders. As an exampie, consider the

multiplication of the two 4-bit unsigneci numbers lOOl2 and 1 10 1 2. It is accomplished as

follows:

From this example, it is seen that the multiplication requira that 4 rows be added because

the coefficient, 1 101 has four bits. Each row is either a shifted version of the

muitiplicand, 100 12, or made up of al l zeroes. The choice is made based on the value of

the corresponding bit in the coefficient. In fact, each bit of the adds rows is the result of

the AND operation between a coefficient bit and a multiplicatld bit In the present

exampIe, three two-operand adders wodd be necessary to perform the multiplication,

Many texts desmie such generd-purpose multipliers in detail [12].

The muhipliers of the quadrature demoduiator filters do not need to be array multipliers,

because the filter coefficients are fixeci for a aven design. Each multiplier is therefore a

so-called constant coefficient multiplier, or KCM. In the previous example, if the

coefficient 1 1012 is fixed, there is no need to consider the shifted row of zeros and the

multiplication process can be reduced as follows.

In this case, only three rows are added together, which means that only two adders are

required. The three rows correspond to the three non-zero bits of the multipiicand. In

general, if the coefficient has d non-zero digits, tben d-1 two-operand adders are required

in the multiplier.

A logical extension of this 1s t example is that a multiplier with a coefficient that is

represented by a single power of two is "h" since the coefficient has only one non-zero

bit. The multiplication resuit is a simple shifted version of the multiplicand, and no

addition is required. Therefore, h m an implementation point of view, ideal filter

coefficients would be selected such that they are equal to a power of two. The

multiplications in the quadrature demodulator wodd then require no additions.

Altematively, coefficients should be equal to the sum of a few (say 2 or 3) powers of two.

For every additional non-zem digit in a coefficient, one extra adder will be requhed in its

corresponding multiplier.

3.3 Signed Digit Representation of Coefficients

In the previous section, the point was made that a reduction in the number of non-zero

digits used to represent the filter coefficients wodd lead to smailer multipliers.

Representing the coefficients with signed digits fan d u c e the number of non-zero digits

necessary to represent a given number. In such a case, each digit is aiiowed to take a

value fiom the set (-1,0, 1), which means that nurnbers can now be represented by a sum

andhr a difference of powers of two. As an example, the number 12710 is represented by

0 1 1 1 1 1 1 1 in the standard 8-bit binary format. Multiplication by a filter coefficient equal

to 12710 would therefore require 6 two-operand adders. Alternatively, allowing mgned

digits means that 127 can be represented by 1000000~ (where means -1), or 128 i0 -
1. A multiplier using this representation for the coefficient 127i0 would thus require only

one two-operand subtracter.

Intuitively, there may be many possible valid signed digit repraentations for a given

coefficient, and some of them may require even more non-zero digits than the standard

binary approachl. It may be shown, however, that the signed digit approach d o w s the

representation of any nimiber with the least amount of non-zero binary digits. Further, if

it is chosen such that no two non-zero digits are adjacent, the representation is called the

Canonical Signed Digit (CSD) representation for that number. The proof of minima1

representation and a corresponding algorithm to caldate the CSD representation of

numbers can be found in [l3].

Another advantage of using CSD is that a broader range of numbers cm be represented

with a given number of bits, as compared to sign & magnitude or two's complement

approaches. With 8 bits, any number between +255 aud -255 can be represented with

CSD. With sign & magnitude, the range is between +127 and -127. For two's

complement, it is between +127 and -128. Table 3-1 illustrates the range of values for

different number representations, given a fïxed number of bits n.

C

Sign & Magnitude -(2"-I- 1) 2""- 1

One's Complement

Two's Complement

Table 3-1 - Range of Values for Different Number Representations w&R n bits

-(2"-'- 1)

Since efficients encoded in CSD require the fewest nonzero digits, they lead to

multipliers with a reduced number of necessary shifi and add operations However, the

inclusion of negative coefficient digits adds complexity, because shifted versions of the

multiplicand may now need to be subtracted as well as added. The binary number format

chosen to represent the multiplicand is therefore critical. The one leading to the simplet

multiplier implernentation is 2's wmplement. When a negative si@ digit is

encountered in the coefficient, the bits of the multiplicand must be inverted and a carry

m u t be added, then the result must be shifted as before by an appropriate number of bits.

Sign extension of the number is also necessary, which means that the Most Significant

Bit is repeated as necessary to fill the row to the left such that each row has the same

number of digits. Once a i l these operations are done, simple addition will produce the

correct remit.

2""- 1

-2n-1

2"- 1 CSD

The following example illustrates multiplication by a constant CSD coefficient. The

multiplicand is a two's wmplement number e q d to - 1 13 10 (1 000 1 1 1 12) and the

multiplier coefficient is + 1 5gi0 (1 0 100001 in CSD). The expected resdt is - 1 7967

2"'l- 1

-(2"- 1)

Four important aspects of multiplication implementation arise h m this example. First,

when one of the coefficient's digits is negative, the two's complement of the multiplicand

must be taken. In the example, the r d t of the sign inv-on is shown -y in the

first adder row. In a digital implementation, however, each digit would be nrst inverted,

then a camy would be added. Second, sign extension is required when adding two's

complement numbers together. The Most Significant Bit mwt be repeaîed left as many

times as necessary to make the length of the number equal to the widest possible

expected sum. Third, using two's complement representation for the multiplicand means

that regular addition can be doue on the shifted rows. Fourth, as expected, ody two

additions would be required since the multiplier has three non-zeem digits.

3.4 Minimum Number of Adders for Multiplier
lmplementation

In the approach to multiplier ïmplementation cunsidered so far, the effort expended

depends on the number of non-zero digits required to represent the multiplier coefficient.

If there are d non-zero digits, then d-1 adders are necessary. Since the CSD

representation requires the least number of digits to represent a given number, one wouid

think that CSD encoding of multipliers should yield the lowest cost multipliers (where

cost is defined as the number of two-operand adders in the multiplier). However, a

method proposed in [14] and [15] achieves an average improvement in the number of

two-operand adders of 26.6% and 16% for 32 and 12-bit word multipliers, respectively,

over a CSD approach. The following example illustrates the principle of the rnethod.

Consider multiplication by the coefficient 4Slo. The nomal binary representation of this

coefficient, using 8 bits, is 00101 1012 for 45 = 2' + Z3+ 22 + 2'. The CSD representation

is 0 10'010 1 (where 'y represents a -1), for 45 = 26 - 2' - 22 + 2'. Thus, in both cases

there are 4 non-zero digits and consequently 3 adders should be requuedl. However, 4Slo

c m also be expressed as 45 = 9 x 5 = (z3 + 1)(2~ + 1). nius, the multiplicand can fïrst be

multiplied by 9, which requires only one addition. The intermediate result is then

multiplied by 5, which dso requires only one addition. Therefore, only 2 adders are

required for the complete operation. Figure 3-1 illustrates th is example.

Algorithms for decomposing multiplier coefficients such that the multiplication process is

minimum are given in [14], [15], [16] and [17].

Obviously, a reduction in the required number of adders between this method and the

standard one with CSD representation will depend on the value of the filter coefficients.

Coefficients equal to a power of two, and those represented by a sum or a difference of

two power of two numbers cannot be reduced any m e r . Intuitively, the greatest

reduction should be attained for coefficients which can be decomposed hto many factors.

In Chapter 4, a filter architecture that exploits redundancy in the factors that repeat in a

set of coefficients will be presented. For example, the coefficients 45 and 18 each share

the factor 9, which is implemented with only one adder. If the partial product

corresponding to the factor 9 could be reused somehow, a fûrther reduction in the total

number of adders necessary to implement a digital fïiter could be gained.

' For this specinc example, there is no advantage gaincd h m using a CSD representation for the multiplier

coefficient instead of the standard binary format

Figure 3-1 - MuItipiicution &y 45

(a) Standard approach. with CSD. (&) Minimum number of adders approack

3.5 Look-Up Table Approach for FPGA Multiplication

FPGA Configurable Logic Blocks (CLB) can be programmai to behave as Read-Only

Memory (ROM). This feature offers an interesthg alternative technique to multiplier

implementation with constant coefficients.

For the Look-Up Table (LUT) approach, the order of the multiplication process is

reversed such that the coefficient is multiplied by the multiplicand. For example, say that

the 12-bit multiplicand 4AgH, must be multiplied by the %bit coefficient B 5 ~ a . Instead,

we multiply BSH, by 4AgH,. The process is as foilows:

BS
x 49A

AxBS
l6,, x9xBS

+ 256,, x4xBS

It is obvious fkom this example that a stored table with the values of the 16 hexadecimal

digits multiplied by the constant BSH, would be very useful. If such a table existed, then

the multiplication process could be reduced to two additions of pre-calculated values with

the appropnate shifts.

Each CLB in the Xiluix 4000 series cm be programmed as a 16 x 2-bit memory, by using

the F and G bct ion generators as 16 x 1-bit mernories. This is the basic building block

for the LUT multiplier. In general, for a coefficient expressed with c bits, then c + 4 bits

are required to express alI possible results h m the multipiications of that coefficient

with a 4-bit number. Since each CLB can store 2 bits, then (c + 4)/2 CLBs are required

for each LUT.

The multiplicand is decomposed into slices of 4 bits. These four bits select one of the 16

possible pre-calculated products of a LUT. If the multiplicand is expressed with m bits,

then rd41 LUTs will be required, where the brackets sigui@ rounding up to the nearest

integer.

Therefore, in the previous example (4AgH, x BSHer), three LUTs (because the

multiplicand is expressed with three slices of four bits) each composed of 6 CLBs

(storing 12 bits = 4 + 8 for the coefficient) would be required. The three LUTs would be

identical, and would store the 16 possible products of x times B5, for x = 0, 1, 2, . . . E, F.

Two adders would complete the design of the LUT muitip1ier.

Figure 3-2 below gives a block diagram for a LUT multiplier where both the multiplicand

M and the coefficient C are expressed with 8 bits, with a product P of 16 bits [1 81.

3.5.1 Advantages of LUT Approach to Multiplication in FPGAs

The LUT approach to multiplication by a constant coefficient presents many advantages

in FPGAs.

Figure 3-2 - LUT Mula'plicatiin Block Diagrain

When compared to a general-purpose multiplier, there is obviously a great area utilkation

advantage to the LUT approach, as there was for the CSD method for constant

coefficients. The LUT approach is very compact, and greatiy reduces the number of

arithmetic operations that must be perfonned to calculate a product.

When creating a system with many multipliers, or when designing many systems that will

utilize multipiiers, the LUT approach can grealy simpl* the design process. For a

given set of multipiicand and coefficient size, the multiplier only needs to be designed

once. The placement of CLBs and routing of signals intemal to the multiplier can be

carefully optimized for speed, ara andor power consumption, then the multiplier can be

çonsidered as a building block, Modî@hg the value of the coefficient doesn't involve

any structural changes, only the stored values in the CLBs need to be replaced. The

multiplier building block can then be reused as necessary. While this would be tme for a

general-purpose multiplier building block, the advantage of the LUT approach is again

the great reduction in necessary resources. Alternatively, CSD encoding of the

coefficient requires the designer to optimize the multiplier for every coefficient.

For FIR filter designs, the LUT approach has a few interesting advantages over the CSD

method discussed previously. First, the number of non-zero digits used to represent a

coefficient is irrelevant, and this simplifies the filter design greaîly since no time need be

spent on optimijring the quantization of floating point coefficientst. Second, since al1

multipliers in the fïiter are structurally identical (same placement and muting), the LUT

approach favors filter architectures that exploit the repetition of a reguiar structure. This

wiil be discussed fhther in section 4.5.3. This approach not only increases design

density on the chip, it also makes the design process much more simple. FinaUy, for a

given filter order, changing the filter coefficients simply requires that the LUTs be

reprogrammed: there is no need for mapping, placing and muting the design again. In

facf an optimized version of the filter can itseif be considered a building block fiom that

point on.

3.5.2 Cornparison of the Area Used by LUT and CS0 Approaches

The LUT approach to multiplier implementation has one signifiant disadvantage. For

trivial coefficients, such as zero, one, and any power of two, it produces a multiplier that

is grossly inefficient. The multiplier is dso fat f?om optimum for coefficients equal to

the sum of a few powers of two. The analysis presented in this section will assume that

the multiplicand is represented in two's complement using 8 bits, and that the coefficient

is resîricted to values between -128 and + 127 10.

In the CSD approach, the number of CLBs used to implement a multiplier depends

directly on the number of non-zero digits used for the coefficient. It was mentioned

already that if a CSD coefficient has d non-zero digits, then d - 1 two-operand additions

will have to be performed by the multiplier. The number of bits that need to be added at

every step of the shift-and-add process is equal to the number of bits in the multiplicand

plus one, for two's complement addition. At every step, a portion of the least significant

bits do not require an adder, since they would be added to zero. If the multiplier is fully

pipelined, however, then these least-significant bits will need to be pipelineci.

1 However, the choice of a suitable scaie factor prior to rounding may still be helptùl.

43

Implementing the addition of two 2's-complement, &bit numbers requires 5 CLBs for a

9-bit result [19]. Therefore, following our assumptions, the number of CLBs in a non-

pipelined multiplier is equal to (d - 1) x 5, where dis the number of non-zero digits in the

coefficient.

If the multiplier is pipelined, the rquired numba of CLBs varies depending on the

coefficient. In the worst case, the coefficient has non-zero digits in extrerne positions.

The coefficients O 1010101 and 1 o O l are exampks of this. For the coefficient

10000001, the seven least significant bits of the multiplicand need to be registered, which

requires 3.5 CLBs. Table 3-2 gives worst-case quantities of CLBs for non-pipelined and

fully pipelined CSD multipliers with a coefficient between -128 and +127. Column 2 of

the table lists the distribution of these 256 possible coefficients accordhg to the number

of non-zero digits they have, and a>lum. 3 gives the amount as a percentage of the total.

For example, zero is the only coefficient with no non-zero digits.

Table 3-2 - 8-bit C S . Coegcimt (-128 to +127) MuI$fpl.r Sikaihîics

For the LUT approach, the calculation of the number of required CLBs is much more

straightforward. For an &bit multiplicand, and a coefficient expressed with 8 bits (i.e.

between -128 and + l27), we have the situation of Figure 3-2. Each 12-bit LUT occupies

6 CLBs. The 12-bit, two-operand adder requires 7 CLBs. The total is therefore 19 CLBs

for a non-pipelined case. If one level of pipelining is added between the LUTs and the

adder, then the four least-significant bits must be registered, necessitating two more

CLBs for a total of 2 1.

Therefore, fiom the strict point of view of area utilization, the LUT approach to

multiplier implementation is preferable for only 19% of the coefficients between -128

and t127. As long as a CSD coefficient has l e s than 4 non-zero digits, the CSD

approach is better.

3.5.3 Cornparison of the Speed Between the LUT and CS0 Approaches

In both the LUT and CSD approaches to multiplier implementation, the maximum

processing rate ultirnately depends on the width of the adders within the multiplier. As

before, it will be assumed that both the multiplicand and the coefficient are 8-bit

numbers.

For the LUT approach shown in Figure 3-2, there is one 12-bit wide adder, and typically

only one level of pipelining. For the CSD approach, the addition of any two shified

replicas of the multiplicand requires a 9-bit adder. Therefore, the CSD approach is

generally aiways faster than the LUT approach by a small margin. It would be possible

to improve the speed of the LUT approach by p i p e h g its adder, but its implementation

wst would then increase fÙrtber.

3.6 Decision

The selection of a multiplier approach depends on a number of factors, and especially the

level of design optimization that is required in temis of chip area use& power

consumption and target processing rate. If those are unimportant, then the Look-Up

Table approach should be foiiowed because it simplifies the design process greatly and

enhances design reusability. However, for the quadrature demodulators related to the

present research, design optïmization is of prime consideration. The chosen set of filter

coefficients for the design was carefüiiy selected to minnnize the total number of non-

zero digits. A more detailed description of these coefficients and the design constraints

followed to obtain them will be gïven in Chapter 5. It was also essential to maximize

processing speed.

Therefore, the CSD approach to multiplication is selected in order to minimize the total

area occupied by the design and to maximize processing speed-

Chapter 4

Filter Architecture Selection

4.1 Introduction

Since the in-phase and quadrature digital filters perfonn v M y al1 of the computations

in the quadrature demodulator, they are therefore the subject of most of the design effort.

An appropriate filter architecture must be selected with great a r e , as it will have a major

impact on many hardware realization performance meûïcs, such as speed of operation,

power consumption, ease of placement and routing of mapped blocks, register

requirements, overail CLB count, and ease of pipelining of the data processing paths.

4.2 Basic FIR Filter Architectures

The output y(n) fiom a FIR filter with impulse response h(n), filter length N, and input

sequence x(n) was given in equation (2-9) and is repeated here. It is equal to the

convolution of the input sequence and the filter impulse response:

4.2.1 Direct Fom Realization

From equation (2-9), it c;m be seen that the fïiter output is a weighted sum of a finite

number of present and past filter inputs. The direct hardware realization of this equation

is presented in many texts [20] and consists of a chain of data regiders, with taps between

each register leading to a constant-coefficient multiplier. The multiplier coefficients are

equal to the fïiter's discrete impulse response values. The oufputs of all multipliers are

added together to form the filter output. This filter realization is approprïately named the

direct or canonic fonn, and a block diagram is given in Figure 4-1.

Figure 4-1 - Direct Fonn Realizan'on

The multiple operand aider in this architecture will pose a problem when the processing

rate is a critical factor. There are a number of ways to solve this problem, including

pipelining, and these techniques will be discussed in the following sections.

The multi-operand adder can also present an interesting design alternative. Instead of

adding individual products, all shifted versions of the multiplicauds can be added

together in a larger multi-operand adder. This approach is the one adopted in the existing

version of a quadrature demodulator by CRC [21]. The resulting adder therefore gmws

in complexity, and is idedy implanented with pipehed blocks of Camy-Save Adders.

Since the coefficients are fked, the number of sign changes is kaown a prion, and the

canies generated h m the sign inversions can dso be added a priori. Data muitiplied by

a negative coefficient therefore oniy needs to have al1 its bits inverted prior to addition.

4.2.2 Transposed Form Realization

Alternatively, the Transposition Theorem [3] can be used to realize equation (2-9)

differently. The resulting architecture is h o w n as the transposed or inverted fom. In

this case, only the present filter input is processed. Other previous inputs are not kept in

memory. Instead, partial r d t s are computed and registered for every filter input. Each

partial result is a sum of a previous partial result and of the multiplication of a filter

coefficient with the present input The architecture is show in Figure 4-2.

Figure 4-2 - Transposed F o m ReaIi'*on

A major advantage of the transposed foxm is the inherent pipelinhg built w i t h the filter

structure. Consequently, there are no multi-operand adders in the fïiter, except possibly

inside the multipliers. This is ideal for an FPGA implementation targeing the Xilinx

4000 series, which favors the implementation of twooperand ripple carry adders.

In the same vein, the registers embedded in the adder chain do not require extra silicon

area in the FPGA, since each CLB's output can be of a registered type. The adders are

therefore converted into registered-output adders. This is a much more efficient

utilization of FPGA resources than for the direct form realization, where the delayed

input chain requires that a large number of CLBs be set aside solely for their output flip

flops. ûther resources within these CLBs such as hct ion generators and carry chahs,

are not used and are not available for other purposes.

4.2.3 Cascade Form Realization

A third filter architecture is the cascade form [3]. It is chanrcterized by a chain of

independent flters, with the output of a given filter being fed as input to the next one in

the chain. For such a realization, the overall filter transfr fùnction, ff(Z), must be broken

down into a product of other tnm&er fiinctions of lesser ordc

The most simple breakdown wodd be one where each sub-fïïter transfer fünction is a

quadratic expression, but there is no restriction to the transfer hc t ion order. in fact,

there is ais0 no restriction on the particular architecture (direct or transposecl) selected for

each one of the sub-filters. in that respect, the selection of the cascade form realization

would imply that an independent architecture selection can be done for each of the sub-

filters. A block diagram of the cascade reaiization is given in Figure 4-3.

Figure 4-3 - Cascade Fomt Reali~anin

Given an overall filter impulse response, the task of caicuiating coefficients for each of

the sub-6llters is non-trivial. The overall transfer ftnction must be calculated, then a

separation among the sub-filters must be done, and fïnaily fiiter coefficients can be

calculated. For the case where the sub-nlters are low-pass, one advantage of this

approach is that decimation operations can be disûibuted among the various stages to

obtain the optimal trade-off between accuracy and computational wst.

The selection of the cascade fonn must be made in conjmction with the design of the

desired filter îransfer hct ion and corresponding coefficient search. From a hardware

point of view, each sub-filter should then be designed based on either of the direct or

transposeci forms, as appropriate.

4.3 Linear-Phase FIR Filter Architectures

As discussed previously, a linear phase characteristic is very desirable for wide band

quadrature dernodulator filters, to preserve infornation contained in the input signai. A

linear phase characteristic also presents a potential advantage fiom a hardware realization

point of view, as will be seen shortly.

It can be shown that FIR filters with linear phase characteristics can be obtained by

constraining the filter coefficients to be symmetrical about the center coefficient.

Specificaily, for a fllter of length N, if the slter impulse response satisfies

then the filter has linear phase [3].

This condition can be applied to equation (2-9) to take advantage of the impulse response

symmetry. For a linear phase, even length filter (N even), the output of the nIter is given

b y:

From this equation, it is obvious that there is a reduction by a factor of 2 in the nurnber of

multiplications when compared to the non symmetrical case. This is lilcely to be a clear

advantage for a hardware realixation. A similtu equation can be derived for an odd-

length filter.

Two alternate filter architectures can be derived from the basic direct and transposed

forrns for linear phase FIR filters, each exploiting the symmetry property of the impulse

response. Since two samples are multiplied by any one coefficient (except the center

coefficient of an odd-length filter), it c m be much more effective to add the two samples

together before multiplication. The @valent realizations, for direct and traosposed

forms, are shown in Figure 4-4 and Figure 4-5, respectively.

Figure 4-4 - Direct F o m Architecture, FLR tinearphase p k r , Neven

Figure 4-5 - Truitsposed Form Architecture, FlZ lUIearphase f&, N even

For the transposed architecture, there is an additional benefit in that the fanout of the

input data is reduced by a factor of two. For the direct form architecture, a s m d

disadvantage may arise for hi& filter orders. Long interconnects may be required to add

signals that are at opposite ends of the register chain (for example, x(n) and x(n - (N -
1))). The long interconnects wiU compücate routing, increase power consumption, aad

possibly increase overall delay. Placememt of the register chain cornponents wouid

therefore be critical.

4.4 Transposed Forms with Multiplier Block:
Exploiting Coefficient Redundancy

In section 3.4, the principle of decomposing filter coefficients in their factors to d u c e

the number of adders for multiplication was presented. It was also suggested that

redundancy of factors in a set of coefficients could be exploited, as reportai in [14]. This

approach could then aisure that the total multiplication effort to implement a filter would

be minimized.

If the transposed form realization shown in Figure 4-2 is used, then al1 multiplications of

the input data occur at the same tirne. Using the minimum representation of multtipliers,

- it may be possible to reuse partial products between coefficients. For example, say that

coefficient h(i) is 45, and coefficient h(j) is 18. The total multiplication effort for the two

coefficients requires only 2 addem. The input data x is k t multiplied by 9, as in Figure

3-l(b), to give the interim result 9x. It is then multiplied by 5 to yield 45x. The inter*

result is also shifted one bit to the left to yield l k . Thus, both multiplications are

accomplished using only 2 adders.

The individual multipliers of the transposed form can be combineci in one major

multiplication block, as shown in Figure 4-6 and Figure 4-7. The direct form rpalization

of Figure 4-1 does not lend itself well to exploiting coefficient redundancy, because each

multiplier in the filter is operating on a different data sample. The reuse of partial r d t s

would require a cornplex registering mechanism that wodd make the approach

inefficient.

Figure 4-6 - Transposed Fotm FLR F&r witk Muti@licairoon Block

Figure 4-7 - Trunsposed Furm Symmetni FIR Filter, N Even, wirn MuMptication

Block

When realizing a filter in hardware, a legitimate question is therefore: 1s the effort

required to extract coefficient redundancy worth it? Dernpster and Macleod Cl71 have

studied this question by applying their redudancy-finding algorithm to a large number of

random sets of coefficients of different sizes. Their f h t result is intuitive: the larger the

set of coefficients, the more likely that some redundancy can be found and exploited.

The second result is also intuitive: a smalier word length for the coefficients is Urely to

yield more redundancy as weil, since the coefficients are more likely to have similar

values. Thirdly, the improvement over the standard filter design wil l depend on how

many adders are required for the multipliers before redundancy is exploited. As the

authors point out, most FIR mters have many smali coefficients that can often be

represented by only one signed digit with acceptable accuracy. in these situations, no

adders are required and little redundancy can be exploited. The final conclusion h m the

paper is that the multiplier block technique can lead to tiIter makations where the

contribution of the multipliers in the overall complexity is far less signifïcant than the

contribution fiom the structural adders and delay elements.

4.5 Pipelined Architectures

In order to process data at the highest possiile rates on a FPGA, pipelining of the data

paths is essential in the quadrature dernodulator. This technique consists of breakhg up

data paths into smder blocks, with processing done in parailel among tùe blocks. The

latency of the overall operation is increased, but the output data rate can be increased

significantly. Latency is defineci as the number of clock cycles required between the tirne

a given data appears at the input, and the time its effect is first seen at the output. In

some applications, an increase in latency is not acceptable, and other design and

optimization techniques must be used to increase processing speed. This is generally not

the case for quadrature demodulators.

FPGAs are also prime candidates for extensive p i p e h g because they are register-rich.

As mentioned akeady, each CLB output has an attached flip-flop that only needs to be

activated at chip programmïng t h e , and these flipflops can therefore be considered

'%eeY' fiom a chip real-estate point of view.

It is true that adding flip-flops in a data path requires that setup and hold times be

considered, and that the extra circuitry increases power consumption. However, it may

be the only way to meet a stringent timing requirement. In many ASIC technologies, the

problem of clock distribution is increased with register count. For FPGAs, however,

dedicated clock distri'bution networks are available on the chip at no additional routing

cost. Therefore, pipelining techniques are the method of choice to increase processing

rate, especially in ETGAs, and they can be used extensively throughout fast quadrature

demodulator designs.

4.5.1 Pipelined Adder Tree for the Direct Form (Version 1)

The main disadvantage of the direct form realization of Figure 4-1 and Figure 4-4 is the

multi-operand adder. For high-speed applications such as the quadrature demodulator,

this adder must be broken down into a number of pipehed stages. As discussed

previousty, an existing quadrature demodulator design at CRC breaks the large adder into

a series of pipelined 3-to-2 compression stages Dl]. For an implementation on a Xilinx

4000-senes FPGA, however, the dedicated carry logic favors two-operand adde

configurations based on ripple carry. For the direct fom, an adder tree configuration,

shown in Figure 4-8, is therefore the most appealing approach.

Figure 4-8 - Pipelined Direct Fonn, Version 1: Addcr Tree

There are two main disadvantages to the adder tree. The first one is that the tree o d y

scales optimaliy for filter orders that are a power of 2. For example, in Figure 4-8 the

right-most multiplier output must be registered prior to addition to an interxnediate sum.

The second disadvantage is that the tree intercomects get progressively longer with

higher filter orders, and the structure is not easily compacted in a regular m y of CLBs

on an FPGA.

4.5.2 Altemate Pipelined Direct Fom (Version II)

An altemate pipelined direct form architecture is shown in Figure 4-9. It doesn't suffm

£tom intercomects that get progressively longer as in the tree structure described above.

It is very similar to the basic transposed form of Figure 4-2, but requires a second, half-

rate dock for the input delay chain (or, alternatively. twice as many registers). In either

case, an increase in the number of registers over the basic transposeci form is necessary.

There are no significant advantages to using this architecture, and it wili not be

considered fùrther.

Figure 4-9 - Pipelined Direct Fom, Version II

4.5.3 Transposed Form with Pipelined Input for Facilitated Placing and Routing

One of the drawbacks of the transposed form reaiizations of Figure 4-2 and Figure 4-5 is

the high fanout of the input data stream for high filter orders. The consequences of such

a high fanout is a longer propagation delay, and possible difficulty in routing

interconnects on the chip. The input data is not only routed to many muhipliers, it must

also drive a number of adders within each multiplier. Pipelinhg can be used to reduce

this problem by adding a data register before each of the multipliers, as shown in Figure

4- 10. The fanout of the input data is then reduced to the order of the ûiter, or to half of

the nIter order for the linear-phase case. Each added register now acts as a data buffer to

drive its adjoining multiplier. If the input data fanout is still too high, a firrther

improvement would involve a "tree" distri'bution, a technique ofhm used to distriibute a

dock signal in a chip. An alternative approach would be to break the input data and

addition paths at the same level and insert additionai pipeline regkters.

Figure 4-10 - Transposed Form wîth Wefined Input

This architecture also presents the advantage of a regular block structure, highligiited in

the figure, which is a most desirable feature for FPGA realization and for other VLSI

implementation approachesl. Once a block has been optimized, a high order filter is built

by simply connecting together many blocks, which involves simple placement and

routing. It also increasa the density of the design on the FPGA since the blocks c m be

neatly stacked one beside the other. For optimal input data distniution, ail sub-blocks

I This assumes that aii multipiiers in the nIter have the same physical structure on the FPGA (i.e. number

and relative position of CL&, and routing). Since interesting n1tcrs have coefficients that are not ail

identical to each other, this implies a Look-Up Table appmach for the realization of the multipliers.

must be aligneci horizontally so that one of the long distniution lines can be used for

routing. The technique is easily extendable to implementation across multiple chips, and

is equally applicable to the realization of linear-phase filtem.

4.5.4 Pipelined Multiplier Block for the Transposed Form

The transposed architecture with multiplier block was presented in section 4.4 and the

advantages of exploiting coefficient redundancy were explained in section 3.4. There is

another advantage to the multiplier block architecture-

In dl cases, if pipelining of the multipliers is introduced, then each multiplier's latency

must be identical. Since some multipliers may be reduced to a simple shift of the input

data, they would not normally require pipelining. However, if some coefficients require

mdtipliers with many stages of pipelining, then for the standard approach even the

simple shifbmultiplier will require a large nurnber of p i p e m g stages. For a high order

filter, there would be a wnsiderable overhead in extra registers.

With the multiplier block approach, the input data can be registered to a depth

cornespondhg to the number of pipelining stages required by the most complex

coefficient. Each multiplier then "extracts" the input data at the required pipeline depth

for its own processing. For the most simple mdtipliers, whose coefficients are expressed

by one or two non-zero digits, the input data is taken fiom the last pipeline stage. For the

multipliers with coefficients expressed by three non-zero digits (Le. requiring two

additions), data is taken fÎom the two 1 s t pipeline stages. Multipliers with more complex

coefficients progressively take data sample fiom more pipeline stages.

An example of a pipelined multiplier block is shown in Figure 4- 1 1.

Delay T

Delay T

multiplia d u to adda chah

Figure #-II - Pipelined Mula'plier B k k Exampie

4.6 Fast Addition for Digital Filter Architectures

In this section, the specific probiem of increasing the speed of the additions in the filter

architecture wiil be considered.

The Dedicated Carry Logic in the Xilinx 4000 series FPGAs ieads to very fast two-

operand ripple cary adders. The dedicated carry paths usually make sophisticated adder

configurations such as the Carry Bypass and Camy Look-Ahead adders unnecessary. For

the 4000XL farnily of chips with a 4C-09" speed grade, the fastest ripple carry adders run

at 139 MHz for 8 bits, 1 15 MHz for 16 bits, 98 MHz for 24 bits and 86 MHz for 32 bits

1221. While impressive, these results may not be enough for quadrature demodlator

designs with high filter orders that require adders that are both fast and wide.

Because the Dedicated Carry Logic is so fast compared with the rest of the propagation

characteristics in the Xilinx FPGA, it makes sense to take advantage of it as much as

possible. Three aitemative adder architectures that are based on the npple carry will be

considered: the Carry Select Adder, the pipelined npple carry adder, and a proposed

delayed-carry adder chah

4.6.1 Camy Select Adder

The Carry Select Adder configuration is a prime candidate to accelerate the additions in

the filter. In this adder configuration, the addition is broken among a number of stages

each dealing with a eaction of the total nurnber of bits to be added. At di stages except

the least-significant one, two adders are active at any one tirne, each assuming a different

value for the cary fkom the previous stage ('0' for one adder, ' 1 ' for the other). Once the

cary out fiom the previous stage is available, it controls a multiplexer to select the

appropriate present stage adder output. AU adders at aii stages are ripple carry adders.

An example for a 32-bit Carry Select Adder segmented in two stages is presented in

Figure 4- 12.

The advantage of the Carry Select Adder is that the delay on its critical path is much

reduced when compared to the ripple carry adder, since the carry doesn't need to

propagate as far. It aiso doesn't require pipeline registers. However, it requires more

silicon real-estate for the extra adder and multiplexer at every stage.

4.6.2 Pipelined Ripple Carry Adder

If chip area is limitecl, the Carry Select Adder loses h appeal. In such a case, a pipelined

ripple carry cm offer the same performance [23]. The disadvantage is an increased

latency and a requirement for extra registers. For quadrature demodulators, increased

latency is not a concem, and registers are available at low cost in the targeted FPGAs.

As for any other pipelining strategy, the idea is to break the addition iato different stages

and to add a level of registers at each stage. The addition in each stage is delayed in time

by one clock cycle h m the previous stage. The cany h m one stage is also delayed,

and fed to the next stage as it begias processing its data The results of each stage are

also registered as many times as required to ensure that the adder output bits are

synchronized. Figure 4- 13 iliustrates the method for a 32 bit adder segmented into two

1 6-bit adder stages.

'O'
i

C in

A(1S:O) *
16-bit Adder

B(I5:O) C out

B(31:16) C out

I 'O'

16 / SUUI<I~O)
/

C in
A(31:16) { 1 I7 *IV, Idbit Adda

I

B(31:16)
C out

f '1'

Figure 4-12 - Curry Select Adder Exampk

In the fïrst stage of the adder, the least significant halves of the two operands are added

together. The sum is registered, together with the last carry out. The most signincant

halves of the two operands are registered as well. In the second stage of the adder, the

registered most significant halves of the opetands are added together with the carry out

fiom the previous stage. The most signiscant hdf sum is then combined with the

registered lest signincant half sum for the final result.

Figure 4-13 - PI'pefined RIppIe Cany Ader Eurnp&

The advantage of the pipelined ripple carry adder is that the processing rate is now only

limited by the speed of one of the adder stages (as for a Carry Select approach with two-

Ievel segmentation). With the previous Xilinx specifications given, and for the example

illustrated above, this means that a 32-bit adder could run at ahost the 16-bit adder speed

of 1 15 MHz, with a small reduction due to the extra routing delay between the stages and

through the registers. The main disadvantage, other than an increased latency, is an

obvious increase in the storage requirements. For the presmt example, 33 extra registers

are required to delay the most significant portion of the operands and the delayed carry.

in general, for an N-bit adder segmented into k stages of equal size, the extra register

requirement grows as the square of the stage size Nk. A 32-bit adder segmented into 4

stages of 8 bits would require 147 extra registers.

A(3 1: 16) T

>

1 '
1 n

Cui

Ldbit

Adda

C out
B(31:LQ & T h

16

/ * T t

>

Sumo kl6)

b

In the case of an FPGA implementation, this means that a geat number of extra CLBs

would have to be dedicated to registering data without perfomiing any processing, which

is far 6om an efficient device utilization. A high packing ratio could probably not be

attained. The pipelined npple carry adder should therefore not be considered to increase

design performance of the quadrature demoduiator.

4.6.3 Delayed-Carry Chain

Although considered too expensive in overhead, the pipeiined ripple cany adder concept

opens up an interesting alternative, only duded to in [23]. In the case of FIR filters

implemented with one of the transposed f o m , the whole pipelined adder chain can be

segmentecl into a number of adder sub-chahs. A simple example with a 4m order fllter is

shown in Figure 4- 1 4, with a segmentation into two stages.

44

Figure 4-14 - Rpehed DeIqyed-Carry A d e r Chain Ex~llwpfe (Transposed Fom)

Each adder in the adder chah is decomposed into a nurnber of stages corraponding to

portions of the data to be processed. R d t s h m each adder in a stage are not

synchronized but passed immediately dong the chah. Adder stages of more significant

levels must receive the previous level's cany out before proceeding, and the carry is

therefore delayed as in the pipelined ripple adder. Synchronization is done only at

the end of the adder chain, with the consequeme that a very high device utilization

density can be reached. Except for the end of the adder chain, no CLBs need to be

reserved for registering ody.

The input data to the adder ch- must be properly segmented and skewed in time. in

the example of Figure 4-14, it is seen that the multiplier outputs are divided into most and

Ieast significant halves. Each half is fed to its corresponding adder chah but the most

significant data is nrst delayed by one clock cycle. This is necessary to eisure that the

carry fiom the least significant chah arrives at the same time as the most significant

multiplier result to be added in the most significant adder c h a h

The pipelined delayed-carry adder chab concept described here for the transposed form

could be easily adapted to the adder tree structure of the direct form shown in Figure 4-8.

in either case, the adders can be segmented into as many stages as required, down to the

case where they reduce to half- and full-adders.

The system overhead has two components: the additional registers in the multiplier block

required to delay the arriva1 of operands to the adder chain, and the additional registers in

the adder chah itself. The first overhead component depends on the value of the flter

coefficients, since the number of registers required will depend on the width of the

multiplication product If a multiplication product is expressed with a number of bits

smaller than the adder chah bus width at this stage, then only one bit needs to be carried

for sign extension.

For the adder chain, the overhead can be dculated as a fiinction of the number of

segmentation levels, S, the order of the nIter N, and the number of bits in each level, n,.

This value is assumed to be constant for every segmentation level, but a generalization

could be made. First, N - 1 registers are required per segmentation level for the delayed

carries. Second, the overhead due to the final synchronization is equal to (O + 1 + 2 + ,. .
+ (S - 1)) x n,. The total adder chah overhead in registers, R, is therefore equai to:

It is seen that for the adder chah the overhead is proportional to Nand to the square of S.

The increase in processing rate significantly depends on the ripple carry adder timing

characteristics of the target chip, An adder characterization study was performed for

different X4000 families of FPGAs, and the results are presented in Appendix B.

Disregarding routing delays to the adder, the latency for different ripple carry adders is

approximately linear with a coefficient k, for adders wider than 4 bits. Appiying the

delayed-carry concept to an adder chah reduces the widest adder widths ikom no to (n, +

1). Given that the initial latency was T,, the new latency is therefore approximated to:

The latency decrease can be expressed as a ratio to the initial adder latency:

Alternatively, the increase in processing rate is expressed as the ratio of the new

processing rate to the initiai proce~sng rate:

1 T, --x- speedup -
T , 1

It should be obvious fkom this relation that the increase in processing rate will be greater

if k is large and if the number of segmentation levels is inaeased such that n, gets very

mal1 in relation to no. From the results of Appendix B, the value of k gets pmgressively

smaiier for the faster X4000 FPGA families, and smaller as well for faster speed grades

within a family. The increase in processing rate for a digital filter in which the delayed

carry adder chah is implernented would therefore be greatest for the slowest FPGA

families, and for cases where the initial adder chah width is widest. This last condition

d l occur most likely for high filter orciers-

The delayed-cary adder chah has a few additional advantages other than speed. A high

device density is maintained because few CLBs are reserved for their flip-flops only. A

digital filter to which this approach is appiied also benefits fkom facilitated placing and

routing, for X4000 FPGAs. This is a consequence fiom the fact that using the dedicated

cary logic requires npple carry adders to be placed as a column for maximum speed.

Segmenthg large adders into smailer ones makes th& placement easier. Finally, as

shown in Figure 4- 14, an additional advantage cornes fiom the regular structure that can

be easily repeated across an FPGA, as discussed in section 4.5.3.

4.7 Analysis of the Alternative Filter Architectures

Various alternative filter architectures were descriied, and some of their relative merits

and disadvantages were identified- A summary of these merits is presented in Table 4-1.

It is difficult to make an exact comparison between most of the architectures, however,

because the set of specific coefficients chosen for a filter d l have a direct impact on

whether a certain architecture is preferable over another one. For example, if a set of

coefficients exhibits a lot of redundancy, as described previously, then it wouid make

sense to use a transposed form with multiplier block. Altematively, in most cases

coefficient symmetry should be exploited to reduce the number of multipliers in half, and

to reduce input data fanout in the ttansposed foms.

Direct
linearphase No Yes No aN No No 1

Direct standard No No No EN Yes No 1
Pipelined Ver. 1
(Adder Tree) hearphase No Yes No œN Yes No 1

standard No No No ot N Yes Yes 1
D irec-t
Pipelined Ver. 2 No Yes NO E N Yes Yes 1

s+adard No No No No Yes Yes N+
Transposed

linearphase No Yes No No Yes Yes N/2+

Transpos ed standard Yes No Yes No Ys Yes See2
W/ Multiplication
Block linearphase Yes Yes Yes No Yes Yes See2

Transposed standard No No No No Yes Yes N

w/ Pipeiined input linear phase No Yes No No Yes Yes N/2

Cascade I not considered

Table 4-1 - Filter Architecture Alternatives

Notes:
1. N is the filter order.
2. For the Transposed Fonn with Multiplication Block, the input dota fanoui depends on
the coefficients and on wherherpipelining of the multipliers is used or not.

1 'Standard' refm h m to the basic, non-lin= phase architecture, e.g. Figure 4-1.

The "best" architecture is also technology dependent. In the present case, FPGAs are

specifically targeted, and the case has & d y been made with respect to the advantages

of two-operand, ripple cary adders. This specific argument defïnitely favors the

transposed foms in general, as it does the direct form with adder tree. Version II of the

pipelined direct fom is also rich in two operand adders, but it suffers b m disadvantages

that have already been highlighted.

The use of FPGAs should also favor architectures that enhance device utilization density.

A high density has two immediate advantages: a smaller device may be required for a

given filter design, and routing paths will be shorter h m sub-block to sub-block. This

laîter point implies a reduction in routing capcitance, which will lead to lower power

dissipation and lower propagation delays.

Decomposing the design into smaller blocks with a regular structure enhances density,

because these sub-blocks can be neatly stacked one beside the other. The first

architecture to favor a regular block structure is the pipelined transposed form, which

doesn 't exploit coefficient redundancy because the multiplias are part of the sub-blocks.

Secondly, al1 transposed forms using the pipelined delayed-carry adder chain, with the

multipliers kept outside of the repeated sub-blocks, aiso favor a reguIar block structure.

The alternate approach to increase device utilization density is to ensure as many

resources as possible are used within each and every CLB. For a Xilinx 4000 series

FPGA, this means that the two-operand adder with registered output is a very efficient

building block, since it uses the F and G bc t ion generators, the dedicated carry logic

circuitry, and the output flip-flops. A very poor CLB utilization cornes from the

utilization of the register elements only. In that respect, all direct forms are inefficient,

since the delayed input data chah uses a great number of fiipflops h m otherwise

unused CLBs. This problem is exacerbated in high filter orders.

4.8 Decision

Based on this analysis, the preferred filter architecture for quadrature demodulation

implemented in XiIinx FPGAs is based on a transposeci form. Since linear-phase filters

will be used, the architecture of Figure 4-5 is the best candidate. If the coefficient set

exhibits enough redundancy, or if a considerable amount of pipelinhg is required in the

multipliers, then the use of a multipiier block is warranted and the architecture of Figure

4-7 should be selected. Finally, if the adder chah has a wide bus width, due to either the

specific set of coefficients or simply to the high order of the filter, and if a high data rate

is required, then the pipelined delayeci-carry adder chain form shown in Figure 4- 14 is the

most suitable. It must be noted that the multiplier block, symmetry utïiization and

pipelined delayed-carry adder chah are ail "orthogond" to each other, which meam that

they can be used alone or in conjunction with others, as most appropriate depending on

the specific filter coefficients.

Chapter 5

Detailed Design Descriptions

5.1 Introduction

In this chapter, a detailed description of four quadrature demodulator designs will be

given. The designs follow decisions made in previous chapters on implementation

approach, multiplication realization and architecture selection. Two of the designs were

implemented and tested in a Xilinx X4010E-3 chip, while the otber two were only

simulated. Each design reflects a different set of specifications, and together the four

designs demonstrate the viability of using FPGAs for high perfomxmce quadrature

demodulation. The four desigas are simüar in the sense that they are ail based on the

same building blocks.

5.1 -1 Overview of Designs Considered

The first three designs d d b e d here are based on the polyphase 6lter approach

discussed in section 2.3.3. The input signal bandwidth is limited to fo the prototype filter

is a quacfer-band filter, and the outputs of the in-phase and quadrature channe1s are

decimated by four.

Three variations of this design were considered. For the first one, the sampling hquency

was set at 213.3 MHz, as descriied in section 2.5, which implies a filter processing rate

of 53 -3 MHz. The adders in the filter adder chains were implemented as simple ripple-

carry adders, because the targeted FPGA f d y was fast enough for this processing rate.

It was assumed that the output signal h m the Analog-to-Digital Converter (ADC) was

de-interleaved outside of the FPGA. Consequently, four input ports and a single clock

were required. This design was implexnented and tested in a Xilinx 40lOE-3 chip, and

simulations were nui for other ETGA families and speed grades.

For the second variation, the goal was to dernonstrate the delayed-carry adder chah

discussed in section 4.6.3, and to verify the speed increase and overhead costs when

compared to the basic design. A 4010E-3 chip was again targeted, and it was assumed

that all signal de-interleaving was done off-chip.

The third variation of the polyphase-filter design is identical to the second one, with the

exception that it was assumed that data h m the ADC would corne in two interleaved

streams. The de-interleaving into four streams, one for each of the polyphase sub-tilters,

was done inside the FPGA, as was gray code-to-2's complement conversion. A suitable

ADC was selected, together with appropriate logic level tramlators to convert the ECL

y0 logic levels used by the ADC to TTL logic levels used by the FPGA. The de-

interleaving process requires very fast VOS, and a 4000XL family chip was selected. The

extra logic also required the selection of a larger chip, the 4013. This design was not

implemented but was simulated.

The last design described here is based on the Low-Pass Filter Approach discussed in

section 2.3.1. This design maximizes input signal bandwidth and consequently only a

single decimation by two is allowed. It is suitable for any prototype filter design, but

specifically for the h*band and third-band cases which çorrespond to a maximum

output decimation factor of 2. This design was not implemented, because optimized filter

coefficients were not available. As such, it is d e s d e d only in general terms.

5.1.2 Filter Coefficients and Frequency Response Characteristics

For the polyphase flter approach designs, signed digit filter coefficients identical to those

of a previously reaüzed quadrature demoduiator implemented in Gallium Arsenide gate

array technology [6][24] were used. The coefficients were obtained using a two stage

search strategy similar to that described in [25].

Although a relatively smaii number of signai digits was used, good performance was

obtained, in part through the use of an optimiriition aiterion concerning fiequency

response matching of the 1 and Q filters [26]. This opthkation criterion dramaticaiiy

irnproves system performance for quadrature demodulation filtering over a standard

design approach such as the Hamming window method. The phase error r d t i n g h m

the fiequency response mismatch between the in-phase and quadrature channeis is

smaller than the error resulting fkom the effects of quantking the input signal to 8-bit

resolution.

The resuiiing prototype fiiter is a quarter-band, linear-phase FIR filter of order 29. Six

coefficients are n a , and eighteen are equai to a single power of two. Four coefficients

are represented with four signed digits each, and one is represented with only three

signed digits. The prototype filter impulse response is given here, with a normaiizaîion

factor of 256:

The normalization factor was applied so that all coefficients would be integers. This has

no impact on the system output other than a known gain, which must be accounted for

when interpreting the resulting data However, it greatly simplified the design since

integer arithmetic could be used throughout.

A normalized fiequency and phase respome plot of the prototype filter is given in Figure

5-1. The pass band matching properîies for the resulting 1 and Q filters are discussed

M e r in [6].

73

Figure 5-1 - Protorypl Filter Frequency and Phase Response

Table 5-1 lists the mapping of the coefficients to the four polyphase sub-filters, accordhg

to equations (2-23), (2-24), (2-28) and (2-29). It is noted that ai i zero coefficients are

mapped to sub-filter 4, that sub-filter 4 is an odd-length symmetric filter, and that sub-

filters fi and QI are non-symmetric even-length flters. It is dso noted that the

coefficients for the two Q sub-fïiters can be divided by two, which reduces the

implementation cost M e r .

Table 5 4 - Protowpe Filter Coegcient Mapping

5.2 Polyphase Filter Approach: Basic Design

5.2.1 General Overview

The first implemented quadrature demodulator design foilows the polyphase filter

approach discussed in section 2.3.3. The input signai bandwidth is W t e d to fo the

prototype filter is a quarter-band filter, and the outputs of the in-phase and quadrature

channels are decimated by four. The target samphg Cequency is 213.3 MHz, as

described in section 2.5, which implies a filter processing rate of 53.3 MHz This in tran

implies a maximum processing delay on the critical paths of 18.75 ns. An additionai goal

was to implement the design in a Xilinx 4010E-3 chip, which was readily available, and

to perform hardware testing.

In order to simplifi, the implementaîion and to ensure that the design would fit in the

X4010, it was assumed that the data would be supplied to the FPGA in four de-

interleaved streams. A block diagram of the design is given in Figure 5-2.

Figure 5-2 - Top Levef Block Diàgram (Basic Desi'')

The design is effectively broken up into 4 major blocks, corresponding to each of the four

sub-filters defined in Table 5-1. The output h m sub-fïiter Il is subtracted h m the

output fiom sub-filter Io, and similarly for the Q sub-filters. Each sub-Mter block

receives its input directly fiom the ADC block which is outside of the FPGA. It is

assumed that the ADC block performs de-interleaving into the four data streams in

addition to analog-to-digitai conversion, and that its data is in two's complement

representation.

The four sub-filter blocks are very similar in structure, although filter Il is reduced to a

single multiplication followed by adequate registaing for proper synchronization with

the other sub-filters. As discussed in Chapter 4, the transposai form with multiplier

block was selected for the flter architectures. A block diagram applicable to either of the

sub-filters is given in Figure 5-3.

For the implementation, there is an important advantage to breakhg the design into four

well-defined blocks. Each block's design can be optimized independently, and the

placement in an FPGA is also simplified Since there is no communication between the

blocks, other than for the output of the 1 and Q sub-filter pairs, this translates to reduced

communications across the chip, and hence to a design that can nin faster-

1 Multiplia Bloc k

A d d a Cbain Block P
Figure 5-3 - Sub-Fikr Bfock Diagram

5.2.2 Multiplier Block Description

The four multiplier blocks are very similar in structure. in each case, they implement

only one multiplication requuing more than one addition. The other partial products are

simple shifted replicas of the input data. Since the additions that implement the

multiplication are pipelined, the input data must also be pipelined by the same amount so

that it can be used for the partial producîs corresponding to power-of-two coefficients. In

order to minimize the overali computation effort, no sign inversion of the input data was

performed and ail trivial multiplication results are positive. To properly implernent

negative coefficients, the partial products were added or subtracted, as appropnate, in the

adder chah blocks.

Figure 5 4 below shows the structure of the multiplia block Qo sub-filter, which

implements multiplication by 206 and delays the input data for the power-of-hno

coefficients. The QI multiplier block is identical, and the two I sub-filter multiplier block

are very similar, although they implement multiplication by different coefficîents. The

multiplier r e d t s corresponding to powa-of-two coefficients are simple shifts of the

input data, and are taken care of by shifting the connections to the adder chain block by

the appropriate nimiber of positions. The multiplication result 206r is more dif f idt to

calculate and requires three adders-subtracters since the coefficient h(3) has four non-

zero digits.

input dam x

Figure 5-4 - Qo Sub-Filter Mulltipüèr Bhck

In order to reduce the necessary computations, the product - 1 O3x is calcuiated instead of

206x. The sign inversion is acceptable, as long as it is taken into account in the design of

the adder chah. There, the corresponding adder must be chauged into a subtracter.

There is no timing impact to this change since subtraction and addition operations have

exactly the same latencies in Xilinx FPGAs. Dividing the coefficient by two also has no

consequence if the result is iaterpreted correctly. Calculating the negative of the desired

product allows a reduction in computation since it becornes possible to reduce the

number of added bits at each multiplication stage. Consider the foLIowing typical

example to illustrate this point.

Given an integer p and two four-bit numbers x and y represented in two's complement,

the addition x + (Y x y) for p = 3 is done as follows:

which means that only four bits need to be added for the eight bit resuit. Similarly, the

subtraction x - (2P x y):

is in fact implemented as follows:

and again only four bits need to be added, with a fany in position 3, for the eight bit

result. Such a simplification is not possible, for the operation (2P x x) - y which requires

that al1 eight bits be added with a carry in position 0:

Therefore, if applicable, the subtraction operands should be reversed to simpiifi/

calculations. The product corresponding to coefficient 206 = 2 x (16 x 7 - 9) is such a

case. The first partial product is 9x = & + x. The second partial product is 7x = ûx - x,

but instead -7x = -8x + x is calculated. Finally, calculating -1 O3x = 9x - 16 x 7x requires

less effort than caldating 103x = 16 x 7x - 9x. It is unimportant whether - lO3x or +1 O3x

is passed to the adder chah block, as long as the proper opaation, addition or

subtraction, is performed there.

5.2.3 Adder Chain Block Description

The three sub-filters Io, Q0 and Qi have similar adder chains composed of twosperand

registered adders. The adder operands are the previous adder's output and a multiplier

block output. However, there are significant differences between the three sub-filters.

The Q sub-filters' impulse responses are non-synmietnc and have even length, whüe the

10 sub-filter has an odd-length, symmetric impulse respome. The value and order of the

filter coefficients also make the three adder chains différent with respect to their bus

widths at every stage. Figure 5-5 illustrates the adder chah block for the QU ab-filter.

Multiplia Block

Figure 5-5 - Qo SubFilter Adder main Block Diagram

A filter bus width analysis was performed for each sub-filter, as describecl in Appendix

A. The a i . of the analysis was to caldate the number o f bits required in the adders and

registers of the adder chah to prevent overflow.

An important simplification was made by placing a restriction on the ailowable input data

to each of the nIters. If the input data is allowed to take all possible two's cornplanent

values, then effectively an extra bit is reqwred at every stage of the adder chain, for the

unlikely case where x = -2n-L. Further, allowing this input value implies a bias in the

input to the ADC, and it was assumed that the input signal would have equal amplitude

80

swings around a zero value. For the design, it was therefore decided to disallow such an

input and restrict the input data to the range -(2n-L - 1) to +(2"' - l), or -1 27 to +127 in

this case. This effectively saves one registered bit for every stage of the adder chain, and

one bit for every pipeline level of every multiplier block as well. This was considered an

acceptable design compromise.

Following the terminology aven in Appendix A, the restriction on input data implies that

Sn&) will be equal to Spos(i), here denoted as W. Equation (A-9), giving the number of

bits required at every stage, can therefore be reduced to:

with S(i) given by a simplification of equation (A-6):

The results fiom these equations are given in Table 5-2 for each of the four sub-filters.

Table 5-2 - Bus Widrh of the Sub-Filter Ad&r CICains

81

5.2.4 l nternal and Extemal Timing Considerations

The target processing rate for the design was 53.33 MHz in =ch of the sub-filters and for

the system outputs. The maximum delay on any path was therefore set at 1 8.75 as. The

two widest adders in the design are the final adder chah adder for the Io sub-nlter and the

h a 1 adder for the Q channel, and both are 17-bits wide. As per the adder

characterization results reported in Appendix B, a 17-bit npple carry adder implemented

in the X4000E-3 family of chips requires 15.26 ns to produce a redt, including the

propagation delay of the registers supplying the operands. This therefore lefi 3.49 ns for

the routing of the operands h m the previous registers to the 17-bit adders.

The Xilinx automatic Placement and Routing tool was unable to meet the 18.75 ns

constcaint. It was therefore necessary to manually consirain the placement of critical

components in the sub-filter adder chains and multiplier blocks. For the ha1 placement,

a maximum routing delay of 1.74 ns to the widest adders was attained, with a

corresponding minimum clock period of 17 ns and maximum clock rate of 58.8 MHz.

For the targeted device, the Input-Output Block (IOB) flipflops have a setup tirne of 7.0

ns and a hold time of 0.0 ns, due to the addition of a delay in the ap-flop's clock line.

For the target clock rate, this leaves a full 11.75 ns to account for propagation delays

fkom the ADC block and for any clock skews between that block and the FPGA.

5.2.5 Irnplementation in Other FPGA Families and Speed Grades

A timing analysis for the Unplementation of the design in a X4O 10XL device with the -09

speed grade indicates that an interna1 clock fiequency of 102 M H i would be achievable.

This irnplies that the design could achieve a 408 MHz sampling rate and a 102 MHz

intermediate fiequency, a result similar to the orm man ce of a previous quadrature

demodulator design reported in [24] and implemented in a Ga& gate array. The VOS,

however, are significantiy slower and specid consideration would have to be given to

them.

The input fiip-flop setup and hold times for the XX4010XL device can be selected fiom

three sets of values, depending on the amount of delay that is added to their dock lines.

The possible choices are 0.8ns/2.0ns, 7.3ns/O.Ons and 5.8ns/0.0ns. The two latter choices

may preclude operation at 102 MHz depending on the ADC block's performance and

system clock skews. The first choice has a very s m d setup time but has a positive hold

tirne, which rnay create timing diffidties.

Alternatively, implementation in a slightly larger device, the X4013XL, may solve

system timing problems. This daice supports signincantly faster WO rates, as do the

X4036XL and X4062XL. For the X4013XL, a setup and hold tirne combination of

4.8nd0.011~ can be selected. This could be an economical implementation alternative,

since the X4013's array of 24 x 24 CLBs is the closest to the X40 10's 20 x 20 array.

5.2.6 Final Comments on the Design

The mapping of the design requires 333 CLBs, including 589 CLB flip-flops. This

represents 83.3% of the device's CLBs, and 73.6 % of its CLB flipflops. The X4O 1 O

chip size is therefore a perfect match for this design.

The available X4O LOE-3 chip was packaged in an 84 pin grid array, for which the number

of I/O pins is timited to 61. Given that 32 pins are required for the inputs, and that a

clock and reset input signals are also necessary, this lefl only 27 pins for the outputs.

Both the in-phase and quadrature channel outputs are 18 bits wide, so they were truncated

to 12 bits for a total number of used pins of 58. The selection of 12 bits was made to

simpIiW debugging, as the output signals fit neatiy in a 3-digit hexadecimai

representation. The extra 6 bits for both channels are calculated and are available inside

the chip, and could be routed outside if a larger device package were selected.

5.3 Polyphase Filter Approach Design with Delayed-
Carry Adder Chain

5.3.1 General Ovewiew

The goals of this design were to increase the maximum data rate by implernenting the

pipelined delayed-carry adder chain descri'bed in section 4.6.3, and to dernonstrate the

viability of this approach. A 2-level segmentation was selected, which reduced the width

of the widest adders in the system h m 17 to 11 bits, including overhead. Although it

would have been possible to segment the adders in three or four levels, it was considered

uneconornical to do so. Further, a secondary goal of this design was to implement it in

the available X4O 10E-3 chip and perform hardware tests. The overhead associated with

an increase in the number of segmentation levels wodd have made it impossiile to fit the

design in this chip.

5.3.2 Design Structure

This design is identical in large-grain structure to the basic polyphase filter approach

design. The adder chains were modified to accommodate the delayed carries, as per the

example of Figure 4-14, and two m ~ c a t i o n s were made to the multiplier blocks. The

£ k t modification required that the most significant portion of the products be delayed by

one clock cycle for proper synchronization in the chain. The second modification

entailed ensuring that no additions in the multiplier blocks were wider than 1 1 bits, since

wider additions would defeat the purpose of reducing the width of additions in the adder

chah This forced the "tree" structure for the multiplications by 103, 141 and 232, shown

in Figure 54, to be replaced with a sequence of pipelined 9-bit adders.

5.3.3 Implementation Considerations and Cornparison with Basic Design

Manual placement of the design blocks was again necessary to reduce propagation delays

on al1 critical paths as much as possible. For an 1 l-bit adder in the X4000E family, the

propagation delay is 12.92 ns, including the propagation delay through the operand

registers, but excluding the net delays between the operand registers and the adder. This

net delay was kept d o m to 1.83 ns in the worst case, for a minimum resulting dock

period of 14.7511s and an equîvalent data rate of 67.8 MHz. This represents an

improvernent in performance of more than 15% when compared to the basic design

described previously. The 6.ua.i CLB wunt was 392, or 98% of the device. The CLB

flip-flop wunt was 742, or 92.8% of the available nipflops. Table 5-3 below compares

the delayed-carry design with the basic one in terms of used fiipflops, CLBS, and

performance.

1 critical component delay l 12.92 IM 1 -15.3% 1

1 maximum data rate I 58.8 MHz 1 67.8 MHz 1 +15.3% 1
CLB count

Ta& 5-3 - Cornpu&on of the Basic und Dehyed-Cany Dernogns

The modest increase in CLBs cornpared to the fiip-ff op increase can be explained. In the

basic design, unrelated logic is almost never packed in a given CLB. The effect is that

the design density is decreased but the CLB count is increased. Reducing the design

density significantly facilitates routing, although it somewhat complicates placement In

comparison, the delayed-cairy design has a much higher density because it was literally

impossible not to pack unrelated logic together in some CLBs. Alrnost every CLB in the

device is use& and "airing outtt the placement was not an option. Therefore, a better

metric of comparison between the basic and delayeci-carry designs is the number of fip-

flops used.

333f400
C I

74Y8ûû flip-flop count

392/400

+26.00/0 589/800

+17.2%

As discussed in Chapter 4, the overhead for the delayed-carry chah wodd be

signifimntly less for a design with wider adders, and the performance improvement

would be much pater .

5.4 Polyphase Filter Approach Design with Data
Conversion

5.4.1 General Overview

A third desip was produced and simulated, but not implemented. It is based on the

polyphase approach with delayed-carry. For this design, an additional requirement was

that no hardware outside of the FPGA was to be used to @orm data de-interleaving or

representation format conversion. A "front-end" was therefore dded to the previous

delayed-carry design and a larger FPGA was selected to support this increased amount of

logic.

A number of ADCs were considered for this design. Their first requirement was a

minimum sampling rate of 213.3 MS/s. ADCs meeting this requirement normally have

ECL outputs, but the FPGA families considered for the implernentation require TTL or

CMOS inputs. Level translation h m ECL to TIZ was therefore required, and this

limited the maximum data rate between the ADC and the FPGA. It was therefore

decided to choose an ADC with two interleaved data outputs. The fundamental

difference for this design, when compared to the two previous ones, is that the input data

is interleaved in two streams, each coming in at a rate of 106.67 MHz fiom the ADC.

The selected ADC for this design outputs data encoded with au 8-bit Gray code. Since

dl filtering operations are done on two's cornplanent data, it was necessary to effect

conversion inside the FPGA. In order to keep ali pmcessing in the device at the lowest

possible level, the two input data streams are split into four at half the data rate prior to

conversion.

The device requires only one clock at a quarter of the sampling data rate, 53.3 MHz in

this case. Al1 processing is rnaintained at this rate as per the previous designs. A block

diagram of the design is given in Figure 5-6.

MC Bloclc F#A
r -

1
1 1 1

1
1
1 1

1 1

L (f) I
1
1
1
1
1
I
1
t
1
1 l

I

1 1 1
I
t L - P

Figure 5-6 - Top LeveI Bock Diagram (Full Design wi2h Da& Cornversion)

5.4.2 Analog-to-Digital Converter (ADC) Block

The ADC block comprises an Analog-to-Digital Converter and ECL-to-Tn logic level

translators for interface to the FPGA-

For this system, a samphg fkequency of 213.3 MHz was necessary, with the even and

odd samples bebg output on two different ports at a rate of 106.7 MHz each. The ADC

selected is the SPT7750 fiom Signai Processing Technologies. It is an 8-bit, 500

megasarnples pcr second FLASH ADC. Each ECL-compatible output port has an

associated data-ready strobe signal which can be used to control a system clock.

To interface with the FPGA, it is necessary to perform logic level translation. The

selected ECL/TTL level translater is the National Semiconductor 100325. Each 100325

can translate 6 signals, so three chips would be required for the 16 bits of ADC output

data. One of the two remaining channels can be used to translate the FPGA dock, if

necessary.

5.4.3 Data De-lnterleaving Ptocess and Timing Requirements

The two de-interleaving blocks each accept a 106.7 MHz data stream h m the ADC

block and split it into two streams at 53.3 MHz. Only one 53.3 MHz clock is necessary,

and it is the same clock as the rest of the system. A block diagram of the in-phase

channel de-interleaving block is given in Figure 5-7. The quadrature charme1 de-

interleaving block is identical.

-) (at data rate 2 x CLK)
E

CLK

x(4n - 2)
i b

-
CLK CLK

Figure 5-7 - De-lnterlemhg Bloc& In-Phase Channel

Three registers are used. In the lower path, the first register's clock is inverted. It

therefore latches on data that leads the upper path data by one-half clock period. The

second flip-flop synchronizes this data with the upper path's.

For the selected ADC, a difnculty arises in that the data on the two output ports is not

synchronized, but delayed by one clock period of the sampling data rate. Since the

quadrature demodulator output is clocked at a quarter of the sampling data rate, this

would irnply a quarter period lag between the 1 and Q filter outputs, and the requirement

for two distinct system clocks. The outputs wouid also have to be re-synchronized.

Instead, both data streams are de-interleaved fiom a single clock which is synchronized

with the ADCs 'A' data stream. This places an additional timing constraint on the

sarnpling of the 'B' data stream, but it can be met by the selected FPGA. The foilowhg

timing diagram, shown in Figure 5-8, iliustrates the situation.

i i i I
I 1 I I I

i

I 1
I L

data A F i
1 I
I I

1 I
I I
I I

tnrA DA = I I I I
tbom I

I I

I
I
I
I
1
I I

system CLK @fJ4

data B

1

I
1
1

1

Figure 5-8 - Data De-interfeaving Thing Diagram

The propagation delays t ~ * and ~ D B are specified independently between 1.25 and 2.25 ns

in the ADC's data sheet. With the sampling interval equal to 4.69 ns, this means that the

minimum setup and hold times for the de-intedeaving registers are 7.13 and 1.25 ns for

data 'A'. For data 'BI, the figures are 2.44 and 5.94 ns. These setup and hold times c m be

met by many of the X4000XL family of chips, including the X4O 13XL-3. For the in-

phase channel, adding a delay in the input flip-flop clock line would ensure setup and

hold times qua1 to 7.4 and 0.0 os, adequate for data 'A'. For the quadrature channel,

switching the same delay elexnent off would lead to setup and hold times equal to 1.2 and

3.2 ns, adequate for data 'B'. Other combinations are possible, and the figures vary with

chip family, size, and speed grade. The clock iine delay elements are interna1 to the

FPGA and are switched on or off during configuration.

It has been assumed here that the system clock is supplied by a device external to the

FPGA. The timing diagram of Figure 5-8 also assumes that the clock signals are passed

through the same ECL-to-TTL converters as the data, or through delay elements that

produce identical delays. It is Wher assumed that aIl other sources of skew outside of

the FPGA have been compensateci for.

The timing proposed here is only one of many possibilities, although synchronization of

signals at such high data rates is not simple. However, the goal here was to dernonstrate

that FPGAs can accommodate these hi& data rates if all system considerations are

properly accounted for.

5.4.4 Data Conversion Process

The conversion nom the ADCs output format to the one used for processing in the

quadrature demoddator mers requires three conceptual steps.

First, conversion of gray code to unsigneci binary is straightforward. Given that a numba

is gray coded with n bits GR, the two's complement representation digits BR are given by:

Secondly, the resulting unsigned binary number, mging here fkom O to 255, must be

converted to two's complement, nom -128 to +127. This is done by adding a bias of

-128, or simply by iaverting the Most Significant Bit. Finaily, as discussed previously it

is necessary to change any occurrences of -128 to -127.

AI1 the conversion procas is easily coded in VHDL with a few statements. It is

interesting to note that the realization of the converter on the FPGA is fairly slow, in the

order of an 8-bit adder, because it requires communication between multiple CLBs. NO

pipelinhg was required, however, because this conversion is not in the critical path This

shows again how fast the dedicated carry logic makes npple carry addition in X4000

series FPGAs.

5.4.5 Final Comments on the Design

The overall design requires 467 CLBs and 796 flip-flops. A 4013 chip, which has 576

CLBs, was therefore selected. In orda to meet the I/O timing requirements descnbed

here, it was necessary to target the X4ûûûXL family since the X4000E family was too

slow. However, the -3 speed grade, the slowest for the XL chips, is still fast enough,

especially the X4013XL which benefits h m special y0 optknbtion.

The achieved data rate for this design was 77.2 MHz in a X4013XL-3 chip. The smallest

package for this chip has 144 pins, and 53 of the 113 IOB are used. Aithough

implementation in a faster chip grade would increase this data rate, the extemal timing

considerations would have to be completely reviewed to ensure that the de-interieaving

process would fbction correctiy. Alternativefy, the same fkont-end processing could be

kept but the filters changed to those desmied in the basic design.

5.5 Low-Pass Filter Approach Design

5.5.1 General Ovewiew

A fourth design is desmied here in general terms. It was not implemented because

appropriate tilter coefficients were not available. The design is suitable for any case

where the decimation factor is 2, so it wuld accommodate haband or third-band

prototype filters.

The proposed design is made up of the following major blocks: the Analog-to-Digital

Converter block, two data conversion blocks, two modulator blocks, the In-Phase Filter

Block, and the Quadrature Filter Block. A block diagram is shown in Figure 5-9. The

Low-Pass Filter approach described in section 2.3.1 was selected for the system.

Therefore, two fiiters work in paralle1 on different data. The even samples of the input

signal are processed by the in-phase portion of the system, and the odd samples are

processed by the other. in each path, a data converter transfomis the data fiom the ADC

output format to two's complement repteseatation. A moddator then multiplies the input

data with the sequence (1, - 1, 1, -1, . . . }, effectively inverting the sign of every other

sample. The resulting data is passed to the in-phase and quadrature low-pass filters.

The data converters, moduiators and filter blocks can be implemented together on a

single FPGA.

Figure 5-9 - TopLeuel System Block Diagram (ZowPms Flllcr Apprmch)

5.5.2 Analog-to-Digital Converter (ADC) Block

The ADC block is identical to the one describeci in section 5.4.2.

5.5.3 Data Conversion Bfock

The Data Conversion Block is identical to the one described in section 5.4.4.

5.5.4 Modulator Blocks

The two modulator blocks are identical, dthough they work on different data with

different clock signais. They are fed h m the Data Conversion blocks' outputs. The

even samples are passed to the in-phase channel modulator and the odd samples are

passed to the quadrature channe1 modulator. Their output is made up of two signals

which have the same value except for a sign inversion, "data plus" and "data minus". The

two signals are required by the multiplier block. A block diagram of a moddator block is

shown in Figure 5- 1 0.

Figure 5-10 - Moduulror Block

The second clock signal, with a fiequency of fJ4, is used to control two multiplexers.

Their outputs therefore alternate between positive and negative versions of the input data.

5.5.5 In-Phase and Quadrature Filter Blocks

The in-phase and quadrature filter blocks have an identical large-grain structure, and

differ only due to the different sets of coefficients for the two filters. They are

decomposed into two smalla blocks, a multiplier block and an adder chain block,

following the transposed form discussed in section 4.4. The structure is shown in Figure

5- 1 1, with the modulator block output.

The multiplier block takes for input the positive and negative version of a number in

two's complement representation, using 8 bits. It outputs one product of this number with

each of the filter coefficients h(n). The forresponding products are labeled Mn. They are

passed to the adder chain.

l
1 ,
1

data in - data plus

b Modulator Block *
1 Multiplier Block
I . data minus 1
1
1
I

1 MJ Mi MN-I)R
1
1
1 ---
1
I r *

w v +
I

dataout 1
1

4 Ad&r Ck ib Block
I
1
I
1
I
1

Supplying the positive and negative versions of the input data simplifies the design of the

multiplier blocks since only additions need to be performed.

The adder chah blocks take for inputs the results of the multiplication of the filter block

input data with the different filter coefficients, produced by the multiplier blocks. They

produce the fdter output, which is also a systern output The delayed-carry adder chah

discussed in section 4.6.3 can be implemented in the adder chain blocks to maximize

operating speed,

5.5.6 Final Comments

It should be obvious that this design is very similar to either of the polyphase filter

designs. The most significant difference is the addition of the modulator blocks. A final

subtraction between sub-filters is also unnecessary.

Given the availability of very large FPGAs holding more than 3000 CLBs, very high

filter orders could be supported. Additionaiiy, using the delayed-caw chah approach

would make it possible to maintain the processing rate at the level attained for the simpler

designs.

5.6 VHDL Description Considerations

VHDL was chosen to describe the quadrature dernodulator designs instead of schematic

entry. There are many reasolis to use a Hardware Description Language (HDL) for

design entry. Very complex design descriptions manageable by ailowing the designers to

describe objects at higher levels of abstraction. Compared with schematic entry, they

aiso make it much simpler to modify many parts of a design simultaneously according to

a given design parameter, such as a bus width. The consequeme of using HDLs,

however, is that the designer generally loses some control over the resuiting hardware as

implemented fiom the output of synthesis tools. The quadrature demodulator designs

described here had -gent timing and performance requirements. It was therefore

necessary to use a coding style that would allow as much control as possible to be kept

over the resulting design description,

Consequently, it was decided early on in the design process to use a structural VHDL

description. This complicates the design process in that the description is closer to one

fiom a schematic entry. However, the design is much simpller to mod-, and the

advantage over higher-level descriptions (such as behavioral) is that the designer retains

much more control over the implemented product. This was deemed more important in

this case since high performance was desired.

5.6.1 Building Blocks

Signals are the most basic building block. They involve no processing, but defining them

generally ensures that a particuiar Lue or connedion will be implemented in the FPGA.

There are important exceptions. When two signals carry the same information, one is

nomally optimized away. Similarly, a signal which has no load, inside or outside of the

FPGA, is also optimized away by the synthesis or mapping tools. There are cases where

such an optimization is not desired An exampie would be the routing of a signal to two

different blocks physically separated across a large distance in the FPGA. If only one

signai driver is used, then the propagation delays can be unacceptably high. in such a

case, registering the signal with two distinct register components generaily ensures that

two cirivers will be available, even d e r optimization.

The next basic building block is the n-bit register. Its description must be made with a

behavioral description that specifies whether the device latches data on a clock level or

transition, and whether this transition is active high or low. Clock enables can be added

in the behavioral description, as can specific set or reset values. The following code

excerpt is for an n-bit register with asynchronous active-low reset which latches the input

on the dock's rising edge.

process (CLIC, reset)
begin

i f reset = ' O * then --asynchronouç RESET active LOW

Q c= (others =w ' 0 ') ;

elsif (CLK'event and CLK='lB) then --CLK rising edge
Q <= D;

end if;

end process;

The behavioral description of a register element can require a few dozen lines of code.

Since a typical register is o h reused through a design, it is much more efficient to

encode the description only once in a parameterized entity, then to instantiate this entity

as necessary later. For the quadrature demodulator designs, four distinct register

elements were defined, each with its idiosyncrasies such as a different reset value.

An even more cornplex building block is the registered adder, which buüds on the

register building block. Again, many such adder descriptions were required in the

designs so that various cases could be accommodated. These cases included a standard

adder, a standard subtracter, an adder and a subtracter with input carry, and a specialized

subtracter for the delayed-carry adder chain. The foIiowing code excerpt is for a standard

registered adder with active-iow asynchronous reset The sum is stored on the clock's

rising edge. Of note is the special consideration given to sign extension for two's

complement addition.

process (Cm, r e se t)

variable tempA : STD,LOGIC,VECIIOR (Sumwidth - I downto O) ;
variable temps : STD-ï,ûGIC-VECMR (Sumwidth - 1 downto O) ;

beg in

tempA := (others => A(Avleft) 1 ; -- sign extension
tempB := (others => B(Bvleft)); -- sign extension

if reset = ' O ' then --azqmcluLonous RESET active LOW

Sum <= (others => ' 0 ' 1 ;
elsif (CLK'event and CLK='1') then --CLK rising edge

Sum <= tempA + tempB;

end if;

end process;

The larger design building blocks, including the sub-filters, filters and data converters,

were then put together for the diffaent designs. This approach had the cunsequence that

using a block that had been previously tested greatly reduced the design time.

5.6.2 Optimizing the Hardware Realization from the VHDL Description

It was found that weU opîimized logic could be obtsined b m a MIDL description once

the behavior of the synthesis twl was undemtood. Two specific examples wiil be

considered here. The first example concems the realization of a simple twboperand

adder with input caxry. The second example deals with the specification of extra registers

to reduce logic placement çonstraints.

A rnost simple building block is the registered added with input carry, which one may

code in VHDL as Sum = A + B + Cin However, the synthesis tool that was used,

FPGA Express, incorrectly synthesizes this statement with two distinct two-operand

adders instead of a single two-operand adder with input carry. In order to obtain the

properiy optimized logic, the operation had to be specified by the addition of only two

operands. The input carry was therefore appended to the right of the LSB of each input

vecton A and B by using a temporary signal. The d t i n g extra bit in the sum was then

discarded. A similar artifice is required to properly obtain an adder with output carry or

with overflow indication.

The second example concens the pipelining of data paths. For ali designs descnbed in

this chapter, two extra stages of pipelining had to be specifically declared at the input

data ports. This strategy ensured that the synthesis tool used the IOB flip-flops for the

first pipelining stage. Since the physical distance on the FPGA between a given input pin

and the location where the data is first processed may be significant, the second level of

pipelining is implemented in any CLB that is prefaably closer to the data processing

location than to the input pin. The interconuect between the pipeline IOB md CLB may

be large and may in fact cross the whole FPGA fiom one side to the other, but since no

processing is done the propagation delay is much lowa than the delay on the critical

paths. Not adding these two pipeline levels generally constrained the placement of the

input pins so much that timing requirements could not be met. A similar strategy was

followed for the output pins.

5.6.3 Automated Structural VHDL Code Generation

The quadrature demodulator desigris descllied in this chapter are directly dependent on a

few design parameters. These parameters include the input data format and bus width,

the filter length, the selected filter architecture, and the value of the filter coefficients.

For example, the description of the filter adder chai. cm be fully automated. First,

following the equations given in Appendix A, an adder chah bus width analysis is

perfomed for the given set of filter coefficients. The resulting adder and register widths

then completely s p e m the bounds of each signal in the adder chain, and signal

declaration statements can then be automatically generated. Similarly, interconnection

statements c m be automaticaiiy generated based on the nIter order.

Such an automated process was învestigated and developed at a rudimen- lwel for the

quadrature demodulator designs. Many programming languages could have been used,

but Microsoft Excel was selected due to its highly visual interface, ease of use and

powerful text processing capabilities. A worksheet was developed and successfidiy used

for the filter bus width analysis, and fkom this analysis' results signal declaratiom were

generated. The main advantage was that modification of one of the fundamental filter

parameters allowed the design description to be autornatically modified. Further, it was

possible to generate basic VHDL descriptions for ail sub-nlters from the same worksheet

by simply m o d i m g the filter coefficients.

Using this automated process, a designer could easily produce many digital mter designs

based on greatly varying sets of coefficients in very little tirne. If timing requirements are

not critical, then little extra design work is involved. However, if optimized designs are

desired, manual editing was essential when going h m one design to another. As a case

in point, the very fine grain multiplier implernentation optimizations descri'bed in section

5.2 -2 were not automaticaily generated.

In order to obtain such fine grain opthkition nom a few simple design parameters, two

routes present themselves. One would be a dramatic irnprovement of the synthesis tools,

especially the provision for automatic inclusion of pipeline stages in a design. This

approach would be advantageous because it oould be applied to a wider range of designs.

The other route is the one proposed here, where a tool would be optimued to generate

structural VHDL descriptions for a specific design or class of designs. However, the

basic approach that was taken here would require significantly more sophistication to

produce the level of optimization attained through human intervention.

5.7 Summary

In this chapter, four quadrature demodulator designs were descriW. The first three

d a i p are appropriate for the decimation-by-four casecaSe Each one meets a mixent set

of performance or interfacing requirements. The fourth design proposeci would be

appropriate for the decimation-by-two case, whether a ha or third-bmd prototype filter

is used. Specific high-speed interfacing considerations were descn'bed. Together, the

four design descriptions demonstrate the viability of FPGAs for high-performance

quadrature demodulation. Findy, specific remarks concerning the VHDL description of

the designs were made.

The code for the three implemented designs will be included in a technicd report to be

submitted at a later date.

Design Verif ication and Testing

6.1 Introduction

In this chapter, the verification and testing of the quadrature demodulator designs are

described. The verification and testing sîrategy is first outlined, then the test vectors used

to stimulate the design are defïned. The approach taken for the îùnctionai verification of

the VHDL code is then explained, folIowed by a description of the applicability of the

design reaiization process to design verification. Timing anaiysis is then discwed, and a

proposed hardware testing setup is outlined.

6.2 Strategy

Design verification first entailed confirming the currectness of the VHDL description

through functional simulation testing. Since this description was modular, each building

block was tested independently. Major blocks made h m building blocks were produceci

and then tested, then the correct operation of the overall design was confirmed. A second

major step of design verification wncerned the successfiil synthesis of the VHDL d e ,

then the mapping, placing and routing of the synthesized logic in a selected FPGA

device. Finally, a timing analysis of the placed and routed design confiirmed whether

timing requirements were met. Any problem in one of these three steps generally

required a design modification and the beginning of a new verification bop.

Design testing consisted of confimiing that the implemented design in a FPGA met

hctional and timing requirements. The designs were downloaded to a FPGA, test

stimuli were applied, and output vectors were cornpared to expected r d & .

Testing of the filter characteristics per se was not done in the present research, since the

goal of the produced designs was to implement Quadrature demodulators based on a

prototype filter with given filter coefficients. The ultimate goal of the design verification

and testing process was therefore to c0nfin.n that correct computations were pdomied

given a set of input vectors. This made this process robust and reliable, and, due to the

nature of the processing, the selection of test vectors was simplifieci.

Testùig of the FPGA device for the full range of operating conditions was not considered,

since these characteristics are available fiom the device manufacturer.

6.3 Test Vector Selection

For both functional and device testing, the selection of an appropriate set of test vectors

was crucial.

6.3.1 Fundamental Tests

The fïrst step of verification consisted of ensuring that test vectors were received by the

system, and that system outputs could be monitored. In these basic tests, the proper

operation of the reset signals was also contirmed. A few randomly seledeci test vectors

were aiso chosen for an initial performance assessment.

6.3.2 Impulse Response Test

This vector consists of a single pulse of unit time duration. This is a standard test used to

verim digital nIten. M e r a system met, or after a "long" stream of zeros was input to

the digital filter, the input is set to the value 'one' for one clock cycle, then set to 'zero'

aftemards. The expected output is made up of the filter coefficients in sequence, one for

every clock cycle. The number of clock cycles between the non-zero input and the füst

output corresponds to the number of pipelineci stages in the filter.

This test vector is both simple and effective, and it gives a quick indication of the

correctness of the filter description- However, the fault coverage of this test is limited,

and its use is therefore restricted to the early design stages.

A simple variation on this test wnsists of extending the length of the pulse. The expected

output is then a sequence of sums of filter coefficients, and the nmber of coefficients in

each sum depends on the length of the pulse. This test variation was not used to test

individual filters since its effectiveness is limited. However, it could be useful to verie

the operation of selecîed adders in a trmposed fom filter's adder chah

W e this test is primarily aimed at single filters, it can ais0 by used to test the whole

quadrature demodulator design. However, it is then necessary to extend the length of the

pulse, or to apply pulses of unit duration at p r e d times so that only one sub-nlter is

stimulated.

6.3.3 Extreme Outputs Test

The goal of this test is to ver@ that the system is able to accommodate the greatest

positive and negative intemediate and final r d t s . The input vector sequence consists

of a vector whose length is the same as that of the set of fifter coefficients and whose

elements consist of either the extreme positive or negative values of the input data. The

input vector is selected so that the signs of its elements correspond to the signs of the

corresponding filter coefficients.

This test confïrms whether the analysïs descriid in Appenàix A was done comectly and

whether the r d t s were correctly implemented by replicating the analysis process during

the test.

6.3.4 Pseudo-Randorn Sequence Test

This test is more involved but its coverage is also greater. A pseudo-random sequence is

applied to the input of the systern under test, and the actuai output sequence is compared

with the expected output sequence. An exact match of these two sequences indicates a

successful test. This kind of test is well suited for integrating test fünctïonality into the

system.

This test is well adapted to the present system, since its fùnction is to process a sequence

of input numbers. A suitably long input data sequence of pseudo-random numbers c m

give a high level of confidence that the appropriate arithmetic operations are pdormed.

It must be noted, again, that the goal here is not to test the implemented filter

performance, but rather to test that a particular filter has been correctly implemented in

hardware.

Three methods were used to generate pseudo-random seqwnces and to calculate the

expected systern outputs with them as stimuli. Microsofi Excel worksheets were first

used for basic tests with relatively short sequences, as were MATLAB script files. The

random numbers were generated h m Excel's or MATLAB's intemal pseudo-random

sequence generators. Seçondly, a MATLAB script was again used, but with a

custornized random sequence generator scratch-built fiom a Linear Feedback Shift

Register (LFSR) simulator. Thirdly, for hardware tests, a LFSR generator design was

coded in VHDL, then synthesized, mapped, placed, routed and downloaded to an FPGA

that was used to stimulate the Device Under Test @UT).

6.3.5 De-lnterieaving and Data Conversion Tests

The tests descrïbed in the previous sections were aimed at verifjing the digital filter

operatiom. It was equally important to test the design's &ont end.

For the de-interleaving process, timing diagnims were carefùlly plotted based on the

ADC's specifications. Test vectors were then constnicted to reproduce the ADC's

behavior, and applied to the DUT. The four r d t i n g data streams were then compareci

to the expected output, and so was the overaii system output,

For the data conversion process, it was possible to devise a complete test since o d y 256

cases had to be covered.

6.4 Functional Verification of VHDL Code

Coding of the three polyphase filter based designs of Chapter 5 was divideci according to

the designs' major blocks. In al1 cases, the code for the four sub-filter blocks was tested

independently. The in-phase and quadrature channel sub-filter pairs were then tested

together. The data de-interleaving and conversion blocks were also tested independently.

Finally, the whole design was combined and tested as one unit.

Code testing was an integral part of the design process. This way, mors were quickly

found, identified and correcteci. The modularity of the design enhanced testability at

every step. The test vectors described in section 6.3 were used in each case. For the

pseudo-random sequeme test, a test lengh of 20 000 vectors was use&

6.5 Synthesis, Mapping, Placing and Routing
Verif ication

Mer successfbi fiinctional testing of the VHDL code, the next steps in the design process

led to implementation in a FPGA device. Other than hardware testing, no M e r testing

was done via the application of input stimuli and the cornparison of output data with

calculated values. However, an important part of the vdca t ion process was to ensure

that the design could be implemented in the target device.

The first step consisted of the synthesis of the VHDL code into a netlist descriiing,

among other things, the interconnections between building blocks such as pins, buffers,

gates and adders. In some cases, errors were found in the design description because

certain VHDL constructs could not be synthesized. For example, synthesis twls will not

allow a signal to have muitip1e drivers. Other errors involved different VHDL standards

used by the design description environment and the synthesis tool. Xiiinx' FPGA

Express synthesis tool was used.

Mapping of the synthesized netlist was the foilowing step. This consisted of transtating

the netlist into fûnctions implemented by Confïgurable Logic Blocks (CLBs) of the

specified family of devices. The tool used was XilllYr' MAP. A possible design error

reported at this step was the selection of a device t w small to accommodate the design's

logic. in such a case, the description of the design was modifiai to reduce the amount of

Iogic required, or a larger device was selected.

Placing of the mapped CLBs on a target device and routing of interconnections between

thern was the next step, and this was done by a combination of manual intervention and

the action of Xilinx' automated Place-and-Route tool PAR. The main error at this step

was the impossibility to meet a timing requirement. Many problems could lead to this

error. The rnost fiindamental one was the existence of logic hc t ion whose delay was

greater than the minimum dock perioà specified. In this case, it was necessary to break

the logic into pipelined blocks. which required a modification of the VHDL code.

The most common problem, however, was the impossibility to route interconnections

given a certain block placement. There were three main approaches to alleviate this

problem. The first one was to insert an additional level of pipeMg. This gave greater

flexibility in bringing a signal h m one location to another. Reproducing a signal so that

it was generated îkom two distinct CLBs was another possibility, for cases where a signal

had a very large fanout. Alternatively, manual placement of CLBs such that signals had

as short a path as possible to travel generaiiy solved the problem.

The visual inspection of placed CLBs was another method to verify the correct

description of the design. The Fioorpianner tool îkom Xilinx dows this to be done, in

addition to allowing location constraints to be manualiy specifïed. By tracing a givm

signal across the FPGA, it was possible to veri@ that intended building blocks had

comectly been synthesized nom the VHDL description. This method aIso dowed a

detailed study of the synthesis tool behavior to be done. in general, the mors found this

way would have affecteci the performance of a design, not its functional correctness.

The example of the two-operand adder with carry-in was given in 5.6.2.

6.6 Timing Analysis and Identification of Critical Paths

The EDA tools used for the quadrature demodulator designs d o w the specification of

timing requirements as part of the synthesis options, or ttirough a user constraint file pnor

to mapping. The specifications take the form of maximum propagation delays between

groups of selected logic, such as between any two flip-flops in a data path, or h m the

clock pin to any flip-flop in the device.

The place-and-route tool uses the timing speçifications to guide its placement and routing

choices, and will report on whether the specifications have been met or not. The Xilinx

Timing Analyzer can then be used on the r d t i n g design f le to analyze each data path in

tum. All paths not meeting the constraint can then be easily identified.

When timing constraints were not met, two main options were avaiiable. First, if a logic

block's delay alone was longer than the timing constraint, this block was broken up into a

number of pipelined sub-blocks. SimiIarly, if the timing constraint couid not be met due

to the excessive fmout on a given si&, this signal had to be divided among multiple

clrivers in the VHDL description.

Whenever a timing constraint was not met, however, it was because of the limitations of

the automated placement and routing tool. In such a case, it was necessary to manudy

constrain the placement of communicating CLBs so that they would be physically close

to each other.

6.7 Hardware Testing

The selection of FPGAs as a target technology meant that it was possible to realize and

test the designs in a reasonable time fiame. Various hardware test setups available at the

Royal Military College, the Co~~l~~~unications Research Center, and at the Canadian

Microelectronics Corporation were considered. Testing at the CRC or CMC would have

involved the use of the integrated Measurement System (IMS) test fkture. This in turn

would have required the wiring of a test board with the appropriate FPGA device. Since

time was limited, an alternative avenue was selected.

The availability of FPGA demonstration boards with X4010E-3 chips at RMC motivated

the design of a test setup shown in Figure 6-1. The stimulator used to test the DUT is

constructed fkom a separate FPGA of the same family and speed grade. It implernents a

Linear Feedback Shift Register that is initialized to a known value, and generates a

lmown pseudo-random output sequence to implement the test d e s m i in section 6.3.4.

A logic analyzer collects the DUT's output data and stores it for off-line cornparison with

the expected output sequence. If the two sequences are identical, the test is a success.

A separate FPGA demonstration board with a X4003E-3 chip was used for the stimulator.

The selection of the same device family and speed grade ensures a compatible interface

between the stimdator and DUT and that the stimdator wiü support testing at the DUT's

highest dock fiequency. However, actual hardware testing was limited because of a lack

of an adequate clock generator that could support kquencies in excess of 20 MHz.

Various sources wae investigated with no success. StiU, fûnctional testing was

successful at 20 MHz, and the test setup would be simple to reproduce once an adequate

clock generator is available.

Figure 6-1 - Hardwure Test Seîup

6.8 Summary

In this chapter, the issues of design verification and testing were discussed. The

verification and testing strategy was outlined, as were specinc considerations relating to

test vector selection and the integration of the verification and design implementation

processes. A proposed FPGA hardware test setup was presented.

Chapter 7

Conclusions and
Recomrnendations

7.1 Conclusions

This thesis has addressed issues relevant to the design and implementation of wide-band

digital quadrature demodulators in Field-Programmable Gate Arrays. Fundamental

principles for the digital reaiization of quadrature demodulators were discussed and

different theoretical approaches were first presented.

Due to their ubiquity in digital filter designs, the problern of implernenting constant-

coeEcient multipiiers in FPGAs was given special attention. The popular Look-Up

Table approach for multiplication greatly simplifies the design process, but requires

significantly more chip resources and somewhat inmeases criticai path latency. The

viability of optimizing coefficients by reducing the number of signed digits required to

represent them was confirmed for FPGA implementations as well as for other ASIC

technologies.

The selection of a filter architecture that maps well to FPGA ConQurable Logic Blocks

is a major issue. In general, the transposeci fonn architecture was found to increase

design density when compared to the direct fonn architecture. It was also suggested that

fiiture quadrature demodulation nIter designs shouid include coefficient redundaacy as a

hardware cost opthkation criterion. A technique that exploits the speed of the X4oOo1s

dedicated cany logic, the delayed-carry adder chain, was proposed to keep the system's

critical path delay constant regardles of the filter order.

Four quadrature demodulation design examples meeting different sets of specifications

were used to dernonstrate the viability of using FPGAs for wide-band digitai quadrature

demodulators. Processing and interfacing rates above 100 MHz were demonstrated in the

faster Xilinx X4ûûû FPGA families. The designs were limited more by the speed of the

IlOs than by the achievable intemal rates. This implies that it may be desirable to de-

interleave data outside of the FPGA.

Very high device utilization was obtained; two of the designs use 85% and 98% of the

device's CLBs while maintaining near-maximal data rates. This r d t e d fiom the largely

local nature of the intercommunications inherent to the selected system architecture, and

by the carefùl imposition of manuai constraints on the placement of CLBs,

The issue of providing designer control over the implementation of a design fiom a

VHDL description was considered, and examples of coding style to enhance this control

were given. An automated digital filter design process was briefiy investigated and was

found to decrease design t he . Suggestions were given on how to improve the process.

Finally, the issues of design verifïation and testing were discussed. In addition to

fùnctiond testing, the merging of the design verification process into the design

implementation process was considered, and cases where the design's optimization could

be improved were presented. A hardware test setup was proposed utilizing an FPGA

based stimulator separate fiom the Device Under Test.

7.2 Recommendations for Future Work

Many promising avenues for M e r research have been identified.

A detailed analysis of the delayed-carry adder chai. should be undertaken, and its

appiicability to other ASIC technologies should be investigated. The case was made that

utilizing an FPGA CLB solely for its flip-flops wasted valuable resources. Such is not

the case for custorn or gate array ASICs, and the overhead costs presented here wodd

probably be sigdicantly Smaller- A search for such an andysis was made with no

success.

It may be possible to devise anaiytical formulae to descriie the implementation cost of a

particular digital filter based on the value of its coefficients, the desired filter architecture*

and the target technology. Such results would facilitate the evduation of different

coefficient sets when cornparhg possible quadrature demodulator designs. Additionally,

it is believed that the issue of coefficient redundancy has not been exploited for the

design of quadrature demodulator filters in general, or for FPGA implementations in

particulm. This would therefore be a promising research area.

A quantitative analysis of power cunsumption by the filter architectures studied here

should be perfonned to detennine the validity of the quantitative assessments that were

made. Again, specific considerations should be given to FPGA-relevant issues, such as

the use of low supply voltage FPGAs.

Variations on the proposed designs are possible. Prime candidates include the duplicated

polyphase filter approach, for which the data-interleaving process would be more

complicated, and the low-pas approach with a tkd-band prototype filter. For the

existing designs, the inclusion of Built-In Self Test (BIST) fùnctionality may prove

usefiil. The development of a VHDL description of BIST circuitry that could be easily

included to any quadrature demodulator design would faditate the implemmtation of

this design enhancement. An interesthg feature for many FPGAs is the availability of an

intemal clock that could be used to run the BIST circuitry completely independently k m

the outside. Wave Pipelinhg 1271 shouid be investigated, as it muld push FPGA

performance beyond what conventional synchronous designs can accomplish.

Novel FPGA architectures with increased CLB performance and resources will Wcely be

available in the near future. Whüe the direct re-implementation of the existing designs is

possible, the fuIl exploitation of advances in FPGA devices may require new

implementation approaches.

Finally, much more remains to be done with Electronic Design Automation tools. The

automation of VHDL design description for digital flter designs was briefly mentioned,

and is seen as a promising area of research. Alternatively, the development of a synthesis

tool with automatic pipelinhg inclusion shodd be (and may in fact be) a major area of

development for the EDA tool industry. Significant improvements remain to be made

with the automatic Placement and Routing Tools, especialîy for designs with a reguiar

block structure such as digital filters.

References

[il B. Von Herzen, "Signal Processing at 250 MHz using High-Performance

FPGAs", IEEE Transactions on VZSI Systerns, Vol. 6, No. 2, June 1998.

[2] J. Lee, "Effects of Imbdances and DC Offsets on V Q Demodulators", DREO

Report No. 1 148, Dec. 1992,

[3] A.V. Oppenheim and R. W. Schafer, Digital Signal Prncessing, Prentice-Hall,

1975.

[4] R.E. Crochiere and L.R. Rabiner, Multirate Digital Signal Processing, Prentice-

Hall, 1983.

[SI G. Zhang, D. AI-Khalili, R. Inkol, Saper, "A Novel Approach to the Design of V Q

Demodulation Filtersy', B E Proceedings on Vision, image and S i p a l Processing,

Vol. 141, No. 3, pp. 154-160, June 94.

[6] R. Inkol L. Désormeaux, and V. Szwarc, 4Tr0poseà Design hprovements for the

Coherent Processor ASIC", DREO Technid Memorandum 1 3/94, October 1994.

M.G. Bellanger, J.L. Daguet and G.P. Lepagnol, "Interpolation, Extrapolation,

and Reduction of Computation Speed in Digital Filters", EEE Transactions on

Acoustics. Speech and Signal Processing, Vol. 22, No. 4, Augusî 1974.

M.G. Beilanger, G. Bonnerot and M. Coudreuse, "Digital Filtering by Polyphase

Network: Application to Sample-Rate Alteration and Filter Banks", LEEE

Transactions on Acoustics, Speech and Sigd Processing, Vol. 24, No. 2, August

1976.

uikol, R Duplicated Polyphase Architecture Block Dia-. Pnvate

co~fllflunication.

R. J. Inkol. "Novel FIR Filter Designs for Digital Quadrature Demodulation", to

appear in Proceedings of Canadian Conference on Electrical and Cornputer

Engineering, May 1 999.

V. Anastassopoulos, T. Deliyanniq , "Efficient Implementation of N''-band FIR

Filters B a d on a Simple Whdow Method", LEE Proceedings, Vol. 137, Pt. G,

NO. 4, pp. 302-308, Aug. 1990.

V.C. Harnacher, Z.G. Vranesic, and S.G. Zaky, Compter Orgunikation, 4& Ed.

McGraw-Hill, 1996.

G. W. Reitwiesner, "Binary A~thmetic", Advances in Cornputers, Vol. 1, F.L. Alt,

Ed. Academic Press, 1960.

D.R. Bull and D.H. Homcks, "Primitive Operator Digital Filters9', LEE

Proceedings-G, Vol. 138, No. 3, pp. 401412, June 1991.

A.G. Dempster and M.D. Macleod, Integer Multiplication Using

Minimum Adders", LEE Pmceedings-Circuits, Devices, Systems, Vol. 14 1, NOS,

pp. 407-413, Oct. 1994.

D. Li, '-~inimum Number of Adders for Implementing a Multiplier and Its

Application to the Design of Multiplierless Digital Filters", EEE Transuctiom on

Circuits and Systems-II: Analog and Digital Signal Procersing, Vol. 42, No. 7,

pp. 453-460, Jdy 1995.

A.G. Dempster and M.D. Macleod, 'Wse of Minimum-Adder Multiplier Blocks in

F R Digital Filters", lEEE Transactions on Circuits and Systems--l: Analog and

Digital Signal Processing, Vol. 42, NO. 9, pp. 569-577, Sep. 1995.

K. Chapman, "Constant Coefficient Muhipliers for the XC4000E Xilinx

Application Note 054, version 1.1, 1 1 December 19%.

B. New, 'Vsing the Dedicated Cary Logic in XC4000E", Xilinx Application

Note 0 1 3, Version 2.0, 4 July 1996.

L.C. Ludeman, Fundamentals of Digital Signal Processing, John Wiley & Sons,

1986.

L. Désormeaux, Communications Research Center, pnvate communication, June

loLh, 1998.

"Speed Metrics for High-Performance FPGAs". Xilinx Application Bnef

XBRFO 1 5, version 1 -0, November 1 997.

L. Dadda and V. Piuri, "PipeLineci Adders", IEEE Transactions on Cornputers,

Vol. 45, No. 3, March 1996, pp. 348-356.

M.O. Esonu and D. Al-Khalili, "Design and VLSI Implementation of a Coherent

Processor ASIC", Department of Electrical and Cornputer Engineering, Royal

Militarv Colleae of Canada. March 1994.

[25] H. Samueli, 'The Design of Multiplierless Digital Data Transmission Filters with

Powers-Of- two Coefficients", Proceedings of LkEE Telecommunications

Symposium, Sep. 1990.

[26] R. J. Inkol, R. Clouston, M. Herzig and R. H. Saper, "A New Approach to the

Design of Multiplierless FIR Digital Filters for Quadrature Demodulation",

Proceedings of Canadian Conference on Electrical and Cornputer Engineering,

May 1996.

[27] E.I. Boemo, S. Lapa-Buedo and J.M. Meneses, "Some Experiments About Wave

Pipelining on FPGAs", LEEE T''actions on YLSI Systems, Vol. 6, No. 2, Iune

1998.

Appendix A

Filter Bus Width Analysis

A filter bus width analysis must be @O& as part of the design of a digital filter. The

analysis described here assumes that the filter is implemented following the transposed

fonn. The a i . of the analysis is to calculate the number of bits required in the adders and

registers of the adder chah to prevent overflow.

To obtain this number of bits, the greatest possible positive and negative sums must be

calculateci for every stage in the chah The greatest number of bits required to represent

either sum is then the bus width for this stage's adder and register.

Each adder in the adder chain has two inputs. The h t one is the partial sum up to this

point, coming fiom the previous adder in the chain, and the second input is the result of

the multiplication of the present input data with a filter coefficient.

Let S,,(i) and Sn&) be the greatest positive and negative surns that can exist at the f'
adder stage. Let Mdi) and Mn&0 be the greatest positive and negative results that cm

corne fbm the iGI multiplier, whose coefficient is h(i). Note that in either case, i actually

runs fiom N down to O, where N is the filter order, to follow the order of the filter

coefficients. S ' i) is given by:

and &di) is given by

The values of M d i) and Mn&i) depend on the value of the coefficient h(i) and on the

greatest positive or negative values that the input data can take. This value depends on

the selected number representaîion and on the sign of h(0. For two's wmplement

representation, the greatest positive and negative numbers that can be represented with n

bits were given in Table 3- 1 as +(r" - 1) and - (29 . For a negative coefficient, the

greatest positive multiplier r d t is obtained h m taLing the greatest negative input

number, and the greatest negative multiplier r d t is obtained fkom taking the greatest

positive input number. The situation is reversed for a positive coefficient. The

expression for MP&) is therefore:

() x (- 1) ,k(i)ZO
M, (i) =

h(i)x(-2"-') .h(i)<O

where:

Similarly, the expression for Mnes(i) is given by

Substituthg equation (A-3) into equation (A-1) gives the expression for S d i) :

and substitrrting equation (A-5) into equation (A-2) gives the expression for Sn&+ :

From Table 3-1, the number of bits b required to represent a given value V in two's

complement can be calculateci as:

Therefore, the number of bits Mi) required to represent any sum at stage i in the adder

chah is q u a i to:

From this expression, a measure of the complexity of the adder chain can be found. The

number of registered bits Rb in the adder chain is equal to the sum of every b(i):

(A-I O)

- - -

Appendix B

Characterization of Ripple-Carry
Adders in Xilinx FPGAs

Detailed simulations were performed with the implementation of ripple-carry adders in

three Xilinx FPGA families, for all available speed grades. These simulations were

necessary because the Xilinx databooks do not provide timing idormation that is as

accurate as the one obtained fkom the Timing Analyzer tool.

In al1 cases, the adders were descri'bed with m c i e n t levels of pipelining in order to

properly isolate them nom IOB performance and chip size considerations. Figures were

obtained for the latency of addition for various adder sizes, fiom 4 to 64. The targeted

FPGA families were the X4000E, X4ûûûXL, and X4ûûûXLA.

In al1 cases, the latency of the adder itself was considered, as was the delay of the

registers supplying the adder operands. The routing delay fkom these registers to the

adder depend on their relative placement and on the amount of routing resources used in

this particular area, and they were therefore not included in the figures obtained.

As expected, it was found that the latency of npple carry addition is generally linear with

the width of the adder. However, some peculiar characteristics were also discovered.

For the 'E' and 'XLA' families, adders of width n and n + 1 have the same latency, for n

even. This is explaiaed by the fiict that in both cases the adders fit in the same number of

CLBs. While the mapping is identical for the XL' f d y , ththe is a regular latency

increase for al1 width increases, for the -3, -2 and -1 speed grades.

The behavior of the -08 and 4 9 speed grades for the XL' family is even more peculiar,

however, as the latency is found to be non-monotonidy increasing. For n even, the

Iatency is srnaller for an adder of width n than it is for an adder of width n - 1.

Another conclusion from these simulations is that the rate of increase in adder latency,

between narrow and wide adders, is not mastant and depends on the FPGA f d y and

speed grade. It was found that the faster chips had a lower rate of latency increase with

adder width-

The foliowing graph shows the adder latencies for different FPGA families and speed

grades.

Figure B-l Lutencies for X4000 Aders

The following table gives an approximation ofthe rate of increase in latency with respect

to adder width for different FPGA families and speed grades.

- - --

Table B-2 Approm0mat& Laîency Increase for X4000 EPGA addem, n d i t

