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Abstract 

Traditionai digital implementations of high performance, wide band quadrature 

demodulators have targeted gate arrays and custom Application Specific htegrated 

Circuit (ASIC) technologies. These technologies involve signïficant non-recurring 

engineering costs. In this thesis, it is demonstrated that Field Programmable Gate Arrays 

(FPGAs) are a viable aitemative, providing system performance in the same order of 

magnitude, with a significant reduction in non-recUrriLlg engineering costs. 

Considerations relevant to the design and implementation of wide band quadraîure 

dernodulators are described. Fundamentai principles for their digital realization are 

discussed and different theoretical approaches are presented. Specific attention is paid to 

the selection of digital filter architectures that map well to FPGA Configurable Logic 

Blocks (CLB), and to constant coefficient multiplier implementation. 

The delayed-carry chah concept is proposed as an extension to traditional pipelining 

methods for multi-operand adders. The proposed concept was specifically applied to 

digital filter implementations following the so-calied transposed form. The concept 

presents a significantly reduced overhead for a given performance criterion, especidy for 

high filter orders. It is ideally suited to FPGA implementations and to other register-rich 

hardware technologies. 

Four VHDL-based designs meeting different sets of specifications are descriied. One 

particular design implemented in a low speed grade FPGA is suitable for the processing 

of input signals on a 160 MHz Intermediate Frequency (IF) with a maximum theoretical 

bandwidth of 53.3 MHz. Implementation in a faster FPGA family would support a IO0 

MHz bandwidth signal centered on a 100 MHz IF. 

Keywords: Quadrature Demodulation, Field Programmable Gate h y s ,  Digital 

Filtering, VHDL Design Synthesis 
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Chapter 1 

Introduction 

1.1 Overview 

Quadrature demodulation is a process for obtaining a complex baseband representation of 

a real bandpass signal. It has a wide variety of applications in areas such as radar and 

sonar signal processing, digital communications, and biological signal analysis. The real 

signai obtained fiom a transducer such as an antenna, a hydrophone or a biological probe, 

is ampli fied, filtered, and possibl y s h i M  to an appropriate Intermediate Frequency (IF) 

before quadrature demodulation. Once this process is done, the resulting complex signal 

representation contains the information present in the original signal, and its format 

facilitates subsequent processing, such as spectral anaiysis or the extraction of 

modulation information. 

This thesis addresses the implementation of quadrature dernodufators in Field 

Programmable Gate Array (FPGA) technology. FPGAs offer some attractive advantages 

over other implementations of Application Specific Integrated Circuits (ASICs). They 

are easily programmable, which means that a design c m  be implemented and tested in a 

very short tirne, reducing development time and oost dramatically. They are also re- 

programmable, so modifications can be made and tested in the field. A single chip may 



even have multiple purposes on one board, as it c m  be reprogrammed in-situ. Non- 

recunbg engineering costs are also orders of magnitude lower than for other ASICs. 

One disadvantage of FPGAs over full-custom design ASXCs is the speed of operation. 

The achievable data rates have traditionally been well below the performance attainable 

with other technologies such as Gallium Arsenide. Therefore, a major challenge for the 

designs considered here will be to meet performance repuirements nomally associated 

with fidl custom designs on a FPGA. An additional disadvantage is the limitations in the 

acceptable input signal format. While other techaologies allow level translation to be 

done on chip, most FPGAs require extemal hardware to do this. 

The quadrature demodulators considered in the present research are primarily aimed at 

radar and Electronic Warfare (EW) applications. These fields pose particular design 

challenges when compared to sonar, w~~llllunications or bio-medical applications. The 

most obvious ciifferences are the high frequency and wide bandwidth requirements. The 

IF is typically in the MHz range, and the signal bandwidth may extend fiom DC to twice 

the IF. In many applications, there is a need for red-time operation. Consequently, 

techniques such as parallelism and pipelining may be necessary to achieve adequate 

processing speed. Another system requirement is the preservation of the input signai 

waveform and of any information wntained in the signal modulation. 

In an EW receiver, for which a conceptual block diagram is shown in Figure 1-1, 

intacepted radar pulses are nrst picked up by an antenna before being amplifiecl and pre- 

filtered by a Radio-Frequency (RF) amplifier. They are then mixed down to a convenient 

lutermediate Frequency (IF), in one or more fiequency conversion stages. The signal is 

then fllrther amplified and sum kquency components are suppressed by an IF amplifier. 

After t h i s  step, quadrature demodulation is performed to convert the IF signal to a 

complex baseband representation with in-phase and quadrature components. This 

complex representation faditates m e r  processing to extract information contained in 

the radar pulses. 



1.2 Motivation 

Quadrature demodulation has been the subject of a collaborative research programme 

involving the Defmse Research Establishment Ottawa (DREO), the Communications 

Research Center (CRC) and the Royal Military Coilege (RMC). Significant contn'butions 

have been made to the field. A number of hardware implementations of wide band 

receivers with progressively improving performance have been developed using CMOS 

and GaAs ASIC technologies. The most recent designs have provided considerable 

additional hctionality in addition to quadrature demodulation. 

Figure 1-1 - Conceptual BlUck Diagram of RF Portion of EW Receiver 

The advent of FPGAs, with their ability to implement complex systems with ever 

increasing performance [Il and low non-recurring engineering costs, opens up a wealth 

of new possibilities. In-system, on-board re-programmability means that desigris can go 

fiom concept to field application in a very short t he .  Further, design changes can be 

quickly put in place and resulr observed- 

There are many reasons to pume M e r  research in this specific field. Programmable 

logic poses special problems, but also presents appealing advantages over custom ASIC 

VLSI designs. A number of novel approaches to quadrature demodulation have surfaceci 

in recent years, as have ingenious ways to implement digital filtering with increased 

efficiency. Ideas that have been previously discarded as 

technologies available at the time deserve new consideration 

implementations. Finally, there has been on-going research at 

being impractical with 

for programmable logic 

DREO into the selection 



of filter coefficients for quadrature demodulation specifïcally, and there is a need to 

validate results in hardware. The implementation of quadrature demodulation using 

FPGA technology is therefore a pertinent and promising area of research. 

1.3 Objectives 

Given the present subject, the research emphasis must be focused in a few specific 

directions. First, it is intendeci to assess the viability of using FPGAs for wide-band, high 

performance quadrature demodulators. This means that the effective data processing rate 

must be as hi& as possible so that the input signal bandwidth can be maximized. The 

designs should be optimized as well to rninimize power wllsumption. For FPGA 

realizations, this means that special consideration will have to be given to architectural 

issues. 

It is also desired to make a contri'bution to DREO's filter coefficient research, with the 

specific aim of producing filter designs whose coefficients minirnize the hardware costs. 

This aim would also be in line with contributhg to the general problem of fast digital 

filtering, with the specific considerations that apply to FPGA-based designs. 

Finally, the design entry method selected for this raearch will be a Hardware Description 

Language (HDL). A synthesis tool will then be used to generate a design netlist. This 

will pose special challenges given that stringent performance requirements must be met. 

It is therefore hoped that a contribution cm be made to the problem of optimizing the 

hardware realization of HDL-based designs. 

1.4 Synopsis 

This thesis is divided into 7 chapters. Chapter 2 will present hdamental principles for 

the digital reaiizaîion of a quadrature demoduiator. In Chapter 3, the specific probiem of 

multiplier implementation w d l  be presented. Chapter 4 will cover the very important 



topic of seLation of a filter architecture. It is in Chapter 5 that a detailed description of 

quadrature demodulator designs will be made. Chapter 6 will deal with design 

verification and testing. In Chapter 7, conclusions will be drawn and recommendations 

for M e r  work ml1 be made. 





- - -- 

Chapter 2 

Digital Implementation of 
Quadrature Demodulation 

2.1 Introduction 

The input signal to a quadrature demodulator can be desmied by: 

x(t) = A(t) cos(cu,t +@ (t))  

where A(t) is the signal amplitude, oc its carrier fkquency (in radians/second), and &t) 

its time varying phase angle. The signal x(t) is assumed to be a real bandpassl signal. 

The goal of quadrature demodulation is to express the signal x(t) as a fhction o f  the in- 

phase and quadrature components I(t) and Mt) as follows: 

where I(t) and Mt) are both functions of A(t) and &t), and are equal to 

A bandpass signal is centered on a frequency 0th- than O Hz and has a nnite bandwidth. 



Once the in-phase and quadrature components are avaiiable, the amphde and phase 

information in the signal x(t) can be calculated as 

The traditionai analog approach to quadrature demodulation is shown in Figure 2-1. The 

signal to be demoddated (in th-s case the output of the IF amplifier) is multiplied by two 

sinusoids with a 90 degree phase angle Merence. This effectively creates quadrature 

versions of the signal nominally centered around zero fiequency and at twice the carrier 

fiequency. The signal wmponent centered about 2oc is then removed by low-pass 

filtering to lave a complex baseband signal. I f  a digital representation of the in-phase 

and quadrature components is desireci, analog-todigital conversion is perfonned. 

From the block diagram, the in-phase component, I(t), is equal to: 

Similady, the quadrature component, Ht) ,  is equal to: 

~ ( t )  = L P F ~ ( ~ )  x (-2 sin q t ) }  
= LPF& 2A(t) cos(o,r + @ ( t))  x s in(~ , t ) }  
= LPF{A(~)[- s in( îq t  + @ (t)) + sin(+ (t ))]} 

= 4) sin(@ ( t ) )  

By substituting equations (2-5) and (2-6) in equation ( 2 4 ,  we get: 



which is the same as the original equation (2- 1). 

Qu) - - Q(4 
+ LPF . # A D ,  b 

In Figure 2-1, the modulating sîgnds cos and sin are shown with an amplitude of 2 to 

make the input and output power levels equd. In practice, however, this factor is ofien 

neglected and it wilZ not be considered in subsequent discussion. 

The quadrature representation of signals can also be viewed fiom a complex number 

perspective. The received signal x(t) can be expressed as: 

and the two quadrature components I(r) and Q(r) are the baseband real and irnaginary 

parts of x@, respectively. 



Figure 2-2 shows two spectra relevant to the analog implementation of the quadrature 

demodulator. The top spectnmi represents the bandpass signal x(t), centered on a 

fiequencyf,, with a bandwidth B. The lower specîrum is the magnitude of x(t) shifted in 

fiequency down to baseband, showing the high-kquency modulation products having 

been removed by low-pass filtering and the remaining bandwidth 812. 

rem oved by LPFs 

Figure 2-2 - Specba for Analog Quadrature Demodulation 

2.2 Basic Digital Approach to Quadrature Demodulation 

The traditional analog impiementation of quadrature demodulation, shown in Figure 2-1, 

suffers from many problems, especidy to gain and phase mismatches between the 1 and 

Q charnels and the presence of DC offsets [2]. In such an implementation, al1 

processing, with the exception of the Analog-to-Digital Converters (ADC) used to 

digitize the 1 and Q signals, is carried out by analog circuits. 

A more robust implementation is ali digital, as shown in Figure 2-3. In this case, only 

one ADC is used, and the processes of down-conversion and filtering are done digitally. 

The 1 s t  step is usudy a dechnation by an integer factor M, where only 1 out of M 



samples are kept. The value of M depends on the initial sampling rate and on the 

bandwidth of the signal Ht). 

Q digitai oscillator for car 

Figure 2-3 - Digital Quadrature DemoduUrtor 

2.2.1 Sampling Frequency Selection 

I W )  
w 

The first processing step after conversion of the input analog signal to a digital format is 

fiequency shifbg to baseband. It involves multiplying the input data by cosine and sine 

sequences at the center fiequency of the input signal, as shown previously. This step can 

be quite complex, first requiring the generation of the two sinusoids (possibly with a 

Look-Up Table approach), then their multiplication with the Stream of input data. 

However, a careful selection of the sampling frequency can greatly simplify this problem. 

If it is selected such thatf, = 4 x f ,  then the two sequences are represented by cos(ml2) 

and -sin(m/2), which reduce to: 

digitai ilmultiplia 

r(t) 44 
ADC 

cos: 1,0,-1,0, I,O,-1,o ,..* 

Digital 

Low Parr Film 

( 1  
b 

Obviously, multiplications by O or 1 are trivial. For multiplication by -1, the only 

processing required is sign inversion, an operation whose complexity depends on the 

number representation of the data However, in the worst case (for 2's completnent 

- JM 



repraentation), the operation is simpler than the addition of two numbers, with each bit 

inverted and a carry added to the Least Significant Bit. 

2.2.2 In-Phase and Quadrature Digital Filters 

The second step after multiplication of the input data by quadrature sinusoids is low-pass 

filtering, where unwanted high-fiequency mixing products are removed to obtain the 

results of equations (2-5) and (2-6). In a digital implementation of quadrature 

demodulation, digital £üters are useci, 

The phase linearity of the filters used in the quadrature demodulator is an issue. For 

many applications such as those targeted for this research (radar and EW receivers), it is 

essential to preserve the information contained in the original signais. A non-linear phase 

filter is therefore unsuitable for the quadrature demodulator designs considered here. 

While Infinite Impulse Response (IIR) filters usuaily have sharper transition bands than 

Finite Impulse Response (FE) filters for a given filter order, they cannot have a linear 

phase characteristic [3], and thus they are not considered M e r  in this document. FE2 

filters, however, can exhibit ideal linear phase under some conditions that w u  be 

described later. Therefore, the quadrature demodulator designs wnsidered here will be 

restricted to linear-phase FIR filters. 

The output y(n) nom a FIR filter with impulse response h(n), filter length N, and input 

sequence x(n) is given by the convolution of the input sequence and the filter impulse 

response: 

In the basic quadrature demodulation approach, the two low-pass fllters are identical, and 

the filter they reproduce is calleci the prototype filter. The impulse response of the low- 

pass prototype filter will hereafter be denoted by h&). Its cutoff kqunccy, transition 

bandwidth and stopband attenuation are selected accordhg to the characteristics of the 

12 



signal to be demoduiated, and espeçially the signal bandwidth. From the spectra shown 

in Figure 2-2, it should be obvious that the passband of the filter should be at least equal 

to B/2, where B is the bandwidth of the signal prior to demodulation. 

From equation (2-9), given that the system samphg fiequency is selected as = 4 x f, 

and that the prototype low-pass flter has an impulse response h d n ) ,  the output of the in- 

phase channel can be expressed as: 

C f 

N-1 K = h, (nt) -x(n - m) . cos(- (n - m)) 
m=O 2 

and the output of the quadrature channel can be expressed as: 

Q(n) = h,p (n) * 
N-1 K = h, (m) - x(n - m) - sin(-; ( n  - rn)) 

2.2.3 Decimation of Filter Outputs 

The input to the quadrature demodulator is a bandpass signal centered on a fiequency of 

f,. Hence, its maximum bandwidth B is 2 x f,. Mer demodulation, alï the signal's 

information content is stored in the in-phase and quadrature channel outputs, and each 

has a maximum bandwidth B/2 =A. 

Ideally, the prototype low p a s  filters in the in-phase and quadrature channels should 

rernove al1 fiequency components outside of the bandwidth of interest. Therefore, 

according to the Nyquist criterion, the minimum sampling rate that could be used to 

process the in-phase and quadrature signals, without aliasing, is 2 xf,.  However, since 

the sampling Fequency was selected asf, = 4 xf, for the advantages already mentioned, 



this irnplies that the filter outputs are oversampled by a factor e q d  or pater  to two, and 

thus that every other sample, at least, c m  be discarded. The pmcess of  retaining only a 

fixed proportion of data samples is lcnown as decimation. It is rarely advantageous to 

cary redundant information about a signai, and dechation should generally be done to 

maintain the lowest possible processing and communications rates in a system. 

Figure 2 4  shows the signai spectra at various stages in the demodulation pcess  for the 

case of decimation by a factor of two. 

Figure 2-4 - Spectra for Decimafi'on-by-Two Case 
a) analog input signal. b) digitized signaI, with the sampling fiequency equal fo four 
rimes the cam-errfiquency c) digitked signai shifed to baseband. 4 r m l t  afer ideril 
low-pas filtering. e) result afier decimation by two. 



The signal bandwidth o f  2 x /, discussed above represents a maximum for a signai 

centered on a fiequency fc. If the signai bandwidth is sufficientiy smaiier, then 

decimation by a factor greater than two is possible. For example, if the input signal to the 

quadrature demodulaor has a maximum bandwidth off,, then d e r  demodulation to 

baseband di that will remab will be one sideband of bandwidth fJ2. According to the 

Nyquist criterion, the corresponding minimum sampüng rate without aliasing is thus f,. 

Following the approach aiready described, if the sampling fiequency is selected as& = 4 

xf , ,  then the un-decimate- filter outputs are oversampled by a factor of four. Figure 2-5 

shows signal spectra at différent points of the processing for this case. 

figure 2-5 - Specira for Decimation-&y-Four Case 
a) analog input signal. 6) digitized signal. witfi the sampling fiequency equal to four 
tirna the cam*erfiequency. c) digitized signal shzjted to buseband. d) result afrr ideal 
low-pass filtering. e) resu If  ufier decimation by four. 



2.3 lmproved Digital Approaches 

In the basic digital approach to quadrature demodulation, presented in the preMow 

section, data is processeci throughout the system at the sampling rate of the ADC, then 

decirnated at the output of the filters. This situation is a case of multinite signal 

processing [4]. Since it is a waste to expend resources to calculate signal data ody  to 

discard it later, a much more efficient approach is to decimate before the multiplication 

and filtering are done. This section discusses designs based on this concept. 

2.3.1 Low-Pass Filter Approach 

If the bandwidth of the input signal to the quadrature demodulator is such that the fllter 

outputs are oversampled by a factor of two (B < 2 xf;), then the filter processing rate can 

be reduced b y half [SI. 

RefWing back to equation (2-1 O), decimating the output of the in-phase filter by 2 gives: 

N-1 It 
1(2n) = h,(m) - 4 2 n  - m) - cos(-(2n - ni)) 

m=O 2 

Noting that the summation tenns will be nuil for odd values o f  the summation index m, a 

change of variable is made such that m = 2k to give: 

= 2 & (2k)  - x(2(n - k))  - cos(n (n - k)) 

where Ki is equal to (N - 1112 for N odd, and to (N2) - 1 for N even. Effectively, the 

input data is decimated by two and sign changes are applied to altemate r e m M g  



samples. The resulting data Stream is filtered by a new low-pass filter. The impulse 

response of the new in-phase low-pass filter hLpdn) is givm by: 

for n = 0, 1, 2, . . ., Ki . A block diagram of the resulting realization of the in-phase 

channel is given in Figure 2-6. It must be noted that the new filter processing speed is 

half of the input data rate. 

Figure 2-6 - In-Phase Channel for Decimuîion by Two 

Similarly, starting fiom equation (2-1 1), decimathg the output of the quadrature channel 

by 2 gives: 

N-1 1L: 
M2n)  = hrp (m)  x(2n - m) sin(-: (2n - m)) 

Noting that the summation terms will be nuil for even values of the summaîion index m, a 

change of variable is made such that m = îk +l to give: 

KQ 3 t  
= h, (2k + 1) - x(2(n - k) - 1) -sin(T, -r (n - R)) 

where KQ is equal to (N-3112 for N odd, and to N/2 - 1 for N even. Effdvely, the input 

data is decimated by two and sign changes are applied to alternate remaining samples. It 



must be noted that there is one sample relative delay between the in-phase and quadrature 

channels. The resulting data Stream is filtered by a new low-pass filter. The impulse 

response of the new quadrature low-pass filter h d n )  is given by: 

hwQ (n) = h, (2n + 1) 

for n = 0, 1, 2, . . ., KQ. A block diagram of the resulting realization of the quadrature 

charnel is given in Figure 2-7. Again, the processing rate is half of the input data rate. 

Figure 2- 7 - Quadraîure Channelfor Decimcrftôn by Two 

Combining Figure 2-6 and Figure 2-7 gives an overall digital quadrature demodulator 

block diagram already presented in [6]. It is shown in Figure 2-8. 

Figure 2-8 - D i ' a i  Quadrature DemoduIator witk f, = 4 x f, and Dechation by T m  

From this block diagram, it is important to note that the input signal is still sampled at 

four t h e s  its camier frequency. However, al l  samples are not passed to both digital 

filters. The "even" samples are passed to the in-phase filter, with every other one 



undergoing a sign change. Similarly, the "oddn samp1es are passed to the quadrature 

filter, and every other one also undergoes a sign change. 

The advantage of this quadrature demodulator configuration is that it accommodates the 

widest possible input signal bandwidth (B < 2 xf ; )  while keeping the processing rate at 

half of the input data rate in the two low-pass f?lters. 

2.3.2 High-Pass Filter Approach 

This approach, proposed in [SI, is applicable where the input signal bandwïdth B is l e s  

than f, and when it is appropriate to decimate the filter outputs by a factor of 4. A 

slightiy rnodified version of the proposed block diagram is shown in Figure 2-9. The 

approach has the advantage that the filters can operate at a quarter of the input data rate, 

since the 1 s t  decimation step should be done inside the filters. It is also interesthg to 

note that the multiplications by +l and - 1 are imbedded in the filter coefficients. 

Figure 2-9 - Digital Qudraîure Demodulator nM High-Pms FFilL Approach 

It can be shown that the impulse response of the in-phase higb-pass flter ~HP&) is given 

b y: 

hm[ ( n )  = (-1)" h&n) (2-18) 

for n = 0, 1,2, . . ., Ki, where Kr is equal to (N-1112 for Nodd, and to NI2 - 1 for N even. 



Similarly, the impulse response of the quadrature hi&-pass filter h d n )  can be shown to 

be equal to: 

hHpQ (n)  = (-1)" h, (2n + 1) (2-19) 

for n = 0, 1, 2, . . ., KQ, where & is equal to (N-3112 for N odd, and to (M2) - 1 for N 

even. 

2.3.3 Polyphase Filter Approach 

It has been suggested in 163 that a polyphase filter architecture ([7] [8] [4 ] )  be used for 

quadrature demodulation. This approach has the advantage of keeping the nIter 

processing rate at its lowest for ai i  cases. The derivation included here will assume a 

decimation factor of four. For this case, the approach is equivalent to the High Pass Filter 

approach. However, it leads to a system description that is more readily tramlatable to a 

hardware realization. 

Starting from equation (2-IO), decirnating the output of the in-phase channel by 4 gives: 

N-1 Ir 1(4n) = x h, (m) - x(4n - rn) - cos(-(4n - m)) 
m=O 2 
N-1 rmt 

= C h ,  (m)  - x(4n - m) - MT) 

This summation c m  be expanded to fhd underlying symmetry: 

and it can then be re-written as the difference between two distinct summations: 



RIO Rf1 

I(4n) = h, (4r )  - x ( q n  - r)) - hp (4r + 2) - x ( q n  - r)  - 2) 
r=O r=O (2-22) 

= hprO * x(4n) - hprl * x(4n - 2)  

which is the difference between the outputs of two new low-pass polyphase fïlters of 

impulse responses hW&) and hwr,(n) given by: 

for n = 0, 1, 2, . . -, RIO, and: 

for n = 0, 1,2, . . ., RI,. The values of the constants Rw, and RI, are given in Table 2-1. 

For the quadrature channel, starting fkom equation (2- 1 1 )  and decimaihg by 4 gives: 

N-1 IC 
Q(4n) = ç h, (m) x(4n - m) sin(-$4n - m)) 

N -  l mz = h, (m)  - x(4n - m) - sui(-) 
m=O 2 

This summation can be expanded to fïnd underlying symmetry: 

and it can then be rewritten as the difference between two distinct sumrnations 



which is the difference between the outputs of two new low-pas polyphase filters of 

impulse responses hLPpo(n) and hrPpl(n) given by: 

hmo (n)  = b (4n + 1) 

for n = 0, 1,2, ..., RQo, and: 

Table 2-1 below gives the index upper bounds for the sub-sampling of the prototype low- 

pass filter into the new 1 and Q polyphase fïiters, depending on the filter order. 

Table 2-1 - Upper &un& for Roto* Filter Subsampkïng in20 Po&phase Fiïters 

(1M = 4) 

The redting quadrature demoduiator block diagram is shown in Figure 2-10. It can be 

seen that al1 processing is done at a quarter of the input sampling rate. Each branch and 

sub-branch processes data that is de-interleaved h m  the output of the ADC, with two 

successive steps of decimation by 2. An interesthg consequeme of the polyphase iïlter 

approach, when compareci to the low-pass filter approach with decimation by two, is that 

the multiplication step for fhqueacy conversion has been eliminated. For the present 



case with a decimation by four, thïs approach to quadrature demodulation is bctionally 

equivalent to the High-Pass approach suggested in [SI. 

Figure 2-10 - Quadrature Demodulator Po@pAase Filer Approach (M = 4) 

2.3.4 Duplicated Polyphase Filters Approach 

In the previous section, an appealing use of polyphase filters was made to keep the data 

processing rate as low as possible when decimating by four. Here, a method proposed in 

[9] will be described. It has the advantage of doubiing the maximum theoretical input 

signal bandwidth while maintaining the processing rate at a quarter of the sampling rate. 

This case wodd therefore be equivalent to the Low-Pass Filter approach in terms of input 

signal bandwidth, but to the Polyphase Filter approach in terms of processing rate. 

Equaîions (2-22) and (2-27) give expressions for I(4n) and Q(4n), the decimateci-by-four 

filter outputs. If an o v d  decimation by two is desired instead, then the nurnber of 

calculated output samples must be doubled. Since I(4n) and Q(4n) are available, then 



1(4n - 2)  and Q(4n - 2 )  must be calculated. Following the same approach 

in-phase component is calculateci to be: 

IV-1 lt 
1(4n - 2 )  = h, (m)  - x(4n - 2 - m)  COS(-(^^ - 2 - m)) 

m=o 2 

R.. 

Similarly, the quadraîure component is expressed as: 

N- l Ir 
Q(4n - 2 )  = ç h , ( m )  4 4 n  - 2 - rn)sin(+ - 2 - m)) 

m=O 2 
N-1 mR 

= -x h, (m) - x(4n - 2 - m) sin(-) 
m=O 2 

as before, the 

This means that the approach of Figure 2-10 can be expanded whereby hardware area is 

traded for speed of operation. The four polyphase niters are duplicated. The input to the 

second set of nIters is a delayed version of the input to the k t  set by exactly two clock 

periods, and the signs of the adder branches are reversed. A resulting block diagram, 

derived fiom [9], is given in Figure 2- 1 1. in such a configuration, the processing rate in 

the filters can be halved or the achievable bandwidth doubled for a given technology, and 

the hardware implementation problem now becornes one of data de-interleaving and re- 

int erleaving. 



Figure 2-11 - Duplicated Polyphase Fitter Archaecfrcre 

Altematively, trading area for speed can be advantageous nom a power consumption 

perspective. Lowering the processing rate may allow a reduction in the supply voltage. 

Since power is directly proportional to clock fiequency, but to the square of the supply 

voltage, halving the fiequency while doubhg chip area can stiii lead to a power 

reduction. For an FPGA implementation, however, this wouid not be the case since the 

supply voltage cannot be reduced. 

2.3.5 Other Cases 

In the previous sections, only two specific cases were comidered for input signal 

bandwidth and corresponding permissible decimation factor. These two cases, where M 

is equal to 2 and 4, are the most common. However, it would certainly be possible to 

extend the discussion to cover cases where Mis another power of 2, or an odd value. 



2.4 Odd-Length, p-band Prototype Low-Pass Filter 

2.4.1 Half-Band Filter 

A low-pass filter cm be designed such that its fkquency response is symmetric mund 

the digital fiequency rt12, and that the normaiized magnitude response gain at this 

fYequency is 0.5: 

If a FIR filter is designed with these specification and with qua i  pass and attenuation 

band npples, the filter is cailed a half-bandElter [7]. An odd-length, half-band fïiter has 

the additional properties that nearly half its coefficients are zero, and its center coefficient 

is equal to one halfi 

These properties make the odd-length haWband filter economical to implement; there is 

a reduction of almost 50% in wmputational cost. The symmetry of the impulse response 

about the ongin allows a fbrther halving of the number of necessary multiplications. 

In the case of the low-pass approach of section 2.3.1, an interesting consequence arises if 

the low-pas prototype filter is designed to be an odd length, hdf-band filter. Using 

equations (2- 14) and (2- 17) to obtain the impulse response of the in-phase and quadrature 

filters, it is found that the in-phase filter is an odd-length filter with only one non-zero 

coefficient, and the quadrature filter is an even-length filter: 

Implementing the in-phase filter can then be done at very low cost. Its a l l  pass 

characteristic, however, is a disadvantage in the presence of DC offsets fiom the ADC. 



2.4.2 Third-Band Filter 

An odd-lengîh, third band FIR filter has similar properties to the h&band iïiter. Its pass 

band and stop band ripples are again the same, but the cut-off fkequency is x/3. Nearly a 

third of the filter coefficients are equal to zero: 

There is an interestirig consequence h m  designhg the prototype filter to be an odd- 

length, third-band filter. If the low-pass approach of section 2.3.1 is again followed, 

equations (2-1 4) and (2-1 7) show that the zero coefficients will be distniuted evenly 

between the in-phase and quadrature filters: 

Compared with the half-band prototype filter approach, this would increase the total 

number of non-zero coefficients, and hence chip area requirements and power 

consumption, but it would even out the amount of computation between the two filters. 

If the order N of the prototype fïiter is large, then there are approxirnately N/2 and 2N/3 

non-zero coefficients for the half- and third-band nIters, respectively. For the half-band 

prototype filter case, the in-phase fZ1ter has one non-zero coefficient and the quadrature 

filter has N/2. For the third-band filter, both the in-phase and quadrature filters have 

approximately N/3 non-zero coefficients. Hence, the total area and dissipated power are 

increased by a factor of 4/3 for the third-band fiiter compared to the half-band case. 

However, the largest sub-filter length is multiplied by a factor of 2/3. 

Thus, using the third-band prototype filter would reduce the maximum filter sue, at the 

expense of total chip area and power dissipation. Altematively, if the two sub-nlters are 

distributeci on two different chips, it may be better h m  a system perspective if the 



overall computation effort is spread out evenly, and again the third-band filter approach 

may be a better choice. 

From a hardware implementation point of view, there is an important disadvantage to 

following the Low-Pass Filter approach of section 2.3.1 when the prototype filter is a 

third-band filter. This choice implies that the output of the quadrature demodulator 

would be oversampled by a factor of 312, and thus that computing resources inside the 

quadrature demodulator would be wasted. Communications with the next device in the 

systern would also have to take place at a data rate potentially greater than is necessary. 

However, there are important advantages to the thud-band case. Compared to the half- 

band case, the filters provide a bandpass filtering fiindon. In quadrature demodulator 

system design, this function is often useful to remove unwanted signals such as DC 

offsets firom the ADC, and to compensate for non-ideal performance of the IF amplifier 

[ 1 O]. The requirexnents for a separate digital bandpass filter can be relaxed or eliminated. 

The allowable input signai bandwidth and number of zero coefficients is also greater than 

for the quarter-band case, discussed in the following section. 

Following the half- and third-band cases, designing the prototype low-pass filter as an 

odd-length, fourth-band filter wodd imply that almost one out of four coefficients would 

be zero. This approach would be alternative for a case where the input signal bandwidth 

is such that decimation by fou. is appropnate. 

If the polyphase approach of section 2.3.3 is followed, it c m  be shown that al l  zero 

coefficients would be mapped to ody  one of the four polyphase sub-filters. This filter 

wodd only inherit of the center coefficient of the prototype filter, and wouid therefore be 

reduced to a weighed delay line. All other polyphase ab-fllters would become even- 

length filters. 



Therefore, the quarter-band prototype nIter presents interesting advantages. As for the 

third band case, a quarter band prototype filter provides useful stop bands when 

compared to the haif-band case. The number of zero coefficients is reduced when 

compared to the third-band case. Additionally, the computational efficiency is greater, 

since a reduction in processing rate is possible because the reduced pass band ailows an 

additional decimation by two of the output data. 

2.4.4 General Case 

In general, the cutoff fiequency of an odd-length p-band low-pass fiiter is equal to n/N, 

and its impulse response is symmetric about the ongin and is given 1111 by 

By inspection, the term s in(ndw will be nul1 for al1 values of n that are integer 

multiplies of N, and therefore an odd-length @-band filter will have almost 1 out of N 

zero coefficients (the center coefficient is never null). Equation (2-37) c m  be used to 

design an Mh-band filter, in conjunction with an appropnate window fbnction which is 

selected to trade-off transition bandwidth for reduced pass and stop band npples. 

2.5 Frequency Translation by Undersampling 

The discussion of quadrature demodulation so far has assumeci a sampIing fkequency 

equal to four times the carrier fiequency. The obvious difficulty with this choice is the 

high sampling rate that is thus required. For example, if the target center fiequency isf, = 

160 MHz, this would imply a sampling fiequency f, = 640 MHz. The systern 

architectures d e s c n i  in the previous chapters have shown that if the signal bandwidth 

is smail enough, then the processiag rate in the fS1ters cm be reduced to their minimum. 

However, effort must be expended to de-interleave the A I X  output data into multiple 



streams, not to mention the potentially high cost and complexity of the ADC itself since it 

must work at a high sampling rate. An alternative approach, suggested in [6], is that 

undersampling be used to translate a signal fiorn a high fiequency to a lower one, when 

allowable by the signal bandwidth. 

If the sampling fiequencyf, is chosen such that 

where m is a positive integer, then the center Gequency of the signal,&, wiii be aliased to 

fJ4. The advantages of satidjingf, = 4 x f ,  are therefore effectively maintained, without 

the costs of a correspondingIy high sampie rate. Ail system architectures presented so far 

are therefore suitable to input signal undersampling. 

Table 2-2 lists possible sampling f?equencies for a carrier fkquency of 160 MHz, for the 

Low-Pass Filter approach. The corresponding maximum filter processing rates and 

resulting signal bandwidth after demodulation are also aven. For example, withf, = 160 

MHz and m = 1, we havef, = 4/3x160 MHz = 2 13.3 MHz, which is one third of the 640 

MHz calcdated previously. Figure 2- 12 illustrates this exampIe. 

Table 2-2 - AIrernative Undersamplhg Frequencies, LowPoss Filter Apprwclir 



A necessary condition for this scherne to work, obviously, is that the Nyquist criterion be 

respected nich thatf, m a i n  at least twice the input sigaal's bandwidth. In our present 

case, a sampiing fiequency of 2 13.3 MHz means that the quadrature demodulator would 

work with signals on a center fkequency of 160 MHz with a maximum possible input 

bandwidth of 106.7 MHz. Mer decimaîion by two, the processing rate in each digitaI 

filter would also be 106.7 MHz, which 1ends itself well to implementation in some of the 

faster FPGAs available. 

The results of Table 2-2 c m  dso be used to specim a samphg fiequency given an 

expected signal bandwidth. As a g e n d  d e ,  the lowest acceptable processing rate 

should always be chosen in order to minimize power dissipation. 

t 

Figure 2-12 - Exumpde of Frequency TransMorr by Un&rsamplhg 
a) positive specîmm of an analog bandpass signal centered on 160 MHz- b) spectrum of 
the same signai, sampled at afiequency of 213.3 M;HZ, with an effective fiequency shtjl to 
a quarter of the sampiing rate. 

2.6 Decision 

In this chapter, fundamental principles for the digital reaiization of quadrature 

demodulators were presented. This included a review of basic and improved digital 



approaches, a discussion on prototype fïiter design to minimize hardware impact, and the 

description of a strategy to minimize signal sampling rate by undersampling. 

As discussed in the previous sections, the selection of an implementation approach 

depends on a number of factors, but principaliy on the passband width of the prototype 

filter and on the desired output decimation factor. The chosen set of filter coefficients for 

the designs descnibed in this thesis is disnissed in Chapter 5. The prototype filter is a 

quarter-band filter, and a decimation by four is desired. Therefore, either of the High- 

Pass or Polyphase Filter approaches would be suitable shce they are equivaîent. The 

Polyphase Filter approach is selected since it leads to a system description that is more 

readily tramlatable to a hardware realization. It c m  also serve as a basis for the 

Duplicated Pol yphase Filters approach. 

Undersarnpling will be used to reduce the signai sampling rate. The 160 MHz IF signal 

will be sampled at 213.3 MHz. After decimation by four, the flter processing rate will 

be 53.3 MHz and the maximum theoreticai input signal bandwidth will also be 53.3 

m. 



Chapter 3 

Multiplier lmplementation 
for Digital Filtering 

3.1 Introduction 

The equation for the output y(n) of a F R  filter of order N, with impulse response L(n) and 

input data sequence x(n) was given (equation (2-9)) as: 

For a filter of order N, there are N multiplications perfonned for every filter output data 

sample. Zero-valued coefficients reduce this number, and so does the exploitation of the 

symmetry of the impulse response. However, for large N, many multiplication operations 

still have to be performed. 

A n-bit, two operand unsigned multiplier generally requires a silîcon area proportional to 
2 n . Since multiplication is a computation intensive process, a major portion of the 

quadrature dernodulator design effort shodd be expended on selecting the best possible 

approach to impiement the multipliers. In this chapter, different approaches will be 



studied with the goal of reducing the number of adders and shifters required to implement 

multiplication. 

When discussing multipliers, it is customary to use the temis ntuItip1icand and multiplier 

to identify the two numbers being multiplied together, with multiplier meaning the 

multiplication factor applied to the multiplicand. However, in this discussion, the 

following terminology will be adopted. Multiplier will refer to the device, architecture or 

circuit performing the multiplication operation. Since the action of the multipliers will be 

to multiply input data by £ixed filter coefficients, the term co@cient will be used to 

represent the multiplication factor. The temi nrultiplicand wili be used with its usual 

meaning. 

3.2 Power-of-Two Coefficients 

Since multiplication can be thought of as a shift-and-add process, a multiplier can be built 

f?om a two-dimensional array of shified adders. As an exampie, consider the 

multiplication of the two 4-bit unsigneci numbers lOOl2 and 1 10 1 2. It is accomplished as 

follows: 

From this example, it is seen that the multiplication requira that 4 rows be added because 

the coefficient, 1 101 has four bits. Each row is either a shifted version of the 

muitiplicand, 100 12, or made up of al l  zeroes. The choice is made based on the value of 

the corresponding bit in the coefficient. In fact, each bit of the adds  rows is the result of 

the AND operation between a coefficient bit and a multiplicatld bit In the present 



exampIe, three two-operand adders wodd be necessary to perform the multiplication, 

Many texts desmie such generd-purpose multipliers in detail [12]. 

The muhipliers of the quadrature demoduiator filters do not need to be array multipliers, 

because the filter coefficients are fixeci for a aven design. Each multiplier is therefore a 

so-called constant coefficient multiplier, or KCM. In the previous example, if the 

coefficient 1 1012 is fixed, there is no need to consider the shifted row of zeros and the 

multiplication process can be reduced as follows. 

In this case, only three rows are added together, which means that only two adders are 

required. The three rows correspond to the three non-zero bits of the multipiicand. In 

general, if the coefficient has d non-zero digits, tben d-1 two-operand adders are required 

in the multiplier. 

A logical extension of this 1s t  example is that a multiplier with a coefficient that is 

represented by a single power of two is "h" since the coefficient has only one non-zero 

bit. The multiplication resuit is a simple shifted version of the multiplicand, and no 

addition is required. Therefore, h m  an implementation point of view, ideal filter 

coefficients would be selected such that they are equal to a power of two. The 

multiplications in the quadrature demodulator wodd then require no additions. 

Altematively, coefficients should be equal to the sum of a few (say 2 or 3) powers of two. 

For every additional non-zem digit in a coefficient, one extra adder will be requhed in its 

corresponding multiplier. 



3.3 Signed Digit Representation of Coefficients 

In the previous section, the point was made that a reduction in the number of non-zero 

digits used to represent the filter coefficients wodd lead to smailer multipliers. 

Representing the coefficients with signed digits fan d u c e  the number of non-zero digits 

necessary to represent a given number. In such a case, each digit is aiiowed to take a 

value fiom the set (-1,0, 1 ), which means that nurnbers can now be represented by a sum 

andhr a difference of powers of two. As an example, the number 12710 is represented by 

0 1 1 1 1 1 1 1 in the standard 8-bit binary format. Multiplication by a filter coefficient equal 

to 12710 would therefore require 6 two-operand adders. Alternatively, allowing mgned 

digits means that 127 can be represented by 1000000~ (where means -1), or 128 i0 - 
1. A multiplier using this representation for the coefficient 127i0 would thus require only 

one two-operand subtracter. 

Intuitively, there may be many possible valid signed digit repraentations for a given 

coefficient, and some of them may require even more non-zero digits than the standard 

binary approachl. It may be shown, however, that the signed digit approach d o w s  the 

representation of any nimiber with the least amount of non-zero binary digits. Further, if 

it is chosen such that no two non-zero digits are adjacent, the representation is called the 

Canonical Signed Digit (CSD) representation for that number. The proof of minima1 

representation and a corresponding algorithm to caldate the CSD representation of 

numbers can be found in [l3]. 

Another advantage of using CSD is that a broader range of numbers cm be represented 

with a given number of bits, as compared to sign & magnitude or two's complement 

approaches. With 8 bits, any number between +255 aud -255 can be represented with 



CSD. With sign & magnitude, the range is between +127 and -127. For two's 

complement, it is between +127 and -128. Table 3-1 illustrates the range of values for 

different number representations, given a fïxed number of bits n. 

C 

Sign & Magnitude -(2"-I- 1) 2""- 1 

One's Complement 

Two's Complement 

Table 3-1 - Range of Values for Different Number Representations w&R n bits 

-(2"-'- 1) 

Since efficients encoded in CSD require the fewest nonzero digits, they lead to 

multipliers with a reduced number of necessary shifi and add operations However, the 

inclusion of negative coefficient digits adds complexity, because shifted versions of the 

multiplicand may now need to be subtracted as well as added. The binary number format 

chosen to represent the multiplicand is therefore critical. The one leading to the simplet 

multiplier implernentation is 2's wmplement. When a negative si@ digit is 

encountered in the coefficient, the bits of the multiplicand must be inverted and a carry 

m u t  be added, then the result must be shifted as before by an appropriate number of bits. 

Sign extension of the number is also necessary, which means that the Most Significant 

Bit is repeated as necessary to fill the row to the left such that each row has the same 

number of digits. Once a i l  these operations are done, simple addition will produce the 

correct remit. 

2""- 1 

-2n-1 

2"- 1 CSD 

The following example illustrates multiplication by a constant CSD coefficient. The 

multiplicand is a two's wmplement number e q d  to - 1 13 10 (1 000 1 1 1 12) and the 

multiplier coefficient is + 1 5gi0 (1 0 100001 in CSD). The expected resdt is - 1 7967 

2"'l- 1 

-(2"- 1 ) 



Four important aspects of multiplication implementation arise h m  this example. First, 

when one of the coefficient's digits is negative, the two's complement of the multiplicand 

must be taken. In the example, the r d t  of the sign inv-on is shown -y in the 

first adder row. In a digital implementation, however, each digit would be nrst inverted, 

then a camy would be added. Second, sign extension is required when adding two's 

complement numbers together. The Most Significant Bit mwt be repeaîed left as many 

times as necessary to make the length of the number equal to the widest possible 

expected sum. Third, using two's complement representation for the multiplicand means 

that regular addition can be doue on the shifted rows. Fourth, as expected, ody two 

additions would be required since the multiplier has three non-zeem digits. 

3.4 Minimum Number of Adders for Multiplier 
lmplementation 

In the approach to multiplier ïmplementation cunsidered so far, the effort expended 

depends on the number of non-zero digits required to represent the multiplier coefficient. 

If there are d non-zero digits, then d-1 adders are necessary. Since the CSD 

representation requires the least number of digits to represent a given number, one wouid 

think that CSD encoding of multipliers should yield the lowest cost multipliers (where 

cost is defined as the number of two-operand adders in the multiplier). However, a 

method proposed in [14] and [15] achieves an average improvement in the number of 

two-operand adders of 26.6% and 16% for 32 and 12-bit word multipliers, respectively, 

over a CSD approach. The following example illustrates the principle of the rnethod. 



Consider multiplication by the coefficient 4Slo. The nomal binary representation of this 

coefficient, using 8 bits, is 00101 1012 for 45 = 2' + Z3+ 22 + 2'. The CSD representation 

is 0 10'010 1 (where 'y represents a -1), for 45 = 26 - 2' - 22 + 2'. Thus, in both cases 

there are 4 non-zero digits and consequently 3 adders should be requuedl. However, 4Slo 

c m  also be expressed as 45 = 9 x 5 = (z3 + 1)(2~ + 1). nius, the multiplicand can fïrst be 

multiplied by 9, which requires only one addition. The intermediate result is then 

multiplied by 5, which dso requires only one addition. Therefore, only 2 adders are 

required for the complete operation. Figure 3-1 illustrates th is  example. 

Algorithms for decomposing multiplier coefficients such that the multiplication process is 

minimum are given in [14], [15], [16] and [17]. 

Obviously, a reduction in the required number of adders between this method and the 

standard one with CSD representation will depend on the value of the filter coefficients. 

Coefficients equal to a power of two, and those represented by a sum or a difference of 

two power of two numbers cannot be reduced any m e r .  Intuitively, the greatest 

reduction should be attained for coefficients which can be decomposed hto many factors. 

In Chapter 4, a filter architecture that exploits redundancy in the factors that repeat in a 

set of coefficients will be presented. For example, the coefficients 45 and 18 each share 

the factor 9, which is implemented with only one adder. If the partial product 

corresponding to the factor 9 could be reused somehow, a fûrther reduction in the total 

number of adders necessary to implement a digital fïiter could be gained. 

' For this specinc example, there is no advantage gaincd h m  using a CSD representation for the multiplier 

coefficient instead of the standard binary format 



Figure 3-1 - MuItipiicution &y 45 

(a) Standard approach. with CSD. (&) Minimum number of adders approack 

3.5 Look-Up Table Approach for FPGA Multiplication 

FPGA Configurable Logic Blocks (CLB) can be programmai to behave as Read-Only 

Memory (ROM). This feature offers an interesthg alternative technique to multiplier 

implementation with constant coefficients. 

For the Look-Up Table (LUT) approach, the order of the multiplication process is 

reversed such that the coefficient is multiplied by the multiplicand. For example, say that 

the 12-bit multiplicand 4AgH, must be multiplied by the %bit coefficient B 5 ~ a .  Instead, 

we multiply BSH, by 4AgH,. The process is as foilows: 

BS 
x 49A 

AxBS 
l6,, x9xBS 

+ 256,, x4xBS 



It is obvious fkom this example that a stored table with the values of the 16 hexadecimal 

digits multiplied by the constant BSH, would be very useful. If such a table existed, then 

the multiplication process could be reduced to two additions of pre-calculated values with 

the appropnate shifts. 

Each CLB in the Xiluix 4000 series cm be programmed as a 16 x 2-bit memory, by using 

the F and G bct ion generators as 16 x 1-bit mernories. This is the basic building block 

for the LUT multiplier. In general, for a coefficient expressed with c bits, then c + 4 bits 

are required to express alI possible results h m  the multipiications of that coefficient 

with a 4-bit number. Since each CLB can store 2 bits, then (c + 4)/2 CLBs are required 

for each LUT. 

The multiplicand is decomposed into slices of 4 bits. These four bits select one of the 16 

possible pre-calculated products of a LUT. If the multiplicand is expressed with m bits, 

then rd41 LUTs will be required, where the brackets sigui@ rounding up to the nearest 

integer. 

Therefore, in the previous example (4AgH, x BSHer), three LUTs (because the 

multiplicand is expressed with three slices of four bits) each composed of 6 CLBs 

(storing 12 bits = 4 + 8 for the coefficient) would be required. The three LUTs would be 

identical, and would store the 16 possible products of x times B5, for x = 0, 1, 2, . . . E, F. 

Two adders would complete the design of the LUT muitip1ier. 

Figure 3-2 below gives a block diagram for a LUT multiplier where both the multiplicand 

M and the coefficient C are expressed with 8 bits, with a product P of 16 bits [ 1 81. 

3.5.1 Advantages of LUT Approach to Multiplication in FPGAs 

The LUT approach to multiplication by a constant coefficient presents many advantages 

in FPGAs. 



Figure 3-2 - LUT Mula'plicatiin Block Diagrain 

When compared to a general-purpose multiplier, there is obviously a great area utilkation 

advantage to the LUT approach, as there was for the CSD method for constant 

coefficients. The LUT approach is very compact, and greatiy reduces the number of 

arithmetic operations that must be perfonned to calculate a product. 

When creating a system with many multipliers, or when designing many systems that will 

utilize multipiiers, the LUT approach can grealy simpl* the design process. For a 

given set of multipiicand and coefficient size, the multiplier only needs to be designed 

once. The placement of CLBs and routing of signals intemal to the multiplier can be 

carefully optimized for speed, ara andor power consumption, then the multiplier can be 

çonsidered as a building block, Modî@hg the value of the coefficient doesn't involve 

any structural changes, only the stored values in the CLBs need to be replaced. The 

multiplier building block can then be reused as necessary. While this would be tme for a 

general-purpose multiplier building block, the advantage of the LUT approach is again 

the great reduction in necessary resources. Alternatively, CSD encoding of the 

coefficient requires the designer to optimize the multiplier for every coefficient. 

For FIR filter designs, the LUT approach has a few interesting advantages over the CSD 

method discussed previously. First, the number of non-zero digits used to represent a 

coefficient is irrelevant, and this simplifies the filter design greaîly since no time need be 



spent on optimijring the quantization of floating point coefficientst. Second, since al1 

multipliers in the fïiter are structurally identical (same placement and muting), the LUT 

approach favors filter architectures that exploit the repetition of a reguiar structure. This 

wiil be discussed fhther in section 4.5.3. This approach not only increases design 

density on the chip, it also makes the design process much more simple. FinaUy, for a 

given filter order, changing the filter coefficients simply requires that the LUTs be 

reprogrammed: there is no need for mapping, placing and muting the design again. In 

facf an optimized version of the filter can itseif be considered a building block fiom that 

point on. 

3.5.2 Cornparison of the Area Used by LUT and CS0 Approaches 

The LUT approach to multiplier implementation has one signifiant disadvantage. For 

trivial coefficients, such as zero, one, and any power of two, it produces a multiplier that 

is grossly inefficient. The multiplier is dso fat f?om optimum for coefficients equal to 

the sum of a few powers of two. The analysis presented in this section will assume that 

the multiplicand is represented in two's complement using 8 bits, and that the coefficient 

is resîricted to values between -128 and + 127 10. 

In the CSD approach, the number of CLBs used to implement a multiplier depends 

directly on the number of non-zero digits used for the coefficient. It was mentioned 

already that if a CSD coefficient has d non-zero digits, then d - 1 two-operand additions 

will have to be performed by the multiplier. The number of bits that need to be added at 

every step of the shift-and-add process is equal to the number of bits in the multiplicand 

plus one, for two's complement addition. At every step, a portion of the least significant 

bits do not require an adder, since they would be added to zero. If the multiplier is fully 

pipelined, however, then these least-significant bits will need to be pipelineci. 

1 However, the choice of a suitable scaie factor prior to rounding may still be helptùl. 
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Implementing the addition of two 2's-complement, &bit numbers requires 5 CLBs for a 

9-bit result [19]. Therefore, following our assumptions, the number of CLBs in a non- 

pipelined multiplier is equal to (d - 1) x 5, where dis the number of non-zero digits in the 

coefficient. 

If the multiplier is pipelined, the rquired numba of CLBs varies depending on the 

coefficient. In the worst case, the coefficient has non-zero digits in extrerne positions. 

The coefficients O 1010101 and 1 o O l  are exampks of this. For the coefficient 

10000001, the seven least significant bits of the multiplicand need to be registered, which 

requires 3.5 CLBs. Table 3-2 gives worst-case quantities of CLBs for non-pipelined and 

fully pipelined CSD multipliers with a coefficient between -128 and +127. Column 2 of 

the table lists the distribution of these 256 possible coefficients accordhg to the number 

of non-zero digits they have, and a>lum. 3 gives the amount as a percentage of the total. 

For example, zero is the only coefficient with no non-zero digits. 

Table 3-2 - 8-bit C S .  Coegcimt (-128 to +127) MuI$fpl.r Sikaihîics 



For the LUT approach, the calculation of the number of required CLBs is much more 

straightforward. For an &bit multiplicand, and a coefficient expressed with 8 bits (i.e. 

between -128 and + l27), we have the situation of Figure 3-2. Each 12-bit LUT occupies 

6 CLBs. The 12-bit, two-operand adder requires 7 CLBs. The total is therefore 19 CLBs 

for a non-pipelined case. If one level of pipelining is added between the LUTs and the 

adder, then the four least-significant bits must be registered, necessitating two more 

CLBs for a total of 2 1. 

Therefore, fiom the strict point of view of area utilization, the LUT approach to 

multiplier implementation is preferable for only 19% of the coefficients between -128 

and t127. As long as a CSD coefficient has l e s  than 4 non-zero digits, the CSD 

approach is better. 

3.5.3 Cornparison of the Speed Between the LUT and CS0 Approaches 

In both the LUT and CSD approaches to multiplier implementation, the maximum 

processing rate ultirnately depends on the width of the adders within the multiplier. As 

before, it will be assumed that both the multiplicand and the coefficient are 8-bit 

numbers. 

For the LUT approach shown in Figure 3-2, there is one 12-bit wide adder, and typically 

only one level of pipelining. For the CSD approach, the addition of any two shified 

replicas of the multiplicand requires a 9-bit adder. Therefore, the CSD approach is 

generally aiways faster than the LUT approach by a small margin. It would be possible 

to improve the speed of the LUT approach by p i p e h g  its adder, but its implementation 

wst would then increase fÙrtber. 

3.6 Decision 

The selection of a multiplier approach depends on a number of factors, and especially the 

level of design optimization that is required in temis of chip area use& power 



consumption and target processing rate. If those are unimportant, then the Look-Up 

Table approach should be foiiowed because it simplifies the design process greatly and 

enhances design reusability. However, for the quadrature demodulators related to the 

present research, design optïmization is of  prime consideration. The chosen set of filter 

coefficients for the design was carefüiiy selected to minnnize the total number of non- 

zero digits. A more detailed description of these coefficients and the design constraints 

followed to obtain them will be gïven in Chapter 5. It was also essential to maximize 

processing speed. 

Therefore, the CSD approach to multiplication is selected in order to minimize the total 

area occupied by the design and to maximize processing speed- 



Chapter 4 

Filter Architecture Selection 

4.1 Introduction 

Since the in-phase and quadrature digital filters perfonn v M y  al1 of the computations 

in the quadrature demodulator, they are therefore the subject of most of the design effort. 

An appropriate filter architecture must be selected with great a r e ,  as it will have a major 

impact on many hardware realization performance meûïcs, such as speed of operation, 

power consumption, ease of placement and routing of mapped blocks, register 

requirements, overail CLB count, and ease of pipelining of the data processing paths. 

4.2 Basic FIR Filter Architectures 

The output y(n) fiom a FIR filter with impulse response h(n), filter length N, and input 

sequence x(n) was given in equation (2-9) and is repeated here. It is equal to the 

convolution of the input sequence and the filter impulse response: 



4.2.1 Direct Fom Realization 

From equation (2-9), it c;m be seen that the fïiter output is a weighted sum of a finite 

number of present and past filter inputs. The direct hardware realization of this equation 

is presented in many texts [20] and consists of a chain of data regiders, with taps between 

each register leading to a constant-coefficient multiplier. The multiplier coefficients are 

equal to the fïiter's discrete impulse response values. The oufputs of all multipliers are 

added together to form the filter output. This filter realization is approprïately named the 

direct or canonic fonn, and a block diagram is given in Figure 4-1. 

Figure 4-1 - Direct Fonn Realizan'on 

The multiple operand aider in this architecture will pose a problem when the processing 

rate is a critical factor. There are a number of ways to solve this problem, including 

pipelining, and these techniques will be discussed in the following sections. 

The multi-operand adder can also present an interesting design alternative. Instead of 

adding individual products, all shifted versions of the multiplicauds can be added 

together in a larger multi-operand adder. This approach is the one adopted in the existing 

version of a quadrature demodulator by CRC [21]. The resulting adder therefore gmws 

in complexity, and is idedy implanented with pipehed blocks of Camy-Save Adders. 

Since the coefficients are fked, the number of sign changes is kaown a prion, and the 



canies generated h m  the sign inversions can dso be added a priori. Data muitiplied by 

a negative coefficient therefore oniy needs to have al1 its bits inverted prior to addition. 

4.2.2 Transposed Form Realization 

Alternatively, the Transposition Theorem [3] can be used to realize equation (2-9) 

differently. The resulting architecture is h o w n  as the transposed or inverted fom. In 

this case, only the present filter input is processed. Other previous inputs are not kept in 

memory. Instead, partial r d t s  are computed and registered for every filter input. Each 

partial result is a sum of a previous partial result and of the multiplication of a filter 

coefficient with the present input The architecture is show in Figure 4-2. 

Figure 4-2 - Transposed F o m  ReaIi'*on 

A major advantage of the transposed foxm is the inherent pipelinhg built w i t h  the filter 

structure. Consequently, there are no multi-operand adders in the fïiter, except possibly 

inside the multipliers. This is ideal for an FPGA implementation targeing the Xilinx 

4000 series, which favors the implementation of twooperand ripple carry adders. 

In the same vein, the registers embedded in the adder chain do not require extra silicon 

area in the FPGA, since each CLB's output can be of a registered type. The adders are 

therefore converted into registered-output adders. This is a much more efficient 

utilization of FPGA resources than for the direct form realization, where the delayed 

input chain requires that a large number of CLBs be set aside solely for their output flip 



flops. ûther resources within these CLBs such as hct ion  generators and carry chahs, 

are not used and are not available for other purposes. 

4.2.3 Cascade Form Realization 

A third filter architecture is the cascade form [3]. It is chanrcterized by a chain of 

independent flters, with the output of a given filter being fed as input to the next one in 

the chain. For such a realization, the overall filter transfr fùnction, ff(Z), must be broken 

down into a product of other tnm&er fiinctions of lesser ordc 

The most simple breakdown wodd be one where each sub-fïïter transfer fünction is a 

quadratic expression, but there is no restriction to the transfer hc t ion  order. in fact, 

there is ais0 no restriction on the particular architecture (direct or transposecl) selected for 

each one of the sub-filters. in that respect, the selection of the cascade form realization 

would imply that an independent architecture selection can be done for each of the sub- 

filters. A block diagram of the cascade reaiization is given in Figure 4-3. 

Figure 4-3 - Cascade Fomt Reali~anin 

Given an overall filter impulse response, the task of caicuiating coefficients for each of 

the sub-6llters is non-trivial. The overall transfer ftnction must be calculated, then a 

separation among the sub-filters must be done, and fïnaily fiiter coefficients can be 

calculated. For the case where the sub-nlters are low-pass, one advantage of this 

approach is that decimation operations can be disûibuted among the various stages to 

obtain the optimal trade-off between accuracy and computational wst. 



The selection of the cascade fonn must be made in conjmction with the design of the 

desired filter îransfer hct ion and corresponding coefficient search. From a hardware 

point of view, each sub-filter should then be designed based on either of the direct or 

transposeci forms, as appropriate. 

4.3 Linear-Phase FIR Filter Architectures 

As discussed previously, a linear phase characteristic is very desirable for wide band 

quadrature dernodulator filters, to preserve infornation contained in the input signai. A 

linear phase characteristic also presents a potential advantage fiom a hardware realization 

point of view, as will be seen shortly. 

It can be shown that FIR filters with linear phase characteristics can be obtained by 

constraining the filter coefficients to be symmetrical about the center coefficient. 

Specificaily, for a fllter of length N, if the slter impulse response satisfies 

then the filter has linear phase [3]. 

This condition can be applied to equation (2-9) to take advantage of the impulse response 

symmetry. For a linear phase, even length filter (N even), the output of the nIter is given 

b y: 

From this equation, it is obvious that there is a reduction by a factor of 2 in the nurnber of 

multiplications when compared to the non symmetrical case. This is lilcely to be a clear 

advantage for a hardware realixation. A similtu equation can be derived for an odd- 

length filter. 



Two alternate filter architectures can be derived from the basic direct and transposed 

forrns for linear phase FIR filters, each exploiting the symmetry property of the impulse 

response. Since two samples are multiplied by any one coefficient (except the center 

coefficient of an odd-length filter), it c m  be much more effective to add the two samples 

together before multiplication. The @valent realizations, for direct and traosposed 

forms, are shown in Figure 4-4 and Figure 4-5, respectively. 

Figure 4-4 - Direct F o m  Architecture, FLR tinearphase p k r ,  Neven 

Figure 4-5 - Truitsposed Form Architecture, FlZ lUIearphase f&, N even 

For the transposed architecture, there is an additional benefit in that the fanout of the 

input data is reduced by a factor of two. For the direct form architecture, a s m d  



disadvantage may arise for hi& filter orders. Long interconnects may be required to add 

signals that are at opposite ends of the register chain (for example, x(n) and x(n - (N - 
1))). The long interconnects wiU compücate routing, increase power consumption, aad 

possibly increase overall delay. Placememt of the register chain cornponents wouid 

therefore be critical. 

4.4 Transposed Forms with Multiplier Block: 
Exploiting Coefficient Redundancy 

In section 3.4, the principle of decomposing filter coefficients in their factors to d u c e  

the number of adders for multiplication was presented. It was also suggested that 

redundancy of factors in a set of coefficients could be exploited, as reportai in [14]. This 

approach could then aisure that the total multiplication effort to implement a filter would 

be minimized. 

If the transposed form realization shown in Figure 4-2 is used, then al1 multiplications of 

the input data occur at the same tirne. Using the minimum representation of multtipliers, 

- it may be possible to reuse partial products between coefficients. For example, say that 

coefficient h(i) is 45, and coefficient h(j) is 18. The total multiplication effort for the two 

coefficients requires only 2 addem. The input data x is k t  multiplied by 9, as in Figure 

3-l(b), to give the interim result 9x. It is then multiplied by 5 to yield 45x. The inter* 

result is also shifted one bit to the left to yield l k .  Thus, both multiplications are 

accomplished using only 2 adders. 

The individual multipliers of the transposed form can be combineci in one major 

multiplication block, as shown in Figure 4-6 and Figure 4-7. The direct form rpalization 

of Figure 4-1 does not lend itself well to exploiting coefficient redundancy, because each 

multiplier in the filter is operating on a different data sample. The reuse of partial r d t s  

would require a cornplex registering mechanism that wodd make the approach 

inefficient. 



Figure 4-6 - Transposed Fotm FLR F&r witk Muti@licairoon Block 

Figure 4-7 - Trunsposed Furm Symmetni FIR Filter, N Even, wirn MuMptication 

Block 

When realizing a filter in hardware, a legitimate question is therefore: 1s the effort 

required to extract coefficient redundancy worth it? Dernpster and Macleod Cl71 have 

studied this question by applying their redudancy-finding algorithm to a large number of 

random sets of coefficients of different sizes. Their f h t  result is intuitive: the larger the 

set of coefficients, the more likely that some redundancy can be found and exploited. 

The second result is also intuitive: a smalier word length for the coefficients is Urely to 

yield more redundancy as weil, since the coefficients are more likely to have similar 

values. Thirdly, the improvement over the standard filter design wil l  depend on how 

many adders are required for the multipliers before redundancy is exploited. As the 



authors point out, most FIR mters have many smali coefficients that can often be 

represented by only one signed digit with acceptable accuracy. in these situations, no 

adders are required and little redundancy can be exploited. The final conclusion h m  the 

paper is that the multiplier block technique can lead to tiIter makations where the 

contribution of the multipliers in the overall complexity is far less signifïcant than the 

contribution fiom the structural adders and delay elements. 

4.5 Pipelined Architectures 

In order to process data at the highest possiile rates on a FPGA, pipelining of the data 

paths is essential in the quadrature dernodulator. This technique consists of breakhg up 

data paths into smder blocks, with processing done in parailel among tùe blocks. The 

latency of the overall operation is increased, but the output data rate can be increased 

significantly. Latency is defineci as the number of clock cycles required between the tirne 

a given data appears at the input, and the time its effect is first seen at the output. In 

some applications, an increase in latency is not acceptable, and other design and 

optimization techniques must be used to increase processing speed. This is generally not 

the case for quadrature demodulators. 

FPGAs are also prime candidates for extensive p i p e h g  because they are register-rich. 

As mentioned akeady, each CLB output has an attached flip-flop that only needs to be 

activated at chip programmïng t h e ,  and these flipflops can therefore be considered 

'%eeY' fiom a chip real-estate point of view. 

It is true that adding flip-flops in a data path requires that setup and hold times be 

considered, and that the extra circuitry increases power consumption. However, it may 

be the only way to meet a stringent timing requirement. In many ASIC technologies, the 

problem of clock distribution is increased with register count. For FPGAs, however, 

dedicated clock distri'bution networks are available on the chip at no additional routing 

cost. Therefore, pipelining techniques are the method of choice to increase processing 



rate, especially in ETGAs, and they can be used extensively throughout fast quadrature 

demodulator designs. 

4.5.1 Pipelined Adder Tree for the Direct Form (Version 1) 

The main disadvantage of the direct form realization of Figure 4-1 and Figure 4-4 is the 

multi-operand adder. For high-speed applications such as the quadrature demodulator, 

this adder must be broken down into a number of  pipehed stages. As discussed 

previousty, an existing quadrature demodulator design at CRC breaks the large adder into 

a series of pipelined 3-to-2 compression stages Dl]. For an implementation on a Xilinx 

4000-senes FPGA, however, the dedicated carry logic favors two-operand adde 

configurations based on ripple carry. For the direct fom, an adder tree configuration, 

shown in Figure 4-8, is therefore the most appealing approach. 

Figure 4-8 - Pipelined Direct Fonn, Version 1: Addcr Tree 



There are two main disadvantages to the adder tree. The first one is that the tree o d y  

scales optimaliy for filter orders that are a power of 2. For example, in Figure 4-8 the 

right-most multiplier output must be registered prior to addition to an interxnediate sum. 

The second disadvantage is that the tree intercomects get progressively longer with 

higher filter orders, and the structure is not easily compacted in a regular m y  of CLBs 

on an FPGA. 

4.5.2 Altemate Pipelined Direct Fom (Version II) 

An altemate pipelined direct form architecture is shown in Figure 4-9. It doesn't suffm 

£tom intercomects that get progressively longer as in the tree structure described above. 

It is very similar to the basic transposed form of Figure 4-2, but requires a second, half- 

rate dock for the input delay chain (or, alternatively. twice as many registers). In either 

case, an increase in the number of registers over the basic transposeci form is necessary. 

There are no significant advantages to using this architecture, and it wili not be 

considered fùrther. 

Figure 4-9 - Pipelined Direct Fom, Version II 

4.5.3 Transposed Form with Pipelined Input for Facilitated Placing and Routing 

One of the drawbacks of the transposed form reaiizations of Figure 4-2 and Figure 4-5 is 

the high fanout of the input data stream for high filter orders. The consequences of such 

a high fanout is a longer propagation delay, and possible difficulty in routing 

interconnects on the chip. The input data is not only routed to many muhipliers, it must 



also drive a number of adders within each multiplier. Pipelinhg can be used to reduce 

this problem by adding a data register before each of the multipliers, as shown in Figure 

4- 10. The fanout of the input data is then reduced to the order of the ûiter, or to half of 

the nIter order for the linear-phase case. Each added register now acts as a data buffer to 

drive its adjoining multiplier. If the input data fanout is still too high, a firrther 

improvement would involve a "tree" distri'bution, a technique ofhm used to distriibute a 

dock signal in a chip. An alternative approach would be to break the input data and 

addition paths at the same level and insert additionai pipeline regkters. 

Figure 4-10 - Transposed Form wîth Wefined Input 

This architecture also presents the advantage of a regular block structure, highligiited in 

the figure, which is a most desirable feature for FPGA realization and for other VLSI 

implementation approachesl. Once a block has been optimized, a high order filter is built 

by simply connecting together many blocks, which involves simple placement and 

routing. It also increasa the density of the design on the FPGA since the blocks c m  be 

neatly stacked one beside the other. For optimal input data distniution, ail sub-blocks 

I This assumes that aii multipiiers in the nIter have the same physical structure on the FPGA (i.e. number 

and relative position of CL&, and routing). Since interesting n1tcrs have coefficients that are not ail 

identical to each other, this implies a Look-Up Table appmach for the realization of the multipliers. 



must be aligneci horizontally so that one of the long distniution lines can be used for 

routing. The technique is easily extendable to implementation across multiple chips, and 

is equally applicable to the realization of linear-phase filtem. 

4.5.4 Pipelined Multiplier Block for the Transposed Form 

The transposed architecture with multiplier block was presented in section 4.4 and the 

advantages of exploiting coefficient redundancy were explained in section 3.4. There is 

another advantage to the multiplier block architecture- 

In dl cases, if pipelining of the multipliers is introduced, then each multiplier's latency 

must be identical. Since some multipliers may be reduced to a simple shift of the input 

data, they would not normally require pipelining. However, if some coefficients require 

mdtipliers with many stages of pipelining, then for the standard approach even the 

simple shifbmultiplier will require a large nurnber of p i p e m g  stages. For a high order 

filter, there would be a wnsiderable overhead in extra registers. 

With the multiplier block approach, the input data can be registered to a depth 

cornespondhg to the number of pipelining stages required by the most complex 

coefficient. Each multiplier then "extracts" the input data at the required pipeline depth 

for its own processing. For the most simple mdtipliers, whose coefficients are expressed 

by one or two non-zero digits, the input data is taken fiom the last pipeline stage. For the 

multipliers with coefficients expressed by three non-zero digits (Le. requiring two 

additions), data is taken fÎom the two 1 s t  pipeline stages. Multipliers with more complex 

coefficients progressively take data sample fiom more pipeline stages. 

An example of a pipelined multiplier block is shown in Figure 4- 1 1. 
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Figure #-II - Pipelined Mula'plier B k k  Exampie 

4.6 Fast Addition for Digital Filter Architectures 

In this section, the specific probiem of increasing the speed of the additions in the filter 

architecture wiil be considered. 

The Dedicated Carry Logic in the Xilinx 4000 series FPGAs ieads to very fast two- 

operand ripple cary adders. The dedicated carry paths usually make sophisticated adder 

configurations such as the Carry Bypass and Camy Look-Ahead adders unnecessary. For 

the 4000XL farnily of chips with a 4C-09" speed grade, the fastest ripple carry adders run 

at 139 MHz for 8 bits, 1 15 MHz for 16 bits, 98 MHz for 24 bits and 86 MHz for 32 bits 

1221. While impressive, these results may not be enough for quadrature demodlator 

designs with high filter orders that require adders that are both fast and wide. 



Because the Dedicated Carry Logic is so fast compared with the rest of the propagation 

characteristics in the Xilinx FPGA, it makes sense to take advantage of it as much as 

possible. Three aitemative adder architectures that are based on the npple carry will be 

considered: the Carry Select Adder, the pipelined npple carry adder, and a proposed 

delayed-carry adder chah  

4.6.1 Camy Select Adder 

The Carry Select Adder configuration is a prime candidate to accelerate the additions in 

the filter. In this adder configuration, the addition is broken among a number of stages 

each dealing with a eaction of the total nurnber of bits to be added. At di stages except 

the least-significant one, two adders are active at any one tirne, each assuming a different 

value for the cary fkom the previous stage ('0' for one adder, ' 1 ' for the other). Once the 

cary  out fiom the previous stage is available, it controls a multiplexer to select the 

appropriate present stage adder output. AU adders at aii stages are ripple carry adders. 

An example for a 32-bit Carry Select Adder segmented in two stages is presented in 

Figure 4- 12. 

The advantage of the Carry Select Adder is that the delay on its critical path is much 

reduced when compared to the ripple carry adder, since the carry doesn't need to 

propagate as far. It aiso doesn't require pipeline registers. However, it requires more 

silicon real-estate for the extra adder and multiplexer at every stage. 

4.6.2 Pipelined Ripple Carry Adder 

If chip area is limitecl, the Carry Select Adder loses h appeal. In such a case, a pipelined 

ripple carry cm offer the same performance [23]. The disadvantage is an increased 

latency and a requirement for extra registers. For quadrature demodulators, increased 

latency is not a concem, and registers are available at low cost in the targeted FPGAs. 

As for any other pipelining strategy, the idea is to break the addition iato different stages 

and to add a level of registers at each stage. The addition in each stage is delayed in time 



by one clock cycle h m  the previous stage. The cany h m  one stage is also delayed, 

and fed to the next stage as it begias processing its data The results of each stage are 

also registered as many times as required to ensure that the adder output bits are 

synchronized. Figure 4- 13 iliustrates the method for a 32 bit adder segmented into two 

1 6-bit adder stages. 
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Figure 4-12 - Curry Select Adder Exampk 

In the fïrst stage of the adder, the least significant halves of the two operands are added 

together. The sum is registered, together with the last carry out. The most signincant 

halves of the two operands are registered as well. In the second stage of the adder, the 

registered most significant halves of the opetands are added together with the carry out 



fiom the previous stage. The most signiscant hdf  sum is then combined with the 

registered lest signincant half sum for the final result. 

Figure 4-13 - PI'pefined RIppIe Cany Ader  Eurnp& 

The advantage of the pipelined ripple carry adder is that the processing rate is now only 

limited by the speed of one of the adder stages (as for a Carry Select approach with two- 

Ievel segmentation). With the previous Xilinx specifications given, and for the example 

illustrated above, this means that a 32-bit adder could run at ahost the 16-bit adder speed 

of 1 15 MHz, with a small reduction due to the extra routing delay between the stages and 

through the registers. The main disadvantage, other than an increased latency, is an 

obvious increase in the storage requirements. For the presmt example, 33 extra registers 

are required to delay the most significant portion of the operands and the delayed carry. 

in general, for an N-bit adder segmented into k stages of equal size, the extra register 

requirement grows as the square of the stage size Nk. A 32-bit adder segmented into 4 

stages of 8 bits would require 147 extra registers. 
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In the case of an FPGA implementation, this means that a geat number of  extra CLBs 

would have to be dedicated to registering data without perfomiing any processing, which 

is far 6om an efficient device utilization. A high packing ratio could probably not be 

attained. The pipelined npple carry adder should therefore not be considered to increase 

design performance of the quadrature demoduiator. 

4.6.3 Delayed-Carry Chain 

Although considered too expensive in overhead, the pipeiined ripple cany adder concept 

opens up an interesting alternative, only duded to in [23]. In the case of  FIR filters 

implemented with one of the transposed f o m ,  the whole pipelined adder chain can be 

segmentecl into a number of adder sub-chahs. A simple example with a 4m order fllter is 

shown in Figure 4- 1 4, with a segmentation into two stages. 

44 

Figure 4-14 - Rpehed DeIqyed-Carry A d e r  Chain Ex~llwpfe (Transposed Fom) 

Each adder in the adder chah is decomposed into a nurnber of stages corraponding to 

portions of the data to be processed. R d t s  h m  each adder in a stage are not 



synchronized but passed immediately dong the chah. Adder stages of more significant 

levels must receive the previous level's cany out before proceeding, and the carry is 

therefore delayed as in the pipelined ripple adder. Synchronization is done only at 

the end of the adder chain, with the consequeme that a very high device utilization 

density can be reached. Except for the end of the adder chain, no CLBs need to be 

reserved for registering ody. 

The input data to the adder ch- must be properly segmented and skewed in time. in 

the example of Figure 4-14, it is seen that the multiplier outputs are divided into most and 

Ieast significant halves. Each half is fed to its corresponding adder chah  but the most 

significant data is nrst delayed by one clock cycle. This is necessary to eisure that the 

carry fiom the least significant chah arrives at the same time as the most significant 

multiplier result to be added in the most significant adder c h a h  

The pipelined delayed-carry adder chab concept described here for the transposed form 

could be easily adapted to the adder tree structure of the direct form shown in Figure 4-8. 

in either case, the adders can be segmented into as many stages as required, down to the 

case where they reduce to half- and full-adders. 

The system overhead has two components: the additional registers in the multiplier block 

required to delay the arriva1 of operands to the adder chain, and the additional registers in 

the adder chah itself. The first overhead component depends on the value of the flter 

coefficients, since the number of registers required will depend on the width of the 

multiplication product If a multiplication product is expressed with a number of bits 

smaller than the adder chah bus width at this stage, then only one bit needs to be carried 

for sign extension. 

For the adder chain, the overhead can be dculated as a fiinction of the number of 

segmentation levels, S, the order of the nIter N, and the number of bits in each level, n,. 

This value is assumed to be constant for every segmentation level, but a generalization 

could be made. First, N - 1 registers are required per segmentation level for the delayed 



carries. Second, the overhead due to the final synchronization is equal to (O + 1 + 2 + ,. . 
+ (S - 1)) x n,. The total adder chah overhead in registers, R, is therefore equai to: 

It is seen that for the adder chah the overhead is proportional to Nand to the square of S. 

The increase in processing rate significantly depends on the ripple carry adder timing 

characteristics of the target chip, An adder characterization study was performed for 

different X4000 families of FPGAs, and the results are presented in Appendix B. 

Disregarding routing delays to the adder, the latency for different ripple carry adders is 

approximately linear with a coefficient k, for adders wider than 4 bits. Appiying the 

delayed-carry concept to an adder chah reduces the widest adder widths ikom no to (n, + 

1). Given that the initial latency was T,, the new latency is therefore approximated to: 

The latency decrease can be expressed as a ratio to the initial adder latency: 

Alternatively, the increase in processing rate is expressed as the ratio of the new 

processing rate to the initiai proce~sng rate: 

1 T, --x- speedup - 
T , 1  



It should be obvious fkom this relation that the increase in processing rate will be greater 

if k is large and if the number of segmentation levels is inaeased such that n, gets very 

mal1 in relation to no. From the results of Appendix B, the value of k gets pmgressively 

smaiier for the faster X4000 FPGA families, and smaller as well for faster speed grades 

within a family. The increase in processing rate for a digital filter in which the delayed 

carry adder chah is implernented would therefore be greatest for the slowest FPGA 

families, and for cases where the initial adder chah width is widest. This last condition 

d l  occur most likely for high filter orciers- 

The delayed-cary adder chah has a few additional advantages other than speed. A high 

device density is maintained because few CLBs are reserved for their flip-flops only. A 

digital filter to which this approach is appiied also benefits fkom facilitated placing and 

routing, for X4000 FPGAs. This is a consequence fiom the fact that using the dedicated 

cary logic requires npple carry adders to be placed as a column for maximum speed. 

Segmenthg large adders into smailer ones makes th& placement easier. Finally, as 

shown in Figure 4- 14, an additional advantage cornes fiom the regular structure that can 

be easily repeated across an FPGA, as discussed in section 4.5.3. 

4.7 Analysis of the Alternative Filter Architectures 

Various alternative filter architectures were descriied, and some of their relative merits 

and disadvantages were identified- A summary of these merits is presented in Table 4-1. 

It is difficult to make an exact comparison between most of the architectures, however, 

because the set of specific coefficients chosen for a filter d l  have a direct impact on 

whether a certain architecture is preferable over another one. For example, if a set of 

coefficients exhibits a lot of redundancy, as described previously, then it wouid make 

sense to use a transposed form with multiplier block. Altematively, in most cases 

coefficient symmetry should be exploited to reduce the number of multipliers in half, and 

to reduce input data fanout in the ttansposed foms. 



Direct 
linearphase No Yes No aN No No 1 

Direct standard No No No EN Yes No 1 
Pipelined Ver. 1 
(Adder Tree) hearphase No Yes No œN Yes No 1 

standard No No No ot N Yes Yes 1 
D irec-t 
Pipelined Ver. 2 No Yes NO E N Yes Yes 1 

s+adard No No No No Yes Yes N+ 
Transposed 

linearphase No Yes No No Yes Yes N/2+ 

Transpos ed standard Yes No Yes No Ys Yes See2 
W/ Multiplication 
Block linearphase Yes Yes Yes No Yes Yes See2 

Transposed standard No No No No Yes Yes N 

w/ Pipeiined input linear phase No Yes No No Yes Yes N/2 

Cascade I not considered 

Table 4-1 - Filter Architecture Alternatives 

Notes: 
1. N is the filter order. 
2. For the Transposed Fonn with Multiplication Block, the input dota fanoui depends on 
the coefficients and on wherherpipelining of the multipliers is used or not. 

1 'Standard' refm h m  to the basic, non-lin= phase architecture, e.g. Figure 4-1. 



The "best" architecture is also technology dependent. In the present case, FPGAs are 

specifically targeted, and the case has & d y  been made with respect to the advantages 

of two-operand, ripple cary adders. This specific argument defïnitely favors the 

transposed foms in general, as it does the direct form with adder tree. Version II of the 

pipelined direct fom is also rich in two operand adders, but it suffers b m  disadvantages 

that have already been highlighted. 

The use of FPGAs should also favor architectures that enhance device utilization density. 

A high density has two immediate advantages: a smaller device may be required for a 

given filter design, and routing paths will be shorter h m  sub-block to sub-block. This 

laîter point implies a reduction in routing capcitance, which will lead to lower power 

dissipation and lower propagation delays. 

Decomposing the design into smaller blocks with a regular structure enhances density, 

because these sub-blocks can be neatly stacked one beside the other. The first 

architecture to favor a regular block structure is the pipelined transposed form, which 

doesn 't exploit coefficient redundancy because the multiplias are part of the sub-blocks. 

Secondly, al1 transposed forms using the pipelined delayed-carry adder chain, with the 

multipliers kept outside of the repeated sub-blocks, aiso favor a reguIar block structure. 

The alternate approach to increase device utilization density is to ensure as many 

resources as possible are used within each and every CLB. For a Xilinx 4000 series 

FPGA, this means that the two-operand adder with registered output is a very efficient 

building block, since it uses the F and G bc t ion  generators, the dedicated carry logic 

circuitry, and the output flip-flops. A very poor CLB utilization cornes from the 

utilization of the register elements only. In that respect, all direct forms are inefficient, 

since the delayed input data chah uses a great number of fiipflops h m  otherwise 

unused CLBs. This problem is exacerbated in high filter orders. 



4.8 Decision 

Based on this analysis, the preferred filter architecture for quadrature demodulation 

implemented in XiIinx FPGAs is based on a transposeci form. Since linear-phase filters 

will be used, the architecture of Figure 4-5 is the best candidate. If the coefficient set 

exhibits enough redundancy, or if a considerable amount of pipelinhg is required in the 

multipliers, then the use of a multipiier block is warranted and the architecture of Figure 

4-7 should be selected. Finally, if the adder chah has a wide bus width, due to either the 

specific set of coefficients or simply to the high order of the filter, and if a high data rate 

is required, then the pipelined delayeci-carry adder chain form shown in Figure 4- 14 is the 

most suitable. It must be noted that the multiplier block, symmetry utïiization and 

pipelined delayed-carry adder chah are ail "orthogond" to each other, which meam that 

they can be used alone or in conjunction with others, as most appropriate depending on 

the specific filter coefficients. 



Chapter 5 

Detailed Design Descriptions 

5.1 Introduction 

In this chapter, a detailed description of four quadrature demodulator designs will be 

given. The designs follow decisions made in previous chapters on implementation 

approach, multiplication realization and architecture selection. Two of the designs were 

implemented and tested in a Xilinx X4010E-3 chip, while the otber two were only 

simulated. Each design reflects a different set of specifications, and together the four 

designs demonstrate the viability of using FPGAs for high perfomxmce quadrature 

demodulation. The four desigas are simüar in the sense that they are ail based on the 

same building blocks. 

5.1 -1 Overview of Designs Considered 

The first three designs d d b e d  here are based on the polyphase 6lter approach 

discussed in section 2.3.3. The input signal bandwidth is limited to fo the prototype filter 

is a quacfer-band filter, and the outputs of the in-phase and quadrature channe1s are 

decimated by four. 



Three variations of this design were considered. For the first one, the sampling hquency 

was set at 213.3 MHz, as descriied in section 2.5, which implies a filter processing rate 

of 53 -3 MHz. The adders in the filter adder chains were implemented as simple ripple- 

carry adders, because the targeted FPGA f d y  was fast enough for this processing rate. 

It was assumed that the output signal h m  the Analog-to-Digital Converter (ADC) was 

de-interleaved outside of the FPGA. Consequently, four input ports and a single clock 

were required. This design was implexnented and tested in a Xilinx 40lOE-3 chip, and 

simulations were nui for other ETGA families and speed grades. 

For the second variation, the goal was to dernonstrate the delayed-carry adder chah 

discussed in section 4.6.3, and to verify the speed increase and overhead costs when 

compared to the basic design. A 4010E-3 chip was again targeted, and it was assumed 

that all signal de-interleaving was done off-chip. 

The third variation of the polyphase-filter design is identical to the second one, with the 

exception that it was assumed that data h m  the ADC would corne in two interleaved 

streams. The de-interleaving into four streams, one for each of the polyphase sub-tilters, 

was done inside the FPGA, as was gray code-to-2's complement conversion. A suitable 

ADC was selected, together with appropriate logic level tramlators to convert the ECL 

y0 logic levels used by the ADC to TTL logic levels used by the FPGA. The de- 

interleaving process requires very fast VOS, and a 4000XL family chip was selected. The 

extra logic also required the selection of a larger chip, the 4013. This design was not 

implemented but was simulated. 

The last design described here is based on the Low-Pass Filter Approach discussed in 

section 2.3.1. This design maximizes input signal bandwidth and consequently only a 

single decimation by two is allowed. It is suitable for any prototype filter design, but 

specifically for the h*band and third-band cases which çorrespond to a maximum 

output decimation factor of 2. This design was not implemented, because optimized filter 

coefficients were not available. As such, it is d e s d e d  only in general terms. 



5.1.2 Filter Coefficients and Frequency Response Characteristics 

For the polyphase flter approach designs, signed digit filter coefficients identical to those 

of a previously reaüzed quadrature demoduiator implemented in Gallium Arsenide gate 

array technology [6][24] were used. The coefficients were obtained using a two stage 

search strategy similar to that described in [25]. 

Although a relatively smaii number of signai digits was used, good performance was 

obtained, in part through the use of an optimiriition aiterion concerning fiequency 

response matching of the 1 and Q filters [26]. This opthkation criterion dramaticaiiy 

irnproves system performance for quadrature demodulation filtering over a standard 

design approach such as the Hamming window method. The phase error r d t i n g  h m  

the fiequency response mismatch between the in-phase and quadrature channeis is 

smaller than the error resulting fkom the effects of quantking the input signal to 8-bit 

resolution. 

The resuiiing prototype fiiter is a quarter-band, linear-phase FIR filter of order 29. Six 

coefficients are n a ,  and eighteen are equai to a single power of two. Four coefficients 

are represented with four signed digits each, and one is represented with only three 

signed digits. The prototype filter impulse response is given here, with a normaiizaîion 

factor of 256: 

The normalization factor was applied so that all coefficients would be integers. This has 

no impact on the system output other than a known gain, which must be accounted for 

when interpreting the resulting data However, it greatly simplified the design since 

integer arithmetic could be used throughout. 

A normalized fiequency and phase respome plot of the prototype filter is given in Figure 

5-1. The pass band matching properîies for the resulting 1 and Q filters are discussed 

M e r  in [6]. 
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Figure 5-1 - Protorypl Filter Frequency and Phase Response 

Table 5-1 lists the mapping of the coefficients to the four polyphase sub-filters, accordhg 

to equations (2-23), (2-24), (2-28) and (2-29). It is  noted that ai i  zero coefficients are 

mapped to sub-filter 4, that sub-filter 4 is an odd-length symmetric filter, and that sub- 

filters fi and QI are non-symmetric even-length flters. It is dso noted that the 

coefficients for the two Q sub-fïiters can be divided by two, which reduces the 

implementation cost M e r .  



Table 5 4  - Protowpe Filter Coegcient Mapping 

5.2 Polyphase Filter Approach: Basic Design 

5.2.1 General Overview 

The first implemented quadrature demodulator design foilows the polyphase filter 

approach discussed in section 2.3.3. The input signai bandwidth is W t e d  to fo the 

prototype filter is a quarter-band filter, and the outputs of the in-phase and quadrature 

channels are decimated by four. The target samphg Cequency is 213.3 MHz, as 

described in section 2.5, which implies a filter processing rate of 53.3 MHz This in tran 

implies a maximum processing delay on the critical paths of 18.75 ns. An additionai goal 

was to implement the design in a Xilinx 4010E-3 chip, which was readily available, and 

to perform hardware testing. 

In order to simplifi, the implementaîion and to ensure that the design would fit in the 

X4010, it was assumed that the data would be supplied to the FPGA in four de- 

interleaved streams. A block diagram of the design is given in Figure 5-2. 



Figure 5-2 - Top Levef Block Diàgram (Basic Desi'') 

The design is effectively broken up into 4 major blocks, corresponding to each of the four 

sub-filters defined in Table 5-1. The output h m  sub-fïiter Il is subtracted h m  the 

output fiom sub-filter Io, and similarly for the Q sub-filters. Each sub-Mter block 

receives its input directly fiom the ADC block which is outside of the FPGA. It is 

assumed that the ADC block performs de-interleaving into the four data streams in 

addition to analog-to-digitai conversion, and that its data is in two's complement 

representation. 

The four sub-filter blocks are very similar in structure, although filter Il is reduced to a 

single multiplication followed by adequate registaing for proper synchronization with 

the other sub-filters. As discussed in Chapter 4, the transposai form with multiplier 

block was selected for the flter architectures. A block diagram applicable to either of the 

sub-filters is given in Figure 5-3. 

For the implementation, there is an important advantage to breakhg the design into four 

well-defined blocks. Each block's design can be optimized independently, and the 

placement in an FPGA is also simplified Since there is no communication between the 

blocks, other than for the output of the 1 and Q sub-filter pairs, this translates to reduced 

communications across the chip, and hence to a design that can nin faster- 



1 Multiplia Bloc k 

A d d a  Cbain Block P 
Figure 5-3 - Sub-Fikr Bfock Diagram 

5.2.2 Multiplier Block Description 

The four multiplier blocks are very similar in structure. in each case, they implement 

only one multiplication requuing more than one addition. The other partial products are 

simple shifted replicas of the input data. Since the additions that implement the 

multiplication are pipelined, the input data must also be pipelined by the same amount so 

that it can be used for the partial producîs corresponding to power-of-two coefficients. In 

order to minimize the overali computation effort, no sign inversion of the input data was 

performed and ail trivial multiplication results are positive. To properly implernent 

negative coefficients, the partial products were added or subtracted, as appropnate, in the 

adder chah blocks. 

Figure 5 4  below shows the structure of the multiplia block Qo sub-filter, which 

implements multiplication by 206 and delays the input data for the power-of-hno 

coefficients. The QI multiplier block is identical, and the two I sub-filter multiplier block 

are very similar, although they implement multiplication by different coefficîents. The 

multiplier r e d t s  corresponding to powa-of-two coefficients are simple shifts of the 

input data, and are taken care of by shifting the connections to the adder chain block by 

the appropriate nimiber of positions. The multiplication result 206r is more dif f idt  to 



calculate and requires three adders-subtracters since the coefficient h(3) has four non- 

zero digits. 

input dam x 

Figure 5-4 - Qo Sub-Filter Mulltipüèr Bhck 

In order to reduce the necessary computations, the product - 1 O3x is calcuiated instead of 

206x. The sign inversion is acceptable, as long as it is taken into account in the design of 

the adder chah. There, the corresponding adder must be chauged into a subtracter. 

There is no timing impact to this change since subtraction and addition operations have 

exactly the same latencies in Xilinx FPGAs. Dividing the coefficient by two also has no 

consequence if the result is iaterpreted correctly. Calculating the negative of the desired 

product allows a reduction in computation since it becornes possible to reduce the 



number of added bits at each multiplication stage. Consider the foLIowing typical 

example to illustrate this point. 

Given an integer p and two four-bit numbers x and y represented in two's complement, 

the addition x + (Y x y) for p = 3 is done as follows: 

which means that only four bits need to be added for the eight bit resuit. Similarly, the 

subtraction x - (2P x y): 

is in fact implemented as follows: 

and again only four bits need to be added, with a fany in position 3, for the eight bit 

result. Such a simplification is not possible, for the operation (2P x x) - y which requires 

that al1 eight bits be added with a carry in position 0: 

Therefore, if applicable, the subtraction operands should be reversed to simpiifi/ 

calculations. The product corresponding to coefficient 206 = 2 x (16 x 7 - 9) is such a 

case. The first partial product is 9x = & + x. The second partial product is 7x = ûx - x, 

but instead -7x = -8x + x is calculated. Finally, calculating -1 O3x = 9x - 16 x 7x requires 

less effort than caldating 103x = 16 x 7x - 9x. It is unimportant whether - lO3x or +1 O3x 



is passed to the adder chah block, as long as the proper opaation, addition or 

subtraction, is performed there. 

5.2.3 Adder Chain Block Description 

The three sub-filters Io, Q0 and Qi have similar adder chains composed of twosperand 

registered adders. The adder operands are the previous adder's output and a multiplier 

block output. However, there are significant differences between the three sub-filters. 

The Q sub-filters' impulse responses are non-synmietnc and have even length, whüe the 

10 sub-filter has an odd-length, symmetric impulse respome. The value and order of the 

filter coefficients also make the three adder chains différent with respect to their bus 

widths at every stage. Figure 5-5 illustrates the adder chah block for the QU ab-filter. 

Multiplia Block 

Figure 5-5 - Qo SubFilter Adder main Block Diagram 

A filter bus width analysis was performed for each sub-filter, as describecl in Appendix 

A. The a i .  of the analysis was to caldate the number o f  bits required in the adders and 

registers of the adder chah to prevent overflow. 

An important simplification was made by placing a restriction on the ailowable input data 

to each of the nIters. If the input data is allowed to take all possible two's cornplanent 

values, then effectively an extra bit is reqwred at every stage of the adder chain, for the 

unlikely case where x = -2n-L. Further, allowing this input value implies a bias in the 

input to the ADC, and it was assumed that the input signal would have equal amplitude 
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swings around a zero value. For the design, it was therefore decided to disallow such an 

input and restrict the input data to the range -(2n-L - 1) to +(2"' - l), or -1 27 to +127 in 

this case. This effectively saves one registered bit for every stage of the adder chain, and 

one bit for every pipeline level of every multiplier block as  well. This was considered an 

acceptable design compromise. 

Following the terminology aven in Appendix A, the restriction on input data implies that 

Sn&) will be equal to Spos(i), here denoted as W. Equation (A-9), giving the number of 

bits required at every stage, can therefore be reduced to: 

with S(i) given by a simplification of equation (A-6): 

The results fiom these equations are given in Table 5-2 for each of the four sub-filters. 

Table 5-2 - Bus Widrh of the Sub-Filter Ad&r CICains 
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5.2.4 l nternal and Extemal Timing Considerations 

The target processing rate for the design was 53.33 MHz in =ch of the sub-filters and for 

the system outputs. The maximum delay on any path was therefore set at 1 8.75 as. The 

two widest adders in the design are the final adder chah adder for the Io sub-nlter and the 

h a 1  adder for the Q channel, and both are 17-bits wide. As per the adder 

characterization results reported in Appendix B, a 17-bit npple carry adder implemented 

in the X4000E-3 family of chips requires 15.26 ns to produce a redt, including the 

propagation delay of the registers supplying the operands. This therefore lefi 3.49 ns for 

the routing of the operands h m  the previous registers to the 17-bit adders. 

The Xilinx automatic Placement and Routing tool was unable to meet the 18.75 ns 

constcaint. It was therefore necessary to manually consirain the placement of critical 

components in the sub-filter adder chains and multiplier blocks. For the ha1  placement, 

a maximum routing delay of 1.74 ns to the widest adders was attained, with a 

corresponding minimum clock period of 17 ns and maximum clock rate of 58.8 MHz. 

For the targeted device, the Input-Output Block (IOB) flipflops have a setup tirne of 7.0 

ns and a hold time of 0.0 ns, due to the addition of a delay in the ap-flop's clock line. 

For the target clock rate, this leaves a full 11.75 ns to account for propagation delays 

fkom the ADC block and for any clock skews between that block and the FPGA. 

5.2.5 Irnplementation in Other FPGA Families and Speed Grades 

A timing analysis for the Unplementation of the design in a X4O 10XL device with the -09 

speed grade indicates that an interna1 clock fiequency of 102 M H i  would be achievable. 

This irnplies that the design could achieve a 408 MHz sampling rate and a 102 MHz 

intermediate fiequency, a result similar to the  orm man ce of a previous quadrature 

demodulator design reported in [24] and implemented in a Ga& gate array. The VOS, 

however, are significantiy slower and specid consideration would have to be given to 

them. 



The input fiip-flop setup and hold times for the XX4010XL device can be selected fiom 

three sets of values, depending on the amount of delay that is added to their dock lines. 

The possible choices are 0.8ns/2.0ns, 7.3ns/O.Ons and 5.8ns/0.0ns. The two latter choices 

may preclude operation at 102 MHz depending on the ADC block's performance and 

system clock skews. The first choice has a very s m d  setup time but has a positive hold 

tirne, which rnay create timing diffidties. 

Alternatively, implementation in a slightly larger device, the X4013XL, may solve 

system timing problems. This daice supports signincantly faster WO rates, as do the 

X4036XL and X4062XL. For the X4013XL, a setup and hold tirne combination of 

4.8nd0.011~ can be selected. This  could be an economical implementation alternative, 

since the X4013's array of 24 x 24 CLBs is the closest to the X40 10's 20 x 20 array. 

5.2.6 Final Comments on the Design 

The mapping of the design requires 333 CLBs, including 589 CLB flip-flops. This 

represents 83.3% of the device's CLBs, and 73.6 % of its CLB flipflops. The X4O 1 O 

chip size is therefore a perfect match for this design. 

The available X4O LOE-3 chip was packaged in an 84 pin grid array, for which the number 

of I/O pins is timited to 61. Given that 32 pins are required for the inputs, and that a 

clock and reset input signals are also necessary, this lefl only 27 pins for the outputs. 

Both the in-phase and quadrature channel outputs are 18 bits wide, so they were truncated 

to 12 bits for a total number of used pins of 58. The selection of 12 bits was made to 

simpIiW debugging, as the output signals fit neatiy in a 3-digit hexadecimai 

representation. The extra 6 bits for both channels are calculated and are available inside 

the chip, and could be routed outside if a larger device package were selected. 



5.3 Polyphase Filter Approach Design with Delayed- 
Carry Adder Chain 

5.3.1 General Ovewiew 

The goals of this design were to increase the maximum data rate by implernenting the 

pipelined delayed-carry adder chain descri'bed in section 4.6.3, and to dernonstrate the 

viability of this approach. A 2-level segmentation was selected, which reduced the width 

of the widest adders in the system h m  17 to 11 bits, including overhead. Although it 

would have been possible to segment the adders in three or four levels, it was considered 

uneconornical to do so. Further, a secondary goal of this design was to implement it in 

the available X4O 10E-3 chip and perform hardware tests. The overhead associated with 

an increase in the number of segmentation levels wodd have made it impossiile to fit the 

design in this chip. 

5.3.2 Design Structure 

This design is identical in large-grain structure to the basic polyphase filter approach 

design. The adder chains were modified to accommodate the delayed carries, as per the 

example of Figure 4-14, and two m ~ c a t i o n s  were made to the multiplier blocks. The 

£ k t  modification required that the most significant portion of the products be delayed by 

one clock cycle for proper synchronization in the chain. The second modification 

entailed ensuring that no additions in the multiplier blocks were wider than 1 1 bits, since 

wider additions would defeat the purpose of reducing the width of additions in the adder 

chah This forced the "tree" structure for the multiplications by 103, 141 and 232, shown 

in Figure 54,  to be replaced with a sequence of pipelined 9-bit adders. 

5.3.3 Implementation Considerations and Cornparison with Basic Design 

Manual placement of the design blocks was again necessary to reduce propagation delays 

on al1 critical paths as much as possible. For an 1 l-bit adder in the X4000E family, the 

propagation delay is 12.92 ns, including the propagation delay through the operand 



registers, but excluding the net delays between the operand registers and the adder. This 

net delay was kept d o m  to 1.83 ns in the worst case, for a minimum resulting dock 

period of 14.7511s and an equîvalent data rate of 67.8 MHz. This represents an 

improvernent in performance of more than 15% when compared to the basic design 

described previously. The 6.ua.i CLB wunt was 392, or 98% of the device. The CLB 

flip-flop wunt was 742, or 92.8% of the available nipflops. Table 5-3 below compares 

the delayed-carry design with the basic one in terms of used fiipflops, CLBS, and 

performance. 

1 critical component delay l 12.92 IM 1 -15.3% 1 

1 maximum data rate I 58.8 MHz 1 67.8 MHz 1 +15.3% 1 
CLB count 

Ta& 5-3 - Cornpu&on of the Basic und Dehyed-Cany Dernogns 

The modest increase in CLBs cornpared to the fiip-ff op increase can be explained. In the 

basic design, unrelated logic is almost never packed in a given CLB. The effect is that 

the design density is decreased but the CLB count is increased. Reducing the design 

density significantly facilitates routing, although it somewhat complicates placement In 

comparison, the delayed-cairy design has a much higher density because it was literally 

impossible not to pack unrelated logic together in some CLBs. Alrnost every CLB in the 

device is use& and "airing outtt the placement was not an option. Therefore, a better 

metric of comparison between the basic and delayeci-carry designs is the number of fip- 

flops used. 

333f400 
C I 

74Y8ûû flip-flop count 

392/400 

+26.00/0 589/800 

+17.2% 



As discussed in Chapter 4, the overhead for the delayed-carry chah wodd be 

signifimntly less for a design with wider adders, and the performance improvement 

would be much pater .  

5.4 Polyphase Filter Approach Design with Data 
Conversion 

5.4.1 General Overview 

A third desip was produced and simulated, but not implemented. It is based on the 

polyphase approach with delayed-carry. For this design, an additional requirement was 

that no hardware outside of the FPGA was to be used to @orm data de-interleaving or 

representation format conversion. A "front-end" was therefore dded to the previous 

delayed-carry design and a larger FPGA was selected to support this increased amount of 

logic. 

A number of ADCs were considered for this design. Their first requirement was a 

minimum sampling rate of 213.3 MS/s. ADCs meeting this requirement normally have 

ECL outputs, but the FPGA families considered for the implernentation require TTL or 

CMOS inputs. Level translation h m  ECL to TIZ was therefore required, and this 

limited the maximum data rate between the ADC and the FPGA. It was therefore 

decided to choose an ADC with two interleaved data outputs. The fundamental 

difference for this design, when compared to the two previous ones, is that the input data 

is interleaved in two streams, each coming in at a rate of 106.67 MHz fiom the ADC. 

The selected ADC for this design outputs data encoded with au 8-bit Gray code. Since 

dl filtering operations are done on two's cornplanent data, it was necessary to effect 

conversion inside the FPGA. In order to keep ali pmcessing in the device at the lowest 

possible level, the two input data streams are split into four at half the data rate prior to 

conversion. 



The device requires only one clock at a quarter of the sampling data rate, 53.3 MHz in 

this case. Al1 processing is rnaintained at this rate as per the previous designs. A block 

diagram of the design is given in Figure 5-6. 
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Figure 5-6 - Top LeveI Bock Diagram (Full Design wi2h Da& Cornversion) 

5.4.2 Analog-to-Digital Converter (ADC) Block 

The ADC block comprises an Analog-to-Digital Converter and ECL-to-Tn logic level 

translators for interface to the FPGA- 

For this system, a samphg fkequency of 213.3 MHz was necessary, with the even and 

odd samples bebg output on two different ports at a rate of 106.7 MHz each. The ADC 

selected is the SPT7750 fiom Signai Processing Technologies. It is an 8-bit, 500 

megasarnples pcr second FLASH ADC. Each ECL-compatible output port has an 

associated data-ready strobe signal which can be used to control a system clock. 

To interface with the FPGA, it is necessary to perform logic level translation. The 

selected ECL/TTL level translater is the National Semiconductor 100325. Each 100325 

can translate 6 signals, so three chips would be required for the 16 bits of ADC output 

data. One of the two remaining channels can be used to translate the FPGA dock, if 

necessary. 



5.4.3 Data De-lnterleaving Ptocess and Timing Requirements 

The two de-interleaving blocks each accept a 106.7 MHz data stream h m  the ADC 

block and split it into two streams at 53.3 MHz. Only one 53.3 MHz clock is necessary, 

and it is the same clock as the rest of the system. A block diagram of the in-phase 

channel de-interleaving block is given in Figure 5-7. The quadrature charme1 de- 

interleaving block is identical. 

-) (at data rate 2 x CLK) 
E 

CLK 

x(4n - 2) 
i b 

- 
CLK CLK 

Figure 5-7 - De-lnterlemhg Bloc& In-Phase Channel 

Three registers are used. In the lower path, the first register's clock is inverted. It 

therefore latches on data that leads the upper path data by one-half clock period. The 

second flip-flop synchronizes this data with the upper path's. 

For the selected ADC, a difnculty arises in that the data on the two output ports is not 

synchronized, but delayed by one clock period of the sampling data rate. Since the 

quadrature demodulator output is clocked at a quarter of the sampling data rate, this 

would irnply a quarter period lag between the 1 and Q filter outputs, and the requirement 

for two distinct system clocks. The outputs wouid also have to be re-synchronized. 

Instead, both data streams are de-interleaved fiom a single clock which is synchronized 

with the ADCs 'A' data stream. This places an additional timing constraint on the 



sarnpling of the 'B' data stream, but it can be met by the selected FPGA. The foilowhg 

timing diagram, shown in Figure 5-8, iliustrates the situation. 
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Figure 5-8 - Data De-interfeaving Thing Diagram 

The propagation delays t ~ *  and ~ D B  are specified independently between 1.25 and 2.25 ns 

in the ADC's data sheet. With the sampling interval equal to 4.69 ns, this means that the 

minimum setup and hold times for the de-intedeaving registers are 7.13 and 1.25 ns for 

data 'A'. For data 'BI, the figures are 2.44 and 5.94 ns. These setup and hold times c m  be 

met by many of the X4000XL family of chips, including the X4O 13XL-3. For the in- 

phase channel, adding a delay in the input flip-flop clock line would ensure setup and 

hold times qua1 to 7.4 and 0.0 os, adequate for data 'A'. For the quadrature channel, 

switching the same delay elexnent off would lead to setup and hold times equal to 1.2 and 

3.2 ns, adequate for data 'B'. Other combinations are possible, and the figures vary with 

chip family, size, and speed grade. The clock iine delay elements are interna1 to the 

FPGA and are switched on or off during configuration. 



It has been assumed here that the system clock is supplied by a device external to the 

FPGA. The timing diagram of Figure 5-8 also assumes that the clock signals are passed 

through the same ECL-to-TTL converters as the data, or through delay elements that 

produce identical delays. It is Wher assumed that aIl other sources of skew outside of 

the FPGA have been compensateci for. 

The timing proposed here is only one of many possibilities, although synchronization of 

signals at such high data rates is not simple. However, the goal here was to dernonstrate 

that FPGAs can accommodate these hi& data rates if all system considerations are 

properly accounted for. 

5.4.4 Data Conversion Process 

The conversion nom the ADCs output format to the one used for processing in the 

quadrature demoddator mers requires three conceptual steps. 

First, conversion of gray code to unsigneci binary is straightforward. Given that a numba 

is gray coded with n bits GR, the two's complement representation digits BR are given by: 

Secondly, the resulting unsigned binary number, mging here fkom O to 255, must be 

converted to two's complement, nom -128 to +127. This is done by adding a bias of 

-128, or simply by iaverting the Most Significant Bit. Finaily, as discussed previously it 

is necessary to change any occurrences of -128 to -127. 

AI1 the conversion procas is easily coded in VHDL with a few statements. It is 

interesting to note that the realization of the converter on the FPGA is fairly slow, in the 

order of an 8-bit adder, because it requires communication between multiple CLBs. NO 

pipelinhg was required, however, because this conversion is not in the critical path This 

shows again how fast the dedicated carry logic makes npple carry addition in X4000 

series FPGAs. 



5.4.5 Final Comments on the Design 

The overall design requires 467 CLBs and 796 flip-flops. A 4013 chip, which has 576 

CLBs, was therefore selected. In orda to meet the I/O timing requirements descnbed 

here, it was necessary to target the X4ûûûXL family since the X4000E family was too 

slow. However, the -3 speed grade, the slowest for the XL chips, is still fast enough, 

especially the X4013XL which benefits h m  special y0 optknbtion. 

The achieved data rate for this design was 77.2 MHz in a X4013XL-3 chip. The smallest 

package for this chip has 144 pins, and 53 of the 113 IOB are used. Aithough 

implementation in a faster chip grade would increase this data rate, the extemal timing 

considerations would have to be completely reviewed to ensure that the de-interieaving 

process would fbction correctiy. Alternativefy, the same fkont-end processing could be 

kept but the filters changed to those desmied in the basic design. 

5.5 Low-Pass Filter Approach Design 

5.5.1 General Ovewiew 

A fourth design is desmied here in general terms. It was not implemented because 

appropriate tilter coefficients were not available. The design is suitable for any case 

where the decimation factor is 2, so it wuld accommodate haband or third-band 

prototype filters. 

The proposed design is made up of the following major blocks: the Analog-to-Digital 

Converter block, two data conversion blocks, two modulator blocks, the In-Phase Filter 

Block, and the Quadrature Filter Block. A block diagram is shown in Figure 5-9. The 

Low-Pass Filter approach described in section 2.3.1 was selected for the system. 

Therefore, two fiiters work in paralle1 on different data. The even samples of the input 

signal are processed by the in-phase portion of the system, and the odd samples are 

processed by the other. in each path, a data converter transfomis the data fiom the ADC 



output format to two's complement repteseatation. A moddator then multiplies the input 

data with the sequence (1, - 1, 1, -1, . . . }, effectively inverting the sign of every other 

sample. The resulting data is passed to the in-phase and quadrature low-pass filters. 

The data converters, moduiators and filter blocks can be implemented together on a 

single FPGA. 

Figure 5-9 - TopLeuel System Block Diagram (ZowPms Flllcr Apprmch) 

5.5.2 Analog-to-Digital Converter (ADC) Block 

The ADC block is identical to the one describeci in section 5.4.2. 

5.5.3 Data Conversion Bfock 

The Data Conversion Block is identical to the one described in section 5.4.4. 



5.5.4 Modulator Blocks 

The two modulator blocks are identical, dthough they work on different data with 

different clock signais. They are fed h m  the Data Conversion blocks' outputs. The 

even samples are passed to the in-phase channel modulator and the odd samples are 

passed to the quadrature channe1 modulator. Their output is made up of two signals 

which have the same value except for a sign inversion, "data plus" and "data minus". The 

two signals are required by the multiplier block. A block diagram of a moddator block is 

shown in Figure 5- 1 0. 

Figure 5-10 - Moduulror Block 

The second clock signal, with a fiequency of fJ4, is used to control two multiplexers. 

Their outputs therefore alternate between positive and negative versions of the input data. 

5.5.5 In-Phase and Quadrature Filter Blocks 

The in-phase and quadrature filter blocks have an identical large-grain structure, and 

differ only due to the different sets of coefficients for the two filters. They are 

decomposed into two smalla blocks, a multiplier block and an adder chain block, 



following the transposed form discussed in section 4.4. The structure is shown in Figure 

5- 1 1, with the modulator block output. 

The multiplier block takes for input the positive and negative version of a number in 

two's complement representation, using 8 bits. It outputs one product of this number with 

each of the filter coefficients h(n). The forresponding products are labeled Mn. They are 

passed to the adder chain. 
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Supplying the positive and negative versions of the input data simplifies the design of the 

multiplier blocks since only additions need to be performed. 

The adder chah blocks take for inputs the results of the multiplication of the filter block 

input data with the different filter coefficients, produced by the multiplier blocks. They 

produce the fdter output, which is also a systern output The delayed-carry adder chah 

discussed in section 4.6.3 can be implemented in the adder chain blocks to maximize 

operating speed, 



5.5.6 Final Comments 

It should be obvious that this design is very similar to either of the polyphase filter 

designs. The most significant difference is the addition of the modulator blocks. A final 

subtraction between sub-filters is also unnecessary. 

Given the availability of very large FPGAs holding more than 3000 CLBs, very high 

filter orders could be supported. Additionaiiy, using the delayed-caw chah approach 

would make it possible to maintain the processing rate at the level attained for the simpler 

designs. 

5.6 VHDL Description Considerations 

VHDL was chosen to describe the quadrature dernodulator designs instead of schematic 

entry. There are many reasolis to use a Hardware Description Language (HDL) for 

design entry. Very complex design descriptions manageable by ailowing the designers to 

describe objects at higher levels of abstraction. Compared with schematic entry, they 

aiso make it much simpler to modify many parts of a design simultaneously according to 

a given design parameter, such as a bus width. The consequeme of using HDLs, 

however, is that the designer generally loses some control over the resuiting hardware as  

implemented fiom the output of synthesis tools. The quadrature demodulator designs 

described here had -gent timing and performance requirements. It was therefore 

necessary to use a coding style that would allow as much control as possible to be kept 

over the resulting design description, 

Consequently, it was decided early on in the design process to use a structural VHDL 

description. This complicates the design process in that the description is closer to one 

fiom a schematic entry. However, the design is much simpller to mod-, and the 

advantage over higher-level descriptions (such as behavioral) is that the designer retains 



much more control over the implemented product. This was deemed more important in 

this case since high performance was desired. 

5.6.1 Building Blocks 

Signals are the most basic building block. They involve no processing, but defining them 

generally ensures that a particuiar Lue or connedion will be implemented in the FPGA. 

There are important exceptions. When two signals carry the same information, one is 

nomally optimized away. Similarly, a signal which has no load, inside or outside of the 

FPGA, is also optimized away by the synthesis or mapping tools. There are cases where 

such an optimization is not desired An exampie would be the routing of a signal to two 

different blocks physically separated across a large distance in the FPGA. If only one 

signai driver is used, then the propagation delays can be unacceptably high. in such a 

case, registering the signal with two distinct register components generaily ensures that 

two cirivers will be available, even d e r  optimization. 

The next basic building block is the n-bit register. Its description must be made with a 

behavioral description that specifies whether the device latches data on a clock level or 

transition, and whether this transition is active high or low. Clock enables can be added 

in the behavioral description, as can specific set or reset values. The following code 

excerpt is for an n-bit register with asynchronous active-low reset which latches the input 

on the dock's rising edge. 

process (CLIC, reset) 
begin 

i f  reset  = ' O *  then --asynchronouç RESET active LOW 

Q c= (others =w ' 0 ' ) ;  

elsif (CLK'event and CLK='lB) then --CLK rising edge 
Q <= D; 

end if; 

end process; 

The behavioral description of a register element can require a few dozen lines of code. 

Since a typical register is o h  reused through a design, it is much more efficient to 

encode the description only once in a parameterized entity, then to instantiate this entity 



as necessary later. For the quadrature demodulator designs, four distinct register 

elements were defined, each with its idiosyncrasies such as a different reset value. 

An even more cornplex building block is the registered adder, which buüds on the 

register building block. Again, many such adder descriptions were required in the 

designs so that various cases could be accommodated. These cases included a standard 

adder, a standard subtracter, an adder and a subtracter with input carry, and a specialized 

subtracter for the delayed-carry adder chain. The foIiowing code excerpt is for a standard 

registered adder with active-iow asynchronous reset The sum is stored on the clock's 

rising edge. Of note is the special consideration given to sign extension for two's 

complement addition. 

process (Cm, r e se t )  

variable tempA : STD,LOGIC,VECIIOR (Sumwidth - I downto O ) ;  
variable temps : STD-ï,ûGIC-VECMR (Sumwidth - 1 downto O )  ; 

beg in 

tempA := (others => A(Avleft) 1 ;  -- sign extension 
tempB := (others => B(Bvleft)); -- sign extension 

if reset = ' O '  then --azqmcluLonous RESET active LOW 

Sum <= (others => ' 0 '  1 ; 
elsif (CLK'event and CLK='1') then --CLK rising edge 

Sum <= tempA + tempB; 

end if; 

end process; 

The larger design building blocks, including the sub-filters, filters and data converters, 

were then put together for the diffaent designs. This approach had the cunsequence that 

using a block that had been previously tested greatly reduced the design time. 

5.6.2 Optimizing the Hardware Realization from the VHDL Description 

It was found that weU opîimized logic could be obtsined b m  a MIDL description once 

the behavior of the synthesis twl  was undemtood. Two specific examples wiil be 



considered here. The first example concems the realization of a simple twboperand 

adder with input caxry. The second example deals with the specification of extra registers 

to reduce logic placement çonstraints. 

A rnost simple building block is the registered added with input carry, which one may 

code in VHDL as Sum = A + B + Cin However, the synthesis tool that was used, 

FPGA Express, incorrectly synthesizes this statement with two distinct two-operand 

adders instead of a single two-operand adder with input carry. In order to obtain the 

properiy optimized logic, the operation had to be specified by the addition of only two 

operands. The input carry was therefore appended to the right of the LSB of each input 

vecton A and B by using a temporary signal. The d t i n g  extra bit in the sum was then 

discarded. A similar artifice is required to properly obtain an adder with output carry or 

with overflow indication. 

The second example concens the pipelining of data paths. For ali designs descnbed in 

this chapter, two extra stages of pipelining had to be specifically declared at the input 

data ports. This strategy ensured that the synthesis tool used the IOB flip-flops for the 

first pipelining stage. Since the physical distance on the FPGA between a given input pin 

and the location where the data is first processed may be significant, the second level of 

pipelining is implemented in any CLB that is prefaably closer to the data processing 

location than to the input pin. The interconuect between the pipeline IOB md CLB may 

be large and may in fact cross the whole FPGA fiom one side to the other, but since no 

processing is done the propagation delay is much lowa than the delay on the critical 

paths. Not adding these two pipeline levels generally constrained the placement of the 

input pins so much that timing requirements could not be met. A similar strategy was 

followed for the output pins. 

5.6.3 Automated Structural VHDL Code Generation 

The quadrature demodulator desigris descllied in this chapter are directly dependent on a 

few design parameters. These parameters include the input data format and bus width, 



the filter length, the selected filter architecture, and the value of the filter coefficients. 

For example, the description of the filter adder chai. cm be fully automated. First, 

following the equations given in Appendix A, an adder chah bus width analysis is 

perfomed for the given set of filter coefficients. The resulting adder and register widths 

then completely s p e m  the bounds of each signal in the adder chain, and signal 

declaration statements can then be automatically generated. Similarly, interconnection 

statements c m  be automaticaiiy generated based on the nIter order. 

Such an automated process was învestigated and developed at a rudimen- lwel for the 

quadrature demodulator designs. Many programming languages could have been used, 

but Microsoft Excel was selected due to its highly visual interface, ease of use and 

powerful text processing capabilities. A worksheet was developed and successfidiy used 

for the filter bus width analysis, and fkom this analysis' results signal declaratiom were 

generated. The main advantage was that modification of one of the fundamental filter 

parameters allowed the design description to be autornatically modified. Further, it was 

possible to generate basic VHDL descriptions for ail sub-nlters from the same worksheet 

by simply m o d i m g  the filter coefficients. 

Using this automated process, a designer could easily produce many digital mter designs 

based on greatly varying sets of coefficients in very little tirne. If timing requirements are 

not critical, then little extra design work is involved. However, if optimized designs are 

desired, manual editing was essential when going h m  one design to another. As a case 

in point, the very fine grain multiplier implernentation optimizations descri'bed in section 

5.2 -2 were not automaticaily generated. 

In order to obtain such fine grain opthkition nom a few simple design parameters, two 

routes present themselves. One would be a dramatic irnprovement of the synthesis tools, 

especially the provision for automatic inclusion of pipeline stages in a design. This 

approach would be advantageous because it oould be applied to a wider range of designs. 

The other route is the one proposed here, where a tool would be optimued to generate 



structural VHDL descriptions for a specific design or class of designs. However, the 

basic approach that was taken here would require significantly more sophistication to 

produce the level of optimization attained through human intervention. 

5.7 Summary 

In this chapter, four quadrature demodulator designs were descriW. The first three 

d a i p  are appropriate for the decimation-by-four casecaSe Each one meets a mixent set 

of performance or interfacing requirements. The fourth design proposeci would be 

appropriate for the decimation-by-two case, whether a ha or third-bmd prototype filter 

is used. Specific high-speed interfacing considerations were descn'bed. Together, the 

four design descriptions demonstrate the viability of FPGAs for high-performance 

quadrature demodulation. Findy, specific remarks concerning the VHDL description of 

the designs were made. 

The code for the three implemented designs will be included in a technicd report to be 

submitted at a later date. 



Design Verif ication and Testing 

6.1 Introduction 

In this chapter, the verification and testing of the quadrature demodulator designs are 

described. The verification and testing sîrategy is first outlined, then the test vectors used 

to stimulate the design are defïned. The approach taken for the îùnctionai verification of 

the VHDL code is then explained, folIowed by a description of the applicability of the 

design reaiization process to design verification. Timing anaiysis is then discwed, and a 

proposed hardware testing setup is outlined. 

6.2 Strategy 

Design verification first entailed confirming the currectness of the VHDL description 

through functional simulation testing. Since this description was modular, each building 

block was tested independently. Major blocks made h m  building blocks were produceci 

and then tested, then the correct operation of the overall design was confirmed. A second 

major step of design verification wncerned the successfiil synthesis of the VHDL d e ,  

then the mapping, placing and routing of the synthesized logic in a selected FPGA 

device. Finally, a timing analysis of the placed and routed design confiirmed whether 



timing requirements were met. Any problem in one of these three steps generally 

required a design modification and the beginning of a new verification bop. 

Design testing consisted of confimiing that the implemented design in a FPGA met 

hctional and timing requirements. The designs were downloaded to a FPGA, test 

stimuli were applied, and output vectors were cornpared to expected r d & .  

Testing of the filter characteristics per se was not done in the present research, since the 

goal of the produced designs was to implement Quadrature demodulators based on a 

prototype filter with given filter coefficients. The ultimate goal of the design verification 

and testing process was therefore to c0nfin.n that correct computations were pdomied 

given a set of input vectors. This made this process robust and reliable, and, due to the 

nature of the processing, the selection of test vectors was simplifieci. 

Testùig of the FPGA device for the full range of operating conditions was not considered, 

since these characteristics are available fiom the device manufacturer. 

6.3 Test Vector Selection 

For both functional and device testing, the selection of an appropriate set of test vectors 

was crucial. 

6.3.1 Fundamental Tests 

The fïrst step of verification consisted of ensuring that test vectors were received by the 

system, and that system outputs could be monitored. In these basic tests, the proper 

operation of the reset signals was also contirmed. A few randomly seledeci test vectors 

were aiso chosen for an initial performance assessment. 



6.3.2 Impulse Response Test 

This vector consists of a single pulse of unit time duration. This is a standard test used to 

verim digital nIten. M e r  a system met, or after a "long" stream of zeros was input to 

the digital filter, the input is set to the value 'one' for one clock cycle, then set to 'zero' 

aftemards. The expected output is made up of the filter coefficients in sequence, one for 

every clock cycle. The number of clock cycles between the non-zero input and the füst 

output corresponds to the number of pipelineci stages in the filter. 

This test vector is both simple and effective, and it gives a quick indication of the 

correctness of the filter description- However, the fault coverage of this test is limited, 

and its use is therefore restricted to the early design stages. 

A simple variation on this test wnsists of extending the length of the pulse. The expected 

output is then a sequence of sums of filter coefficients, and the nmber of coefficients in 

each sum depends on the length of the pulse. This test variation was not used to test 

individual filters since its effectiveness is limited. However, it could be useful to verie 

the operation of selecîed adders in a trmposed fom filter's adder chah  

W e  this test is primarily aimed at single filters, it can ais0 by used to test the whole 

quadrature demodulator design. However, it is then necessary to extend the length of the 

pulse, or to apply pulses of unit duration at p r e d  times so that only one sub-nlter is 

stimulated. 

6.3.3 Extreme Outputs Test 

The goal of this test is to ver@ that the system is able to accommodate the greatest 

positive and negative intemediate and final r d t s .  The input vector sequence consists 

of a vector whose length is the same as that of the set of fifter coefficients and whose 

elements consist of either the extreme positive or negative values of the input data. The 

input vector is selected so that the signs of its elements correspond to the signs of the 

corresponding filter coefficients. 



This test confïrms whether the analysïs descriid in Appenàix A was done comectly and 

whether the r d t s  were correctly implemented by replicating the analysis process during 

the test. 

6.3.4 Pseudo-Randorn Sequence Test 

This test is more involved but its coverage is also greater. A pseudo-random sequence is 

applied to the input of the systern under test, and the actuai output sequence is compared 

with the expected output sequence. An exact match of these two sequences indicates a 

successful test. This kind of test is well suited for integrating test fünctïonality into the 

system. 

This test is well adapted to the present system, since its fùnction is to process a sequence 

of input numbers. A suitably long input data sequence of pseudo-random numbers c m  

give a high level of confidence that the appropriate arithmetic operations are pdormed. 

It must be noted, again, that the goal here is not to test the implemented filter 

performance, but rather to test that a particular filter has been correctly implemented in 

hardware. 

Three methods were used to generate pseudo-random seqwnces and to calculate the 

expected systern outputs with them as stimuli. Microsofi Excel worksheets were first 

used for basic tests with relatively short sequences, as were MATLAB script files. The 

random numbers were generated h m  Excel's or MATLAB's intemal pseudo-random 

sequence generators. Seçondly, a MATLAB script was again used, but with a 

custornized random sequence generator scratch-built fiom a Linear Feedback Shift 

Register (LFSR) simulator. Thirdly, for hardware tests, a LFSR generator design was 

coded in VHDL, then synthesized, mapped, placed, routed and downloaded to an FPGA 

that was used to stimulate the Device Under Test @UT). 



6.3.5 De-lnterieaving and Data Conversion Tests 

The tests descrïbed in the previous sections were aimed at verifjing the digital filter 

operatiom. It was equally important to test the design's &ont end. 

For the de-interleaving process, timing diagnims were carefùlly plotted based on the 

ADC's specifications. Test vectors were then constnicted to reproduce the ADC's 

behavior, and applied to the DUT. The four r d t i n g  data streams were then compareci 

to the expected output, and so was the overaii system output, 

For the data conversion process, it was possible to devise a complete test since o d y  256 

cases had to be covered. 

6.4 Functional Verification of VHDL Code 

Coding of the three polyphase filter based designs of Chapter 5 was divideci according to 

the designs' major blocks. In al1 cases, the code for the four sub-filter blocks was tested 

independently. The in-phase and quadrature channel sub-filter pairs were then tested 

together. The data de-interleaving and conversion blocks were also tested independently. 

Finally, the whole design was combined and tested as one unit. 

Code testing was an integral part of the design process. This way, mors were quickly 

found, identified and correcteci. The modularity of the design enhanced testability at 

every step. The test vectors described in section 6.3 were used in each case. For the 

pseudo-random sequeme test, a test lengh of 20 000 vectors was use& 

6.5 Synthesis, Mapping, Placing and Routing 
Verif ication 

Mer successfbi fiinctional testing of the VHDL code, the next steps in the design process 

led to implementation in a FPGA device. Other than hardware testing, no M e r  testing 



was done via the application of input stimuli and the cornparison of output data with 

calculated values. However, an important part of the vdca t ion  process was to ensure 

that the design could be implemented in the target device. 

The first step consisted of the synthesis of the VHDL code into a netlist descriiing, 

among other things, the interconnections between building blocks such as pins, buffers, 

gates and adders. In some cases, errors were found in the design description because 

certain VHDL constructs could not be synthesized. For example, synthesis twls will not 

allow a signal to have muitip1e drivers. Other errors involved different VHDL standards 

used by the design description environment and the synthesis tool. Xiiinx' FPGA 

Express synthesis tool was used. 

Mapping of the synthesized netlist was the foilowing step. This consisted of transtating 

the netlist into fûnctions implemented by Confïgurable Logic Blocks (CLBs) of the 

specified family of devices. The tool used was XilllYr' MAP. A possible design error 

reported at this step was the selection of a device t w  small to accommodate the design's 

logic. in such a case, the description of the design was modifiai to reduce the amount of 

Iogic required, or a larger device was selected. 

Placing of the mapped CLBs on a target device and routing of interconnections between 

thern was the next step, and this was done by a combination of manual intervention and 

the action of Xilinx' automated Place-and-Route tool PAR. The main error at this step 

was the impossibility to meet a timing requirement. Many problems could lead to this 

error. The rnost fiindamental one was the existence of logic hc t ion  whose delay was 

greater than the minimum dock perioà specified. In this case, it was necessary to break 

the logic into pipelined blocks. which required a modification of the VHDL code. 

The most common problem, however, was the impossibility to route interconnections 

given a certain block placement. There were three main approaches to alleviate this 

problem. The first one was to insert an additional level of pipeMg. This gave greater 

flexibility in bringing a signal h m  one location to another. Reproducing a signal so that 



it was generated îkom two distinct CLBs was another possibility, for cases where a signal 

had a very large fanout. Alternatively, manual placement of CLBs such that signals had 

as short a path as possible to travel generaiiy solved the problem. 

The visual inspection of placed CLBs was another method to verify the correct 

description of the design. The Fioorpianner tool îkom Xilinx dows this to be done, in 

addition to allowing location constraints to be manualiy specifïed. By tracing a givm 

signal across the FPGA, it was possible to veri@ that intended building blocks had 

comectly been synthesized nom the VHDL description. This method aIso dowed a 

detailed study of the synthesis tool behavior to be done. in general, the mors found this 

way would have affecteci the performance of a design, not its functional correctness. 

The example of the two-operand adder with carry-in was given in 5.6.2. 

6.6 Timing Analysis and Identification of Critical Paths 

The EDA tools used for the quadrature demodulator designs d o w  the specification of 

timing requirements as part of the synthesis options, or ttirough a user constraint file pnor 

to mapping. The specifications take the form of maximum propagation delays between 

groups of selected logic, such as between any two flip-flops in a data path, or h m  the 

clock pin to any flip-flop in the device. 

The place-and-route tool uses the timing speçifications to guide its placement and routing 

choices, and will report on whether the specifications have been met or not. The Xilinx 

Timing Analyzer can then be used on the r d t i n g  design f le  to analyze each data path in 

tum. All paths not meeting the constraint can then be easily identified. 

When timing constraints were not met, two main options were avaiiable. First, if a logic 

block's delay alone was longer than the timing constraint, this block was broken up into a 

number of pipelined sub-blocks. SimiIarly, if the timing constraint couid not be met due 



to the excessive fmout on a given si&, this signal had to be divided among multiple 

clrivers in the VHDL description. 

Whenever a timing constraint was not met, however, it was because of the limitations of 

the automated placement and routing tool. In such a case, it was necessary to manudy 

constrain the placement of communicating CLBs so that they would be physically close 

to each other. 

6.7 Hardware Testing 

The selection of FPGAs as a target technology meant that it was possible to realize and 

test the designs in a reasonable time fiame. Various hardware test setups available at the 

Royal Military College, the Co~~l~~~unications Research Center, and at the Canadian 

Microelectronics Corporation were considered. Testing at the CRC or CMC would have 

involved the use of the integrated Measurement System (IMS) test fkture. This in turn 

would have required the wiring of a test board with the appropriate FPGA device. Since 

time was limited, an alternative avenue was selected. 

The availability of FPGA demonstration boards with X4010E-3 chips at RMC motivated 

the design of a test setup shown in Figure 6-1. The stimulator used to test the DUT is 

constructed fkom a separate FPGA of the same family and speed grade. It implernents a 

Linear Feedback Shift Register that is initialized to a known value, and generates a 

lmown pseudo-random output sequence to implement the test d e s m i  in section 6.3.4. 

A logic analyzer collects the DUT's output data and stores it for off-line cornparison with 

the expected output sequence. If the two sequences are identical, the test is a success. 

A separate FPGA demonstration board with a X4003E-3 chip was used for the stimulator. 

The selection of the same device family and speed grade ensures a compatible interface 

between the stimdator and DUT and that the stimdator wiü support testing at the DUT's 

highest dock fiequency. However, actual hardware testing was limited because of a lack 



of an adequate clock generator that could support kquencies in excess of 20 MHz. 

Various sources wae  investigated with no success. StiU, fûnctional testing was 

successful at 20 MHz, and the test setup would be simple to reproduce once an adequate 

clock generator is available. 

Figure 6-1 - Hardwure Test Seîup 

6.8 Summary 

In this chapter, the issues of design verification and testing were discussed. The 

verification and testing strategy was outlined, as were specinc considerations relating to 

test vector selection and the integration of the verification and design implementation 

processes. A proposed FPGA hardware test setup was presented. 





Chapter 7 

Conclusions and 
Recomrnendations 

7.1 Conclusions 

This thesis has addressed issues relevant to the design and implementation of wide-band 

digital quadrature demodulators in Field-Programmable Gate Arrays. Fundamental 

principles for the digital reaiization of quadrature demodulators were discussed and 

different theoretical approaches were first presented. 

Due to their ubiquity in digital filter designs, the problern of implernenting constant- 

coeEcient multipiiers in FPGAs was given special attention. The popular Look-Up 

Table approach for multiplication greatly simplifies the design process, but requires 

significantly more chip resources and somewhat inmeases criticai path latency. The 

viability of optimizing coefficients by reducing the number of signed digits required to 

represent them was confirmed for FPGA implementations as well as for other ASIC 

technologies. 

The selection of a filter architecture that maps well to FPGA ConQurable Logic Blocks 

is a major issue. In general, the transposeci fonn architecture was found to increase 

design density when compared to the direct fonn architecture. It was also suggested that 



fiiture quadrature demodulation nIter designs shouid include coefficient redundaacy as a 

hardware cost opthkation criterion. A technique that exploits the speed of the X4oOo1s 

dedicated cany logic, the delayed-carry adder chain, was proposed to keep the system's 

critical path delay constant regardles of the filter order. 

Four quadrature demodulation design examples meeting different sets of specifications 

were used to dernonstrate the viability of using FPGAs for wide-band digitai quadrature 

demodulators. Processing and interfacing rates above 100 MHz were demonstrated in the 

faster Xilinx X4ûûû FPGA families. The designs were limited more by the speed of the 

IlOs than by the achievable intemal rates. This implies that it may be desirable to de- 

interleave data outside of the FPGA. 

Very high device utilization was obtained; two of the designs use 85% and 98% of the 

device's CLBs while maintaining near-maximal data rates. This r d t e d  fiom the largely 

local nature of the intercommunications inherent to the selected system architecture, and 

by the carefùl imposition of manuai constraints on the placement of CLBs, 

The issue of providing designer control over the implementation of a design fiom a 

VHDL description was considered, and examples of coding style to enhance this control 

were given. An automated digital filter design process was briefiy investigated and was 

found to decrease design t he .  Suggestions were given on how to improve the process. 

Finally, the issues of design verifïation and testing were discussed. In addition to 

fùnctiond testing, the merging of the design verification process into the design 

implementation process was considered, and cases where the design's optimization could 

be improved were presented. A hardware test setup was proposed utilizing an FPGA 

based stimulator separate fiom the Device Under Test. 



7.2 Recommendations for Future Work 

Many promising avenues for M e r  research have been identified. 

A detailed analysis of the delayed-carry adder chai. should be undertaken, and its 

appiicability to other ASIC technologies should be investigated. The case was made that 

utilizing an FPGA CLB solely for its flip-flops wasted valuable resources. Such is not 

the case for custorn or gate array ASICs, and the overhead costs presented here wodd 

probably be sigdicantly Smaller- A search for such an andysis was made with no 

success. 

It may be possible to devise anaiytical formulae to descriie the implementation cost of a 

particular digital filter based on the value of its coefficients, the desired filter architecture* 

and the target technology. Such results would facilitate the evduation of different 

coefficient sets when cornparhg possible quadrature demodulator designs. Additionally, 

it is believed that the issue of coefficient redundancy has not been exploited for the 

design of quadrature demodulator filters in general, or for FPGA implementations in 

particulm. This would therefore be a promising research area. 

A quantitative analysis of power cunsumption by the filter architectures studied here 

should be perfonned to detennine the validity of the quantitative assessments that were 

made. Again, specific considerations should be given to FPGA-relevant issues, such as 

the use of low supply voltage FPGAs. 

Variations on the proposed designs are possible. Prime candidates include the duplicated 

polyphase filter approach, for which the data-interleaving process would be more 

complicated, and the low-pas approach with a tkd-band prototype filter. For the 

existing designs, the inclusion of Built-In Self Test (BIST) fùnctionality may prove 

usefiil. The development of a VHDL description of BIST circuitry that could be easily 

included to any quadrature demodulator design would faditate the implemmtation of 

this design enhancement. An interesthg feature for many FPGAs is the availability of an 



intemal clock that could be used to run the BIST circuitry completely independently k m  

the outside. Wave Pipelinhg 1271 shouid be investigated, as it muld push FPGA 

performance beyond what conventional synchronous designs can accomplish. 

Novel FPGA architectures with increased CLB performance and resources will Wcely be 

available in the near future. Whüe the direct re-implementation of the existing designs is 

possible, the fuIl exploitation of advances in FPGA devices may require new 

implementation approaches. 

Finally, much more remains to be done with Electronic Design Automation tools. The 

automation of VHDL design description for digital flter designs was briefly mentioned, 

and is seen as a promising area of research. Alternatively, the development of a synthesis 

tool with automatic pipelinhg inclusion shodd be (and may in fact be) a major area of 

development for the EDA tool industry. Significant improvements remain to be made 

with the automatic Placement and Routing Tools, especialîy for designs with a reguiar 

block structure such as digital filters. 
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Appendix A 

Filter Bus Width Analysis 

A filter bus width analysis must be @O& as part of the design of a digital filter. The 

analysis described here assumes that the filter is implemented following the transposed 

fonn. The a i .  of the analysis is to calculate the number of bits required in the adders and 

registers of the adder chah to prevent overflow. 

To obtain this number of bits, the greatest possible positive and negative sums must be 

calculateci for every stage in the chah The greatest number of bits required to represent 

either sum is then the bus width for this stage's adder and register. 

Each adder in the adder chain has two inputs. The h t  one is the partial sum up to this 

point, coming fiom the previous adder in the chain, and the second input is the result of 

the multiplication of the present input data with a filter coefficient. 

Let S,,(i) and Sn&) be the greatest positive and negative surns that can exist at the f' 
adder stage. Let Mdi) and Mn&0 be the greatest positive and negative results that cm 

corne fbm the iGI multiplier, whose coefficient is h(i). Note that in either case, i actually 

runs fiom N down to O, where N is the filter order, to follow the order of the filter 

coefficients. S ' i )  is given by: 



and &di) is given by 

The values of M d i )  and Mn&i) depend on the value of the coefficient h(i) and on the 

greatest positive or negative values that the input data can take. This value depends on 

the selected number representaîion and on the sign of h(0. For two's wmplement 

representation, the greatest positive and negative numbers that can be represented with n 

bits were given in Table 3- 1 as +(r" - 1) and - (29 .  For a negative coefficient, the 

greatest positive multiplier r d t  is obtained h m  taLing the greatest negative input 

number, and the greatest negative multiplier r d t  is obtained fkom taking the greatest 

positive input number. The situation is reversed for a positive coefficient. The 

expression for MP&) is therefore: 

( ) x ( - 1 )  ,k(i)ZO 
M, ( i )  = 

h(i)x(-2"-') .h(i)<O 

where: 

Similarly, the expression for Mnes(i) is given by 



Substituthg equation (A-3) into equation (A-1) gives the expression for S d i ) :  

and substitrrting equation (A-5) into equation (A-2) gives the expression for Sn&+ : 

From Table 3-1, the number of bits b required to represent a given value V in two's 

complement can be calculateci as: 

Therefore, the number of bits Mi)  required to represent any sum at stage i in the adder 

chah is q u a i  to: 

From this expression, a measure of the complexity of the adder chain can be found. The 

number of registered bits Rb in the adder chain is equal to the sum of every b(i): 

(A-I O) 
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Appendix B 

Characterization of Ripple-Carry 
Adders in Xilinx FPGAs 

Detailed simulations were performed with the implementation of ripple-carry adders in 

three Xilinx FPGA families, for all available speed grades. These simulations were 

necessary because the Xilinx databooks do not provide timing idormation that is as 

accurate as the one obtained fkom the Timing Analyzer tool. 

In al1 cases, the adders were descri'bed with m c i e n t  levels of pipelining in order to 

properly isolate them nom IOB performance and chip size considerations. Figures were 

obtained for the latency of addition for various adder sizes, fiom 4 to 64. The targeted 

FPGA families were the X4000E, X4ûûûXL, and X4ûûûXLA. 

In al1 cases, the latency of the adder itself was considered, as was the delay of the 

registers supplying the adder operands. The routing delay fkom these registers to the 

adder depend on their relative placement and on the amount of routing resources used in 

this particular area, and they were therefore not included in the figures obtained. 

As expected, it was found that the latency of npple carry addition is generally linear with 

the width of the adder. However, some peculiar characteristics were also discovered. 

For the 'E' and 'XLA' families, adders of width n and n + 1 have the same latency, for n 

even. This is explaiaed by the fiict that in both cases the adders fit in the same number of 



CLBs. While the mapping is identical for the XL' f d y ,  ththe is a regular latency 

increase for al1 width increases, for the -3, -2 and -1 speed grades. 

The behavior of the -08 and 4 9  speed grades for the XL' family is even more peculiar, 

however, as the latency is found to be non-monotonidy increasing. For n even, the 

Iatency is srnaller for an adder of width n than it is for an adder of width n - 1. 

Another conclusion from these simulations is that the rate of increase in adder latency, 

between narrow and wide adders, is not mastant and depends on the FPGA f d y  and 

speed grade. It was found that the faster chips had a lower rate of latency increase with 

adder width- 

The foliowing graph shows the adder latencies for different FPGA families and speed 

grades. 

Figure B-l Lutencies for X4000 Aders  



The following table gives an approximation ofthe rate of increase in latency with respect 

to adder width for different FPGA families and speed grades. 

- - -- 

Table B-2 Approm0mat& Laîency Increase for X4000 EPGA addem, n d i t  






