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Abstract

This thesis examines the AC Stark effect from the perspective of the dressed
atom model, specifically that associated with an atom driven by more than one
laser field. Almost all calculations contained herein are analytical in nature, and
are aimed at providing a physical understanding of the dynamics of a two level
atom driven by two or three laser fields. All calculations agree completely with
those obtained by numerically solving the optical Bloch equations for the system

and, where available, with experimental observations.

When an atom already subject to a strong driving field is monitored by a strong
probe beam, it is observed that the absorption and dispersion spectra display res-
onances at frequencies detuned from the atomic transition frequency wo by integer
fractions of the Rabi frequency 212 of the first field. However, a “strong probe” is
an intense field which itself alters the characteristics of the system it is supposed
to be probing. Based on this observation, we have considered the system from the
point of view that both fields “dress” the atom, and calculated the energy levels
and spectra of the “doubly-dressed” atom. We find a new physical phenomenon:
The second field couples to multiphoton resonances between dressed states of the
first field, and their energy levels are split due to this n-photon coupling, i.e.
this represents an n-photon AC Stark effect. The resulting fluorescence and near-
resonance and Autler-Townes absorption and dispersion spectra are extremely
rich in detail, containing multiplets at the subharmonic as well as harmonic res-
onance frequencies with an intricate dependence on the order n of the resonance
and on the relative Rabi frequencies of the two fields. An outstanding problem
associated with the subharmonic resonances has been the observation that they

do not occur at detunings from wq exactly equal to 2€2/n, but rather for detun-
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ings slightly shifted from these values. In this thesis we interpret these shifts as
arising from the coupling via the rotating terms of the interaction Hamiltonian
V> between non-resonant doublets belonging to the doubly-dressed atom, thus
having the physical interpretation of a dynamic Stark shift. We demonstrate that
at precisely these shifted resonance frequencies the fluorescence by the atom van-
ishes identically at the central frequency wg, and that the splitting of the features

within the spectral multiplets is a minimum.

We have also calculated the dressed states and spectra of a two-level atom
driven by an intense amplitude-modulated field of modulation frequency 6, for
both weak and strong modulation amplitudes. The spectra arising for a weak
modulation are best described by comparison with those of the monochromatically
driven atom: For the fluorescence and near-resonance absorption spectra, the
central component of the Mollow triplet is unaffected, while the sideband lines are
replaced by multiplets with spacing é and an intensity dependent on the ratio of
the modulation amplitude to its frequency. In the Autler-Townes spectrum, each
line is similarly replaced by a multiplet. For strong modulation, we describe the
spectra by comparison with those which arise for an equal amplitude bichromatic
(AM with suppressed carrier) driving field: The central lines of the fluorescence
and near-resonance absorption multiplets are split into triplet features, while all
other lines, as well as those of the Autler-Townes spectra, are split into doublets,

with doublet splitting proportional to the amplitude of the carrier frequency.
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1. Introduction

In the nearly 40 years since the development of the first working (optical) laser,
our understanding of how light interacts with matter has grown at a rate which
has made the underlying theory now one of the best understood in all of physics,

and certainly one of the most applicable.

At the most fundamental level, our understanding of how light and matter in-
teract is based upon the theory of Quantum Electrodynamics (QED). This is the
field theory which is the relativistic version of single particle quantum mechanics,
and is one of the best experimentally verified theories in any branch of science
in all time. It describes the interaction of electrons (or other electrically charged
particles) with photons to an incredible degree of accuracy. The agreement be-
tween theory and experiment is better than 1 part in 104, which is equivalent to
the ratio between the diameter of an atom and the distance between Toronto and

Vancouver.

Despite being a relativistic theory, QED contains lessons for those of us who
practise physics at more moderate energies. To begin with, it teaches us to
think of the vacuum as an important player in the dynamics of physical systems;
in particular the vacuum can act as a probe field which causes an atom in an
excited energy level to spontaneously emit a photon. The second major fact of
importance to us is related to the quantisation of the radiation field. QED makes
explicit for us the description of the electromagnetic field as a set of decoupled

harmonic oscillators with definite numbers of energy quanta.



Unfortunately full QED calculations are best performed within the framework
of scattering theory, wherein one can assume that the initial and final states for the
system are solutions of the free Hamiltonian. For more complex systems for which
this does not apply, the equations rapidly become prohibitive and furthermore
contain a redundancy of information for our purposes, because we are concerned
only with slow moving (i.e. non-relativistic) atomic systems. As such, a variety
of theoretical techniques designed to focus on the essential “room temperature”

physics have grown up over the years.

In 1974, a phenomenon known as the AC Stark effect was first observed [1],
after having been predicted 5 years earlier by Mollow [2]. This is an effect which
occurs when a strong laser is tuned close to the transition frequency between two
atomic levels. The laser’s oscillating electric field can cause a splitting of the
observed spectral line, in analogy with the splitting caused by a static electric
field. The resulting fluorescence spectrum is known as the Mollow triplet. Unfor-
tunately the technique used by Mollow did not lead to good physical intuition,
especially when applied to more complicated systems. It was a major break-
through therefore, when Cohen-Tannoudji and Reynaud introduced a technique
now known as the “dressed-atom model” that gives a clear and concise method
for deriving the Mollow spectrum [3]. One of the most appealing features of the
dressed-atom model is that once we have the dressed states we can automatically
understand why the particular spectral features appear; moreover it is usually
only a small amount of work from there to the expressions for the spectra. All

we need essentially are the transition rates between dressed states. From these



the population and coherence equations follow easily, along with the associated

linewidths.

This is the computer age however, and so the dressed-atom model now finds
itself competing with numerical simulations, which for more complicated systems
than just a single atom and one laser rapidly become computationally intensive,
though certainly possible. However, these reveal very little about the underlying
dynamics of the problem and as such do not increase our insight into the behaviour
of these systems. With this in mind, it is perhaps useful to discuss why the
calculation of strong field effects is difficult, and briefly describe the other major

approaches to studying the interaction of atoms and laser fields.

If the laser intensity is low then we can perform perturbation calculations
within a QED framework. However these rapidly become intractable as the in-
tensity of the laser increases and a large number of intermediate processes have
to be included in calculations of the scattering amplitudes. We are thus forced to

other methads.

It is well known that when an atom is irradiated by an intense monochromatic
field nearly resonant with the transition between an atomic ground state |g) and
excited state |e), an oscillation of frequency 2(2 is induced between them. This
frequency is known as the Rabi nutation frequency. When 2Q) is much larger than
the spontaneous emission rate I' of the upper level |e), then we certainly do not
have an equilibrium situation. Rather we have a dynamic process wherein photons

of the laser mode are continually being transferred to the vacuum modes. Our




approach to studying the system depends precisely upon the questions in which
we are interested. In this thesis we will be mainly concerned with the frequency
distribution of the fluorescence photons, as opposed to say transient effects or
photon statistics associated with arrival times and so on. In experiments, which
measure such frequency distributions, information regarding the order of photon
emission is lost, and so for a given ensemble of photons one has to take into account
interference in the amplitudes describing all possible ways such an ensemble can

be created.

Dynamical theories of spontaneous emission were first presented by Weisskopf
and Wigner [4], and these methods were later generalised by Heitler and Ma [5].
These formulations were very successful for many processes associated with weak
driving fields, and allowed for detailed discussions of lineshapes and level shifts.

They were limited however to problems involving one fluorescence photon only.

Another class of theories, known as “quantum statistical theories”, grew up in
the 1970’s [6,7], and proved to have several advantages over the previous treat-
ments. In particular they are easily generalised to cases of multiple atoms and/or
atomic levels; they also allow for easier treatments of processes involving virtual
levels, which are required for computations such as calculation of the Lamb shift.
The quantum statistical theories encompass a broad class of approaches, includ-
ing master and Bloch equation treatments, Fokker-Planck methods and quantum
Langevin and associated stochastic methods. For an overview of all these methods
see [8] and references therein. Different treatments are often better suited to spe-

cific problems. In particular the master equation approach has proved successful
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in describing the AC Stark and associated effects. For most problems the master
equation cannot be solved exactly, and so numerical techniques are used. This
thesis will focus however on using the dressed atom model, which is also based
on the master equation, to retrieve analytical results for a number of different

situations involving the AC Stark effect.

In this thesis we will be concerned with analysing a system that consists of
an atom driven simultaneously by two or three strong lasers. We will use a
technique known as “doubly dressing” the atom [9], which has been developed to
allow us to calculate analytic expressions for parameters of interest in this type of
system. These analytic expressions give us much more intuition into the physics
of the system, and allow us a better understanding of the effect changes in various

parameters will have upon the dynamics.

The thesis is organised as follows. Chapter 2 is an introduction to the dressed
atom model, focussing on the case of a single atom driven by a single laser. The
reader familiar with this model may pass directly to Chapter 3, which is fully self
contained with regard to notation and essential equations. In fact, at the risk of
a small amount of repetition, every chapter has been written so as to be as fully
self-contained in this regard as possible. Chapter 3 describes the application of
the double dressing technique to explain a new phenomenon known as the “multi-
photon AC Stark effect”, which occurs when a single atom is driven by two lasers
of unequal strength, where the weaker laser is detuned to an integer fraction 1/n
of the Rabi frequency 2{2 of the stronger laser. This effect is the underlying cause

of the “subharmonic resonances™ which are observed when a strongly driven atom
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is monitored by a strong probe. The next chapter provides an explanation of a
phenomenon that was also first noticed experimentally: namely that the exact
subharmonic resonance points are shifted from the exact values 2Q/n. As well, we
report that fluorescence at wq is suppressed at these shifted points. In Chapter
5 we describe a system of an atom driven by three lasers, in particular by an
amplitude modulated field, and show the dramatically different structures that

arise. The work is summarised in Chapter 6.

Various sections of this thesis have already been published. The results of
Chapter 3 are published in [10] and [11], while the results of Chapter 4 are pub-

lished in [12].
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2. The dressed atom model:
monochromatic driving

2.1 Introduction

In this chapter the dressed atom model for describing the interaction between
an atom and a single laser field is introduced. However, one cannot do justice to
the model in such a short work as this; we are therefore introducing only those
features essential to an understanding of the next three chapters. In addition to
serving as an introduction to the model for the uninitiated, we will save many
pages of calculations later on by performing the simple calculations of this chapter
in a fairly detailed manner, thereby allowing a less explicit treatment later on. A
comprehensive introduction to all aspects of atom-photon interactions, including

the dressed atom model, can be found in [1].

To begin with, let me point out that in the blasé manner characteristic of
theoreticians, we will discuss atoms here as if they possessed only two energy
levels: a ground state |g) and an excited state |e) separated by an energy E =
hwg, and connected by an atomic dipole moment Z. This is justified, because
throughout this thesis we will consider atoms irradiated by lasers with frequencies
that lie close to a single atomic transition frequency, and hence the effects on these
two levels far outweigh those on any others. The energy E is assumed to be the
ezperimentally measured transition energy, that is it incorporates the Lamb shifts

and other effects due to the presence of other atomic levels.



2.2 An excited atom in the vacuum

Before we consider an atom driven by lasers however, let us consider an atom
which has been excited by some unspecified process to the level |e), and is left
sitting in the vacuum. If the atom is otherwise undisturbed, then we expect that
after some characteristic average time (known as the radiative lifetime) ¢z of the
level, the atom will decay and emit a photon of energy E. However we realise that
in fact the energy of the emitted photon must lie within some energy range, since
the Heisenberg uncertainty principle prevents us from making an infinitely precise
measurement of energy in a finite time (which is what this would constitute).
Thus the process is intrinsically probabilistic, and the width of the resulting
probability distribution of emitted energies (centred at hwp) is the emission rate

= 1/tgr. The emission is most easily understood as the result of a “probing”
by the vacuum, which can be viewed as the cumulative effect of the vacuum
fluctuations around the electron. These vacuum fluctuations are characterised by
a very short correlation time tc. This is analagous to a process wherein a heavy
particle moving through a fluid has its velocity changed over some (relatively)
large timescale by repeated small but fast collisions with the microscopic particles

of the fluid.

2.3 An undressed atom in a single laser field

When the atom is surrounded by laser photons, the dynamics become more
complicated. In particular, if the field is strong (in a sense defined more precisely

below) then large numbers of absorption and stimulated emission processes may



occur within the characteristic time tg. These transitions occur with a charac-
teristic time ¢ts much longer than tc but shorter (for all situations considered in
this thesis) than tg (tg > ts > t¢). The inverse of tg is known as the Rabi
frequency (denoted by 2(2), and is a crucial experimental parameter. If, for a
moment, one thinks of the driving field as a classical oscillating electromagnetic
field, then the Rabi frequency is directly proportional to the scalar product of the
electron’s dipole moment and the electric field vector. As such it measures the
strength of the coupling between the atomic energy levels and the incident laser
beam. In a picture in which we consider the laser field as fully quantised, the
Rabi frequency is directly proportional to the mean number of photons and the

atom-field coupling constant g, which characterises the interaction Hamiltonian.

The time evolution of the system may now be described, qualitatively at least,
as follows. The atom starts in the ground state with N laser photons present,
that is the initial state is [g,/N) = |g) ® |N) (throughout this thesis, modulo
typographical errors, commas within kets denote tensor products). The atom may
now absorb a photon and the system goes to the state |e, N—~1), that is the number
of photons in the laser mode has been reduced by one and the atom is excited.
Another laser photon may now cause stimulated emission and the state returns
to [g, N) (remembering the whole process is still probabilistic). This process may
be repeated many times (since for our purposes ts < tg) before a spontaneous
emission occurs. When a spontaneous emission does occur however, the system
makes a transition from |e, N —1) to |g, N—1), since spontaneous emission doesn't

affect the number of photons in the laser mode. The system can now “Rabi
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oscillate” between |g, N — 1) and |e, N — 2), before another spontaneous emission
occurs. The dynamics is rather complicated; the presence of three characteristic

time scales should have warned us of this fact.
2.4 The dressed states

The dressed atom approach essentially consists of describing the system dy-
namics in a basis corresponding to eigenstates of the full Hamiltonian (including
the atom-driving field interaction), rather than the “undressed” basis of the free

Hamiltonian considered in 2.3.

The Hamiltonian of the system takes the form (from here on we set & = 1)

H=H,+H,+V, (2.1)

where

Ha = wOSZ
is the Hamiltonian of the atom, and

HL = (ULafa.,

is the Hamiltonian of the driving field. Here S* = 2(le)(e| — [g)(g]) is the atomic
inversion, and a(a') is the annihilation (creation) operator for the driving field
mode. H, and H describe the energy of the atom and laser mode respectively.

The interaction V is given by
V = g(a'S™ + S*a), (2.2)

11




where g is the atom-field coupling constant and describes the strength of the
interaction between the laser mode and the atom. S+(S~) = je){g|(|g){e|) is the
atomic raising (lowering) operator. The two terms of V' describe the processes of

stimulated emission and absorption respectively.

To understand the form of the interaction V', note that we are working within
the dipole approximation, within which we expect the interaction part of the
Hamiltonian to be proportional to the dot product of the atomic dipole moment
i, and the electric field at the position of the atom, £ Since the former is
proportional to S* + S, while the latter is proportional to a + af, it might at
first glance appear as if two terms are missing from (2.2). However; the above
Hamiltonian is correct within the rotating-wave approximation (RWA) [1], which
assumes that non-resonant processes (which contain terms of the form afS* and
aS™) are negligible when the laser beam is quasi-resonant, i.e. when (wy —wp) =
A < wp. In fact these terms do contribute shifts; however these are of order I /wy,

and for atomic systems driven by optical frequencies are completely negligible.

Because the interaction term V only couples states in pairs, the total Hamil-
tonian H, in the undressed basis |g, V), |e, N — 1), has a simple block diagonal

matrix form,

eeo An 0
H= 2.3
N A (23)

where

An = [ NwL gvVN
N=\gVN Nwp-A)"

12



(N+1)+>
£(N+1)
[(N+1)->
Wy
' IN+>
Ny 2G
T T
e e
: : ; CN-DE D
E(N-1) f f
¥ : X kN_'l)_>

Figure 2.1 The dressed state energy level structure of the singly-dressed atom.
The dressed states consist of an infinite number of doublets, with inter-doublet
separation wy and intra-doublet separation 2G. Transitions contributing to the
spectra are shown in dashed arrows.

In this thesis we are primarily concerned with strong driving lasers, for which the
(mean) number of photons in the laser mode is typically greater than 10%. This

allows us to approximate
gVN=g/N +1=...=2Q,

where 2§ is known as the (on resonance) Rabi frequency.

By diagonalising (2.3), we find that the eigenstates of H form an infinite set
of energy manifolds separated by the laser frequency wy, each containing a sin-

gle doublet with intra-doublet splitting 2G, as depicted in Figure 2.1. These
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eigenstates (the “dressed” states) are given by

IN+) =sinf|g, N) + cosfle, N — 1)
(2.4)
[N—) = cosf|g, N) —sinfle, N — 1),

where
1 A
. 29=_ a
smv =S+ e

and the generalised Rabi frequency is given by

2G = V4Q2 + A2

2.5 Transition rates, populations and coher-

ences

The dashed arrows in Figure 2.1 depict spontaneous transitions between the
different energy manifolds, which occur with transition rates 0t+, ==, 't~ and
[~* (defined more precisely below). The first two of these correspond to transi-
tions at frequency wr, while the next two correspond to transitions at frequencies
wr, + 2G and wg — 2G respectively. Thus knowledge of the dressed states can al-
ready help us qualitatively understand the origin of the three components of the
Mollow triplet. We wish to compute the linewidths and intensities of these transi-
tions, and ultimately to obtain an expression for the spectrum of the light emitted
by the dressed atom via spontaneous emission, or alternatively by the bare atom
as resonance fluorescence. We will also consider other methods of observing the
atomic dynamics, for example the weak probe absorption and dispersion spectra
or the Autler-Townes spectra. All of these can be easily calculated within the

dressed atom framework.
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To analyse the time evolution of the system, we turn now to the Lehmberg-
Agarwal master equation (2], which describes the evolution in terms of the reduced
atomic density operator p.f In the Schrodinger picture, the master equation is

given by

%‘% = —i[H, p] - g(S"'S_p-f- pS*TS™ — 28" pS™). (2.5)

We project (2.5) onto the dressed state basis (2.4), to obtain differential equations
for the time evolution of the populations (the probabilities of occupation) of the
dressed states, and for the coherences between the dressed states. However this
will still result in an infinite set of coupled equations. We make a further approx-
imation, known as the secular approximation, in which we ignore all coupling
between density matrix elements which oscillate at different frequencies. This
approximation is equivalent mathematically to neglecting terms of order I'/f2,
and is valid because at the large Rabi frequencies we are considering, non-secular
couplings are quickly “washed out”, and consequently contribute little to the

steady-state spectrum.

The populations 7 = (N £|p|N=x) are found from (2.5) to obey the equations
of motion

g = —(0F* 4+ T+F)nd 4+ CFErf,  + g (2.6)

I The reduced density operator is obtained from the more familar “full” density
operator by taking a trace over the empty (i.e. vacuum) modes of the electro-
magnetic field. This corresponds to treating the vacuum as an infinite reservoir,
and results in the damping term proportional to I in (2.5) which appears as if an
addition to the Heisenberg equation of motion.
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where the dot denotes differentiation with respect to time. Here the quantities
I['+* T'*7F are the transition rates between the dressed states. These are propor-
tional to the modulus squared of the matrix elements (in the dressed state basis)
pEE = (N £|S*|(N — 1)%) and pt¥F = (N £ |SH|(N - 1)F) of the operator S+.

They are independent of N, and are given by

£ =r |;f'=t|2 = I'cos®fsin 9, (2.7a)
[+~ =T |p*%|? = T cos?, (2.7b)
% =T |u*t|® = Tsin'g. (2.7¢)

The interpretation of the equations (2.6) should be clear. Consider just 73;, which
is the population of the state |N+). Equation (2.6) indicates that this state decays
via spontaneous emission to states |[(N — 1)+) with a rate It and |[(NV - 1)-)
with a rate ' ~. It is repopulated however from the state [(N + 1)—) with a rate

=7, and from the state |(V + 1)+) with a rate [+,

In fact equations (2.6) still constitute an infinite set of coupled equations,
however we know that for large IV the populations in adjacent manifolds will be
almost identical, and so we approximate Tr?, e 1rf, 1 = 1rf$ +2 = .... We also
realise that flux out from one manifold will be balanced by the influx from the
manifold above (the detailed balance condition), and so we concentrate on the

so-called “reduced populations”, IT* = 3", i, which can easily be shown to

satisfy the equations of motion

It = —I+¥0* 4+ rF307. (2.8)
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These equations have the steady state solutions

sin* @

T (29)

o, =1-1 =

where e = 't~ + '~ = cos*6 + sin*@. We could also consider the density
matrix element between two plus or two minus states on different manifolds, e.g.
ot = (N +1) £ |p|N+). It turns out that these off diagonal density matrix
elements (“coherences”) obey the same equations of motion as the populations
(2.6) with the addition of a free evolution term at the transition frequency between

the states (in this case wy).

We next consider the density matrix elements between a plus and a minus state
(and vice versa). In the same way as we considered the reduced populations, we
must consider the reduced coherences and find their equations of motion. The
main reduced coherences of interest are g*F = 3" (N £ |p|(N — 1)F), and they

obey the equation of motion
g'iq: = (i(UL =+ 2G) - Fs) g:h:Fv (2'10)

where I'y = F(% + cos? @sin®f). We see from (2.10) that the coherences obey
uncoupled equations of motion, and will reach a (quasi-) steady state after a
transient time of 1/I"y. Other coherences, say between different pairs of manifolds
or within one manifold, will obey an equation of motion similar to (2.10), with
only a different free evolution frequency (first term in the right hand side of

(2.10)).
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Figure 2.2 The Mollow fluorescence spectrum for A = I', 22 = 10I' The
ratio of the central peak intensity to that of the sidebands is (approximately)
3:1, the ratio of the sideband linewidths to that of the central component is
(approximately) 3:2.

2.6 The fluorescence spectrum

The steady state fluorescence spectrum S(w) of a strongly driven two-level

atom was predicted by Mollow [3], and was subsequently verified experimentally

[4]- It is well known to be given by the expression
o0
S(w) = NR / dr ™ lim (S*()S™ (¢ + 7)) (2.11)
0

where R denotes the real part of the integral. The normalisation A of (2.11) can
be chosen such that the total intensity I = [ dw S(w) corresponds to the total

number of photons emitted per second. In general, however, we will not worry
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about the normalisation of our spectra, and numerical values on the vertical axis

should be considered useful only for comparing relative peak intensities.

Let us consider briefly how we may compute the fluorescence spectrum with

our present knowledge of the dressed atom dynamics.

First let us formally expand the operator S* in the dressed state basis:
St=8f_+St +St, +S*_ (2.12)

where S}, = pu@ " [Ne){(N — 1)o} with ¢,0 € {+, —}. If we now consider the

first term of (2.12), we can see that the average value of ST_ is given by
(ST)y=u*") (N -1)+|pIN=) = u*=o*". (2.13)
N

Thus (ST_) will obey the same equation of motion (2.10) as does p*—. Similarly
the average value of the second term of (2.12) obeys the same equation of motion
as g~ 1. The last two terms of (2.12) obey the same coupled equations of motion as
ot ® which (as the comment under (2.9) indicates) are the same as the population

equations (2.8) with the addition of a free evolution term of frequency wr,.

Now why have we been concentrating on the evolution of (S*), when the
spectrum in (2.11) is given by the fourier transform of a two time correlation
function? It turns out that we can apply a theorem known as the “quantum
regression theorem”[2] which states that (within the approximations employed
here) the two-time correlation function (S+(¢t+7)S~(t)) obeys the same equation

of motion as the one-time correlation function (S+*(7)).
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Thus if we use (2.12) in (2.11), we can see that the spectrum will break up
into three distinct terms. The first two terms, which have decoupled equations of

motion, evolve in time according to the equations
(S (r)S7(0)) = [(SE:(0)S™(0))elilwe A =Tulm, (2.14)

When we substitute (2.14) into (2.11) we obtain contributions to the spectrum

T,

N(SL S~ O) =5 T3 T

(2.15)

which are two Lorentzians centred at wy +2G of linewidth Iy, and thus correspond
to the sidebands of the Mollow triplet. The intensities of these two lines depend
on the initial values of the correlation functions I'(S¥-(0)S~(0)), which are still
to be determined. Let us consider I'(S}_(0)S~(0)). Using (2.13) we can deduce
D(ST_(0)57(0)) = (¥~ Y IN+N(N = 1) = |S7(0))
N
=Tpt Te{ ) _|IN+}(N - 1) - |S™p}
N
=Tu™" ) ((N=1) - |S7pIN+)
N

=Tp*™ ) (N -1) = |STIN'e)(N'e[p|N+).
N,N'e

Now ((IN — 1) — |S™|N’¢) is zero unless N’ = N, and (N’ + |p|N+) is zero in the

steady state. Thus we see that the intensities of the sidebands are given by
[(S1-(0)S7(0)) = T*¥IIF,. (2.16)

The analysis of the ST terms, which contribute the central line of the spectrum

at wr, is similar to that outlined above, though it is a little more complicated
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due to the fact that their equations of motion are coupled. It should be pointed
out however that the eigenfrequencies obtained when solving the pair of linear
coupled equations are iwy, and iwy — I'.. From this second term we obtain the
central line of the inelastic spectrum, which has a linewidth of .. It is left as a

challenge for the curious reader to determine to what the first term corresponds.

The final expression for the (incoherent part of the) fluorescence spectrum is

given by (normalising all quantities to I')

S@) o — TFIOEL L TTHIGT,
T (w=(wr +2G))2+T? ' (w~ (wr —2G))2+TI2 (2.17)
N (L0 + O I, '

(w—wr)2+T12

An examination of (2.17) shows that the spectrum is what one should in-
tuitively expect, given a knowledge of dressed state dynamics. The sidebands
of the spectrum consist of lorentzians with frequencies determined from the al-
lowed transitions between the dressed states. Their linewidths are determined
by the damping rate I'; of the coherence which evolves at the same transition
frequency, and their intensities are proportional to the product of the population
of the dressed state and the transition rate out of the state. The central com-
ponent of the spectrum has two contributions since both |[N+) — |[(N — 1)+)
and |[N—) — |(N — 1)—) transitions occur at frequency wr. It is the fact that
this spectrum ¢s so intuitive that makes the dressed atom model so appealing. In
practice we can just write down the spectrum given a knowledge of the population

and coherence equations. We will see that even with more laser fields and much
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Figure 2.3 The weak probe absorption spectrum for the same parameters as
in Figure 2.2. The positive y direction corresponds to absorption.

|
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more complicated dressed states, all fluorescence spectra in this thesis will have

the same general form as (2.17).

The spectrum (2.17) is known as the Mollow triplet, and is plotted in Figure
2.2 for 2Q = 10" and A = I'. All fluorescence spectra presented in the later
chapters of this thesis should be compared to this spectrum, to understand the

differences that an extra one or two laser fields can make.

2.7 Weak probe absorption and dispersion spec-

tra

Another technique used by experimentalists to probe the dynamics of a strongly

driven atom is to apply a second weak laser of frequency wy, and to scan this laser
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Figure 2.4 The weak probe dispersion spectrum for the same parameters as
in Figure 2.2

through frequencies close to wg. This second laser is assumed weak enough not to
appreciably affect the system dynamics. After passing through the system, the
absorption and dispersion of this probe laser can be measured [5]. If the laser
couples to a transition for which there is more population in the upper state than
the lower then a net amplification will occur, while net absorption will occur if

the population is greater in the lower state.

The absorption and dispersion (refractive index) profiles of the weak probe
beam are given by the real and imaginary parts, respectively, of the Fourier
transform of the two time commutator ([S~(¢), S*(¢')]). The term (S—(t)S+(t'))
of the commutator is associated with absorption and the term (S*(¢')S~(t)) with

stimulated emission of the probe beam.
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These spectra are derived in the dressed state picture in a manner similar to
that of the fluorescence spectrum described above. The absorption spectrum is

found to be given by

I+- (I, - II,)T, [+ (I, - I;,)T,
(wp — (wr +2G))2+ T2 ' (wp — (wr - 2G))2 + L2

W(wp) = (2.18)

This spectrum is plotted in Figure 2.3, for the same parameters as used in Figure
2.2. Absorption is “upwards” in the diagram. The absorption and amplification
occur because the dressed states are unequally populated. In this case A > 0 and
so from (2.9) and (2.4) we see that the upper (plus) states are more populated
than the lower (minus) ones. This leads to absorption at w; —2G and amplification

at wi + 2G.

Note that for the case of on resonance driving (A = 0), a small amount of
absorption and amplification at wg will still occur, despite the fact that in the
dressed state picture the steady state populations are equal and so the expression
(2.18) vanishes. These effects are non-secular in nature (they arise from mul-
tiphoton processes [6]), and so are not easily derived within the dressed atom

model.

The dispersion profile is given by

Dly) = T = )y — (wr +26)) | DI, — 3,)(wp = (wz — 26))
Wp) = (wp — (W + 2G))2 + 2 (@p ~ (wr — 2G))2 + L2
(2.19)
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Figure 2.5 The Autler-Townes doublet for the same parameters as in Figure
2.2, and with I'3/T" = 3.

This dispersion profile is plotted in Figure 2.4.

2.8 Autler-Townes absorption and dispersion

spectra

Yet another way to investigate this system experimentally is to pick a third
atomic level |c) which has a transition frequency w,. from |[g) (or |e)) very different
from wgy. A weak laser of frequency w3 is now scanned across frequencies close to
Wwe — Wy, and the resulting absorption and dispersion of this laser measured [7].
If the laser is weak then it can be assumed to not appreciably affect the dressed

state dynamics. The resulting “Autler-Townes” spectra can be easily derived,
g p
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Figure 2.6 The Autler-Townes dispersion spectrum for the same parameters
as in Figure 2.5.

and the Autler-Townes absorption spectrum is given by

ATIIET, A-II; T,
— 383 8S s 2.2
As) = @O+ T - @t G T2 (2.20)
while the corresponding Autler-Townes dispersion profile is
+17+ _ - -11- _
T(UJ3) — A Hss(w:i (wc G)) A H”(w:; (wc + G)) (2.21)

(W3_(WC_G))2+F3 (WS—(WC‘*‘G))z'E'Pg-

In the above, the weight factors A* determine the amount of the ground state
(from which we are probing) “contaminating” the dressed states, and are given

by
A* = [(N +|g, N)|? =sin? 4,

A~ = |(N - |g, N)]* = cos?6.
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The linewidth ', = %(I’_.J +T'3), where I'3 is the natural linewidth of level 3. These
spectra are plotted in figures 5 and 6. Figure 5 shows the classic Autler-Townes
doublet, which is split by 2G. The doublet intensities are not equal because we

have chosen parameters corresponding to off resonance driving (A > 0).

2.9 Conclusions

We have examined in some detail the spectra associated with a two-level atom
driven by a single intense laser field. These spectra will form the basis for our
understanding, in the next three chapters, what differences are induced by the

addition of an extra one or two laser fields with various detunings and intensities.

Hopefully it is clear that, at least in hindsight, all spectra presented in this
chapter are very intuitive and easily understood from the dressed state picture.
This understanding is not so easily obtained by solving density matrix equations

of motion or the Bloch equations (either analytically or) numerically.
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3. The multiphoton AC Stark effect

3.1 Introduction.

The interaction of a two-level atom with an intense, nearly resonant laser field is
of fundamental interest in atomic spectroscopy and quantum optics and has been
studied extensively for over 25 years. Early interest focussed on an atom driven
by an intense monochromatic field and the resulting “dressed” system probed by
a weak field, as briefly covered in chapter 2. Fluorescence by the system was first
predicted (1] and then observed [2], as was the absorption and dispersion by the
entangled atom+driving field system of a weak probe field nearly resonant with
either the driven transition [3] or the transition from a driven level to a third

atomic level (Autler-Townes effect) [4].

Another area of interest involves the atomic response to amplitude-modulated
(AM) and bichromatic driving fields. A 100% amplitude-modulated field is equiv-
alent to a bichromatic field whose (mutually coherent) components have equal
intensities, and whose frequencies are separated by twice the modulation fre-
quency. Various aspects of this problem have been studied. For example the
fluorescence spectrum of an atom driven by a bichromatic field of equal ampli-
tudes (Rabi frequencies) was observed [5] and interpreted using a dressed-atom
analysis [6]. Since then a wide variety of studies have been performed on the
fluorescence, near-resonant absorption, and Autler-Townes absorption of bichro-

matically driven atoms for both equal [7] and unequal [8] Rabi frequencies, and
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for average driving field frequency both tuned to and detuned from the atomic

resonance [9],[10].

Much attention has focussed, in these studies, on the appearance of the “sub-
harmonic resonances” displayed by the absorption spectrum of a strong probe
beam monitoring a strongly driven two-level system [10-13]. The experimen-
tal data collected to date relating to the subharmonic absorption maxima of the
strong probe also corresponds to a study of the maxima of the integrated intensity
of fluorescence by the atom when one component of the driving field (the “pump”)
is fixed in its frequency and intensity, while the frequency and/or intensity of the
second component (the “probe”) is varied. The connection of these subharmonic
resonances with multi-photon gain has also been explored [14], and a two-photon
optical lasing has been observed [15]. However, a “strong probe” is an intense field
which itself alters the characteristics of the system it is supposed to be probing.
Based on this observation, we will therefore consider this system from the point
of view that both laser fields “dress” the atom and analyse the energy states of
the resulting system. We will show that the system is both in principle and in

practice more profitably regarded in the context of this bichromatic excitation.

In the studies of resonance fluorescence from two- or three-level atoms under
bichromatic excitation, both driving fields couple to the same atomic transition.
In the related studies of multi-level atoms driven by n coherent laser fields each of
the fields couples to only one of the n possible one-photon transitions [16}; in this
latter case a multiphoton absorption is possible, but the driving fields can lead

to only a “one-photon AC Stark effect”. In this chapter we will study a system
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in which two fields drive the same atomic one-photon transition, yet nevertheless
the second field can couple to multiphoton resonances between dressed states of
the first field. We will find a new physical phenomenon: the splitting of the
dressed states is due to an n-photon coupling between them, i.e. it represents
an n-photon AC Stark effect. The fundamental dynamics of this system can be
investigated by examining the fluorescence spectrum, as well as the weak probe
absorption and Autler-Townes spectra. We will focus in this chapter on the
driving of the singly dressed system by a laser field tuned to the subharmonic
resonances, and use the dressed-atom model both to explain the physical origin
of novel spectral effects and to demonstrate that far more detailed information
is in fact obtainable by suitable probing. The calculated fluorescence, probe
absorption and Autler-Townes spectra are extremely rich in detail, containing
multiplets at the subharmonic as well as harmonic resonance frequencies with an
intricate dependence on the order n of the resonance and on the relative Rabi

frequencies of the driving field components.

In principle it is possible to write down and numerically solve the master equa-
tion or the Bloch equations of the system including all of these effects; this does
not however lead to physical understanding of the problem. In order to gain
insight into the dynamics of the system, we will use the “dressed atom” model,

which was briefly discussed in Chapter 2, for our bichromatically driven atom
[19].

The chapter is organised as follows. The energy levels of the entangled sys-
tem of atom+driving fields (i.e. the doubly-dressed atom) are calculated first in
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sections 3.2 and 3.3. Resonance fluorescence appears in this picture as a sponta-
neous emission cascade by the dressed atom down its ladder of energy manifolds.
The absorption spectrum is interpreted as the net difference between absorption
and stimulated emission of a weak, quasi-resonant probe between the manifold
sublevels, while the Autler-Townes spectrum reflects the net absorption from the
manifold sublevels of a weak probe tuned to a third atomic level. These spectra
are calculated in section 3.4. In section 3.5 we discuss briefly the situation that
occurs when the role of the two driving fields is reversed. In section 3.6 the results
of this chapter are summarized. Appendix A contains details of the perturbation

calculations involved in the determination of the dressed states.
3.2 The System

As in the last chapter, we will consider a two-level atom with ground state
|g) and excited state |e) separated by a transition frequency wg and connected
by a transition dipole moment Z. The atom is driven by a bichromatic field
with frequency components w; and ws and corresponding (on resonance) Rabi
frequencies 2§2; and 2Q;. The atom is also coupled to all other modes of the
electromagnetic field, which are assumed to be initially in their vacuum states.

This coupling leads to spontaneous emission with a rate I'.

The time evolution of the atomic system can be described by the reduced
atomic density operator p, which in the Schrédinger picture obeys the master
equation (A = 1) [20]

% = —i[H, p] - g(S‘*’S"p +pS*TST - 257 pSY), (3.1)
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where S*(S™) = |e){(g| (]g){e|) is the usual atomic raising (lowering) operator.

The Hamiltonian H is composed of five terms,

H=H,+H,+H;+V; + Vs, (3.2)

where

H, = wyS? (3.3)
is the Hamiltonian of the atom, and
H,=wala;, i=1,2, (3.4)

are the Hamiltonians of the driving field components. In equations (3.3) and (3.4),
S* = L(le)(el — lg)(gl) is the atomic inversion, and ai(a:f) are the annihilation

(creation) operators for the driving field modes. The terms
V. =gi(alS™ + S%a), i=1,2. (3.5)

where g; are the atom-field coupling constants, describe the interaction of the

laser fields with the atom (in the rotating-wave approximation).

We begin by diagonalising the Hamiltonian H to find the eigenstates (dressed

states) of the combined atom+driving fields system. This approach is valid for
wi,wo > Ql, Qz >T. (36)

For all but Section 3.5, we will consider the case of Q; = af2; with @ < 1, and
thus we can examine the effect of the second field perturbatively. Moreover, we

limit our calculations to the case in which the first field is on resonance with the
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atomic transition, w; = wp, and the second field is detuned from resonance by an

integer fraction of the first field’s Rabi frequency, so that

2Q
w2 =wp + Tl (3.7)

This corresponds to driving the system by the second field at one of the “subhar-
monic resonances” of the Rabi frequency of the first field. The case of n = 1 has
recently been examined both theoretically [21] and experimentally [22]. As we
shall see the situation for n = 2, 3, ... produces dramatically different results. An
n-photon coupling between dressed states leads to the appearance of multiplet

features at subharmonic as well as harmonic resonance frequencies in the spectra.

The diagonalisation of H leads to the dressed states of the system and their
energies. However, instead of performing the diagonalisation of the total Hamil-
tonian by treating the driving fields as a single combined field, we first diago-
nalise the Hamiltonian Hy, = H, + H, + V; and calculate the dressed states
of the atom-+resonant field system. Next we couple the resulting singly-dressed
atom to the detuned field and calculate the dressed states and their energies of
this “doubly-dressed” atom. The eigenstates of the Hamiltonian Hy, satisfy the

eigenvalue equation

Hyo|N£) = [Nwo + Q]| N ), (3.8)
where
20, =21/ (N) (3.9)
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is the Rabi frequency of the resonant fieldf

1

INE) = —

(lg. N) £ le, N — 1)) (3.10)

are the singly-dressed states, and N is the number of photons in the resonant
mode [19]. The singly-dressed states form a ladder of doublets, as shown in
Figure 3.1(a), with adjacent doublets separated by wp, and intradoublet splitting

2Q;.

Next, we add the second field and find that the eigenstates of the combined
system Hgy, + H» are degenerate doublets
(N +n—-m)+,M —n+m) = |al),
(3-11)
(N —m)—, M +m) = |b],),

with energies

Eq

m

=Ep, =(N+Mwo + %[2(M +m) — n.], (3.12)

Here the second state of the tensor product denotes the number of photons in the
detuned mode. In state |b]}), for example, the (singly-dressed) atom is in state

|(N — m)—), and there are M + m photons in the weaker field.

The degeneracy of the states (3.11) is due to an n-photon coupling between
singly dressed states, as indicated for n = 2 by arrows in Figure 3.1(a). Thus,

to this point, the energy structure of the system consists of an infinite number

t In the derivation of Eq. (3.6), we have ignored the variation of ; with N, on
the basis that the resonant laser is in a (large amplitude coherent) state with an
average number of photons (N) > 1.
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Figure 3.1 (a) Energy levels of the singly-dressed atom. Absorption of two
laser 2 photons of frequency we = wqg + 21, corresponding to the case of n = 2, is
indicated by the arrows. (b) Energy levels of the singly-dressed atom and laser 2
before the interaction between them is “turned on”. The energy manifolds each
contain an infinite number of degenerate doublets with interdoublet separation
2. (c) Addition of the interaction with laser 2 removes the degeneracy and
leads to the splitting of the degenerate levels into doublets with an intradoublet

separation 2AE).

of manifolds (separated by wp), each containing an infinite number of degenerate
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doublets (separated by 2§, /n), as shown in Figure 3.1(b).

36



3.3 The doubly-dressed states and energy split-

tings

The addition of the interaction V; between the atom and field mode 2 removes
the degeneracy between the states |al,) and |b},) and results in “doubly-dressed”
states. In order to show this, we diagonalise the Hamiltonian H = Hg,+Hs+V2 in
the basis of the degenerate states |al,) and |b2,). We perform the diagonalisation
using perturbation theory, and find that for n = 2,3,... it is necessary to go
to second-order degenerate perturbation theory to achieve this. This is due to
the fact that the matrix elements (¢|V2(8) (o, 8 = a,b) are zero, and the first
non-vanishing perturbation calculations therefore involve diagonalisation of the

operator
Vali) (i[ Ve

R =
E,— FE;

i#a,b

(3.13)

on the two dimensional degenerate subspace {|a), |b)}.

The details of the perturbation calculations are shown in Appendix A. After
lengthy calculations, we find that the eigenstates of H are composed of non-
degenerate doublets with splitting 2A E,, (as shown in Figure 1(c)), where AE,,,

for n = 2,3 and 4, are given by the series expansions

~ 1, 493 , 9128107 .
ABy =v13 (6" 2808° 52565760 +)

9 , 36117 , 132460191 ,
ABy = (32 40060" ~ 26214400 ) (3.14)
4 254 9384656
A 2 4 6
By = Ql( 5% T 3375” ¥ 5315625° )
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The corresponding eigenstates (the doubly-dressed states), calculated as a per-
turbation expansion in «, are given by

n=2:
(N +M)m+) = Np(nla) + 18 + o = (7 + Dlar) + [ba) +7la_1) + (7~ 1)]b_1)

+}las) - knlb_o)] + o? [ (1a) — ml6)) + (31 — Dlaz) + [ba)
+nla_a) + 20+ 3)lb_2) + }las) — dnlo_0)]),

(N +M)m=) = Ny(la) = 16} + Je[(n — Dlar) = nlby) +lay) + (7 + Dlby)
—$nlas) — 31b_s)| + a2 | (nla) + 18) + (3 + 2n)laz) — nlba)

Hla_2) + (2 = 3n)lb_2) — $nlas) - 316-0)]),
(3.15)
n=3:
(N +Mm+) = Na(la) + 3a[31) - far) + la_a) + $1b_a) - 1[b-0)]

+Za?[1161) — 1b-1) + Sla2) + Flb_o) + Has) — Flb_s)]),
(N +Mym=) = Ny(16) + 2a[Fla) + Ib1) — 1521) = Hlaa) + Llas)]

+%a?la) - $la_) + §lba) — Flas) + Hb_a) + las)] ),
(3.16)
n=4:
(N +Mymt) = Na(la) +afla_s) — lar) + 3lb_g) — Hlbs)]

+0? [ 3216) + Flaz) + Fla_a) — 3lboa) + Flb_o) — Zlo-6)]),
(N +M)m=) = Na(16) +alb) = [b1) — las) + Llas)]

+a?3la) + 3lb_2) + Zlba) + Elaz) — Flas) + Zlas)) ),
(3.17)
where n = -3 — @, and Mz = [(1+7?)(1 + Ja®)]™ %, N3 = [1 + 814273,
Ny = [1+$242)]=% are the normalization constants, and, for simplicity, we have

introduced the notation |a;) = |a} ,;), |b:;) = |07, ;) for i # 0 and |ag) = |a),

lbo) = [b).

We note the interesting effect that the operator R! in second-order lifts the

degeneracy between the |a) and |b) states for all n > 2; however a mixture of these
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AE, /0,

Figure 3.2 The n-photon energy splitting AE,,/Q;, plotted as a function of
a for n = 2 (solid line), n = 3 (dashed line) and n = 4 (dashed-dotted line).

states to zeroth-order in a does not occur for n > 2. To understand this we refer
to the operator R!, whose diagonal elements represent the shift of the degenerate
states due to their coupling, through V, with other states of the manifold. Since
(a|RYja) = —(b|R}|b) # 0O for all n, the states are always shifted in opposite
directions, which lifts the degeneracy at second order. The off-diagonal elements
of R! represent a coupling between the degenerate states through the other states
of the manifold. It is not difficult to show that for n > 2 these off-diagonal
elements are zero; hence the matrix representation of R! is diagonal and no

superposition of the states occurs until order o
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The splittings AE,, are plotted in Figure 3.2 as a function of a. Clearly for
small o the splittings exhibit a quadratic dependence on «, and decrease with
increasing n. Moreover for o« < 0.1 the splittings for n = 3 and 4 are almost
exactly equal. This is a consequence again of the fact that for n > 3 the states
|a) and |b) do not couple to each other through R!, which results in the leading
term of the expansion for AE, rapidly approaching %Qlaz for large n. Thus as

n increases, the small a behaviour of the splittings becomes almost identical.

3.4 The fluorescence, weak probe and Autler-

Townes absorption and dispersion spectra
3.4.1 Spectral frequencies and transition rates

The interaction between the atom and the vacuum modes of the electromag-
netic field leads to a spontaneous emission cascade down the energy manifold
ladder of the dressed atom. Transitions occur between any pair of dressed states
with a probability proportional to the absolute square of the dipole transition
moment connecting them. Using the dressed states (3.15)-(3.17) we find that the
transitions from |(N + M)mo) to [(N + M —1)(m+ j)e) (¢,0 € {+, —}) occur at

frequencies

E '221 (3.18),

and

2
wFF = wp — j—%l +2AE,, (3.19)

indicating that the fluorescence spectrum will consist of a series of triplets with

intratriplet spacing 2AFE,, centred at integer multiples of 2€2;/n, i.e. at both
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sub- and super- harmonics of the strong field Rabi frequency. Non-zero transi-
tion probabilities occur only between states within neighbouring manifolds. The

relevant transition rates are therefore of the form
[7¢ =T [{((N + M)ma|S* [(N + M — 1)(m + j)¢)|? (3.20).

These transition rates (normalised to I, as are all relevant results presented hence-
forth) are presented explicitly below. In order to show the first non-vanishing
terms in the transition rates, the calculations for n = 2 are presented correct to

order a?, whereas for n = 3,4 they are presented correct to order a?.

For n = 2 the transition rates (3.20) are given by

I = Llo? £ = (11-177,- + 441%3)02

P4 =g - Hee® T = gh+ 3 (1005 %0m )

Pi:i = ;_g_a2 F:-b:F — % 2

Ig* =4 - Z%a® IFF =§-(738)e (3.21)
TEE = 402 I = La?

DF* =g - ke IFF =3+ - (857 4R

TEE = Lo I$% = (&7 8)

The left hand column of (3.21) consists of those transition rates which contribute
to the central components of the fluorescence triplets, the right hand column are

transition rates which govern the intensities of the triplet sidebands.
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For n = 3 we find the transition rates which govern the intensities of the central

component in each fluorescence triplet are given by

rE
Fij:
i
il
i

T
= $la? + 3858344 r
- 2o r
- e - T

. 8L 2 _ 45927 4

= 1024 65536

_ 263169 4

= 409600

_ 812 _ 677889 4

= 256 163840 (3.22a)
_ 6561 .4

= 16384 %

while those governing the intensities of the sideband components of each triplet

are given by

¢~
-
r+-
Iy
-
r+;
Ny

r+-

For n = 4 we

=81
= 64

a? — 8yt Lyt
i L
ssolat r-f

= Toaes0’ rs*
|- Mo+ M T
35ea® — Tesmac’ ry*
B re*

Fo:ti = % — %az - 15409642‘;6 4 [\:lt:!:
P o= et fet I3
I‘:i::t %a‘* Ffi
I'tf =244,

— 3969
~ 4096

-3
— 64

__ 6561
= 16384
_ 8L 2 _
= 256 ¢

81,2 _ 18549 .4
64 1280

ot
6561 4
16384 %

2 __ 50949 4

a” — 4960

1 _ 507

2 | 55103607 4
31~ 512® 1 6553600 ¢
ot

(3.220)

105219
81920

ot

6561 4
16384 % -

find the central component transition rates are given by

16 .2 _ 3136 4
225 50625
_ 16 .4
= 325@
25 4
36

(3-23a)

while the sideband transition rates are given by

P
Iy
i
i
s
i

— 29§a4 F6_+
— 580_10a4 P2_+
= o2 - B ry*
=1 - fe’ + et 17
= 50’ — fgrgot s+

sezs 0’ Ts+
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_ 2572, 95321
225" t 101250

16,2 _ 1024 .4

25 625 &
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(3.23b)

95321 .4

__ 1936 .4
= 5625 %



An examination of (3.22) and (3.23) reveals that the only transition rates
which have nonvanishing terms independent of o are I'f*, which correspond to
transitions at wp, and I‘if , which correspond to sidebands of the triplets at +2€2;.

These are the locations of the Rabi sidebands for monochromatic driving.
3.4.2 Populations of the dressed states

We use the master equation (3.1) to find the time evolution of the populations
of the doubly-dressed states and of the coherences between them. To study the
populations, we project the master equation onto [{N + M)m=) on the right and
(N + M)m | on the left. We make the secular approximation in which we
ignore couplings between populations and coherences and introduce the “reduced
populations” [19]

L = ) " ((N + M)m £ [p|(N + M)m). (3.24)
N.M
Because N, M > 1 we can also assume that the populations vary very slowly with

m, and so

nE~nt, ~. =0% (3.25)

The population equations then reduce to a pair of coupled equations

II* = FATOt + AT, (3.26)
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where the dot denotes differentiation with respect to I't, and the coefficients A%

are given by
n=2:
At = 35 ( 61
104 24336
n=3
1 381
At = -+ —a?-
4 512
_ 1 285
A" =-—-"a®-
4 512
n=4
1 17
At = -+ —o?
4 225
_ 1 13
A" =-—-—"a%+
4 225

vi3\ , 99556813 259V13\ 4
+ — o + F a’;
12 455569920 2808

4421529 4
——a

b
819200
5538249 4 (3:27)
@

819200

158051 ,

]

101250
136931
—at.

101250

The equations (3.26) have steady state solutions

which yield explicitly

= A¥
HSS = A+ + A_ ] (3.28)
1_13VI3 , , 4502VI3 ,
=-F (0] —_—
2 105 33075
3 ,__ 2241 4 (329)
=-F —a’F —of,
2 16 2560
1 2 688
=-F -’ F —at
2 15 3375

In the case of resonant monochromatic excitation, the dressed states are

equally populated (in the secular approximation). However the atom still exhibits
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weak emissive and absorptive properties which arise from multiphoton processes
[17],(18]. In the case of bichromatic driving however, the populations [IEf de-
pend on @ and are unequal even within the secular approximation. This results
in first-order absorption and emission at all sideband frequencies, with central
components which still vanish, because they correspond to + <& + and - & —
transitions (which involve equal upper and lower state populations). The differ-
ence between the populations depends intricately upon the strength of the second
laser and decreases with increasing n, indicating a decreasing efficiency of the
second laser. The effective Rabi frequency of the second laser decreases with

increasing n, as the laser drives the higher order resonances.
3.4.3 Coherences and spectral linewidths

All spectra of the system are related to the time evolution of the atomic dipole

moment operator St given by

+
S+ = Z Slt,mopl(e,r)na',N,M’ (3.30)
N.M

le,mo

+
where S .,

= (N + M)le|ST|(N + M — 1)mo), and
oty e = (N + M)le >< (N + M — L)mo|. (3.31)

The matrix elements of the off diagonal operators (3.31) represent coherences

between the dressed states, and these oscillate at frequencies (3.18) and (3.19).

First, we consider transitions at the frequencies of the sidebands (3.19). For

values of §2, and Q, corresponding to the range (3.6), it is easily verified that
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the spectral lines are all nonoverlapping. The equations of motion of the corre-
sponding density matrix elements are therefore uncoupled and from the master

equation (3.1) we find that they are given by
premenm = —(iEE + T5) pie mz,N M, (3.32)

where the linewidths I'y are

n=2
69 61 99556813
'y = =+ ——a?+ —0
104 24336 227784960
n=3
3 333 5 4979889 , (3.33)
Iy=-- —a —_—
4 512 819200
n=4
3 2 147491
g=-—— 2 _ at.
4 225 101250

Next we consider the transitions at the central component of each triplet. In

this case the two matrix elements pl(I')m + .M and pff’)m_‘ ~up oscillate at the

same frequency (3.18), and therefore have coupled equations of motion. When we

average over the driving field, the reduced coherences p,(I ,)mi_ =Y Num p,(I .)m:t. N.M

are found to obey the same coupled equations of motion as do the populations
I1%, with the addition in each of the freely oscillating term —-iwf_fnp,(;')mi, given
by

preme = —(WwiEE + A)pix s + AT piz mz (3.34)
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The associated dipole moments p,(I?m = .‘5’,*:}:,"‘:t sz,)m:t then obey the equations
A+ .
B s (6) = —(iwiEE, + A)p(}) L (1) — AFp(F) (), (335)

whose solutions are readily found to be

sty = tu1 AFe ™ilnt 4 yye=wiln 4ot (3.36)

where the constants u, and u, can be found from initial conditions. We do not
however require the values of u; and u; in order to calculate the spectra and
therefore do not solve for them. The first term in (3.36) corresponds to the
elastic components, while the second term corresponds to the inelastic central

components at frequencies w,*fn with linewidth given by

F.=At+ A", (3.37)
For all n we find I'c = 2(1 — T,). We see from (3.33) and (3.37) that the spectral
linewidths depend on a such that the linewidths of the sideband components

of the triplets decrease with increasing n, whereas the linewidths of the central

components increase with increasing n.
3.4.4 Fluorescence spectrum

The fluorescence spectrum is given by the real part of the Fourier transform of
the correlation function of the dipole-moment operator (p{*)(¢t)p(~)(¢')), t > ¢'.

From the quantum regression theorem [24], it is well known that for ¢ > ¢’ the
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Figure 3.3(a) The fluorescence spectrum for w; = wq, w2 = wg + 2Q; /n, with
2Q; = 160I", a = 0.35, and n=2.

two-time average l(:",)w(t)p(‘)(t’ )) satisfies the same equation of motion as the

one-time average (p,(:',)ne (t)), with the initial conditions

() (tp () = I§e 105, (3.38)

le,;mo

where I'?_ are the transition rates given by (3.21)-(3.24), and IT§, are the steady-

{—m

state populations of the dressed states given by (3.29). The equations of motion

for the one-time averages (p,(:' ,)M(t)} were obtained in section 3.4.3. Thus, in the
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Figure 3.3(b) The fluorescence spectrum for w; = wp, wy = wg + 2821 /n, with
2Q2; = 160I", a = 0.35, and n=3.

limit of large Q; (22 > I'), where the spectral lines do not overlap, the fluorescence

spectrum (apart from geometrical and atomic factors) is given by

50 = i I, IS+ T,
B (w—wf7)2+T2  (w-—w;*)2+T?

j=—o0
(F;""HI, + I‘J-—_II;S)FC
(w—wi*)? + T2 '

(3.39)

where the sum over j indicates a sum over the nonvanishing transitions as given by

(3.21)-(3.23). In Figure 3.3 we plot this analytical expression for the fluorescence
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Figure 3.3(c) The fluorescence spectrum for w; = wp, w2 = wg +2Qy /7, with

2€2; = 160T", @ = 0.35, and n=4.
spectrum for n = 2,3 and 4.7 It is seen that for all n the spectrum consists of a
series of triplets with intertriplet spacing 282, /n and intratriplet spacing 2AFE,,.
With increasing n, the number of triplets increases while the splitting of each

triplet decreases. The structure of the spectrum reveals the presence of both

T We note here that the master equation (3.1) has also been solved numerically,
and we have found that in order to get excellent agreement between the numerical
and the present analytical results, we have to extend the dressed atom calculations
to order af. Therefore, all the spectra plotted here include the populations and

transition rates correct to a®.
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Figure 3.4(a) The near resonance weak probe absorption spectrum for w; =
wp, w2 = wp + 28, /n, with 2Q; = 160I', @ = 0.35, and n=2.

the multiphoton transitions (in the appearance of the subharmonic and harmonic

features) and the multiphoton AC Stark effect (in the intratriplet splitting).

3.4.5 Weak probe nearly resonant with w,: absorption

and dispersion

It is interesting to consider as well the absorption and dispersion of a weak

beam probing the doubly-dressed atom. Since the dressed states are unequally
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Figure 3.4(b) The near resonance weak probe absorption spectrum for w; =
wo, wa = wy + 2§21 /n, with 20, = 160T", & = 0.35, and n=3.

populated, the absorption spectrum can give information about population in-
versions between the dressed states. The absorption and dispersion profiles of
a weak probe beam of frequency w, are given by the real and imaginary parts,
respectively, of the Fourier transform of the commutator ([S~(t),S*(¢')]). The
term (S~ (£)S*(¢')) of the commutator is associated with absorption and the term

(ST (¥')S—(t)) with stimulated emission of the probe beam. From the quantum
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Figure 3.4(c) The near resonance weak probe absorption spectrum for w; =
wo, wp = wp + 283 /n, with 2Q; = 160T", = 0.35, and n=4.

regression theorem [24], it is well known that for ¢ > ¢’ the two-time commuta-
tor ([S}; o (t), ST(¢')]) satisfies the same equation of motion as does the density

matrix element [p(+) (t)] , with the initial condition

le,mo

({Siemo (), ST(E)]) = T2, (15, ~ 115, - (3.40)

le, mao

Thus, it is straightforward to show that in the case of nonoverlapping spectral

components the absorption spectrum of a probe beam nearly resonant with the
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Figure 3.5(a) The near resonance weak probe dispersion profile for w; = wy,
w2 = wg + 291/17., with 20, = 160I', a = 0.35, and n=2.

atomic transition frequency is given by

© (T (M5 -0#H)T, 7T —05)0,
( 7 ( ss ss) ] ( ) ), (3'41)

%74 =
(wp) z (wp — (.‘.v;'_)2 +I? (wp— mj"*')2 +I'2

j=—o0

and the dispersion profile by

D)= 3 O~ (05 - ) (wp —w™) | D7 (I — TI5) (wp —wy ™)
P = (wp —wi7)2+ 12 (wp —w; )2 412 :

(3.42)
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Figure 3.5(b) The near resonance weak probe dispersion profile for w; = wy,
we = wg + 28 /n, with 2Q; = 160", o = 0.35, and n=3.

The expressions (3.41) and (3.42) are plotted respectively in Figures 3.4 and
3.5 (absorption is upwards in the diagram). They contain features at the same
frequencies and with the same linewidths as their counterparts in S(w), but with
widely differing intensities depending on a. As the calculations have been made
within the secular approximation, there are no (small) central features in the
components of the absorption spectra. Therefore the absorption spectrum and

the dispersion profile are composed of doublets centred at the frequencies wji;.
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Figure 3.5(c) The near resonance weak probe dispersion profile for w; = wy,
we = wp + 2§2;/n, with 2Q2; = 160T", o = 0.35, and n=4.
In each doublet of the absorption spectrum one sideband is absorbing and the
other amplifying depending on the difference in steady-state populations of the

lower and upper levels of the transition.

It is interesting to note from Figure 3.4, that with increasing n the maximum of
amplification and absorption shifts from the central doublet to the Rabi sidebands.
The same occurs with the dispersion, as seen in Figure 5. Moreover, as n increases

the red features become exclusively emissive whereas the blue features become
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only absorptive. The amplification at frequencies smaller than wq is relatively
large compared to the absorption at frequencies greater than wyp, in contrast with
the monochromatic case, where the amplification at one of the sidebands is always

small compared to the absorption at the other sideband [3].

The dispersion, shown in Figure 5, also exhibits interesting modifications. For
example, in the region between the central doublet there is a strong negative
dispersion with minimal absorption. For n = 2, this effect is also seen in all
harmonic and subharmonic doublets. With increasing n the negative dispersion
decreases in the harmonic and subharmonic doublets whereas the central structure

is remarkably stable against variation in n.

It should be emphasised here that this system may prcve useful in the pro-
duction of optical materials having a large index of refraction accompanied by
vanishing absorption [25]. An advantage of this system is that near the central
frequency, where the absorption vanishes, both the absorption and dispersion
change slowly with frequency. Therefore, our system is a convenient candidate
for this experimental application, since it does not require a precise matching of

the probe beam frequency to the point of vanishing absorption.
3.4.6 Autler-Townes absorption and dispersion profiles

The structure and properties of the doubly-dressed atom can also be studied by
monitoring the system with a weak probe beam coupled to a third (bare) atomic
state. We assume that a third atomic level |c) is connected to |[g) with a non-zero

dipole moment, and with a transition frequency w, (from |g)) much different from
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Figure 3.6(a) The Autler-Townes absorption spectrum for w; = wp, w2 =
wo + 2§ /n, with 2Q; = 160T', « = 0.35, I'3 = I'/3 and n=2.

wp. The transition is monitored by a weak probe beam of frequency wj tuned

close to w.. The intensity of the features corresponding to absorption from the

dressed state [(IV + M)m=) is proportional to the product of the steady state

population IIZ and the transition rate from |(N + M)mxz) to |¢, N, M), which

itself is proportional to [19]

AZ =T3|((N + M)m % |g, N, M)|?, (3.43)
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Figure 3.6(b) The Autler-Townes absorption spectrum for w; = wg, wp =
wo + 283 /n, with 2Q; = 160T", @ = 0.35, '3 = I'/3 and n=3.

where I'3 is the natural width of level |c). These quantities are readily evaluated
using the dressed states (3.15)-(3.17). Intuitively the quantities (3.43) are a mea-
surement of how much of the ground state |g) is “mixed” in each dressed state,

and is therefore available to be probed up to the third level. The AL, normalised
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Figure 3.6(c) The Autler-Townes absorption spectrum for w; = wp, wy =
wo + 202, /n, with 2Q; = 160", @ = 0.35, '3 = ['/3 and n=4.

to I'3, are found to be given by

n=2:
AL =G FRF) A =GFR)-(SF e )
AP =GER -G AY = (e’

(3.44)

60



0.156
I

{
Tp)
ol
o
~
3
Te]
~ Q|
= ¢
n
i
St
[

-160 -120 —-80 -40 0 40 80 120 160
(wa—wc)/r

Figure 3.7(a) The Autler-Townes dispersion profile for w; = wp, w2 = wp +
2Q, /n, with 2Q; = 160I", « = 0.35, '3 = I'/3 and n=2.

n=3:
M=ot BENQt A7 = - Bt B
Af =Eat AT = 2ra? - 8200t
Aoy = s Aromme s mmet o
A7 = ga? - 888, A; =2t '
A; =3-880"+ Bt AL = oot
M= fhet- Mat A7 = ot~
AY = %ﬁa“ Ay = 36257%180:4
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Figure 3.7(b) The Autler-Townes dispersion profile for w; = wg, w2 = wg +
2Q; /n, with 2Q; =160, a = 0.35, '3 = I'/3 and n=3.

n=4:
A =Zo! Ay =3-%o?+ ot
AY =2a%- oot A7 = ga"’ — L4
Af =330 - 08 AZ, = 3o’ - Elat (3.46)
N = ot e G =g
A =5t AT, =3£at
A7 =2t

These are correct to order &? for n = 2, and order a* for n = 3, 4.
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Figure 3.7(c) The Autler-Townes dispersion profile for w; = wq, w2 = wp +
201 /n, with 2Q; = 160I", = 0.35, ['; = /3 and n=4.

The frequencies at which the absorption occurs from |(N+M)m=) to |c, N, M)

are given by

wE =, — (2n_3 ~ 1) F AL, (3.47)
while the linewidths are given by

(3.48)
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Accordingly, the Autler-Townes absorption spectrum can be written as

ATIIED ATII;.D
Alws) = 2 % 4 E ML , 3.49
(wa) zj:((wg—w;')z-i-l"g (w3 —w; )2+ T2 (3-49)

and the corresponding dispersion profile is

(3.50)

A;’H;",(w;; —wi) A7 (ws — wJ_))

T(ws) = ]
(wa) ;((ws—w;')2+]f‘§ (ws —w; )2+ T2

In Figures 3.6 and 3.7 we plot the Autler-Townes absorption and dispersion
spectra, respectively, for the same parameters as in Figure 3. Each consists of
a series of doublets, located at frequencies 2mS2,/n, where m = 0,+1,+£2,...
for n even and m = :t%,:t%,:tg,.,. for n odd. The intradoublet separation is
2AFE,,. The most intense doublets are those centred at the frequencies w. £ €2,
which correspond to the Autler-Townes frequencies of a monochromatically driven
atom. The width of all lines is I'y, and once again an intricate dependence of
the peak intensities on a is evident. Care must be taken when comparing the
transition rates (3.44)-(3.46) with the doublets in Figure 3.6. The transition
rates A(:,t correspond to the sideband doublet at w3 = w; + €21, not to the central
one, whereas Af: corresponds to the ith doublet to the left (right) of this intense

doublet if 7 is positive (negative).

3.5 Reversing the roles of the driving fields -

the o« >1 case

In sections 3.1 to 3.4 we considered the multiphoton processes that arise when

an atom driven by a strong, on resonance field is simultaneously driven by a
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second field detuned to a subharmonic resonance of the first. In this situation,
it is particularly easy to see, from the dressed atom picture, why scanning the
second field through detunings from 2{2; to zero picks up multiphoton effects
at the subharmonic resonances, i.e. at integer fractions of 2{2;. However we
considered only the regime where a = §2,/$2; was small. Experimentally, another
interesting phenomenon was noticed [26]. When the detuning of the second field
was held fixed but the strength was increased, for certain values of a which were
greater than one, more multiphoton resonances were observed. For instance, if the
second field started at a detuning corresponding to a two-photon resonance, then
for special values of a a three-photon resonance was observed. This section will
explain this phenomenon as an effect similar to that described above, although
we will look at it in considerably less detail than the “normal” multiphoton effect

considered previously.

Since the effect occurs when the second (off resonance) laser field is stronger
than the first (on resonance) field we will dress first around the second detuned
field. Remembering that there are M photons in this mode, and assuming an arbi-
trary detuning A, for the present (rather than the 2§, /n considered previously),
we obtain the well known singly dressed states

|M+) =sinf|g, M) + cosUle, M — 1)

(3.51)
|M—) = cosf|g, M) — sinfle, M — 1),

which are separated by a generalised Rabi frequency 2G = \/492i + Ag (see Chap-
ter 2). Here
sinf = = + 22 (3.52)



These dressed state manifolds are a distance w; = wp + A2 apart. In analogy
with Figure 3.1(a) therefore, we expect that when we add in the first, on reso-
nance, field we will see a k£ photon coupling (k = 2,3,...) between the dressed

states (3.51) whenever

2G = kA, (3.53)

or, in terms of the strong field’s on resonance Rabi frequency, when

20 = Vk2 — 1A,. (3.54)

Notice that (3.54) is a criterion which involves only parameters of the second
(assumed strong) field. Now if A, was 2Q;/n, we can easily see from (3.54) that

the values of o for which the k£ photon resonance will occur are given by
a=+Vk?-1/n. (3.55)

Obviously we must have k > n, since we have implicitly assumed that a is greater

than 1.

Another way of interpreting (3.54) is as a condition on the value of A;. This
is in fact what we will do in this section, since the calculations will then be
similar to those of the previous sections. In particular we shall treat the first,
on resonance, field as a perturber and redo the previous analysis in terms of the
parameter 8 = 1/a = Q;/Q,. Thus we have Ay = 2Q/Vk? — [, sin?6 =1 + L
and G = kQy/Vk? — 1.
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For the sake of brevity, we will examine only the two photon resonance that
occurs when A = 2Q,/v/3. The analysis is very similar to that outlined in the
previous sections, and only a summary of the results will be presented here. Once

again we find pairs of degenerate doublets (k=2)

(M - k+m)+,N+k—m) = |ak),
(3.56)

(M +m)—, N —m) = |bF),
Notice that we dress the atom first by the field ws, and thus the first state in
the tensor product corresponds to this (detuned) field, while the second state

corresponds to the number of photons in the w; = wp mode.

We proceed as before to find the dressed states. As before, these form an
infinite set of doublets on manifold (V + M) (see Figure 3.1), with the manifolds

now a distance wy apart, the interdoublet splitting now 2G, and the intradoublet

splitting given by

1 65077
AE = Q,V3V —p - ). .
2V/3V/439 (48,3 4045824ﬁ4+ ) (3.56)

We notice that this two photon splitting is bigger than the corresponding expres-

sion (3.14a), and thus may be more experimentally accessible.

The transition frequencies analogous to (3.18) and (3.19), which determine
the positions of the fluorescence and near-resonance absorption spectral lines, are
given by

wit = wy — jA2 (3.57),

and

wiF =wp — jA, + 2AF, (3.58),
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while the Autler-Townes transition frequencies are given by

Proceeding as before, we find the steady state populations to be given by

Wit =wz - (j - g)z_\.2 + 2AE.

T = i 56v439 3633899527439 P
=32 1633 T 603071902144 " '
and the linewidths by
_ 4633 _ 58120913 56290951/439 2
©= 7024 592038912 173270054912 ’
- 9415 58120913 7172145/439 2
* 714048 1184077824 346540109824 )

(3.59)

(3.60)

(3.61)

(3.62)

To compute the fluorescence we need the transition rates. These are given by
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The expression for the fluorescence spectrum is the same as in equation (3.39),

and is plotted in Figure 3.8. Note that we plot S(w) versus (w — wg)/T’, not

the more natural (w — w9)/T". This is done purely to make the spectrum more

symmetrical and easier to compare with Figure 3.3(a).

The Autler-Townes spectrum 1is also easy to compute. The line weights are
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Figure 3.8 The k=2 fluorescence spectrum for w; = wq, w2 = wg + A2, with
with A, = 160/v/3, 2Q; = 160T and 8 = 0.35.

given by

At = (-2 _49v439 , 7/3/439 _ V3 32
-1~ \1s2 42144 28096 128
+ _ (/3 , 3347069v439  53v3v439 _ 52394597 2 __7V/439 1
Ay = (64 + “Soa03s912 T = 56192 206019456 ) O 878 1 1
+ _ (9 , 45V3v439) p2

Ay = (ﬁ + “28096 ) s (3.67)

AF = (53v3/439 _ /3 _ 52445627 _ 3347069433 B2 + 7439 1
2 56192 64 ~ 296019456 592038912 878 3
+ _ (.7 ., 49v/439 | 73439 | V3 )\ 52

Ay = (192 + “2144 T “2s0s T 128) O
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Figure 3.9 The k=2 Autler Townes absorption spectrum for w; = wg, wg =
wo + Az, with A, = 160/v/3, 2Q; = 160, 8 =0.35 and '3 = I'/3.

and

A-. = (48v439 _ 7v3y439 _ V3 + L) 32
-1 T \ 42142 28096 128 7 192

A- = (—3354359v435 _ 53y3v/439 | V3 _ 52445627 B2 + 143
o - 592038912 56192 64 ~ 296019456 878
- _ (8 _ 45v3/439) 2

Ay = (32 28096 )ﬁ (3.68)

AT = (-53VY3v435 _ V3 _ 52394597 , 3339779439 B2 — 7v/439 +1
2 = 56192 64 ~ 296019456 592038912 878 4
- _ 49v439 _ 7v/3v439 |, V3 2

Ay = (_ 42144 — 28006 T 128 T 193 192 g
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The Autler-Townes spectrum is plotted in Figure 3.9, and can be compared to

Figure 3.5(a).
3.6 Conclusions

In this chapter we have first studied the effect of bichromatic excitation on
the radiative and absorptive properties of a two-level atom under the condition
that one of the excitation fields is strong and exactly resonant with the atomic
transition, while the other is weaker and detuned by a subharmonic of the Rabi
frequency of the strong field. The energy levels of this system have been found
and the radiative and absorptive properties interpreted in terms of the transitions
between them. We have seen that this system, despite the one-photon coupling
between the atom and driving fields, exhibits a multiphoton AC Stark effect.
As such the fluorescence, absorption and Autler-Townes spectra exhibit spectral
features at subharmonics as well as harmonics of the Rabi frequency of the strong
field, with the number of features dependent on the order n of the resonance. The
presence of the multiphoton AC Stark effect leads to a splitting of these features
into a triplet (fluorescence spectrum) or a doublet (weak probe and Autler-Townes

spectra).

We also briefly considered the situation that arises when the stronger field is
detuned and the weaker field is on resonance, and showed that a multiphoton

coupling between the dressed states is once again possible.

Finally, it should be noted that the multi-photon splitting and the Autler-

Townes spectra of a system similar to that considered here, have recently been
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observed experimentally [23] and our theoretical predictions agree with these ob-

servations.
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4. Subharmonic resonance shifts
and suppression of fluorescence
in a two-level atom driven
by a bichromatic field

4.1 Introduction

The purpose of the present chapter is to apply the treatment of the resonance
fluorescence from a two-level atom driven by a bichromatic field discussed in
Chapter 3, to a (practical) scenario in which one can suppress fluorescence at the
frequency wy without population trapping. In the case of interest, the stronger
field component is kept exactly resonant with the atomic transition frequency
while the weaker field is detuned. We analyse the problem both by a numerical
integration of the optical Bloch equations of the system and by the dressed-atom
model, which provides a simple explanation of the numerical results. We find
the interesting result that under certain conditions the system does not fluoresce
at either the frequency w; of the strong component or the three-wave mixing
frequency 2w; — ws, where wy is the frequency of the tunable component. This
occurs whenever the weaker component is detuned from the atomic resonance by
an amount § close to either the Rabi frequency 22, of the strong component or
one of its subharmonics 22, /n, n = 1,2, ... However, suppression does not appear
for detunings exactly equal to a subharmonic frequency; rather, it appears for

detunings slightly shifted from them. We interpret the shifts as arising from the
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interaction of the weaker field with the strongly driven system and attribute this

effect to a dynamic Stark shift.

A suppression of fluorescence at some frequencies has been predicted previ-
ously for other systems [8]. For example, in three-level atoms fluorescence can
be eliminated between some of the levels or even completely suppressed if the
atoms are excited to a certain coherent superposition of the levels. Furthermore,
in multi-level atoms it can be suppressed by quantum interference of transition
amplitudes from two closely lying atomic levels (8] or even well separated levels
[9] to a third level. Two-level atoms driven by a strong laser field can also exhibit
a suppression of fluorescence when the atoms are damped by a squeezed vacuum

[10], or are placed in a narrow bandwidth cavity [11].

The suppression effects listed above all have a common origin: the trapping
of the atomic population in certain atomic or dressed states. The cancellation of
fluorescence discussed here is different in that it can occur at some frequencies
without population trapping. These studies suggest then that one can, in princi-
ple, eliminate fluorescence without trapping or destroying the population of the

upper levels.

The chapter is organised as follows: In section 4.1, we study the fluorescence
spectrum of a bichromatically driven two-level atom by solving numerically the
optical Bloch equations of the system. In section 4.2, we provide a simple explana-

tion of the shift of the subharmonic resonances and the suppression of fluorescence

78




using the dressed atom model of the system. We summarise the results in section

43.
4.2. Optical Bloch equations

As in the previous chapter, we consider a two-level atom with excited state |e)
and ground state |g), connected by a transition dipole moment Z and separated
by a transition frequency wg. The atom is driven by a bichromatic field whose
stronger component is resonant with wp while the weaker is detuned. We calculate

the steady-state fluorescence spectrum of the system, defined as
oQ
Sw) =% / dr " lim (S*(5)S7(t + 7)), (4.1)
0

where R is the real part of the integral and S+ = |e){g| (S~ = |g){e]) is the atomic
raising (lowering) operator. In this section we compute the fluorescence spectrum
by solving the equation of motion for the two-time correlation function of (4.1)
numerically’. The average values of the atomic operators satisfy the following set

of (optical Bloch) equations [3],[7]:
ZE7(0) = —3T(5~(0) + 20 (1 + ™) (5%(1),
L8+ = ~JT(E* 1) + 21 + ac®)(5°1)),

%(S’(t)) = -%F = T(S*(t)) — Qu(1 + ™ )(57 (1)) — (1 + ae*)(S¥ (1)),
(4.2)

where

(S*(8)) = (SF)eTiwot,

' The numerical simulation of the Bloch equations is due to Dr. Z. Ficek.
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are the slowly varying parts of the atomic operators, S* is the average value of
the inversion operator, and I' is the spontaneous emission rate. In equation (4.2),
a = 3/§2; is the ratio between the “on resonance” Rabi frequencies of the weak
(2€22) and the strong (2€2;) components, and § = wy — wy is the detuning of the

weaker component of frequency wo.

Applying the quantum regression theorem [12] and the Floquet method [13] to
equation (4.2), we can find numerically the steady-state fluorescence spectrum.
For a more detailed description of the method, we refer the reader to [7]. In Figure
4.1, we present the spectrum for 2Q2; = 40I', @ = 0.4 and detuning § = 29, /n,
n = 1,2,3. All the spectral features are composed of triplets centred at wy,
wp £ 283 and wg £ m(29Q;/n) (m=1,2,..), the harmonics and subharmonics of
2Q2;. The figures indicate that there is no suppression at wy when the weaker
field is exactly tuned to a subharmonic resonance’. However, a careful analysis
shows that the central components of the triplets centred at wg and 2wg — w9 can
be made to vanish, but for detunings 4 slightly shifted from the exact resonance.
At these special detunings the splitting of the remaining doublet is seen to be a
minimum. In Figure 4.2, we display the amplitude of the fluorescence spectrum
at wg as a function of the detuning é for 2Q2; = 40I' and o = 0.4. We see that
the central line of the spectrum vanishes for values close but not exactly equal to
the subharmonic resonances of 22, indicating that the multi-photon resonances

to which the weaker field couples are slightly shifted from 20, /n.

t In the case of n=1, shown in Figure 4.1(a), there is in fact a small “bump” at
the central frequency indicating that even for n=1 the central component appears
in the spectrum. The line is more visible for higher values of & [7].
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Figure 4.1 The steady-state fluorescence spectrum for 2§2; = 40", a = 0.4,
and different n = 2Q,;/4: (a) n=1, (b) n=2, (c) n=3. ws is tuned exactly to the
subharmonic resonance. Figure courtesy of Dr. Z. Ficek
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S(w=w,)

Figure 4.2 The amplitude of the fluorescence spectrum at w = wq as a function
of 6/T for 2Q; = 40T and a = 0.4.

In Figure 4.3, we plot the fluorescence spectrum for 2Q2; = 40I", a = 0.4, and
the detunings & corresponding to the vanishing central line at wg. For n=1,2
and 3, the central line vanishes when §; = 40.4I', §; = 21.06I" and &3 = 13.93
respectively. This corresponds to the weaker field frequency shifted from the
n=1 resonance by A; = 0.4I' and from the n=2 (3) subharmonic resonance by
Az = 1.06T (A3 = 0.60I"). Apparently, at these frequencies not only does the line
at wg vanish, but for n > 1 so too does the central line of the lowest frequency red

triplet. This line corresponds to three-wave mixing at the frequency 2wp — ws.
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Figure 4.3 The fluorescence spectrum for 2Q2; = 40F, @ = 0.4 and different
0: (a) 6 = 40.4I" (b) 6 = 21.06", (c) 6 = 13.93I'. Figure courtesy of Dr. Z. Ficek
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In the next section, we use the dressed-atom model to derive a simple formula
for the shifts of the subharmonic resonances and to give a simple explanation for

the disappearance of the spectral lines at wy .

4.3 Dressed atom analysis

In this section, we apply the dressed-atom model [14] to study the system. This
analysis provides simple analytical formulae for the positions of the resonances
and explains the vanishing fluorescence in terms of the spontaneous emission
transition rates and populations. The dressed-atom treatment is valid in the
limits

wg, ws > N > N9, 4,

which correspond to the approximations made in the Bloch equations of section

4.2 as well.

We first find the dressed states of the system and their energies by applying
the double-dressing procedure, described in detail in [4]. In this technique, we
first dress the atom with the strong resonant component of the bichromatic field,
which results in the singly dressed states [14]

1

\/-z-(lg’ N) + le: N — 1))1 (43)

IN%) =

where |i, N) (i=g,e) is the state in which the atom is in state |¢) and N photons
are present in the strong driving mode. Next, we couple the resulting singly

dressed atom to the weaker component at frequency w2 = wo + 2Q;/n + A,.
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The eigenstates of the combined (uncoupled) system of singly dressed atom plus

weaker field are (nearly-degenerate) doublets (see Figure 4.4(a))

(N +n—-—m)+,M —n+m) =|a}),
(4.4)
(N —m)—, M +m) = |b3),

with energies
Er. —Nwo—91+m(£2—1+A ) — nl,,

a

(4.5)
E}. = Nwp - +m(— + A,),

where N = N 4+ M is the total number of photons. In state |6%,), for example,
the (singly-dressed) atom is in state |(N — m)—), and there are M + m photons

in the weaker field.

The combined dressed states (4.4) form doublets with intradoublet separation
ndA, and interdoublet spacing 22;/n > nA,. We treat the states (4.4) as basis
states, and calculate the effect on them of the interaction V3 between the singly

dressed atom and the weaker field given in the rotating-wave approximation by
V2 = g2(alS™ + S*ay), (4.6)

where g is the coupling constant between the atom and field, and a;(ag) the
creation (annihilation) operator of the field mode. Applying the interaction (4.6)

to the states (4.4), we find

1
‘/2|a'm) = EQQI(Iam+1) + ,a'm. 1) + Ibm-i—l-n) ]bn —l—n))a ( 7)
4,

1 n n
Valbrm) = 5080 (=100 41) = 1b—1) = l@mi14n) + 8T 14n)),
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. I anm-l > ° | N.(m—l)->
(a) (b)

Figure 4.4 Energy level diagrams of: (a) the combined (uncoupled) system of
singly-dressed atom plus weaker field, and: (b) the doubly-dressed system.

indicating that for n > 1 the states |a? ) and |b},) are not directly coupled to each
other by the interaction V5. Therefore, we must go to higher order perturbation

theory to find the perturbed states and their energies.

It turns out useful to first take into account the effect on |al,) and |b],) of
all doublets other than m; these states induce shifts of the energies of |a};) and

[d2.). Using perturbation theory, which for n > 2 requires going to at least second
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order, we find that to lowest nonvanishing order in a these shifts are

a?

= 4.
8(2+A1/QI)QI’ forn 1, ( 8)

1 _ 1 _
Raa = -Rbb -

and

n2 a2

2(n? — 1) (2 + ndn, /)

€, forn>1, (4.9)

R:a == gb =
where R7, and Rj, are the diagonal elements of the operator [14,15]

Va|ig) (i3 1V2

. 4.10
Egm - E::r ( )

R =

aEm

i=a,b

These diagonal elements cause the anticrossing point of the doublet energies,

Eg + R}, = Ep + R}, to shift by the amount

AT — %R;‘a, (4.11)
or (to lowest order in alpha)
ATHE — %ale, forn =1, (4.12)
and
Amin 2(n+aj1_)9“ forn > 1. (4.13)

It follows that the anticrossing point of the eigenstates (4.4) appears not at A, =0,
but rather at small detunings from the subharmonic resonances A,, = A™". For
the parameters used in Figure 4.3, the shifts given by equations (4.12) and (4.13)
are A" = 0.4T, A" = 1.066I" and AT = 0.60T", in perfect agreement with

the detunings found in the previous section.
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We now include the coupling by V; between the states |a},) and [b7,), which
leads to the doubly dressed eigenstates (Figure 4.4(b)) and energies of the sys-
tem. For n = 1 the states are coupled directly by V» [7]. For n=2 the lowest
nonvanishing coupling is given by the off-diagonal elements of the operator R? in
equation (4.10), while for n=3 we must compute the off diagonal elements of the

operator [15]

VIR GV 1Y
= Y B S B (414

Higher values of n involve operators with more intermediate couplings. For n=1,2

and 3, we obtain the following expressions for the shifts of the doublet energies

A1 —:f:an [(5;——8—) +a s
A2 0!2 2 az 271 2
— —_s _ - 4.15
A2 +Q, [(QI 3 ) + ( ) ) ' ( )
3 A;  3a?\? 2703\ | ?
Ao =£3th [(Q—l“ﬁ) +( 64 )

In Figure 4.5, we plot the intradoublet splittings 2A,, as a function of A,, for

from E7, :

n = 2 and 3 and for the same parameters as in Figure 4.3. The figure indicates
a clear minimum at A, = A™™. At these special detunings the intradoublet
splittings are given by the simple expressions

20T = o,

2ATHR = o2Q), (4.16)

2ATHR = 2—ia3§21.
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Figure 4.5 The intradoublet splittings 2),, as a function of A, for 2£2; = 40T,
a = 0.4 and n = 2 (solid line), n = 3 (dashed line).

Since the diagonal elements of the operators R}, and R, vanish at the minimum
detunings A™", we can easily determine that the dressed states are then given
by

N, )i = —(la,) £ 162). (417)

Having available the dressed states of the system, we can calculate the spon-
taneous emission rates. The probability of a spontaneous transition between any

two dressed states is given by

= . = Y
Lpigi = T |(N,ip|ST|N - 1,¢5)||", (4.18)
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where ¢,j = +, —. Using equations (4.17) and (4.4), we find that the transition
moments |N,m+) = |[N — 1,m+) and [N,m-) — |[N — 1,m-) are equal and
opposite, and therefore the transition rates I';y+ m+ corresponding to the central
frequency wg vanish. This leads to the suppression of the spectral line at wp.
Also, since the eigenstates (4.17) contain equal superpositions of the |al,) and |67,)
states, the populations I1; are equal at the points of minimum splitting. Thus, the
suppression of the fluorescence at wg results from destructive interference between
the transition amplitudes, and is not accompanied by the trapping or destruction
of the population of the dressed states. The suppression of the fluorescence at
2wg — wo is less transparent and occurs in higher order corrections which cannot

be determined explicitly from the zeroth-order dressed states (4.17).

It is worthwhile to explain the origin of the shift A™™. Ruyten [16] has
noticed that the subharmonic resonances are shifted from the 2Q,/n positions
and has termed the shifts the “generalised” Bloch-Siegert shifts. The original
Bloch-Siegert shift [17] in a driven two-level atom arises from the effect of the
counter-rotating terms in the atom-laser interaction Hamiltonian, which couple
states of a given manifold NV with states of the other manifolds N’ # N, separated
from N by distances of order wg. This coupling results in a (very small) shift of
the energy levels of order 22/wq. In the bichromatically driven atom discussed
here, the energy doublets within the manifold N are separated by distances of the
same order as the Rabi frequency of the strong component (see Figure 4.4(a)),
and the rotating wave terms of the interaction V2 couple a given doublet with

other doublets within the same manifold, resulting in a shift of order Q2/Q,,
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much larger than the Bloch-Siegert shift’. Thus, the shift A" of the spectral
lines calculated here represents a dynamic Stark shift of the doublet sublevels
due to their coupling by the weaker field to other levels within the same energy

manifold.
4.4 Conclusions

In this chapter we have shown that under certain conditions a selective sup-
pression of fluorescence is possible in a two-level atom driven by a bichromatic
field. The bichromatic field considered is composed of a strong component reso-
nant with the atomic transition frequency and a weaker component tuned near
a subharmonic resonance of the Rabi frequency of the strong component. The
weaker field couples the dressed states created by the strong field in an n-photon
process which results in a dynamic Stark shift of the states and consequently of
their anticrossing. This effectively shifts the position of the resonance. When
the weaker field is tuned to this shifted resonance, the system does not fluoresce
at either the strong field frequency wg or (for n > 2) the three-photon mixing
frequency 2wy — wa, and the doublet energy and spectral feature splittings are
a minimum. The fluorescence is suppressed without trapping or destroying the

populations of the dressed states. These effects have been explained in terms of

the doubly-dressed atom model.

Finally we point out that while the multiphoton AC Stark fluorescence spec-

trum has not yet been observed experimentally, the Autler-Townes spectrum has

t Inclusion of the counter-rotating terms into the interaction V2 couples doublets
from different manifolds, and yields additional shifts of order Q2 /wp.
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been observed {18]. Furthermore a minimum has been seen in the splitting of the

Autler-Townes doublets in agreement with the expressions presented here.
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5. Dressing the Atom in Fields of
Three Different Frequencies

5.1 Introduction

In the previous two chapters we considered the case of bichromatic driving; in
particular we concentrated on the multiphoton AC Stark and associated effects.
We saw that the spectra could be very different and much more intricate than
the spectra associated with monochromatic driving. In this chapter, the case of
trichromatic driving will be considered, and we will see that the results are in fact

quite different again to those of bichromatic driving.

The case of trichromatic driving on which we will focus is that which corre-
sponds to driving the atom with an amplitude modulated (AM) field. An AM
field is characterised by a central (carrier) component of frequency w; = wg + A,
where wyg is the atomic transition frequency, and modulation frequency J, which
corresponds to two sideband frequencies equally detuned from w;: wy = w; + 4.
A 100% AM field (with carrier suppressed) is a bichromatic field consisting only

of the frequencies wy and has been studied previously [1-3].

The limited number of previous studies of an atom driven by an AM field have
mainly used numerical techniques, such as solving the Bloch equations [4], or
occasionally techniques using semi-classical dressed states in addition to numerical
work [5]. In this chapter we will use the fully quantum dressed states to explain

a few of the many possible phenomena associated with trichromatic driving.
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In particular we will focus in this chapter on obtaining results in as physical a
manner as possible. The “derivation” (limited as it was) of the fluorescence spec-
trum given in Chapters 2 and 3 is actually there to persuade the reader that a
rigorous derivation is possible. Certainly it is often unnecessary. Expressions such
as (3.39) for the fluorescence spectrum follow intuitively from an understanding
of the dressed atom dynamics. In the last section of this Chapter, we will briefly
describe an interesting exception to this which has still not been completely re-

solved.

In this chapter we consider an atom with excited (ground) state |e) (|g)),
transition frequency wo and transition dipole moment f, that is driven by an AM
field. The central component of the field, w;, has (on resonance) Rabi frequency
2Q,. The two sideband fields of frequencies ws have the same (on resonance)

Rabi frequency 2(2,.

The chapter is organised as follows: In section 5.2 we consider the case of
weak amplitude modulation (2; < €2;) and a small detuning (§ < ;) of the
sideband fields. In the next section we describe the reverse situation, in which
the modulation is strong and the central field component weak (£2; < ;). In
the last section we briefly consider the special case that the detuning of the two

sideband fields is at the Rabi frequency of the central component (6 = 29,).
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5.2 Weak amplitude modulation, small detun-
ing
In this section we consider the situation in which our atom is driven by a weakly

amplitude modulated field, whose modulation frequency is also small compared

to 2, t.e. 4, 22 < Q4.

Since the central field is strong, we dress around it first to obtain the familiar
singly-dressed states

|IN+) = sinf|g, N) + cosfje, N — 1)

(5.1)
|IN—) = cosf|g, N) —sinfle, N — 1),
where
291, 8
sin“ @ = 3 + Tek

and the generalised Rabi frequency is given by
2G = /402 + A2 (5.2)

Next we include the two sideband fields. In particular, we consider the two

states

|n1iv) =|(N—-2M -n)+, M + n, M), (5.3)

where the second (third) term in the tensor product is that of the number of
photons in the w; (w_) mode, and n is an integer (N > M > n). These states
have energies (before interaction) of Nw, + G +nd. Thus on manifold e(N) they

form two submanifolds of states which are separated by 2G. Each submanifold in
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Figure 5.1 (a) The energy structure of a singly-dressed atom driven by a
weakly modulated field, before interaction. (b) The energy structure of the
doubly-dressed states, which is identical to that of the singly-dressed states. No-
tice that the single manifold €(/V) is split into two submanifolds separated by 2G,
with each submanifold consisting of states separated by §.

turn contains an infinite set of states separated by &, as shown in Figure 5.1(a). At
this stage we should point out that the state |nj$) is not the most general possible;
it is just one of the more general set of states |(N —2M —p—m)+, M +p, M +m)
which have the same energy for a fixed value of p — m. In some sense then, we
are assuming that all such states are equivalent as far as the interaction operators
V4 are concerned. This can only be justified a posteriori, when we see what sort

of agreement we obtain with numerical and experimental results.
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It is not difficult to show that the action of the total Hamiltonian (H = Hp +

V4 + V.) on the state Inﬁ) is
HIn%) = (Nwy £ G + nd) [nE) £2Q;sinfcosd (|(n + 1)E) + [n — 1E))  (5.4).

By “approximately equals” in (5.4) we mean two things. Firstly the states on the
right are the only states which lie on the same energy submanifold as the state
on the left (as is standard within perturbation theory). Secondly it indicates that
in fact we have approximated M + 1 = M for some of the states. This can be
justified by saying that ultimately we will be interested in the reduced populations

and coherences, for which this approximation is made explicitly.

We now assume that the eigenstates take the form of an infinite sum over all

possible connected states, i.e.

|IDnvt,m) = > all*nF). (5.5)

n=—0oa
Here D labels a doubly-dressed state, while m labels the eigenvalues of H -which
we are yet to determine. However (5.4) and (5.5) are analogous to equations in

[1], and we can invoke the same symmetry arguments to show that the eigenvalues

of H are mé with m any integer.

Applying H to the dressed state [Dy+,m) and then multiplying on the left

by (n3| produces the recursion relation

8(n — m)alN* + 2Q, sin f cos B(Gf:’fl +a¥E) =0. (5.6)
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This recursion relation has the solution
anN:h = Jn—m(:F:c)v (5'7)

where £ = (4Q3sinf cos 8) /4, and J,,_,(z) is the Bessel function of the first kind.
Thus the doubly-dressed states on €(/V) (shown in Figure 5.1(b)) have exactly the
same energy structure as the singly-dressed states (Figure 5.1(a)). This is a result
of the high degree of symmetry in the driving fields, and can be thought of as

equal “pushes” up and down on each state by the sideband fields.

Following the (by now hopefully familiar!) standard procedure, we next com-

pute the transition rates. The transition from |Dy41+,1) to |Dy=+, m), which

*+

st = wi + (I —m)4, is governed by the tran-

occurs with transition frequency w

sition rate
E, = T(DN41£,11S*| Dy, m)|?

=T[£ Y Jnot(F2)Jnom(Fz) sinf cos |’ (5.8)

= I'sin? 0 cos? 4 8y,
where we have used a well known Bessel function summation relation [6], and
[' = |Z)? is the natural linewidth. For transitions from [Dy=+,m) to |[Dny1F, 1),
which occur with transition frequency wf_ T, = w1 £ 2G + (I — m)d, we find the

transition rates .
I‘?-m._ = PI(DN+1+1 llS+IDN'-1 m)l

=T Jact(—z)Jn-m(z) cos? 62 (5.9)

= I'cos* 0J%_,.(2z),
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and .
F(—.tn =T|{Dn4+1—,1|ST|Dn+,m)]

=T =Y Jnct(z)Jnm(~z) sin’ 6|2 (5.10)
= I'sin* 842 . (2z).
Thus we expect the Mollow sidebands to be split into an infinite number of com-

ponents, with intensities of the split components proportional to JZ_,, (2z).

At this stage we have a good idea of what the spectrum will look like. In fact
all we need are the linewidths and steady state populations. These are found by

projecting the master equation

%tE = —ilH, ] - g(S"’S"p + pS*S~ — 28~ pS+), (5.11)

onto the dressed states, and finding equations of motion for the populations and
coherences. When we do so (employing the secular approximation), we find for
the populations

Prm = Lo Phm + ¢ Pham- (5.12)

where pf . = (Dny+,m|p|Dn+,m). Thus the reduced populations II¥ =

Y m PZ.. have steady state solutions

+ sin* @
HSS = 4 s 4
cost@ +sin* @ (5.13)
_ cos* @ )
H38 =

cos @ +sin* @’
From equation (5.12) we deduce that the linewidth of the central component of

our spectrum is I'; = cos* @ + sin* 4.
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The coherences gfn* = (Dn41%, U p|DNF, m) are found to obey the equations
of motion

ofT = (wiEE, —Ty) o7 - (5.14)

In (5.14) Ty = I'(3 + cos?§sin? §) will be the linewidth of the sideband spectral

components.

It is now a simple matter to write down the fluorescence spectrum. It is given

by
_ (Cg*Of, + Ty I;,)T.

S(w) = (w—w)?2+T2
+ 4 I, sin® 6T
+ Z J,g (21:) ((WI}" cos” 6T, g5 511 s )
k

(5.15)

wiT)2+ T2 N (w=-w;1)2+ 1?2
The fluorescence spectrum is plotted in Figure 5.2, for the case of an on-resonance
carrier field of Rabi frequency 2Q; = 40I', sideband fields detuned by § = 5I"
and different values of 2Q2,. We see that the weak (modulation) bichromatic
field modifies the sidebands of the Mollow triplet dramatically, while leaving the

central feature unaffected.

The weak probe absorption spectrum can now also be simply written down. It
is given by

II;, — II}) cost 6T (¥ — I7,)sin® 4T )
W — J2 2 ( SS 3s 3 s$s Ss 3
(e zlc: <(22) ( (wp —wy™)2+ T2 M (wp —wi T)2 + T2 (5-16)

This expression is plotted in Figure 5.3 for parameter values A = 2I", § = 5T,
2Q2; = 40T and 2§, = 12I". Notice that since the absorption spectrum depends on

the population difference between dressed states, we must have a detuned central
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Figure 5.2 The fluorescence spectrum of a two-level atom driven by a weakly
modulated field. The spectrum is shown for A = 0 (central field exactly on
resonance), § = 5I", 2Q; = 40I" and (a) 2Q, = 4I", (b) 2Q, = 8T, (c) 20, = 12I.
The central peak has a maximum at 0.5.
field A # 0) to obtain a non-vanishing spectrum (within the secular approxima-

tion).
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Figure 5.3 The weak probe absorption spectrum of an atom driven by a
weakly modulated field. The spectrum is shown for A = 2I", § = 5T, 2Q; = 40T
and 292 =12

The last spectrum we will consider in this section is the Autler-Townes spec-
trum. As before, we consider the transition from |g) to a third atomic level |c) of
energy (measured from |g)) w,, which is probed by a weak field of frequency wj.

The intensities of the lines in the Autler Townes doublets are given by

A}, = |(Dn+,mlg, N — 2M, M, M)|?
= |sin 8J_(Fz)|2 (5.17)

= sin® 0J% (z),
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Figure 5.4 The Autler-Townes absorption spectrum of an atom in a weakly
modulated field. The spectrum is shown for A = 0 (central field exactly on
resonance), § = 5[, 2@, = 40T, '3 =T and (a) 20, = 8T, (b) 2Q, = 16T, (c)
2Q, = 24T,
and similarly

A, = cos® 0J2 (z). (5.18)
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The linewidths of the Autler-Townes peaks are given by
1
Fs = 5(Ts +T3), (5-19)

where '3 is the natural linewidth of the third level. Accordingly the Autler-
Townes spectrum is given by the expression

1 It sin? 6T
A — - 72 38 a
(ws) Z; 4J’°($)((w3 “we+ G+ k82 +12
IT,, cos? 6T, )
(s —we—G+kd8)2+12/°

(5.20)

+

The spectrum (5.20) is plotted in Figure 5.4, for A = 0 (central field exactly on

resonance), 8 = 5I", 2Q; = 40T", '3 = I' and different values of 2§2,.
5.3 Strong amplitude modulation

In this section we consider the case that the amplitude modulation is strong
(2 < Q2). The atom is therefore seeing a strong, symmetrically detuned bichro-
matic field, and a weaker, near resonance, central field. Consider the pairs of

states on €(2M + N):
|2M + N)(2n)t) = N+, M +n, M —n) (5.21a)

and

I(2M + N)(2n + 1)) = [(N — 1)+, M +n, M — n), (5.21b)

where, as before, the first state in the tensor product corresponds to the atom and
w; (the central component) and the other two states to w; and w_ respectively.

Note that we have used the |[N+) states for the atom+central component of
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the field. This does not mean we have included the interaction yet with this
component (it is after all weaker than the other two); rather it reflects the freedom
we have in choosing an undressed basis. Hopefully we have made an intelligent
choice; that of course can be seen only when we attempt the second dressing.
These states have energies (N + 2M)wg + NA + 2nd and (N + 2M)wo + NA +
(2n + 1) respectively. In this section we will consider only the case A = 0, that

is the weak central component is exactly on resonance.

Since the wi modes are now the strongest, we dress first around them. We
should expect that such a diagonalisation would be a nontrivial mathematical
exercise. We are helped, however, by having the solution to the case of pure
(symmetrically detuned) bichromatic driving [1], and so we make the (educated?)
guess that the singly dressed states are the following superpositions of the states
(5.21):

x
Im£:2M + N) = Y Jn_m(F2)(2M + N)n) (5.22),

n=—oo

where z = 2,/8. To verify that the states (5.22) are actually the eigenstates
requires some algebra, and is left as an exercise for the interested reader. In
particular, since the states |{m+;2M + N) and |m—; 2M + N) are degenerate with
energies (2M + N)wg +md, we must examine (m—; 2M + N|(Vy +V_)|m+;2M +

N), where V, are the interaction terms for the wy modes. It turns out that the
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Figure 5.5 The dressed state energy structure for an atom in a strongly mod-
ulated field. The manifold consists of an infinite number of doublets, with an
intra-doublet separation 2{); and an inter-doublet separation 4.

plus and minus states are decoupled; we find

(m—;2M + N|(Vy + V_)|m+; 2M + N)

= LB Y (Bonem (@ s 1cm(2) + Fomi () ot )

n

+ Tan1-m(2) T2n-m () + Jon—m(2) S2nt1-m(2) ) (5.23)

= \/]_Vf(—l)m Z (Jgn(I)J2n+1(z) + J2n+1(.'17).]2n+2(l'))

n
=0.
We must now include the weak central field to find the correct doubly - dressed
states. This involves diagonalising V, (the central mode interaction term) on the
degenerate subspace spanned by the [m%; 2M + N) states. By lucky coincidence!

the states |m=; 2M + N) can easily be shown to already be diagonal on V4, and

! Well maybe not so lucky - you will see now why we chose the states (5.21) as
we did!
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so they are not mixed (to zeroth order in perturbation theory). We therefore
find that the first-order corrections to the energies of the states |m+;2M + N)
and |m—;2M + N) are +£2,, respectively. Thus the dressed states on €(2M + N)
consist of an infinite series of doublets separated by 4, with intradoublet splitting

2Q2;; the energy structure is shown in Figure 5.5.

One does not have to have been more than barely awake while reading this the-
sis to know that the next step in our calculations is computation of the transition
rates between the dressed states. At this stage, if only by simple analogy with the
energy structure of the dressed states of Chapter 3, one might expect the spec-
trum to consist of a series of triplets, with inter-triplet spacing ¢ and intra-triplet
splitting 2§2;. It turns out, however, that the transition from |l+;2M + N) to
m=;2M + N — 1), which occurs with transition frequency wf_ﬁz =wo+ ([ —m)4,
is governed by the transition rate

L = |(I£;2M + N|ST|m+£;2M + N — 1))?
(5.24).

From this we see that the only central component in the spectrum which will be
nonvanishing is the one at wp. For transitions from |+, 2M + N) to |m¥F;2M +
N — 1), which occur with transition frequency w¥ = wp £2Q; + (I — m)d, we
find the transition rates

[EF = [(I1£;2M + N|StimF; 2M + N — 1)

{—m

(5.25)
= %I‘J["_m(h),
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Thus we expect the spectral features (apart from the central triplet) to consist of
a series of doublets, centred at £ (where k is an integer), with doublet intensities

proportional to JZ(2z).

We now require the steady state populations and the linewidths. These are
easily obtained, in the usual manner, by projecting the master equation onto the
dressed states and employing the secular approximation. We find that the steady

state populations are equal, i.e.

1
nZ = 3 (5.26)

and that the central component linewidth is given by

r.==L (5.27)
2
while the sideband linewidths are
;= %I: (5.28)

These widths are surprising: they are exactly the values obtained for monochro-
matic, on-resonance, driving. It was found previously (1] for the case of symmetri-
cally detuned bichromatic driving, that the linewidths are different for the even or
odd sidebands. Thus it appears that in the limit of Q; — 0, our spectrum will not
go to that of [1]. The resolution of this apparent paradox lies in the assumptions
which are made when performing dressed atom calculations. In order to compute
a spectrum for this system we have to employ the secular approximation, which

in turn requires that 2; > I'. If this is true (as we have assumed it to be), then
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Figure 5.6 The fluorescence spectrum of an atom in a strongly modulated
field. The spectrum is shown for 2Q; = 40T, § = 20T and 2Q; = 2I. For larger
values of 2Q2,, the central component of the spectrum can be seen to split into a
triplet.

we make the approximation VN = VN £1 ~ /N £2 =~ ..., and this effectively

“smears” away the N — 0 limit of our model.

The fluorescence spectrum is given by

(Tg g, + Ty ~IO;)T.
(w - w0)2 + Fg

S(w) =

5.29
H;Fs ( )

1, T,
+Zk:ZJk(2"”) ((w—m1 _ k62 +T2 | (w20, - k3)? +r3)
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This spectrum is plotted in Figure 5.6 for 22, = 40I', § = 20I" and 2Q2; = 2r..
As expected, the spectrum consists of doublets spaced at integer multiples of 4,

with an intra-doublet splitting of 4€2;, and a triplet at w = wyg.

The only other spectrum we will consider is the Autler-Townes absorption spec-

trum. In the notation of the previous section, we calculate the doublet intensities

and find them to be given by
AE =|(g, N, M, M|m=+; 2M + N)|? = -21-J3,,(z). (5.30)

The Autler-Townes spectrum can now be written down:

LAIT
— 2 ss2l0 ~a
Aws) = X RN (G e W T
k (5.30)
+ I ,AgT. )
(ws —we — S + k)2 + 2/

This spectrum is plotted in Figure 5.7, for 22 = 40I', § = 20", I's = I'" and

20, = 4I.

5.4 Sideband fields detuned to the Rabi fre-

quency of the central component

In this section we briefly consider a case of trichromatic driving that is not
easily solved within the dressed atom model. This is not to say that it cannot
be, rather I have not been smart enough to do so. The case of interest is that in
which we have weak amplitude modulation (£22 < €2;), but the sideband fields are
detuned to the Rabi frequency of the central field i.e. § = 29;. (Recall that the

discussion in Section 5.2 was limited to the case § < £2;.) This particular choice

112



0.1
1

A(ws)

!
—-80 -40 -20 O 20 40 60
(C")S—C“)c)/rl

0.0

Figure 5.7 The Autler-Townes spectrum of an atom in a strongly modulated
field. The spectrum is shown for 2Q2, = 40I', § = 20I", '3 = I" and 22; = 4TI.

of § is analogous to an n = 1 trichromatic version of the case studied in Chapter
3. The difference is that the two (weak) sideband fields wy can couple to the

singly dressed states |IVX) in an infinite “cascade”, as shown in Figure 5.8(a).

The system has several unusual features. The first of these relates to per-
forming a numerical simulation. It was found, using the Bloch equations, that
the fluorecence spectrum consisted of normal lorentzians; however there was a
dependence of some spectral line intensities on the phase difference between one

sideband field and the other two fields. At first glance we might have expected
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Figure 5.8 The energy structure of an atom in a weakly modulated field with
sideband frequencies wy detuned to the Rabi frequency of the central field. (a)
The singly dressed atom with arrows indicating the absorption of wi photons.
(b) The energy structure of the doubly dressed atom. The manifold consists of
an infinite number of continua of width 2Q,, with continua separated by 2£2;.

that since the detuning ¢ is large compared to I', as are the Rabi frequencies in-
volved, any phase dependence would “wash out”. Furthermore, this is a concern
for those of us who use the dressed atom model because the model is most easily

used with number states, and thus cannot easily take phase into consideration.

Another interesting phenomenon was noticed in an experiment on the Autler-

Townes spectrum of this system [7]. In the experiment the phase of the fields was
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not fixed in any way, and the spectrum appeared to consist of pairs of continua

centred at +2; of width approximately 295.

Since the central field is assumed strong (weak modulation), we dress first
around it. To find the dressed states for the system correct to zeroth order in

perturbation theory, we first recognise that the pairs of states
lag) = |(N —2p—s)+,P+p+s,M +p) (5.31)

and

by = (N —2p—s—1)—,P+p+s+1,M +p), (5.32)

are degenerate with energies Ef;j;p = (N + M + Plwo + (25 + 1)2;. Here
p=...—2,-1,0,1,2.... Thus on manifold (N + M + P) there are an infinite
number of states (labelled by p) on each degenerate subspace of the manifold

(labelled by s). We now include the perturbation
W = V+ + V_,

where V, and V_ are the interaction Hamiltonians for w, and w_ respectively.
We assume that our general dressed state will be a linear combination of all the

degenerate states, i.e.

[ ]
swin) = > (aplap) +5505), (5.33)
p=—00
where the coefficients ay and b; are yet to be determined and N=N+M+P.
Here A labels the expected first-order correction E(}) to the energies; in fact

we know E(!) must be proportional to the strength of the perturbation, and so
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we write E(1) = AQ,. To find the coefficients ap and by, we follow standard
degenerate perturbation theory and diagonalise W on the degenerate subspace.
To do so, we let W act on |s; A), then multiply on the left by (a,| and (b5, to

obtain the pair of coupled recurrence relations

(5.34)
for the dressed state coefficients. Here we have dropped the s in our expressions,

it being understood that we are working on a fixed s subspace.

In solving the recurrence relations we are forced into making a choice of bound-
ary conditions. It seems natural to choose a_, = a, or b_, = b, since we have
no reason to believe that there is anything special about the centre of our man-
ifold. Choosing (arbitrarily) the latter, a little algebra reveals that under this

“boundary” condition, one solution to the recurrence relations is
ap(A) = (=1)PTjzp—-1,(X) (5.35)

and

bp(’\) = (_l)pT'IZpI(’\)r (536)

where T;,(z) is the Chebyshev polynomial of the first kind (Tj,|(z) = Tn(z)), and

where we still have to choose an overall normalisation constant.

To determine the allowed values of A and thereby fix the first-order energy

corrections, we examine the normalisation of |sg; A\). We find that

oo

(S NIsgi A) = ugbasr D [ap(N)ap(A) + bp(X)by(A)]. (5.37)

p=—0
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It is well known that the Chebyshev polynomials obey the following relation:

ﬁ (%Tg(z) + ZTz(z)) =6(z), -1<z<l  (5.39)

From this we see that if A lies in the range —1 < A < 1, and we choose our overall

n=1

normalisation factor so that

ap(8) = Z=(1 = )~} (=1 Tigpy (A

1 . (5.39)
Bp(3) = = (1~ A1) ~H(=1)"Tigpy (),
then our dressed states obey the orthonormality relation
(s Nsis A) = 6 58ssr6(A = ), (5.40)
and the completeness relation
1
> [ asmMoma=1. (5.41)
N,s -1

We see that the dressed states on (V) consist of an infinite number of continua
of width 2€,, separated by 2€;, as shown in Figure 5.8(b). Having these dressed
states, we can qualitatively see how the spectrum may consist of continua. Un-
fortunately however, it proves a little harder to obtain quantitative expressions
for the spectra. The general procedure of computing transition rates then pop-
ulations etc. seems to fail us: certainly the most naive application does. This
is because the transition rates all turn out to be Dirac delta functions or com-
binations of the same, and it becomes unclear whether we can make the secular
approximation in a consistent manner. Remember that the secular approxima-

tion involved dropping from our population and coherence equations those density
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matrix terms which corresponded to transitions at a different frequency. This is
justified when the difference between the frequencies involved is large compared
to I'. However when continua are involved, we have an infinite number of terms
corresponding to the energies infinitesimally close to the particular level in which

we are interested. Thus this approximation may need to be modified.

In fact a dressed atom problem involving continua has been solved previously
in {8]; however the techniques used there were not rigorous and do not seem to
transfer well to the present problem. From [8] and on intuitive grounds however,
we can expect that our spectrum will look like a convolution of lorentzians at
the positions of the associated Mollow spectra with some population distribution
across the continuum. It is making this statement quantitative which proves to be
a problem. The exercise is not without merit however, since it is only by looking
at such problems that we may gain a better understanding of the dressed atom

model’s strengths and weaknesses.
5.5 Conclusions

In this chapter we have examined a few of the phenromena which occur when
a two-level atom is driven by an amplitude modulated field. We saw that both
extremes of strong and weak modulation are nicely explained by the dressed atom
model. In particular we found that the case of weak modulation resembles closely
that of monochromatic driving, with the Rabi sidebands split into multiplets by
the weak bichromatic field. The case of strong amplitude modulation was also

easily understood in the context of a strong bichromatic field with a weak central
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field acting as a perturber. The spectra in this case consisted mainly of an infinite
series of doublets. For both cases the positions of the spectral lines depended only
on the detuning of the sideband fields 4, and the strength of the central field. The
strength of the sideband fields affected only the intensities of the spectral lines.
Finally we examined a case which has not been completely solved within the
dressed atom model, namely the case of weak sideband fields detuned to the Rabi

sidebands of the central field.
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6. Summary and conclusions

In this thesis, the dressed atom model has been applied to a variety of (previ-
ously unconsidered) problems involving a two-level atom driven by two or three
laser fields, and a number of new effects have been predicted and explained.
These include: An explanation of the subharmonic resonance phenomenon as a
multiphoton effect and the first analytical calculations of the multiphoton AC
Stark splitting; an explanation of the minimum splitting which occurs at slight
detunings from the subharmonic resonances and the prediction of suppression of
fluorescence at these shifted detunings; and the first analytical calculations of the

spectra associated with an atom being driven by an amplitude-modulated field.

In Chapter 3 the technique of “doubly-dressing” the atom was used to provide
a clear understanding of the subharmonic resonances, observed when an atom is
driven by one near-resonance field and one detuned field, in terms of multiphoton
transitions between the (singly-) dressed states. This understanding had not
been achieved before because previous studies focussed on the absorptive and
dispersive response of the second driving field. This field is intricately involved in
the dynamics of the system however, and so is better regarded as itself a dressing
field. Perturbation calculations were carried out to high order in order to obtain

results that agree perfectly with numerical and experimental studies of the system.

The major portion of Chapter 3 focussed on the case of a strong, on-resonance
driving field and a weaker driving field detuned to a subharmonic of the first field’s
Rabi frequency. The dressed states were found to form an infinite set of doublets,

and analytic expressions were obtained for the inter- and intra- doublet splittings.
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The master equation was then used to calculate evolution equations for the pop-
ulations and coherences of the dressed states. These were then used to calculate
fluorescence, weak probe absorption and dispersion spectra and Autler-Townes
absorption and dispersion spectra. All spectra were found to contain features at
the harmonics and subharmonics of the Rabi frequency of the strong field, and
these features had an intricate dependence on the order n of the subharmonic

resonance and on the ratio of the Rabi frequencies of the two fields.

In the last section of Chapter 3 the reversed situation of strong detuned field
and weaker on-resonance field was briefly considered and shown to also be capa-
ble of exhibiting the multiphoton Stark effect, albeit in a slightly more opaque

manner.

In Chapter 4 the double dressing technique was used to explore the subhar-
monic resonance shifts and the associated vanishing of the central component of
the fluorescence spectrum when the splitting of the dressed states is a minimum.
A physical explanation and analytical formulae for the points of minimum split-
ting were derived, and an explanation of the vanishing fluorescence in terms of

quantum interference between dressed state transitions provided.

In Chapter 5 the case of three driving fields, in particular an amplitude modu-
lated field, was examined. The two main perturbative regimes of weak modulation
(strong carrier) and strong modulation (weak carrier) were considered. Dressed

states and associated population and coherence equations were derived.

In the former case the dressed states were found to split into two submanifolds

separated by the strong central field’s Rabi frequency. Each submanifold consisted
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of states separated by the detuning (modulation frequency) of the sideband fields.
The presence of the two sideband fields was found to significantly alter the Mollow
sidebands; however, they left the central component unaffected. The Autler-
Townes absorption and weak probe absorption spectra were also calculated and

found to differ from their Mollow counterparts in a related manner.

For the case of strong modulation, the dressed states were found to correspond
closely to the case of pure (symmetrically detuned) bichromatic driving, namely
an infinite tower of states separated by the sideband detuning (with no energy
dependence on the sideband Rabi frequency). However the central component of
the field split these dressed states, resulting in an infinite number of doublets, in a
picture reminiscent of the dressed states obtained in Chapter 3. The fluorescence
and Autler-Townes absorption spectra were calculated and found to consist of an
infinite series of doublets (apart from a central triplet component of the fluores-
cence spectrum), with intensities dependent on the ratio between the sidebands’

Rabi frequencies and the sideband detuning.

A major goal of this thesis was to emphasize the many advantages of using
the dressed atom model when considering the AC Stark effect. These advantages
include a clear physical picture allowing for strong intuition into the system dy-
namics, and the ease of obtaining analytical results which are extremely rare in
Bloch equation or other related approaches. In the last section of Chapter 5 a
situation which is not easily solved in the dressed atom context was examined
in order to display the essential role of various approximations, in this case the

secular approximation, in making the dressed atom dynamics tractable.
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Appendix A: Perturbation Theory
for 2 degenerate levels

We consider a general perturbation AV of a Hamiltonian Hy whose eigenvalues
E,, By, ... and eigenstates |1), |2), ... are known. In particular we consider the case
when two of the unperturbed eigenstates |a) and |b) are degenerate with energy
E,; = E}. In the standard manner we assume that the perturbed eigenstates and
energies can be expanded as a power series in A of the form

) = [9)@ + )P + A2[p)*) + ..
E=E°+XEMN + ¥E®D + . |

that the wavefunction correct to zero order is given by
)@ = COla) + C{|b)
and that the mth order correction to the wavefunction can be written as

Y™ = CMlay + G1) + 3 G-
i#a.b
The inclusion of the states |a) and |b) in the higher order corrections is often

omitted in treatments of perturbation theory, but in fact is found to be critical

to a correct calculation of the n-photon dynamic Stark effect discussed in this

paper.

By substitution of these expressions into the Schrddinger equation, we set up

a hierachy of matrix equations of the form

GoC® = Fc® (A.1)
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GoCY + G, C® = EWCH) + EACO® (A.2)
GoC?® + G,CY + G,C9 = EWC?® + EAc + EGICO) (A.3)

Here C(™) is the vector

cim™
( 'Zm)) (A.4)
and the {G;} are 2 x 2 matrices evaluated in the degenerate subspace. More
explicitly
Vaa Vab
G — aa a A.5
o= (v ) (4.9)
while
Rl, Rl
Gy = ( aa ab) \ A6
ARL R o)

where RY; = (i|RP|j) is the matrix element (2, j) of the operator

’ V]z)(zIV
Z E. E (A.7)

and the prime indicates that the sum excludes the states [a), |b). In fact it is

useful to define the more general operator

r_ ' VIRGIVID V... VIR KV
RPI-T = Z (Eq — E;)P(Eq — EJ-)Q,__(EG —Eg)r’ (A.8)

i.j,.-k
and the operator =™(l) as the sum over all the R operators with [ superscripts

such that they add up to m. For example

54(2) =7{13 +R31 +R22, 55(3) =R113+R131 +R311 +R122+R212 +R221.

(A.9)
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Further, we define the operator

-1
MpP=2m(l) =Y EOMPERT m 22, (A.10)
=1

with

™= 2m(1) = R™.
For example M3, from which we calculate G3, is given by

M3 =R _ EO(R!2 4 RY — EUR3) ~ EAIRZ, (A.11)

Finally can write the matrices Gy, as

(a|Mmla) (alM7]b)

Gm = ((bw:::la) (b M™b) ) ‘ (4.12)

We can systematically solve the equations (A.1)-(A.3). However, in the prob-
lem investigated in this paper we have V,;, = V3 = Vie = Vip = 0 and thus
Go=0. Hence the first order energy corrections are zero (E(}) = 0), and we must
use (A.2) to determine the correct zero order eigenstates and the energy cor-
rections E(?). Equation (A.2) is now a 2 dimensional eigenvalue equation whose
eigenvectors cgf Y and eigenvalues Eg ) give the dressed states correct to zero order
and second order energy corrections respectively. Having found and normalised

the eigenvectors C(O), we proceed to solve the equation (A.3).

Because the matrices G,, are Hermitian, we know that the eigenvectors CQ )

are orthogonal and that they span the 2 dimensional vector space.Therefore, we
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can write the vector cS,” = ft Cf,?) + fy c9, Substituting this back into (A.3)
and multiplying on the left first by C®", then by C®", we find
E® =c®'e,c?,

1
E® - E®

(A.13)

t
= (' c,c).

The coefficient fj,‘_' is found to be arbitrary, and we choose f_‘,‘_’ = 0 in order to

follow the orthogonality convention that

© ()™ = 0. (A.14)

The previous derivation is symmetric and we can simply interchange plus and
minus signs to obtain expressions for E® and f¥. The process can be continued
to next order by taking Cf) = g+C(0) + g+C( ), and so on. In this manner
the energy corrections and coefficients of the degenerate states Cg"),C'é") can
be found to any accuracy required. The coefficients of the other states which

contribute to the eigenvector corrections are found in the usual way, and given by

) = ————E 7 (Cia + G Vin),

o = g (e - 3 0 ),

i=1

(A.15)

where we point out that the first sum includes the states |a), |b).
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Appendix B: Sample Maple work-
sheet for multiphoton AC Stark
effect calculations
In this appendix an example of the type of Maple worksheet used for many of
the calculations in this thesis is presented. The author makes no claims as to
the efficiency of the Maple code. The worksheet grew gradually out of attempts
to avoid algebraic errors when calculating 4th order corrections to the doubly-
dressed state energies of Chapter 3. It should be pointed out that despite the
accompanying explanation, this worksheet is likely unintelligible to all except
regular Maple users.

We begin by reading in the “linalg” package to enable us to use matrices easily,
and the “rationalize” and “Taylor co-efficient” commands.

[} with(linalg):

[) readlib(coeftayl):readlib(rationalize):

We now want Maple to realise that a and €2, are real and positive:

[) assume(alpha>0):assume(Omegal>0):

Now pick value of n,

[ n=2;

and define the Kronecker delta function:

[} delta:=(x,y)—>if x=y then delta(x,y):=1 else delta(x,y):=0 fi:

Now two commands to make simplification and computing the modulus of a
complex number easier:

[} simp:=x—>simplify(expand(rationalize(x))):
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[} MODD:=x—>x*conjugate(x):

We want to expand many parameters in a Taylor series in a without the O(a?®)
or similar term that Maple leaves. Hence the following:

[) TAYLOR1:=L— >convert(taylor(L,alpha=0,2),polynom): Plus similar expres-
sions up to TAYLORSE.

Now we are going to represent states such as |[(N — p)+, M + p) as a list of
three elements [—p, 1, p]. That is, we drop the N, M and use the middle ele-
ment to represent the “plus” or “minus” states. As another example, the state
|(N+3)—, M —2) would be represented in Maple by the list [3, -1, —2]. The op-
erator SP below takes in 2 such lists as arguments and computes a scalar prod-
uct (--+]---):

[) SP:=(U,V)—>delta(U[1],V[1]) * delta(U[2],V[2]) * delta(U[3],V[3]):

We now define a function which takes as input two states in the list form de-
scribed above and computes the matrix element of our perturbation V between
them, i.e. (---[V]---):

[} VV:=(U,V)~>O0Omegal*alpha/2* (U[2]*delta(U[1]-1,V[1])
xdelta(U[3],V[3]-1)+V[2]*delta(U[1],V[1]-1) *delta(U[8], V[3]+1)):

The next two functions compute the energy of an input state and the energy
difference between two input states respectively.

[) En:=U->collect(U[1]*omega[o]+U[2]*Omegal+U[3]*
(omega[o]+2*Omegal/n-+delta), [omegalo]]):

[} Endifi=(X,Y)—>simplify(En(X)-En(Y)):
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The next three functions compute the matrix elements of the operators S—,S™*
and S*S~ respectively, given two input states.

[} uSminusv:=(U,V)—>V[2]/2* delta(U[1],V[1]-1)*delta(U[3],V[3])
*(delta(U[2],1)+delta(U[2],-1)):

[} uSplusv:=(U,V)—>1/2+delta(U[1],V[1]+1)*delta(U[3],V[3])
*(delta(U[2],1)-delta(U[2],-1)):

[) uSplusSminusv:=(U,V)—>V([2]/2*delta(U[1],V[1])

* delta(U[3],V[3])*(delta(U[2],1) - delta(U[2],-1)):

Up until now we have functions which take in one or two states as a list of
three elements for each state. The problem is we will require superpositions
of such states. To enable us to do this, we define a convention whereby a state
of the form [i) = L|(N = 1)+, M + 1) — \/2|(N = 3)=, M + 3), would be
represented in Maple by the list of lists:

psie=[ [[-1,1,1],1/sart(3)],[[-3,-1,3],sqrt (2) /sart(3)] |

Obviously we can extend this to include any number of states with different
amplitudes.

We now need to define generalisations of the operators above to incorporate
computing the matrix elements of “superposition lists”.

The next four functions compute the matrix elements of $~,8%,StS~ and V
respectively.

[) SMINUS:=(L1,L2)—>collect(expand(sum(’sum(’conjugate(L1[i][2])
*L2[j][2]*uSminusv (L1[i][1],L2[j][1])’,"i*=1..nops(L1))’,

’j’=1..nops(L2))),alpha):
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[) SPLUS:=(L1,L2)—>collect(expand(sum(’sum(’conjugate(L1[i][2])
*L2[j][2]*uSplusv(L1[i][1),L2[][1])’,"i’=1..nops(L1))’,

'j’=1..nops(L2))),alpha):

[) SPLUSMINUS:=(L1,L2)—>collect(expand(sum(’sum(’conjugate(L1[i][2])
*L2(j][2]*uSplusSminusv(L1{i][1],L2[j]{1])’,’i"=1..nops(L1))’,
"j*=1..nops(L2))),alpha):

[) sVVS:=(L1,L2)—>collect(expand(sum(’sum(’conjugate(L1[i][2]) *L2[j][2]
*VV(L1[i][1],L2[j][1])’,"i’=1..nops(L1))’,’j’=1..nops(L2))),alpha):

The following computes the “overlap”, or scalar product of two superposition
lists.

[) §S:=(L1,L2)—>collect(expand(sum(’sum(’conjugate(L1[i][2])
*L2[j][2]*SP(L1[i][1),L2[j][1])’,’i’=1..nops(L1))’,

’j’=1..nops(L2))),alpha):

We know that in perturbation calculations we are required to sum over all
states that “connect” to a given one through the perturbation V: The following
operator takes in a state and produces a list (superposition!) of all such states,
giving each an initial amplitude of zero.

[} Pert:=U—>op([[[U[1]{1]-1,1,U[1](3]+1],0],[[U[1][1]-1,-1,U[1][3]+1],0],
[[U[1][1]+1,-1,0(1](3]-1],0],{[U[1][1]+1,1,U[1][8]-1],0]]):

Obviously we need to generalise this to take in a superposition and to produce
all connecting states, and this is accomplished with the operator PRT below:

[) PRT:=proc(L);seq( Pert(L]i]),i=1..nops(L));end:

131



There are just two remaining operators of this form that we will find useful.
The first takes a single state and “hits” it from the left onto a superposition of
states, that is it computes the overlap of the single state with the superposition.
The second performs a similar function, but through the perturbation V.

[) SL:=(L1,L2)—>expand(sum(’L2[j][2]*SP(L1[1},L2{j](1])’,’j’=1..nops(L2))):

[} SVL:=(L1,L2)—>expand(sum(’L2[j][2]*VV (L1[1],L2[j][1])’,’j’=1..nops(L2))):
We now define our initial pair of degenerate states with which we work. In this
example I have chosen the m = 0 states on ¢(N + M), as defined in Chapter 3.
[) a:=([n,1,-n},0];b:=[[0,-1,0],0];

We now define a series of functions which compute the matrix elements of the
operator(s) RP?9-", as defined in equation (A.8).

The last two arguments passed to these functions (here called H[i] where i la-
bels the number of energy denominators) are the states which determine which
matrix element we are computing. The first i arguments are the powers to
which the energy denominators are raised.

[) H[0}:=proe(x,y);VV(x[1],y[1]);end:

[} H[1):=proc(a,x,y);xx:=[op({Pert(y),Pert(x)} minus {a,b})];

sum("VV (x[1],xx[ij[1])* V'V (xx[i][1],y[1]) /Endif (y{1],xx[i][1]) "’
'’=1..nops(xx));end:

[} H[2):=proc(q,r,x,y);xx:=[op(Pert(x) minus a,b)};xy:=[op(Pert(y) minus
a,b)Jisum(’sum V'V (x[1],xx[i][1]) *VV (xx[i] [1],xy[j] [1])

*VV (xy[il[1],y[1]) /Endif(y(1],xx[i]{1]) “a/Endif(y[1],xy[j][1]) “r’,

'’=1..nops(xx))’,’j’=1..nops(xy));end:
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A series of such functions up to H[7] is similarly defined.

We now define some functions which evaluate the H’s for the specific degener-
ate pair a,b that we have chosen.

[} U.0:=matrix(2,2,[simp(H[0](a,a)),simp(H[0](a,b)),simp(H[0](b,a)),
simp(H[0](b,b))]):

[} U.1:=proc(q);matrix(2,2,[simp(H[1](q,a,a)),simp(H[1](q,a,b)),simp(H[1](q,b,a)),
simp(H[1](q,b,b))]):end:

[) U.2:=proc(q,r);matrix(2,2,[simp(H[2](q,r,a,a)),simp(H[2](q,r\a,b)),
simp(H[2](q,r,b,a)),simp(H(2](q,r,b,b))]):end:

A series of functions up to U.8 is similarly defined.

Finally we actually compute the 2x2 matrices which we will need. Only a small
subset of those required are shown below

[) M.0:=U.0:M.1:=U1(1);M.2:=U1(2):
M.1.1:=U2(1,1};M.2.1:=U2(2,1):M.1.2:=U2(1,2):M.3.2:=U2(3,2):
M.1.1.1:=U3(1,1,1):M.1.1.2:=U3(1,1,2): M.1.2.1:=U3(1,2,1):
M.1.1.1.1:=U4(1,1,1,1):M.1.1.1.2:=U4(1,1,1,2):
M.1.1.1.1.1:=U5(1,1,1,1,1):M21111:=U5(2,1,1,1,1):M.1.2.1.1.1:=U5(1,2,1,1,1):
We now implement a series of procedures to compute the matrices G, of equa-
tion (A.12). To do this we start with a series of procedures X.i(IN) which eval-
uate the sum over the M matrices with i indices that add to N:

[) X.1:=N->M.N:

[) X.2:=proc(N);sum(*M.(N-j).j’,’j>=1..N-1);end:

Plus similar terms until:
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[) X.8:=proc(N);sum(’sum(’sum(’sum(’sum(’sum(’sum(’M.j.(k-j).(I-k).(p-1).
(0-p).(r-0).(y-r).(N-y)",'j'=1..k-1)*,’k’=1..1-1)","’=1..p-1)",
’p'=1..0-1),’0’=1..r-1)",’r’'=1..y-1)',’y’=1..N-1);end:

With these in hand we compute the functions corresponding to equation (A.10).
Notice that we have to have two such functions depending on whether we are
on the “plus” or “minus” subspace, once the degeneracy is lifted. Thus PP,
PM correspond to the “plus” or “minus” subspaces respectively.

[) PP:=proc(i,n); if i==1 then X.1(n) else X.i(n)-sum(’ep.j*PP (i-j,n+1-j)’,’j’=1..i-
1);fi;end;

[) PM:=proc(i,n); if i=1 then X.1(n) else X.i(n)-sum(’em.j*PM(i-j,n+1-
§))'j’=1..i-1);fisend;

Below we will use the notation AP(m), AM(m) for the matrices G-

The next function makes finding a transpose a little easier:

[) dag:=x—>transpose(x):

We now implement two functions which compute the coefficients f; (and simi-
lar to higher order) of equation (A.13).

[} pvi=N— >simplify(evalm(1/(ep2-em2)*(sum(’cp[i]*dag(m0)&*AP(N+1-
i)&%m0’,"i’=0..N-1)+dag(m0)&*AP(N+1)&*p0 -sum(’cp[i]*ep.(N+2-i)’,’i’=0..N-
1))));

[) pm:=N—~ >simplify(evalm(1/(em2-ep2)*(sum(’cm{i]*dag(p0)&*AM(N-+1-
i)&%p0°,'i’=0..N-1)+dag(p0) &*AM(N+1)&*mO0 -sum(*cm(i]*em.(N+2-i)’,’i'=0..N-

1))))s
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The next two functions compute the energy corrections to the “plus” or “mi-
nus” subspaces respectively.

[) enp:=N— >simp(evalm(sum(’cp[i]*dag(p0)&*AP (N-1-i)&*m0’,"i’=0..N-
3)+dag(p0) &+ AP(N-1)&*p0));

[) enm:=N— >simp(evalm(sum(’cm[ij*dag(m0)&* AM(N-1-i)&*p0’,’i’=0..N-
3)+dag(m0)&* AM(N-1)&*m0));

Having defined all these functions, we can proceed to compute the energy cor-
rections to whichever order we please, and also the quantities Cg ), which deter-
mine the co-efficients of the 2 degenerate states in the higher order eigenvector
corrections.

Since for n > 2 the degeneracy is not lifted, the zeroth order terms are all 0:

[) cp[0]:=0:cm[0}:=0:

[) AP(0):=M.0:AM(0):=M.0:

[) ep1:=0:em1:=0:

At second order the two matrices AP(1) and AM(1) are identical (since no
degeneracy has been removed), and we diagonalise them to find the second or-
der energy corrections ep2 and em?2, and the zeroth order eigenvectors p.0 and
m.0

) AP(1):=PP(1,1):AM(1):=PM(1,1);

[} ep2:=simp(sqrt(AP(1)[1,1]"2+4+AP(1)[1,2]"2)):
em2:=simp(-sqrt(AP(1)[1,1]"2+AP(1)[1,2]"2)):

[} eta:=simp(-AP(1)[1,2]/(AP(1){1,1]-ep2));

[) p.0:=vector([eta/sqrt(1+eta"2),1/sqrt(1+eta~2)]):
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m.0:=vector([1/sqrt(1+eta"2),-eta/sqrt(1+eta~2)]):
The variables Cap(i] and Caml(i] are the coefficients of the a state in the plus
or minus subspace at order i. The Cbp(i], Cbm[i] terms are the equivalent
expressions for the degenerate state b.

[} Cap{0]:=p0[1]:Cbp[0]:=p0[2]:Cam[0]:=m0(1]:Cbm[0]:=mO0[2]:

The whole procedure now proceeds recursively, to whichever order we desire (or
have the patience to wait for Maple to compute!).

[ AP(2):=PP(2,2):AM(2):=PM(2,2);

[} ep3:=enp(3):em3:=enm(3);

[) eplil:=pv(1);cm[1]:=pm(1);

[) Cap[1):=cp[1]*Cam[0]:Cbp(1]:=cp[1]*Cbm[0]:
Cam([1):=cm[1]*Cap[0]:Cbm[1]:=cm[1]*Cbp[0]:

[} AP(3):=PP(3,3):AM(3):=PM(3,3);

[} ep4:=enp(4);em4:=enm(4);

[} cpl2l:=pv(2):cm[2]:=pm(2):

[} Capl2]:=cp[2]*Cam[0]:Cbp[2]:=cp{2]*Cbm][0]:
Cam([2):=cm[2]*Cap[0]:Cbm[2]:=cm[2]*Cbp{0]:

[} AP(4):=PP(4,4):AM(4):=PM(4,4):

[) ep5:=enp(5):em5:=enm(5):

) ep[8l:=pv(3):cm[3]:=pm(3):

[} Cap[3]:=cp[3]*Cam[0):Cbp([3]:=cp[3]*Cbm][0):
Cam[3]:=cm(3]*Cap[0]:Cbm[3]:=cm[3]*Cbp[0]:

[} AP(5):=PP(5,5):AM(5):=PM(5,5):
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[) ep6:=enp(6);em6:=enm(86);

[} ep[4]:=pv(4):cm[4]:=pm(4):

[} Cap[4]:=cp[4]*Cam[0]:Cbp(4]:=cp[4]*Cbm[0]:
Cam([4]:=cm[4]*Cap[0]:Cbm[4]:=cm[4]*Cbp(0]:

) AP(8):=PP(6,6):AM(6):=PM(86,6):

[) ep7:=enp(7);em7:=enm(7);

[} ep[5]:=pv(5):cm[5]:=pm(5):

[} Cap[s]:=cp[5]+*Cam[0]:Cbp[5]:=cp[5]*Cbm[0]:
Cam(5]:=cm(5]*Cap[0]:Cbm[5]:=cm[5]*Cbp[0]:

Up to this point we posess only the energy corrections and the higher order co-
efficients of the 2 degenerate states. By this stage I am so confident of no-one
ever reading this far into this appendix, that I will offer a Mars Bar to anyone
who points out this sentence to me within 5 yrs of my dissertation.

To calculate the full eigenvectors correct to some order, we can now use stan-
dard perturbation theory and be careful to make sure that in sums over inter-
connecting states we exclude the two degenerate states a,b.

The eigenvectors correct to zeroth order are:

[} CORR[0]:=convert([a[1],p0[1]],[b[1],pO[2]], list’);

[) MCORR([0]:=convert([a[1],m0[1]],[b[1],m0[2]],list’);

We now define procedures which compute a list of possible interconnecting
states, but remove all those which are actually the a and b states:

[) XXX:=p—>convert(‘union‘(PRT(XX[p-1]),0p(XX[p-1]))minus a, b ,'list’):

[} XX[6]:=[NULL): XX[1}:=convert(PRT(CORR[0]),'list’): X X[2]:=XXX(2):
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XX[3]:=XXX(3):XX[4]:=X XX (4):XX[5]:=XXX(5):XX[6]:=XXX(6):

The two functions below, corrn and mcorrn now compute the co-efficient at
order Q of some input state k.

[) corrn:=proc(k,Q);EE:=Endif(a[1),k{1]);

LIST:=convert(Pert(k) minus &, b ,’list’):

if Q=1 then (Cap{0]*VV(k([1],a[1])+Cbp[0]*VV(k[1],b[1]))/EE else
1/EE*(Cap[Q-1]*VV(k[1],a[1])+Cbp[Q-1]*VV(k{1],b[1])

+ sum(*VV (k[1],LIST[i][1]) *corrn(LIST[i],Q-1)’,"i’=1..nops(LIST))
-sum(’ep.i*corrn(k,Q-i)’,"i’=1..Q-1)):fi;end:

[) mcorrn:=proc(k,Q);EE:=Endif(af1],k[1]);

LIST:=convert(Pert(k) minus a, b ,’list’):

if Q=1 then (Cam[0]*VV(k[1],a[1])4+Cbm([0]*VV (k[1],b[1]))/EE else
1/EE*(Cam[Q-1]*VV(k[1],a[1])+Cbm[Q-1]*VV (k[1],b[1])

+ sum(*VV (k[1],LIST[i][1])*mcorrn(LIST{i],Q-1)’,"i’=1..nops(LIST))
-sum(’em.i*xmcorrn(k,Q-i)’,’i’=1..Q-1)):fijend:

The two functions correction and mcorrection then apply corrn and
mcorrn to the set of possible states which may have non-zero co-efficients at
order Q:

[} correction:=proc(Q);seq(subsop(2=simp(corrn(XX[Q][i],Q)),XX[Q][i]),
i=1..nops(XX[Q])),[[0,-1,0],simp(Cbp[Q])],([n,1,-n],simp(Cap[Q])];end;

[} mecorrection:=proc(Q);seq(subsop(2=simp(meorrn(XX[Q](i],Q)),XX[Q][i]),

i=1..nops(XX[Q])),[[0,-1,0],simp(Cbm[Q]}],[[n,1,-n],simp(Cam(Q])];end:
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Thus our final correct dressed state is the superposition of all the higher order
correction states (here shown computing to order o*). The minus op(XX[4])
is just to remove extra states which enter with a zero amplitude and which slow
down later calculations.

[} KP[0]:=convert(‘union* (op(CORRJ[0]),correction(1),correction(2),
correction(8)) minus op(XX[4]),list’):

[} KM([0]:=convert(‘union‘(op(MCORR{(0]),mcorrection(1),mcorrection(2),
mcorrection(3),mcorrection(4)) minus op(XX[4]) ,’list’):

We now have our pair of m = 0 dressed states on ¢(N + M), given by the 2
variables KP[0] and KM[0]. Of course we require the dressed states for dif-
ferent m and on different manifolds. In what follows J,K,L denote manifolds
e(N+ M +1),e(N+ M), and €(N + M — 1) respectively. The function Jmn(3),
for example, computes the dressed states on ¢(N + M + 1) for m = 3.

[} Kpl:=m—>[seq(subsop(1=[i[1][1]-m,i[1][2],i[1][3]+m],2=i[2],i),i=KP{0])):
Kmn:=m—>>[seq(subsop (1=[i[1][1]-m,i[1][2],i[1][8]+m],i) ,i=KM]0])]:
Lpl:i=m—>[seq(subsop(1=[i[1][1]}-m-1,i[1][2],i[1][8]+m],i),i=KP[0])]:
Jpl:=m—>[seq(subsop(1=[i[1][1}-m+1,i[1][2],i[1][3]+m],i),i=KP[0])]:
Jmn:=m—>[seq(subsop (1=[i[1][1]-m+1,i[1][2],i[1][3]+m],i),i=KM][0])]:
Lmn:=m—>[seq(subsop(1=(i[1][1]-m-1,i[1}{2],i[1][3] +m]},i),i=KM][0])]:

Since we do not want Maple to run off and keep computing these dressed states
every time it requires one, we make an array of them all from m = —13 to 13.
[) A:=array(-13..13,[seq(i,i=-13..13)}):

[) Lp:=map(Lpl,A):Jp:=map(Jpl,A):Jm:=map(Jmn,A):Lm:=map(Lmn,A):
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Kp:=map(Kpl,A):Km:=map(Kmn,A ):Hp:=map(Ipl,A):Hm:=map(Imn,A):

As yet our dressed states are unnormalised. The variable F computed below is
the normalisation factor; the variable F2 truncates this factor to the order we
are interested in.

[} F:=sqrt(simp(SS(Kp[0],Kp[0])));

[} F2:=TAYLOR4(F"2);

Depending on what order of @ we are interested in, we may require transition
rates from m = 0 to m = 2 or 4 or 8 etc. The variables Y and Z give us some
flexibility in changing the “depth” of our transition rates.

[} Y:=8;

D z:=8;

) AAA:=array(-Z..Z,[seq(i,i=-Z..Z)]):

The functions MUpp(j) etc defined below compute the transition rates I‘;-H.
[} MUpp:=j—>MODD(subs(eta=ETA,simp(SPLUS (Kp[0],Lp[j])))):
MUpm:=j—>MODD(subs(eta=ETA,,simp(SPLUS(Kp[0],Lm]j]))})):

) MUmm:=j—>MODD(subs(eta=ETA,simp(SPLUS(Km[0],Lm{j])))):
MUmp:=j—>MODD (subs(eta=ETA,simp(SPLUS(Km[0],Lpl[i])))):

To avoid recalulating these all the time, we define arrays MUPP etc of the
transition rates:

[} MUPP:=map((MUpp),AAA):MUPM:=map((MUpm),AAA):
MUMP:=map((MUmp),AAA):MUMM:=map((MUmm),AAA):

The variables below are all required from the master equation for calculation of

the linewidths and populations.
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[) AAAv:=simp(SPLUSMINUS(Km[0],Km{0])/F"2);
AB:=simp(SPLUSMINUS(Kp[0],Kp[0])/F~2);

[) GC:=simp(1/F " 4*sum(*SMINUS(Kp[0],Jp[i])*SPLUS(Km([i],Lm[0])’,'i’=-
Y..Y));

[} GP1:=simp(1/F~4*sum("MUPP[i]’,'i'=-Y..Y));

[) GP2:=simp(1/F"~4*sum("MUMP[i]’,"i'=-Y..Y));

[} GP3:=simp(1/F"4*sum("MUMMIi]",’i’=-Y..Y));

[) GP4:=simp(1/F"4*sum("MUPMIi]’,"i'=-Y..Y));

[} APLUS:=GP4;AMINUS:=GP2;GAMMA c:=1/2%simp(AAAv+AB-2+GC);

[) Aplus:=APLUS:Aminus:=AMINUS:

The variables Pp and Pm are the populations II}, and II, respectively, while
Gc and Gs are the limewidths I'; and I'; respectively.

[} Gs:=TAYLOR6(GAMMAc);Pp:=TAYLOR6(Aminus/(Aplus+Aminus));
Pm:=TAYLORS6(Aplus/(Aplus+Aminus));Ge:=TAYLORSG(Aplus+Aminus);

We now can compute the fluorescence spectrum (Sinc), the near-resonant weak
probe absorption spectrum (Wp) and the near-resonant weak probe dispersion
profile (Dis):

[) Sinc:=1/F~4*sum(’(MUPP[j]*Pp+MUMMI[j]*Pm)*Gc

/((x+2*j*Omegal/n) "24+Gc"2)
+MUPM[j]*Pp*Gs/((x+2%j*Omegal /n-2*DeltaE) “2+4+Gs"2)
+MUMP[j]*Pm*Gs/((x+2*(j)*Omegal/n+2*DeltaE) “24+Gs"2)’,’j’=-6..6):

[) SINC:=evalf(subs(alpha=.35,0megal=80,Sinc)):

[) plot(SINC,x=-280..280,numpoints=2000);
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) Wp:=1/F~4%sum("MUPM][j]*(Pm-Pp)*Gs

/ ((x+2%j*Omegal /n-2*DeltaE) “2+Gs"2)
+MUMP[j}*(Pp-Pm)*Gs/((x+2+j*Omegal /n+2+DeltaE) “2+Gs~2)’,j'=-2Z..Z):
[} WP:=evalf(subs(alpha=.35,0megal=80,Wp)):

[) plot(WP,x=-280..280,numpoints=2000);

[} Dis:=1/F"4*sum("MUPM[j]*(Pm-Pp)*(x+2*j*Omegal/n-2*DeltaE)
/((x+2%j*Omegal/n-2+DeltaE)~34+Gs"2)
+MUMP[j]*(Pp-Pm)*(x+2*j*Omegal /n+2+DeltaE)

/((x+2%j*Omegal /n+2+DeltaE) "2+ Gs"2)’,’j’=-2..Z):

[} DIS:=evalf(subs(alpha=.35,0megal=80,Dis)):

[) plot(DIS,x=-280..280,numpoints=2000);

Finally to compute the Autler-Townes spectra, we require the weight factors
Aj-:. These are computed by the functions ATp and ATm:

) ATp:=i—>simp(MODD(sum('1/sqrt(2)*conjugate(Kpli][j][2])*
SP(Kpli][j][1],[0,1,0])/F+1/sqrt(2) xconjugate(Kp(i] [j][2]) *
SP(Kpl(il[j][1],[0,-1,0]) /F*,’{’=1..nops(Kp[i])))):

[} ATm:=i—>simp(MODD(sum(’1/sqrt(2)*conjugate(Kml[i][j][2])*
SP(Kml[i][j][1],[0,1,0]) /F+1/sqrt(2) *conjugate (K m(i][j] [2]) *
SP(Km(i](j][1],[0,-1,0]) /F",’i’=1..nops(Kml(i]}))):

) ATP:=map(ATp,AAA):ATM:=map(ATm,AAA):

[} seq(SIMP(ATP[i}),i=-2..Z);seq(SIMP (ATMI[i]),i=-Z..Z);

We can now compute and plot the Autler-Townes absorption spectrum (Aut-

ler) and the Autler-Townes dispersion profile (Autdis):
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[) Autler:=sum(’ATP{j}*Pp*(1/2+(Gs+G3))/
((x-(1-2*j/n)*Omegal+DeltaE) ~2+1/4%(Gs+G3)"2)
+ATMI[j]*Pmx*(1/2%(Gs+G3))/

((x-(1-2%j/n)*Omegal-DeltaE) " 2+1/4%(Gs+G3) " 2)",’j’=-2..2):
) AUTLER:=evalf(subs(alpha=.35,0megal=80,G3=1/3,Autler)):
[} plot(AUTLER,x=-280..280,numpoints=2000);

[) Autdis:=sum(’ATP[j]*Pp#*(x-(1-2%j/n)*Omegal+DeltaE)
/((x-(1-2%j/n)*Omegal+DeltaE) ~2+1/4%(Gs+G3) " 2)
+ATM[j]*Pm*(x-(1-2%j/n)*Omegal-DeltaE)
/((x-(1-2%j/n)*Omegal-DeltaE) "~ 2+1/4%(Gs+G3)~2)",’j'=-Z..Z):
[) ADIS:=evalf(subs(alpha=.35,0megal=80,G3=1/3,Autdis)):

[) plot(ADIS,x=-280..280,numpoints=2000);
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