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Abstract 
This thesis examines the AC Stark effect from the perspective of the dressed 

atom model, specifically that associated with an atom driven by more than one 

laser field. Almost aJl cdculations contained herein are analytical in nature, and 

are aimed at providing a physical understanding of the dynamics of a two level 

atom driven by two or three laser fields. All calculations agree completely with 

those obtained by numericdy solving the optical Bloch equations for the system 

and, where available, wit h experiment al observations. 

When an atom already subject to a strong driving field is rnonitored by a strong 

probe beam, it is observed that the absorption and dispersion spectra display res- 

onances at fkequencies detuned from the atomic transition frequency wo by integer 

fractions of the Rabi fkequency 2Q of the first field. However, a "strong probe" is 

an intense field which itself alters the characteristics of the system it is supposed 

to be probing. Based on this observation, we have considered the system from the 

point of view that both fields "dress" the atom, and calculated the energy levels 

and spectra of the "doubly-dressed" atom. We End a new physical phenomenon: 

The second field couples to multiphoton resonances between dressed states of the 

first field, and their energy levels a e  split due to this n-photon coupling, Le.  

this represents an n-photon AC Stark effect. The resulting fluorescence and near- 

resonance and Autler-Townes absorption and dispersion spectra are extremely 

rich in detail, containing multiplets at the subharmonic as well as harmonic res- 

onance frequencies with an intricate dependence on the order n of the resonance 

and on the relative Rabi fkequencies of the two fields. An outstanding problem 

associated with the subharmonic resonances has been the observation that they 

do not occur at detunings from wo exactly equal to 2R/n, but rather for detun- 



ings slightly shifted hom these values. In this thesis we interpret these shiRs as 

arising fkom the couplhg via the rotating t e m  of the interaction Hamiltonian 

V2 between non-resonant doublets belonging to the doubly-dressed atom, thus 

having the physical interpretation of a dynamic Stark shiR. We demonstrate that 

at  precisely these shifted resonance fkequencies the fluorescence by the atom van- 

ishes identically at  the central hequency wo, and that the splitting of the features 

within the spectral multiplets is a minimum. 

We have also calculated the dressed states and spectra of a two-level atom 

driven by an intense amplitude-modulated field of modulation fiequency 6, for 

both weak and strong modulation amplitudes. The spectra arising for a weak 

modulation are best described by comparison with those of the rnonochromatically 

driven atom: For the fluorescence and near-resonance absorption spectra, the 

central component of the Mollow triplet is unaffected, while the sideband lines are 

replaced by multiplets with spacing b and an intensity dependent on the ratio of 

the modulation amplitude to its hequency. in the Autler-Townes spectrum, each 

line is sirnilady replaced by a multiplet. For strong modulation, we describe the 

spectra by comparison with those which mise for an equal amplitude bichromatic 

(AM with suppressed carrier) driving field: The central lines of the fluorescence 

and near-resonance absorption multiplets are split int O triplet features, w hile all 

other lines, as well a s  those of the Autler-Townes spectra, are split into doublets, 

with doublet splitting proportional to the amplitude of the carrier fiequency. 
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1. Introduction 

In the nearly 40 years since the development of the first working (optical) laser, 

our understanding of how light interacts with matter has gown a t  a rate which 

has made the underlying theory now one of the best understood in all of physics, 

and certainly one of the most applicable. 

At the most fundamental level, our understanding of how Light and matter in- 

teract is based upon the theory of Quantum Electrodynamics (QED). This is the 

field theory which is the relativistic version of single particle quantum mechanics, 

and is one of the best experimentally verified theories in any branch of science 

in all tirne. It describes the interaction of electrons (or other electricdy charged 

particles) with photons to an incredible degree of accuracy. The agreement be- 

tween theory and experiment is better than l part in 1014, which is equivalent to 

the ratio between the diameter of an atom and the distance between Toronto and 

Vancouver. 

Despite being a relativistic theory, QED contains lessons for those of us who 

practise physics at more moderate energies. To begin with, it teaches us to 

thuik of the vacuum as an important player in the dynamics of physical systems; 

in particular the vacuum can act as a probe field which causes an atom in an 

excited energy level to spontaneously emit a photon. The second major fact of 

importance to us is related to the quantisation of the radiation field. QED makes 

explicit for us the description of the electromagnetic field as a set of decoupled 

harmonic oscillaton with definite numbers of energy quanta. 



Unfortunately W QED calculations are best performed within the framework 

of scattering theory, wherein one can assume that the initial and final states for the 

system are solutions of the fiee Hamihonian. For more complex systems for which 

this does not apply, the equations rapidly become prohibitive and furthemore 

contain a redundancy of information for our purposes, because we are concemed 

only with slow moving (ie. non-relativistic) atomic systems. As such, a variety 

of theoretical techniques designed to focus on the essential "room temperature" 

physics have grown up over the years. 

In 1974, a phenornenon known as the AC Stark effect was h t  observed [l], 

after having been predicted 5 years earlier by Mollow [2]. This is an effect which 

occurs when a strong laser is tuned close to the transition frequency between two 

atomic levels. The laser's oscillating electric field can cause a splitting of the 

observed spectral line, in analogy with the splitting caused by a static electric 

field. The resulting fluorescence spectnim is known as the Mollow triplet. Unfor- 

tunately the technique used by Mollow did not lead to good physical intuition, 

especially when applied to more complicated systems. It was a major break- 

through therefore, when Cohen-Tannoudji and Reynaud introduced a technique 

now known as the "dressed-atom model" that gives a clear and concise method 

for deriving the Mollow spectrum [3]. One of the most appealing features of the 

dressed-atom model is that once we have the dressed states we can automatically 

understand why the particular spectral features appear; moreover it is usually 

only a small amount of work from there to the expressions for the spectra. All 

we need essentially are the transition rates between dressed states. From these 



the population and coherence equations foilow easily, dong with the associated 

linewid t hs. 

This is the cornputer age however, and so the dressed-atom mode1 now h d s  

itself competing with numerical simulations, which for more compiicated systems 

than just a single atom and one laser rapidly become computationdy intensive, 

though certainly possible. However, these reveal very little about the underlying 

dynamics of the problern and as such do not increase our insight into the behaviour 

of these systems. With this in mind, it is perhaps usehi to discuss why the 

calcdation of strong field effects is dîfIicult, and briefly describe the other major 

approaches to studying the interaction of atoms and laser fields. 

If the laser intensity is low then we can perform perturbation calculations 

within a QED karnework. However these rapidly become intractable as the in- 

tensity of the laser increases and a large number of intermediate processes have 

to be included in calculations of the scattering amplitudes. We are thus forced to 

other methods. 

It  is well known that when an atom is irradiated by an intense monochromatic 

field nearly resonant with the transition between an atornic ground state lg) and 

excited state le), an oscillation of fiequency 2R is induced between them. This 

fiequency is known as the Rabi nutation fiequency. When 2R is much larger than 

the spontaneous emission rate î of the upper level le), then we certainly do not 

have an equilibrium situation. Rather we have a dynamic process wherein photons 

of the laser mode are continually being transferred to the vacuum modes. Our 



approach to studying the system depends precisely upon the questions in which 

we are interested. Ln this thesis we will be mainly concemed with the jkquency 

distribution of the fluorescence photons, as opposed to Say transient effects or 

photon statistics associated with arriva1 times and so on. In experiments, which 

measure such frequency distributions, information regarding the ordei of photon 

emission is lost, and so for a given ensemble of photons one has to take into account 

interference in the amplitudes describing all possible ways such an ensemble can 

be created. 

Dynamicd theories of spontaneous emission were first presented by Weisskopf 

and Wigner [4], and these methods were later generalised by Heitler and Ma [5]. 

These formulations were very successful for many processes associated with weak 

driving fields, and allowed for detailed discussions of lineshapes and level shifts. 

They were limited however to problems involving one fluorescence photon only. 

Another class of theories, known as "quantum statistical theories", grew up in 

the 1970's [6,7], and proved to have several advantages over the previous treat- 

ments. In particdar they are easily generalised to cases of multiple atoms and/or 

atornic levels; they aiso d o w  for easier treatments of processes involving virtual 

levels, which are required for computations such as calculation of the Lamb shift. 

The quantum statistical theories encompass a broad class of approaches, includ- 

ing master and Bloch equation treatments, Fokker-Planck methods and quantum 

Langevin and associated stochastic methods. For an ovenriew of all these methods 

see [8] and references therein. Different treatments are often better suited to spe- 

cific problems. In particular the master equation approach has proved successful 



in describing the AC Stark and associated effects. For most problems the master 

equation cannot be solved exactly, and so numerical techniques are used. This 

thesis will focus however on using the dressed atom model, which is also based 

on the master equation, to retrieve analytical results for a number of different 

situations involving the AC Stark effect. 

In this thesis we will be concerned with analysing a system that consists of 

an atom driven simultaneously by two or three strong lasers. We will use a 

technique known as "doubly dressing" the atom [9], which has been developed to 

d o w  us to calculate andytic expressions for parameters of interest in this type of 

system. These malytic expressions give us much more intuition into the physics 

of the system, and allow us a better understanding of the effect changes in various 

parameters will have upon the dynamics. 

The thesis is organiseci as follows. Chapter 2 is an introduction to the dressed 

atom model, focussing on the case of a single atom driven by a single laser. The 

reader familiar with this model may pass directly to Chapter 3, which is Mly self 

contained with regard to notation and essentid equations. In fact, at the risk of 

a s m d  amount of repetition, every chapter has been written so as to be as M y  

self-contained in this regard as possible. Chapter 3 describes the application of 

the double dressing technique to explain a new phenornenon known as the "multi- 

photon AC Stark effect", which occurs when a single atom is driven by two lasers 

of unequal strength, where the weaker laser is detuned to an integer &action l/n 

of the Rabi hequency 252 of the stronger laser. This effect is the underlying cause 

of the "subharmonic resonances" which are observed when a strongly driven atom 

5 



is monitored by a strong probe. The next chapter provides an explanation of a 

phenornenon that was also h t  noticed experimentdy: namely that the exact 

subharmonic resonance points are shifted fkom the exact values 2R/n. As well, we 

report that fluorescence at wo is suppressed at these shified points. In Chapter 

5 we describe a system of an atom driven by three lasers, in particular by an 

amplitude modulated field, and show the dramaticdy different structures that 

arise. The work is summarised in Chapter 6. 

Various sections of this thesis have aheady been published. The results of 

Chapter 3 are published in [IO] and [11], while the results of Chapter 4 are pub- 

lished in [12]. 
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2. The dressed atom model: 
monochromat ic driving 

2.1 Introduction 

In this chapter the dressed atom model for descrîbing the interaction between 

an atom and a single laser field is introduced. However, one cannot do justice to 

the model in such a short work as this; we are therefore introducing only those 

features essential to an understanding of the next three chapten. In addition to 

serving as an introduction to the model for the uninitiated, we will save many 

pages of calculations later on by performing the simple calculations of this chapter 

in a fairly detailed manner, thereby dowing a less explicit treatment later on. A 

comprehensive introduction to ail aspects of atom-photon interactions, including 

the dressed atom model, can be found in [l]. 

To begin with, let me point out that in the blasé manner characteristic of 

theoreticians, we will discuss atoms here as if they possessed only two energy 

levels: a ground state lg) and an excited state le) separated by an energy E = 

and connected by an atomic dipole moment This is justified, because 

throughout this thesis we will consider atoms irradiated by lasers with bequencies 

that lie close to a single atomic transition fiequency, and hence the effects on these 

two levels far outweigh those on any others. The energy E is assumed to be the 

expen'mentally measured transition energy, that is it incorporates the Lamb shifts 

and other effects due to the presence of other atomic levels. 



2.2 An excited atom in the vacuum 

Before we consider an atom driven by lasers however, let us  consider an atom 

which has been excited by some unspecified process to the level le), and is left 

sitting in the vacuum. If the atom is otherwise undisturbed, then we expect that 

after some characteristic average time (known as the radiative lifetime) t~ of the 

level, the atom will decay and emit a photon of energy E. However we redise that 

in fact the energy of the emitted photon must lie within some energy range, since 

the Heisenberg uncertahty principle prevents us fiom making an infinitely precise 

measurement of energy in a hi t e  time (which is what this wouid constitute). 

Thus the process is intrinsically probabilistic, and the width of the resulting 

probability distribution of emitted energies (centred at hwO) is the emission rate 

I' = The emission is most easily understood as the result of a "probing" 

by the vacuum, which can be viewed as the cumulative effect of the vacuum 

fluctuations moud the electron. These vacuum fluctuations are characterised by 

a very short correlation time te. This is analagous to a process wherein a heavy 

particle rnoving through a fluid has its velocity changed over some (relatively) 

large timescale by repeated small but fast collisions with the microscopie particles 

of the fluid. 

2.3 An undressed atom in a single laser field 

When the atom is surrounded by laser photons, the dynamics become more 

complicated. In particular, if the field is strong (in a sense defined more precisely 

below) then large numbers of absorption and stimulated emission processes may 



occur within the characteristic t h e  tR.  These transitions occur with a charac- 

teristic time ts much longer than t c  but shorter (for all situations considered in 

this thesis) than t~  ( tR  > t~ » te) -  The inverse of t s  is known as the Rabi 

frequency (denoted by 20) ,  and is a cnicial experimentd parameter. If, for a 

moment, one thinks of the driving field as a classical oscillating electromagnetic 

field, then the Rabi frequency is directty proportional to the scalar product of the 

electron's dipole moment and the electric field vector. As such it measures the 

strength of the coupling between the atomic energy levels and the incident laser 

beam. In a picture in which we consider the laser field as N l y  quantised, the 

Rabi fiequency is directly proportional to the mean number of photons and the 

atom-field coupling constant g, which characterises the interaction Hamiltonian. 

The tirne evolution of the system may now be described, qualitatively at least, 

as  follows. The atom starts in the ground state with N laser photons present, 

that is the initial state is Ig,N) s lg) @ IN) (throughout this thesis, modulo 

typographicd errors, commas within kets denote tensor products). The atom may 

now absorb a photon and the system goes to the state Je, N-1), that is the number 

of photons in the laser mode has been reduced by one and the atom is excited. 

Another laser photon may now cause stimulated emission and the state returns 

to (9, N) (remembering the whole process is still probabilistic) . This process rnay 

be repeated many times (since for our purposes ts < t R )  before a spontaneous 

emission occurs. When a spontaneous emission does occur however, the system 

makes a transition from le, N- 1) to tg, N- i), since spontaneous emission doesn't 

affect the number of photons in the laser mode. The system can now "Rabi 



oscillate" between Jg, N - 1) and le, N - 2), before another spontaneous emission 

occurs. The dynamics is rather complicated; the presence of three characteristic 

tirne scdes shodd have warned us of this fact. 

2.4 The dressed states 

The dressed atom approach essentially consists of describing the system dy- 

namics in a basis corresponding to eigenstates of the full Hamiltonian (including 

the atom-driving field interaction), rather than the "undressed" basis of the free 

Handtonian considered in 2.3. 

The Hamiltonian of the system takes the form (from here on we set f i  = 1) 

where 

H, = woSZ 

is the Hamiltonian of the atom, and 

is the Hamiltonian of the driving field. Here SZ = $(le)(e( - lg)(gl) is the atomic 

inversion, and a(at) is the annihilation (creation) operator for the driving field 

mode. Hu and HL describe the energy of the atom and laser mode respectively. 

The interaction V is given by 



where g is the atom-field coupling constant and describes the strength of the 

interaction between the laser mode and the atom. S+(S-) = le)(g((lg)(el) is the 

atomic raising (lowering) operator. The two terms of V describe the processes of 

stimulated emiçsion and absorption respectively. 

To undentand the form of the interaction V, note that we are workuig within 

the dipole approximation, within which we expect the interaction part of the 

Hamiltonian to be proportional to the dot product of the atomic dipole moment 

p, and the electric field at the position of the atom, E: Since the former is 

proportional to Sf + S-, while the latter is proportional to a + ut,  it might at 

fust glance appear as if two terms are missing from (2.2). However; the above 

Hamiltonian is correct within the rotating-wave approximation (RWA) (11, which 

assumes that non-resonant processes (which contain terms of the form atSf and 

aS-) are negligible when the laser beam is quasi-resonant , i. e. when (wL - wo)  = 
A « wo. In fact these terms do contribute shifts; however these are of order r / w o ,  

and for atomic systems driven by optical frequencies are completely negligible. 

Because the interaction term V only couples states in pairs, the total Hamil- 

tonian H ,  in the undressed basis tg, N) , le, IV - 1) , has a simple block diagonal 

matrix form, 

where 



Figure 2.1 The dressed state energy level stmcture of the singly-dressed atom. 
The dressed States consist of an i n f i t e  number of doublets, with inter-doublet 
separation w~ and intra-doublet separation 2G. Transitions contributing to the 
spectra are shown in dashed arrows. 

In this thesis we are prirnarily concerned with strong driving lasers, for which the 

(mean) number of photons in the laser mode is typicdy greater than 108. This 

dows  us to approximate 

where 2fl is known as the (on resonance) Rabi fkequency. 

By diagonalising (2.3), we h d  that the eigenstates of H form an infinite set 

of energy manifolds separated by the laser frequency W L ,  each containing a sin- 

gle doublet with intra-doublet splitting 2G, as depicted in Figure 2.1. These 



eigenstates (the "dressed" states) are given by 

IN+) = sin Blg, N) + cos $le, N - 1) 

IN-) = COS Big, N) - sinole, N - i), 

where 

and the generalised Rabi fkquency is given by 

2.5 Transit ion rates, populations and coher- 

ences 

The dashed arrows in Figure 2.1 depict spontaneous transitions between the 

different energy manifolds, which occur with transition rates r++, I'--, rf - and 

r-+ (dehed more precisely below). The first two of these correspond to transi- 

tions at fiequency W L ,  while the next two correspond to transitions at fiequencies 

w~ + 2G and w~ - 2G respectively. Thus knowledge of the dressed states c m  al- 

ready help us qualitatively understand the origin of the three components of the 

Mollow triplet. We wish to compute the linewidths and intensities of these transi- 

tions, and ultimately to obtain an expression for the spectrum of the light emitted 

by the dressed atom via spontaneous ernission, or alternatively by the bare atom 

as resonance fluorescence. We will also consider other methods of observing the 

atomic dynamics, for example the weak probe absorption and dispersion spectra 

or the Autler-Townes spectra. All of these can be easily calculated within the 

dressed atom kamework. 



To analyse the time evolution of the system, we tum now to the Lehmberg- 

Agarwal master equation [2], which describes the evolution in temm of the reduced 

atomic density operator pf In the Schriidinger picture, the master equation is 

given by 

We project (2.5) onto the dressed state basis (ZA), to obtain differentid equations 

for the time evolution of the populations (the probabilities of occupation) of the 

dressed states, and for the coherences between the dressed states. However this 

will still result in an innnite set of coupled equations. We make a hirther approx- 

imation, known as the secular approximation, in which we ignore all coupling 

between density matrix elements which oscillate at difFerent frequencies. This 

approximation is equivalent mathematically to neglecting terms of order r /R,  

and is valid because at the large Rabi fiequencies we are considering, non-secular 

couplings are quickly 'kashed out", and consequently contribute Little to the 

steady-state spectrum. 

The populations r$ r ( N  * lp) Nf) are fomd from (2.5) to obey the equations 

of motion 

t The reduced density operator is obtained fkom the more familar 'W density 
operator by taking a trace over the empty ( i -e .  vacuum) modes of the electro- 
magnetic field. This corresponds to treating the vacuum as an infinite reservoir, 
and results in the damping term proportional to I' in (2.5) which appears as if an 
addition to the Heisenberg equation of motion. 



where the dot denotes Merentiation with respect to time. Here the quantities 

r* *, îkF are the transition rates between the dressed states. These are propor- 

tional to the modulus squared of the rnatrix elements (in the dressed state bais)  

p* * = ( N  f (S+I(N - l)f) and pfF = (N f IS+((N - 1 ) ~ )  of the operator S+. 

They are independent of N, and are given by 

The interpretation of the equations (2.6) should be clear. Consider just r;, which 

is the population of the state IN+). Equation (2.6) indicates that this state decays 

via spontaneous emission to states I(N - 1)+) with a rate î++ and I(N - 1)-) 

with a rate r+-. It is repopulated however fkom the state I(N + 1)-) with a rate 

r-+, and hom the state I(N + 1)+) with a rate r++. 

In fact equations (2.6) still constitute an infinite set of coupled equations, 

however we know that for large N the populations in adjacent manifolds will be 

* f almost identical, and so we approximate rN = R N f l  2. 7rN+* = . . . . We &O 

realise that flux out from one manifold will be balanced by the influx from the 

manifold above (the detailed balance condition), and so we concentrate on the 

s e c d e d  "reduced populations", IIf r EN T$, which can easily be shown to 

satisfy the equations of motion 



These equations have the steady state solutions 

where r, = r+- + r-+ = cos4 6 + sin4 B. We could also consider the density 

matrix element between two plus or two minus states on different manifolds, e.g. 

e** = ( ( N  + 1) f ( p l N f ) .  It tums out that these off diagonal density matrix 

elements ("coherences") obey the same equations of motion as the populations 

(2.6) with the addition of a Bee evolution term at the transition frequency between 

the states (in this case w ~ ) .  

We next consider the density rnatrix elements between a plus and a minus state 

(and vice versa). In the same way as we considered the reduced populations, we 

m u t  consider the reduced coherences and h d  their equations of motion. The 

main reduced coherences of interest are C N ( N  f (pl(N - l ) ~ ) ,  and they 

obey the equation of motion 

where I', = r(i + cos2 0 sin2 8 ) .  We see fkom (2.10) that the coherences obey 

uncoupled equations of motion, and will reach a (quasi-) steady state after a 

transient time of l/I',. Other coherences, say between different pairs of manifolds 

or within one manifold, will obey an equation of motion simüar to (2.10), with 

o d y  a different fkee evolution fkequency (first term in the right hand side of 

(2.10)). 



Figure 2.2 The Mollow fluorescence spectrum for A = ï, 252 = 10ï The 
ratio of the central peak intensity to that of the sidebands is (approximately) 
3:1, the ratio of the sideband linewidths to that of the central component is 
(approximately) 3:2. 

2.6 The fluorescence spectrum 

The steady state fluorescence spectrum S(w) of a strongly driven two-level 

atom was predicted by Mollow [3], and was subsequently verified experimentally 

[4]. It is weU known to be given by the expression 

S ( w )  = NR d r  eW' Iim (S+(t)S-(t + r ) )  / t h C a  

where 32 denotes the real part of the integral. The normalisation N of (2.11) can 

be chosen such that the total intensity I = dw S ( w )  corresponds to the total 

number of photons emitted per second. In general, however, we will not worry 



about the normalisation of our spectra, and numerical values on the vertical axis 

shodd be considered usehil only for comparing relative peak intensities. 

Let us consider briefly how we may compute the fluorescence spectrum with 

our present knowiedge of the dressed atom dpamics. 

First let us formally expand the operator Sf in the dressed state basis: 

where SC, = peu EN INe) ((AT - 1)ol with c, o E {+, -). If we now consider the 

first term of (2.12), we can see that the average value of Sz- is given by 

Thus (SZ-) will obey the same equation of motion (2.10) as does Q+-. Similariy 

the average value of the second term of (2.12) obeys the same equation of motion 

as e-+ . The last two terms of (2.12) obey the same coupled equations of motion as 

ef , which (as the comment under (2 -9) indicates) are the same as the population 

equations (2.8) with the addition of a Free evolution term of frequency w ~ .  

N o w  why have we been concentrating on the evolution of (Sf), when the 

spectrum in (2.11) is given by the fourier transform of a two time correlation 

function? It  turm out that we c m  apply a theorem known as the "quantum 

regression theoremn[2] which states that (within the approximations employed 

here) the two-tirne correlation function (Sf (t + r)S-  (t)) obeys the same equation 

of motion as the one-time correlation function (S+ (7)). 



Thus if we use (2.12) in (2.11), we can see that the spectnim will break up 

into three distinct terms. The first two te-, which have decoupled equations of 

motion, evolve in time according to the equations 

When we substitute (2.14) into (2.11) we obtain contributions to the spectnim 

which are two Lorentzians centred at w ~ r t 2 G  of linewidth î,, and thuç correspond 

to the sidebands of the MolIow triplet. The intensities of these two lines depend 

on the initial values of the correlation functions r(S& (0)s- ( O ) ) ,  which are still 

to be determined. Let us consider r(S& (0)s-(O)). Using (2.13) we can deduce 

= rP+- ((N - 1) - (S - INf~) (Nfe lp (N+) .  
N,Nf ,e  

Now ((N - 1) - 1s-(N'E) is zero unless Nf = N ,  and ( N t  + Ip(N+) is zero in the 

steady state. Thus we see that the intensities of the sidebands are given by 

The analysis of the Sf* terms, which contribute the central line of the spectrum 

at w ~ ,  is simiiar to that outlined above, though it is a little more complicated 



due to the fact that their equations of motion are coupled. It should be pointed 

out however that the eigenfrequencies obtained when solving the pair of linear 

coupled equations are iwL and iwL - r,. Rom this second term we obtain the 

central Line of the inelastic spectrum, which has a linewidth of î,. It is left as a 

challenge for the curious reader to determine to what the k t  term corresponds. 

The ha1 expression for the (incoherent part of the) fluorescence spectrum is 

given by (normalising ail quantities to r) 

An examination of (2.17) shows that the spectrum is what one should in- 

tuitively expect, given a knowledge of dressed state dynamics. The sidebands 

of the s p e c t r ~  consist of lorentzians with kequencies detennined from the al- 

lowed transitions between the dressed states. Their linewidths are determined 

by the damping rate r, of the coherence which evolves at the same transition 

fkequency, and their intensities are proportional to the product of the population 

of the dressed state and the transition rate out of the state. The central corn- 

ponent of the spectrum has two contributions since both IN+) + I(N - l)+) 

and IN-) -t I(N - 1)-) transitions occur a t  frequency w ~ .  It  is the fact that 

this spectrum zs so intuitive that makes the dressed atom mode1 so appealing. In 

practice we c m  just m i t e  d o m  the spectrum given a knowledge of the population 

and coherence equations. We will see that even with more laser fields and much 



Figure 2.3 The weak probe absorption spectnim for the same parameters as 
in Figure 2.2. The positive y direction corresponds to absorption. 

more complicated dressed States, all fluorescence spectra in this thesis will have 

the same general form as (2.17). 

The spectrum (2.17) is known as the Moilow triplet, and is plotted in Figure 

2.2 for 2 0  = 10r and A = I'. AU fluorescence spectra presented in the later 

chapters of this thesis should be compared to this spectrum, to understand the 

Merences that an extra one or two laser fields can make. 

2.7 Weak probe absorption and dispersion spec- 

tra 

Another technique used by experimentalists to probe the dynamics of a strongly 

driven atom is to apply a second weak laser of frequency w,, and to scan this laser 



Figure 2.4 The weak probe dispersion spectrum for the same parameters as 
in Figure 2.2 

through frequencies close to wo. This second laser is assumed weak enough not to 

appreciably affect the system dynamics. After passing through the system, the 

absorption and dispersion of this probe laser can be measured [5]. If the laser 

couples to a transition for which there is more population in the upper state than 

the lower then a net amplification will occur, while net absorption will occur if 

the population is greater in the lower state. 

The absorption and dispersion (refractive index) profiles of the weak probe 

beam are given by the real and imaginary parts, respectively, of the Fourier 

transform of the two tirne commutator ([S- (t) , S+ (t ' ) ] )  . The term (S- (t) S+ ( t ' ) )  

of the commutator is associated with absorption and the term (S+(tt)S-(t)) with 

stimulated ernission of the probe beam. 



These spectra are derived in the dressed state picture in a manner similar to 

that of the fluorescence spectnim described above. The absorption spectrum is 

found to be given by 

This spectrum is plotted in Figure 2.3, for the same parameters as used in Figure 

2.2. Absorption is "upwards" in the diagram. The absorption and ampMcation 

occur because the dressed states are unequally populated. In this case A > O and 

so from (2.9) and (2.4) we see that the upper (plus) states are more populated 

than the lower (minus) ones. This leads to absorption at w i  -2G and amplification 

at w l  + 2G. 

Note that for the case of on resonance driving (A = O), a s m d  amount of 

absorption and amplification at wo &ll s t f i  occur, despite the fact that in the 

dressed state picture the steady state populations are equal and so the expression 

(2.18) vanishes. These effects are non-secular in nature (they arise kom mul- 

tiphoton processes [6]), and so are not easily derived within the dressed atom 

model. 

The dispersion profile is given by 



Figure 2.5 The Autler-Townes doublet for the same parameters a s  in Figure 
2.2, and with î3/ï = 3. 

This dispersion profile is plotted in Figure 2.4. 

2.8 Autler-Townes absorption and dispersion 

spectra 

Yet another way to investigate this system experimentally is to pick a third 

atomic level (c) which has a transition fiequency w, from Ig) (or le)) very Beren t  

fkom wo. A weak laser of fiequency w3 is now scanned across fiequencies close to 

w, - w,, and the resulting absorption and dispersion of this laser measured [7]. 

If the laser is weak then it cm be asswned to not appreciably affect the dressed 

state dynamics. The resulting " Autler-Townes" spectra can be easily derived, 



Figure 2.6 The Autler-Townes dispersion spectrum for the same parameters 
as in Figure 2.5. 

and the Autler-Townes absorption spectrum is given by 

while the corresponding Autler-Townes dispersion profile is 

W 3 )  = 
Af TL(w3 - (WC - G)) + A-II, (w3 - (w, + G)) 
( ~ 3  - (wC - GN2 +r: (w3 - + ~ ) ) 2  + r ~  - 

In the above, the weight factors Af determine the amount of the ground state 

(fkom which we are probing) "contaminating" the dressed states, and are given 

by 
2 A+ = I ( N +  lg, N ) I ~  = sin 8,  



The linewidth r, = f (r, +&), where î3 is the natural linewidth of level3. These 

spectra are plotted in figures 5 and 6. Figure 5 shows the classic Autler-Townes 

doublet, which is split by 2G. The doublet intensities are not equal because we 

have chosen parameters correspondïng to off resonance driving (A > 0). 

2.9 Conclusions 

We have examined in some detail the spectra associated with a two-level atom 

driven by a single intense laser field. These spectra will form the basis for our 

understanding, in the next three chapters, what differences are induced by the 

addition of an extra one or two laser fields with various detunings and intensities. 

Hopefully it is clear that, at least in hindsight, aJl spectra presented in this 

chapter are very intuitive and easily understood £rom the dressed state picture. 

This understanding is not so easily obtained by solving density matrix equations 

of motion or the Bloch equations (either analyticdy or) numerically. 
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3. The multiphoton AC Stark effect 

3.1 Introduction. 

The interaction of a two-level atom with an intense, nearly resonant laser field is 

of fundamental interest in atomic spectroscopy and quantum optics and has been 

studied extensively for over 25 years. Early interest focussed on an atom driven 

by an intense monochromatic field and the resulting "dressed" system probed by 

a weak field, as briefly covered in chapter 2. Fluorescence by the system was Çst 

predicted [l] and then observed [2], as was the absorption and dispersion by the 

entangled atom+driving field system of a weak probe field nearly resonant with 

either the driven transition [3] or the transition fiom a driven level to a third 

atomic level (Autler-Townes effect) [4]. 

Anot her area of interest involves the atomic response to amplitude-modulated 

(AM) and bichromatic driving fields. A 100% amplitude-modulated field is equiv- 

alent to a bichromatic field whose (mutually coherent) components have equal 

intensities, and whose frequencies are separated by twice the modulation fie- 

quency. Various aspects of this problem have been studied. For example the 

fluorescence spectrum of an atom driven by a bichromatic field of equal ampli- 

tudes (Rabi kequencies) was observed [S] and interpreted using a dressed-atom 

analysis [6]. Since then a wide variety of studies have been performed on the 

fluorescence, near-resonant absorption, and Autler-Townes absorption of bichro- 

matically driven atoms for both equd [7] and unequal [8] Rabi kequencies, and 



for average driving field fkequency both tuned to and detuned fiom the atomic 

resonance [9], [l O]. 

Much attention has focussed, in these studies, on the appearance of the "sub- 

harmonie resonances" displayed by the absorption spectnim of a strong probe 

beam monitoring a strongly driven two-level system [104 31. The experimen- 

taI data collected to date relating to the subharmonic absorption maxima of the 

strong probe &O corresponds to a study of the maxima of the integrated intensity 

of fluorescence by the atom when one component of the driving field (the "pump") 

is h e d  in its fkequency and inteasity, while the frequency and/or intensity of the 

second component (the "probe") is mied.  The connection of these subha.rmonic 

resonances with multi-photon gain has also been explored [14], and a two-photon 

optical lasing has been obsewed [15]. However, a "strong probe" is an intense field 

which itself alters the characteristics of the system it is supposed to be probing. 

Based on this observation, we will therefore consider this system from the point 

of view that both laser fields 'Uress" the atom and analyse the energy States of 

the resulting system. We will show that the system is both in principle and in 

practice more profitably regarded in the context of this bichromatic excitation. 

In the studies of resonance fluorescence fiom two- or three-level atoms under 

bichromatic excitation, both driving fields couple to the same atornic transition. 

In the related studies of multi-level atoms driven by n coherent laser fields each of 

the fields couples to only one of the n possible one-photon transitions [16]; in this 

latter case a multiphoton absorption is possible, but the driving fields can lead 

to o d y  a "one-photon AC Stark effect". In this chapter we will study a system 
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in which two fields drive the same atomic one-photon transition, yet nevertheless 

the second field can couple to multiphoton resonances between dressed states of 

the k t  field. We will fhd a new physical phenornenon: the splitting of the 

dressed states is due to an n-photon coupling between them, Ce. it represents 

an n-photon AC Stark effect. The fundamental dynamics of this system can be 

investigated by examining the fluorescence spectnun, as weIl as the weak probe 

absorption and Autler-Townes spectra. We will focus in this chapter on the 

driving of the singly dressed system by a laser field tuned to the subharmonic 

resonances, and use the dressed-atom model both to explain the physical origin 

of novel spectral effects and to demonstrate that far more detailed information 

is in fact obtainable by suitable probing. The calculated fluorescence, probe 

absorption and Autler-Townes spectra are extremely rich in detail, containing 

multiplets at the subharmonic as well as harmonic resonance fiequencies with an 

intricate dependence on the order n of the resonance and on the relative Rabi 

frequencies of the driving field components. 

In principle it is possible to write down and numerically solve the master equa- 

tion or the Bloch equations of the system including ail of these effects; this does 

not however lead to physical understanding of the problem. In order to gain 

insight into the dynarnics of the system, we will use the "dressed atom" model, 

which was briefly discussed in Chapter 2, for our bichromatically driven atom 

[191 

The chapter is organised as follows. The energy levels of the entangled sys- 

tem of atom+driving fields (i.e. the doubly-dressed atom) are calculated &st in 

31 



sections 3.2 and 3.3. Resonance fluorescence appears in this picture as a sponta- 

neous emission cascade by the dressed atom d o m  its ladder of energy manifolds. 

The absorption spectrum is interpreted as the net difference between absorption 

and stimulated emission of a weak, quasi-resonant probe between the manifold 

sublevels, while the Autler-Townes spectnun reflects the net absorption fkom the 

manifold sublevels of a weak probe tuned to a third atomic level. These spectra 

are calculated in section 3.4. In section 3.5 we discuss briefly the situation that 

occurs when the role of the two driving fields is revened. In section 3.6 the results 

of this chapter are summarized. Appendix A contains details of the perturbation 

cdculations involved in the determination of the dressed states. 

3.2 The System 

As in the last chapter, we will consider a two-level atom with ground state 

lg) and excited state le) separated by a transition frequency wo and connected 

by a transition dipole moment P. The atom is driven by a bichromatic field 

with frequency components w l  and wz and corresponding (on resonance) Rabi 

fiequencies 2R1 and ZR2. The atom is also coupled to all other modes of the 

electromagnetic field, which are assumed to be initially in their vacuum states. 

This coupling leads to spontaneous emission with a rate r. 

The time evolution of the atomic system can be described by the reduced 

atomic density operator p, which in the Schrodinger picture obeys the master 

equation ( A  = 1) [20] 



where S+(S-) = le) (gl (tg) (el) is the mual atomic raising (lowering) operator. 

The Hamiltonian H is cornposed of £ive terms, 

where 

Ha = woSZ 

is the Hamihonian of the atom, and 

are the Hamiltonians of the driving field components. In equations (3.3) and (3.4), 

Sz = f (le) (el - Ig) (g 1) is the atomic inversion, and cci(=!) are the annihilation 

(creation) operators for the driving field modes. The terms 

where gi are the atom-field coupling constants, describe the interaction of the 

laser fields with the atom (in the rotating-wave approximation). 

We begin by diagonalising the Hamiltonian H to find the eigenstates (dressed 

states) of the combined atom+driving fields system. This approach is valid for 

For ail but Section 3.5, we will consider the case of fi2 = an1 with a < 1, and 

thus we can examine the effect of the second field perturbatively. Moreover, we 

limit our calculations to the case in which the first field is on resonance with the 
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atomic transition, w l  = wo, and the second field is detuned fiom resonance by an 

integer fraction of the first field's Rabi frequency, so that 

This corresponds to driving the system by the second field at one of the "subhar- 

monic resonances" of the Rabi fkequency of the first field. The case of n = 1 has 

recently been examined both theoreticdy [21] and experimentdy 1221. As we 

s h d  see the situation for n = 2'3, ... produces dramatically different results. An 

n-photon coupling between dressed states leads to the appearance of multiplet 

features at subharmonic as well as harmonic resonance frequencies in the spectra. 

The diagonalisation of H leads to the dressed states of the system and their 

energies. However, instead of performing the diagonalisat ion of the total Hamil- 

tonian by treating the driving fields as a single combined field, we k t  diago- 

nalise the Hamiltonian Hd, = Ha + Hi + VI and calculate the dressed states 

of the atom+resonant field system. Next we couple the resulting singly-dressed 

atom to the detuned field and calculate the dressed states and their energies of 

this 'cdoubIy-dressed" atom. The eigenstates of the Hamiltonian Hd, satisfy the 

eigenvalue equation 

w here 



is the Rabi fkequency of the resonant fieldt 

are the singly-dressed states, and N is the number of photons in the resonant 

mode [19]. The singly-dressed states form a ladder of doublets, as shown in 

Figure 3.1 (a), with adjacent doublets separated by wo, and intradoublet splitting 

2n1. 

Next, we add the second field and h d  that the eigenstates of the combined 

system Hd, + Hz are degenerate doublets 

I ( N + n - m ) + , M - n + m )  = 

I(N - m)- ,  M + m) = l b 3 ,  

wit h energies 

E,, Eb, = ( N  + M)wo + St 
' [ 2 ( ~  + m) - n], 
71 

(3.12) 

Here the second state of the tensor product denotes the number of photons in the 

detuned mode. In state Ibm), for example, the (singly-dressed) atom is in state 

1 (N - m) -), and there are M + m photons in the weaker field. 

The degeneracy of the states (3.11) is due to an n-photon coupling between 

singly dressed states, as indicated for n = 2 by arrows in Figure 3.l(a). Thus, 

to this point, the energy structure of the system consists of an infinite number 
- 

t In the derivation of Eq. (3.6), we have ignored the variation of RI with N, on 
the basis that the resonant laser is in a (large amplitude coherent) state with an 
average number of photons (N) » 1. 



Figure 3.1 (a) Energy levels of the singly-dressed atom. Absorption of two 
laser 2 photons of frequency wz = wo + al, corresponding to the case of n = 2, is 
indicated by the arrows. (b) Energy Ievels of the singly-dressed atom and laser 2 
before the interaction between them is "turned on". The energy manifolds each 
contain an infinite number of degenerate doublets with interdoublet separation 
ill. (c) Addition of the interaction with laser 2 removes the degeneracy and 
leads to the splitting of the degenerate levels into doublets with an intradoublet 
separation 2A E2. 

of manifolds (separated by wo) ,  each containing an infinite number of degenerate 

doublets (separated by 2Ri/n), as shown in Figure 3.1 (b). 



3.3 The doubly-dressed states and energy split- 
t ings 

The addition of the interaction V2 between the atom and field mode 2 removes 

the degeneracy between the states la:) and Ibk) and results in "doubly-dressed" 

states. In order to show this, we diagonalise the Hamiltonian H = Hh+H2+V2 in 

the basis of the degenerate states la:) and Ibk). We perform the diagonalisation 

using perturbation theory, and fînd that for n = 2,3, ... it is necessary to go 

to second-order degenerate perturbation theory to achieve this. This is due to 

the fact that the matrix elements (alV21P) (a$ = a,b) are zero, and the h t  

non-vanishing perturbation calculations therefore involve diagonalisation of the 

operator 

on the two dimensional degenerate subspace ( 1  a), 16) ) . 

The details of the perturbation calculations are shown in Appendix A. After 

lengthy calculations, we find that the eigenstates of H are composed of non- 

degenerate doublets with splitting 2AEn (as shown in Figure l(c)),  where AE,, 

for n = 2,3 and 4, are given by the series expansions 



The correspondhg eigenstates (the doubly-dressed states), calculated as a per- 

turbation expansion in a, are given by 

7 2 where 7 = -2 3 - a7 3 and N2 = [(i + T2)(i + ga )]-i7 N3 = [1 + %a2]-f, 

N4 = [If %a2)]-) are the normalization constants, and, for simplicity, we have 

introduced the notation (ai) (a&+i), (bi) G lbk+i) for i # O and (ao) = (a) ,  

Ibo) = Ib). 

We note the interesting effect that the operator R1 in second-order lifts the 

degeneracy between the la) and (b)  states for ad n 2 2; however a mixture of these 



Figure 3.2 The n-photon energy splitting AEn/Rl, plotted as  a function of 
Q for n = 2 (solid he), n = 3 (dashed line) and n = 4 (dashed-dotted line). 

states to reroth-order in cr does not occur for n > 2. To understand this we refer 

to the operator R1, whose diagonal elements represent the shift of the degenerate 

states due to their coupling, through Vz, with other states of the manifold. Since 

(a('R1(a) = -@IR1 lb) # O for a,ll n, the states are always shifked in opposite 

directions, which Lifts the degeneracy at  second order. The off-diagonal elements 

of R1 represent a coupling between the degenerate states through the other states 

of the manifold. It is not difticult to show that for n > 2 these off-diagonal 

elements are zero; hence the matrix representation of 7Z1 is diagonal and no 

superposition of the states occurs until order an-2. 



The splittings AE, are plotted in Figure 3.2 as a function of a. Clearly for 

small a the splittings exhibit a quadratic dependence on a, and decrease with 

increasing n. Moreover for a < 0.1 the splittings for n = 3 and 4 are almost 

exactly equal. This is a consequence again of the fact that for n 2 3 the states 

la) and Ib) do not couple to each other through 7Z1, which resdts in the leading 

term of the expansion for AE, rapidly approaching f nia2 for large n. Thus as 

n increases, the s m d  a behaviour of the splittings becomes almost identical. 

3.4 The fluorescence, weak probe and Autler- 

Townes absorption and dispersion spectra 

3.4.1 Spectral frequencies and transition rates 

The interaction between the atom and the vacuum modes of the electromag- 

netic field leads to a spontaneous emission cascade down the energy manifold 

ladder of the dressed atom. Transitions occur between any pair of dressed states 

with a probability proportional to the absolute square of the dipole transition 

moment connecting them. Using the dressed states (3.15)-(3.17) we find that the 

transitions fkom 1 (N + M)mcr) to I(N + M - l)(m + j)~) ( E ,  CT E {+, - 1 )  occw a t  

fiequencies 

and 

indicating that the fluorescence spectrum will consist of a series of triplets with 

intratriplet spacing 2AEn centred a t  integer multiples of 2Rl/n, i .e.  at both 
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sub  and super- harmonies of the strong field Rabi fkequency. Non-zero transi- 

tion probabilities occur only between states within neighbouring manifolds. The 

relevant transition rates are therefore of the form 

rTc = ï' I((N + M)rna( S+ ( ( N  + M - l)(n + j)c)12 (3.20). 

These transition rates (normalised to I', as are all relevant results presented hence- 

forth) are presented explicitly below. In order to show the first non-vanishing 

terms in the transition rates, the calcdations for n = 2 are presented correct to 

order a2, whereas for n = 3,4 they are presented correct to order a4. 

For n = 2 the transition rates (3.20) are given by 

The left hand column of (3.21) consists of those transition rates which contribute 

to the central components of the fluorescence triplets, the right hand column are 

transition rates which govern the intensities of the triplet sidebands. 



For n = 3 we h d  the transition rates which govern the intensities of the central 

component in each fluorescence triplet are given by 

while those governing the intensities of the sideband components of each triplet 

are given by 

For n = 4 we find the central component transition rates are given by 

while the sideband transition rat es are given by 



An examination of (3.22) and (3.23) reveals that the only transition rates 

which have nonvanishing terms independent of a are r:*, which correspond to 

transitions at wo, and ïp, which correspond to sidebands of the triplets a t  f 2Qr. 

These are the locations of the Rabi sidebands for monochromatic driving. 

3.4.2 Populations of the dressed states 

We use the master equation (3.1) to find the time evolution of the populations 

of the doubly-dressed states and of the coherences between them. To study the 

populations, we project the master equation onto I(N+ M)mf)  on the right and 

((N + M)m f 1 on the left. We make the secular approximation in which we 

ignore couplings between populations and coherences and introduce the "reduced 

populations" [19] 

= ( ( N  + M ) m  I Ip((N + M ) m k ) .  (3.24) 
N , M  

Because N, M » 1 we can also assume that the populations Vary very slowly with 

m, and so 

f n; 2 rIrnkl 2f . S .  = rIk. 

The population equations then reduce to a pair of coupled equations 

fi* = FA+II+ f A T - ,  



where the dot denotes differentiation with respect to ï t ,  and the coefficients A* 

are given by 

The equations (3.26) have steady state solutions 

which yield explicitly 

n = 2 :  

In the case of resonant monochromatic excitation, the dressed states are 

equally populated (in the secular approximation). However the atom still exhibits 



weak emissive and absorptive properties which arise kom multiphoton processes 

[17],[18]. In the case of bichromatic driving however, the populations IIf, de- 

pend on CY and are unequal even within the secular approximation. This results 

in k t -order  absorption and emission a t  all sideband bequencies, with central 

components which still vanish, because they correspond to + o + and - e - 

transitions (which involve equal upper and lower state populations). The Mer -  

ence between the populations depends intricately upon the strength of the second 

laser and decreases with increasing n, indicating a decreasing efficiency of the 

second laser. The effective Rabi Bequency of the second laser decreases with 

increasing n, as the laser drives the higher order resonances. 

3.4.3 Coherences and spectral linewidths 

All spectra of the system are related to the time evolution of the atomic dipole 

moment operator S+ given by 

where S& = ( ( N  + M)k(S+I (N + M - Z)mo), and 

The matrix elements of the off diagonal operators (3.3 1) represent coherences 

between the dressed states, and these oscillate at fkequencies (3.18) and (3.19). 

First, we consider transitions at the fkequencies of the sidebands (3.19). For 

values of fii and R2 correspondhg to the range (3.6), it is easily verified that 



the spectral ihes are all nonoverlapphg. The equations of motion of the corre- 

sponding density matrix elements are therefore uncoupled and fiom the master 

equation (3.1) we find that they are given by 

where the linewidths r. are 

Next we consider the transitions at the central component of each triplet. In 

this case the two rnatrix elernents PII,i+ ,N,M and ~!'!m - , N,M osciuate at the 

same fkequency (3.18), and therefore have coupled equations of motion. When we 

(+) (+) average over the driving field, the reduced coherences = CNM ,N,M 

are found to obey the same coupled equations of motion as do the populations 

H z  (+> II*, with the addition in each of the freely oscillating term - w ~ - ~ P ~ ~ , ~ ~ ~  given 



where the constants u1 and u2 can be found fkom initial conditions. We do not 

however require the values of u1 and u* in order to calculate the spectra and 

therefore do not solve for them. The k t  term in (3.36) corresponds to the 

elastic components, while the second term corresponds to the inelastic central 

components at kequencies u(_f, with hewidth given by 

rc = A + +  A-. (3.37) 

For ail n we find ï c  = 2(1 - r.). We see from (3.33) and (3.37) that the spectral 

linewidths depend on a such that the linewidths of the sideband components 

of the triplets decrease with increasing n, whereas the linewidths of the central 

components increase with increasing n. 

3.4.4 Fluorescence spectrum 

The fluorescence spectnun is given by the real part of the Fourier transform of 

the correlat ion fùnc t ion of the dipole-moment operat or (p (+)  (Qp( - )  (t' ) ) , t > t' . 

From the quantum regression theorern [24], it is well k n o m  that for t > t' the 





Figure 3.3(b) The fluorescence spectrum for w l  = wo, w2 = wo + 2Rl/n1 with 
2R1 = 160r1 = 0.35: and n=3. 

limit of large R2 (R2 > r), where the spectral lines do not overlap, the fluorescence 

spectrum (apart fkom geometrical and atomic factors) is given by 

where the sum over j indicates a sum over the nonvanishing transitions as given by 

(3.21)-(3.23). In Figure 3.3 we plot this anaJytical expression for the fluorescence 



Figure 3.3 (c) The fluorescence spectrum for w l  = WO, wz = wo + 2Ri/n, with 
2R1 = 160r, a = 0.35, and n=4. 

spectrum for n = 2 , 3  and 4.t It  is seen that for ail n the spectrum consists of a 

series of triplets with intertriplet spacing 2Rl/n and intratriplet spacing 2AE,. 

With increasing n, the number of triplets increases while the splitting of each 

triplet decreases. The structure of the spectnun reveals the presence of both 

t We note here that the master equation (3.1) has also been solved numerically, 
and we have found that in order to get excellent agreement between the numerical 
and the present analytical results, we have to extend the dressed atom calculations 
to order a6. Therefore, all the spectra plotted here include the populations and 
transition rates correct to a6. 



Figure 3.4(a) The near resonance weak probe absorption spectrum for wl = 
wo, wz = wo + 2Rl/n, with 2Q1 = 16W7 a = 0.35, and n=2. 

the multiphoton transitions (in the appearance of the subharmonic and harmonic 

features) and the multiphoton AC Stark effect (in the intratriplet spiitting). 

3.4.5 Weak probe nearly resonant with wo: absorption 

and dispersion 

It is interesting to consider as well the absorption and dispersion of a weak 

beam probing the doubly-dressed atom. Since the dressed states are unequally 



Figure 3.4(b) The near resonance weak probe absorption spectrum for w l  = 
wo, wz = wo + 2Ri/n, with 2R1 = 160r, a = 0.35, and n=3. 

popdated, the absorption spectrum can give information about population in- 

versions between the dressed states. The absorption and dispersion profiles of 

a weak probe beam of f'requency w, are given by the real and imaginary parts, 

respectively, of the Fourier transform of the commutator ([S- (t) , S+ ( t ' ) ] )  . The 

term (S- (t) S+ ( t ' ) )  of the commutator is asociated with absorption and the term 

(S+(tt)S-(t)) with stimulated emission of the probe beam. From the quantum 



Figure 3.4(c) The near resonance weak probe absorption spectrm for w l  = 
wo, w2 = wo + 2 Q l / n ,  with ZR1 = l6Or, a = 0.35, and n=4. 

regression theorem [24],  it is weil known that for t > t' the two-the cornmuta- 

tor ([Scmo(t), S+(t')]) satisfies the same equation of motion as does the density 

[ (+) matrix elernent pi,,,, (t )] * , with the initial condition 

Thus, it is straightforward to show that in the case of nonoverlapping spectral 

cornponents the absorption spectrum of a probe beam nearly resonant with the 
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Figure 3.5(a) The near resonance weak probe dispersion profile for w l  = wo, 
w2 = wo + 2Ql/n, with 2a1 = 160r, cr = 0.35, and n=2. 

atomic transition frequency is given by 

and the dispersion profile by 



Figure 3.5(b) The near resonance weak probe dispersion profile for w i  = wo, 
wz = wo + 2Rl/n, with 2R1 = 16W, cr = 0.35, and n=3. 

The expressions (3.41) and (3.42) are plotted respectiveIy in Figures 3.4 and 

3.5 (absorption is upwards in the diagram). They contain features at the same 

fkequencies and with the same luiewidths as their counterparts in S(w),  but with 

widely differing intensities depending on o. As the calculations have been made 

within the secular approximation, there are no (small) central features in the 

components of the absorption spectra. Therefore the absorption spectrum and 

the dispersion profile are composed of doublets centred at the frequencies w F T .  



Figure 3.5(c) The near resonance weak probe dispersion profile for w l  = wo, 
WZ = wg + 2Ri/n, with ZR1 = 160r, cr = 0.35, and n=4. 

In each doublet of the absorption spectnun one sideband is absorbing and the 

other ampliQing depending on the ciifference in steady-state populations of the 

lower and upper levels of the transition. 

It is interesting to note from Figure 3.4, that with increasing n the maximum of 

amplification and absorption shifts from the central doublet to the Rabi sidebands. 

The same occurs with the dispersion, as seen in Figure 5. Moreover, as n increases 

the red features become excluçively emissive whereas the blue features become 
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only absorptive. The ampMcation at frequencies smder  than wo is relatively 

large compared to the absorption at  fiequencies greater than wo, in contrast with 

the monochromatic case, where the amplification at one of the sidebands is always 

smaU compared to the absorption at the other sideband [3]. 

The dispersion, shown in Figure 5, also exhibits interesting modifications. For 

example, in the region between the central doublet there is a strong negative 

dispersion with minimal absorption. For n = 2, this effect is also seen in all 

harmonic and subharmonic doublets. With increasing n the negative dispersion 

decreases in the harmonic and subharmonic doublets whereas the central structure 

is remarkably stable against variation in n. 

It  shodd be emphasised here that this system may prove useful in the pro- 

duction of optical materials having a large index of rekaction accompanied by 

vanishing absorption [25]. An advantage of this system is that near the central 

frequency, where the absorption vanishes, both the absorption and dispersion 

change slowly with Bequency. Therefore, our system is a convenient candidate 

for this experimental application, since it does not require a precise matching of 

the probe beam frequency to the point of vanishing absorption. 

3.4.6 Autler-Townes absorption and dispersion profiles 

The structure and properties of the doubly-dressed atom can also be studied by 

monitoring the system with a weak probe beam coupled to a third (bare) atomic 

state. We assume that a third atomic level Ic) is c o ~ e c t e d  to tg) with a non-zero 

dipole moment, and with a transition fkequency w, (from lg)) much different fkom 



Figure 3.6(a) The Autler-Townes absorption spectrum for w i  = wo, wz = 
wo + 2Ql/n, with ZR1 = 160r, a = 0.35, r3 = r/3 and n=2. 

wo- The transition is monitored by a weak probe beam of fkequency WJ tmed 

close to w,. The intensity of the features correspondhg to absorption from the 

dressed state I(N + M ) m f )  is proportiond to the product of the steady state 

population II$ and the transition rate fkom I(N + M)mf)  to Ic, N, M), which 

itself is proportiond to [19] 







Figure 3.7(a) The Autler-Townes dispersion profile for w l  = wo, w2 = wo + 
2Ql/n, with 201 = 160r, a = 0.35, ï3 = r/3 and n=2. 



Figure 3.7(b) The Autler-Townes dispersion profile for w l  = wo, wz = wo + 
2Ql/n, with 2Q1 = 160r, a = 0.35, r3 = r/3 and n=3. 

These are correct to order a2 for n = 2, and order a4 for n = 3,4. 



Figure 3.7(c) The Autler-Townes dispersion profile for w l  = wo, wp = wo + 
2nl/n,  with 2R1 = 160I', a = 0.35, r3 = r/3 and n=4. 

The frequencies at which the absorption occurs from 1 ( N f  M)mf) to Ic, N,  M) 

are given by 

while the linewidths are given by 



Accordingly, the Autler-Townes absorption spectrum can be written as 

and the corresponding dispersion profile is 

In Figures 3.6 and 3.7 we plot the Autler-Townes absorption and dispersion 

spectra, respectively, for the same parameters as in Figure 3. Each consists of 

a series of doublets, located at fiequemies 2mQl/n, where m = O, H, f 2, ... 

for n even and rn = fi, f $, f %, ... for n odd. The intradoublet separation is 

2AEn. The most intense doublets are those centred a t  the frequencies w, & QI, 

which correspond to the Autler-Townes frequencies of a monochromatically driven 

atom. The width of all lines is ï,, and once again an intricate dependence of 

the peak intensities on a is evident. Care must be taken when cornparkg the 

transition rates (3.44)-(3.46) with the doublets in Figure 3.6. The transition 

rates A: correspond to the sideband doublet at w3 = w, + ni, not to the central 

one, whereas A: corresponds to the ith doublet to the left (right) of this intense 

doublet if i is positive (negative) . 

3.5 Reversing the roles of the driving fields - 
the a >  i case 

In sections 3.1 to 3.4 we considered the mdtiphoton processes that arise when 

an atom driven by a strong, on resonance field is simultaneously driven by a 



second field detuned to a subharmonic resonance of the k t .  In this situation, 

it is particularly easy to see, from the dressed atom picture, why scanning the 

second field through detunings Born 2Q1 to zero picks up multiphoton effects 

at the subharmonic resonances, i e .  at integer bactions of 201. However we 

considered only the regime where a = Q2/Ri was small. Experimentdy, another 

interesting phenomenon was noticed [26]. When the detuning of the second field 

was held fixed but the strength was increased, for certain values of a which were 

greater than one, more multiphoton resonances were observed. For instance, if the 

second field started at a detuning correspondhg to a two-photon resonance, then 

for special values of cr a three-photon resonance was observed. This section will 

explain this phenomenon as an effect simüar to that described above, although 

we wiII look a t  it in considerably less detail than the "normal" multiphoton effect 

considered previously. 

Since the effect occurs when the second (off resonance) laser field is stronger 

than the first (on resonance) field we will dress first around the second detuned 

field. Remembering that there are M photons in this mode, and assuming an arbi- 

trary detuning A2 for the present (rather than the 2Qi/n considered previously), 

we obtain the well known singly dressed states 

IM+) = sinOlg, M) + cos ûle, M - 1) 

(M-) = cos Olg, M) - sin ele, M - l), 

which are separated by a generalised Rabi fiequency 2G = (see Chap 

ter 2). Here 

2 1 A2 sin O = - + -  
2 4S2- 



These dressed state manifolds are a distance w2 = wo + A2 apart. In analogy 

with Figure 3.l(a) therefore, we expect that when we add in the first, on reso- 

nance, field we will see a k photon coupling (k = 2,3, ...) between the dressed 

states (3.51) whenever 

2G = k A z ,  

or, in terms of the strong field's on resonance Rabi frequency, when 

Notice that (3.54) is a criterion which involves only parameters of the second 

(assumed strong) field. Now if A2 was 2Ri/n, we can easily see £rom (3.54) that 

the values of rr for which the k photon resonance will occur are given by 

Obviously we must have k > n, since we have irnplicitly assumed that a is greater 

than 1. 

Another way of interpreting (3.54) is as a condition on the value of A2. This 

is in fact what we will do in this section, since the calculations will then be 

similar to those of the previous sections. In particular we shall treat the ârst, 

on resonance, field as a perturber and redo the previous analysis in terms of the 

parameter p = l / a  = R1/R2. Thus we have Az = 2 0 2 / J m ,  sin2 0 = 4 + & 
and G = kilz /J=.  



For the sake of brevity, we WU examine only the two photon resonance that 

occurs when A2 = 2i12/fi. The analysis is very similar to that o u t h e d  in the 

previous sections, and ody a summary of the results will be presented here. Once 

again we find pairs of degenerate doublets (k=2) 

Notice that we dress the atom first by the field W*,  and thus the first state in 

the tensor product corresponds to this (detuned) field, while the second state 

corresponds to the number of photons in the w l  = wo mode. 

We proceed as before to h d  the dressed states. As before, these form an 

infinite set of doublets on manifold (N + M) (see Figure 3.1), with the manifolds 

now a distance wz apart, the interdoublet splitting now 2G, and the intradoublet 

split ting given by 

We notice that this two photon splitting is bigger than the corresponding expres- 

sion (3 .144,  and thus may be more experimentdy accessible. 

The transition fiequencies analogous to (3.18) and (3. XI), which determine 

the positions of the fluorescence and near-resonance absorption spectral ünes, are 

given by 

and 



while the Autler-Townes transition fkequencies are given by 

Proceeding as before, we h d  the steady state populations to be given by 

and the linewidths by 

To cornpute the fluorescence we need the transition rates. These are given by 

r-f,+ 
112384 

r?; = ( 5 9 5 3 5 m  - 2978451 ) p 2  + *;;i6 
1732700549 12 7893852 16 

r+,+ = L p 2  
112384 

rg+ - - 178605 439 - 54429907 
- :% + (- 43317513;2, 197346304) p2 

r:+ - - mP 439 

r;+ = ( 535815\/439 - 236177451) p2 + ;;,",7 
173270054912 789385216 

-- r:f - 1 6075 12384p2> 



and 

The expression for the fluorescence spectrum is the same as in equation (3.39), 

and is plotted in Figure 3.8. Note that we plot S ( w )  versus (w - w o ) / ï ,  not 

the more natural (w - w2)/r.  This is done purely to make the spectrum more 

symmetricd and easier to compare with Figure 3.3(a). 

The Autler-Townes spectnim is &O easy to compute. The line weights are 



Figure 3.8 The k=2 fluorescence spectnun for w l  = wo7 w2 = wo + A2, with 
with A2 = 160/& 2R1 = 160r and ,û = 0.35. 

given by 



Figure 3.9 The k=2 Autler Townes absorption s p e c t m  for wl = wo, wz = 
wo + A2, with A2 = 160/&, 2R1 = 160r, ,û = 0.35 and r3 = r/3. 



The Autler-Townes spectrum is plotted in Figure 3.9, and can be compared to 

Figure 3.5(a). 

3.6 Conclusions 

In this chapter we have first studied the effect of bichromatic excitation on 

the radiative and absorptive properties of a two-level atom under the condition 

that one of the excitation fields is strong and exactly resonant with the atomic 

transition, while the other is weaker and detuned by a subhannonic of the Rabi 

frequency of the strong field. The energy levels of this system have been found 

and the radiative and absorptive properties interpreted in terms of the transitions 

between them. We have seen that this system, despite the one-photon coupling 

between the atom and driving fields, exhibits a multiphoton AC Stark effect. 

As such the fluorescence, absorption and Autler-Townes spectra exhibit spectral 

features a t  subharmonics as well as harmonies of the Rabi frequency of the strong 

Beld, with the number of features dependent on the order n of the resonance. The 

presence of the mdtiphoton AC Stark effect leads to a splitting of these features 

into a triplet (fluorescence spectrum) or a doublet (weak probe and Autler-Townes 

spectra). 

We also briefly considered the situation that arises when the stronger field is 

detuned and the weaker field is on resonance, and showed that a multiphoton 

coupling between the dressed states is once again possible. 

Finally, it should be noted that the multi-photon splitting and the Autler- 

Townes spectra of a system similar to that considered here, have recently been 



observed experimentdy [23] and our theoretical predictions agree with these o b  

servat ions. 
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4. Subharmonic resonance shifts 
and suppression of fluorescence 

in a two-Ievel atom driven 
by a bichromatic field 

4.1 Introduction 

The purpose of the present chapter is to apply the treatment of the resonance 

fluorescence from a two-level atom driven by a bichromatic field discussed in 

Chapter 3, to a (practical) scenario in which one can suppress fluorescence at the 

fiequency w i  without population trapping. In the case of interest, the stronger 

field component is kept exactly resonant with the atomic transition fiequency 

while the weaker field is detuned. We analyse the problem both by a numerical 

integration of the optical Bloch equations of the system and by the dressed-atom 

model, which provides a simple explanation of the numerical results. We h d  

the int eresting result that under certain conditions the system does not fluoresce 

at either the kequency w l  of the strong component or the three-wave mixing 

fiequency 2wl - w2, where w2 is the frequency of the tunable component. This 

occurs whenever the weaker component is detuned from the atomic resonance by 

an amount 6 close to either the Rabi fiequency 2R1 of the strong component or 

one of its subharmonics 2Qi/n, n = 1,2, . . . However, suppression does not appear 

for detunings exactly equal to a subharmonic frequency; rather, it appears for 

detunings slightly shifted fiom them. We interpret the shifts as arising from the 



interaction of the weaker field with the strongly driven system and attribute this 

effect to a dynamic Stark shift. 

A suppression of fluorescence at some frequencies has been predicted previ- 

ously for other systems [8]. For example, in three-level atoms fluorescence can 

be eliminated between some of the levels or even completely suppressed if the 

atoms are excited to a certain coherent superposition of the levels. Furthermore, 

in multi-level atoms it can be suppressed by quantum interference of transition 

amplitudes fiom two closely lyhg  atomic levels [8] or even well separated levels 

[9] to a third level. Two-level atoms driven by a strong laser field can also exhibit 

a suppression of fluorescence when the atoms are damped by a squeezed vacuum 

[IO], or are placed in a narrow bandwidth cavity [Il]. 

The suppression effects listed above ail have a common origin: the trapping 

of the atomic population in certain atomic or dressed States. The cancellation of 

fluorescence discussed here is different in that it can occur a t  some fiequencies 

without population trapping. These studies suggest then that one can, in princi- 

ple, eluninate fluorescence without trapping or destroying the population of the 

upper levels. 

The chapter is organised as follows: In section 4.1, we study the fluorescence 

spectrum of a bichromatically driven two-level atom by solving numerically the 

optical Bloch equations of the system. In section 4.2, we provide a simple explana- 

tion of the shift of the subharmonic resonances and the suppression of fluorescence 



using the dressed atom mode1 of the system. We summarise the results in section 

4.3. 

4.2. Optical Bloch equations 

As in the previous chapter, we consider a two-level atom with excited state le) 

and ground state lg), connected by a transition dipole moment jZ and separated 

by a transition frequency wo. The atom is driven by a bichromatic field whose 

stronger component is resonant with wo while the weaker is detuned. We calculate 

the steady-state fluorescence spectnim of the system, defined as 

d~ ew' iim (Sf ( t )  S- ( t  + T ) )  , 
t+oo 

O 

where $2 is the real part of the integral and S+ = le)(gl (S- = lg)(el) is the atomic 

raising (lowering) operator. In this section we compute the fluorescence spectrum 

by solving the equation of motion for the two-the correlation hinction of (4.1) 

numericallyt. The average values of the atomic operators satisfy the followhg set 

of (opt ical Bloch) equations [3], [7] : 

where 

f Tiwot  (Sf ( t ) )  = (S )e 9 

t The numerical simulation of the Bloch equations is due to Dr. Z. Ficek. 
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are the slowly varying parts of the atomic operaton, Sz is the average value of 

the inversion operator, and ï is the spontaneous emission rate. In equation (4.2), 

cr = R z / n l  is the ratio between the "on resonancen Rabi fiequencies of the weak 

(2R2) and the strong (ZR1) components, and b = wz - wo is the detuning of the 

weaker component of fkequency w*. 

Applying the quantum regression theorem [12] and the Floquet method [13] to 

equation (4.2), we can find numericdy the steady-state fluorescence spectrum. 

For a more detailed description of the method, we refer the reader to [7]. In Figure 

4.1, we present the spectnun for 2R1 = 40r, ct = 0.4 and detuning 6 = 2 R l / n ,  

n = 1,2,3. All the spectral features are composed of triplets centred at wo, 

wo f 2Q1 and wo f rn(2Rl/n)  (m=1,2,..), the harmonies and subharmonics of 

201. The figures indicate that there is no suppression at  wo when the weaker 

field is exactly tuned to a subharmonic resonancet . However, a carefd analysis 

shows that the central components of the triplets centred at  wo and 2wo - w2 can 

be made to vanish, but for detunings b slightly shifted Born the exact resonance. 

At these special detunings the splitting of the remaining doublet is seen to be a 

minimum. In Figure 4.2, we display the amplitude of the fluorescence spectrum 

at wo as a function of the detuning 6 for 2Ri = 40r and cr = 0.4. We see that 

the central line of the spectrum vanishes for values close but not exactly equal to 

the subharmonic resonances of 2R1, indicating that the multi-photon resonances 

to which the weaker field couples are slightly shifted £iom 2Ql/n. 

t In the case of n=l, shown in Figure 4.l(a), there zs in fact a s m d  "bump' at 
the central frequency indicating that even for n=l the central component appears 
in the spectrum. The line is more visible for higher values of a [7]. 



Figure 4.1 The steady-state fluorescence spectruui for 2Q1 = 4 0 ï ,  a = 0.4, 
and different n = 2Ql/b: (a) n=l, (b) n=2, (c) n=3. wz is tuned exactly to the 
subharmonic resonance. Figure courtesy of Dr. 2. Ficek 



Figure 4.2 The amplitude of the fluorescence spectrum at w = wo as a function 
of 6/I' for 2R1 = 40r and a = 0.4. 

In Figure 4.3, we plot the fluorescence spectrum for 2 0 1  = 40î, a = 0.4, and 

the detunings 6 correspondhg to the vanishing central h e  at wo. For n=1,2 

and 3, the central line vanishes when bl = 40.4I', J2 = 21.06r and J3 = 13.93I' 

respectively. This corresponds to the weaker field fiequency shifted fiom the 

n=l resonance by Al = 0.4r and &om the n=2 (3) subharmonic resonance by 

A2 = 1.06r (A3 = 0.60ï). Apparently, a t  these fiequencies not only does the line 

a t  wo vanish, but for n > 1 so too does the central line of the lowest frequency red 

triplet. This line corresponds to three-wave rriixing at the fkequency 2wo - w*. 



Figure 4.3 The fluorescence spectrum for 2Q1 = 40r, a = 0.4 and different 
6: (a) 6 = 40.4r (b) 6 = 21.06r, (c) 6 = 13.93r. Figure courtesy of Dr. 2. Ficek 



In the next section, we use the dressed-atom mode1 to derive a simple formula 

for the shifts of the subharmonic resonances and to give a simple explanation for 

the disappearance of the spectral Lines at wo . 

4.3 Dressed atom analysis 

In this section, we apply the dressed-atom model[14] to study the system. This 

andysis provides simple analyticd formulae for the positions of the resonances 

and explains the vanishing fluorescence in terms of the spontaneous emission 

transition rates and populations. The dressed-atom treatment is valid in the 

limits 

wo, w2 01 > 0 2 9 6 ,  

which correspond to the approximations made in the Bloch equations of section 

4.2 as well. 

We first fkd the dressed states of the system and their energies by applying 

the double-dressing procedure, described in detail in [4]. In this technique, we 

fbst dress the atom with the strong resonant component of the bichromatic field, 

which results in the singly dressed states (141 

1 
IN*) = -(lg, N )  f le, N - 1)), fi 

where (i, N) (i=g,e) is the state in which the atom is in state li) and N photons 

are present in the strong driving mode. Next, we couple the resdting singly 

dressed atom to the weaker component a t  fiequency wz = wo + 2Qi/n + A,. 



The eigenstates of the combined (uncoupled) system of singly dressed atom plus 

weaker field are (nearly-degenerate) doublets (see Figure 4.4(a)) 

wit h energies 

2521 E", = NWO - RI + m(- + A,), 
n 

where fi = N + M is the total n u b e r  of photons. In state Ib;), for example, 

the (singly-dressed) atom is in state 

in the weaker field. 

( N  - m)-), and there are M + rn photons 

The combined dressed states (4.4) form doublets with intradoublet separation 

nA, and interdoublet spacing 2ill/n > nA,. We treat the states (4.4) as basis 

states, and calculate the effect on them of the interaction Vz between the singly 

dressed atom and the weaker field given in the rotating-wave approximation by 

where g2 is the couphg  constant between the atom and field, and ai(a2) the 

creation (annihilation) operator of the field mode. Applying the interaction (4.6) 

to the states (4.4), we find 



Figure 4.4 Energy level diagtams of: (a) the combined (uncoupled) system of 
singly-dressed atom plus weaker field, and: (b) the doubly-dressed system. 

indicating that for n > 1 the states la:) and 1 bk) are not directly coupled to each 

other by the interaction V2. Therefore, we must go to higher order perturbation 

theory to h d  the perturbed states and their energies. 

It tunis out useful to first take into account the effect on la:) and Ib;) of 

all doublets other than m; these states induce shifts of the energies of la;) and 

(bm) .  Using perturbation theory, which for n 3 2 requires going to a t  least second 



order, we find that to lowest nonvanishing order in a these shifts are 

1 a2 R,, = - R ; ~  = 
8(2 + &/fil) 

RI, f o r n = l ,  

and 

n2 
Rta = -RM, = 

a2 
01, for n > 1, 

2(n2 - 1) (2 + nA,/R1) 

where Rga and R& are the diagonal elements of the operator [14,15] 

i = a . b  

These diagonal elements cause the anticrossing point of the doublet energies, 

E," + Rza = E," + R",, to shift by the amount 

or (to lowest order in alpha) 

I AY = - a 2 ~ i ,  for n = 1, 
8 

and 

~ n i n  = na2 Ri,  for n > 1. 
2(n2 - 1) 

It follows that the anticrossing point of the eigenstates (4.4) appears not a t  A,=O, 

but rather a t  s m d  detunings fkom the subharmonic resonances An = A n t n  For 

the parameters used in Figure 4.3, the shifts given by equations (4.12) and (4.13) 

are AT'* = 0.4r, = 1.066r and A?" = 0.60r, in perfect agreement with 

the detiinings found in the previous section. 



We now include the coupLing by V2 between the states la:) and (bk), which 

leads to the doubly dressed eigenstates (Figure 4.4(b)) and energies of the sys- 

tem. For n = 1 the states are coupled directly by V2 [?]. For n=2 the lowest 

nonvaniçhing coupling is given by the off-diagonal elements of the operator R~ in 

equation (4.10), while for n=3 we must compute the off diagonal elements of the 

operator [15] 

Higher values of n involve operators with more intermediate couplings. For n=1,2 

and 3, we obtalli the following expressions for the shifts of the doublet energies 

fkom Etm : 

In Figure 4.5, we plot the intradoublet splittings 2&, as a function of A, for 

n = 2 and 3 and for the same parameters as in Figure 4.3. The figure indicates 

a clear minimum at  A, = AR'". At these special detunuigs the intradoublet 

splittings are given by the simple expressions 



Figure 4.5 The intradoublet sphttings 2A, as a function of A, for ZR1 = 40 ï ,  
cr = 0.4 and n = 2 (solid line), n = 3 (dashed line). 

Since the diagonal elements of the operators R:, and Rbb vanish at the minimum 

detunings A:'", we can easily determine that the dressed states are then given 

by 
* 

Having available the dressed states of the system, we can calculate the spon- 

taneous emission rates. The probability of a spontaneous transition between any 

two dressed states is given by 



where i, j = +, -. Using equations (4.17) and (4.4), we find that the transition 

moments IN, m+) + IN - 1, m+) and IN, m-) -t IN - 1, m-) are equal and 

opposite, and therefore the transition rates correspondhg to the central 

fiequency wo vanish. This leads to the suppression of the spectral line at  wo. 

Also, since the eigenstates (4.17) contain equal superpositions of the la:) and lbk) 

states, the populations II* are equal at the points of minimum splitting. Thus, the 

suppression of the fluorescence at wo results fkom destructive interference between 

the transition amplitudes, and is not accompanied by the trapping or destruction 

of the population of the dressed states. The suppression of the fluorescence at 

2wo - w* is less transparent and occurs in higher order corrections which cannot 

be determined explicitly fkom the zero t h-order dressed states (4.17). 

It is worthwhile to explain the origin of the shift Arzn. Ruyten (161 has 

noticed that the subharmonic resonances are shifted fiom the 2R l/n positions 

and has termed the shifts the "generalised" Bloch-Siegert shifts. The original 

Bloch-Siegert shift [17] in a driven two-level atom arises from the effect of the 

counter-mtating temu in the atom-laser interaction Hamiltonian, which couple 

states of a given manifold N with states of the other manifolds N' # N, separated 

f?om N by distances of order wo. This coupling results in a (very s m d )  shift of 

the energy levels of order R:/wo. In the bichromatically driven atom discussed 

here, the energy doublets within the manifold N are separated by distances of the 

same order as the Rabi frequency of the strong component (see Figure 4.4(a)), 

and the rotating wave tenns of the interaction Vz couple a given doublet with 

other doublets within the same manifold, resulting in a shift of order n:/R1, 



much larger than the Bloch-Siegert shift? Thus, the shift A:'" of the spectral 

lines calculated here represents a dynamic Stark shift of the doublet sublevels 

due to their coupling by the weaker field to other leveh within the same energy 

manifold. 

4.4 Conclusions 

In this chapter we have shown that under certain conditions a selective sup- 

pression of fluorescence is possible in a two-level atom driven by a bichromatic 

field. The bichromatic field considered is cornposed of a strong component reso- 

nant with the atomic transition frequency and a weaker cornponent tuned near 

a subharmonic resonance of the Rabi fkequency of the strong component. The 

weaker field couples the dressed states created by the strong field in an n-photon 

process which results in a dynamic Stark shift of the states and consequently of 

their anticrossing. This effectively shifts the position of the resonance. When 

the weaker field is tuned to this shifted resonance, the system does not fluoresce 

a t  either the strong field fkequency wo or (for n 2 2) the three-photon mWng 

frequency 2w0 - w*,  and the doublet energy and spectral feature splittings are 

a minimum. The fluorescence is suppressed without trapping or destroying the 

populations of the dressed states. These effects have been explained in terms of 

the doubly-dressed atom model. 

Finally we point out that while the multiphoton AC Stark fluorescence spec- 

trum has not yet been observed experimentally, the Autler-Townes spectrum has 

t Inclusion of the counter-rotating terms into the interaction Vz couples doublets 
fkom different manifolds, and yields additional shifts of order Qp/wa. 



been observed (181. Furthemore a minimum has been seen in the splitting of the 

Autler-Townes doublets in agreement with the expressions presented here. 
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5. Dressing the Atom in Fields of 
Three Different Frequencies 

5.1 Introduction 

In the previous two chapters we considered the case of bichromatic driving; in 

particular we concentrated on the multiphoton AC Stark and associated effects. 

We saw that the spectra could be very different and much more intricate than 

the spectra associated with monochromatic driving. In this chapter, the case of 

trichromatic driving will be considered, and we will see that the results are in fact 

quite Merent  again to those of bichromatic driving. 

The case of trichromatic driving on which we wili focus is that which corre- 

sponds to driving the atom with an amplitude modulated (AM) field. An AM 

field is characterised by a central (carrier) component of frequency w l  = wo + A, 

where wo is the atomic transition Eequency, and modulation fiequency 6, which 

corresponds to two sideband ftequencies equally detuned Eom w l :  w* = w l  f 6. 

A 100% AM field (with carrier suppressed) is a bichromatic field consisting only 

of the fkequencies w* and has been studied previously [l-31. 

The Iimited number of previous studies of an atom driven by an AM field have 

mainly used numerical techniques, such as solving the Bloch equations [4], or 

occasionally techniques using semi-classical dressed states in addition to numerical 

work [5] .  In this chapter we will use the fully quantum dressed states to explain 

a few of the many possible phenomena associated with trichromatic driving. 



In particular we will focus in this chapter on obtaining results in as physical a 

rnanner as possible. The "derivation" (limited as it was) of the fluorescence spec- 

tnun given in Chapters 2 and 3 is ac tudy  there to persuade the reader that a 

rigorous derkation is possible. Certainly it is often unnecessary. Expressions such 

as (3.39) for the fluorescence spectrum follow intuitively fiom an understanding 

of the dressed atom dynamics. In the 1 s t  section of this Chapter, we will briefly 

describe an interesting exception to this which has still not been completely re- 

solved. 

In this chapter we consider an atom with excited (ground) state le) (19)), 

transition fkequency wo and transition dipole moment jl, that is driven by an AM 

field. The central component of the field, w i ,  has (on resonance) Rabi fiequency 

Zn1. The two sideband fields of fkequencies w* have the same (on resonance) 

Rabi hequency 2R2. 

The chapter is organised as foilows: In section 5.2 we consider the case of 

weak amplitude modulation (0) < fi1) and a small detuning (6 < C l l )  of the 

sideband fields. In the next section we describe the reverse situation, in which 

the modulation is strong and the central field component weak (RI < fiz). In 

the last section we briefly consider the special case that the detuning of the two 

sideband fields is at the Rabi fkequency of the central component (6 = 2R1). 



5.2 Weak amplitude modulation, small detun- 

ing 

In this section we consider the situation in which our atom is driven by a weakly 

amplitude modulated field, whose modulation kequency is also s m d  compared 

to RI, i -e.  6, Oz < QI. 

Since the central field is strong, we dress around it first to obtain the f a d a r  

singly-dressed stat es 

IN+) = sinelg, N) + cosgle, N - 1) 

1 N-) = COS Olg, N )  - sin Oie, N  - i ) ,  

where 

and the generalised Rabi kequency is given by 

Next we include the two sideband fields. In particular, we consider the two 

states 

ln$) = I(N - 2M - n ) f , M + n , M ) ,  (5.3) 

where the second (third) term in the tensor product is that of the number of 

photons in the w+ ( w - )  mode, and n is an integer (N > M > n). These states 

have energies (before interaction) of Nwi I G + 716. Thus on manifold E ( N )  they 

f o m  two submanifolds of states which are separated by 2G. Each submanifold in 



Figure 5.1 (a) The energy structure of a singly-dressed atom driven by a 
weakly modulated field, before interaction. (b) The energy structure of the 
doubly-dressed states, which is identical to that of the singly-dressed states. No- 
tice that the single manifold e ( N )  is split into two submanifolds separated by 2G, 
with each submanifold consisting of states separated by 6. 

turn contains an infinite set of states separated by 6, as shown in Figure 5.l(a). -4t 

this n tqe  we should point out that the state ln$) is not the most general possible; 

it is just one of the more general set of states ( ( N  - 2M - p  - m ) f ,  M + p ,  M + rn) 
which have the same energy for a fixed value of p - m. In some sense then, we 

are assuming that aJl such states are equivalent as far as the interaction operators 

VI are concerned. This can only be justified a postenori, when we see what sort 

of agreement we obtain with numerical and experimental results. 



It is not difncult to show that the action of the total Hamiltonian ( H  = Ho + 
V+ + V-) on the state ln$) is 

By "approximately equals" in (5.4) we mean two t hings. Firstly the states on the 

right are the only states which lie on the same energy submanifold as the state 

on the left (as is standard within perturbation theory). Secondly it indicates that 

in fact we have approximated M + Z N M for some of the states. This can be 

justified by saying that ultimately we will be interested in the reduced populations 

and CO herences, for which this approximation is made explicitly. 

We now assume that the eigenstates take the form of an infinite sum over all 

possible connected states, à. e. 

Here D labels a doubly-dressed state, while m labels the eigenvalues of H -which 

we are yet to determine. However (5.4) and (5.5) are analogous to equations in 

[II, and we can invoke the sarne symmetry arguments to show that the eigenvalues 

of H are mb with m any integer. 

Applying H to the dressed state IDN&, m) and then multiplying on the left 

by (n; 1 produces the recursion relation 



This recursion relation has the solution 

where x = (4R2 sin 0 cos 8)/6, and J,-,(x) is the Bessel huiction of the &st kind. 

Thus the doubly-dressed states on e(N)  (shown in Figure 5.l(b)) have exactly the 

same energy structure as the singly-dressed states (Figure 5.l(a)). This is a result 

of the high degee of symmetry in the driving fields, and can be thought of as 

equal "pushes'' up and down on each state by the sideband fields. 

Following the (by now hopefully familiar!) standard procedure, we next corn- 

pute the transition rates. The transition fiom l D ~ + ~ i r ,  1 )  to 1 DNf, m), which 

occurs with transition bequency w:_", = w i  + (1 - nt) 6,  is governed by the tran- 

= rl I Jn-i (FI) J,-, (TI) sin 0 cos 8 l2 
n 

= l? sin2 0 cos2 0 4,, 

where we have used a well known Bessel function summation relation [6],  and 

l? = lji12 is the natural linewidth. For transitions kom IDN+,m) to I D N + l ~ r l ) ,  

which occw with transition fiequency w z  = w1 12G + (1  - m)d, we £ind the 

LOO 



and 
= ~ ~ ( D N + ~ - Y ~ ~ S + I D N +  >m)l2 

2 2 = I'l - C J n - r ( ~ )  Jn-rn(-z) sin O [  
n 

= r sin4 8 J:-* (21). 

Thus we expect the MoUow sidebands to be split into an infinite nurnber of corn- 

ponents, with intensities of the split components proportional to J L ~  (22) .  

At this stage we have a good idea of what the spectrum will look like. In fact 

ail we need are the linewidths and steady state populations. These are found by 

projecting the master equation 

onto the dressed states, and finding equations of motion for the populations and 

coherences. When we do so (employing the secular approximation), we h d  for 

the populations 

-* f=f f F* =F . 
Pmm = - r ~  Pmrn f r~ pmm (5.12) 

where p h  = (DNrt,  mlp(DNf,  m). Thus the reduced populations Hf = 

Cm pmm have steady state solutions 

Fkom equation (5.12) we deduce that the linewidth of the central component of 

our spectrum is r, = cos4 0 + sin4 O. 



The coherences ez = (DN+1 f, 11 pl D N ~ ,  m) are found to obey the equations 

motion 

-+- , fT +- 
elrn - ( 2 ~ l - ~  - L) elrn (5.14) 

(5.14) I', = r( f + cos2 B sin2 0) will be the linewidth of the sideband spectral 

components. 

It is now a simple matter to write down the fluorescence spectrum. It is &en 

The fluorescence spectrum is plotted in Figure 5.2, for the case of an on-resonance 

carrier field of Rabi kequency 2521 = 40r, sideband fields detuned by 6 = 5r 

and dinerent values of 2R2. We see that the weak (modulation) bichrornatic 

field modifies the sidebands of the Mollow triplet dramatically, while leaving the 

central feature undected. 

The weak probe absorption spectrum can now &O be sirnply written down. It 

is given by 

This expression is plotted in Figure 5.3 for parameter values A = 2r, 6 = 5r, 

2R1 = 40r and 2Q2 = 12r. Notice that since the absorption spectrum depends on 

the population difference between dressed states, we m u t  have a detuned central 



Figure 5.2 The fluorescence spectrum of a two-level atom diiven by a we* 
modulated field. The spectrum is shown for A = O (central field exactly on 
resonance), S = 5ï, 2n1 = 40ï  and (a) 2R2 = 4r, (b) 2R2 = 8r, (c) 2Q2 = 12r. 
The centrai peak has a maximum at 0.5. 

field A # O) to obtain a non-vanishing spectrum (within the secular approxima- 

tion). 



Figure 5.3 The weak probe absorption spectrum of an atom driven by a 
weakly rnodulated field. The spectrum is shown for A = 2r, 6 = 5r, 2R1 = 40r 
and 2R2 = 1 2 ï .  

The last spectrum we will consider in this section is the Autler-Townes spec- 

trum. As before, we consider the transition Born (g) to a third atomic level Ic) of 

energy (measured from 19)) w,, which is probed by a weak field of fkequency w3. 

The intensities of the lines in the Autler Townes doublets are given by 

A: = ~ ( D N *  m ( g ,  N - 2M, M, M ) I *  

= 1 s i n e J - , ( ~ z ) l ~  

= sin2 0 J: (z) , 



Figure 5.4 The Autler-Townes absorption spectrum of an atom in a weakly 
modulated field. The spectnun is shown for A = O (central field exactlv on 

ir 

resonance), 6 = 5r, 201  = 40r, r3 = r and (a) 2 0 2  = 8r, (b) 202  = 16r, (c) 
2R2 = 24r. 

and similarly 



The linewidths of the Autler-Townes peaks are given by 

where î3 is the natural linewidth of the third level. Accordingly the Autler- 

Townes spectnun is given by the expression 

+ n, cos2 er, 
(W - wc - G + k6)2 + rl: > - 

The spectrum (5.20) is plotted in Figure 5.4, for A = O (central field exactly on 

resonance), 6 = 5I', 2& = 40r, r3 = r and different values of 2R2. 

5.3 Strong amplitude modulation 

In this section we consider the case that the amplitude modulation is strong 

(Ol < fi2). The atom is therefore seeing a strong, symmetrically detuned bichro- 

matic field, and a weaker, near resonance, centrd field. Consider the pairs of 

states on e(2M + N ) :  

and 

1(2M+ N ) ( 2 n +  l)f) = ( ( N  - I ) f , M  + n , M  -n), (5.21b) 

where, as before, the first state in the tensor product corresponds to the atom and 

w l  (the central component) and the other two states to w+ and w- respectively. 

Note that we have used the (Nf) states for the atom+central component of 



the field. This does not mean we have included the interaction yet with this 

component (it is atter ad weaker than the other two); rather it reflects the keedom 

we have in choosing an undressed basis. Hopefully we have made an intelligent 

choice; that of course can be seen only when we attempt the second dressing. 

These states have energies (N + 2iM)wo + N A  + Zn6 and (N + 2M)w0 + NA + 
(272 + l)d respectively. In this section we will consider only the case A = O, that 

is the weak central component is exactly on resonance. 

Since the w* modes are now the strongest, we dress b s t  arouud them. We 

should expect that such a diagonalisation would be a nontrivial mathematical 

exercise. We are helped, however, by having the solution to the case of pure 

(symmetrically detuned) bichromatic driving [l], and so we make the (educat ed?) 

guess that the singly dressed states are the following superpositions of the states 

where x = 2Q2/6. To veriSr that the states (5.22) are ac tudy  the eigenstates 

requires some algebra, and is left as an exercise for the interested reader. In 

particular, since the states lm+; 2M + N )  and lm-; 2M + N )  are degenerate with 

energies (2M + N)wo + md, we must examine (na-; 2M + NI (V+ + V- ) lm+; 2M + 
N), where VI are the interaction terrns for the w* modes. It turns out that the 



a 

Figure 5.5 The dressed state energy structure for an atom in a strongly mod- 
ulated field. The manifold consists of an infinite number of doublets, with an 
intra-doublet separation 2R1 and an inter-doublet separation 6. 

plus and minus states are decoupled; 

(m-; 2M + NI(V+ + V-)lm+; 2M 

we find 

+ N )  

We m u t  now include the weak central field to h d  the correct doubly - dressed 

states. This involves diagonalising Vo (the central mode interaction term) on the 

degenerate subspace spanned by the Imf; 2 M  + N )  states. By lucky coincidencet 

the states (mf; 2M + N) c m  easily be shown to already be diagonal on Vo, and 

t Weil maybe not so lucky - you will see now why we chose the states (5 .21)  as 
we did! 



so they are not mked (to zeroth order in perturbation theory). We therefore 

find that the first-order corrections to the energies of the states lm+; 2M + N )  

and lm-; 2M + N) are f ni, respectively. Thus the dressed states on 4 2  M + N )  

consist of an infinite series of doublets separated by 6, with intradoublet splitting 

2Q1; the energy structure is shown in Figure 5.5. 

One does not have to have been more than barely awake while reading this the- 

sis to know that the next step in our cdculations is computation of the transition 

rates between the dressed states. At this stage, if only by simple analogy with the 

energy structure of the dressed states of Chapter 3, one might expect the spec- 

trum to consist of a series of triplets, with inter-triplet spacing 6 and intra-triplet 

splitting 2R1. I t  turns out, however, that the transition bom Il&; 2M + N) to 

(mf; 2M + N - l),  which occurs with transition fkequency w, = wo + (1 - 746 ,  

is governed by the transition rate 

Fkom this we see that the only central component in the spectrum which WU be 

nonvanishing is the one at c ~ o .  For transitions kom Il&, 2M + N) to l m ~ ;  2M + 
N - 1), which occur with transition frequency w:f, = wo 3z 2Q1 + ( I  - m)6, we 

find the transition rates 

= ~ ( I I ;  2~ + N ~ S + ( ~ F ;  2~ + N - 1)12 '1-rn 



Thus we expect the spectral features (apart £rom the central triplet) to consist of 

a series of doublets, centred at kd (where k is an integer), with doublet intensities 

proportional to Jz (22) .  

We now require the steady state populations and the linewidths. These are 

easiiy obtained, in the usual rnanner, by projecting the master equation onto the 

dressed states and employing the secular approximation. We find that the steady 

state populations are equal, i e .  

and that the central component iinewidth is given by 

while the sideband linewidths are 

These widths are surprising: they are exactly the values ob tained for monochro- 

matic, on-resonance, driving. It was found previousiy (11 for the case of symmetri- 

cally detuned bichromatic driving, that the linewidths are different for the even or 

odd sidebands. Thus it appears that in the limit of RI -t 0, our spectrum WU not 

go to that of [l]. The resolution of this apparent paradox lies in the assumptions 

which are made when performing dressed atom calculations. In order to compute 

a spectrum for this system we have to employ the secular approximation, which 

in turn requires that QI > ï. If this is true (as we have assumed it to be), then 



Figure 5.6 The fluorescence spectnun of an atom in a strongly modulated 
field. The spectrum is shown for 2R2 = 40r, 6 = 20r and ZR1 = 2r. For larger 
values of ZR1, the central component of the spectrum can be seen to split into a 
triplet. 

we make the approximation x d m  = zz . . ., and this effectively 

"smears" away the N + O limit of our model. 

The fluorescence spectrum is given by 



This s p e c t m  is plotted in Figure 5.6 for 202 = 40r7 6 = 20r and 2a1 = 2r. 

As expected, the spectrum consists of doublets spaced at integer multiples of 6, 

with an intra-doublet splitting of 401,  and a triplet at w = wo. 

The only other spectrum we will consider is the Autler-Townes absorption spec- 

trum. In the notation of the previous section, we calculate the doublet intensities 

and find them to be given by 

The Autler-Townes spectnim can now be written down: 

This spectnun is plotted in Figure 5.7, for 2R2 = 40r7 6 = 20r, r3 = I' and 

201 = 4r. 

5.4 Sideband fields detuned to  the Rabi fre- 

quency of the central component 

In this section we briefly consider a case of trichromatic driving that is not 

easily solved within the dressed atom model. This is not to Say that it cannot 

be, rather 1 have not been smart enough to do so. The case of interest is that in 

which we have weak amplitude modulation (Clz < RI) ,  but the sideband fields are 

detuned to the Rabi fiequency of the central field i-e. 6 = ZR1. (Recall that the 

discussion in Section 5.2 was limited to the case 6 < QI.) This particular choice 



Figure 5.7 The Autler-Townes spectrum of an atom in a strongly modulated 
field. The spectrum is shown for 2R2 = 40ï ,  b = 2 0 î ,  r3 = I' and 2Ri = 4r. 

of 6 is analogous to an n = 1 trichromatic version of the case studied in Chapter 

3. The difference is that the two (weak) sideband fields w* can couple to the 

singly dressed states IN*) in an inünite ''cascaden, as shown in Figure 5.8(a). 

The system has several unusual features. The first of these relates to per- 

forming a numerical simulation. It was found, using the Bloch equations, that 

the fluorecence spectrum consisted of normal lorentzians; however there was a 

dependence of some spectral line intensities on the phase difference between one 

sideband field and the other two fields. At fmt glance we might have expected 



Figure 5.8 The energy structure of an atom in a weakly modulated field with 
sideband frequencies w* detuned to the Rabi fkequency of the central field. (a) 
The singly dressed atom with arrows indicating the absorption of w* photons. 
(b) The energy structure of the doubly dressed atom. The manifold consists of 
an inûnite number of continua of width 202,  with continua separated by 2 0 i .  

that since the detuning 6 is large compared to r, as are the Rabi kequencies in- 

volved, any phase dependence would "wash out". Furthermore, this is a concern 

for those of us who use the dressed atom model because the model is most easily 

used with number states, and thw cannot easily take phase into consideration. 

Another interesthg phenornenon was noticed in an experiment on the Autler- 

Townes spectrum of this system [7]. In the experiment the phase of the fields was 



not fixed in any way, and the spectrum appeared to consist of pairs of continua 

centred at I R 1  of width approximately 2Rz. 

Since the central field is assumed strong (weak modulation), we dress k t  

around it. To End the dressed states for the system correct to zeroth order in 

perturbation theory, we k t  recognise that the pairs of states 

and 

are degenerate with energies ENMP = (N + M + P)wo + (2s + l ) R i .  Here 

p = . . . - 2, -1,0,1,2.. .. Thus on manifold c(N + M + P) there are an infinite 

number of states (labelled by p) on each degenerate subspace of the manifold 

(labeiled by s). We now include the perturbation 

where V+ and V- are the interaction Hamiltonians for w+ and w- respectively. 

We assume that our general dressed state will be a linear combination of ail the 

degenerate states, i. e. 

where the coefficients ai and bi  are yet to be determined and N = N + M + P.  

Here A labels the expected bst-order correction E(') to the energies; in fact 

we know E(') must be proportional to the strength of the perturbation, and so 



we -te E(') = A&. To find the coefficients ai and b;, we follow standard 

degenerate perturbation theory and diagonalise W on the degenerate subspace. 

To do so, we let W act on 1s; A), then multiply on the left by (ai. 1 and (b i t  1, to 

obtain the pair of coupled recurrence relations 

for the dressed state coefficients. Here we have dropped the s in our expressions, 

it being understood that we are working on a fked s subspace. 

In solving the recurrence relations we are forced into making a choice of bound- 

ary conditions. It  seems naturd to choose a-, = a, or b-, = bp, since we have 

no reason to believe that there is anything specid about the centre of our man- 

ifold. Choosing (arbitrarily) the latter, a Little algebra reveals that under this 

"boundary" condition, one solution to the recurrence relations is 

and 

where Tn(x) is the Chebyshev polynomid of the fht  kind (qnI(x) G Tn(x)), and 

where we still have to choose an overall normalisation constant. 

To determine the allowed values of X and thereby fix the first-order energy 

corrections, we examine the normalisation of (sw; A). We fhd that 



It is well known that the Chebyshev polynomials obey the foUowing relation: 

From this we see that if X  lies in the range -1 < X $ 1, and we choose our overall 

normalisation factor so that 

1 
a p ( X )  = -(1 - x ~ ) - ~ ( - ~ ) P ~ ~ ~ - ~ ( ( x )  JSF 

1 
b p ( X )  = - (1  - A ~ ) - * ( - ~ ) P T ~ ~ ~ , ( X ) ,  

fi 
then our dressed states obey the orthonormality relation 

and the complet eness relation 

We see that the dressed states on e ( N )  consist of an infinite number of continua 

of width ZRz, separated by 2R1, as shown in Figure 5.8(b). Having these dressed 

states, we can qualitatively see how the spectnim may consist of continua. Un- 

fortunately however, it proves a little harder to obtain quantitative expressions 

for the spectra. The generd procedure of computing transition rates then p o p  

dations etc. seems to fail us: certainly the most naive application does. This 

is because the transition rates aU turn out to be Dirac delta functions or com- 

binations of the same, and it becomes unclear whether we can rnake the secular 

approximation in a consistent manner. Remember that the secuiar approxima- 

tion involved dropping fkom our population and coherence equations those density 
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matrix terms which comesponded to transitions a t  a Merent frequency. This is 

justified when the clifference between the îiequencies imlved is large compared 

to l'. However when continua are involved, we have an infinite number of terms 

corresponding to the energies infmitesimally close to the particular level in which 

we are interested. Thus this approximation may need to be modified. 

ui fact a dressed atom problem involving continua has been solved previously 

in (81; however the techniques used there were not rigorous and do not seem to 

transfer well to the present problern. F'rorn [8] and on intuitive grounds however, 

we can expect that our spectrun will look like a convolution of lorentzians at 

the positions of the associated Mollow spectra with some population distribution 

across the continuum. It is making this statement quantitative which proves to be 

a problem. The exercise is not without merit however, since it is only by looking 

at such problems that we may gain a better understanding of the dressed atom 

model's strengt hs and weaknesses. 

5.5 Conclusions 

In this chapter we have examined a few of the phenomena which occur when 

a two-level atom is driven by an amplitude modulated field. We saw that both 

extremes of strong and weak modulation are nicely explained by the dressed atom 

model. In particular we found that the case of weak modulation resembles closely 

that of monochromatic driving, with the Rabi sidebands split into multiplets by 

the weak bichromatic field. The case of strong amplitude modulation was also 

easily understood in the context of a strong bichromatic field with a weak central 



field acting as a perturber. The spectra in this case consisted rnainly of an infinite 

series of doublets. For both cases the positions of the spectral lines depended ody  

on the detuning of the sideband fields 6, and the strength of the central field. The 

strength of the sideband fields affected only the intensities of the spectral lines. 

F i n d y  we examined a case which has not been completely solved within the 

dressed atom model, namely the case of weak sideband fields detuned to the Rabi 

sidebands of the central field. 
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6. Summary and conclusions 

In this thesis, the dressed atom mode1 has been applied to a variety of (previ- 

ously unconsidered) problems involving a two-level atom driven by two or three 

laser fields, and a number of new effects have been predicted and explained. 

These include: An expianation of the subharmonic resonance phenomenon as a 

multiphoton effect and the h t  analytical calculations of the multiphoton AC 

Stark splitting; an exphnation of the minimum splitting which occurs at  slight 

detunings fiom the sub harmonic resonances and the prediction of suppression of 

fluorescence at these shifted detunings; and the first analytical calculations of the 

spectra associated with an atom being driven by an amplitude-modulated field. 

In Chapter 3 the technique of "doubly-dressing" the atom was used to provide 

a clear understanding of the subharmonic resonances, observed when an atom is 

driven by one near-resonance field and one detuned field, in terms of multiphoton 

transitions between the (singly-) dressed states. This understanding had not 

been achieved before because previous studies focussed on the absorptive and 

dispersive response of the second driving field. This field is intricately involved in 

the dynamics of the system however, and so is better regarded as itself a dressing 

field. Perturbation calculations were carried out to high order in order to obtain 

results that agree perfectly with numerical and experimental studies of the system. 

The major portion of Chapter 3 focussed on the case of a strong, on-resonance 

driving field and a weaker driving field detuned to a subhannonic of the k t  field's 

Rabi frequency. The dressed states were found to form an innnite set of doublets, 

and analytic expressions were obtained for the inter- and intra- doublet splittings. 



The master equation was then used to calculate evolution equations for the p o p  

dations and coherences of the dressed states. These were then used to calculate 

fluorescence, weak probe absorption and dispersion spectra and Autler-Townes 

absorption and dispersion spectra. All spectra were found to contain features at 

the harmonies and subharmonics of the Rabi frequency of the strong field, and 

these features had an intricate dependence on the order n of the subharmonic 

resonance and on the ratio of the Rabi fiequencies of the two fields. 

In the last section of Chapter 3 the reversed situation of strong detuned field 

and weaker on-resonance field was briefly considered and shown to &O be Capa- 

ble of exhibiting the multiphoton Stark effect, dbeit in a slightly more opaque 

manner. 

In Chapter 4 the double dressing technique was used to explore the subhar- 

monic resonance shifts and the associated vanishing of the central component of 

the fluorescence spectrum when the splitting of the dressed states is a minimum. 

A physical explanation and analytical formulae for the points of minimum split- 

ting were derived, and an explanation of the vanishing fluorescence in terms of 

quantum interference between dressed state transitions provided. 

In Chapter 5 the case of three driving fields, in particular an amplitude modu- 

lated field, was examined. The two main perturbative regimes of weak modulation 

(strong carrier) and strong modulation (weak carrier) were considered. Dressed 

states and associated population and coherence equations were derived. 

In the former case the dressed states were found to split into two submanifolds 

separated by the strong central field's Rabi frequency. Each submanifold consisted 





Appendix A: Perturbation Theory 
for 2 degenerate levels 

We consider a general perturbation XV of a Hamiltonian Ho whose eigenvalues 

El, E2, .. . and eigenstates I l ) ,  12), ... are knom. In particular we consider the case 

when two of the unperturbed eigenstates (a) and 16) are degenerate with energy 

E, Eb. In the standard marner we assume that the perturbed eigenstates and 

energies can be expanded as a power series in X of the form 

I$) = 1qI)'O' + ~lll.)'" + x ~ I ? , ~ ) ( ~ )  + ... 
E = EO + ~ ( 1 )  + x * E ( ~ )  + . . . 

that the wavefunction correct to zero order is given by 

and that the mth order correction to the wavefunction can be written as 

i#a,b 

The inclusion of the states la) and Ib) in the higher order corrections is often 

omitted in treatments of perturbation theory, but in fact is found to be critical 

to a correct calculation of the n-photon dynamic Stark effect discussed in this 

paper. 

By substitution of these expressions into the Schrodhger equation, we set up 

a hierachy of matrix equations of the form 



Here c ( ~ )  is the vector 

and the {Gi) are 2 x 2 matrices evaluated in the degenerate subspace. More 

w hile 

where 72P, = (iJRPl j) is the matrix element ( 2 ,  j) of the operator 

and the prime indicates that the sum excludes the states la), lb). In fact it is 

useful to d e h e  the more general operator 

and the operator Em(l)  as the sum over aU the R operators with 1 superscripts 

such that they add up to m. For example 



Further, we define the operator 

with 

For example M:, fiom which we calculate G3, is given by 

(A.  1 1) 

Finally c m  write the matrices G,  as 

We can systematically solve the equations (A. 1)-(A.3). However, in the prob- 

lem investigated in this paper we have V, = Vab = ha = L&, 3 O and thus 

Go=O. Hence the first order energy corrections are zero ( ~ ( ' 1  = O), and we must 

use (A.2) to determine the correct zero order eigenstates and the energy cor- 

rections ~ ( ~ 1 .  Equation (A.2) is now a 2 dimensional eigendue equation whose 

eigenvectors cg) and eigendues ~ g )  give the dressed stateç correct to zero order 

and second order energy corrections respectively. Having found and nomalised 

the eigenvectors cf)? we proceed to solve the equation (A.3). 

Because the matrices G, are Hermitian, we know that the eigenvectors cf) 

are orthogonal and that they span the 2 dimensional vector space-Therefore, we 



can write the vector c?) = f z ~ y )  + ~ ; C ( O ) .  Substituting this back into (A.3) 

and multiplying on the left first by then by C?)~,  we find 

(A.  13) 

The coefficient f: is found to be arbitrary, and we choose fz = O in order to 

follow the orthogonality convention that 

( A .  14) 

The previous derivation is symmetric and we can sirnply interchange plus and 

minus signs to obtain expressions for E?) and f?. The process c m  be continued 

to next order by taking c?) = g ~ ~ y )  + g ; ~ ( 0 ) ,  and so on. In this m-er 

the energy corrections and coeaicients of the degenerate states CAn), C'in) can 

be found to any accuracy required. The coefficients of the other states which 

contribute to the eigenvector corrections are found in the usual way, and given by 

where we point out that the first sum includes the states la), Ib). 



Appendix B: Sample Maple work- 
sheet for multiphoton AC Stark 
effect calculat ions 
In this appendix an example of the type of Maple worksheet used for many of 

the calculations in this thesis is presented. The author makes no daims as to 

the efficiency of the Maple code. The worksheet grew gradually out of attempts 

to avoid algebraic errors when calculating 4th order corrections to the doubly- 

dressed state energies of Chapter 3. It should be pointed out that despite the 

accompanying explanation, this worksheet is likely unintelligible to all except 

regular Maple users. 

We begin by reading in the "linalg" package to enable us to use matrices easily, 

and the Pationalize" and "Taylor CO-efficient " commands. 

[) wit h(lina1g) : 

[) readlib(coeftayl):readlib(rationaliae) : 

We now want Maple to realise that n and RI are real and positive: 

[) assurne(alpha> O):assume(Omegal > O): 

Now pick value of n, 

[) n:=2; 

and define the Kronecker delta function: 

[) delta:=(x,y) ->if x=y then delta(x,y):=l else delta(x,y):=O fi: 

Now two commands to make simplification and computing the modulus of a 

complex number easier: 

[) simp:=x->simplify (expand (rat ionalize (x) ) ) : 



D MODD:=x->x*coqjugata(x): 

We want to expand many parameters in a Taylor series in a without the 0(a8) 

or similar term that Maple leaves. Hence the following: 

[) TAYLORl:=L- >convert (taylor(L,alpha=O,2) ,polynorn) : PIUS similar expres- 

sions up to TAYLOR6. 

Now we are going to represent states such as I(N - p)+, M + p) as a k t  of 

three elements [-p, 1, pl. That is, we drop the N, M and use the rniddle ele- 

ment to represent the "plus" or Uminus" states. As another example, the state 

I(N+3) -, M - 2) would be represented in Maple by the list [3, -1, -21. The o p  

erator SP below takes in 2 such lists as arguments and computes a scalar prod- 

uct ( 0  1 - - -): 

[) SP:=(U,V) ->dalta(U[1] ,V[l]) * delta(U[2],V[2]) * delta(U[S] ,V[S] ) : 

We now define a function which takes as input two states in the list form de- 

scribeci above and computes the matrix element of our perturbation V between 

them, ie. (a - IV1 - a): 

[) W:=(U,V) ->Ornegal*alpha/2* (U[2]*delta(U[l]-1,V[1]) 

*deIta(U[3],V[3]-l)+V[2lJcdeIta(U[l] , - 1  *delta(U[3],V[3] +1)): 

The next two functions compute the energy of an input state and the energy 

difference between two input states respectively. 

[) En:=U->collect (U[l]*omega[o]+U[2] *Omegal+U[S]* 

(omega[o]+2*Omegal/n+delta), [omega[o]]) : 

[) Endir:=(X,Y) ->sirnpÜfy(En(X)-En(Y)): 



The next three functions cornpute the matrix elements of the operators S- , S+ 

and S+S- respectively, given two input states. 

[) uSminusv:=(lJ,V) ->V[2]/2* deita(U[i] ,V[i]-l)*delta(U[3],V[3]) 

* (deIta(U[2] ,l)+delta(U[2],-1)): 

[) uSplusv:=(U,V) ->1/2*delta(U[l],V[1]+1)*deIta(U[S],V[3]) 

* (delta(U[2],1)-deIta(U[2],-1)): 

D uSplusSrninusv:=(U,V) ->V[2]/2*delta(U[l],V[l]) 

* delta(U[3],V[S])*(deIta(U[2],1) - deIta(U[2],-1)): 

Up until now we have functions which take in one or two states as a list of 

three elements for 

of such states. To 

of the form I$) = 

each state. The problem is we will require superpositions 

enable us to do this, we define a convention whereby a state 

represented in Maple by the list of lists: 

psi:=[ [[-l,lJ] ,l/sqrt(3)1,[[-3,-1,3] ,sqrt(2) /sqrt(3)1 1 
Obviously we can extend this to include any number of states with different 

amplitudes. 

We now need to define generalisations of the operators above to incorporate 

cornputing the matrix elements of "superposition lists". 

The next four functions compute the matrix elements of S-, S+, S+S- and V 

respect ively. 

[) SMIIWS:=(Ll,L2) ->collect (expand(sum(~surn(~co~ugate(Ll[i] [a])  

*L2fi] [2]*uSmin~sv(Ll[i][l],L21j][l))~,'i'=l..nops(L1))', 

9-9-  J -l..nops(L2))),alpha): 



D SPLUS:=(LI,Lî) ->collect(expand(sum('sum('~0~ug8te(L1 [il Pl) 

*L2b] [2]*uSpIus~(Ll[i] [l] ,L9~][1])','i'=l..nops(Ll))', 

9-9- J -l..nops(L2))),alpha): 

D SPLUSIMINUS:=(Ll ,LB) ->co~ect(expand(sum(~s~m(~co~~gate(L1 [i][2]) 

*L2~][2]*uSpIusSminusv(Ll[i] [l],L2fi] [1J)~,'i'=l..nops(L1)) ', 

'j'=l..nops(L2))) ,alpha): 

D S WS:=(Ll,L2) ->collect(exp~d(sum('~um(~co~ugate(~1 [il [2])*L2C] [2] 

* W(Ll[i][1],L2~][l])~9'i9=1..nops(Ll))','j'=l..nops(L2))),dpha): 

The following computes the "overlap" , or scalar product of two superposition 

lists. 

[) SS:=(Ll,L2) ->colleet ( e ~ . p a n d ( s u r n ( > s u m ( ~ c o ~ [ 2 ] )  

*L2~][2]*SP(Ll[i][l],L2~][l])','i~=l~.nops(Ll))~, 

'j9=l..nops(L2))),alpha): 

We know that in perturbation cdculations we are required to surn  over all 

states that "connect" to a given one through the perturbation V. The following 

operator takes in a state and produces a list (superposition!) of al1 such states, 

giving each an initial amplitude of zero. 

[) Pe~t:=~-~o~(~[[v[~l[1~-~,19U[11 [31+~1,01,[~~~1[~1-~,-~,~[~1[~1+~1,~1, 

[~~[~l~~l+~,-~'~l~l~3l-~l~ol,CIvf~l ~ ~ 1 + ~ , ~ , ~ [ ~ 1 ~ ~ 1 - ~ 1 , ~ 1 1 ~ :  

Obviously we need to generalise this to take in a superposition and to produce 

al2 connecting states, and this is accomplished with the operator PRT below: 

[) PRT:=proc(L) ;seq( Pert (L[i]) , i=l ..nops(L) ) ;end: 



There are just two remahhg operators of this form that we will h d  usehil. 

The k t  takes a single state and "hits" it £iom the left onto a superposition of 

states, that is it cornputes the overlap of the single state with the superposition. 

The second performs a similar hc t ion ,  but through the perturbation V. 

[) SL:=(Ll,LÎ) ->expand(sum('L2fi] [~]*SP(LI[I],L~~] [1])t,9jT=1..n~ps(L2))): 

[) SVL:=(Ll,Lo) ->expand(sum(*L2ljJ[2]* W(Ll[l],L2ü][l]) ',(i'=i..nops(L2))): 

We now define our initial pair of degenerate states with which we work. In this 

example 1 have chosen the m = O states on E(N + M), as d e k e d  in Chapter 3. 

[) a:=[[n,i,-n],O];b:=[[O,-l,O],O]; 

We now d e h e  a series of functions which compute the matrix elements of the 

operator (s) R*q.--', as defined in equation (A.8). 

The last two arguments passed to these hinctions (here c d e d  H[i] where i la- 

bels the number of energy denominators) are the states which determine which 

matrix element we are computing. The first i arguments are the powers to 

which the energy denominators are raised. 

[) H[O]:=proc(x,y) ; W(x[i],y[l]);end: 

[) ~[l]:=~roe(~,x,~);~:=[o~({~ert ( y )  , ~ e r t  (x) } minus {a,b)) 1; 

sum('W(x[l] ,=[il [il) *W(=Eil [Ili~[ll)/Endif(~[11 ,=(il [Il) -qll 

li'=l..nops(xx));end: 

[) ~ [ 2 ]  :=proc(q,r,x,y) ;xx:=[op(Pert (x) minus a,b)] ;xy:=[op(Pert ( y )  minus 

~,b)];~~m('~um('~(x(ll,~~~~l~ll)*~(~~[il[ll,~~fil [II) 

*W(xyUI [~I'Y pl) /Endif(~(lJ,xx[ilfll) 'q/Endif(y[lI ,Wb] [Il) 'r', 

'i'=l..nops (xx))',*j'=l..nops(xy));end: 



A series of such functions up to H[7] is similarly defined. 

We now define some functions which evaluate the H's for the specific degener- 

ate pair a,b that we have chosen. 

[) ~.O:=matrk(2,2,[simp(H[O](a,a)),simp(H[O](a,b)),simp(H[0](b,a)), 

simp(H[OI ( M ) )  1): 

[) U-1 :=proc(q) ;matrix(2,a,(sim~(H[l] (q,a,a)) ,skp(H[l] (q,a,b)) ,simp (HI11 (q,b,a)), 

simp(H[l] (q, b, b))]) :end: 

D U=2:=proc(q,r) ;matrk(2,2,[simp(H[a] (q,r,a,a)) ,shp(H[2] (q,wi,b)), 

simp(H[2] (q,r,b,a)) ,sim~(H[3] (q,r,b,b)) 1) :end: 

A series of functions up to U.8 is similady dehed.  

F indy we actually compute the 2 x 2 matrices which we will need. Only a small 

subset of those required are shown below 

[) M.O:=U.O:M.l:=UI (i);M.2:=Ui (2): 

M.l.l:=U2(1,1);M.2.I:=U2(2,1):M.1.2:=U2(1,2):M.3.2:=U2(3,2): 

M.~-l.l:=U3(1,1,l):M.l.~.2:=U3(1,1,2): M.l.2-l:=U3(1,2,1): 

M~l.l.l.l:=U4(l,~,~,l):M.l.l.l.2:=U~(~,~,~92): 

M.~-l~l-l-l:=U5(l~~,1,l,l):M2l~l~:=U5(2,l,l,l9l):M-l.2~l.~.~:=U5(l,2,l,l,l): 

We now implement a series of procedures to compute the matrices G, of equa- 

tion (A.12). To do this we start with a series of procedures X.i(N) which eval- 

uate the sum over the M matrices with i indices that add to N: 

[) X.l:=N->M.N: 

[) X.2:=proc(N);surn('M. (N-j) .j',9j9=1..N-l);end: 

Plus s i d a r  terms tmtil: 



[) X.s:=proc(N) ;sum(~s~m(~~~m(~~um(~sum(~sum(~~um(~M.j . (k-j) . (1-k) . (pl). 
(O-p) .(PO) .(y-r) .(N-y)l,'j'=l..k-l)','k'=~.~l-l)','l'=l..pl)', 

'p'=l..o-l)y,'oy=1..r-l)',~r'=l..y-l)~,~y~=1..N-l);end: 

With these in hand we compute the functions corresponding to equation (A.10). 

Notice that we have to have two such functions depending on whether we are 

on the "plus" or LSninus" subspace, once the degeneracy is lifted. Thus PP, 

PM correspond to the "plus" or "minus" subspaces respectively. 

[) PP:=proc(i,n); if i=l  then X.1 (n) else X.i(n)-surn('ep.j*PP(i-j,n+l-j) ','j9=l..i- 

1) ;fi;end; 

[) PM:=proc(i,n); if i= l  then X.l(n) else X.i(n)-surn('ern.j*PM(i-j,n+l- 

j) ','j '=l..i-1);fi;end; 

Below we will use the notation AP(m) , AM(m) for the matrices G,. 

The next huiction makes hding  a transpose a iittle easier: 

[) dag:=x-> transposa(x): 

We now irnplement two functions which compute the coefficients f; (and simi- 

lar to higher order) of equation (A.13). 

[) pv:=N- >simplify(evaLn(l/(ep2-em2)*(sum('cp(i]*dag(mO)&*AP(N+1- 

i)&*m09,'i'=0..N-l)+dag(mO)&*D(N+l)&pO -sum(kp[i] *ep.(N+2-i) ','i9=0..N- 

1)))); 

[) pm:=N- >simplify(evalm(l/(em2-ep2)*(sum('cm[i]*dag(pO)&*AM(N+l- 

i)&*p09,'i'=0..N-l)+dag(pO)&*AM(N+l)&*mO -sum('cm[i]*em.(N+2-i)','il=O..N- 

1)))); 



The next two functions compute the energy co~ections to the "plus" or "mi- 

nus" subspaces respect ively. 

[) enp:=N- >simp(evalm(sum(~cp[il*dag(pO)&*AP(N-l-i)&*mOy,yi1=O..N- 

3)+dag(pO)&*AP(N-l)&*pO)); 

[) enm:=N- >simp(svalm(sum(~em[i]+dag(mO)&*AM(N-1- &*PO ' ,'i'=O..N- 

S)+dag(mO)&*AM(N-l)&*mO)); 

Having defined all these functions, we c m  proceed to compute the energy cor- 

rections to whichever order we please, and &O the quantities c:), which deter- 

mine the CO-efficients of the 2 degenerate states in the higher order eigenvector 

corrections. 

Since for n > 2 the degeneracy is not lifted, the zeroth order term are all O: 

[) cp[O]:=~:cm[~]:=~: 

[) AP(O):=M.O:AM(O):=M.O: 

[) epï:=O:eml:=o: 

At second order the two matrices AP(1) and AM(1) are identical (since no 

degeneracy has been removed), and we diagonalise them to find the second or- 

der energy corrections ep2 and em2, and the zeroth order eigenvectors p.0 and 

m.0 

[) AP(l):=PP(l,l):AM(l) :=PM(l1l); 

[) ep2:=sirnp(sqrt (AP(1) [1,1]'2+AP(l) [1,2] -2)): 

em2:=simp(-sqrt(AP(1) [ l  , l ]  -2+AP(l) [1,2] -2)): 

[) eta:=simp(-AP (1) [1,2]/(AP (1)[1,1]-ep2)); 

[) p.0:=vector([eta/sqrt(l+etaa2) ,l/sqrt(l+eta~2) 1): 



m.O:=vector([l/sqrt(l+etaL2),-eta/sq~(l+etao2)]): 

The variables Cap[i] and Cam[i] are the coefficients of the a state in the plus 

or minus subspace at order i. The Cbp[i], Cbm[i] terms are the equivalent 

expressions for the degenerate state b. 

0 Cap(0]:=pO[l]:Cbp(0]:=pO(a]:Cam[O]:=m0[1]:Cbm[O]:=~O[2]: 

The whole procedure now proceeds recursively, to whichever order we desire (or 

have the patience to wait for Maple to compte!). 

AP(2):=PP(Z92):AM(2):=PM(2,2); 

[) ep3:=enp(t) :emS:=enrn(3); 

[) cp[1]:=pv(ï);cm[ï]:=pm(~); 

D Cap[l]:=cp[l]*Cam[O]:Cbp(l]:=cp[l]*Cbm[O]: 

Cam[l]:=cm[l]*Cap[O]:Cbm[l]:=crn[1]*Cbp[O]: 

[) AP(3):=PP(3,3):AM(3):=PM(3,3); 

[) ep4:=enp(4) ;em4:=enrn (4) ; 

[) cp[2]:=pv(2):cm[2]:=prn(2): 

[) Cap[2]:=cp[2]*Cam[0]:Cbp[2]:=cp[2]*Cbm[O]: 

Cam[2]:=cm(2] *Cap[O]:Cbm[l] :=cm[2]*Cbp[O]: 

[) AP (4) :=PP (4,4):AM(4) :=PM(4,4) : 

[) epS:=enp(5) :ern5:=enrn(5): 

[) cp[3]:=pv(3):cm[3]:=pm(~) : 

D Cap[3]:=cp[3]*Cam[0]:Cbp[~]:=cp[3]*Cbm[O]: 

Camf3]:=cm[3]*Cap(0JCbm[3]:=cm[3]*Cbp[O]: 

[) AP(5):=PP(S,S):AM(J):=PM(5,5): 



D epB:=enp(6) ;emB:=enm(B) ; 

[) cp[4] :=pv(4) :cm [4]:=pm(4): 

Cap[4]:=cp(4]*Cam[O]:Cbp(4]:=cp[4]*Cbm[O]: 

Cam[4]:=cm[4]*Cap[O]:Cbm[4]:=cm[4j *Cbp[oj: 

AP(B):=PP(6,0):AM(B):=PM(6,6): 

[) ep7:=enp (7) ;em~:=enm(T) ; 

[) cp[5]:=pv(5):em[6]:=pm(~): 

[) Cap[5]:=cp[5]*Cam[0]:Cbp(5]:=cp[5]*Cbm[0]: 

Camf5]:=cm[5]*Cap[O]:Cbm[5]:=cm(6]*Cbp[0]: 

Up to this point we posess only the energy corrections and the higher order CO- 

efficients of the 2 degenerate states. By this stage I am so confident of noone 

ever reading this far into this appendix, that 1 will offer a Mars Bar to anyone 

who points out this sentence to me within 5 yrs of my dissertation. 

To calculate the full eigenvectors correct to some order, we can now use stan- 

dard perturbation theory and be careful to make sure that in sums over inter- 

connecting states we exclude the two degenerate states a, b. 

The eigenvectors correct to zeroth order are: 

[) CORR[OJ:=convert ([a[i],pO[l]],[b(l],p0[2t 9; 

[) MCORR[OJ:=eon~ert([a[~],rn0[1]] ,[b[l] , m 0 [ t S ) ;  

We now define procedures which compute a list of possible interconnecting 

states, but remove aU those which are actually the a and b states: 

[) XXX:=p->c~nvert(~union<(PRT(XX[pl]) ,op(XX[gï]))niinus a, b ,llist'): 

[) XX[O]:=mL]: XX[l]:=convert (PRT(CORR[O]) , ' k t  '):XX[2]:=XXX(ô): 



XX[3]:=XXX(S):XX[4]:=XXX(4):XX[5]:=XXX(5):XX[6]:=XXX(6): 

The two functions below, corrn and mcorrn now compute the CO-efficient at 

order Q of some input state k. 

corrn:=proc(k,Q);EE:=Endif(a[l] ,k[l]) ; 

LIST:=convert (Pert (k) minus a, b ,'Iist ) : 

if Q=l t hen (Cap[0]* W(k[ l ]  ,a(l])+Cbp[O]* W(k[ l ]  ,b[l]))/EE ekie 

~/EE*(CW[Q-~I * w ( k [ ~ ]  ,a(l] +Cb~[Q-ll *W(k[l] ,b[l] ) 

+ s~rn('W(k[l],LIST[i] [l]) *corm(LIST[q,Q-1) ','i9=l..nops(L1ST)) 

-sum('ep.i*corrn(k,Q-i)','i9=1..Q-1)) :fi;end: 

[) mcorrn:=proc(k,Q) ;EE:=Endif(a[l] ,k[l]) ; 

LLST:=convert (Pert (k) minus a, b ,'lista) : 

if Q=l then (Cam[O]* W(k[ l ]  ,a[l])+Cbm[Oj* W (k[l] ,b[l]))/EE else 

l/EE*(Cam[Q-il* W(k[l],a[l])+Cbm[Q-Il* W(k[l],b[l]) 

+ sum('W(k[l],LXST[i][lJ)*mcorrn(LIST[i],Q-l)','i'=l..nops(LIST)) 
-sum('em.i*mcorrn(k,Q-i) ','i'=l..Q-1)):fi;end: 

The two functions correction and mcorrection then apply corrn and 

mcorrn to the set of possible states which may have non-zero CO-efficients at 

order Q: 

[) correct ion:=proc(Q) ;seq(subsop ( 2 = s i r n p ( c o ) ,  

i=l-*no~s(Xx[Ql) ) 9 [[O,- ho]  ~ i m p  ( C ~ P  [QI ) 1, [[n,l,-n] gsimp (Cap [QI) J ;end; 

[) mcorrection:=proc(Q);seq(subsop(2=simp(mcorrn(XX[Q] [il ,Q) ) ,XX[Q] [il), 

i=l..nops(XX[Q])) , [ [ O , - l , O ] , s i m p ( C b m [ q l ) [ Q ] ) ] ; e n d :  



Thus our final correct dressed state is the superposition of ail the higher order 

correction states (here shown computing to order a4). The minus op(XX[4]) 

is just to remove extra states nhich enter with a zero amplitude and which slow 

down later calculations. 

[) KP[O]:=eonvert('uniod (op(CORR[O]) ,correction(l) ,eorrection(2), 

correction(3)) minus op(XX[4]) ,'lit9): 

[) KM[O] :=convert ('union' (op (MCORR(0 J ) ,mcorrection( 1) ,mcorrection(2), 

rncorrection(3) ,mcorrection(4)) minus op(XX[4]) ,'List9) : 

We now have our pair of m = O dressed states on e(N + M), given by the 2 

variables KP[O] and KM[O]. Of course we require the dressed states for dif- 

ferent rn and on dxerent manifolds. In what follows J,K,L denote manifolds 

É(N + M + 1), e(N + M ) ,  and E(N + M - 1) respectively. The function Jmn(S), 

for example, cornputes the dressed states on e(N + M + 1) for m = 3. 

[) KpI:=m-> [seq(subsop(l=[i[l] [ l l - m . i [ 1 ] [ 2 1 P [ O ] )  J: 

Kmn:=m->[seq(subsop(l=[i[l] [l]-m,i[l] [2J,i[l][3]+mJ,i) ,i=KM[O]) J: 

Lpl:=m-> [seq(subsop(l=[i[l][1]-m-Z,i(1][2],i[l] [3]+m],i),i=KP[O])]: 

JpI:=m->[seq(subsop(l=[i(l](~-m+l,i[l][2]~i[~][3J+m]yi),i=KP[OJ)]: 

Jmn:=m-> [seq(subsop(l=[i[l] [l]-m+l,i[1][2],i[l][3]+m],i) ,i=KM[O])]: 

Lmn:=m->[~eq(subsop(1=[i[l][l]-m-l,i[l][2]~i[l][3]+m~,i),i=KM[0])]: 

Since we do not want Maple to run off and keep computing these dressed states 

every time it requires one, we make an array of them all from m = -13 to 13. 

[) A:=array(-l3..13,[seq(i,i=-13..13)]): 

[) Lp:=map(Lpl,A) : Jp:=map(JpI,A):Jm:=map(Jmn,A):Lm:=map(Lmn,A): 



Kp:=rnap(KpI,A):Km:=map(Kmn,A):Hp:=rnap(Ipl,A) :Hm:=map(Imn,A): 

As yet our dressed states are unnormalised. The variable F computed below is 

the normalisation factor; the variable F2 truncates this factor to the order we 

are interested in. 

[) F:=sqrt(sUnp(SS (Kp[oI,Kp[O]) ) ) ; 

[) FZ:=TAYLOR4(F-2); 

Depending on what order of a we are interested in, we may requke transition 

rates from rn = O to m = 2 or 4 or 8 etc. The variables Y and Z give us some 

flexibility in changing the "depth" of o u  transition rates. 

[) Y:=8; 

[) 2:=8; 

[) AAA:=array(-Z..Z,[seq(i,i=-Z..Z)]) : 

The functions MUpp(j) etc defined below compute the transition rates ïr+. 
[) M U p p : = j - > M O D D ( s u b s ( e t a = E T A , s i m p ( S P L U S ( K p  

h/ZUpm:=j->MODD(subs(eta=ETA,sirnp(SPLUS (Kp[O],Lmb])))): 

[) MUrnm:=j->MODD(subs(ata=ETA,simp(SPLUS(Km(O] ,Lmb])))) : 

MUmp:=j ->MODD(subs(eta=ETA,simp(SPLUS(Km[O],Lpfi])))) : 

To avoid recalulating these all the tirne, we define arrays MUPP etc of the 

transition rates: 

[) 1MUPP:=map((MUpp) ,AAA):MUPM:=map((MUprn) ,AAA) : 

MUMl?:=map((MUmp) ,AAA):MUMM:=map((MUmrn) ,AAA): 

The variables below are ail required from the master equation for calculation of 

the linewidths and populations. 



[) AAAv:=simp(SPLUSMINvS(Km[O] ,Krn[O])/Fa2); 

AB:=sirnp(SPLUSMINWS(Kp[O] ,Kp[OJ)/Fa2) ; 

[) GC:=simp(i/F-4*sum('SMI[NUS(Kp[O],Jp[i]) *SPLUS(Km[i],Lm[OJ)9,9i9=- 

Y..Y)); 

[) GP1:=simp(l/Fa4*sum(9MUPP[i]*,9ip=-Y..Y)); 

[) GP2:=simp(l/Fa4*sum('MUMP[i]9,1i'=-Y..Y)); 

D GPS:=simp(l/F-4*s~rn(~MUMM[i]~,~i*=-Y~.Y)); 

[) GP4:=~irnp(l/F~4*sum('MUPM[i]~,'i'=-Y.~Y)); 

D APLUS:=GP~;AMINUS:=GP~;G~C:=~/~*S~~~(AAA~+AB-~*GC); 
[) Aplus:=APLUS:Aminus:=AMINUS: 

The variables Pp and Pm are the populations II; and KI,; respectively, while 

Gc and G s  are the limewidths î, and î, respectively. 

[) Gs:=TAYLOR6(GAMMXc) ;Pp:=TA~OR6(Aminua/(Aplus+Aminus)); 

Pm:=TAYLORB (Aplus/(Aplus+Aminus) ) ;Gc:=TAYLORB(Aplus+Aminus); 

We now can compute the fluorescence spectrum (Sinc), the near-resonant weak 

probe absorption spectnun (Wp) and the near-resonant weak probe dispersion 

profile (Dis) : 

[) Sinc:=1/F'4*sum('(~P~]*Pp+MUIMM~]*Pm)*Gc 

/((x+2*j*Omegal/n) -2+GcC2) 

+MCTPM~]*Pp*Gs/((x+2*j*Omegal/n-2*DeltaE) ^2+Gsa2) 

+MUMPb]*Pm*Gs/((x+2*G) *Omegal/n+2+De1t) a2+Gs^2)','jp=-6..6): 

[) SINC:=evalf(subs(alpha=.35,Omegal=80,Sinc)): 

[) plot (SINC,x=-2BO..28O,numpoints=2000); 



[) Wp:=l/Fa4*sum('lVIUPM~]+(Pm-Pp)*Gs 

/((x+2*j*Ornegal/n-2*DeltaE) -2+Gs'3) 

+MUMPb]*(Pp-Pm)*Gs/((x+2~j~Omegal/n+2DIt) ̂2+Gs'2) ','jp=-Z..Z): 

[) WP:=evalf(subs(alpha=.35,0megal=80,Wp)): 

[) pIot (WP,x=-280..280,nurnp0int~=3000); 

[) Dis:=l/F^4*sum('~M~]*(Pm-Pp)*(x+2*j*Omegal/n-2*DeltaE) 

/((x+2*j*Omegal/n-2*DeltaE)^3+Gs*2) 

+MUMPIj]*(Pp-Pm) *(x+Z*,j*Omegal/n+2*DeltaE) 

/((x+2*j*Omegal/n+2*DeltaE) ^2+Gs'3)','j9=-Z..Z): 

[) DIS:=evalf(subs(dpha=.S5,0mega1=80,Dis)): 

[) plot (DZS,x=-280..28O,numpoints=2000); 

Finally to compute the Autler-Townes spectra, we require the weight factors 

A .  These are computed by the functions ATp and ATm: 

[) ATp:=i->simp(MODD(sum(~l/sqrt(2)*co~ugate(Kp[i]fi][2]) * 

s P ( ~ ~ [ ~ l l i l [ ~ l , [ o , i , O l ) / F + ~ / s q ~ t ( 3 ) * c o q ~ ~ ~ l ) *  

SP (Kp[i] O] [l],[O,-l,O])/F','j'=lœ.nops(Kp[i])))): 

[) ATm:=i->simp(MODD(sum(~l/sgrt (2)*coqjugate(Km[i]fi][2]) * 

SP(Krn[i] b] [1],[O,l,O])/F+l/sqrt ( 2 ) + c o n j  

SP(Km[i]~][l],[~,-l,O])/F','j>=l,.nops(Km[i])))): 

[) ATP:=map(ATp,AAA):ATM:=map(ATrn,AAA): 

[) seq(S1MP (ATP[i]) ,i=-Z--2) ;seq(SIMP (ATM[i]) ,i=-2.Z); 

We c m  now compute and plot the Autler-Townes absorption spectnun (Aut- 

ler) and the Autler-Townes dispersion profile (Autdis): 



[) Autler:=sum('ATPfi]*Pp*(l/l*(Gs+GS))/ 

((x-(1-2*j/n)*Omegal+DeltaE) '3+1/4*(Gs+G3) -2) 

+ATMfi]*Pms(1/2*(Gs+G3))/ 

((x-(1-2*j/n)*Ornegal-Delta.E) '2+1/4*(Gs+GQ) -2) ','j9=-Z..Z): 

[) AUTLER:=evaIf(subs(alpha=.S5,0mega1=80,Gr)): 

[) plot (AUTLER,x=-280..28O9numpoints=2O0O); 

[) Autdis:=sum('ATP~]*Pp*(x-(l-2*j/n) *Omegal+DeltaE) 

/((x-(1-2*j/n) *Omegal+DeltaE) '2+1/4*(Gs+G3) -2) 

+ATME] *Pm* (x-(1-2*j/n) *Omegal-DeltaE) 

/((x-(1-2*j/n)*Omegal-Delta) '2+1/4*(Gs+G3) '2)','j'=-23): 

[) ADIS:=evalf(~ubs(dpha=.35~Omegal=80,G3=1/3,Autdis)): 

[) plot(ADIS,x=-280..280,numpoints=2000); 



IMAGE EVALUATION 
TEST TARGET ( ~ ~ 2 3 )  

APPLIED IMAGE. lnc 
fi 1653 East Main Street - -. -, Rochester. NY 14609 USA 

I -- - - Phone: 71 6 1 4 8 ~ ~  -- -- - - F a  7161288-5989 




