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Abstract

Langlois, Joseph Mathieu Pierre, Royal Military College of Canada, May 2002, Novel Design
Approach and Architectures for Sinusoid Output Direct Digital Frequency Synthesis

Supervisor: Dr. Dhamin Al-Khalili

Direct Digital Frequency Synthesis (DDFS) makes it possible to generate single phase or
quadrature sinusoids over bandwidths measured in hundreds of megahertz, with sub-hertz
frequency resolution, unparalleled frequency hopping rates, and phase continuity on hopping.
These characteristics make DDF Synthesizers ideal in a wide array of applications, including
spread-spectrum communications, radar, instrumentation and broadcasting. Design challenges
include maintaining high spectral purity, high clock rates and low power consumption.

This thesis presents a novel approach to the design of sinusoid output DDF Synthesizers with
Phase-to-Sine Amplitude Converters based on linear interpolation. For such synthesizers, the first
quadrant of the sine function is approximated with piecewise-continuous linear segments. Simple

control circuitry reconstructs a full sine wave by symmetry.

Basic principles of DDFS are presented, and a comprehensive review of existing work is made. A
spectral analysis of the linear interpolation of the sine function is given, from which a design
procedure is derived for the number of segments required and the value of system parameters to
achieve a desired spectral purity. New hardware-optimized single phase and quadrature DDFS
architectures are presented, and their validity is supported by several designs implemented with
three different technologies. The new design approach and architectures are compared with
existing work and are shown to produce designs with significantly reduced complexity and power
consumption for equal performance.




résume

Langlois, Joseph Mathieu Pierre, Collége militaire royal du Canada, juillet 2002, Conception et
Architectures Nouvelles pour Synthétiseurs Numériques de Fréquences

Directeur de thése: Dr. Dhamin Al-Khalili

Les synthétiseurs numériques de fréquences (SNF) générent des signaux sinusoidaux en phase
unique ou en quadrature sur des largeurs de bandes de plusieurs centaines de mégahertz, avec une
résolution inférieure 3 un hertz, des taux de sauts en fréquences inégalés, en maintenant une
continuité de phase lors d’un saut. Ces caractéristiques font des SNF les synthétiseurs de choix
pour une vaste gamme d’applications, incluant les communications a dispersion de spectre, les
systémes radars, les instruments de mesure, et le domaine de la radiodiffusion. Cependant, il est
souvent difficile de concevoir un SNF atteignant une haute pureté spectrale, une fréquence

d’horloge élevée et une faible consommation de puissance.

Cette thése présente une approche originale pour la conception de SNF a sortie sinusoidale avec
convertisseurs de phase & amplitude employant |'interpolation linéaire. Dans un tel cas, on fait
I’approximation du premier quadrant de la fonction sinus par des segments de droite, et un circuit
de contrdle permet de reconstruire une onde sinusoidale compléte par symétrie.

Les principes de base des SNF sont présentés, et une revue détaillée des travaux existants est
faite. Une analyse spectrale de I’interpolation linéaire de la fonction sinus est donnée, menant a
une relation entre la pureté spectrale désirée, le nombre de segments nécessaires, et la valeur des
parametres du systéme. De nouvelles architectures de SNF optimisées pour réalisation matérielle
sont présentées, et leur validité est supportée par plusieurs exemples appliqués a trois différentes
technologies. La nouvelle approche de conception et les nouvelles architectures sont comparées
aux travaux existants, démontrant que la complexité et la consommation de puissance des

synthétiseurs résultants est significativement moindre pour des performances égales.
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Chapter 1

Introduction

1.1 Overview

This thesis concerns Direct Digital Frequency Synthesis' and Direct Digital Frequency
Synthesizers (DDFS?). This type of synthesizer offers unique performance characteristics and
advantages over designs based on Phase-Locked Loop (PLL) techniques. These include output
bandwidths measured in hundreds of megahertz, frequency resolution in the sub-Hertz range, a

tuning latency limited to one or a few clock cycles, the ability to maintain phase continuity when

tuning, and excellent stability.

Frequency synthesizers generate a waveform of a desired shape at a specific output frequency.
The waveform is most often a sinusoid, but it can also be a square wave or a sawtooth. There is
normally one input signal of a fixed frequency, known as the reference frequency or standard
frequency. The output frequency is usually a rational multiple of the reference frequency, i.e. fox
= (p/q) x fs, where p and ¢ are positive integers, and f,, and f, are the output and reference

! In the literature, the terms “Direct Digital Frequency Synthesis”, “Direct Digital Synthesis”, “Numerically
Controlled Oscillator” and “Table Look-up Frequency Synthesis™ are used by different authors to mean the
same thing. The first term, which appears to be the most popular, will be used in this text.

? The single acronym “DDFS” will be used to mean either Direct Digital Frequency Synthesis or Direct

Digital Frequency Synthesizer when the context fully specifies which term is meant. Otherwise, “DDF
Synthesis™ or “DDF Synthesizer” will be used as appropriate.
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frequencies, respectively. In indirect frequency synthesis, the output signal is produced from a
secondary oscillator that is locked in phase to the primary frequency reference. In direct
frequency synthesis, the output signal is obtained from the standard frequency by a combination
of operations such as mixing, filtering, multiplication and division. The output signal’s frequency
is a function of the reference frequency, without the use of internal oscillators or feedback loops.
Direct Digital Frequency Synthesis is a special case of direct frequency synthesis, with digital
components alone being used.

The first DDFS architecture was introduced by Tiemey, Rader and Gold in 1971 [92]. Realized
with 85 discrete TTL packages, it was clocked at just under 820 kilohertz and consumed 12 watts
of power. The frequency resolution was 12.5 hertz for an output bandwidth of approximately 400
kilohertz. The severe technology limitations of the time prevented the architecture from gaining
wide popularity, and few papers on the subject were published during the following decade
[29][93]. The high power consumption, low clock rates and high spectral spurs were seen as
major drawbacks of the approach.

A few important DDFS papers were published in the early eighties. Weathley and Phillips [102]
observed that the high spurious noise in DDFS output was produced by the periodic nature of the
device. They proposed a noise reduction technique that appeared counter intuitive: it was based
on the addition of a random noise pattern inside the architecture. Merghardt [62] then provided a
first analysis of the output spectra for DDFS. A major breakthrough occurred in 1984 with the
publication, by Sunderland et al. [87], of a paper reporting on a first monolithic DDFS realized in
3.5 pm CMOS/SOS technology. The chip was to be used in a spread-spectrum frequency hopping
satellite communications system. Capable of generating sinusoids from DC to about 3 megahertz
in steps of 7.15 hertz, the synthesizer dissipated only 300 milliwatts.

In 1987, Nicholas and Samueli [66] made an important contribution to the understanding of the
spurious levels in DDFS output. Joined by Kim in 1988 [67], the same authors then introduced an
optimized DDFS architecture that was to endure as the reference against which all other designs
were compared for several years.
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Many DDFS patents were issued during this time, showing a growing interest for the technology

[103][(28][22][77)(32])[37][101]. These have mainly dealt with noise reduction and with
architectures leading to reduced system complexity.

Between 1989 and this day, more than 100 conference and journal papers on DDFS have been
published. Dozens of patents have been issued. A monograph by Goldberg [26] has also been
published, and Kroupa [44] edited a collection of important DDFS papers in 1999. Novel DDFS
designs that advance the limits of clock frequency, output spectral purity and power consumption
are a regular feature at the [EEE International Symposium on Solid State Circuits, and in the
[EEE Journal of Solid State Circuits.

Direct Digital Frequency Synthesizers have been used in a2 wide range of applications, including
spread spectrum frequency hopping communications [87][11][78]{79], and electronic warfare and
radar systems [81][2](104][1]{89]. Their versatility has also made them ideal candidates in such
diverse areas as test instrumentation [19]{12][9], broadcasting [96]{99], hydrogen maser receivers
[61], particle accelerators [35], and medical engineering [24].

1.2 Motivation

The phenomenal growth in interest for DDFS has been largely driven by the corresponding
growth in wireless communications in the last 20 years, since the synthesis of a sinusoid of a
desired frequency is a fundamental requirement in most communication systems. This
requirement includes up- and down-conversion through frequency mixing, modulation and
demodulation. In frequency-hopping spread-spectrum wireless communication systems, a
frequency synthesizer with excellent performance must be used. Requirements include short
tuning latency with high precision, excellent output spectral purity, low power consumption and
low complexity. The shift to all-digital systems has also favored DDFS research.

There has been extensive research collaboration between the Royal Military College of Canada
(RMC), Defense Research and Development Canada (DRDC) in Ottawa and the Communications
Research Center (CRC) into the design of digital down converters for radio and electronic
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warfare receivers. This has included work on filtering and decimation [13], complex multipliers
[54], and quadrature demodulation [108](46]. The last major down-converter building block that
had not yet been addressed was the local oscillator. It was therefore proposed by CRC to study
DDFS architectures, with the initial aim of integrating such a device together into existing down
converter research. This proposal was the seed that led to the research presented in this thesis.

1.3 Research Objectives

The following goals and objectives were established for this research:

¢ to discover innovative sinusoid generation techniques for use in DDFS in order to reduce
system complexity, when compared with prior work, while maintaining superior output
spectral characteristics and high data rates;

e 1o apply these techniques to the development of novel DDFS architectures suitable for fast

frequency hopping, low power wireless communications systems;
¢ to define metrics to evaluate DDFS system performance and costs early in the design cycle;

® to simulate, implement, and test several DDFS designs in order to compare the proposed
techniques and architectures with prior work; and,

e to develop a behavioral synthesis capability for a DDFS Intellectual Property (IP) block for

inclusion into a general-purpose or tailored communication system.

1.4 Synopsis

This thesis is divided into 8 chapters including this introduction. Chapter 2 presents an overview
of the traditional DDFS architecture, and it discusses its main operating and performance
parameters. Chapter 3 presents the state of the art in Phase to Sinusoid Amplitude Converter
(PSAC) architectures for use in DDFS. Chapter 4 presents a new method and architecture for
ROM data amplitude compression. Chapter 5 presents a generalized architecture based on linear
interpolation, analyzes its output spectrum, and provides a systematic design approach. Chapter 6
presents new hardware-optimized DDFS architectures exploiting the analysis and design
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procedure described in Chapter 5. Several design examples are given, together with
implementation data in FPGA, 0.35 um CMOS and 0.18 um CMOS. Chapter 7 contains an

interpretation and discussion of the results and a comparison with existing work. Conclusions are
found in Chapter 8.




Chapter 2

Principles of Direct Digital
Frequency Synthesis

2.1 Direct Digital Frequency Synthesizer Architecture
2.1.1 General Description

Most Direct Digital Frequency Synthesizers are derived from the architecture introduced by
Tierney, Rader and Gold [92] in 1971. This architecture can be divided into three blocks: a phase
accumulator, a Phase-to-Sinusoid Amplitude Converter (PSAC), and a Digital-to-Analog
Converter (DAC) with a Low Pass Filter (LPF). The system has two inputs: a reference clock of

frequency f; and a frequency control word (FCW). A single phase version of the architecture is
shown in Figure 2-1.

The phase accumulator is made up of an adder and a register, both N bits wide. On every clock
cycle, the phase accumulator integrates the value of the FCW, hence the value stored in the
register increases with time, eventually overflows past zero, and the cycle starts again. The phase
accumulator output is therefore a ramp whose slope is directly proportional to the FCW. After n
clock cycles, the value stored in the phase accumulator register is equal to

(Il xFCW + Po )21 n=0,23,.. 2-1)

where ( )., denotes the modulo-2" operation, and p; is the phase accumulator’s initial contents

upon reset. This value is generally 0.
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Figure 2-1 - Single-phase sinusoid output DDFS architecture

The phase accumulator’s contents can be interpreted as a portion of a rotation around a unit

circle. The equivalent phase angle is equal to

2T
o(n) = 2—~<n XFCW + P(,)z.v n=0,1,23,... 2-2)

The role of the PSAC is to calculate an approximation of the sine of this angle. The
approximation is quantized with L + 1 bits, which can be viewed as L bits of amplitude and one
of sign. Ideally, the PSAC output is equal to

A xsin ¢(n) (2-3)

where 4 is some amplitude that can be selected to maximize the synthesizer’s output dynamic
range. If the PSAC output is interpreted as a fraction, then the greatest value of 4 is (2° — 1) / 2-.
In practice, the output of the PSAC includes a noise amplitude not indicated in Equation (2-3).
This will be discussed in more detail below.

In its simplest form, the PSAC is implemented as a ROM Look-Up Table (LUT). The number of
ROM words and the word width determine the angular and amplitude resolutions of the
synthesizer, respectively. These in turn affect the synthesizer’s output noise characteristics.

The role of the DAC and LPF is to convert the sequence of digital sinusoid samples into an
analog waveform. These components are not present if the digital sequence is used directly in a
digital system.
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2.1.2 Tuned Frequency and Effect of the Frequency Control Word

As shown in Equation (2-2), the effective angle increment on every clock cycle is directly
proportional to the ratio of the FCW to the number of states of the phase accumulator:

Ap=¢p(n)-@p(n-1)=2xx F;,W n=123,...
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The angular frequency of the ramp output from the phase accumulator, which is also the

synthesizer’s output angular frequency, is therefore given by:

_Ap _ _ FCW
Dy ‘?'fo XAP =20, X—3— 2-5)

in radians/second, where 7 and f; are the period in seconds and the frequency in hertz of the
clock reference, respectively. The synthesizer’s output frequency is equal to:
a,. FCw

Sou '—'7:_{0)(2—” (2-6)
in hertz.
For small FCW (and hence small phase increment), more samples will be obtained from the
PSAC per unit time, leading to a low frequency. For large FCW, the sine amplitudes will be
scanned more quickly producing a higher frequency. This is shown in Figure 2-2, where it is
assumed that the PSAC is implemented with a ROM LUT storing 16 samples of the sine function.
Three curves are shown, corresponding to three values for the FCW. For the value 1, all samples
are retrieved in order and the output frequency is the lowest possible above DC. For the value 2,
every other sample is skipped. For the value 4, three samples are skipped per clock cycle.

2.1.3 Frequency Resolution

Equation (2-6) can be re-written as:

f
fm =FCWX'2—3 (2.7)

The ratio of the clock reference to the number of states of the phase accumulator represents the
frequency resolution of the synthesizer:
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_Jq
o =3v 29

This equation implies that the frequency resolution of the synthesizer can be made arbitrarily
small by choosing as large an N as necessary. In practice, the width of the phase accumulator
would be limited by system size and performance considerations. However, with a clock
reference of 100 MHz and a typical phase accumulator width of 32 bits, the frequency resolution
of the synthesizer is less than 0.025 Hz, which is adequate in most applications. Every additional

bit in the phase accumulator improves the frequency resolution by a factor of two.

Figure 2-2 - Varying the output frequency by skipping samples

2.1.4 Tuning Bandwidth

When the FCW is equal to 0, the synthesizer’s output is a constant equal to the sine amplitude of
the present phase angle. The lowest non-zero frequency occurs when the FCW is set to one, and it
is equal to the frequency resolution of the synthesizer:




Chapter 2: Principles of Direct Digital Frequency Synthesis

Suin S1XAf = (2-9)

The maximum theoretical frequency is dictated by the Nyquist criterion. Its upper bound is equal
to half of the reference frequency:

S o <£2°‘=2N'lx’3f (2-10)

The value of the FCW must effectively be less than 2" -, and its width is limited to N — 1 bits.
For quadrature output synthesizers (discussed below), however, the FCW may be expressed as an
N-bit signed integer since output signals with negative frequencies are then possible.

In practice, for analog output DDF Synthesizers, the maximum frequency is limited to
approximately 3fy/8 to simplify the design of the low-pass filters that follow the DACs. The
tuning bandwidth therefore extends from DC to less than half of the reference frequency, as
limited by practical filter design considerations.

2.1.5 Tuning Latency

The maximum rate at which the FCW can be changed and the time it takes for the output signal to
stabilize on the new frequency are of prime importance in frequency-hopping spread-spectrum

communications systems.

In a DDF Synthesizer, the tuning latency can be limited to a single clock cycle, which is
extremely fast. The critical path is often placed in the phase accumulator, especially if it is very
wide to accommodate fine frequency resolution (Equation (2-8)). Altematively, the critical path
may be in the PSAC. This can be the case for ROM architectures if the ROM is very large, and
also for ROM-less architectures if the calculations inside the PSAC are complex.

In order to increase the synthesizer’s tuning bandwidth, it is necessary to increase the reference
clock’s frequency. This may require pipeline registers to be included in the critical path. In such a
case, the tuning latency of the synthesizer is increased by one clock cycle for every stage of
pipelining added inside the synthesizer. Still, assuming that 10 levels of pipelining are used, the
tuning latency is limited to 20 nanoseconds for a 500 megahertz clock.

10
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2.1.6 Phase Continuity upon Tuning

DDF Synthesizers have the unique characteristic that phase continuity is maintained when
changing the output frequency. This is a consequence of using a phase accumulator: when the
FCW is changed, its new value is simply added to the existing sum in the phase accumulator.
Thus, the present phase information is kept and the sinusoid at the new frequency starts from this

same phase.

2.1.7 Frequency and Phase Modulation

An interesting aspect of DDF Synthesizers is that frequency and phase modulation can be easily
imposed on the sinusoid output signal.

Since the FCW determines the instantaneous frequency of the output signal, frequency
modulation is accomplished by simply varying the value of the FCW. For example, a “chirp”
waveform can be easily synthesized by using a counter to generate a ramp as the FCW. The slope
of this ramp determines the rate of frequency change within the chirp. Its bounds determine the
chirp’s lower and upper frequencies.

Phase modulation is accomplished by adding a modulating signal to the phase word prior to
accessing the PSAC. For example, Quadrature Phase Shift Keying can be realized by adding one
of four constant values to the phase word. The constant to be added is selected based on a control
signal representing the data to be encoded.

2.1.8 Other Output Types

The architecture presented in Figure 2-1 can be modified so that the system output is not a
sinusoid.

A popular form of DDF Synthesizer, often referred to in the literature as Numerically Controlled
Oscillator (NCO), has a square wave (or clock) output. It can be realized simply by eliminating
the PSAC, the DAC and LPF, and using the phase accumulator’s MSB as the output signal.

1
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A ramp can also be generated by passing a desired number of most significant bits from the phase
accumulator directly to the DAC and LPF. Alternatively, a triangular wave can be generated by
increasing and decreasing the phase accumulator contents on alternate half-periods. This can be
realized by applying a one’s complement operation to the phase accumulator output when the
MSB is a ‘1’. The technique is further described in the following section, as it can also applied to

sinusoid output synthesizers.

Finally, the PSAC can be replaced by a table storing samples from any periodic function. The
synthesizer will then be able to reproduce this function with a varying frequency.

Unless explicitly specified, this dissertation only considers sinusoid output DDFS.

2.2 Phase to Sinusoid Amplitude Converter Complexity
Reduction

The complexity of the PSAC has a significant impact on a DDF Synthesizer’s performance and
cost. This block has therefore been the subject of intense research. In this section, basic PSAC

complexity reduction techniques are discussed. More advanced techniques will be described in
Chapter 3.

2.2.1 Phase Angle Truncation
From the block diagram of Figure 2-1, three separate bus widths define the traditional DDF
Synthesizer:
e N, the width of the adder, register and FCW;
e M, the width of the addressing lines to the PSAC; and
e L+ 1 (for L bits of magnitude and one of sign), the width of the PSAC data.

From Equation (2-8), it is seen that increasing N improves the synthesizer’s frequency resolution.
In practice, it is advantageous to have a large N for fine frequency resolution. However, if the
PSAC is implemented with a ROM Look-Up Table, using all N bits to address the ROM would
lead to a very large memory. Accordingly, the phase value is normally truncated to retain only M

12
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most significant bits. Memory requirements are reduced accordingly without sacrificing
frequency resolution. However, this truncation causes a periodic amplitude error in the
synthesized waveform which causes spurious noise in the output spectrum. This is discussed in
greater detail in Section 2.3.2.

If the PSAC is implemented as a ROM Look-Up Table, total storage requirement are therefore
equal to:
ROM size (bits) = (L +1)x2¥ 2-11)

This equation shows that the ROM size grows exponentially with the width of the truncated phase
angle, and linearly with the amplitude resolution of the output data.

2.2.2 Exploiting Quadrant Symmetry

A very simple ROM size reduction technique for a DDF Synthesizer is based on exploiting the
quarter-wave symmetry property of the sine function. The approach was first described by
Tiemney et al. [92], and was used by virtually every researcher thereafter. Notable exceptions are
Saul and Mudd [80] and Saul and Taylor (81}, for unexplained reasons, and Sodagar and Lahiji
[83]{85], for algorithmic reasons. The exploitation of quarter-wave symmetry normally has no
effect on the selection of other ROM size reduction strategies, and should almost always be used.

As a first step, all angles must be mapped to the interval [0, 2x]. In DDFS, this is accomplished
trivially by the modulo-2" operation of the phase accumulator. The second step consists of
mapping angles that lie in the third and fourth quadrants to angles in the second and first
quadrants in order to calculate their sine amplitudes:
. sin(6) 0<é<r
8)=
sin(6) {-sin(o-zz) r<O<2n (2-12)

The final step consists of mapping resulting angles that lie in the second quadrant to angles in the
first quadrant:
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{4

sin() 0<8<X
sin(8) = 2

2-13
sin( —6) %so«: @B
A very elegant way of implementing this process of reconstructing a full sinusoid from first
quadrant samples alone was proposed by Tierney et al. [92]. It was illustrated concisely and
clearly by Manassewitsch [60], Figure 1-20, and an adapted diagram is given in Figure 2-3. The
method is based on the observation that the two MSBs of the phase word identify which quadrant

an angle belongs to.
MSB1
MsB2
E Phass ‘
"W“TY Accumulator _— synthesizer
Word One's Phase to Sinusoid — " W, .
——» —t— ment ——+—u Ampiitude Convener———+——» Led
N WaM-2. Comple w (ROM) L

Figure 2-3 - Quarter-wave symmetry (from [60])

The phase angle MSB indicates whether an angles lies in the first two quadrants (a ‘0’) or in the
latter two quadrants (a ‘1’). Hence, the MSB readily provides the sign of the sine amplitude.
Considering only the remaining portion of the phase angle word effectively maps an angle to the
first and second quadrants (the operation 0 — 1t in Equation (2-12)).

[nspecting the second MSB identifies whether the resulting angle is in the second (a *1°) or first
(a ‘0’) quadrant. The operation %t — 6 in Equation (2-13) is implemented by ‘counting down’ from
the phase angle ®/2 instead of ‘counting up’ from 0. Hence, the second MSB controls a one’s
complementor that inverts the remaining phase angle bits as necessary.

14
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The memory storage requirements are significantly reduced from what was specified by Equation
(2-11). First, the number of necessary ROM words is divided by four. Further, the ROM word
width is reduced by one bit, since only positive values must be generated and the sign information
is provided directly by the phase angle MSB. For a LUT implementation, storage requirements

are then:

ROM size (bits) = L x2¥ 2 (2-14)

The so-called memory compression ratio is therefore equal to:

(L+)x2Y  4x(L+])
szu-z - L (2-15)

There is a consequence to scanning first quadrant angles up or down with the help of the one’s
complementor. When calculating the data that must be stored into or calculated by the PSAC, a
phase shift equal to 7/2* must be introduced. This peculiarity was observed by Nicholas et al.
[67] and described further by Vankka [97]. The reasoning is explained here.

Assume that the phase accumulator reset value is 0 and the FCW is 1. Also assume that the PSAC
is implemented with a ROM. The first accessed ROM address is 0, and the last ROM address
accessed in the first quadrant is 2 — 1. On the following clock cycle, the second MSB of the
phase accumulator changes from O to 1 and all other bits are zero. The 1’s complement block is
activated and the M — 2 least significant phase accumulator bits are inverted, from zeros to ones.
The accessed ROM address is therefore 2% - 1 twice in a row. A similar situation occurs when
the contents of the phase accumulator change from the last angle of the second quadrant to the
first angle of the third quadrant, but this time it is memory address O that is accessed twice in a

row.

The data stored in address 0 should therefore be offset from sin(0) by an angle equal to half of the
angular resolution AQ, which is the angle difference between the sinusoid samples of successive
memory cells shown in Equation (2-4). Instead of the ROM storing the values of sin(0), sin(A@),
sin(2 X A@), ...., and sin(®/2 - A@), it should store the values of sin(Ag / 2), sin(3 x Ag / 2), sin(5
XAQ/2),...,andsin(x/2 - Ap/2).

15
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2.2.3 Quadrature Sinusoid Outputs Architecture

The DDFS synthesizer introduced by Tiemey et al. [92] had quadrature outputs. The authors
noted that this allowed the bandwidth of the synthesizer to be doubled, as compared with a single
phase case, for a given reference frequency. This is because the generation of quadrature outputs
implies that it is possible to specify a negative frequency. Therefore, the FCW can be interpreted
as an N-bit two’s complement number. If the synthesizer’s quadrature output is up-converted by
some mixing process, then its bandwidth is effectively doubled from the single phase case, at no
increase in reference clock frequency. However, Tierney et al.’s architecture required two
accesses of the PSAC per clock cycle in order to compute the quadrature outputs. An alternative
would have been to double memory and processing requirements.

The eighth-wave symmetry of the sine and cosine functions can be exploited instead, and two
PSAC blocks are used. The blocks generate the sine and cosine for angles in the interval [0, /4]
only, and hence the complexity of each block is half of the complexity of the PSAC for the
single-phase case. The overall computational complexity for calculating sinusoid amplitudes is
therefore unchanged. This architecture was first proposed by Tan and Samueli [90], and it is

shown in Figure 24.
' MSB1 l
)|
MSB2 |
MSB3 > % |
! |
FCW ] |
—t 80— ‘ F % | L o
N M M-3 , /4] si L —
phase phase| = [0, /4] sine block S :,231
I
accumulator | gngie § r iEE e
: A
- {0, /4] cosine block L a -
= cosine
E L+1
L— bits

Figure 2-4 - Quadrature DDFS Architecture (from [90])
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The three MSBs of the phase angle identify one of eight octants around the unit circle. The first
MSB again provides the sign of the sine function, and, when XOR’ed with the second MSB, the
result gives the sign of the cosine function. A second XOR gate accepts as inputs the second and
third MSBs of the phase angle. Its output is a control signal for two 2:1 multiplexers which select
a PSAC block output to reconstruct the sine and cosine waves. The third MSB controls the 1's

complement block that implements the count-up or count-down process of the phase angle.

2.3 Output Noise

The noise performance of a DDF Synthesizer is normally specified by the Spurious Free Dynamic
Range (SFDR), also known in the literature as Spectral Purity. The SFDR is defined as the ratio
of the power in the desired frequency to the power in the greatest undesired frequency spur. It is
normally expressed in decibels with respect to the carrier (dBc).

Several researchers provided descriptions of the noise spectra of DDF Synthesizers, including
Tiemey et al. [92], Mehrgardt [62], Kisenwether and Troxell [38], Nicholas and Samueli [66],

Mattison & Coyle [61], Garvey and Babitch [23), Kroupa [40]{41][42]{43][45], and Torosyan
and Willson [94].

In this section, we will consider the SFDR of the digital output sequence of the synthesizer. We
are not considering analog noise introduced by the DAC or the LPF.

2.3.1 Noise Due to Amplitude Error

We will assume that the PSAC output sequence is invariant with time, i.e. the output amplitude is
always the same for a given angle. Given the digital nature of DDFS, this is the default case.
Without loss of generality, and to simplify the analysis, we will assume that quadrant symmetry is
not used. The PSAC is therefore able to provide a sine amplitude estimate for 2¥ distinct angles.
Let m €40, 1, 2, ..., 2 — 1} be the M-bit phase angle that is passed to the PSAC. The PSAC
output sequence, which we denote by f{m), is equal to:

f(m)= Asin(zﬁ;) +&(m) m=0]123,..,2" -1 (2-16)
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where €(m) is the error sequence between the PSAC output and an ideal sine wave sequence of
amplitude 4 expressed with infinite precision. The error sequence results from several factors,
including the amplitude quantization error. Assuming that some processing is performed by the
PSAC instead of using a ROM, any algorithmic error made in the calculation of f{m) also affects
the error sequence. The output frequency spectrum of the synthesizer therefore has two
components: a pure sine wave of amplitude 4, which is the desired system output, and some noise

due to the amplitude error on the output samples. The noise spectrum can be calculated precisely
by taking the Discrete Fourier Transform of one period of the noise sequence.

Let us assume that N = M, i.e. that no phase truncation is done. The case for N > M is considered
in the next section. The value of the FCW affects the order with which the noise sequence e(m)
comes out of the synthesizer. For even values of FCW, not all noise sequence samples appear at
the output. However, for odd values of the FCW, the repetition period of the noise samples will
always be M, i.e. it will take exactly M changes in the phase accumulator before the sequence

starts to repeat.

For example, assume that M = 3. There are four possible sequences for non-zero FCW values
consistent with the Nyquist rate (i.e. FCW € {1, 2, 3}). They are listed in Table 2-1.

1 €(0), &(1), &(2), &(3), &(4), &(5), £(6), &(7), €(0), &(1), &(2), ... 8
2 €(0), €(2), €(4), &(6), £(0), €(2), £(4).... 4
2 &(1), &(3), &(5), &7), &(1), &(3), &(5),... 4
3 €(0), &(3), &(6), &(1), &(4), &(7), €(2), &(5), &(0), &(3), &(6), 8

Table 2-1 - Output noise sequences, M = 3
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We observe that for a value of FCW equal to 2, the noise sequence depends on whether the initial
value of the phase accumulator is an even or odd number. In either case, only half of the noise
samples corresponding to a FCW equal to one contribute to the output noise sequence.
Consequently, the output spectrum is expected to vary with the initial phase accumulator value.
We also observe that for values of FCW equal to 1 or 3, the noise sequence includes all noise
samples but in a different order.

This observation has a fundamentally important consequence for the analysis and design of DDF
Synthesizers. A change in FCW results in a change in the order of the noise samples out of the
synthesizer and in a corresponding change in the position of discrete frequency components in the
noise spectrum. However, the amplitudes and number of the noise frequency components do not
change. Consequently, studying the noise spectrum corresponding to one value of FCW allows
the exact prediction of the noise spectrum corresponding to all other values of FCW that produce
noise sequences based on the same set of samples. The reader is referred to the papers by
Nicholas and Samueli [66] and Vankka [97] for a full description of this principle and for a proof.

Consequently, in most cases it is advantageous to restrict the value of the FCW to odd numbers
only. This way, the output spectrum of the synthesizer can be determined by generating a single
output noise sequence and calculating its spectrum. It is therefore simple, during the design
process, to evaluate and compare different architectures or architecture parameters. There is also
a second advantage in the presence of phase truncation spurs, discussed in the following section.

Forcing an odd value of FCW is fairly simple, by hard-wiring a ‘1’ as the LSB of the FCW.
Instead of reducing the frequency resolution by a factor of 2, the phase accumulator can be made
one bit wider to accommodate the hard-wired ‘1°. The effect on system complexity and timing is
normally insignificant, especially for large N (i.e. greater than 20). A small frequency offset is
introduced, however. The synthesizer’s output frequency becomes:

S 2Frcw+1_ W+

E I e e @17

Jou =

in hertz.
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Nicholas and Samueli [66] proposed an elegant technique to force an odd FCW. It consists of
generating the sequence {0, 1, 0, 1, 0, ...} with the help of feedback loop composed of an inverter
and a D-register, and feeding this sequence to the input carry port of the phase accumulator.

2.3.2 Noise Due to Phase Truncation

As discussed previously and shown in Equation (2-8), a large phase accumulator width is
normally required to achieve fine frequency resolution. However, the complexity of the PSAC
varies exponentially with the width of the phase word. Hence, as discussed in Section 2.2.1, the
phase word is normally truncated from N to M bits, N > M. Thus, the frequency resolution of the
synthesizer is unaffected. However, spurious noise is introduced in the synthesizer output.

This phenomenon has been well described by Nicholas and Samueli [66], Kroupa et al. [45], and,
more recently, by Torosyan and Willson [94]. It has been shown that the worst case spurs are 6 x
M decibels down from the fundamental, provided that N > M + 4, i.e. that at least 5 bits are
truncated.

2.3.3 Phase Noise

Phase noise is not often considered or reported for sine-output DDFS, for a number of reasons.

It is normally assumed that a DDFS behaves as a digital frequency divider, for which the output
phase noise is equal to the input reference’s phase noise, divided by the square of the relative
output signal frequency (see the introductory paper for part VII, in [44]):

FCW )’

Seou =Sein x(-——

2N (2'18)

where Sq o and Sg i are the output signal and reference frequency phase power spectral densities,
respectively. In general, the phase noise of the reference frequency is low enough that the system
performance is limited by the frequency spurs due to sample amplitude error and phase
truncation. For an analog output DDFS, the limited slew-rate of the DAC is an important
contributor to phase noise [61].
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2.3.4 Noise Reduction Techniques

As discussed above, the digital nature of DDF Synthesizers implies that the error amplitude for
any angle is invariant with time. For a fixed value of FCW, the same error samples are generated
with a period that depends on the FCW, and the resulting sequence’s frequency spectrum is
generally not white. Again, if the FCW is restricted to an odd number, the noise sequence period
is equal to the number of states of the phase accumulator.

In order to reduce the amplitude of the greatest spurs in the output frequency spectrum, the
periodicity of the noise must be eliminated. There are two main methods of accomplishing this,
and they consist of adding a pseudo-random sequence to the phase word before it is applied to the
PSAC, or to the amplitude obtained from the PSAC. The pseudo-random sequence can be
generated by a Linear Feedback Shift Register (LFSR) with a very long period. The effective
error sequence period is therefore made very long, which results in a significant reduction in the
amplitude of distinct frequency spurs. A drawback of the method, however, is that the overall

noise floor is raised.

Several researchers have proposed variations and combinations of these two approaches.
Wheatley et. al. [102] and Wheatley [103] were the first to propose this randomization process.
Their work was directed to a clock-output DDFS instead of the sinusoid output type that has been
discussed so far. In a clock-output (or square wave output DDFS), the most significant bit of the
accumulator is used as a clock signal. In Wheatley’s system, the pseudo-random sequence is
added to the content of the phase accumulator. Jasper [32] applied Wheatley’s technique to the
sine output DDFS, with the consequence that the PSAC complexity, in terms of number of words
and of word width, was reduced while maintaining the same level of SFDR. Kerr and Weaver
[37], then Reinhardt et. al. [77], applied a random sequence to the output data from the PSAC,
prior to driving the DAC. Finally, Flanagan and Zimmerman [21] combined the two approaches.
These authors provided a detailed analysis of adding dithers to both the phase word and the sine
amplitudes, and proposed a design achieving very good performance. The drawback, however, is
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the added system complexity due to the inclusion of two LFSRs (18 and 16 bits wide) and two
16-bit wide adders in the data path.

A mention should also be made of the work by O'Leary and Maloberti [72], who proposed a more
simple approach. It consists of inserting a noise shaper, built by grouping an adder and a register,
between the output of the phase accumulator and of the ROM. The adder’s first input is the phase
accumulator. The adder’s high order output bits address the ROM, and the low order bits are
registered and fed back to the adder’s second input.

Vankka [98] presented a concise review of spur reduction techniques for DDFS. He then
introduced three new methods that are variations of the work presented above. The first method
involves the option of switching the extra ‘1’ as the LSB of the phase accumulator on or off,
depending on the value of the FCW. This way, for those values of the FCW that do not produce
high spurious output, the noise floor is kept low. The second method involves high-pass filtering
of the dither sequences prior to their addition to the phase word or to the sinusoid amplitude. The
advantage of this approach is that while the noise floor is increased, as discussed above, most of
the noise power is high in the frequency band. Consequently, a large portion of it lies in the stop
band of the synthesizer’s analog LPF, and is hence removed. The third method introduces
filtering directly in the phase angle datapath or in the sine amplitude datapath.

2.4 Clock Output DDFS

In the literature, several papers claim to implement so called ROM-less DDF Synthesizers with
very low complexity and high SFDR. However, when discussing ROM-less approaches, it is
important to distinguish between sine-output and square-wave-output DDF Synthesizers. The
latter are normally much simpler than the former.

The confusion in terminology can be traced back to some early DDFS papers {7](76]. When
implementing a clock output DDFS, phase jitter tends to be a problem because, for most values of
the FCW, the accumulator does not cycle to the zero value on every period. An early solution to
this problem was to generate a sine wave with the help of a ROM LUT and a DAC/LPF block




Chapter 2: Principles of Direct Digital Frequency Synthesis

(i.e. the architecture discussed so far and shown in Figure 2-1), then to use a limiting circuit to
produce a square wave. This was obviously a fairly expensive and complex way of generating a
jitter-reduced clock, but it worked well since the phase noise performance predicted by Equation
(2-18) could be attained provided that the DAC linearity was sufficiently high.

Several researchers have since published papers claiming high SFDR for ROM less approaches,
but their architectures generate clock signals. Hence, the SFDR is only measured from DC to the

third harmonic of the clock. Phase noise then becomes a much more important performance
parameter than SFDR.

This dissertation is concerned only with sinusoid output DDF Synthesizers. Therefore, the
interested reader is referred to several papers on jitter reduction for clock output DDFS:
Nakagawa and Nosaka [64], Nosaka, Nakagawa, and Yamagishi [71] Yamagishi, Nosaka,
Muraguchi and Tsukahara [107), Nieznanski {70], and Calbaza and Savaria [8].

2.5 System Performance Parameters and DDFS Complexity
Metrics

In this section, we summarize the system performance parameters and complexity metrics that
must be considered when comparing the relative merits of two DDF Synthesizers. The reader is
also referred to Reinhardt et al. [76] and Manassewitsch [60] for a broader discussion on the

performance of various types of synthesizers.

2.5.1 Performance Parameters

The following parameters define the performance of DDF Synthesizers:

1. Spurious Free Dynamic Range (SFDR): the power ratio between the greatest undesired
frequency spur and the frequency of interest, normally expressed in decibels relative to the
frequency of interest or carrier (dBc);
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2. maximum clock rate: the maximum frequency of reference signal determines the
synthesizer’s tuning bandwidth, since it extends from DC to less than half of the reference
signal’s frequency;

3. frequency resolution: the frequency resolution is determined by the phase accumulator width
and the reference signal’s frequency; hence, the relative frequency resolution of two designs
with different maximum clock rates can be compared by considering the widths of their phase

accumulators only;

4. tuning latency: the tuning latency is determined by the number of pipeline stages in the data
path; the latency is equal to p + 1 clock cycles, where p indicates the number of pipeline

stages;

5. output type: the output is generally either a sinusoid or a square wave; for sinusoid output
DDFS, single phase or quadrature outputs may be available;

6. output data format: exploiting quadrant symmetry, as discussed in Section 2.2.2, naturally
favors the sign and magnitude format for the output data; however, another format is often
required, such as unsigned representation for DACs; in low-SFDR DDFS, this conversion

process can require a significant increase in system resources; and,

ility: modulation and demodulation capability, if
present, must be well described as it adds a significant amount of complexity to the
synthesizer.

There are other performance parameters that apply to all frequency synthesizers. For DDFS,
however, they are secondary due to the nature of the system. For example, stability of a DDFS is
normally a function of the reference clock only, although the DAC’s performance could vary with
time due to aging of its analog components. Other such parameters include the type of required
references, the output level, the flatness, stability and accuracy of the output signal amplitude, and
the possibility of synchronization with an external reference.
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2.5.2 Hardware Implementation Complexity Metrics

When comparing two implemented DDF Synthesizers of equal or comparable performance,
several metrics can be used. First, however, the technology must be fully specified in order for
the comparison to be meaningful. For ASICs, this includes the nature of the manufacturing
process (CMOS, GaAs, SiGe, SO, etc.), the minimum feature size (0.6 um, 0.35 um, 0.18 um,
etc.) and the cell library used. For FPGA implementations, it includes the FPGA family and speed
grade. In all cases, the operating voltage and temperature must also be specified as they have a

significant impact on power consumption and maximum clock rate.

The metrics are:

1. core area (for ASIC technologies): when reporting the total core area used by the design, it is
essential to specify whether the area includes only the total area occupied by the core cells, or

if it is the total core area after cell placement and routing;

2. core power consumption: when reporting core power consumption, the results must be further
qualified by specifying whether they have been obtained from simulation or by measurements
of an implemented chip; in the case of simulation, it should also be specified whether the

simulation includes interconnect parasitics extracted from placement and routing information;

3. number of core cells or FPGA blocks: the number of core cells or FPGA blocks used by the
design can be readily obtained after synthesis; and,

4. number of equivalent core gates and/or core transistors: this popular design complexity
metric can unfortunately be measured several ways; for FPGA implementations, the synthesis
tool can report an estimate based on the number of used blocks and the relative utilization of
each block’s resources; for designs implemented in ASICs, there are four possibilities:

a. the total area occupied by the core cells can be divided by the area of a reference cell,
such as the smallest 2-input NAND gate, to obtain an equivalent gate count, and the
equivalent number of transistors is obtained from multiplying this number by the number

of transistors in the reference cell;
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b. the list of core cells can be inspected, and the expected number of transistors for each cell
can be estimated (2 for an inverter, 4 for a 2-input NAND gate, etc.); however, it must be
noted that cell libraries typically include several cells realizing the same Boolean function

albeit with different timing and power consumption characteristics;

c. the total core area can be divided by a design density parameter specified by the cell
library vendor, providing an equivalent gate or transistor count; and,

d. some synthesis and placement tools provide the option of reporting the number of
transistors in a design.




Chapter 3

State of the Art in Phase to
Sinusoid Amplitude Conversion

It has already been stated that, in its simplest incamation, the Phase to Sinusoid Amplitude
Converter (PSAC) is realized as a ROM look-up table. However, its size tends to be large for
good SFDR performance, increasing power consumption and system area, and decreasing the
maximum clock rate. In Section 2.2, we considered two basic techniques to achieve ROM size
reduction, to wit: phase accumulator truncation and exploiting the quadrant or octant symmetry of
the sine function for single phase and quadrature output DDFS, respectively.

This chapter includes a review of the state of the art in PSAC architectures for DDFS. It also
discusses techniques that have been proposed to implement this block with the least possible

complexity for a given performance level.

3.1 Angular Decomposition

Significant memory savings can be made by segmenting the ROM into “coarse angle” and “fine
angle” sub-tables, retrieving values from each on every clock cycle, and adding processing to

derive a correct sine function approximation.
3.1.1 Tiemey et al.: Sum of Angles and Multiplication

As a first step, Tiemey et al. [92] and Tierney [93] suggested breaking the phase angle into a sum
of sub-angles. A complex sample is kept in memory for the value of the complex exponential
evaluated at each sub-angle. Since the exponential of a sum of values is the product of the
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exponentials of each value, a complex multiplication must be done on the ROM data. For
example, if the phase accumulator angle 0 is expressed as the sum

0=3%6,
e G-
then the complex exponential corresponding to this angle can be calculated as
o _ jz,a. 5 o,
e’ =e = Ue’ (3-2)

For the implementation, the partition of the phase accumulator word into sub-words is very
simple. The phase accumulator word can be split into S slices of adjacent bits. As an example,
assume that quadrant symmetry is used, the truncated phase word width is M = 14 bits and the
ROM address bus is W = 12 bits wide. If # and S are not relatively prime, as in this case, then
each slice can contain the same number of bits. Here, the ROM can be decomposed into 3 sub-
tables, with the 4 most significant bits (bits 8 to 11) of the phase word addressing one table, bits 4
to 7 addressing a second table, and the 4 least significant bits (bits 0 to 3) addressing a third table.
[n this case, the most significant slice represents a “coarse” angle, the middle slice represents an
angle with “middle” granularity, and the least significant slice represents a “fine” angle. The two
complex multiplications represent “middle” and *fine” rotations from the coarse angie.

Following this approach, if the ROM is decomposed in S sub-tables, then § — 1 complex
multiplications have to be performed. However, storage requirement can be significantly reduced.
In the basic case, i.e. with no decomposition, the ROM contains 2% words encoding complex
sinusoid samples. By decomposing the ROM into S sub-tables, each sub-table can store as few as
27! complex values, where L . ] indicates truncation of the fracnonal part. The total storage

requirement is equal to 22"‘ complex values, where W = ZW, The storage compression

i=l
factor is equal to:
257
S
D2 G-3)
i=l

Table 3-1 gives examples for different values of S and #.

28



Chapter 3: State of the Art in Phase 1o Sinusoid Amplitude Conversion

It can be seen that the marginal improvement achieved from increasing the number of sub-tables
provides an interesting advantage as the ROM address width W gets large. Considering the high
cost of performing complex multiplication, the selection of the number of sub-tables must be
made carefully. In fact, there are no examples in the literature of this method being applied, other
than in the original paper by Tierney et al. [92] and the follow-on paper by Tierney [93].

Table 3-1 - Compression factor for number of sub-tables and ROM address width

If quadrature outputs are not required, this method is less efficient. This is because complex
values must be stored in all sub-tables, and complex multiplications are done. The result is
therefore a complex value, good for quadrature outputs. For single phase output, it is not normally
necessary to store complex values in the ROM.

Finally, it should be noted that storage of the fine sub-table need not be as large as that of the
coarse sub-table. First, it is possible to reduce the number of samples by 2 by having positive and
negative adjustment angles. Second, due to the finite precision of the calculations, many bits can
be truncated without significant consequence on system performance. Details can be found in
[92] and [93].
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3.1.2 Hutchinson: Sum of Two Angles, Approximations and Addition

Hutchinson [29] proposed an improved coarse and fine ROM segmentation approach that does
not require complex multiplication. All angles 6 are split into a sum of a coarse angle C (the most
significant bits of the phase accumulator) and a fine angle F (the least significant bits). The
following trigonometric approximation is then made:
sin(@) =sin(C + F)
=sinCcos F +sinF cosC
=sinC +sin FcosC

G4

The approximation is valid since F is small. For example, with (M, C, F) = (12, 8 , 4) bits, then
the smallest value of cosF is cos(2 x 1t x 15 / 4096), which is approximately (1 — 27'2).

The memory is partitioned into two sub-tables. One stores values of sinC, and the other stores
values of the product sinF % cosC. All products are calculated in advance. Therefore, the only
remaining operation is the addition of the retrieved values from the sub-tables. The paper includes
an example that shows a ROM compression ratio of approximately 11.3.

3.1.3 Sunderland et al.: Sum of Three Angles

Sunderland et al. [87] extended Hutchinson's approach by splitting the phase word into three four-
bit slices, 4, B, and C, with 4 and C the most and least significant slices, respectively. An
approximation for the sine of a sum of three angles is made as follows:
sin(@) =sin(4+ B +C)
=sin(A+ B)cosC +cos(4+ B)sinC
=sin(A+ B)cosC +cos Acos Bsin C —sin Asin Bsin C (3-5)
=sin(A+ B)+cosAsinC

The approximation is valid given the relative values of 4, B, and C. Figure 3-1 shows a simplified
version of the resulting block diagram.
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A+B+C A
phase Y .
accumulator " ‘ " ' coarse ROM
) : B sinA +B)
———
«/!\\
e — .
\I/
A
—_——
fine AROM
c cos(A}sin(C)

Figure 3-1 - Sunderiand approach

Even though angles are expressed as a sum of three sub-angles, the ROM is divided into only two
sub-tables. Address slices 4 and B address the coarse ROM which stores the value of sin(4 + B).
Address slices 4 and C address the fine ROM which stores the value of cosd X sinC. The data
from the two ROMs are added together to obtain the sine approximation.

In the paper, the authors present a specific design where the phase accumulator's 20 bits are
truncated to 14 bits. Quadrant symmetry is used, leaving 12 bits to address the memory, and the

slices A, B, and C are 4 bits wide each.

For this design, the authors introduced three minor corrections to reduce the total algorithm error
further:

o (W2)(2?), the average value of B, is added to 4 in the second term of Equation (3-5);

e the factor C includes a phase offset of (r/2)(2""*) (initial phase angle discussed in Section
2.2.2); and,

o the coarse and fine terms are multiplied by (1 — 2", the largest 11-bit fraction less than 1, to
maximize the output dynamic range without having overflow.

These corrections are all pre-computed and the results are stored in the ROM. Finally, the authors
state that they have verified that the maximum amplitude error is less than 1.5 x 27!, The

compression ratio obtained is approximately 11.7. The overhead cost comes from the addition of
the two ROM outputs.
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3.1.4 Nicholas et al.: Exhaustive Search

Nicholas et al. [67] introduced an improvement over the Sunderland technique that does not
involve trigonometric approximations. The ROM is again divided into coarse and fine sections, as
shown in Figure 3-1, and they are addressed using the same scheme. The ccarse ROM stores the
best approximation of the sine function at each point. The fine ROM stores cormrection values to
be added to each coarse ROM sample.

The fundamental difference of this approach resides in the selection of the fine ROM correction
values. The authors propose that an exhaustive search be done to find values that minimize either
the mean-square error or the maximum absolute error of the resulting approximations. Thus,
Equation (3-5) is not followed. The authors observe that minimizing the mean-square error
provides the lowest total spur energy, as predicted by theory, but that minimizing the maximum
absolute error tends to reduce the value of the greatest spurs. An important advantage of this

approach is that it can be applied to any function since it is not based on trigonometric identities.

The authors proposed a further refinement to their approach. Since the sine function is fairly
linear over short distances, one can replace the addition of the coarse and fine ROM samples with
addition or subtraction, as required. The symmetry in the fine ROM samples is therefore
exploited, and the size of the fine ROM is halved. A consequence of this approach is that it
involves greater complexity since a control signal must be derived to control the operation of the
adder/subtracter. However, the authors state that this requires less than four logic gates for a 12-
bit phase accumulator design.

During the coefficients search, Nicholas et al. derived some heuristics for the selection of the
width of the segmented angles 4, B and C. The authors also performed several simulations to
select the lowest quantization width for the ROM data that met their performance requirement.
Finally, it was observed that the amplitude of the “ideal” sine wave against which the
approximation error was calculated for all angles could also be varied. The SFDR performance is

improved by selecting an amplitude less than 1.0 with no consequence since only the nature of
the ROM data is changed.

2



Chapter 3: State of the Art in Phase to Sinusoid Amplitude Conversion

Finally, the principle of amplitude compression in DDFS was introduced in this paper. It is
described in Section 3.2.

To summarize, this work by Nicholas, Samueli and Kim marked a fundamental change in the
design of a PSAC for DDFS. The authors observed that the output SFDR could be optimized by
performing an exhaustive search of the data to be stored in ROM. Several search parameters were
varied during the search, and the coefficients achieving the desired SFDR with the least system
cost were chosen. The same authors, as well as others from the same research group then applied
these principles to implement several DDF synthesizers [68][69][91] and DDFS-based systems
[90][78])(79] that were the yardstick against which most other implementations have been
compared.

3.1.5 Goldberg: Auxiliary Functions

Goldberg [26] proposed a general technique of storing *“auxiliary functions” in small ROMs and
adding their outputs together. The first ROM stores approximations of the sine function evaluated
at the center of a reduced number of coarse intervals. The approximation can be made with a
reduced number of bits. The other ROMs store progressively finer correction values to be added
(or subtracted) to the first approximation. This approach can be viewed as a generalization of the
Nicholas et al. technique. In his book, the author presents only one design example and he states
that it achieves a lesser compression ratio than the one reported by Nicholas et al.. The main goal
of the approach was to devise a way to avoid needing more than 8 bits storage per word for easier
selection of off-the-shelf components. However, it offers interesting insight on how to best

represent the sine function.
3.2 Sine Amplitude Compression

Even when angle decomposition is used, the dynamic range of the sine amplitude of the coarse
angle is often the same as the dynamic range of the final approximation. By reducing this
dynamic range, considerable memory savings can be obtained since fewer bits must be stored for
each of the ROM samples.
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Three techniques have been proposed to reduce the dynamic range of the ROM samples and
hence the ROM size. They consist of calculating a sine amplitude approximation based on the
value of the phase angle, then adding an amplitude correction stored in ROM. Depending on the
accuracy of the approximation, the ROM data width is reduced by a certain number of bits, d, and
the ROM size is reduced by a factor equal to (L — d) / L. This is illustrated in Figure 3-2.

xz error-correcting .
w w ROM L-d L
approximation ax
w circuit L

Figure 3-2 - PSAC architecture based on amplitude compression

Given a phase angle x € [0, 1[, the error g(x) between an ideal sine wave of amplitude 4 and the

output from the approximation circuit, a(x), is given by:

. X
&(x)= Asm(?) —a(x) (3-6)

A typical value of 4 is (2° - 1) / 2, which has the advantage of maximizing the synthesizer’s
output dynamic range.

The dynamic range of the error &(x) determines the number of amplitude bits in the ROM that can
be saved compared to the case where no amplitude compression is used. For simplicity’s sake, the
approximation circuit is normally designed so that €(x) is strictly positive or negative. Then, to
save 1 bit of storage per word, the maximum absolute value of €(x) must be less than 0.5. For 2
bits, it must be less than 0.25. For d bits, it must be less than 2.
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3.2.1 Nicholas et al.: Sine-Phase Difference Algorithm

In [67], Nicholas, Samueli and Kim introduced the “sine-phase difference algorithm”. This
“algorithm” exploits the monotonously increasing property of the sine function in the first
quadrant. Function a in Equation (3-6) is the trivial identity function. Assuming an ideal sine
amplitude 4 equal to 1, the ROM stores quantized approximations of

. X
€(x) =sm(—2—)—x 0<x<] (3-7)

The maximum absolute value of the error [e(x)| can easily be calculated. The phase angle x,, for
which the error is maximal can be easily calculated by equating the first derivative of (3-7) to 0:

de(x,) n mx
Zml 0=Lcos(BEny -
ax 390850
3-9)
x, = 3cos"(3]s 0.5607
b 4 T
The maximum error can then be readily calculated:
. 7, -
e(xm)=sm( 2 )—xm =0.2105 (3.9)

Hence, the amplitude compression is approximately equal to 4.75:1, so 2 bits of storage are saved
for every ROM sample.

The overall block diagram of the Nicholas et al. approach is shown in Figure 3-3. It incorporates

the sine-phase difference algorithm as well as the coarse/fine segmentation of the ROM described
in Section 3.1.4.

3.2.2 Yamagishi et al.: Double Trigonometric Approximation

Yamagishi et al. proposed a simple yet effective improvement over the sine-phase difference
algorithm, and called it a “double trigonometric approximation” [105][106]. Only one ROM is
used to store samples, but its width is reduced by three bits. The technique consists of adding two
terms to the ROM samples: the value of the phase accumulator (as for Nicholas et al.), and the
positive phase of a triangular wave derived from the phase accumulator value. The synthesis of
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the triangular wave is very simple. Its value is equal to that of the phase accumulator, scaled by a
factor of 0.25 (a right shift by two positions) with a bit-wise inversion depending on the third
MSB of the phase accumulator. The approximation circuit of Figure 3-2 effectively implements
the following equation defined by parts:

EXx 05x<%

_Ja
ax=33 | (3-10)
—Xx+— —<x«<l1

44 2

A+B+C A+B+C

(1)

Figure 3-3 - Nicholas et al. approach - sine-phase difference algorithm

Calculation of the two straight lines requires a single adder and simple inversion logic, as shown
in the block diagram of Figure 34. Two bits from the phase accumulator are used to control
quadrant symmetry, leaving the 10-bit output shown in Figure 3-4. Nine of the 10 MSBs are
retained and form a ramp. A triangular wave is added to this ramp signal. The triangular wave is
derived from the 7 MSBs as follows. For the first half of the phase accumulator values, the MSB
is 0 and the 7 MSBs are used as is. For the second half of the range, the MSB is one and the other
6 bits are inverted. Proper realization of Equation (3-10) is therefore implemented.

Following the process shown by Equations (3-8) and (3-9), it is easy to show that the maximum
amplitude errors for the two linear segments are approximately equal to 0.0879 and 0.1163. The
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amplitude compression ratio is therefore approximately equal to 8.6:1, so three bits per sample
are saved, which is one more than for Nicholas et al..

X

t + ROM
10 10
t
9MSBs
MSB
+ 1s complement
7 MSBs (divide by 4)

Figure 3-4 - Yamagishi approach - double trigonometric approximation

3.2.3 Sodagar and Labhiji: Parabolic Approximation

Sodagar and Lahiji suggested approximating the first two quadrants of the sine function with a
parabola whose maximum and x-intercepts are the same as that of a sine half-period [83](85]. The
approach is very simple, yet it provides accurate results. For a phase angle value x € [0, 2{
representing an angle in the interval [0, %[, its sine is calculated according to:

sin(mx) = x(2-x)+€(x) 0<x<?2 3-11)

where €(x) is the residual error from the parabolic approximation, and its value can be stored in a
look-up table. The maximum value of the residual error is approximately 0.056, for an amplitude
compression ratio of approximately 17.8:1, meaning that 4 bits per sample can be saved. The
value of the maximum residual error must be calculated by numerical methods since no analytical
approach can be taken to evaluate it.

The resulting approximation circuit architecture is shown in Figure 3-S. Half-wave rather than
quarter-wave symmetry can be exploited in this version, and hence the one’s complement biock
shown in Figure 2-3 is not necessary. However, if an error correcting ROM is used, then quarter-
wave symmetry should be exploited to reduce the size of the ROM by half, and a one’s
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complement block will also be required. The main disadvantage of this approach is its high
computational cost due to the multiplier and to the two's complement block.

‘ 12 MSB
' phase f >
} accumulator 11 10
| ' X
1
f 2s complement

Figure 3-5 - Sodagar and Lahiji approach - parabolic approximation

3.2.4 Comparison

In this section, a comparison is made between the “sine-phase difference algorithm”, the “double
trigonometric approximation”, and the “parabolic approximation”. Table 3-2 compares the
maximum residual error in each case. Figure 3-6 shows the three approximated curves together
with the actual sine function for the first quadrant. Figure 3-7 shows the residual error that must
be stored in the ROM for each case. For comparison purposes, the sign of the residual error has
been inverted for the parabolic approximation. It can be seen that the maximum absolute residual
error for the parabolic approximation is the least for first quadrant angles.

Nicholas et al. [67]:
sine-phase difference algorithm 0.2105
Yamagishi et al. [105][106]:

double trigonometric approximation 0.1163
Sodagar & Lahiji [83][85]: 0.0560
parabolic approximation -

Table 3-2 - Sine function compression comparison - maximum residual error
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Figure 3-6 - Sine function compression comparison - approximated curves
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Figure 3-7 - Sine function compression comparison - residual error
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3.3 Angle Rotation Based Methods

In the hope of eliminating the ROM table look-up altogether, several researchers have used a
CORDIC [100] or other angle rotation-based algorithms for the PSAC. Many have succeeded in
producing designs with high SFDR and reasonable complexity. An advantage of this approach is
the ease with which the synthesizer can be converted to a synthesizer/mixer without the need for

complex multiplication. The important disadvantage, however, is the increased tuning latency.

Madisetti et al. [57][58][59] reported a DDFS with 100 dBc of SFDR using a modified CORDIC.
The angle-rotation algorithm is implemented as a multiplierless feedforward datapath, which
allows easy pipelining and limits the accumulation of round-off errors. The modular architecture
permits outputs of arbitrary precision by cascading enough angle rotation stages in the datapath.
A fabricated design is presented with a tuning resolution of 0.0015 Hz at 100 MHz and a 100 dB
spurious-free dynamic range. The complexity is estimated at 58000 transistors in 1.0 um CMOS,
and power consumption is measured at 14 mW/MHz. The tuning latency is 16 clock cycles.

Grayver and Daneshrad [27] noted that, in the traditional CORDIC, a very large number of stages
is necessary to calculate the cosine and sine of an angle with good precision. However, the
authors point out that once this calculation is finished, a recursive calculation can be done to
obtain DDFS-equivalent operation. The authors therefore propose to use a traditional CORDIC
structure to calculate the cosine and sine of the phase-increment angle, then to use a small
recursive block with only two multipliers and two adders to generate the signal at the stable
frequency. To improve frequency resolution an additional sub-rotation stage is used in the
CORDIC line. This stage is controlled by the MSB of an accumulator, and adds a correction
value every time the accumulator overflows. A correction circuit is also necessary to account for
finite precision effects in the calculations, which cause unwanted effects in recursive
architectures. An example architecture is given which provides 80 dBc SFDR, but the complexity
of the implementation is not discussed.

Torosyan, Fu and Willson [95] presented a 300 MHz Quadrature DDF Synthesizer/Mixer based
on a two-stage angle rotation algorithm. The implementation of the complex mixing process is
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embedded in the generation of the output frequency, and hence the overall design is very

efficient.

CORDIC optimizations were suggested by Cardells-Tormo and Valls-Coquillat [10] in order to
achieve higher spectral purity at lower hardware cost. A combination of a CORDIC and a LUT
has also been suggested by Janiszewski, Hoppe and Meuth [30](31].

3.4 Polynomial Approximations

The sine amplitude compression techniques discussed in Section 3.2 effectively amount to
polynomial approximations of the first quadrant of the sine function. The sine-phase difference
algorithm and the double trigonometric approximation use 1* degree polynomials, i.e. linear
segments, and the parabolic approximation uses a 2™ degree polynomial. Since the
approximations made are not very precise, the residual error must be stored in a table or

computed with the help of angular decomposition as explained previously.

Many successful PSAC design approaches have been based on making more complex polynomial
approximations of the sine function for angles in the first quadrant. In such cases, acceptable
SFDR performance can be attained without the need to store or calculate the residual error in a
table. The general expression for such an approximation is

( [ d
Yo (x-x)  xSx<x (% =0)
=0
Zch.(x-xl)" x<x<x,
i=0

. JOC )
sm(—i-) =4, - 3-12)

zcﬁ(x-xk)‘ Xp S X <Xy
i=0
Zc(:-m (x-x,_) x_,<x<x, (x,=1)

\ i=0
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where x is the phase angle, represented as a fractional number in the interval [0, 1[, 7 is the degree
of the polynomial approximation, s is the number of piecewise continuous polynomial segments,
the cy’s are the polynomial coefficients, and x, is the lower bound of the ¥* piecewise continuous
segment.

In the literature, the PSAC design approaches that realize Equation (3-12) differ on four main

points:

e thedegreer, r 2 1, of the polynomial approximation;

¢ the number s, s 2 1, of piecewise-continuous polynomial segments;

e the position of the segment bounds x,; and,

¢ the method by which the polynomial coefficients c,; are calculated.

[t is noted that, if the s segments are equal in length, then a segment’s lower bound x, is given by:

k
X, =; ke {0, L2,.., s} (3-13)

As a consequence, the subtraction (x - xy), for x, < x < x,., is accomplished trivially by truncating
the log,s MSBs from x.

In this section, approaches based on polynomial approximations are reviewed. They are presented
in increasing order of the highest polynomial degree r used.

3.4.1 Freeman'’s Architecture

To the best of the author’s knowledge, the first description of a PSAC based on a polynomial
approximation is the 1989 patent by Freeman of Rockwell International Corporation [22].
Reference to this patent is seldom made in the literature even though the proposed architecture
was fundamentally different from all previous work. One conference paper by Kent and Sheng
[36], of the same firm as Freeman, describes a DDFS implementation based on the patent. This
paper was reprinted in the book edited by Kroupa [44], but is otherwise rarely cited by DDFS
authors.

2
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Freeman proposed a PSAC architecture decomposing the first quadrant of the sine function into s
= 16 linear (r = 1) segments which are equal in length. The phase word, which is 12 bits wide, is
decomposed into three parts: the first two MSBs are use for quadrant symmetry reconstruction,
the following 4 MSBs (i.e. bits 9 down to 6) specify one of 16 segments, and the remaining 6
LSBs represent the result of the subtractions in Equation (3-12), which are angle offsets from the
segment bounds x,. One 16 words x § bits ROM stores the linear segment slopes ¢, and a second
16 words x 10 bits ROM stores the segment initial amplitudes cyo. A 6 bits x S bits multiplier is
used.

In addition to implementing Equation (3-12), an amplitude correction is applied for some angles.
A third ROM stores correction values that reduce the Maximum Amplitude Error (MAE) between

an ideal sine amplitude and the approximation made.

The segment coefficients are selected according to an approximation for the sine of a sum of two
angles:
siné =sin(@, +6,)
=siné, Xcos B, +sinf, xcosH,
=siné, +6, xcosO, +&€(6,,6,)

(3-149)

where sin6, represents a segment’s initial amplitude, and cos@, represents a segment’s slope. The
correction values are represented by the function €(6,, 6,).

The system was realized in a 0.6 um GaAs MESFET technology, consuming 3 watts of power
and occupying an area of 5.54 mm x 3.43 mm (218 x 135 mils). The post-DAC spectral purity
was measured at -55 dBc up to a frequency of 245 MHz. The maximum system clock was 500
MHz, and the phase accumulator was 28 bits wide.

3.4.2 Bellaouar et al.: 1% Degree Taylor Series

University of Waterloo researchers Bellaouar, O'brecht, Fahim, and Elmasry proposed and
patented a linear interpolation approach for the design of the PSAC [3]{4](5]. It is similar to
Freeman’s approach, but differs in the following points. First, the authors presented a general
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architecture where the number s of linear segments and the design’s bus widths can be selected to
meet a desired SFDR. Second, their architecture facilitates the generation of quadrature outputs,
exploiting the octant symmetry as proposed by Tan and Samueli [90] and discussed in Section
2.2.3. Finally, the selection of the polynomial coefficients is based on a Taylor series expansion
of the sine function.

The Taylor series of a function f'in the neighborhood of a point x = a is given by:
> (x—a)" f"(a
fi =3 &= @
e n!

(x-a)'f"@), 19

= f(a)+(x—a)f'(a)+ 3

The series converges for a certain convergence interval around point x = a, provided that all

derivatives of the function exist at that point.

Bellaouar et al.’s architecture only computes the first two terms of Equation (3-15). The

following approximation is made:

. X Y~ ¥ 4 X,
sm(—z—) = Sln(7k) + (x-— X, )X;COS(Tk) b €x< Xeal (3-16)

where x € [0, 1{ represents a phase angle in the first quadrant, and the x, are segment bounds as
described in the introduction to this section. The constant initial amplitude and slope coefficients
in Equation (3-15) are stored in two small ROMs. The simplified resultant architecture is shown
in Figure 3-8. The actual architecture is a variation of Figure 2-4 that allows the same core
building blocks to be used for either a single phase or a quadrature output synthesizer.

A single phase output DDFS was implemented in a 0.8 um CMOS process. It uses the equivalent
of s = 32 segments and includes a 5§ X 5 multiplier and an 8-bit wide adder/subtractor. The 9-bit
output data is in sign and magnitude format, and the phase word is 12 bits wide. Although the
PSAC can generate sinusoid sequences achieving 64 dBc of spectral purity, post-DAC
measurements apparently indicated a 60 dBc limit, likely due to DAC non linearity and imperfect
LPF. The authors claim to have achieved a memory compression ratio of 2.46:1 compared to the
Nicholas architecture discussed previously [67], since only 416 bits of ROM storage are required.
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However, processing overhead is higher, especially considering the 5 x 5 multiplier. Power
consumption is significantly less than for previous implementations, at approximately 0.32
mW/MHz.

? X _ ROM
W log,(s) MSBs sin(r * x_/2)
X | ROM !
logz(s)’ MSBs n/2"° cos(r*x/2)
(x-fk)

W - log,(s) LSBs

Figure 3-8 - Bellaouar et al.’s architecture (simplified)

3.4.3 Liu et al.: Linear Segments of Unequal Lengths

Liu, Yu and Tsao [55] proposed a PSAC architecture implementing the approximation of the first
quadrant of the sine function with 12 piecewise-continuous linear segments of unequal lengths.
The segments are divided into eight unequal sections, with the last two sections further divided

into four sub-sections, for a total of 12 pieces.

In each section or sub-section, a first degree polynomial of the form m x x + b is used, where m is
the slope and b is the y-intercept. The implemented equation is slightly different from the one
shown in Equation (3-12) since angles are not processed according to their offset from segment
bounds. This is a consequence of using unequal length segments. System complexity is thus
increased since the simplification shown in Equation (3-13) cannot be applied.

A novelty in Liu et al.’s approach is that the architecture does not include multipliers. Instead, the
segment slope are represented with at most four signed digits, and the multiplication is realized
by adding shifted versions of the phase angle. The slopes include power-of-two factors as large as
2° and as small as 2°, implying a wide dynamic range for the additions and increased complexity.
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The segment coefficients are selected to minimize the MAE, which is no greater than 7/4096 for
all angles.

A single phase output DDFS was realized in 0.6 um CMOS. Four levels of pipelining are used.
The output is 10 bits wide in two’s complement representation, and the phase word is 14 bits
wide. Power consumption is approximately | mW/MHz and the SFDR is better than 67.6 dBc for
a 10 MHz clock. The transistor count is low at 11721.

3.4.4 Curticépean et al.: Angular Decomposition Revisited

Curticiipean and Niittylahti [14][15] and Curticipean et al. [16] proposed an architecture based on
angular decomposition, trigonometric identities and approximations for small angles. Although
the angular decomposition is the same that was proposed by Hutchinson [29], described in
Section 3.1.2, its implementation is analogous to a first degree polynomial interpolation and
hence it will be discussed here. The architecture features high spectral purity, reduced ROM size,
reasonable computational costs and reduced power consumption.

A simplified block diagram of the architecture is given in Figure 3-9. It realizes Equation (34).
The actual architecture produces quadrature outputs, and is a variation of Figure 2-4 taking into
account the particularities of the approximation that is made. For example, the ROM storing
sin(F) is shared by the sine and cosine blocks.

A search is made to select the optimum angular separation between the coarse and fine angles C
and F, and the bus widths throughout the system are also carefully selected to minimize system
complexity while achieving high SFDR. As a final optimization, the multiplication is truncated to
reduce its complexity. The resultant error is compensated by modifying the data stored in ROM.

The three papers show scaled variations of the same architecture, with SFDRs of 64, 85 and 96

dBc. Implemented in 0.35 um CMOS, the complexities are approximately 4000, 7600 and 14000
transistors, and the power consumption is 0.10, 0.35 and 0.40 mW/MHz, respectively.
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X C ROM
(MSBs of x) sin(C)

C ROM

(MSBs of x) cos(C)

F ROM

(LSBs of x) sin(F)

Figure 3-9 - Curticdpean et al.’s architecture (simplified)

3.4.5 Weaver and Kerr: 2™ degree Taylor Expansion

Weaver and Kerr [101] were the first to propose a Taylor series expansion of the sine function for
DDFS. In the patent, the authors propose an architecture for calculating the sine of first quadrant
angles by decomposing this quadrant in a number of polynomial segments. Over each segment,
the architecture calculates a sine approximation using the first three terms of its Taylor series, as
shown in Equation (3-15). The authors state that it is generally not necessary to calculate the
fourth or other terms of the series, as their contributions would be negligible. However, the patent

specifies that as many terms as necessary can be added if finer precision is desired.

A combination of ROMs are used. One ROM stores the amplitude, first derivative and second
derivative of the sine function evaluated at the segment lower bounds x,. The squaring and
multiplication indicated in the third term of Equation (3-15) can be accomplished with the help of
a look-up table implemented in a second ROM. In a variation of their approach, the authors
propose reducing memory storage requirements by calculating the squaring operation and the
multiplication in the third term of the equation, although this increases the computational burden.

3.4.6 Fanucci et al.: Quadratic Approximation

Fanucci, Roncella and Saletti [20] used four piecewise-continuous 2™ degree polynomials to
approximate the first quadrant of the sine function, implementing Equation (3-12) directly for r =
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2 and s = 4. Although the coefficients c,; are given in the paper, their selection process is
described in general terms only: the authors state that in order to maximize the SFDR, they
selected polynomial coefficients that reduced the MAE. The coefficients are stored in a ROM,

and two successive multiplications realize the approximation.

The coefficients are quantized with a large number of bits: 12 bits for ¢y, 9 bits for c,,, and $ bits
for ci, resulting in ROM storage of 4 x 26 = 104 bits. The two multipliers’ input ports are 11 x §
and 11 x 9 bits wide. As a complexity measure of the architecture, the authors state that 175 full
adders are required. The achieved SFDR is approximately 72 dBc. Finally, the paper contains a
summary analysis comparing linear and quadratic approximations for the sine function.

3.4.7 De Caro et al.: Optimized Polynomials, 2° and 3° Degree

De Caro, Napoli and Stroilo [18] introduced two designs implementing the quadrature
architecture shown in Figure 2-4. The designs approximate the first octant of the sine and cosine

functions with single (s = 1) 2 and 3™ degree polynomials, respectively.

In each case, the selection of the polynomial coefficients was done to optimize spectral purity.
Several selection processes were considered by the authors, including Taylor series, Chebyshev
polynomials and Legendre polynomials. However, it was found that the best SFDR was achieved
using non-linear Nelder-Mead simplex optimization [65]. The quantization of the coefficients is
done with high precision, and hence the calculation of the polynomials is complex. For example,
for the 2™ degree design, the sine function in the first octant is approximated by:

. X N
sm(T)=—0.001991+0.821689x-0.109358x 0<x«<l (3-17)

In order to realize these high precision calculations, the authors considered two architectures but
selected a technique called CSD Hyper-folding as the most efficient.

The two designs were synthesized for a 0.35 um CMOS library and a simulation was done
including extracted post-layout parasitics. The 2™ degree design achieves an SFDR of 60 dBc
with a 83 MHz clock and occupies 0.18 mm’. Its power consumption is 0.187 mW/MHz. The 3®
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degree design achieves an SFDR of 80 dBc at 88 MHz, occupies 0.44 mm?, and consumes 0.436
mW/MHz. These designs are compared with CORDIC-based ones and shown to be much
improved in terms of area and power consumption, for similar SFDR.

An interesting novelty of De Caro et al.’s approach is the specific goal of optimizing the spectral
purity instead of minimizing the MAE by applying a standard interpolation process for the

selection of the polynomial coefficients.

3.4.8 Sodagar and Labhiji: Simplified 4" Degree Polynomial

Sodagar and Lahiji [84](86] proposed an extension to the so-called parabolic approximation
discussed in Section 3.2.3. They suggest using a single 4" degree polynomial by cascading two
first order parabolic approximators shown in Equation (3-11). Defining the “first order parabolic

approximation” by
pb,(x) =4x(1-x) (3-18)

the “second order parabolic approximation” is given by
sin(nx) = pb, (x)
= pb,(x)~-4K x pb, (x)1- pb,(x))

(3-19)
=64Kx* ~128Kx’ + (80K -4)x® +(4—~16K)x

where x € [0, 1[ represents a phase angle in the range [0, ®[, and the constant X is approximately
equal to 0.05591.

[mplementing the last line of Equation (3-19) appears difficult in hardware. However, the second
line can be implemented very efficiently. The second term in the second line is simply the output
of a first order parabolic approximator, defined by Equation (3-18), multiplied by the constant K.
Its input comes from a first order parabolic approximator whose input is the phase angle. Hence,
the second line of Equation (3-19) is readily implemented in hardware by cascading two first
order parabolic approximators, with a multiplication by K and a subtraction. Computational costs
for the second order parabolic approximation are three muitipliers, two two’s complementors and
a subtractor. In the paper, the authors note that multiplication by the factor K increases the
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complexity significantly, and hence they implement multiplication by this factor with 2 shifts and
2 additions (i.e. they quantize K with three signed digits).

The MAE for any angle is approximately equal to 9.81 x 10*, or close to 2'°, giving 10 bits of
amplitude precision for the sine amplitude. If no error-correcting ROM is used, the SFDR is
approximately 64.8 dBc.

3.4.9 Paloméki and Niitylahti: High Degree Chebyshev Polynomials and Taylor
Series
It is well known that any function, satisfying some very general conditions, can be approximated
in the interval -1, 1] by a linear combination of Chebychev polynomials. Palomiki and Niitylahti
[74] used two single (s = 1) 4® degree Chebyshev polynomials to approximate the sine and cosine
functions very accurately for angles in the interval {0, ~/4]). Exploiting the first octant symmetry
for sine and cosine, the architecture generates quadrature sinusoids (as discussed in Section
2.2.3). Restricting the polynomial interpolation to the interval [0, /4 = 0.79] also greatly
increases its precision, which would be degraded if it were applied to the interval [0, ®/2 = 1.57].
Chebyshev polynomials therefore seem well adapted to this problem. Coefficients for the

polynomials are calculated in advance from known equations.

The resulting PSAC architecture is fairly complex, including two squaring circuits, one
multiplier, three two-operand adders and two 5-operand adders. Other multipliers are probably
required for scaling operations, but the paper does not provide sufficient detail to assess this.
Although the architecture is complex, a comparison table indicates that the design requires
approximately 50% of the transistors of a design based on the Nicholas architecture for “similar”
spectral purity (70 vs 84 dBc, which is in fact quite different), or 23 000 vs 58 000 transistors.
The tuning latency is much improved, from 14 clock cycles to S, mainly because of the absence
of a ROM and its replacement with a regular data path.

A DDFS based on this architecture was realized in a 0.35 ym CMOS, 3.3 V, 4 metal, n-well
process. Design complexity is estimated at 23000 transistors and the maximum clock frequency is
160 MHz. The spectral purity is better than 70 dBc.
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The same authors also proposed using a single 5 degree Taylor series expansion [75]. The
architecture is very similar to the one proposed in [74]. A 82.5 dBc SFDR design was
implemented using a 0.35 pm CMOS library. The total area is 0.66 mm’ and the power
consumption is 0.109 mW/MHz. Eight pipeline levels allow a maximum clock of 320 MHz.

3.5 PSAC-DAC Combinations

Some researchers have had success combining the PSAC and the DAC in a single unit. The
resulting post-DAC SFDR is similar to that achieved by more traditional architectures, but with a
significant reduction in power consumption. However, this approach is only valid when a digital
output is not desired.

Bjerede [6] patented a DDFS technique applicable when an analog sinusoid output is desired. The
technique replaces the basic ROM and (linear) DAC combination by a non-linear DAC with no
ROM. Spurious frequency components are suppressed by randomly dithering the rate at which
the fine accumulator is incremented, as proposed by others and discussed in Section 2.3.4.

Mortezapour and Lee {63] also used a non-linear DACs to replace the ROMs and DACs in the
traditional approach to DDFS. They refer to Bjerede’s patent. Two quadrature designs were
implemented in 0.5 um CMOS technology, and they achieved better than 55 dBc for low
synthesized frequencies (up to 500 KHz), with significant degradation past that point. However,
power consumption is very low, at 0.16 mW/MHz. This is quite good, since it includes the
DAC'’s power consumption as well. The main drawbacks of the approach is its low SFDR.

Jiang and Lee [33][34] also proposed similar designs, based on a non-linear DAC. The authors
present a way of segmenting the DAC into sub-DACs, following angular decomposition
discussed earlier. A design was implemented in 0.25 pum CMOS. The spectral purity is better than
50 dBc with a tuning bandwidth from DC to 113 MHz (300 MHz clock). Power consumption is
low at 0.8 mW/MHz, including the DAC.
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Shah and Colling [82] have also investigated a similar approach, based on an analogue memory
array. With the addition of compensating circuitry, simulation results indicate that 59 dBc of
SFDR could be attained for a 200 MHz clock with power consumption at 0.175 mW/MHz.




Chapter 4

New Amplitude Compression
Technique

This chapter first summarizes existing work on amplitude compression as a means to reduce
PSAC complexity for DDFS. A new sine approximation scheme is then introduced and a novel
architecture is presented. A comparison between existing work and the new approach is then
made, showing that the new architecture achieves significant ROM size reduction at low

processing cost. Finally, the stand-alone performance of the approximation circuit is considered.

4.1 Review of Amplitude Compression

The three known sine amplitude compression techniques for DDFS were discussed in Section 3.2.
In each case, the goal is to realize the PSAC in Figure 2-1 with the architecture shown in Figure
3-2 with the smallest possible ROM. A circuit calculates a coarse approximation to which a
quantized error value, stored in ROM, is added. Equation (3-6) is re-stated here for clarity. Given
a phase angle x € (0, 1[, the error g(x) that must be quantized and stored in ROM is given by:

(x)= Asin(Z) - a(x) @

where a(x) is the output from the approximation circuit and 4 is the amplitude of the ideal sine
wave that needs to be reconstructed. A typical value of 4 is (2- ~ 1)/ 2£, where L is the number of
bits used to quantize positive sine amplitudes, and is typically the ROM width if the compression
scheme is not used. This has the advantage of maximizing the output dynamic range.

The dynamic range of the error €(x) determines the number of amplitude bits in the ROM that can
be saved compared to the case where no amplitude compression is used. To save 1 bit of storage
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per word, the maximum absolute value of €(x) must be less than 0.5. For 2 bits, it must be less
than 0.25. For d bits, it must be less than 2.

In order to keep the architecture as simple as possible, all error samples £(x) should have the same
sign. Otherwise, the ROM data would need to be one bit wider, or a special control circuit would
be required to control an adder/subtracter replacing the adder shown in Figure 3-2.

Finally, the approximation circuit should be kept as simple as possible. Obviously, if the
complexity of the approximation circuit is increased sufficiently, then the maximum value of the
error €(x) might be small enough that an error-correcting ROM is no longer required. This would
result is a PSAC of one of the forms presented in Section 3.4. This progression is exemplified by
the works of Sodagar and Lahiji ([83][85], then [84][86]).

4.2 New Approximation and Architecture

4.2.1 Linear Interpolation Scheme

The “sine-phase difference algorithm” [67] and “double trigonometric approximation” [105][106]
are based on making a very coarse linear interpolation of the sine function with one and two
piecewise continuous segments, respectively. These techniques can be seen as special cases of the
implementation of Equation (3-12) with r = 1, with the output of the approximation circuit a(x)
given by:

(Yo + my(x—x,) x,$x<x, (x,=0)

y+m(x-x) xSx<x,

a(x)=1
( Yy tm(x—x,) X S X < Xy “-2)

;yx—l +m:-l(x—xx-l) xx-l s x< xx (xs = l)

where s is the number of linear segments, yx and m are a segment’s initial amplitude and slope,
respectively, and x, is a segment’s lower bound.
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As discussed in Section 3.4, the implementation of this equation is very efficient in hardware if
the segments are equal in length and if the number of segments s is equal to a power of two. In
such a case, the subtractions are done by a trivial truncation of log,s MSBs of x. However, when
the goal is to reduce the dynamic range of the error g(x), it may be advantageous to consider
unequal segments. This may increase the computational complexity, so a balance must be struck

between the maximum value of €(x) and the complexity of the approximation circuit.

In the proposed linear interpolation scheme, the output of the approximation circuit a(x) is given
by:

(Vo+mx  x,Sx<x,  (x,=0)
Y +mx x<x<x,
a(x) = :
Ye+tmx  x, Sx<x,., 4-3)
;ys-l + m,_ X Xs-1 Sx< Xy (x; = l)

where the symbols are as defined previously, except that yx is now a segment’s y-intercept.

The following heuristics can be used to guide the selection of the number of segments s and their
slopes and y-intercepts:

¢ to simplify the design, €(x) must be positive for all x;

¢ the maximum value of £(x) in each segment must be below a certain target value
corresponding to the number of bits d to be saved in the ROM;

¢ the least number of segments s should be used, to minimize control circuitry costs;
o  the my coefficients should be represented as a sum of a small number of non-zero digits;

® Xy, the segment lower bounds, should be represented with as few most significant bits of the
phase angle as possible, to reduce control circuitry costs; and,

® ), the segment y-intercepts, should be represented with as few most significant bits as
possible, to reduce addition costs.
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4.2.2 Design Example

As a first step in the present research, a goal of achieving a saving of 4 bits per ROM word was
set. The resulting amplitude compression factor in this case is the same as the one achieved by the
“parabolic approximation™ [83][85]. Another goal was to achieve this amplitude compression
factor at a much reduced computational cost.

The design heuristics listed above were used to select the number of segments and their

coefficients. It was found that three linear segments were sufficient. The resulting implementation
of Equation (4-3) is:

r

3x 5
0+— 0<x<—
5 2 5 x<163
a(x)=<§2-+x ¥Sx<z (4-4)
1 x
—+— =< 1
272 4 %<

It is noted that this equation can be implemented with very low hardware cost since the
approximation is calculated with a single addition in all three segments. Further, the partial
product x / 2 can be shared between the first and third segments. The second segment’s lower
bound is expressed with four bits, and the third’s is expressed with only two bits. The first
segment’s y-intercept is trivial, and the third’s is expressed with a single non-zero digit.

Using the approach shown by Equations (3-8) and (3-9), and assuming that the sine waveform to
be reproduced has amplitude 4 — 1, it is easy to show that the maximum residual errors &(x) in
the three segments are approximately equal to 0.0086, 0.0518 and 0.0477. These errors are less

than 0.0625, corresponding to a compression by a factor of 16 and a reduction in storage of 4 bits
per ROM word.

The total system complexity overhead of this scheme, including the error-correcting ROM, is
equal to two additions and simple control circuitry to determine in which segment an angle x lies.
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4.2.3 New Architecture

A DDFS architecture implementing Equation (4-4) is shown in Figure 4-1. In the Figure, it is
assumed that M — 2 2 L, that L 2 8, and that quadrant symmetry is used. The approximation
circuit consists of an adder whose inputs are selected by two multiplexers. Since there are three
segments, one would expect 4:1 multiplexers to be used. However, since one partial product can

be shared between two segments, and one of the operands for the first segment is zero, the
multiplexers have only two inputs each.

MSB1
MS%
5 . M%Z = (M2 | M2
s : € & .
: é
g
§ - 4 M;SBs
i -—
| ]
|
— i
L—f——i
control logic: l L MSBs
let 4 MSBs = (d, ¢, b, a) /
cntit =de L MSBs
cnti2 = cntlt +d'c’+cb'a’
approximation circuit

Figure 4-1 - New Amplitude Compression DDFS Architecture

A logic block generates the multiplexer control signals. Calculating the first control signal
requires a simple two-input AND gate. The second control signal is a function of the first. The
multiplexer inputs are either constants expressed with 1 and 5 bits, or trivial shifts of the phase
accumulator. Two additions are required, including the one between the approximated sample and
the error correcting ROM.
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4.3 Comparison of the New and Existing Techniques

Figure 4-2 compares the approximation curve generated by the architecture of Figure 4-1 with
that of existing techniques already reported. Figure 4-3 compares the residual error in each case.
For comparison purposes, the error has been multiplied by -1 for the “parabolic approximation.”
It can be seen that the residual error remains below 0.0625, corresponding to an amplitude
compression of 4 bits, both for the new technique and for the “parabolic approximation.”

Table 4-1 gives a comparison of the new and existing amplitude compression techniques in terms
of bits saved per ROM word and in terms of computational complexity. It can be seen that,
although the number of bits saved is the same as for the parabolic approximation of Sodagar and
Lahiji, the computational costs are considerably reduced.

technique £(x)mas | bits computational cost
saved
sine-phase difference <.2080 2 1 addition
algorithm [67]
double trigonometric <.1163 3 2 additions,
approximation [ 105][106] 1’s complementor
parabolic <.0560 4 mulitiplier,
approximation [83][85] two’s complementor
new technique <.0518 4 2 additions, 2 multiplexers,
and simple control circuitry

Table 4-1 - Comparison of new and existing techniques

From the data in Table 4-1, and assuming that the system output amplitude is quantized with L =
8 bits plus a sign bit, then the new technique realizes a reduction in ROM size of 33% compared
with the sine-phase difference algorithm and of 20% with the double trigonometric
approximation, at a modest increase in processing and control costs. The ROM size reduction is
the same as for the parabolic approximation, at a significantly reduced processing cost. The
parabolic approximation requires a full multiplier and a 2’s complementor. The multiplier would
be 8 x 8 for the case considered presently.
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4.4 ROM-less Performance

Considering the architecture of Figure 4-1 with M = 10 and L = 8, and with no error-correcting
ROM, a spectral analysis of the output sequence reveals that the SFDR is approximately 37.8
dBc. This is an improvement of more than 9 dB over the ‘“parabolic approximation” architecture
under the same conditions [85], which achieves approximately 28.7 dBc SFDR.

Eliminating the ROM also eliminates the requirement to keep the errors strictly positive or
negative. It was observed that the SFDR could be improved to approximately 40.5 dBc by using
the same architecture with a modification of the y-intercept coefficients of the 2™ segment [49].

The resulting approximation function is equal to:

r

0+3F  0<x<c
11 2 5 }’:6
a(x)=<a+x ﬁSX(‘Z 4-5)
1 x 3
—+—- =5 1
272 3°*<

This improvement in SFDR leads to the following observation: when approximating the sine
function with linear segments, the output SFDR can vary greatly with small modifications in the
segment coefficients. Several questions can then be asked: given a required SFDR, what is the
minimum number of linear segments that should be used? How should the segment parameters be
selected to achieve this SFDR? Can the segment parameters be selected to optimize the hardware

implementation also? These questions are considered in the following chapters.




Chapter 5

Analysis and Design of DDFS
Based on Linear Interpolation

This chapter includes the first known attempt at a systematic analysis of the output spectrum of
DDF Synthesizers based on linear interpolation. A generalized linear interpolation DDFS
architecture is presented, and a detailed spectral analysis of its output sequence is provided. A
closed form expression relating the achievable SFDR and the minimum number of linear
segments that must be used is derived. A systematic coefficient selection process that maximizes
the SFDR given a number of linear segments used is also derived, and a detailed design
procedure is provided.

5.1 General System Architecture

A generic DDFS architecture with a phase to sine amplitude converter using linear interpolation

is shown in Figure 5-1.
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Figure 5-1 - General architecture of single-phase DDFS using linear interpolation
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The least significant (N — M) bits from the phase accumulator are truncated, and the resultant M
bits represent an angle in the interval [0, 2x[, scaled with a binary representation to a fractional
number in the interval [0, 4. Hence, the digital sequence f passed to the DAC is:

f(x)= Asin(%)+e(x) (5-1)

where 4 is some amplitude and £(x) is an error sequence with period 4.

Quadrant symmetry is exploited. Therefore, the two MSBs of the truncated phase angle x indicate
the quadrant in which this angle lies, and are used to control the format converter and the 1’s
complement operator. The remaining (M ~ 2) bits of x represent an angle in the interval {0, r/2[,
quantized as a binary fraction in the interval [0, 1[. Signal y, quantized with L bits, is therefore the
approximated sine amplitude for x in the first quadrant, and f'is the approximated sine amplitude
for any angle reduced to the scaled interval [0, 4[.

Function f has period 4, and even symmetry about points x = 1 and x = 3. Let s be the number of

linear segments used to approximate the sine function in the first quadrant. Hence, f'is defined in
the interval [0, 1[ by:

(Yo +mo(x—x,) X, $x<x, (% =0)
n+m(x-x) xSx<x,
X =4:
f( ) yk +mk(x-xk) Xk S x<xk.,,l (5.2)
~yx—l +m:-—| (x-x,_l) x:_l S X< x, (x‘ = l)

which is a special case of Equation (3-12) for r = 1. Assume that s is equal to an integer power of
two. Hence, the log:s most significant bits of x can be used to select a slope m and an initial
segment amplitude y, k=0, 1, 2, ..., s — 1. Further, if the segments are equal in length, then the
remaining M — log,s bits give the result of the subtraction (x — x;), and

x. =k/s (5-3)
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5.2 Output Spectral Analysis

The spectral properties of function f will now be considered. If it exists, the Fourier series of
function fis given by:

f(x)=a,+ ;(a, cosznT’rx+b,l sin—z;—”x) (5-4)

where the period T of f'is 4 in the case considered here. The series converges if f is piecewise
continuous and has left-hand and right hand derivatives at each point over the interval [0, T]. Its
sum is £, except at any point x; where fis discontinuous, and the sum of the series at such points is
the average of the left-hand and right-hand limits of f at x,. Since f has odd periodicity, it is
represented by a Fourier sine series and all a, coefficients are equal to 0. Assuming that f has
quadrant symmetry, it can readily be shown that the b, coefficients are given by:

TIJ

I f(x) m(—)dx nodd

b, = (5-5)
0 neven

The Fourier series coefficients of f can be found by using the definition of f from Equation (5-2)
in Equation (5-5):

53 | reosiniyas noda
b = k=l Xt
n (5-6)

0 neven

The integral can be evaluated by parts :

f rsin2Byis ==L f(zyco s(””"‘)‘ 2L f feosi (s

Since f may be discontinuous at x,, the evaluation of the first term to the right of the equal sign in
Equation (5-7) must be done on the inside of the interval. That is to say that the left-hand limit
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flx) must be taken at x;, and the right-hand limit f{x, ;") must be taken at x,_,. This is the well-
known method of integration by jumps [39].

2nnx
Using the notation C, = cos( e

) and replacing (5-7) in (5-6) yields, for odd n,

b = ixi
" T 2nm
x[FGIC - F G+ £0)C, = FENC +t SIC~ FICL] 5
8 E ZnID:
+7X3—”§j S(x)cos( )dx
The expression within brackets can be written as:
= ()G +(f (X)) = f(5NC, +(f(x7) - f(x)))C, (5.9
$ et (F) = FEC, + ()G, )
Noting that:
C, =cos(0) =1 (5-10)
C, =cos(%) =0 (nodd) (5-11)
the expression is therefore equal to:
-(f(x;)+jlcl +j2C2 +"'+j:—lcs-l) (5'12)
where
Je=f(x) = f(x) (5-13)

is the “jump” in f at x,, as shown in Figure 5-2. If f is continuous at some x,, then the
corresponding ji is obviously zero. It must be noted that j, may take either positive or negative
values.
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'(l) O—\/—

Figure 5-2 - Jump in f at a discontinuity

Therefore, for f satisfying the conditions given above, we have:

b, =—|:f(x0)+21,‘ cos( )+2 j f(x)cos( )dx} (5-14)
k=l Xy

for odd n, and 0 otherwise.

The same procedure is now applied to the integral in (5-14). Integration by parts yields:

anc)dx_ f( )sm(anc

f S(x)cos(

St

)

5 %j’ f(x) sin(Z"Tm)dx (5-15)
Again, since f(x) may be discontinuous at x;, the evaluation of the first term to the right of the
equal sign in Equation (5-15) must be done on the inside of the interval. We also note from
Equation (5-2) that the second derivative of fis 0 and hence that the integral on the right of the
equal sign in Equation (5-15) does not have to be evaluated. Using the notation
15), the summed integral in (5-14) is equal to:

3 | sercos 22 yas =

k=t g,

(5-16)
—x[f(xl IS, = F1(53)S0 + F1(35)S, = FU(x7)S, + .t £1)S, ~ £1(x0)S,.)
The expression in brackets can be written as:
— PGS+ G = FENS, +(F ()= £ NS,
(5-17)

+ot (L) = (NS, + (xS,

Noting that:
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S, =sin(0)=0 (5-18)
the expression is therefore equal to:
~UiSi + 138, +oot jiuS, 0 = f1(x))S,) (5-19)
where
Je= )= f(x) (5-20)

is the “jump” in the first derivative of fat x,. These can be positive, null or negative values.

With T=4, xo = 0 and x, = 1 as discussed previously and shown in Equation (5-2), we obtain the

following equation for the Fourier sine series coefficients of f
4 s=1 2 e
b =— 0+ ) j.C |-|— S, —f(A)S
= [f( )+ 2 ) (m)(gh A ),) (5-21)

for odd n, and O otherwise, where:

Je=f(x) = f(x) (5-22)
S =)= f1(x) (5-23)
C, =cos( "’;" )= cos(% k) (5-24)
S, =sin(">) =sin(C1k) (5-25)

It is also noted that, for equal length segments, x, = k /s. Figure 5-3 shows an example of the first
quadrant of a function f defined by four linear segments.
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LEN Y
4 m,
Ys ._\O
, l =0
Y T Ia
h T~
YT
My
Yo -0‘/0
! | l | >
T 1 T —®
14 24 V4 «s
Figure 5-3 - First quadrant of { defined by four linear segments
From Figure 5-3, it can readily be seen that
fO)=y, (5-26)
=y, - LT I1Sk<s-1
Je T Ve = Vi < SKSS (5-27)
fA)y=m,_ (5-28)
Jo=m, -m,_, 1<k<s-1 (5-29)

The Fourier sine series coefficients of f are therefore given by:
4 =1 m 8 s-1
b =— + - -=20C, |-—— m,~m._)S,—m_S
n Mt(}’o é(}’k Vi1 < ) k) i (gl( % -1 S —m,_, :) (5-30)
for odd n, and O otherwise.

5.3 Upper Bound on SFDR given the Number of Linear Segments
Used

The SFDR is defined as the ratio of the power in the frequency of interest to the power in the
strongest harmonic or spur. Without loss of generality, in this discussion it is assumed that the
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frequency of interest is for n = 1. For convenience’s sake, the symbol P represents the SFDR,
expressed as the ratio of the fundamental’s amplitude to that of the greatest harmonic’s. P is

given by
b))
= nzl -
max(|b(n)) (-3)
The SFDR can be expressed in decibels as
b(1)?
10log(———————) =20log(P #1
og( 0) )) og(P) n (5-32)

The amplitude of all harmonics is given by a version of Equation (5-30) stated in the more

compact form
4 8
b(n)=— ——h -
(n) = g(n) ey (n) (5-33)
for odd n, and 0 otherwise, where:
3|
gn)=Y a,C,(n) n=1,3,5,.. (5-34)
k=0
h(n)=Y B,S,(n) n=1,3,5,.. (5-35)
k=l
kr
C,(n) =cos(—n) (5-36)
2s
. km
Se(n) =sin(z=n) (5-37)

The o, and By are directly related to the jumps in amplitude and in the first derivative,
respectively, of £. Using (5-34) and comparing Equations (5-30) and (5-33) yields

=1

=1
Yot Z(J’k Vg1~ “s }:k (n)= Zakck (n) (5-38)
k=0

= §

and hence the o, can readily be calculated as:
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B 4 k=0
%= Ye = Vea— m;'l k=123,..,s5-1 (5-39)

Similarly, using (5-35) and comparing Equations (5-30) and (5-33), we have

=1

Z (’”k -m,_, )Sk (n-m_S, = Z ﬂksk (n) (5-40)
1

k=1

and hence the B, are given by:
B, = m-m,_, k=123,..s-1
T lem,, k=s (5-41)
From (5-34) - (5-37), g(n) and h(n) are finite sums of sinusoids and therefore periodic in n. The

longest period of any of the individual sinusoids that make up the sum is for £ = 1, and the
corresponding period can easily be found:

2r

XX r=4
T 2500 (5-42)

Thus, g(n) and A(n) are periodic in n with period 4s, which is stated formally as:

g(n) = g(n+4s) (5-43)

h(n) = h(n+4s) (5-44)

The sine function has odd symmetry, and a sum of sines also has odd symmetry. The cosine
function has even symmetry, and a sum of cosines also has even symmetry. Hence, g(n) has even
symmetry and A(n) has odd symmetry. We therefore have:

g(n) =g(-n) (5-45)

h(n) =—h(~n) (5-46)

Combining the periodicity and symmetry of g(n) and k(n) yields:
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g(n)=g(4s—n) (5-47)

h(n) =—h(4s—n) (5-48)

As stated above, it is desired that the fundamental frequency corresponds to # = 1, and that it be
stronger than all harmonics. From (5-33)-(5-37), one way to achieve this goal is to have all oy
positive and all By negative. For n = 1, all angles in the summations of (5-34) and (5-35) will be in
the first quadrant, and all summed terms will be positive. For odd values of n greater than 1 but
less than 2s, the angles for the summed sines and cosines will be uniformly distributed in the
interval [0, n/2], with n/2s radians between each angle. Thus, there will be a mixture of
positive and negative terms, leading to smaller sums. Symmetry and periodicity properties can be
applied for odd values of n greater than 2s to realize that the same sums will be produced, with
sign inversions in the case of the sum of sines. If all o, are positive, then g(1) will be greater than
all other g(n), since for other values of n at least one angle will be out of the first quadrant.
Similarly, if all By are negative, then [A(1)| will be greater than all other |h(n)| for the same reason.
Consequently, under these conditions 5(1) will be greater than all other b(n), as desired.

Assume that the o and Py are selected such that (1) has the greatest amplitude, and that g(1) =0.
Considering the periodicity of A(n) shown by (5-44) and the symmetry of 4(n) shown by (548),
then it is obvious that —A(4s — 1) = A(4s + 1) = A(1). An upper bound for the SFDR can then be
found if we assume b(n) =0, n =2, 3, 4, ..., 45 — 2. In that case, the SFDR would depend only on
the ratio of the amplitudes of 5(1) to that of b(4s — 1) and b(4s + 1). Because of the 1/’ factor in
(5-33), the harmonic corresponding to #n = 4s — | will be the greatest. Under these conditions, an
upper bound for the SFDR is given by:

8 8
P< - : = 2 =(@s~1)*=16s’-8s+1 (549
——— h(4s - ——— h(l
@s—nixt " D' @s-n ¢
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The bound for SFDR can be improved from that given in (5-49) by exploiting the even and odd
symmetries of g(n) and h(n), respectively. Consider (5-33) and assume that i(1) is fixed and
negative and g(1) is variable and positive. We have

4 en-2
Bl = [ 2055 h0)

4 8
|b(4s ~1)| = PR A v )z zh(l)l (5-50)

4
Jpras +1f = etV @ +1)2 2

(l)‘

Any increase in g(1) also increases |[5(1)|, which is desirable. Further, any increase in g(1)
decreases |b(4s — 1)|, which is also desirable since it decreases the ratio of the amplitude of that
harmonic to the fundamental’s. However, increasing g(1) also increases |b(4s + 1)|, which is not
desirable if that harmonic’s amplitude gets larger than |b(4s — 1)]. Consequently, increasing g(1)
has a positive effect on the SFDR, but only to a point. Eventually, the amplitude of [b(4s + 1)]
reaches that of |b(4s — 1)| and the SFDR starts to decrease again. The best case occurs when the
amplitudes of these two harmonics are equal, corresponding to an optimum value for g(1). This
leads to a relation between g(1) and A(1):
|[b(4s - 1)| = |b(4s +1)

4 8 _ 4 8
-(—43—_[);8(1),,. @ h(1)= @+ D7 g, — @iy h(1)
4 8s s 3 ~16s (5-51)
g(l)”‘ n ((45’ -1 4s+1) ) A ((43 D*(4s +1)? ]

4h(1 1
EWope = ; )(16s2 —IJ

Optimizing g(1) will also optimize b(1). Using (5-51) in (5-33) for n = 1 yields:

n
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_3%g(), 8hQ)
R r’
___16A()  8AQ)
r*(6s’-1) x°

(5-52)
=_8h(l)( 2 +1)

b(1),,,

m (16s% -1

=_8h(l)[l6s’+l)

| 16s* -1

As discussed above, setting g(1) = g(1)ox Will make |b(4s + 1)| and |b(4s — 1)| equal, denoted here
by the subscript eg:

_ g, 8h()
T @s+hr (ds+1)rm?

_ 16A(1) ___8h()

T m(As+D)@s+1D)(ds-1) (ds+1)’n?

8h(l) ( 2 ) (5-53)

-— =X +1

n(4s+1) (4s-1)
___8h()

7?1652 -1)

b(4s +1)

This yields the following upper bound for SFDR as a function of the number of segments s:
b(1),,.|
P sl—""—=16s2 +1 5.
= "lbas+1),] (-39

or, in decibels,

20log(P, ) = 20log(16s*) =24 +40logs s=1 (5-55)

A graph of this bound is shown in Figure 54. Equation (5-55) can also be used to determine the
minimum number of linear segments necessary to achieve a desired SFDR.
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Figure 5-4 - Upper bound on SFDR as a function of the number of linear segments used

5.4 Linear Interpolation Coefficients Selection

5.4.1 Selection Criteria forh(n), n=3, 5, 7, ..., 4s -3

Equation (5-54) only considers harmonics for values of nequalto 1,45 - 1,45+ 1,85- 1,8 + 1,
etc. This section considers the criteria that must be met by function 4 in order to achieve a given
SFDR P, forn=3,5, 7, ..., 4s — 3. From (5-31) and (5-33), we have

4 8 b(1)
- h €— n=3,5,7,...45-3
|;8(n) i (n)| p " (5-56)

from which the following two linear inequalities are obtained:
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g(n) 2%(—9%+#h(n)) (5-57)
and
g(n) Sf%(b(—;)+;28”—zh(n)) (5-58)

forn=3,5, 7, ..., 4s — 3. Consequently, A(n) must be chosen such that there exists at least one
solution for g(n) that satisfies inequalities (5-57) and (5-58), forn=3, 5, 7, ..., 45 — 3. We pose

b(1 8
() =1}(-—f}+ﬁz—h(n)] (5-59)
and
(5 8
() . =n7(%+;z?h(")) (5-60)

Using the odd symmetry property of 4(n) from (5-48) yields

@s—mzx(_bQ) 8h(4s—n)
4 | P @s-nin’

_(@s—nmz (_ b(1) _ 8h(n)

g(4s—n)y, =

(5-61)
4 P (4s-n)nm? J

and

g(ds—n)_. =(4s—n)::(b(1) , Shias—n) )

4 P (4s-n)'x’
_@s—mz(b(1)  8h(n) (5-62)
- 4 P (4S - ’l)z ’rz

Equation (5-47) combines the symmetry and periodicity of g(n), and g(n) must lie inside the two
intervals defined by Equations pairs (5-59)(5-60) and (5-61)(5-62), forn =3, 5, 7, ..., 4s - 3.
Figure 5-5 illustrates the two limit cases where this becomes no longer possible. The following
can be stated formally:
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g(")m < g(4s - n)m (5-63)
and
g(N) . 22(4s—n),, (569
amé and
mw"]r I H4s-njmax
aomn Y oo I ode-nymax Hpmaxy- -oo-oooom- <L glds-njmin
enimn dn)nmJL
L 1 o . l .
n wn t + y

Figure 5-5 - Two limit conditions for acceptable intervals for g(m), with g(n) = g(4s - n)

Expanding (5-63) yields
8(n) iy < g(4s— 1),
ﬂ(_b(l)+8h(n)) < (4s—n)u'(b(l)_ 8h(n) )
4 P nrm* ) 4 P (4s-n)'m’
_nb(l)  8k(n) _4sb(t) _ni(l) _ 8h(n)
P  nn? P P (4s-n)m?
_4sb()) _ _8h(n) ( 1,1 ) (5-65)
P 7 \n (4s-n)
dsb(l)  8h(n)(4s—n+n )
P r kn(4s—n)

h(n) < z2b()n(4s-n)
- 8P

and expanding (5-64) yields

15
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BN 2 8(45 = 1)y,
nx ( b(1) , 8h(n) )> (4s-n)x (_ b(l) __ 8h(n) }

4| P nm? 4 P (4s-n)n’
nb(1) 8h(n) 4sb(1) nb(1) 8h(n)
+ >- + -
P nr P P (4s-n)m*

4s5b(1) S 8h(n) l+ 1 (5-66)
P~ m|n @s-n)

4sb(1) > 8h(n)(4s—n+n
P | n(4s-n)

—h(n)< x*b(1)n(4s - n)

8P

Combining (5-65) and (5-66) yields

forn=3,5,7, ..., 25 - 1, since h(n) has symmetry about n = 2s, from (5-48).

During the design process, it can be advantageous to select the slope coefficients before the
segment initial amplitude coefficients. This is done to optimize the system’s hardware realization,
which is greatly dependent on the cost of implementing the multiplication in Figure 5-1. Hence,
the slopes m and the By, given by (541), should be set early on. The A(n) are then determined

from (5-35), and Equation (5-67) can be used to determine the achievable SFDR corresponding to
these slopes:

< 7*b()n(4s —n)
~ 8xmax({h(n)]) (5-69)

However, the value of b(1) may not be known at this time since the segment amplitudes 3, and
hence the 0y and g(n), have not been selected yet. Inspection of (5-52) reveals that, for the case
were the achieved SFDR is close to the bound predicted by (5-54), then &(1) — -8 x A(1) / 2,
especially for large s. Hence, with the goal of achieving an SFDR close to the bound predicted by
(5-54), the following equation can be used to assess the suitability of a set of slopes m,:
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—h(l)n(4s—n)
P< max(]h(n)]) (5-69)

forn=3,5,7,...,2s-1.
5.4.2 Acceptable Range of Values for g(1) Given a Desired SFDR

Equation (5-54) provides an upper bound for the SFDR given a number of segments. This bound
can only be achieved with a single value of g(1), given by (5-51), and a corresponding value of
b(1). This severely restricts the choice of values for the oy coefficients and the corresponding
segment initial amplitudes . It is therefore useful to be able to specify a range of acceptable
values for g(1) and 5(1) that satisfy a given P.

Consider cases where |b(4s + 1)| and |b(4s — 1)] are different, while maintaining

) o)
“as+0 ™ "= ras—1y -70)

where the desired SFDR P must obviously be less than that specified by (5-54). There are two
cases to consider. First assume that g(1) < g(1)op. In this case, we will have |b(4s ~ 1)] > |b(4s +
1)|. Denoting the minimal value of g(1) that will satisfy (5-70) by g(! )i, We have:
48 W _ 8D _|42Wa , 84 |
2 17 2
x 7 | |(ds-Dx  (4s-1)’7?|
42w 8D _(_4gW)ue __ 8hQD)
r 7’ As-Hx (4s-1)°x?
4g(1).. 1+ P |_8h() 1- P
x (4s-1) ) = | @ds-1’

_2h(1) (1- P/(4s~1)?)
T x (1+P/@s-1)

(5-71)

(L) I

Now consider the case where g(1) > g(1)o. In this case, we will have |[b(4s + 1)| > |b(4s — 1)].
Denoting the maximum value of g(1) that will satisfy (5-70) by g(1)max, We have:
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48 W _ 8A)| _|48(W) e 8A(D)
| = | |@s+r (4s+1)’x?

48() e, _SH() (48w 8h(QD)
r r? As+)r (As+1)’x?
(5-72)
48Wum (| __P_\_8hQV)(, P
z (s+1) | = | (@s+1)’
_2h() (1-P/(4s+1)?)
r (1-P/(4s+1))

xP

2(1) x

The corresponding values of &(1)mn and 5(1).ex are readily obtained by replacing (5-71) and
(5-72) in (5-33), giving:

32h(1)sP
b(l) s =~
D == s txPr45-D) (5-73)
and:
32h(1)sP
b(1) e =~
O == G+ P21 (5-74)

5.4.3 Selection Criteria forg(n),n=1,3,5,7,..,2s -1

Equations (5-71) and (5-72) specified the bounds within which g(1) must lie. Consider now the
bounds set by Equations (5-57) and (5-58) for n =3, 5, 7, ..., 4s — 3, together with Figure 5-5.
From Equation (5-47), g(n) has even symmetry about n = 2s. Therefore, the bounds for g(n) need
only be specified for one half of a period of n, and they are given by:

oy, = {8V n=1
8o =\ max(g(n)oe g(ds—)) m=3,5.7,25—1 (5-75)
and
oy = [EDem n=1
Eme ™| (g (1) g 85 —M)p)  1=3,5,7,.0,25 -1 (5-76)
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5.5 Design Procedure

From the derivation of the previous section, a systematic design approach for a DDF Synthesizer
based on the architecture of Figure 5-1 can be obtained. The design procedure is as follows:

Part [: ification of SFDR and selection of the number of s ts

1. Specify a target SFDR P.

2. From (5-54), determine the minimum number of segments to achieve this SFDR; in practice,
this number will be an integer power of 2;

Part II: selection of a set of slopes

3. Select a set of quantized slopes m, and compute the corresponding set of coefficients By
(Equation (5-41)). Compute 4(1) (Equation (5-35)).

4. Confirm that the set of quantized slopes allows the target SFDR to be achieved, according to
Equation (5-69). Calculate and verify that g(1)min < 2(1)mex (Equations (5-71) and (5-72)), and that
b(1)min < b(1)mex (Equations (5-73) and (5-74)). If any of these conditions is not verified, return to

step 3 and select a different set of slopes m,.

Notes on Part II:

a. The slope coefficients m, must be quantized with finite precision. This precision has a direct
impact on the system complexity required for storing these coefficients and on the complexity of
the multiplier in Figure 5-1. Real valued slopes can be calculated for each segment directly from
the linear interpolation of the sine function over this segment:

sin(ZekeLy — sin(Pt)

m, = 2 J_=sx(sin(’°‘2kﬂ)_sin(";~)] (5-77)

Kot — X

assuming that the s segments have equal length. These real values must then be quantized to the
desired precision. It is these resulting quantized values that must satisfy the conditions set in steps
3 and 4 above. The remainder of the design procedure is based on using the quantized values of
the slopes, not the values calculated by Equation (5-77).

9
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b. The first derivative of sin(x/2) at x= 0 is ®/2 = 1.57, and it is 0 at x = »/2. Hence, a reasonable

design heuristic consists of limiting the range of acceptable values for m to the interval [0, 2].

c. For a small number of segments, i.e. 4 or 8, an exhaustive search can be performed to find an
acceptable set of slopes m, according to the criteria listed in step 4., among choices expressed
with a fixed number of bits. For large s, it was found that a Genetic Algorithm [25] is well suited
to this task. Details are provided in Sections 6.3.2 and 6.3.3.

Part ITI: calculation of ici
S. Obtain g(n) min and g(1) s from (5-75) and (5-76).

6. Pose 2 sets of s inequalities that can be expressed in matrix form as:

[c.m]la,)<lemy.] (5-78)

[€.m]le, ]2]e() | (5-79)

and find a s x | vector [oy] that satisfies all of them. Equations (5-78) and (5-79) define the
bounds of an s-dimension hyper-parallelogram, and a suitable vector [0] represents a point that
lies inside it. A simple approach to solve this problem consists of finding one vertex of the
parallelogram by solving Equation (5-78) with the equal sign, and finding its opposing vertex by
similarly solving Equation (5-79). The center of the parallelogram can readily be found by taking
the geometric mean of the coordinates of these two vertices.

7. From the o obtained in 6., calculate floating point values for the j, using Equation (5-39).

8. Select appropriate values of M, L, C and D, where M is the number of phase bits, L is the
number of bits used to quantize the output amplitude, C is the number of bits used to quantize the
W, and D is the number of added columns in the final adder (other bits are truncated). Simulate
the system taking finite precision arithmetic effects into account, and calculate one period of
sinusoid samples with a value of FCW equal to 1. Confirm that the output amplitude can be
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represented by a fraction in the interval [0, 1[, i.e. by a quantized binary integer in the interval [0,
2% — 1), otherwise reject this set of parameters.

9. Take the Discrete Fourier Transform of the sequence, and measure the SFDR. As discussed in
Section 2.3.1, spectral components will vary in position but not in amplitude for all odd values of
FCW, hence evaluating the SFDR for FCW = 1 is sufficient as long as the FCW is always odd.

10. Repeat for different values of M, L, C and D, and obtain high-level design metrics such as the
required number of full adders and 2-to-1 multiplexers, and the number of stored bits. Select the
set that meets SFDR requirements at the lowest cost.




Chapter 6

New DDFS Architectures Based on
Linear Interpolation

This chapter presents new DDFS architectures with a PSAC based on linear interpolation. The
architectures efficiently realize the system shown in Figure 5-1 with low hardware complexity.
High-level complexity metrics are provided to allow rapid cost evaluation early into the design
cycle. It is then shown how the design procedure described in Chapter 5 can be applied to these
architectures, and chosen system coefficients and parameters are given that meet various levels of
output SFDR. HDL description issues are discussed for VHDL and Synopsys® Module Compiler
Language™. Implementation resuits in FPGA and for 0.35 pum and 0.18 pm CMOS libraries are
listed for several designs. Finally, details concerning two designs submitted for fabrication are
given, together with hardware test results for one of them.

6.1 New Architectures
6.1.1 General Description

A major contributor to system complexity in the architecture of Figure 5-1 is the multiplier. In
Section 3.4, existing DDFS architectures based on a linear interpolation of the sine function were
reviewed. Freeman’s architecture [22] includes a 6 x S multiplier, while Bellaouar et al.’s
includes a 5 x 5 multiplier. Liu et al. [55], however, proposed a multiplier-less architecture, and
represented the slope coefficients with no more than 4 signed digits. They used linear segments of
unequal lengths.
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The present research has resuited in novel DDFS architectures with a multiplier-less PSAC based
on linear interpolation with equal length segments [47][5S0][(51][52])[53]. To eliminate the
requirement for multipliers, the segment slopes m are selected such that all can be represented
with a limited number of signed digits. Multiplexers provide corresponding shifts of the LSBs of
the phase accumulator to a multi-operand adder. A separate multiplexer acts as a small ROM and
provides constants equal to segment initial amplitudes y,. A generalized version of the novel
architecture is shown in Figure 6-1.

MSB2 MSB1
- v
N
—f—o s F— 1 f
f M W= w . MSBs
T § MR g | e e
A H .
s § | —Emre— § |,
g 2 § 5 t D
D
i
EXNa ) \Z\
m,, l 2 1
= 4
] ©
: \ / 5
: \ 3 S
H : § [+ DACAPF —=
L+1—j
(5> P & 2)—e! 5’ E
Nk
>y & 2)
y° _‘_d
n—% J 8
TR A
‘ g
Y..| —é—./‘

Figure 6-1 Novel single-phase multiplier-less DDFS architecture, general format
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As before, N is the internal width of the phase accumulator and of the frequency control word.
The first quadrant of the sine function is approximated with s equal length segments, following
the definition given by Equation (5-2). The truncated phase word x is M bits wide. Quadrant
symmetry is exploited, and W = M — 2 is the number of bits used to represent angles in the first
quadrant. The segment slopes m, are expressed as a sum of at most p powers of two selected in
the interval [-1, 1]:

my, = gm., mye {2°,-27,-27,..0,..,272,2,2°} (6-1)

The multiplication of the offset angles (x — x;) by a single power of two is realized by a trivial
shift. A total of p muitiplexers with s inputs each select the correct partial products according to
the phase angle segment. In Figure 6-1, the notation “>> my;” represents a right shift
corresponding to the j* power of two used to represent the slope in the k* segment. The number
of shifted positions is equal to ~logx(|my[), where the absolute value is taken since the digits may

be negative. If necessary, the sign inversion is realized by the +1 multipliers that follow each
shifter block in Figure 6-1.

An additional multiplexer provides the segment initial amplitudes y,, represented with C bits.
This multiplexer and its coefficients are the equivalent of a ROM, but it can normally be realized
with logic gates due to its small size. There are therefore a total of p + 1 multiplexers whose
outputs are D bits wide. The multiplexer control signals are given by the log.s MSBs of the #-bit
phase angle since the s segments are equal in length. The remaining W — log.s LSBs give the
offset angle (x — x;).

A multi-operand adder sums the multiplexer outputs, and rounds the result to L bits. Sign
information is added to the sine amplitudes in a format converter, and the L + 1 bits wide output
sequence can be passed to a DAC and a LPF.

The complexity of this architecture is significantly less than one using a regular multiplier and a
ROM to store the slope coefficients my. This is true only if the number of signed digits used to
represent the slopes is small, e.g. 2 or 3.
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6.1.2 Addend Alignment

In this section, the alignment of the multiplexer outputs prior to addition and the resulting

implementation optimizations will be explained in detail.

The M-bit phase word x is expressed in fixed point notation with two bits for the integer part and
M - 2 bits for the fractional part. Let

X=Xy X2+ X, ,x2°+ X, X274+ X X2 L X x 2D e )

where X; is the i bit of x. The phase word can be decomposed into three parts: the quadrant, the
segment, and the offset angle. The two MSBs of x, i.e. the integer portion, identify the quadrant.
The following log,s bits identify the segment. The remaining LSBs, from M — 3 — log,s down to
0, give the offset angle equal to (x - x,) in Equation (5-2). This decomposition is shown in Figure
6-2.

quadrant | binary point segment (x—xv)

Xmt Am2 . X3 oo Averogresy + 1 Xrtxog2isy) - K2 X1 Xo

Figure 6-2 - Decomposition of the phase angle word

As discussed in the previous section, the multi-operand adder receives p + 1 addends. Although
the addends are D bits wide, several of these bits are zeros or, in the presence of a negative slope
digit, ones. These include the log:s digits corresponding to the segment, and the following
~logu}my| bits due to the shift operation. If a sufficient number of bits are shifted, then it is also
possible that the resulting addend will be more than D bits wide. In such a case, the extra LSBs
are discarded. The number of discarded bits is equal to max{—log|m;| + M — 2 — D, 0}. The
effect of this truncation must be taken into account when selecting system parameters, as
described in part IV of the design procedure of Section 5.5. Zeros can also be introduced in the
case of the C-bit initial amplitudes, when D > C. The corresponding addend’s (D — C) LSBs will
always be zeros.
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Coefficients and parameters are selected such that all sums are restricted to the interval [0, 1[.
Hence, no overflow occurs to the left of the binary point. After the operands are added, the sum is
rounded to L bits. The rounding type is a simplified form of rounding to nearest, i.e. the (L + 1)®
MSB is added as a carry to the L™ most significant column.

The correct alignment of the p + 1 addends is shown in Figure 6-3 below, for the case where all

m; are positive.

<+ D bits >
shift due to truncated
segment multiplication offset angle

«logas bits & & —logymy| bits —

x-x)xmg: 0. 0 0 O .. 0 O 0 .. | x-x | discarded|

+(x-xJXmg: 0. 0 0 O . 0 0 0 . [ x-x | discarded|

+tx-xJxXme 0. 0 0 0 . 0 0 0 . [ x-x | discarded|

+tx-x)Xmepny: 0. 0 0 0 .. 0 0 0 . [x-x | discarded|
+n 0. [ €&————— Cbis—————»]| .. o

roundedsum: 0 . | ¢&——— L bits—————» |

Figure 6-3 - Addend alignment, general case

The process can be further illustrated by means of two examples. First, consider a DDFS with s =
8 segments and slopes my represented with at most two signed digits. Assume a typical case
where the phase angle x is M = 13 bits wide, the output is expressed with L = 7 bits of amplitude,
the segment initial amplitudes y; are expressed with C = 10 bits, and the addition is done on D =
11 bits wide operands. The two MSBs of x, bits 12 and 11, identify the quadrant. Bits 10, 9 and 8
identify the segment, and bits 7 down to O give the offset angle.
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For this case, there are three 11-bit addends. The first two addends are shifted versions of the
offset angle (x — x;), with some bits possibly truncated, and the third addend is the initial
amplitude y, expressed with 10 bits followed by a zero as the LSB. Consider a specific segment
with slope my equal to (1 + 1/ 8). The first three bits of the first addend and the first six bits of the

second addend are zeros. The addition is then performed with the addends aligned as shown in
Figure 6-4:

x-x)/1: 0. 0 0 0 X7 X Xs Xo X5 X2 X1 X
+ x-x)/8 0. 0 0 0 0 0 O X3 Xs Xs Xu Xs

+ Yk 0. Yt) Yg Y7 Yo Ys Y4 Y3 Yz Yl Yo 0

roundedsum: 0. § S S¢ & S S S

Figure 6-4 - Addend alignment, example 1

As a second example, consider the conditions of the previous example, but with a slope m,
including a negative digit, e.g. m = (1 - 1 / 8). Consequently, the second addend’s bits must be
inverted prior to the addition. This is shown in Figure 6-5, where X; denotes the complement of
Xi. A ‘1’ is not added in the LSB position of the second addend since it would be discarded. The
impact of this approximation must be considered when selecting system parameters and
coefficients. A ‘0’ is shown to the left of the binary point for the second addend since that bit is
not part of the addition and coefficients are selected such that the sum is less than one.

Consequently, any overflow from the addition is discarded.
(x-x)/1: 0.0 0 0 X3 X5 X5 Xa Xz X2 X\ X

+ G-x3/8 0.1 1 1 1 1 1 X X X X X

+ Y 0 . Yq Yg Y7 Y5 Ys Y4 Y} Yz Y[ Yo 0

roundedsum: 0 . S Ss S & & S S

Figure 6-5 - Addend alignment, example 2
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As a final optimization, the ones in the MSB positions of the second addend can be pre-added to
the segment initial amplitudes i, resulting in the final addition shown in Figure 6-6, where Y;
represents the original MSBs of jx to which a series of ‘1’ digits have been added.

x-x)/1: 0 .0 0 0 X5 Xk XK Xx. Xz X XX X

+ x-x)/8 0 .0 0 O O O 0 X X X X X

+ w 0 .Y Y% ¥V Y ¥V Vv Y Y, YV Y O

roundedsum: 0 . & S S S S, S S

Figure 6-6 - Addend alignment, pre-addition optimization

6.1.3 Architecture Examples, Single Phase Output

Three example architectures are shown in Figure 6-7, Figure 6-8 and Figure 6-9, with different
cases of the number of linear segments and number of signed digits used to represent the slopes

my.

In Figure 6-7, there are four linear segments, and the slopes are represented with no more than
two positive digits. The 2 MSBs of the truncated phase identify one of four segments and are the
multiplexer control signals. Each multiplexer has 4 inputs. For the two upper multiplexers, the
inputs are shifted versions of the & ~ 2 least significant bits of the truncated phase. The lowest
multiplexer inputs are constants equal to the segment initial amplitudes y;.

Figure 6-8 shows a version of the architecture with 8 linear segments and slopes m, expressed as
a sum of at most two positive powers of two. The 3 MSBs of the truncated phase identify one of
eight segments and are the multiplexer control signals. Each multiplexer has 8 inputs, which are

shifted versions of the # — 3 least significant bits of the truncated phase or initial amplitudes in
the case of the lowest multiplexer.
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Figure 6-8 - Novel multiplier-less DDFS architecture, eight segments, slopes with two digits
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Figure 6-9 shows a version of the architecture with 8 linear segments and slopes m, represented
with no more than three positive digits. For this case, the 3 MSBs of the truncated phase again
identify one of eight segments and are the multiplexer control signals. Each multiplexer has 8
inputs which are shifted versions of the W — 3 least significant bits of the truncated phase or

segment initial amplitudes.
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_v
4 - - —
N M W W Iw-3ises 3MEBs g
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word £ i g
e s
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7
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Figure 6-9 - Novel multiplier-less DDFS architecture, eight segments, slopes with three digits

6.1.4 Quadrature Outputs Architecture

The single phase output architecture can be adapted to produce quadrature outputs with a limited
increase in hardware costs, following the general architecture discussed in Section 2.2.3, and as
presented in [53]. In such a case, the PSAC is divided into two independent parts, each
responsible for generating either sine or cosine amplitudes for angles in the first octant. The sine
and cosine blocks implement the following equations:
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(o +mg(x—x;) X <x<x (x, =0)
Y +m(x—x,) 5<x<x
.o |
sm(?)=4 Yy tm(x—x,) X S X< Xy, (6-3)
ys +m, (x-x, ) x, Sx<x, (x =-l—)
3 fS S i.|— 3 3 2
\ 2 2 2 2 2 2
(wy — 1y (x—x,) X, Sx<x (x =0)
w, —-n(x—x,) x<x<x,
|
003(7)=‘ w,-n(x-x,) X Sx< X, (6-4)
1
w, —-n, (x-x;, ) x, <x<x, (x,==)
= =1 1 =1 S : 2
L 2 2 2 2 2 2

for x in the interval [0, %[,

hence each block only calculates an approximation of the sine or

cosine functions for first octant angles.

The coefficients my, and y, k

=0, 1,2, .., s~ 1, for a single phase output design can be converted

for use in a quadrature output design with simple linear geometry. The resulting output sequence

must be rigorously identical for each design in order to guarantee the same SFDR.

The first half of the coefficients m, and y, for k=0, 1, 2, ..., s / 2 — 1, are used without

modification to implement

the sine block. For the cosine block, the slope coefficients and

segment initial amplitudes are denoted by the symbols n, and wy, respectively. These coefficients
can be calculated from the second half of the single phase coefficients, i.e. for k=5s/2,s/2+ 1,s

1242, ..,5-2,5-1:

R, =M (6-5)

W ia =V +m X (X, — X — 2-»') (6-6)
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where W= M - 2 is the width of the truncated phase angle x after removal of the two MSBs for
quadrant symmetry. Equation (6-6) is illustrated in Figure 6-10. The distance between two
samples within one segment is equal to 27”. For the segment shown on the left, the amplitude of
the last sample that is calculated becomes the initial amplitude w, ., of the mirrored segment,
shown on the right of the figure, and its value is given by Equation (6-6).

o

>l

X v L L v L

Figure 6-10 - Coefficient conversion for quadrature DDFS

If the segments are equal in length, then Equation (6-6) becomes

Wi =Y +myx(s™ =27") (6-7)

fork=s/2,s/2+1,..,5-2,s-1.

Applying this conversion process to the single-phase example shown in Figure 6-8 results in the
architecture shown in Figure 6-11. The cost in multipiexers is unchanged, as compared with the
single phase case, since the number of multiplexers is doubled but their number of inputs is
halved. The complexity increase comes from an extra multi-operand adder, two 2:1 bus
multiplexers and two XOR gates.

In Figure 6-11, it is assumed that the DAC/LPF can accept data in sign and magnitude format. if

that is not the case, then two format converters must be added.
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Figure 6-11 - Novel multiplier-less QDDFS architecture, eight segments, siopes with two digits

6.2 High Level PSAC Complexity Metrics

Step 10 of the design procedure detailed in Section 5.5 recommends that system complexity be
evaluated once a set of system coefficients and parameters have been selected. Since several such
sets may satisfy design requirements, it is useful to compare the resulting designs and to pick the
one with the least complexity. One approach to compare the resulting designs would be to
synthesize each one and extract complexity and performance parameters from the synthesis tool.
However, experience has shown that there can easily be hundreds of coefficient sets for which the
SFDR varies by less than | dB. It is therefore impractical to generate a Hardware Description
Language (HDL) definition of each system, to synthesize them for a chosen library, and to obtain

complexity metrics from the synthesis tool.
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6.2.1 System Coefficients and Parameters
High level complexity metrics can be extracted directly from a set of coefficients and parameters.
These coefficients and parameters are:
e the number of segments s;
o the segment slopes m,;
e the segment initial amplitudes y;
e the number of truncated phase bits M;
¢ the number of bits used to quantize the sample amplitudes, L;
e the number of bits C used to quantize the initial amplitudes y,; and,
e the number of added columns of bits, D.

From the segment slopes m,, we obtain the number of powers of two used to represent them, p.
The number of addends is therefore equal to p + 1, as described previously.

6.2.2 Complexity Metrics

The following high level complexity metrics can be easily calculated from a design’s coefficients
and parameters, based on the architecture described in Section 6.1. They are:

o the number of ROM bits;

e the number of 2:1 multiplexers that provide shifted versions of the phase value; and,

e the number of full adders.

[n order to simplify the comparison between two designs, it is useful to combine these three
metrics into a single number. One possibility consists of assigning a number of transistors to each
block such as multiplexers and full adders. The number of transistors per block must be selected
carefully, since it can vary depending on the technology used for the actual implementation.
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In the present architecture, the ‘ROM’ is implemented with constant-input multiplexers, and its
cost can be calculated as such.

The following general assumptions are made:

* asingle phase output architecture is targeted;

¢ the cost of the phase accumulator is not considered;

e the cost of logic overhead to exploit quadrant symmetry is not considered;
e the cost of an output data format converter is not considered; and,

e the cost of pipelining registers is not considered.

6.2.3 Number of ROM Bits
The number of ROM bits that must be stored is equal to:

ROMbits =sxC (6-8)

A 2’:1 multiplexer can be realized using (s — 1) 2:1 multiplexers. Assuming that the ROM is
implemented with hardwired-input multiplexers, the corresponding number of 2:1 multiplexers is

muxROM = (s-1)xC (6-9)

6.2.4 Number of 2:1 Multiplexers

The number of multiplexers that provide shifted versions of the phase angle is equal to p. Each
one has s inputs, and each input is D — logys bits wide. Since a 2°:1 multiplexer can be realized
using (s — 1) 2:1 multiplexers, the corresponding number of 2:1 multiplexers is

muxShift = px(D —log, s)x(s—1) (6-10)

The estimate provided by Equation (6-10) doesn’t take into account the complexity reduction
incurred when muitiplexer inputs can be combined. For example, consider a 4:1 multiplexer
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whose input ports 0 and 1 are tied together. The number of 2:1 multiplexers needed to build this
4:1 multiplexer is equal to 2 instead of 3, if all four inputs were different.

The reduction in the number of multiplexers can be calculated precisely by a careful inspection of
the powers of two that are summed to make up the slope coefficients m,.

6.2.5 Number of Full Adders

The final number of full adders in the implemented system varies greatly with performance
requirements, since ripple, carry select and carry look-ahead adders have different complexities.
Therefore, for these high level metrics, it is assumed that the multi-operand addition is realized by
a number of 3:2 compression stages, followed by a simple ripple carry adder.

The number of addends p + 1 is equal to the number of signed digits used to represent the slopes
my, plus one. In order to compress p + 1 addends to 2, the number of full adders required is equal
to p — 1. It is assumed that D columns of bits must be added. The final ripple carry adder is D bits
wide, and a rounding operation must be done to L bits. The estimate is simplified by neglecting
the initial half adder for the LSB and the rounding logic, and by assuming that the final adder is
realized with D full adders. The total number of full adders is therefore equal to:

SullAdders =(p-1)xD+ D= pxD (6-11)

6.2.6 Total Cost

The total cost T (in transistors) can be estimated as:

T = fullddders x Cost , + (muxROM + muxShift)x Cost,,_,, (6-12)

For this research, we were targeting a 0.18 ym CMOS library provided by the Canadian
Microelectronics Corporation (CMC). A careful inspection of the standard full adder and
multiplexer cells led to cost selections of 6 and 24 transistors for the 2:1 multiplexer and the full
adder, respectively.
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6.3 Design Process and Design Examples

In order to validate the architecture presented in this chapter as well as the coefficient selection
procedure described in Section 5.5, several DDF Synthesizers achieving SFDRs in the range of
60 to 96 dBc were designed.

6.3.1 Design Space Exploration and Selection of Coefficient and Parameter Sets

Designs with s € {8, 16, 32, 64} segments were considered. In each case, the design space
exploration procedure included the following steps:

1. Establishing a list of sets of acceptable segments slopes my (part II, Section 5.5);

2. Calculating the corresponding segment initial amplitudes y, (part III, Section 5.5) for each set
of segment slopes in the list;

3. Calculating the SFDR and high-level complexity metrics for reasonable system parameters
M, L, C and D (part IV, Section 5.5); and,

4. Selecting one set of coefficients and parameters achieving approximately 60, 72, 80, 84, 92

and 96 dBc with the least high-level complexity metric estimate.

6.3.2 Candidate Slopes

A key aspect of the new architecture comes from the restrictions imposed on the segment slopes.
There are three considerations: the number of signed digits used to represent a slope, the dynamic
range of the signed digits used in a set of slopes, and whether or not to allow negative digits.

The number of signed digits used to represent the segment slopes m has an important impact on
system complexity. Slopes with 1, 2 and 3 signed digits were considered. For designs with less
than 72 dBc of SFDR, performances very close to the bound specified by Equation (5-54) were
achieved with only two signed digits. Above that level, it was found that three signed digits were
sufficient up to and including designs with 64 segments, the highest number investigated. Sub-
optimal designs (32 segments with 80 dBc SFDR and 64 segments with 92 dBc SFDR) were
produced using only two signed digits to represent the slopes.
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A secondary consideration is the dynamic range of the signed digits, which corresponds to the

width of the slopes (£ in Figure 5-1). It has already been observed that, for first quadrant angles,

the first derivative of the scaled sine function sin(nx/2) is in the interval [0, ®/2]. Hence, the

greatest digit used was 2°. Again, it was found that the smallest necessary digit depended on the

SFDR to be achieved. For 8-segment designs achieving 60 dBc SFDR, the smallest digit used

was 2. For 64-segment, 96-dBc SFDR designs, it was 2°.

A third consideration when restricting signed digit choices is whether to allow negative digits.

The importance of this restriction depends on the impact on overall system complexity. For eight
segments, 60 dBc SFDR designs, bit inversions have a small but noticeable impact. For 64

segments, 96 dBc SFDR designs, the impact is negligible.

Candidate slopes my, were considered from the sets shown in Table 6-1.

e
.

{6,5,4,3,2, 1,(;} /4 2 yes
{12,10,9,8,6,5,4,3,2,1,0} /8 2 yes
{12,10,9,8,7,6,5,4,3,2,1,0} /8 2 no
{24,120, 18,17, 16, 12, 10,9, 8,6, 5,4, 3,2, 1,0} / 16 2 yes
{24,120, 18,17, 16, 15, 14, 12, 10,9, 8, 7, 6, 5,4, 3, 2, 1,0} / 16 2 no
{48, 40, 36, 34, 33, 32, 24, 20, 18, 17, 16, 12, 10, 2 yes
9,8,6,5,4,3,2,1,0} /32

{48, 40, 36, 34, 33, 32, 31, 30, 28, 24, 20, 18, 17, 16, 15, 14, 12, 2 no
10,9,8,7,6,5,4,3,2, 1,0} / 32

{13,12,11,10,9,8,7,6,5,4,3,2,1,0} /8 3 choice
{26, 25, 24, 22, 21,20, 19, 18, 17, 16, 14, 13, 12, ..., 1,0} / 16 3 yes
{26,25,24, ..., 1,0} / 16 3 no
{52, 50, 49, 48, 47, 46, 44, 42, 41,40, ..., 1,0} / 32 3 no

Table 6-1 - Candidate slopes sets
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6.3.3 Establishing a List of Groups of Acceptable Slopes

Using each of the candidate slopes sets in Table 6-1, a search was performed to find groups of
slopes for which a “large” SFDR could be attained. Each group was evaluated according to the
criteria described at step 4 in Section 5.5. The search process will be described with an example.

Consider the first quadrant of function sin(rmx/2), separated into 8 segments. The first three
columns Table 6-2 below respectively show the segment lower bounds x,, the function amplitude

at those points, and the floating point value of linear segment slopes m, connecting the points.

F 0 0.0000 ... 12486 .../ 8

0.125 0.1951 ... 12.006.../ 8 12/8 12/8 12/8

0.25 0.3827 ... 11.065.../8 12/8 10/8 10/8

0.375 0.5556 ... 9.698 .../ 8 10/8 9/8 10/8

0.5 0.7071 ... 7959../8 8/8 8/8 8/8

0.625 0.8315 ... 5914../8 6/8 6/8 6/8

0.75 0.9239 ... 3642../8 4/8 4/8 3/8

0.875 0.9808 ... 1.230.../8 1/8 1/8 1/8

Table 6-2 - Selection of a slope set, 8 segments case

The last three columns of Table 6-2 show three possible groups of choices of slopes m; quantized
according to the second candidate slopes set in Table 6-1, i.e. two non-zero digits, £ = 4, and all
digits positive. The choice of 12 / 8 for mo and m, appears obvious when inspecting the floating
point values in the third column. However, the choice for m; is not so obvious, since 11 / 8 is not
part of the candidate set being considered. Hence, there are several possibilities that must be
evaluated. Using the criteria summarized at step 4 in Section 5.5, and specifically Equation
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(5-69), it is found that groups of choices 1, 2 and 3 in Table 6-2 can achieve at most 60.22, 60.03
and 59.17 dBc of SFDR, respectively. Since Equation (5-54) predicts a maximum achievable
SFDR of approximately 60.21 dBc for eight segments, these three groups should be considered as
possible design candidates. Although group 3’s maximum SFDR of 59.17 dBc may seem low, it
is observed that the first four slopes can be split into two pairs, leading to an eventual efficient

hardware realization with multiplexers.

This manual approach to the selection of slope sets is obviously very time consuming. Instead, a
simple algorithm was implemented to perform an exhaustive search among candidate slope sets.
The algorithm was used for designs with s = 8 and 16 segments, and those groups of slopes with
the potential of achieving SFDRs close to the bound predicted by Equation (5-54) were retained.

For designs with 32 and 64 segments, or when considering slope sets with a dynamic range of 5
or 6 bits, an exhaustive search was not possible due to the large number of combinations. Instead,

a Genetic Algorithm (GA) [25] was used yielding very good results in reasonable time.

GAs offer an attractive way to solve complex optimization problems. They are based on genetic
principles of natural selection and evolution. An initial “population” of solutions that represent
points in a multi-dimensional search space is first randomly selected. Each candidate solution in
the popuiation is called a “chromosome”. The “fitness” of each chromosome is evaluated using
an objective function. A new “generation™ of chromosomes is obtained by selecting pairs of
*“parent” chromosomes from the present generation and intermixing parts of their “genes”. The
probability of selecting a chromosome for “reproduction” is proportional to its relative fitness in
the population, hence beiter solutions have a higher chance of contributing to the next generation
of solutions. “Mutations” can also take place during the reproduction process by introducing
random variations within chromosomes. Several generations of solutions can quickly be

computed until an acceptable solution is found.

The setup of a GA involves making several choices. These include the initial population size and
the number of generations to go through. Two probability thresholds are also often selected. The
first is the probability of crossover, P,, which determines whether genes from two parents are
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intermixed to produce offspring. The second is the probability of mutation Py A high value of P.,
e.g. > 0.9, is normally selected. Py, is normally much smaller, e.g. < 0.01. Finally, “elitism” can
be implemented, whereby a few best chromosomes are copied directly into the next generation.
This prevents the best solutions from being discarded, whether or not they are selected for
reproduction.

One common difficulty in applying GAs to a problem is the coding of the search space. A
chromosome is encoded as a string of bits (“genes”), each representing a part of a solution. In the
present case, however, this coding is straightforward. Each chromosome must specify s segment
slopes my. Since we have chosen to restrict the slopes to a limited set of acceptable values, the
chromosomes encode the m, with their position in the set. As an example, the first four slopes
sets in Table 6-1 contain no more than 16 elements. Hence, encoding any one slope in one of
these sets requires only 4 bits. Since this provides a total of 16 possibilities, some values may not
be used for those sets with fewer than 16 elements. When calculating the fitness function of a
chromosome, the value 0 is automatically assigned if one of the disallowed possibilities occurs.

The selected fitness function was the achievable SFDR predicted by Equation (5-69).

Several values for the initial population size in the range from 50 to 5000 were considered. A
small population size is sufficient for a small search space but leads to premature convergence for
larger search space. However, a large population size increases the algorithm’s running time
significantly. The probability of crossover was maintained between 0.9 and 0.99, and the
probability of mutation between 0.01 and 0.001. Elitism was used.

It was found that convergence times were significantly improved by carefully choosing the initial
population of chromosomes. While randomness is essential to have a representative set of
solutions across the search space, it is useful to “help nature” a little. This was done as follows.
As demonstrated in Table 6-2, the floating point values of the segment slopes connecting sine
amplitudes evaluated at the segment bounds were calculated. A ‘base’ chromosome was formed
by selecting quantized slopes for each segment that minimized the error between the floating
point values and an element in the selected slope set. The population of chromosomes was then
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established by taking the base chromosome and randomly varying the quantized slopes within the

selected slope set. The amplitude of these variations was kept within a few positions inside the
slope set.

6.3.4 Exhaustive Search on M, L, C and D and Selection

With acceptable sets of slopes selected for each of the number of segments s € {8, 16, 32, 64},
and corresponding values of yy represented with floating point precision, an exhaustive search of
system parameters M, L, C, and D was then conducted. It was observed that an exhaustive search
for reasonable values such as L € [7, 19], M e [10, 18], C € [9, 16] and D € [10, 16] was well
within the capabilities of a desktop computer, i.e. with a search time in the order of one hour,
even for designs with s = 64 segments.

For each resulting list of design parameters and coefficients, the SFDR and high level complexity
were evaluated. A performance metric equal to the ratio of the SFDR to the estimated complexity
was calculated for each design. For this metric, the SFDR was expressed in absolute format, i.e.
not in dB. The designs were then placed in decreasing order of performance. Among the top
performers, a single design was selected according to a comparison of all performance parameters
in relation to similar designs reported in the literature. This included the SFDR, the number of
ROM bits, and the truncated phase width.

Table 6-3 lists the final six coefficients sets that were selected. The third column, marked ‘T",
gives the high-level estimated cost in transistors according to Equation (6-12). The first three
designs listed have slopes m represented with at most two signed digits. This is also true for the
91.9 dBc, 64 segments design. The other two designs, achieving 84.2 dBc and 96.2 dBc, have
slopes represented with at most three signed digits.

Figure 6-12 plots the estimated cost in transistors T for each design as a function of the achieved
SFDR. A second order polynomial curve is superimposed over the data, showing a very good
match and a quadratic relation between complexity and SFDR.
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{12,12,10,9,8,6,4, 1}
/8

971} /1024

13

{20, 20, 20, 20, 18, 17,
16,15, 14,12, 10,9, 7, 5,
3,11/16

{0, 81, 161, 238, 317, 391, 460, 525,
584, 640, 689, 729, 764, 792, 811,
823}/ 1024

32

80.0

4594

15

11

13

{2, 198, 394, 588, 781,971, 1159,
1345, 1527, 1704, 1894, 2063, 2226,
2384, 2543, 2690, 2833, 2970, 3095,
3219, 3336, 3437, 3537, 3621, 3702,
3773, 3836, 3887, 3930, 3961, 3988,
4004} / 4096

32

84.2

5734

16

11

14

14

{25, 25, 25, 25, 24, 24,
24,23,23,22,22,21, 21,
20,19, 18, 17, 16, 16, 15,
13,12,11,10,9,8,7,6,
4,3,2,1}/16

{0, 800, 1598, 2391, 3192, 3971,
4737, 5508, 6248, 6988, 7696, 8399,
9065, 9723, 10359, 10971, 11552,
12106, 12616, 13108, 1358S, 14013,
14408, 14767, 15088, 15375, 15624,
15834, 16022, 16156, 16250,
16306} / 16384

9L.9

9520

15

{6,659, 1311, 1963, 2612, 3258,
3905, 4547, 5187, 5826, 6459, 7087,
7713, 8333, 8949, 9590, 10191,
10788, 11378, 11962, 12539, 13105,
13665, 14234, 14776, 15316, 15850,
16356, 16876, 17372, 17863, 18335,
18814, 19264, 19701, 20127, 20576,
20978, 21365, 21741, 22105, 22486,
22822, 23143, 23467, 23760, 24046,
24326, 24577, 24820, 25041, 25262,
25450, 25640, 25800, 25958, 26093,
26206, 26316, 26404, 26468, 26526,
26567, 26599} / 32768

96.2

12040

18

13

15

16

{50, 49, 49, 49, 49, 49,
49, 49, 48, 48, 48, 48, 47,
47, 46, 46, 46, 44, 44, 44,

32

{0, 794, 1585, 2374, 3162, 3947,
4729, 5509, 6293, 7066, 7834, 8596,
9361, 10113, 10866, 11605, 12335,
13074, 13790, 14498, 15195, 15899,
16578, 17255, 17914, 18568, 19212,
19836, 20455, 21062, 21657, 22230,
22798, 23351, 23890, 24415, 24926,
25420, 25900, 26364, 26811, 27243,
27658, 28055, 28437, 28801, 29146,
29482, 29795, 30087, 30362, 30618,
30855, 31083, 31275, 31464, 31627,
31770, 31894, 32007, 32092, 32159,
32205, 32241} / 32768

Table 6-3 - Selected sets of parameters and coefficients
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Figure 6-12 - Estimated PSAC complexity versus SFDR

6.3.5 Output Data and Spectral Plots

This section contains output data graphs showing error amplitudes, as well as spectral plots for
each of the designs listed in Table 6-3.

Figure 6-13, corresponding to the 8 segments, 60 dBc SFDR design, shows the PSAC output
sequence for angles corresponding to the first quadrant. It also shows the error between an ideal
sinusoid and the output sequence, as defined by Equation (2-16). The amplitude 4 of the ideal
sinusoid is approximately 123 / 128, and the MAE is approximately 0.01 or 1.29 LSB. The left
axis of the figure is for the output sequence and the right axis is for the error amplitudes. The

eight segments are clearly noticeable, as are the finite precision quantization effects.
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Figure 6-14 shows the corresponding output spectrum for an odd value of FCW corresponding to
an output frequency approximately equal to 0.22 times the reference frequency. As discussed in
Section 2.3.1, this spectrum is representative of all other cases where the FCW would be odd. In
all other cases, the position of noise spurs would change, but their number and amplitudes would

not.

The remainder of the Figures show similar plots for the five other designs listed in Table 6-3.

Considering Figure 6-15 and Figure 6-21, it is noticed that the amplitude of the approximated
sinusoid is approximately equal to 0.8, contrary to other designs where it approaches 1.0. As a
consequence, the full dynamic range allotted by the output data width is underutilized. This could
be seen as a problem for analog output designs, as the noise introduced by the DAC would then

have a more important effect.
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Figure 6-20 - Typical spectral plot, 32 segments, 84.2 dBc SFDR design
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6.4 HDL System Description

6.4.1 Automated VHDL Code Generation

Inspection of Figure 6-1 reveals a regular structure that can be easily parameterized. The
quadrature architecture of Figure 6-11, being a simple extension of the single phase case, can also
be easily parameterized. Hence, these architectures lend themselves well to automated code

generation.

A Matlab™ script was prepared to facilitate the generation of VHDL code for DDF Synthesizers
based on the architecture introduced in this chapter. The code accepts, as inputs, vectors of slopes
my and initial amplitudes y,, values for the parameters M, L, C and D, the width of the phase
accumulator N, and whether a single phase or a quadrature output design is desired. The output is
a syntactically correct, synthesizable VHDL description of a DDFS that matches the specified
coefficients and parameters. In the case of a quadrature DDFS, the my and y, parameters supplied
are for the single phase case. The procedure and equations described in Section 6.1.4 are followed
to calculate the equivalent parameters for the quadrature architecture.

The script performs the following steps:

input the slope and initial amplitude ccefficients

input system parameters s, N, M, L, C, D

input whether this is a quadrature design

decompose the slope coefficients as a sum of digits

generate the header and entity declarations

declare signals

describe the phase accumulator

describe the control signals

describe the PSAC multiplexers responsible for multiplication
describe the PSAC multiplexer responsible for the initial amplitudes
describe the PSAC final sum and rounding process

describe output data conversion and the output registers

The script contains approximately 650 lines of code. The generated VHDL file sizes vary
between 170 lines of code for a single phase DDFS with 8 segments achieving 60 dBc of SFDR,
to 500 lines of code for a quadrature DDFS with 64 segments achieving 96 dBc of SFDR. The
generated VHDL also includes statements for writing output data to a binary file on disk, greatly
simplifying testing and verification.
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6.4.2 Module Compiler Language™ Description

Although a structural VHDL description is convenient in most cases, it was found that it does not

lend itself well to design optimization.

Specifically, most synthesis tools (e.g., Synopsys® FPGA Express™ and Design Compiler™) do
not automatically insert pipeline stages in order to increase the clock rate. These tools also do not
offer alternative adder architectures to the traditional ripple adder, such as a carry select adder or
carry save adder.

Consequently, the use of the Module Compiler™ tool from Synopsys® was investigated [88].
This tool greatly simplifies data-path design. It includes a library of several pre-defined
sophisticated and parameterized logic and arithmetic blocks that can be instantiated directly in
VHDL or Verilog code. It allows the description of custom blocks in a special HDL called
Module Compiler™ Language (MCL), which is very similar in format and syntax to Verilog.
These blocks can then be instantiated in other MCL code, or in VHDL or Verilog code.

Module Compiler™ accepts design constraints in terms of system clock rate, area or power
consumption. It allows the specification of different types of adders, or will automatically select
the best one based on design constraints. It also has the capability of automatically inserting
pipeline registers in the data paths where required. From a MCL description and set of design
constraints, the tool generates an optimized netlist of cells corresponding to a specified library. A
detailed report of cell usage, total cell area, timing and power cousumption estimation can be
generated. Finally, the resulting netlist can be further optimized by Synopsys® Design
Compiler™ automatically.

MCL descriptions were prepared for the quadrature DDFS designs achieving 60, 72, 84 and 96
dBc. The 60 dBc design requires approximately 150 lines of code, and the 96 dBc requires
approximately 400.
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6.5 Implementation Data and Resuits

6.5.1 Implementation in Xilinx® FPGA

The VHDL descriptions of the DDFS designs described in Table 6-3 were synthesized, mapped,
placed and routed for implementation in a Xilinx® 4010XL FPGA, in order to obtain complexity
statistics. Figure 6-25 shows the implementation statistics, in terms of Configurable Logic Block
(CLB) usage and equivalent gates, as reported by the implementation tools. In all cases, the data
is for a phase accumulator that is N = 32 bits wide.

Also shown on the figure are two second order polynomial fitting curves revealing a quadratic
relationship between design complexity and SFDR.

600 ~6000
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x__Configurable Logic Biocks
S00 ° -5000
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Figure 6-25 - FPGA implementation statistics
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6.5.2 Implementation Details for 0.18 um and 0.35 um CMOS

From Table 6-3, the four designs achieving 60, 72, 84 and 96 dBc of SFDR were selected for
implementation in 0.35 pm and 0.18 um CMOS. Module Compiler™ Language descriptions
were used, and various clock rate design constraints were imposed. The process was repeated for

different types of adders and number of pipeline stages. All designs had quadrature outputs.

Implementation data was collected after synthesis and optimization by Synopsys® Design
Compiler™. The data included the maximum clock rate, the number of cells, the total cell area
and the estimated power consumption. As discussed in Section 2.5.2, the number of transistors
was estimated by dividing the total cell area by the area of a basic NAND gate, and by
multiplying this quotient by 4. The power consumption estimate assumed random FCW input
with uniform distribution, and a load on the core output registers equal to the capacitance of a
single output cell. This value is equal to 0.158 pF and 0.025 pF for the 0.35 um and 0.18 um
libraries, respectively. The power consumption figures were normalized to units of mW/MHz.

Two different output data formats types were considered: sign and magnitude, which requires no
extra processing after the PSAC, and unsigned format, which requires extra logic and an extra
adder. This format is often required by DACs. Obviously, the impact of this extra adder on
overall complexity is more significant for the low SFDR designs.

6.5.3 0.18 um Implementation Results

Table 64 presents data for designs synthesized for a 0.18 um CMOS library assuming worst case
parameters, referred to as a “worst case library”. All designs have quadrature outputs and a phase
accumulator width of N = 32.

Figure 6-26 plots the power consumption as a function of design area. A linear best fit curve
through the data shows a linear relationship between these two quantities, which is consistent
with intuition.

Figure 6-27 plots the area as a function of SFDR for 12 designs extracted from Table 64, divided
into 3 categories: designs optimized for area, designs with few pipelines, and designs optimized
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for high clock rates with several stages of pipelining. Three 2™ order best fit curves through the
data again reveal a quadratic relationship between area and SFDR.

0

0
60.1 | 32 8 S&M 709 1443 73807 24205 0.127
7.7 | 32 0 unsigned 88 520 13961 4579 0.017
7.7 | 32 0 unsigned 150 920 19702 6461 0.023
7.7 | 32 9 unsigned 654 1753 88220 28932 0.147
842 | 32 0 unsigned 88 809 20698 6788 0.021
842 | 32 0 unsigned 125 1295 28138 9228 0.029
842 | 32 2 unsigned 250 1203 33899 11117 0.043
842 | 32 4 unsigned 340 1536 51401 16857 0.069
842 | 32 8 unsigned 500 2447 | 122920 40311 0.200
9.2 | 32 0 unsigned 70 1093 27223 8928 0.026
96.2 | 32 0 unsigned 120 1674 36647 12018 0.035
9.2 | 32 3 unsigned 265 1649 51832 16998 0.067
9.2 | 32 5 unsigned 340 2529 | 100579 32985 0.146
9.2 | 32 8 unsigned 508 3780 | 192141 63012 0.316

Table 6-4 - Synthesis results, 0.18 ;tmm CMOS worst case library

Figure 6-28 presents a plot of area as a function of maximum clock rate for the four categories of
SFDR. It can be seen that the inclusion of pipeline registers is very costly in terms of area, and, as
shown by Figure 6-26, power consumption as well. Inspection of the 0.18 um CMOS library
shows that the flip-flops are among the larger cells of the library. Their effect on system
complexity is more important for high SFDR designs because of their wider data paths and hence
larger number of flip flops required per pipeline stage.
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6.5.4 0.35 um Implementation Results

A selected group of designs were synthesized for a 0.35 um typical case library in order to
provide a meaningful comparison of the new architecture with existing work. Table 6-5 gives
design data and implementation results. The width of the phase accumulator N varies for each
coefficient set, in order to match similar designs in previous work.

Figure 6-29 summarizes the data from Table 6-5. For greater emphasis, the fast 84.2 dBc designs
are plotted with a different symbol.

The table includes an extra column showing whether regular ripple carry adders or a faster type of
adder was specified for the Module Compiler™ tool. Excluding the 60.1 dBc design, it is noted
that the linear relationship between area and power consumption does not hold as well as for the
0.18 pm design examples. For example, in the case of the two versions of the 84.2 dBc design
with a clock rate of 100 MHz, the design with larger area actually consumes less power. Although
it is very difficult to pinpoint the exact cause of this phenomenon, it is observed that the larger
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design includes one stage of pipelining. It has already been noted that in the libraries used, the

flip-flops are fairly large cells, inflating the size of the design. However, the effective power

consumption per area is less for these cells than for cells implementing logic functions. Hence, a

design with no pipelining but with complex logic to implement a carry look-ahead adder may be

smaller, yet it may consume more power. A similar observation occurs for the 84.2 dBc/320 MHz

design, and for the 96.2 dBc designs. Figure 6-30 illustrates the relationship between power and

area for these designs.

It is also observed from the 96.2 dBc design data that area and power consumption are increased

when the output is converted to unsigned format.

0 Sy Gy gy, g e e
60.1 |20 0 S&M 107 | 277 | 35752 0.089 ripple
60.1 | 20 0 S&M 108 317 | 38885 0.098 fast
7.7 |16 0 S&M 160 | 437 | 58608 0.135 fast
7.7 |16 0 S&M 160 | 381 59395 0.115 ripple
842 | 28 0 S&M 100 | 703 79135 0.175 fast
842 | 28 1 S&M 100 | 700 | 98840 0.163 ripple
842 | 28 4 s&M | 320 | 1374 | 282293 0.545 fast
842 | 28 9 S&M | 320 | 1542 | 368743 0.516 ripple
962 |32 0 S&M 100 | 1048 | 109918 0.234 fast
96.2 | 32 1 S&M 100 | 1020 | 134400 0.220 ripple
962 | 32 1 unsigned | 100 | 1194 | 137060 0.358 fast
962 | 32 1 unsigned | 100 | 1110 | 143763 0.239 ripple

Table 6-5 - Synthesis results, 0.35 um typical case library
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Figure 6-30 - Power vs area, 0.35 ;pm CMOS typical case library
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6.6 Fabricated Designs

6.6.1 60 dBc Single Phase Design Description

A single-phase version of the 60 dBc design was fabricated in 0.18 pm CMOS from the Taiwan
Semiconductor Manufacturing Company through CMC. A die picture is shown in Figure 6-31.

O P I Y b

Figure 6-31 - Die picture, 60 dBc single phase DDFS in 0.18 um CMOS

During placement and routing with automated tools, a clock constraint of 125 MHz was easily
met without having to add pipelining registers. Core power consumption is estimated at 9.6
WW/MHz for a 1.8 V supply voltage, and 7.5 uW/MHZz for a 1.6 V supply voltage. These figures
were reported by the synthesis tool, assuming a load of 0.025 pF on the output registers (i.e. the
load of one output /O cell). The 8-bit output data is in unsigned format, compatible with most
commercial DACs.
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The FCW is 16 bits wide, yielding a frequency resolution of approximately 1526 Hz for a 100
MHz reference clock. As discussed in Section 2.3.1, however, the 60 dBc SFDR performance is
guaranteed only for odd values of FCW. Hence, the “actual” frequency resolution for a 100 MHz
clock is 3052 Hz. Although a wider FCW would have improved frequency resolution, it would
also have increased the die area beyond that allowed under the fabrication grant. Serializing the
FCW input would have alleviated that problem, but at an increased tuning latency. Since this
design’s critical path is in the phase accumulator, an increase in its width may have required the
use of pipelining or fast adder architectures in order to maintain the 125 MHz clock rate target.

A total of 155 core cells are used and they occupy an area of 5773 um’. Since there was ample
core area available, very loose placement was used and the total core area is approximately 11250
um’. The chip has 36 pins, including clock and reset signals, core power pins, VO cell power
pins, and ground pins. The core cells are rated at 1.8 V supply, and the /O cells are rated at 3.3 V
supply. The input /O cells are 5 V tolerant. The final die dimensions, including /O cells and
pads, are 1321.6 um x 1181.6 um, for a total area approximately equal to 1.562 mm?. As shown
by Figure 6-31, this is a severely I/O bound chip.

6.6.2 Test Strategy and Procedure

Two dies were mounted in 40 pin DIP packages and tested with the IMS tester available in
CMC’s offices. Both chips were found to be functional, albeit with somewhat high leakage
currents as detailed below. A basic functional test was first performed with a fixed FCW input of
64,0, a clock frequency of 1 MHz, and the rated 1.8 V core supply. This FCW results in the
lowest output frequency whose period corresponds exactly to the period of the phase accumulator
output, i.e. with no phase truncation effects. The sine output was collected for one period of data
and compared with the expected sequence from the system’s HDL description. Both chips passed
this test.

The chips were then characterized with an FCW input sequence made of 20000 random values,
uniformly distributed in the interval 0 to 65535),. Again, the sine output data was collected for all
these vectors and compared with the expected sequence from the system’s HDL description. A
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“pass” was recorded when all 20000 output vectors were correct. In the absence of a standardized
test sequence for DDF Synthesizers in the literature, changing the FCW on every clock cycle this
way was found to be an acceptable approach. Although no application is foreseen where the FCW
would change so frequently, it is expected that this test should provide pessimistic operating
conditions for comparison with previous work.

The clock frequency and core supply voltage were varied for each chip to determine the range
over which correct operation was maintained. Frequencies from 10 to 100 MHz and voltages
from 1.2 to 1.8 V were considered. In the presence of a “pass” condition, the core power
consumption was measured in each case. The setup time, hold time, output delay and data valid
times were also measured.

Power consumption was also measured for fixed FCW operation for selected frequencies over the
tuning range, and for varying FCW during frequency-hopping operation.

6.6.3 Test Results

Static power consumption was measured for different core supply voltages, and the results are
presented in Table 6-6. Considering the small number of cells in this design, the leakage current
for chip 1 is very high. It also appears high for chip 2. Simulations for a 1.8 V core supply at 25
°C indicate an expected leakage power of approximately 27 nW.

—

Table 6-6 - Static core power consumption
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The timing characteristics of both chips are shown in Table 6-7. Empty table cells represent data
that was not measured. This was due to a limitation of the test equipment at the higher
frequencies, and, for chip 2, to its unfortunate destruction during testing. In the table, t,, indicates
the setup time, and t, the hold time, both for the input with respect to the clock. For the output,
the measured timing characteristics were the propagation delay Ty, which is the minimum time
after a clock transition before the data was available on the output ports, and T4, the time during
which the data remained valid and stable.

For a 1.8 V supply, the propagation delay was found to be approximately equal to 12.5 ns,
restricting chip operation to approximately 80 MHz. However, operation was found to be
unreliable, in general, for clock frequencies above 50 MHz. This is consistent with the expected
performance of the chosen 40-pin DIP package.

20 1.8 40 | 40 | 05 | 05 | 125 125 | 375 375
25 1.8 3.5 0.5 11.0 29.5

50 1.8 55 15587 87 | 120} 120

80 1.8 12.5 12.5

10 1.2 60 | 50 | 05 | 45 | 42.5 | 34.5 | 40.0 | 66.0
20 1.2 6.0 0.5 37.0 12.0

25 1.2 5.0 1.0 40.0 1.3

Table 6-7 - Timing characteristics, chips 1 and 2

Net core power consumption is shown in Table 6-8 for both chips for the case of a random FCW
input. “Net core power” means that the static power measured and reported in Table 6-6 was
removed from the observed power consumption of the chip under the stated conditions. Some
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data is missing for chip 2, as it was inadvertently destroyed during testing. Figure 6-32 presents
data from Table 6-8 corresponding to core supply voltages of 1.8 and 1.2 volts.

50 1.8 1470 1488

80 1.8 1552 not measured
83 1.8 not functional 1659

87 1.8 not functional 1738

50 1.7 877 not measured
80 1.7 not functional 1385

20 1.3 291 288

50 1.3 not functional 469

10 1.2 122 105

20 1.2 243 150

25 1.2 302 not measured

Table ¢ 3 - Net core power consumption, random FCW

It is observed that, for a 1.8 V supply, the net core power varies linearly with the clock frequency,
for frequencies below 50 MHz. After that point, however, the rate of change of power
consumption decreases, which is contrary to standard power models. This may be attributed to
reduced voltage swing of signals due to device bandwidth limitation. Furthermore, it was stated
above that the rated operating frequency of the chosen package is 50 MHz, hence measurements
above that limit are not reliable. The inconsistency may also be due to temperature effects that
were not taken into account during testing. Finally, the high leakage currents of both chips for a
supply voltage of 1.8 V cast doubts on their relative performances.
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The difference between the estimated and measured power consumption for 1.8 V supply, ~10
MW/MHz versus 20 uyW/MHz at 10 MHz and 30 puW/MHz at 50 MHz, is likely due to different
assumptions on the dynamic characteristics of the input FCW data sequence.

The best performance for chip 1 was achieved for a 1.2 V supply, with 12.1 yW/MHz net power
consumption. For chip 2, the best performance was achieved at 20 MHz and 1.2 V supply, with a
net power consumption of only 7.5 ptW/MHz. These results compare favorably with those of
recent implemented designs in the same performance range, to wit: De Caro et al. [18] (190
uW/MHz, 60 dBc, 0.35 um), and Beliaouar et al. [5] (320 yW/MHz, 64 dBc, 0.8 um).
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Figure 6-32 - Net core power consumption

Figure 6-33 plots net core power consumption as a function of FCW, for the case where the FCW
is fixed. Again, these figures represent the net power after removal of the static power. For chip 1,
the core supply voltage was 1.2 V and the clock frequency was 25 MHz. For chip 2, the figures
were 1.3 V and 50 MHz, respectively.
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Approximately two orders of magnitude separate these data with the case of random FCW input.
Power consumption in chip 1 is approximately twice that of chip 2. Important variations are
observed, even for very close FCW input values. They can be explained by the different toggle
rates of internal registers corresponding to the different FCWs.
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Figure 6-33 - Net core power consumption versus FCW input (fixed FCW)

Table 6-9 presents the /O power consumption for random FCW, and Figure 6-34 plots the /O
power consumption for fixed FCW. In the fixed FCW case, the /O power consumption is
approximately three orders of magnitude greater than the core power. For the random FCW case,
the difference is approximately two orders of magnitude. This fact and the obvious wasted silicon
area in Figure 6-31 demonstrate that it is very inefficient to implement the new architecture as a
single system in an advanced technology such as 0.18 ym CMOS. The small size and low power
consumption of the core make it an ideal Intellectual Property (IP) building block for System On
a Chip (SoC) applications.
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/O supply chip 1 chip 2
(voits) (milliwatts/MHz) | (milliwatts/MHz)
33 2.43 2.26

Table 6-9 - I/O power consumption, random FCW
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Figure 6-34 - /O power consumption versus FCW input (fixed FCW)

Table 6-10 presents net core power consumption measurements for a frequency hopping
condition with two FCWs. The core supply and clock frequency at which these measurements
were made are indicated in the table. In each case, the FCW was maintained constant during 1000
clock cyles, then switched. For chip 1, it is observed that in two cases the power consumption is
greater than for the random FCW test. For chip 2, the random test provided the worst case data.
Still, it is likely that several combinations of FCWs during frequency hopping would result in
power consumption figures higher and lower than those observed for the random FCW test.
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62720

1 26214
4660 65244 11.4 6.4
13107 30583 14.1 83
4369 30583 12.1 7.8
13107 38897 13.4 8.1

Table 6-10 - Power characteristics, two-FCW frequency hopping

6.6.4 84 dBc Design

A 84.2 dBc SFDR, 500 MHz DDFS was allotted fabrication area by CMC and was submitted for
fabrication. Contrary to the data shown in Table 6-4, the typical case cell library data (e.g. 1.8 V,
25 °C) was used at all steps of the design process. The core contains 1234 cells occupying a total
area of 47612 um’, and core power consumption is estimated at 88 uW/MHz with random FCW
input and 0.025 pF load on the output registers. The estimated number of transistors is 16000.
After placement and routing, the core area is approximately 90000 um’ and the die area is 3.8

mm’. The chip has a total of 76 /O pins, 18 of which are for power.

The quadrature outputs are in 12 bit unsigned format, and the FCW is 32 bits wide. The phase
accumulator is 33 bits wide and its LSB is forced to oscillate between 0 and 1 every clock cycle.
The effect is to force an odd value of FCW, thereby guaranteeing the 84.2 dBc performance for

all output frequencies. The resulting frequency resolution is approximately 0.116 Hz for a 500
MHz clock.

The packaged chip is expected in October 2002.
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Interpretation and Discussion

7.1 Comparison with State of the Art

As discussed in Section 2.5, it is generally very difficult to compare two DDF Synthesizer
designs because of the large number of performance parameters and design metrics involved. To
make a proper comparison, two designs should achieve the same SFDR, have the same phase
accumulator width, output type and output data format, achieve the same clock rate, and be
implemented in the same technology. The relative merits of each design would then be measured
by the core area, tuning latency and power consumption.

Table 6-5 presented data on several DDFS designs synthesized for a 0.35 um CMOS library. The
SFDR, phase accumulator width and clock rates were matched as much as possible to recent work
published in the literature. The comparison data between the present 0.35 um implementations
and existing work is summarized in Table 7-1. The total number of ROM bits is included in this
table since it is commonly reported in the literature. When reporting area, only the contribution of
core cells is considered. Because it is impractical to compare the area of two designs implemented
in different technologies, the table also includes the estimated number of transistors. This has
been calculated by dividing the total core area by the area of a basic NAND gate and multiplying
the quotient by four. Unless otherwise noted, table data is for quadrature output designs. Lastly,
the table does not include designs with modulation capability.
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{571/ 1995 100 100 36 0 1.00 | modified CORDIC
this work 96.2 100 32 960 8400 | O.110 035 optimized linesr
(64 segments) interpolation
[16]/ 2001 96.0 100 31 2304 14000 | 0.230 035 modified angular
decomposition

[68]/1991° 9.3 150 32 3072 35000 | 245 1.25 Nicholas
architecture

[15]/2001 843 100 28 832 7600 NA 0.35 modified angular
decomposition

this work 842 100 28 448 6000 | 0.079 03s optimized linear
(32 segments, v. 1) interpolation
this work 842 320 28 448 21500 | 0.282 035 optimized lincar
(32 segments, v. 2) interpolation
[75]/ 2001 825 320 N/A 0 43600 | 0.660 0.35 5" degree
Taylor series

[18] /2002 80.0 88 N/A 0 NA | 0440 0.35 optimized 3™
33000 degree polynomial

[73]1/ 2000 78.0 160 N/A 0 39000 NA 0.35 angle rotation
with feedback

this work nz 160 16 160 4500 | 0.059 0.38 optimized linear
(16 segments) interpolation
(551 /2001 676 80 16 0 11721 | 1.045 0.60 | linear interpoiation
(317 1999° 64.0 30 20 416 NA | 0.900 0.80 1* degree
Taylor series

[14]/ 2000 64.0 80 20 304 4000 NA 0.35 modified angular
decomposition

this work 60.1 107 20 80 2800 | 0.035 03s optimized linear
(8 segments) interpolation
{181 /2002 60.0 83 N/A 0 NA | 0.180 035 optimized 2™
“13700 degree polynomial

NA: data not availabie in the reference
* single phase output design;
** calculated estimate for 0.35 um CMOS based on area: 76000 transistors per mm?

Table 7-1 - Complexity and performance comparisons

131




Chapter 7: Interpretation and Discussion

Figure 7-1 summarizes the data in Table 7-1. It can be seen that the present architecture is
superior to all previous work when using the number of transistors as a complexity metric. As can
be seen from the table, the performance parameters have been fairly well matched. Comparing the
number of transistors normalizes data that is greatly dependent on technology, such as area and

power consumption, and hence it is felt that it is an appropriate comparison metric.
x 10°
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Figure 7-1 - Complexity and performance summary

The three designs by Curticipean et al. [14]{15][16] are the only ones whose performance is
stmilar to this work’s, yet the 96 dBc design requires 66% more transistors. The architecture on
which they are based includes ROMs and multipliers. However, a detailed analysis and
information disclosed in [17] reveals that the two architectures have several similarities. The
multiplication operation performed in Curticipean’s architecture is optimized by limiting the
operand width and by truncating several bits from the addition. Further, a localized search is
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performed to optimize parameter selection from initial search points established with
trigonometric identities [17].

Care must be taken when considering the performance data for the designs by Madisetti et al. [57)]
and by Nicholas et al. [68], due to the design tradeoffs that were likely needed to achieve high
clock rates in older technology. These clock rates were likely achieved with the help of several

stages of pipelining and the use of fast cells, and hence these designs are not easily compared to
the remainder of the designs in the table.

7.2 Complexity Increase with SFDR Performance

This section discusses the observed relationship between the complexity of the new architecture
with the SFDR. The validity of the high level design metrics used during the design process is
also compared to the observed complexity data obtained after implementation.

7.2.1 Quadratic Relationship

A quadratic relationship between system complexity and achieved SFDR was noted in the high-
level complexity metrics (Figure 6-12) and in the implementations in FPGA (Figure 6-25), 0.18
um (Figure 6-27) and 0.35 um (Figure 6-29) CMOS. However, Figure 54 shows that the
required number of linear segments, and hence the complexity in terms of 2:1 multiplexers, is
doubled for each 12 dBc increase in output SFDR. One would therefore expect an exponential
rather than a quadratic relationship between complexity and SFDR.

However, the cost in multiplexers is only a portion of overall system complexity. A significant
contribution comes from the multi-operand adder. Inspection of Table 6-3 reveals that the
progression in the width D of the multi-operand adder is fairly linear over the range of SFDRs
considered. The same is true for parameters M, L, and C. Further, the number of addends
increases only by one in the same range. Hence, the overall effect is not exponential, and the
observed quadratic relation is expected to hold above 100 dBc SFDR.
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7.2.2 High Level Metrics versus Implementation Data

The number of transistors estimated by the high level design metrics described in Section 6.2 and
by the area method for 0.35 um and 0.18 um implementations can be compared. Selected data
from Table 6-3, Table 6-4 and Table 6-5 is plotted in Figure 7-2 to highlight differences and

similarities.

14000

-~ high ;ovol ostlmtr.
o 0.18 um data

12000

transistors

L L s 3 L L L
054 60 (] 72 78 84 90 9% 102
Spuriocus Free Dynamic Range (SFOR)

Figure 7-2 - Comparison of PSAC complexity estimates

The 0.18 um and 0.35 um implementation data comes from designs without pipelining and hence
with lower maximum clock rates. Complexity data on designs with higher clock rates is not
included, since the high-level complexity metrics do not include the contribution from pipelining
registers or the use of fast cells. The number of transistors shown for these two technologies was
adjusted to take into account the contribution of the phase accumulator. It was assumed that, on
average, the phase accumulator contributes 45.3 transistors per bit. This average was calculated
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by adding the area occupied by one full adder and one D flip-flop, with respect to a basic two
input NAND gate. Removing the contribution from the phase accumulator provides a betrer
comparison with the high level metrics, which do not make provision for it. The goal of the high
design metrics is to allow the comparison of various choices for the implementation of the PSAC,

and not the remainder of the system.

The high-level estimate of the number of transistors appears to be too low at low SFDR and too
high at high SFDR. At low SFDR, the difference can be explained by the assumption of single
phase output in the case of the high-level metrics, and by the fact that neither quadrant symmetry
circuitry nor output data conversion are considered. For high SFDR, the larger designs lend
themselves well to optimization by the synthesis tool, exploiting redundancy in the multiplexer
input ports and using efficient multiple-inputs cells. Multiplexer optimization is obviously not
captured well by the high-level estimates. The optimization of the multi-operand adders is also
not included in the high level metrics. As shown in 6.1.2, several bits from some operand may be
zeros, simplifying the adder’s implementation.

The *hump’ in 0.35 um data at 72 dBc is explained by the fact that this design contains fast cells

in order to achieve a 160 MHz clock rate.

Overall, Figure 7-2 shows that the high level complexity metrics provide an accurate method of
comparing the relative complexity of coefficient sets and design parameters early in the design

cycle.

7.2.3 0.35umvs 0.18 um Data

Figure 7-2 shows a very close match in the number of required transistors to implement designs
in either 0.35 um and 0.18 um technologies. The constant difference between the two can be
explained by the fact that the 0.18 um data is for a worst case library, while the 0.35 um data is
for a typical case library.
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Conclusion

8.1 Summary of the Contribution

This thesis has presented a new approach to the design of DDF Synthesizers. The approach is
based on the approximation of a sinusoid with piecewise continuous linear segments whose
slopes and initial amplitudes are selected to optimize the output SFDR. The selection of the
segment slopes is constrained to keep hardware implementation costs low by eliminating the
requirement for multipliers. A theoretical basis to the new approach was given, relating the
maximum SFDR that could be attained and the number of linear segments used. A systematic
design procedure was described. New DDFS architectures were introduced. Several design
examples were given, showing that the maximum performance bound could be achieved in spite
of restrictions imposed on the selection system parameters. The new approach and new
architectures were validated with several implemented designs of varying complexities and
performance characteristics, comparing favorably with existing work.

8.2 Completion of Research Objectives

The research objectives initially set out where fully met.

An innovative sinusoid generation technique based on a hardware-optimized linear interpolation
technique was devised for use in Direct Digital Frequency Synthesizers. It was applied to the
development of novel DDFS architectures achieving various levels of SFDR. The new technique
reduces system complexity significantly, when compared with prior work, while maintaining
superior output spectral characteristics, high data rates, and low tuning latency.
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A proof relating the achievable SFDR to the number of linear segments used in the interpolation
was presented. A major impact of this proof is that it validates the hardware optimizations made
in the proposed architectures.

A systematic design procedure was presented and applied successfully.

High level design metrics applicable to the new technique were defined in order to facilitate the
design space exploration early into the design cycle. These were applied successfully for the
selection of the sample designs. A very good match to actual implementation data was observed.

An automated synthesis algorithm was developed, implemented as a Matlab™ script and used

successfully.

Several DDFS designs achieving SFDRs in the range of 60 to 96 dBc were produced, simulated
and implemented in three technologies: FPGA, 0.18 ym CMOS and 0.35 um CMOS.
Performance parameters and complexity metrics were extracted for each design. Two designs

were submitted for fabrication following two successful fabrication grant requests.

Finally, the implementation data was used to compare the present work to the state of the art, and
to verify the validity of the new approach.

8.3 Recommendations for Future Work

The work presented in this thesis could be extended in several ways, offering promising new

research projects.

The linear segmentation approach analyzed in Chapter 5 was shown to be a special case of
polynomial segmentation, described in general by Equation (3-12). The relationship found
between the SFDR and the number of linear segments should be extended to polynomials of
degree 2 and 3, and possibly to polynomials of arbitrary degree. Similarly, the design procedure
should also be extended to high degree polynomials. This would lead to new corresponding
architectures. Issues concerning the most efficient implementation of integer power functions

would have to be resolved. Architectures with multipliers and architecture without multipliers
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would have to be investigated. It may still be possible to quantize multiplier coefficients with few
signed digits. Design complexity metrics would have to be developed for each new architecture to
assess the relative complexities of coefficient sets and system parameters during the design
process.

A fundamental requirement in communications systems is the mixing process. It normally
involves a complex multiplication, which is a costly operation in terms of hardware. It may be
possible to design the DDF Synthesizer with this operation in mind, i.e. to reduce the overall
system complexity of the synthesizer/mixer. One candidate approach would involve an alternative
number representation system, such as the Logarithmic or Residue Number Systems (LNS and
RNS). In the logarithmic case, the DDFS output may no longer be a sequence representing the
sine function, but the logarithm of the sine function instead.

Although the new architecture that was presented does not include multipliers per se, it is
suspected that at very high SFDR, e.g. greater than 120 dBc, the minimum number of signed
digits required to represent linear segment slopes will be so great that it may be more efficient to
use the traditional combination of a ROM and a multiplier. The breakeven point, if any, should be
determined. If it exists, then issues concerning efficient multiplier implementation using rounding

and/or error correction would have to be investigated.

The hardware implemented designs discussed in Chapter 6 were synthesized for general-purpose
libraries of cells. It is believed that the new architectures would be well adapted to multiplexer-
friendly techniques such as pass-transistor logic. Although this technique suffers from Vr drop, it
is very efficient in terms of number of transistors necessary to implement multiplexers and in
terms of power consumption. At the very least, the multiplexers described in the new architecture
could be implemented from special pass-transistor logic cells to observe the effect on overall
system complexity and performance.

This work has shown that approximate calculations can be enough” for data processing
systems working with or producing analog signals. Thus, the linear interpolation scheme
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described herein may be applicable to areas not related to frequency synthesis. These include fast
approximate FFT calculations and data compression.

In summary, it is believed that several chapters remain to be written on the topic of Direct Digital
Frequency Synthesizer architectures.

139



(1

(2]

(3]

(4]
(5]

(6]
7
(8]
(9

(10}

(11]

(12]

(13]

References

E. Adler, J. Clark, M. Conn, P. Phuong, and B. Scheiner, “Low-cost technology for
multimode radar,” IEEE Aerospace and Electronics Systems Magazine, vol. 14, June
1999, pp. 23-27.

V. Andrews, C.T.M. Chang, J.D. Cayo, S. Sabin, W.A White, and M.P. Harris, “A
monolithic digital chirp synthesizer chip with I and Q channels,” IEEE Journal of Solid
State Circuits, vol. 27, no. 10, October 1992, pp. 1321-1326.

A. Bellaouar, M.S. O’brecht, A.M. Fahim, and M.I. Elmasry, “Low-power direct digital
frequency synthesis for wireless communications,” in Proceedings of the IEEE 1999
Custom Integrated Circuits Conference, 1999, pp. 593-596.

A. Bellaouar, M.S. O’brecht, and M.I. Elmasry, “Low-power direct digital frequency
synthesizer architecture,” U.S. Patent 5 999 581, 7 December, 1999.

A. Bellaouar, M.S. O’brecht, A.M. Fahim, and M.I. Elmasry, “Low-power direct digital
frequency synthesis for wireless communications,” IEEE Journal of Solid State Circuits,
vol. 35, no. 3, March 2000, pp. 385-390.

B.E. Bjerede, “Suppression of spurious frequency components in direct digital frequency
synthesizer,” U.S. Patent 5 073 869, 17 December, 1991.

A.L. Bramble, “Direct digital frequency synthesis,” in Proceedings of the 35* Annual
Frequency Control Symposium, 1981, pp. 406-414.

D.E. Calbaza and Y. Savaria, “Direct digital frequency synthesis of low-jitter clocks,”
IEEE Journal of Solid State Circuits, vol. 36, no. 3, March 2001, pp. 570-572.

L. Callegaro and V. D’Elia, “A synchronized two-phase sinewave generator for AC
metrology system compensations,” [EEE Transactions on Instrumentation and
Measurement, vol. 49, no. 2, April 2000, pp. 320-324.

F. Cardells-Tormo and J. Valls-Coquillat, “Optimization of direct digital frequency
synthesisers based on CORDIC,” Electronic Letters, 11 October 2001, Vol. 37, No. 21,
pp. 1278-1280.

G. Chang, A. Rofougaran, M. Ku, A.A. Abidi, and H. Samueli, “A low-power CMOS
digitally synthesized 0-13 MHz agile sinewave generator,” in IEEE International Solid
State Circuits Conference Digest of Technical Papers, May 1994, pp. 32-33.

S. Ciglaric, D. Fefer, and A. Jeglic, “Special Considerations for Altemnatively Designed
Digital Phase Angle Standard,” [EEE Transactions on Instrumentation and
Measurement, vol. 47, no. 1, February 1998, pp. 199-203.

M.P. Craig, “Design and VLSI implementation of the quadrature conversion, filtering,
and decimation of narrow band signals,” Master’s of Engineering thesis, Royal Military
College of Canada, 1992.

140



[14]

[15]

(16]

(17
(18]
[19]

(20]

[21]
(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

F. Curticipean and J. Niittylahti, “Low power direct digital frequency synthesizer,” in
Proceedings of the 43" IEEE Midwest Symposium on Circuits and Systems, Lansing MI,
9-11 August 2000, pp. 822-825.

F. Curticipean and J. Niittylahti, “A hardware efficient direct digital frequency
synthesizer,” in Proceedings of the IEEE International Conference on Electronics,
Circuits and Systems, Malta, 2-5 September 2001, pp. 51-54.

F. Curticipean, K.I. Palomiki and J. Niittylahti, “Direct digital frequency synthesiser
with high memory compression ratio,” Electronic Letters, 11 October 2001, Vol. 37, No.
21, pp. 1275-1277.

F. Curticipean, private communications, Winter and Spring 2002.

D. De Caro, E. Napoli and A.G.M. Strollo, “Direct digital frequency synthesizers using
high-order polynomial approximation,” in IEEE International Solid State Circuits
Conference, Digest of Technical Papers, San Diego, 3-7 February 2002, pp. 134-135.

A. Edwin, “Direct-digital synthesis applications,” Microwave Journal, vol. 33, no. 1,
January 1990, pp. 149-151.

L. Fanucci, R. Roncella and R. Saletti, “A sine wave digital synthesizer based on a
quadratic approximation,” in Proceedings of the IEEE International Frequency Control
Symposium, 2001, pp. 806-810.

M.J. Flanagan and G.A. Zimmerman, “Spur-reduced digital sinusoid synthesis,” /EEE
Transactions on Communications, vol. 43, no. 7, July 1995, pp. 2254-2262.

R.A. Freeman, “Digital sine conversion circuit for use in direct digital synthesizers,” U.S.
Patent 4,809,205, 28 February 1989.

J.F. Garvey and D. Babitch, “An exact spectral analysis of a number controlled oscillator
based synthesizer,” in Proceedings of the 44* Annual Frequency Control Symposium,
1990, pp. 511-521.

R. Giannini, S. Tonkovic, and V. Kozina, “A DSP based method for audio stimuli
generation,” in Proceedings of the 19" Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, 30 October 30 — 2 November 1997, vol. §,
pp- 1974-1977.

D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, 1989.

B.G. Goldberg, Digital Frequency Synthesis Demystified, LLH Technology Publishing,
1999.

E. Grayver and B. Daneshrad, “Direct digital frequency synthesis using a modified
CORDIC,” in Proceedings of the IEEE International Symposium on Circuits and
Systems, 1998, pp. 241-244,

R. Hassun and A.W. Kovalick, “Waveform synthesis using multiplexed parallel
synthesizers,” U.S. Patent 4 454 486, 12 June, 1984.

B.H. Hutchinson, Jr., “Contemporary frequency synthesis techniques,” Frequency
Synthesis: Techniques and Applications, J. Gorski-Popiel, Ed., New York: IEEE Press,
1975, pp. 2545.

141



[30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]
(40]

[41]

[42]

(43]

[44]
[45]

I. Janiszewski, B. Hoppe and H. Meuth, “Precision and performance of numerically
controlled oscillators with hybrid function generators,” in Proceedings of the IEEE
International Frequency Control Symposium, Seattle, Washington, 6-8 June, 2001.

[. Janiszewski, B. Hoppe and H. Meuth, “VHDL-based design and design methodology
for reusable high performance direct digital frequency synthesizers,” in Proceedings of
the Design Automation Conference, Las Vegas, Nevada, 18-22 June, 2001.

S.C. Jasper, “Frequency resolution in a digital oscillator,” U.S. Patent 4 652 832, 24
March, 1987.

J. Jiang and E.K.F. Lee, “A ROM-less direct digital frequency synthesizer using
segmented nonlinear digital-to-analog converter,” in Proceedings of the [EEE Custom
Integrated Circuits Conference, San Diego, CA, May 6-9, 2001, pp. 165-168.

J. Jiang and E.K.F. Lee, “Segmented sine wave digital-to-analog converters for frequency
synthesizer,” in Proceedings of the IEEE Symposium on Circuits and Systems, Sydney,
Australia, May 6-9, 2001, pp. 520-523.

M. Kanazawa et al., “Beam test of the acceleration system with the DDS in HIMAC
synchrotron,” in Proceedings of the Particle Accelerator Conference, 12-16 May 1997,
vol. 2, pp. 2347 - 2349.

G.W. Kent and N.-H. Sheng, “A high purity, high speed direct digital synthesizer,” in
Proceedings of the IEEE International Frequency Control Symposium, pp. 207-211,
1993.

R.J. Kerr and L.A. Weaver, “Pseudorandom dither for frequency synthesis noise,” U.S.
Patent 4 901 265, 13 February 1990.

E.C. Kisenwether and W.C. Troxell, “Performance analysis of the numerically controlled
oscillator,” in Proceedings of the 40" Annual Symposium on Frequency Control, 1986,
pp. 373-378.

E. Kreyszig, Advanced Engineering Mathematics, 6® Ed., John Wiley & Sons, 1988,
Section 10.6.

V.F. Kroupa, “Spectral purity of direct digital frequency synthesizers,” in Proceedings of
the 44* Annual Symposium on Frequency Control, 1990, pp. 498-510.

V.F. Kroupa, “Discrete spurious signals and background noise in direct digital frequency
synthesizers,” in Proceedings of the IEEE International Frequency Control Symposium,
1993, pp. 242-249.

V.F. Kroupa, “Spectral properties of DDFS: computer simulations and experimental
verifications,” in Proceedings of the IEEE International Frequency Control Symposium,
1994, pp. 613-623.

V.F. Kroupa, “Phase and amplitude disturbances in direct digital frequency synthesizers,”
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 3,
May 1999, pp. 481-486.

V.F. Kroupa, Ed., Direct Digital Frequency Synthesizers, IEEE Press, 1999.

V.F. Kroupa, V. Cizek, J. Stursa, and H. Svandova, “Spurious signals in direct digital
frequency synthesizers due to the phase truncation,” IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, vol. 47, no. 5, September 2000, pp. 1166-1172.

142



[46]

[47]

(48]

[49]

[50]

(51

[52]

(53]

(54]

(551

(56]

(57]

(58]

[59]

[60]

J.M.P. Langlois, “Design and implementation of wide band quadrature demodulators on
Field Programmable Gate Arrays,” Master’s of Engineering thesis, Royal Military
College of Canada, May 1999.

J.M.P. Langlois and D. Al-Khalili, “Low complexity direct digital frequency synthesizer
with high spectral purity,” U.S. Patent Provisional Application, August 2001.

J.M.P. Langlois and D. Al-Khalili, “ROM size reduction with low processing cost for
direct digital frequency synthesis,” in Proceedings of the IEEE Pacific Rim Conference
on Communications, Computers and Signal Processing, Victoria, BC, August 2001, pp.
287-290.

JM.P. Langlois and D. Al-Khalili, “Efficient sine amplitude computation for direct
digital frequency synthesis,” in Proceedings of the IEEE International Symposium on
Signal Processing and Information Technology, Cairo, Egypt, December 2001.

J.M.P. Langlois and D. Al-Khalili, “A low power direct digital frequency synthesizer
with 60 dBc spectral purity,” in Proceedings of the ACM Great Lakes Symposium on
VLSI, New York, NY, April 2002, pp. 166-171.

JMP. Langlois and D. Al-Khalili, “Hardware optimized direct digital frequency
synthesizer architecture with 60 dBc spectral purity,” in Proceedings of the IEEE
International Symposium on Circuits and Systems, Phoenix AZ, May 2002, pp. 361-364.

J.M.P. Langlois and D. Al-Khalili, “A new approach to the design of low power direct

digital frequency synthesizers,” in Proceedings of the IEEE International Frequency
Control Symposium, New Orleans, Louisiana, May 2002.

JM.P. Langlois and D. Al-Khalili, “A quadrature direct digital frequency synthesizer
architecture using piecewise-continuous linear segments,” in Proceedings of the Queen's
Biennial Symposium on Communications, Kingston, Ontario, June 2002, pp. 463-467.

J.C.H. Latour, “High-speed complex multiplier integrated circuit with emphasis on low
power design,” Master’s of Engineering thesis, Royal Military College of Canada, 1995.

S.-L Liu, T.-B. Yu and H.-W. Tsao, “Pipeline direct digital frequency synthesiser using
decomposition method,” IEE Proceedings on Circuits, Devices and Systems, vol. 148, no.
3, June 2001, pp. 141-144.

H.-C. Liu, J.S. Min, and H. Samueli, “A low-power baseband receiver IC for frequency-

hopped spread spectrum communications,” [EEE Journal of Solid State Circuits, vol. 31,
no. 3, March 1996, pp. 384-394.

A. Madisetti, A. Kwentus, and A.N. Willson Jr., “A sine/cosine direct digital frequency
synthesizer using an angle rotation algorithm,” in IEEE International Solid State Circuits
Conference Digest of Technical Papers, 15-17 February 1995, pp. 262-263.

A. Madisetti and A.Y. Kwentus, “Method and apparatus for direct digital frequency
synthesizer,” U.S. Patent 5 737 253, 7 April 1998.

A. Madisetti, A.Y. Kwentus, and A.N. Willson, Jr., “A 100-MHz, 16-b, direct digital
frequency synthesizer with a 100-dBc spurious-free dynamic range,” IEEE Journal of
Solid State Circuits, vol. 34, no. 8, August 1999, pp. 1034-1043.

V. Manassewitsch, Frequency Synthesizers, Theory and Design, 2™ ed., New York:
Wiley, 1989.

143



[61]

(62]

(63]

[64]
(65]

[66]

(67

(68]

[69]

[70]

(71]

(72]

(73]

[74]

[75]

E.M. Mattison and L.M. Coyle, “Phase noise in direct digital synthesizers,” in
Proceedings of the 42nd Annual Frequency Control Symposium, 1988, pp. 352-356.

S. Mehrgardt, “Noise spectra of digital sine-generators using the table-lookup method,”
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 31, August 1983,
pp. 1037-1039.

S. Mortezapour and E.K.F. Lee, “Design of low-power ROM-less direct digital frequency
synthesizer using nonlinear digital-to-analog converter,” I[EEE Journal of Solid State
Circuits, vol. 34, no. 10, October 1999, pp. 1350-1359.

T. Nakagawa and H. Nosaka, “A direct digital synthesizer with interpolation circuits,”
IEEE Journal of Solid State Circuits, vol. 32, May 1997, pp. 766-770.

J.A. Nelder and R. Mead, “A simplex method for function minimization,” Computer
Journal, Vol. 7, 1965, pp. 308-313.

H.T. Nicholas III and H. Samueli, “An analysis of the output spectrum of direct digital
frequency synthesizers in the presence of phase-accumulator truncation,” in Proceedings
of the 41* Annual Symposium on Frequency Control, 1987, pp. 495-502.

H.T. Nicholas III, H. Samueli and B. Kim, “The optimization of direct digital frequency
synthesizer performance in the presence of finite word length effects,” in Proceedings of
the 42nd Annual Symposium on Frequency Control, 1988, pp. 357-363.

H.T. Nicholas IIl and H. Samueli, “A 150-MHz direct digital frequency synthesizer in
1.25 ym CMOS with -90 dBc spurious performance,” in Proceedings of the IEEE
International Solid State Circuits Conference, 1991.

H.T. Nicholas III and H. Samueli, “A 150-MHz direct digital frequency synthesizer in

1.25 ym CMOS with -90 dBc spurious performance,” [EEE Journal of Solid State
Circuits, vol. 26, no. 12, December 1991, pp. 1959-1969.

J. Nieznanski, “An alternative approach to the ROM-less direct digital synthesis,” /JEEE
Journal of Solid State Circuits, vol. 33, no. 1, January 1998, pp. 169-170.

H. Nosaka, T. Nakagawa, and A. Yamagishi, “A phase interpolation direct digital
synthesizer with a digitally controlled delay generator,” in Symposium on VLSI Circuits
Digest of Technical Papers, 1997, pp. 75-76.

P. O'Leary and F. Maloberti, “A direct-digital synthesizer with improved spectral
performance," [EEE Transactions on Communications, vol. 39, no. 7, July 1991, pp.
1046-1048.

K.I. Palomiki, J. Niitylahti and Lehtinen, “A pipelined digital frequency synthesizer
based on feedback,” in Proceedings of the 43" IEEE Midwest Symposium on Circuits
and Systems, Lansing M1, 9-11 August 2000.

K.L. Palomiki and J. Niitylahti, “Direct digital frequency synthesizer architecture based
on Chebyshev approximation,” in Proceedings of the 34* Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, CA, 29 October — 1 November, 2000,
pp. 1639-1643.

K.I. Palomiki and J. Niittylahti, “A quadrature phase-to-amplitude converter based on
Taylor series approximation,” in Proceedings of the 3™ International Conference on
Information, Communications and Signal Processing, Singapore, 15-18 October 2001.

144



[76]

7

(78]

[79]

(80]

[81]

(82]

[83]

(84]

(85]

[86]

(871

(88]
(89]

V. Reinhardt, K. Gould, K. McNab, and M. Bustamante, “A short survey of frequency
synthesizer techniques,” in Proceedings of the 40" Annual Symposium on Frequency
Control, 1986, pp. 355-365.

V.S. Reinhardt, K.V. Gould, and K.M. McNab, “Randomized digital/analog converter
direct digital synthesizer,” U.S. Patent 5 014 231, 7 May, 1991.

A. Rofougaran et al., “A single-chip 900-MHz spread-spectrum wireless transceiver in 1-
pm CMOS - Part I: Architecture and transmitter design,” IEEE Journal of Solid State
Circuits, vol. 33, no. 4, April 1998, pp. 515-534.

A. Rofougaran et al., “A single-chip 900-MHz spread-spectrum wireless transceiver in 1-
pm CMOS - Part II: Receiver design,” IEEE Journal of Solid State Circuits, vol. 33, no.
4, April 1998, pp. 535-547.

PH. Saul and M.S.J. Mudd, “A direct digital synthesizer with 100-MHz output
capability,” IEEE Journal of Solid State Circuits, vol. 23, no. 3, June 1988, pp. 819-821.

P.H. Saul and D.G. Taylor, “A high-speed digital frequency synthesizer,” IEEE Journal
of Solid State Circuits, vol. 25, no. 1, February 1990, pp. 215-220.

S.S. Shah and S. Colling, “A 200 MHz analogue-ROM based direct digital frequency
synthesizer with amplitude modulation,” in Proceedings of the IEEE International
Symposium on VLSI Technology, Systems and Applications, Hsinchu, Taiwan, April 18-
20, 2001, pp. 53-56.

AM. Sodagar and G.R. Lahiji, “Parabolic approximation: a new method for phase-to-
amplitude conversion in sine-output direct digital frequency synthesizers” in Proceedings
of the International Symposium on Circuits and Systems, Switzerland, May 2000, pp.
515-518.

AM. Sodagar and G.R. Lahiji, “A novel architecture for ROM-less sine-output direct
digital frequency synthesizers by using the 2™-order parabolic approximation,” in
Proceedings of the IEEE/IEA International Frequency Control Symposium, Kansas City,
Missouri, 7-9 June 2000, pp. 284-289.

AM. Sodagar and G.R. Lahiji, “Mapping from phase to sine-amplitude in direct digital
frequency synthesizers using parabolic approximation,” [EEE Transactions on Circuits
and Systems-II: Analog and Digital Signal Processing, vol. 47, no. 12, December 2000,
pp. 1452-1457.

A.M. Sodagar and G.R. Lahiji, “A pipelined ROM-less architecture for sine-output direct
digital frequency synthesizers using the second-order parabolic approximation,” /EEE
Transactions on Circuits and Systems - II: Analog and Digital Signal Processing, vol. 48,
no. 9, September 2001, pp. 850-857.

D.A. Sunderland, R.A. Strauch, S.S. Wharfield, H.T. Peterson and CR. Cole,

“CMOS/SOS frequency synthesizer LSI circuit for spread spectrum communications,”
IEEE Journal of Solid State Circuits, vol. 19, August 1984, pp. 497-505.

Synopsys Inc., Module Compiler User Guide, version 2000.05, May 2000.

H. Szu, R. Stapleton, and F. Willwerth, “Digital radar commercial applications,” in
Proceedings of the IEEE International Radar Conference, Arlington VA, May 7-12 2000,
pp- 717-722.

145



[90]

[91]

(92]
(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]
(101
[102]
[103]
[104]

[105]

L.K. Tan and H. Samueli, “A 200 MHz quadrature digital synthesizer/mixer in 0.8 um
CMOS,” IEEE Journal of Solid State Circuits, vol. 30, no. 3, March 1995, pp. 193-200.

LK. Tan, E.W. Roth, G.E. Yee, and H. Samueli, “An 800 MHz quadrature digital

synthesizer with ECL-compatible output drivers in 0.8 um CMOS,” I[EEE Journal of
Solid State Circuits, vol. 30, no. 12, December 1995, pp. 1463-1473.

J. Tiermey, CM. Rader and B. Gold, “A digital frequency synthesizer,” IEEE
Transactions on Audio and Electroacoustics, vol. AU-19, 1971, pp. 48-57.

J. Tiemey, “Digital frequency synthesizers,” Frequency Synthesis: Techniques and
Applications, J. Gorski-Popiel, Ed., New York: [EEE Press, 1975, pp. 121-149.

A. Torosyan and A.N. Willson, Jr., “Analysis of the output spectrum for direct digital
frequency synthesizers in the presence of phase truncation and finite arithmetic
precision,” in Proceedings of the 2 International Symposium on Image and Signal
Processing and Analysis, pp. 458-463.

A. Torosyan, D. Fu and ANN. Willson, Jr., “A 300 MHz quadrature direct digital
synthesizer/mixer in 0.25 um CMOS,” in [EEE International Solid State Circuits
Conference, Digest of Technical Papers, San Diego, 3-7 February 2002, pp. 132-133.

S. Twelves, and CJ. Kikkert, “Performance of a digital stereco FM modulator with
reduced output resolution,” /EEE Transactions on Broadcasting, vol. 43, March 1997,
pp. 104 - 113.

J. Vankka, “Methods of mapping from phase to sine amplitude in direct digital
synthesis,” in Proceedings of the IEEE Frequency Control Symposium, 1996, pp. 942-
950.

J. Vankka, “Spur reduction techniques in sine output direct digital synthesis,” in
Proceedings of the IEEE Frequency Control Symposium, 1996, pp. 951-959.

G.-J. van Rooyen and J.G. Lourens, “A quadrature baseband approach to direct digital
FM synthesis,” [EEE Transactions on Broadcasting, vol. 46, no. 3, September 2000, pp.
227-230.

J. Volder, “The CORDIC trigonometric computing technique,” /RE Transactions on
Electronic Computers, vol. EC-8, no 3, September 1959, pp. 330-334.

L.A. Weaver Jr. and R.J. Kerr, “High resolution phase to sine amplitude conversion,”
U.S. Patent 4 905 177, 27 February, 1990.

C.E. Wheatley III and D.E. Phillips, “Spurious suppression in direct digital synthesizers,”
in Proceedings of the 35* Annual Frequency Control Symposium, 1981, pp. 428-435.
C.E. Wheatley III, “Digital frequency synthesizer with random jittering for reducing
discrete spectral spurs,” U.S. Patent 4 410 954, 18 October, 1983.

Y. Wu and J. Li, “The design of digital radar reccivers,” [EEE Aerospace and Electronic
Systems Magazine, January 1998, pp. 3541.

A. Yamagishi, M. Ishikawa, T. Tsukahara, and S. Date, “A 2-V, 2-GHz low-power direct
digital frequency synthesizer chip-set for wireless communication,” in Proceedings of the
IEEE Custom Integrated Circuits Conference, 1995, pp. 319-322.

146



[106] A. Yamagishi, M. Ishikawa, T. Tsukahara, and S. Date, “A 2-V, 2-GHz low-power direct
digital frequency synthesizer chip-set for wireless communication,” /EEE Journal of
Solid State Circuits, vol. 33, no. 2, February 1998, pp. 210-217.

[107] A. Yamagishi, H. Nosaka, M. Muraguchi, and T. Tsukahara, “A phase-interpolation
direct digital frequency synthesizer with an adaptive integrator,” IEEE Transactions on
Microwave Theory and Techniques, vol. 48, no. 6, June 2000, pp. 905-909.

[108] G. Zhang, D. Al-Khalili, R. Inkol, R. Saper, “A novel approach to the design of I/Q
demodulation filters,” IEE Proceedings on Vision, Image and Signal Processing, vol.
141, no. 3, June 1994, pp. 154-160.

147



Bibliography

J.-C. Chih, J.-Y. Chou, S.-G. Chen, “An efficient direct digital frequency synthesizer based on
two-level table lookup,” in Proceedings of the IEEE International Frequency Control
Symposium, 2001, pp. 824-827.

K.-H. Cho and H. Samueli, “A frequency-agile single-chip QAM modulator with beamforming
diversity,” IEEE Journal of Solid State Circuits, vol. 36, no. 3, March 2001, pp. 398-407.

W.A. Chren Jr, “RNS-based enhancements for direct digital frequency synthesis,” IEEE
Transactions on Circuits and Systems I, vol. 42, no. 8, August 1995, pp. 516-524.

W.A. Chren Jr., “Low delay-power product CMOS design using one-hot residue coding,” in

Proceeding of the 1995 International Symposium on Low Power Design, Dana Point, CA, 1995,
pp. 145-150.

W.A. Chren Jr,, “One-hot residue coding for low delay-power product CMOS design,” IEEE
Transactions on Circuits and Systems II, vol. 45, no. 3, March 1998, pp. 303-313.

B. De Smedt and G. Gielen, “Models for systematic design and verification of frequency
synthesizers,” [EEE Transactions on Circuits and Systems -l: Analog and Digital Signal
Processing, vol. 46, no. 10, October 1999, pp. 1301-1308.

M.D. Ercegovac and T. Lang, “Fast cosine/sine implementation using on-line CORDIC,” in
Proceedings ot the 21" Annual Asilomar Conference on Signals, Systems and Computers, 2-4
November 1987, pp. 222-226.

R. Ertl and J. Baier, “Increasing the frequency resolution of NCO-systems using a circuit based
on a digital adder,” I[EEE Transactions on Circuits and Systems II, vol. 43, March 1996, pp. 266-
269.

B. Giebel, J. Lutz, and P. O’Leary, “Digitally controlled oscillator,” IEEE Journal of Solid State
Circuits, vol. 24, no. 6, June 1989, pp. 640-645.

R.P. Giffard and L.S. Cutler, “A low frequency, high resolution digital synthesizer,” in
Proceedings of the 46® Annual Frequency Control Symposium, 1992, pp. 188-192.

M.T. Hill and A. Cantoni, “An integrated high-frequency narrow-band high-resolution
synthesizer,” IEEE Transactions on Circuits and Systems -II: Analog and Digital Signal
Processing, vol. 46, no. 9, September 1999, pp. 1171-1178.

M. Kosunen, J. Vankka, M. Waltari, L. Sumanen, K. Koli and K. Halonen, “A CMOS quadrature
baseband frequency synthesizer/modulator,” 4nalog Integrated Circuits and Signal Processing,
vol. 18, no. 1, January 1999, pp. 55-67.

L.J. Kushner, “The composite DDS — a new direct digital synthesizer architecture,” in
Proceedings of the 47* Annual Frequency Control Symposium, 1993, pp. 255-260.
R. Larsen and S.-L. Lu, “Interpolation-based digital quadrature frequency synthesizer,” in

Proceedings of the IEEE International ASIC/SOC Conference, Arlington, VA, September 13-16,
2000, pp. 48-52.

148



LK. Lau, R. Jain, H. Samueli, H.T. Nicholas and E.G. Cohen, “A silicon compiler for direct

digital frequency synthesis,” Journal of VLSI Signal Processing, vol. 4, no. 2-3, 1992, pp. 213-
226.

L. Lo Presti and G. Cardamone, “A direct digital frequency synthesizer using an IIR filter
implemented with a DSP microprocessor,” in Proceedings of the 1994 IEEE International
Conference on Acoustics, Speech and Signal Processing, vol. 3, April 1994, pp. 201-204.

L. Lo Presti, G. Cardamone, A De Marchi and E. Rubiola, “A new architecture for a sine-wave

output DDS with high spectral purity,” Direct Digital Frequency Synthesizers, V.F. Kroupa, Ed.,
[EEE Press, 1999, pp. 352-357.

F. Lu, H. Samueli, J. Yuan, and C. Svensson, “A 700-MHz 24-b pipelined accumulator in 1.2 Hm
CMOS for application as a numerically controlled oscillator,” IEEE Journal of Solid State
Circuits, vol. 28, no. 8, August 1993, pp. 878-886.

U. Meyer-Bise, S. Wolf, and F. Taylor, “Accwaulator-synthesizer with error-compensation,”
IEEFE Transactions on Circuits and Systems —1I: Analog and Digital Signal Processing, vol. 45,
no. 7, July 1998, pp. 885-890.

J.S. Min and H. Samueli, “Analysis and design of a frequency-hopped spread-spectrum
transceiver for wireless personal communications,” /[EEE Transactions on Vehicular Technology,
vol. 49, no. S, September 2000, pp. 1719-1731.

P. Nagvajara, T.R. Damarla, J. Wang, and S. Chansilp, “A phase-coherent numerically controlled
oscillator based on pipeline architecture,” in //* annual IEEE International ASIC Conference,
1998, pp. 355-358.

H. Nosaka, Y. Yamaguchi, and M. Muraguchi, “A non-binary direct digital synthesizer with an
extended phase accumulator,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol. 48, no. 1, January 2001, pp. 293-298.

H. Nosaka, Y. Yamaguchi, A. Yamagishi, H. Fukuyama and M. Muraguchi, “A low-power direct
digital synthesizer using a self-adjusting phase-interpolation technique,” IEEE Journal of Solid
State Circuits, vol. 36, no. 8, August 2001, pp. 1281-1285.

V.S. Reinhardt, “Spur reduction techniques in direct digital synthesizers,” in Proceedings of the
47" Annual Frequency Control Symposium, 1993, pp. 230-241.

R. Richter and H.-J. Jentschel, “A virtual clock enhancement method for DDS using an analog
delay line,” IEEE Journal of Solid State Circuits, vol. 36, no. 7, July 2001, pp. 1158-1161.

R.de J. Romero-Troncoso and G. Espinosa-Flores-Verdad, “Phase accumulator synthesis for DDS
applications,” Electronic Letters, vol. 35, no. 10, 13 May 1999, pp. 770-772.

H.-G. Ryu, Y.-Y. Kim, H.-M. Yu and S.-B. Ryu, “Design of DDFS-driven PLL frequency
synthesizer with reduced complexity,” IEEE Transactions on Consumer Electronics, vol. 47, no.
1, February 2001, pp. 194-198.

H.-G. Ryu, Y.-Y. Kim and H.-M. Yu, “Reduced-complexity design for triple-tunable frequency
synthesizer,” Electronic Letters, vol. 37, no. 8, 12 April 2001, pp. 482-484.

D.L. Schilling, R.L. Pickholtz, and L.B. Milstein, “Spread spectrum goes commercial,” /EEE
Spectrum, August 1990, pp. 40-45.

D.L. Schilling, L.B. Milstein, R.L. Pickholtz, M. Kullback, and F. Miller, “Spread spectrum for
commercial communications,” JEEE Communications Magazine, April 1991, pp. 66-79.

149



M.A. Taslakov, “Direct digital synthesizer with improved spectrum at low frequencies,” in
Proceedings of the 2000 IEEE/IEA International Frequency Control Symposium and Exhibition,
Kansas City, Missouri, 7-9 June 2000, pp. 280-283.

M. Thompson, “Low-latency, high-speed numerically controlled oscillator using progression-of-
states technique,” IEEE Journal of Solid State Circuits, vol. 27, no. 1, January 1992, pp. 113-117.

R. Uusikartano, J. Niitylahti and M. Renfors, “Area-optimized FPGA implementation of a digital
FM modulator” in Proceedings of the 1999 International Symposium on Circuits and Systems
(ISCAS 1999), 30 May - 2 June 1999, pp. 360-362.

R. Uusikartano and J. Niitylahti, “A compact digital frequency synthesizer for GSM [F up/down
converter” in Proceedings of the 2000 International Symposium on Circuits and Systems (ISCAS
2000), Switzerland, May 2000, pp. 113-116.

R. Uusikartano and J. Niitylahti, “A digital frequency synthesizer for a 2.4 GHz fast frequency
hopping transceiver” in Proceedings of the 43" IEEE Midwest Symposium on Circuits and
Systems, 2000, 8 - 11 August 2000, pp. 420-423.

J. Vankka, M. Waltari, M. Kosunen and K.A.I. Halonen, “A direct digital synthesizer with an on-
chip D/A converter,” [EEE Journal of Solid State Circuits, vol. 33, no. 2, February 1998, pp. 218-
227.

J. Vankka, M. Honkanen and K.A.L Halonen, “A multicarrier GMSK modulator,” IEEE Journal
on Selected Areas in Communications, vol. 19, no. 6, June 2001, pp. 1070-1079.

B.C. Wong and H. Samueli, “A 200 MHz all-digital QAM modulator and demodulator in 1.2 ym
CMOS for digital radio applications,” IEEE Journal of Solid State Circuits, vol. 26, December
1991, pp. 1970-1979.

150





