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Abstract

This thesis investigates some fundamental issues of performance measures of machine
learning .

Performance measures (or evaluation measures) play important roles in machine learn-
ing. They are not only used as the the criteria to evaluate learning algorithms, but
also used as the heuristics to construct learning models. However, little work has
been done to thoroughly explore the characteristics of performance measures.

We first formally propose criteria to compare performance measures. These criteria
focus on studying the consistency relationship between two measures, and whether
one measure has more discriminatory power than the other. Based on the proposed
criteria, we theoretically and empirically compare two most popular measures: ac-
curacy and AUC (Area Under the ROC Curve). We show that AUC is statistically
consistent and more discriminant than accuracy, which indicates that AUC should be
preferred over accuracy in evaluating learning algorithms. We also compare ranking
measures and give a preference order to use these measures in comparing ranking
performance.

Based on the comparison criteria, we propose two general approaches to construct
new measures from existing measures. We formally prove that the new measures are
consistent and more discriminant than the existing ones. We also compare the learn-
ing models of artificial neural networks trained with the newly constructed measures
and existing measures. The experiments show that the model trained with the newly
constructed measure outperforms the models trained with the existing measures.

Finally, we explore model selection tasks using measures. We show that generally we
should use different measures as model selection goal and evaluation measures. We
show that a measure’s model selection ability is stable to model selection goal and
class distributions. We find that some measures perform better than others in the

iii



model selection tasks.

In summary, this thesis addresses several fundamental issues of machine learning
measures. The research results are very useful in real world applications. It provides
the guidance on how to select suitable measures to evaluate learning algorithms.
Furthermore, it also presents general approaches to construct new measures efficiently
and effectively, which provides new approaches in building learning models.

Keywords: performance measures, threshold measures, ranking measures, probability-
based measures, comparison criteria, constructing measures, model selection
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Chapter 1
Introduction

Many performance measures are widely used in the fields of machine learning, knowl-
edge discovery and data mining. They are primarily used for two purposes. First,
they are used as criteria to compare and evaluate machine learning algorithms. Tra-
ditionally, a variety of measures, such as accuracy, precision, recall, F-measure, and
so on are adopted as criteria to evaluate the performance of information systems.
For example, in classification tasks accuracy is defined as the percentage of objects
that are correctly classified. It measures the classification performance of a learn-
ing algorithm. Most previous research used accuracy as the evaluation criterion. In
the last two decades, accuracy was the most frequently used measure in algorithm
performance evaluation. As another example, in information retrieval, precision and
recall are two traditional measures that are used to evaluate the query quality. In re-
cent years, AUC (See Section 2.2.1) is becoming another popular measure in machine
learning.

Second, performance measures are also used as heuristics to construct or optimize
learning algorithms. For example, Information Gain is used as the heuristic to con-
struct decision trees. Least Squared Error is the heuristic for training neural networks.
In recent years, some researchers also used AUC to optimize decision trees [22], arti-
ficial neural networks [65], and support vector machines [52].

However, although performance measures are very important in machine learning, lit-
tle work has been done to thoroughly and systematically explore the characteristics of
measures. Choosing measures for a certain context is largely determined historically.
It is still not very clear why one measure performs well in a specific situation, while



it has poor performance in another condition. In this thesis, a significant framework
that aims at comparing and evaluating machine learning measures is proposed. Qur
work is primarily focused on several fundamental issues of machine learning mea-
sures: comparing measures, constructing better measures, and model selection with
measures.

We can make a crude analogy of machine learning measures with measures used
to evaluate university students. Many different measures, such as numerical marks,
letter marks, and pass or fail, can be used to evaluate students’ performance. Are they
consistent? Which measure is better than others, and why? This is analogous to the
comparison of machine learning measures studied in the thesis. What are the learning
strategies of students in order to optimize certain measures? This is analogous to using
better measures for constructing better learning algorithms. What measures would
we use to select the best students according to a certain measure? This is analogous

to model selection using machine learning measures.

The rest of this chapter is organized as follows. We first review some commonly used
learning measures (Section 1.1). We then introduce our work of comparing measures
(Section 1.2). We briefly describe the ideas of how to construct better measures
(Section 1.3). We also introduce our work of evaluating model selection abilities of

measures (Section 1.4). Finally, we list our major contributions in this thesis (Section
1.5).

1.1 Machine Learning Measures

To give a detailed description of different measures, we first introduce some concepts
used to compute performance measures. A measure is calculated from the given
dataset or the classification results produced by a classifier. In a classification task,
many learning algorithms, such as decision trees, Naive Bayes, not only predict labels,
but also produce the probabilities of belonging to different classes for all examples.
Usually the predicted results combined with a predefined threshold can be used to
compute the performance measures.

Suppose a binary (with only positive and negative classes) dataset with P positive
and N negative examples is classified. Each example is predicted with a probability
of belonging to the positive class. We rank the classified examples according to their



predicted probabilities of belonging to the positive class and we set a probability
threshold. Any example whose predicted probability being positive is above the
threshold is regarded as a positive example. Therefore if an example’s true label is
positive, it is called a true positive example; otherwise it is called a false positive
example. Similarly, we have the meaning of true negative example and false negative
example.

The ratio of the true positive examples’ number to total positive examples number
(P) is called the true positive rate, which is represented with TP. The ratio of the
true negative examples number to total negative examples number (N) is called the
true negative rate, which is represented with TN. The false positive rate FP and
false negative rate F'N can also be similarly defined.

According to the concepts we have introduced, we can conveniently define differ-
ent measures. The measures can be categorized into three basic types: Threshold
Measures, Ranking Measures, and Probability Based Measures.

1.1.1 Threshold Measures

This type of measures share the same point that they are computed based on prede-
fined thresholds. Thus they are called threshold measures. For binary classification
usually a default probability threshold of 0.5 is adopted. For example, Table 1.1
shows a binary ranked list with 4 positive (+) and 6 negative (—) examples. The
threshold is set in the middle of this ranked list.

Many commonly used measures can be categorized into this type, including accuracy,
precision, recall and F-score, and so on.

Table 1.1: A binary ranked list with 4 positive and 6 negative examples.

- - - -+ | - 4+ + - +

Accuracy: This measure is the most widely used performance measure in Machine
Learning. For a given dataset, it is defined as the proportion of correct predictions
to the size of the dataset.

PxTP+Nx«TN
P+ N

accuracy =



3+4 _ 7

In Table 1.1 we can calculate accuracy = 3 = 15

Precision: This measure comes from Information Retrieval. It measures the propor-
tion of predicted positive examples that are actually positive.

PxTP
PxTP+NxFN

precision =

In Table 1.1 we can calculate precision = g

Recall: This measure also comes from Information Retrieval. It measures the pro-
portion of positive examples that are actually predicted as positive, which is exactly
the TP.

recall = TP

In Table 1.1 we can calculate recall = 3.

F-score: Usually precision and recall are used to evaluate performance simulta-
neously. To use a single measure for evaluation, F-score is introduced to combine
precision and recall. It is defined as the harmonic mean of the precision and recall.

e 2 x precision * recall
"~ precision + recall

In Table 1.1 we can calculate F = %ﬁé =2
54

Lift: Similar to precision, lift also measures the proportion of predicted positive
examples that are actually positive. The difference with precision is that usually its
threshold is set at the position that a fixed percentage of the dataset is classified as
positive.

PxTP
P+xTP+NxFN

In Table 1.1 we can calculate lift = -g—

lift=

Break-even point(BEP): This measure is defined as the precision value at the
threshold that precision equals recall. In Table 1.1, when the threshold is set in the
position between the 6th and 7th examples (the examples are numbered from left to

right), precision equals recall. In this case, BEP = precision = recall = %.

In Chapter 3 we will compare the measures of accuracy and AUC (See Section 2.2.1).

In Chapter 5 we will study the model selection abilities of the measures of F-score,
Lift, and Break-even point.



Table 1.2: A predicted binary ranked list

- - - - 4+ = + 4+ + +
i 1 2 3 4 5
r; 5 7 8 9 10
P 0.60 0.73 0.81 0.88 0.90
p; 020 039 044 057 0.65

1.1.2 Ranking Measures

This type of measures have the common property that they are evaluated based on the
relative ordering relations of the examples. In many machine learning and data mining
applications, ranking is more desirable than simple classification. Thus it is quite
important to choose suitable ranking measures to evaluate the ranking performance
of different algorithms. Generally, there are two types of ranking measures.

The first type of ranking measures are the “partial” or “censored” ranking measures.
These measures only consider the relative ordering relations of examples that belong
to different classes. The Area Under the ROC Curve (AUC) can be categorized into
this type. The average precision (APR) is also categorized in this type of ranking
measures because it is closely correlated with AUC. We also propose a new measures,
SAUC, which is a variant measure of AUC.

The first row in Table 1.2 shows a binary predicted ranked list with 5 positive and
5 negative examples, and some notations used to define AUC and SAUC. In this
ranked list, only the relative orderings of examples belonging to different classes are
considered. In rest rows of Table 1.2 we use ¢ to represent the ith positive example,
r; to represent the ranked position of the ith positive example. We also use p;, p;
to represent the predicted probabilities of being positive for the ith positive example
and the jth negative example, respectively.

For the following definitions, we assume that there are ny positive and n; negative
examples in the binary ranked list.

AUC: The Area Under the ROC Curve, or simply AUC, is a single-number measure
widely used in evaluating classification algorithms. Researchers have found that AUC
exactly reflects the overall ranking performance of a classifier. For a binary ranked
list, Hand and Till [25] present the following simple approach to calculating AUC



AvUC = Sl +1)/2 (1.1)

oMy

where Sy = 3~ ;. The AUC of the ranked list in Table 1.2 is CHHS19HO5x6/2 ;)
is 24/25.

Clearly formula 1.1 can be rewritten as

70 4
AUC — Zi:l (7"1 Z)

1.2
o (1.2)

(r; — i) can be viewed as the number of negative examples ranked behind the ith
positive example. If we define

1 if
@)= 07
0 ifz<0

then the formula of AUC can be written as

>y >y I —py)
Non

AUC = (1.3)

This shows that AUC reflects whether each positive example is ranked higher or
lower than each negative example. We will give detailed arguments about how the
statistical meaning and calculation formula of AUC are obtained in Section 2.2.1 of
Chapter 2.

SAUC: We propose a new measure, SAUC (Softened Area Under the ROC Curve).
SAUC is defined as

Dot 2 (07 =PI — py)
Nony

SAUC = (1.4)

In Table 1.2 we can easily calculate SAUC = %%1- = (0.2256.

Clearly, SAUC is in the range of [0,1]. The closer the predicted probabilities to
the true probabilities, the larger the SAUC. SAUC and AUC have the common
point in that they both measure how each positive instance is ranked compared with
each negative instance. However, AUC only cares whether each positive instance



is ranked higher or lower than each negative instance, while SAUC also considers
the probability differences in the ranking. In addition, SAUC also reflects how well
the positive instances are separated from the negative instances according to their
predicted probabilities. Thus SAUC can be categorized both as a ranking and a
probability-based measure. As a more refined and delicate measure than AUC, SAUC
can reflect both ranking and probability predictions. In Chapter 5 we will show that
SAUC usually can achieve excellent model selection ability.

APR: Strictly speaking, average precision is not a ranking measure. Since research
has shown that it is closely correlated to AUC, here we categorize it into the ranking
measures.

For a binary ranked list, APR is defined as the average of all precision values when
the decision thresholds are set on the ranked positions of different positive examples.

1 no+ni

a.
APR = — _ 1.5
R no;noJrnl-m (1:9)
where a; is the number of positive examples that are ranked higher than the position
of rj. In Table 1.2 the APR can be computed as ¢(1+ 1+ 1+ 1+ 2) = 0.967.

In Chapter 5 we will study the model selection ability of APR.

The second type ranking measures is the true ranking measures, which takes into
consideration the relative ordering relation between every two examples in a ranked
list in evaluating a ranking performance. The commonly used true ranking mea-
sures include Euclidean Distance (ED), Manhattan Distance (MD), Sum of Reserved
Number (SRN). A new true-ranking measure, OAUC, is also proposed.

For a true ranked list with n examples, the actual ranked positions for all examples
are n,n — 1,--- 1. For the example whose actual ranking position is i, we use a;
to denote its predicted ranking position. Table 1.3 provides an example with a true
ranked list and a predicted ranked list.

Euclidean Distance (ED): If we consider the true ranking list and the predicted
ranking list as two points of (1,2,...,n) and (ay,as,...,a,) in an n-dimensional
Euclidean space, then Euclidean Distance between these two points are



Table 1.3: An example of a true ranked list and its predicted ranked list

True 1 2 3 4 5 6 7 8
a G a3 a4 as ag a7 as
Predicted 3 6 8 1 4 2 5 7

n

ED = | (a;— i) (1.6)
i=1
For the example in Table 1.3, It is easy to obtain that ED = (3 — 1)2 + (6 — 2)% +
(8-32+(1-424+(4-52+(2-6)2+(5-T7)2+(7T-8)? =76.

Manhattan Distance (MD): We also consider the true ranking list and the pre-
dicted ranking list as two points in an n-dimensional Euclidean. The Manhattan
Distance is defined as

MD =" |a; — 1| (1.7)
i=1

For the example in Table 1.3, it is easy to obtain that MD = |3 — 1|+ |6 — 2| + |8 —
3|+]1—4|+|4—5H—|2—6|+]5—7|+|7—8| = 22.

Sum of Reversed Number (SRN): This is roughly the sum of the reversed pairs
in the list. That is,

SRN = En: 5(4) (1.8)

For the ith example, its reversed number s(i) is defined as the number of examples
whose positions in predicted ranking list are greater than 4, but for which the actual
ranked positions are less than i. For the example in Table 1.3, we can find that the
examples of 1 and 2 are both ranked higher than the first example 3 in predicted list.
Thus s(1) = 141 = 2. Similarly we have s(2) = 4, s(3) = 5, etc. Therefore the SRN
for the ordered list 7(l) is SRN =24+4+5+0+1+0+0+0=12.

Ordered AUC (OAUC): We propose a new measure called Ordered Area Under
Curve (OAUC), as it is similar to AUC both in meaning and calculation. The dif-



ference is that OAUC is a true-ranking measure, while AUC is a partial ranking
measure. The formula of OAUC is similar with AUC, except that each term in the
OAUC formula is weighted by its true order, and the sum is then normalized.

OAUC is defined as follows:

OAUC = Z"[’;f” —9) . (1.9)
(3] 2221 (13] +9)

In the ranked list in Table 1.3, the positive examples are 5, 6, 7, 8 which are positioned
at 7, 2, 8 and 3 respectively. Thusr =2, =3,73="7,r4 =8, and a,, = 6, a,, = 8,
Qry = 5,0y, = 1.

6(2—1)+8(3—2)+5(7—3)+T7(8 —4) 31

AV = D@+ A D+ (@D — 5

It is interesting to discuss the similarity and difference between OAUC with AUC,
SAUC. Clearly, from formula 1.9 we can see that OAUC uses larger weights on the
higher ranked examples, while AUC uses equal weights on all examples. This indi-
cates that OAUC is biased to reflect the ranking performance of some highest ranked
examples. AUC reflects the overall ranking performance for all ranked examples.
SAUC can be viewed as the probability version of AUC, since it incorporates the
predicted probabilities in calculating AUC.

1.1.3 Probability-based Measures

Apart from the above two kinds of measures, some measures are based on probability
estimations. Many traditional measures, such as RMS (Root Mean Squared Error),
Mean Cross Entropy (MXE), and Information Gain (IG) belong to this category.

RMS: RMS is widely used in regression. It measures the amount of predictions that
deviate from true targets. For K instances, suppose that the true probability value
and the predicted probability value for an instance I; are T'ar(I;) and Pred(I;),

K

1 2
RMS = J 7 > [Tar(I;) — Pred(I;)]

i=1
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MXE: MXE is used in the probabilistic setting when interested in predicting the
probability that an instance is positive. It can be proved that in this setting mini-
mizing the cross entropy gives the maximum likelihood hypothesis.

1

MXE = — Z{Tar([i) * log[Pred(I;)] + (1 — Tar(1;)) * log[l — Pred(I;)]}

=

In Chapter 5 we will study the model selection abilities of the measures of RMS and
MXE.

1.2 Comparing Machine Learning Measures

Different measures are widely used in different machine learning, data mining al-
gorithms and applications. For example, entropy (a kind of error-based measure)
measures are traditionally used as decision tree splitting criteria. Precision, recall,
and F-measure are widely adopted for evaluating the performance of text mining.
However, it is still not very clear why we choose a measure for a specific application.
There is little knowledge about under which conditions one measure performs better
than others.

One approach to answer these questions is to study the relations among different
measures. Some research has been done in this direction. Caruana and Niculescu-
Mizil [9] empirically compared the correlations among some widely used measures.
They concluded that RMS is mostly correlated with other measures on average and
thus is the most reliable measure when the best measure is unknown.

In this thesis, we propose a framework to compare measures. We compare two ar-
bitrary measures in two different aspects. First, we study the consistency between
two measures. That is, when using two measures f and g to evaluate objects a and
b, if f says that a is better than b and g also says that, we claim that f and g are
consistent. Otherwise they are inconsistent. Usually two measures are consistent in
evaluating some objects but inconsistent in evaluating other objects. In this case
we investigate the statistical consistency, which is the portion of consistent objects
pairs to all objects pairs. Second, we compare the discriminatory power between two
arbitrary measures. The discriminatory power of one measure shows how well it can



11

discriminate among different objects. For example, when evaluating university stu-
dent scores we usually adopt two scoring systems: numerical marks and letter marks.
The numerical marks have scores of 0, 1, 2, ---, 100 while the letter marks have
scores of A, B, C, D, F. Clearly letter marks and numerical marks are consistent,
and numerical marks have much more discriminatory power than that of letter marks
because numerical marks can reach much more different scores.

To address the above two issues we formally propose several criteria to compare the
consistency and discriminancy between two arbitrary measures. These criteria give
detailed and complete comparison of the consistency, inconsistency, discriminancy

and indifferency among arbitrary measures. We give detailed arguments in Chapter
3.

Based on these criteria, we first theoretically and empirically compare the measures
of accuracy and AUC. We then compare some popular ranking measures.

1.2.1 Comparing AUC and accuracy

Accuracy is the most widely used machine learning measure. In measuring the quality
of a classification task, it reflects how many data instances are correctly classified.
Traditionally the performance of most learning algorithms is evaluated by accuracy.
In some algorithms it is used as a heuristic for model optimization or construction. For
example, accuracy is one of the splitting criteria for building decision trees. Accuracy
is also the heuristic for building linear classification models.

However, in some applications accuracy is not enough. For example, in data mining
applications, direct marketing desires a ranking of the customers according to their
likelihood of purchasing. In this case we need to measure how well the customers are
ranked. A new measure that reflects the ranking performance is required.

The ROC (Receiver Operating Characteristics) Curve was originally used in signal
processing to depict the trade-offs between the hit rates and alarm rates [24, 19].
In recent years, it was introduced into the machine learning community. The AUC
(Area Under the ROC Curve) is a one-number measure which reflects the general
ranking performance of a learning algorithm. This number is widely used in various
engineering, scientific and medical applications. Recently in the machine learning
and data mining communities it has gained an increasing acceptance in comparing
learning algorithms [48] and constructing learning models [22, 39)].
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However, accuracy is traditionally designed to judge the merits of classification results,
and AUC is simply used as a replacement of accuracy without much reasoning for
why it is a better measure, especially for the case of ordering. The main reason for
- this lack of understanding is that up to now, there has been no theoretical study on
whether any of these measures work better than others.

In this thesis, we will use a set of comparison criteria to give theoretical and empirical
comparisons between accuracy and AUC. We formally prove that AUC is statistically
consistent and more discriminant than accuracy. Empirically, we perform experiments
by using artificial datasets, real-world datasets, and some popular machine learning
algorithms to confirm our theoretical results. Finally, we reevaluate some popular
machine learning algorithms by using AUC instead of accuracy.

1.2.2 Comparing Ranking Measures

Ranking of cases is an increasingly important way to describe the results of many data
mining and other science and engineering applications. For example, the results of
document searches in information retrieval and Internet search is typically a ranking
of the results in the order of match. Customer relationship management (CRM)
applications typically rank the customers in order of desirability. This leaves two
issues to be addressed. First, given two orders of cases, how do we design or choose
a measure to determine which order is better? Second, given two different ranking

measures, how do we tell which measure is more desirable?

As we have discussed in section 1.1, there are generally two types of ranking measures:
true ranking measures and “partial” ranking measures. In this thesis, we use the
consistency and discriminancy criteria to compare these two kinds of ranking mea-
sures. We perform two experiments to explore their consistency and discriminancy
relations. We first generate artificial ranked lists with various lengths to empirically
compute the statistical consistency and discriminancy among measures. We then use
real-world datasets and two learning algorithms to study the discriminatory powers
of ranking measures. From these experiments we can obtain a preference order of the
ranking measures. We conclude that OAUC and ED are the ranking measures with
the highest discriminatory power. The MD has the weakest discriminatory ability.
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1.3 Constructing Better Measures for Machine Learn-
ing

New measure designing is another important issue in machine learning. Historically
the designing of measures highly depends on specific applications or domains. There
currently exists little work proposing general approaches to build new measures.

In this thesis, based on our consistency and discriminancy criteria, we propose two
novel methods to construct new measures. These two approaches are linear combi-
nation and two-level construction. The former uses the weighted linear combination
of two measures to construct a new measure. The latter constructs a two-level mea-
sure. We formally prove that the new measures constructed with either approach are
consistent and more discriminant than the existing ones.

Following these approaches we construct two new measures by using AUC and ac-
curacy as the base measures. We empirically show that the new measures are more
closely correlated with the external measures RMS than AUC and accuracy. Research
has shown that RMS is a robust and well performed measure. Thus the new measures
are expected to perform better than AUC and accuracy.

We then use accuracy, AUC, and the two-level measure constructed from AUC and ac-
curacy as heuristics to train artificial neural network models from real-world datasets,
respectively. The experimental results show that the models trained with the two-
level measure perform better than the models trained with AUC, and significantly
better than the model trained with accuracy. This confirms the advantages of the
new measures. It provides a new approach to build better learning models.

1.4 Model Selection with Measures

Model selection is an important task in machine learning. The goal of model selection
is to select the model with the best expected performance among a given set of mod-
els. A consensus in the machine learning community is that the same model selection
goal should be used to identify the best model based on available data. However,
following the preliminary work of Rosset [53], we show that this is, in general, not
true under highly uncertain situations where only very limited data are available.
We thoroughly investigate model selection abilities of different measures under highly
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uncertain situations as we vary model selection goals, learning algorithms and class
distributions. The experimental results show that a measure’s model selection ability
is relatively stable to the model selection goals and class distributions. However, dif-
ferent learning algorithms call for different measures for model selection. For learning
algorithms of Support Vector Machines and K-nearest neighbor, generally the mea-
sures of RMS, SAUC, MXE perform the best. For learning algorithms of decision
trees and Naive Bayes, generally the measures of RMS, SAUC, MXE, AUC, APR
have the best performance.

1.5 ‘Contributions of the Thesis

Measures are quite important in machine learning and data mining. However there
is almost no systematic study on the relations of different measures. In this thesis,
we propose a framework to do some fundamental work.

In Chapter 3, we first formally propose a set of criteria with the goal of comparing
the performance of two arbitrary measures. These criteria are focused on two aspects
of a measure’s characteristic: consistency and discriminancy. Consistency depicts
whether or not two measures are consistent in evaluating objects. Discriminancy re-
veals how well one measure can discriminate different objects. Based on these criteria
we compare two frequently used machine learning measures: AUC and accuracy. We
show theoretically that AUC is consistent and more discriminant than accuracy. This

work was published in the Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI-03) [37].

The theoretical study is only for the case of binary and balanced datasets. To see
whether this theoretical result is also true for the case of imbalanced and multi-class
datasets, we perform experiments with imbalanced, multi-class artificial datasets. The
empirical results show that our theoretical results can be extended to more general
cases. This work was published in the Proceedings of the Third International Con-
ference on Data Mining (ICDM-08) [32] and Proceedings of 2003 Canadian Artificial
Intelligence Conference [38].

We also perform an empirical study by using real world datasets and some popular
machine learning algorithms. The experiments on real world datasets also confirm
our theoretical results. We then use AUC and accuracy to evaluate the popular learn-
ing algorithms of decision trees, Support Vector Machines and Naive Bayes. Previous
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researches showed that these algorithms perform quite similarly when evaluating with
accuracy. However, we show that they perform significantly differently when evaluat-
ing with AUC. The combination of the above work was published in JEEE transactions
on Knowledge and Data Engineering, V.17 No.3 pp.299-310, March 2005 [29).

We next compare ranking measures. Some commonly used ranking measures have
been studied individually in Statistics. However, it is still not clear how they are
correlated with each other. We use the criteria proposed to study their consistency
and discriminancy relations. We obtain a preference order of those ranking measures.
This work was published in Proceedings of the 9th European Conference on Practice
and Principle of Knowledge Discovery in Database (PKDD-05) [30].

The second issue of this thesis is new measure design. We address this issue in Chapter
4. Most previous work in this issue highly depends on specific applications and
domains. Here based on our comparison criteria we propose two general approaches
to construct new measures based on existing ones. We formally prove that the new
measures are more discriminant than the existing ones. We then use the two-level
measure formed by AUC and accuracy to train a learning algorithm and compare the
performance of the learned model with other traditionally trained model. The result
shows that the model trained by two-level measure is significantly better than the
traditional model.

The third issue of the thesis is model selection with measures. We address this issue
in Chapter 5. Here we study the model selection abilities of measures when only
limited data are available. We show that generally the model selection goal measure
should not be used to evaluate different models. We also show that a measure’s model
selection ability is relatively stable to model selection goals and class distributions.
However, different learning algorithms call for different measures. This work will be
published in the Workshop on Evaluation Methods for Machine Learning at the 21st
National Conference on Artificial Intelligence (AAAI-06) [31]. It was also submitted
to the 17th European Conference on Machine Learning (ECML-06).
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Chapter 2
Review of Previous Work

Compared with other widely studied topics in machine learning and data mining, only
a few studies investigated the relationships among various machine learning measures.
We first give a brief review of some popular learning algorithms such as decision trees
(C4.5, C4.4), Naive Bayes, Support Vector Machines and Artificial Neural Networks
as they will be used in the experiments of the following chapters. We then review the
previous work on measures.

2.1 Machine Learning Algorithms

2.1.1 Decision Trees

Decision tree learning is one of the most widely used classification algorithms. A
decision tree is a top-down tree with a recursive structure. There are two types
of nodes in a decision tree: leaf nodes and internal nodes. Leaf nodes represent
the classification labels. Internal nodes represent the partitions of all the examples
according to some attribute values. A decision tree classifies examples by sorting
them down from root to leaf nodes. Starting from the top of the tree, an incoming
example is tested by the attribute specified by the root node, then tested down to one
of its children nodes corresponding to the attribute values of the incoming example.
This process is repeated until a leaf node is reached and this example is classified as
the class represented by the leaf node. The most successful decision tree algorithms
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are ID3 and its successor C4.5, which were developed by Quilan [51]. Provost and
Domingos [48] proposed an improved version of C4.5, which is called C4.4.

2.1.1.1 C4.5 Algorithm

Decision tree building is a recursive process that applies a greedy search through the
space of possible attributes. Let S be the collection containing training examples.
The k possible values of the class attribute are denoted as Cy,Cs, - - - ,Cy. The C4.5
algorithm can be described as follows:

e Create a Root node for the tree using all the examples in S.

e If all examples in S belong to a single class value C}, return the single-node tree
Root, which is labeled as C;.

o If there are no examples in S, return the single-node tree Root, which is labeled
as most frequent class value at its parent node.

o If examples in S belong to more than one class value, select an attribute A that
best classifies the examples, Assign attribute A for Root. For each value V; of
A, create a new branch below Root. Create a new subset S; of S that has V;
for A. Apply the same procedure to S; recursively.

At each step, the decision tree building algorithm tries to find the best attribute
that splits the training set into several subsets which have the same attribute value,
then applies the same to each subset recursively until the tree classifies the examples
perfectly.

This algorithm grows each branch of the tree just deeply enough to perfectly classify
the training examples. However this strategy sometimes will overfit the training
examples when there is noise in the data, or when the number of training examples
is too small. To overcome this difficulty, C4.5 adopts a tree pruning strategy. That
is, pruning the nodes of a large tree to make it more robust to noise or more accurate
for unseen testing examples. More specifically, it uses a post-pruning rule as follows:

e Build a decision tree following the above algorithm described.

e Convert the tree into an equivalent set of rules.
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e Prune each rule by removing any preconditions that result in improving its

estimated accuracy.

e Sort the pruned rules according to estimated accuracies.

Although practically this pruning strategy can prevent overfitting and improve pre-
diction accuracy, it gives poor probability estimation for the training examples. An
improvement algorithm was proposed, which is called C4.4.

2.1.1.2 C4.4 Algorithm

Decision trees that produce probability estimations are called PETs (Probability Es-
timation Trees) [47]. The leaf nodes of a decision tree may contain training examples
of different classes. The probability of a testing instance belonging to a specific class
is normally the ratio of training instances of that class over all examples in the leaf
node that the testing instance falls in.

The popular decision tree learning algorithm C4.5 has been observed to produce poor
probability estimations on AUC [58, 50, 48]. Provost and Domingos [48] proposed an
improved version, which is called C4.4. They made the following improvements on
C4.5 in an effort to improve its AUC scores:

1. Turn off pruning. C4.5 builds decision trees in two steps: building a large
tree, and then pruning it to avoid the overfitting, which results in a small tree
with a higher predictive accuracy. However, Provost and Domingos showed
that pruning also reduces the quality of the probability estimation, as discussed
above. For this reason, they chose to build the trees without pruning, resulting
in substantially large trees.

2. Smooth probability estimations by Laplace correction. Because pruning
has been turned off, the decision tree becomes large and has more leaves, and
there are fewer examples falling into one leaf. The leaves with a small number
of examples (e.g., 2) may produce probabilities of extreme values (e.g., 100%).
In addition, it cannot provide reliable probability estimations. For this reason,
Laplace correction was used to smooth the estimation and make it less extreme.
We assume that there are a total of N examples in a leaf, in which k& examples
belong to the positive class. Suppose there are totally C classes. Then the
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estimated probability of being positive for this leaf is % The Laplace correction
calculates this estimated probability as at.
They called the resulting algorithm C4.4, and showed that C4.4 produces decision

trees with significantly higher AUC than C4.5 [48].

2.1.2 Naive Bayesian Networks

Bayesian network is another traditional learning algorithm. Bayesian networks are
probabilistic models that combine probability theory and graph theory [46, 33]. A
Bayesian network consists of a structural model and a set of conditional probabilities.
The structural model is a directed graph in which nodes represent random variables
and arcs represent informational or causal dependencies among the variables. The
dependencies are quantified by conditional probabilities for each node given its parents
in the network.

Bayesian networks are often used for classification problems. In classification learning
problems, a learner attempts to construct a classifier from a given set of training
examples with class labels. Assume that Ay, Ay, --, A, are n attributes (attribute
nodes in the corresponding Bayesian network) . An example E is represented by a
vector (ay, ag,, -+ ,a,), where a; is the value of A;.

Let C' represent the classification variable (the class node in the corresponding Bayesian
network), which takes value + (positive class) or — (negative class). We use c to rep-
resent the value that C takes. A classifier is a function that assigns a class label to an
example. From the probability perspective, according to Bayes Rule, the probability

of an example F = (ay,ay,- -+ ,an) being class c is
p(Elc)p(c)
c|F) = .
pielm) = 222

E is classified as the class C = + iff (if and only if)

_ p(C=+|E)

ST GEET)

> 1, (2.1)

where g(E) is called a Bayesian classifier.
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Assume that all attributes are independent given the value of the class variable; that
is,
n
p(E|C) =p(a1,a2,--- ,an|C) :Hp(a’ilc)> (22)

the resulting g(F) is then:

C +) “ pallC’ +

9(E) = (2.3)

g(E) is called a Naive Bayesian classifier, or simply Naive Bayes (NB).

Because the values of p(a;|c) can be estimated from the training examples, Naive
Bayes is easy to construct. Naive Bayes is the simplest form of Bayesian network, in
which all attributes are independent given the value of the class variable. This is called
conditional independence. It is obvious that the conditional independence assumption
in Naive Bayes is rarely true in many applications. It is, however, surprisingly effective
in the classification tasks [35, 36, 45]. Many empirical comparisons between Naive
Bayes and modern decision tree algorithms such as C4.5 [51] showed that Naive Bayes
predicts equally well as C4.5.

2.1.3 Support Vector Machines

Support Vector Machine (SVM) is a learning algorithm that learns linear functions
in the high dimensional feature space. It was first proposed by Vapnik and his team
at AT&T Bell Labs [6, 13, 63]. SVM has been shown to be a very powerful method
that outperforms most other learning algorithms in a wide variety of applications.
Traditional learning algorithms often are trained with the goal of minimizing the
training error. SVMs adopt another induction approach, which minimizes the upper
bound of the generalization error.

We use a simple binary classification case to introduce the basic idea of SVM learning
algorithms. We assume that we have a dataset with labeled examples {(z1,%1),- - - , (x5, %)},
where y; € {—1,1}. From the labeled examples we can train a variety of linear clas-
sifiers to separate the training examples. We wish to determine the linear classifier
with the smallest generalization error. Since each linear classifier corresponds to a
hyperplane, a good choice is to find the hyperplane that leaves the maximum margin
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between the two classes. The margin is defined as the sum of the distances of the
hyperplane from the closest points of the two classes. This is shown in Figure 2.1.
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Figure 2.1: (a) A separating hyperplane with small margin (b) A separating hyper-
plane with large margin.

If the two classes are not separable, we can still look for a hyperplane that maxi-
mizes the margin and minimize the quantity of examples proportional to the mis-
classification error. The trade off between the margin and misclassification error
is controlled by a constant C. In this case, the solution is a linear classifier of
D(z) = S°N  w;é(x) + b, which satisfies

min  swTw+C ELI &
subject to (3oL, wi(x:) +b) > 1 — &
& >0

Since it is unlikely that any real life problem can actually be solved by a linear
classifier, the technique has to be extended in order to allow for non-linear decision
surfaces. A method called kernel trick is used to convert the linear classifier into a non-
linear one. This is done by mapping the original variables z into a higher-dimensional
non-linear space so that linear classification in the new space is equivalent to non-
linear classification in the original space. The linear function ¢(z) is then replaced
with a non-linear function. Actually, it is not necessary to look for the non-linear
function ¢(z). In the optimization process looking for the decision function of

p
Z OékK(.Tk, CB) +b
k=1
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is enough. In this decision function K(z,2’) is called the kernel function

K(z,2') = Z ¢i(z)gi(2).

We can choose different kernel functions to map the original set of variables into a new
space. Some commonly used kernel functions are Polynomial expressions, Gaussian
functions, and multilayer perceptrons. By choosing a suitable kernel function and
parameter setting, SVM can be used for real world classification tasks.

2.1.4 Artificial Neural Networks

Artificial Neural Networks (ANNSs) are robust learning methods that can approximate
real-valued, discrete-valued, and vector-valued target functions. For some real world

applications, ANNs have been shown to be the most effective learning methods.

ANNs was partly inspired by the observation that biological learning systems are
built of very complex webs of interconnected neurons. In rough analogy, ANNs are
built of a set of densely interconnected simple units. Each unit takes a number of
inputs and produces a single output.

One type of ANN is based on a unit called a perceptron. A perceptron takes a vector
of real-valued inputs, computes a linear combination of these inputs, then outputs a 1
if the result is greater than some threshold and -1 otherwise. More specifically, given
an input vector = {zy,-- -, z,}, the output o(Z) computed by the perceptron is

_ 1 ifw-2>0
o(Z) = :
—1 otherwise

where @ is a weight vector.

This simple type of perceptron is a linear function with a limited representational
power. To represent highly nonlinear functions, we use a sigmoid function to replace
the simple linear output function. This unit is called a sigmoid unit, which is similar
to a perceptron, but based on a smoothed and differentiable threshold function. More
specifically, the sigmoid unit computes its output o as

o= 1
T 14 ez
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Learning a unit involves choosing values for weights w;. One algorithm that solves the
unit learning is the delta rule method. This method uses gradient descent to search
the hypothesis space of possible weight vectors to find the weights that best fit the
training examples.

When a number of units are densely interconnected to build a multilayer network,
we need to use an algorithm to learn the entire network. The most commonly used
learning algorithm is called backpropagation. This method employs gradient descent
to attempt to minimize the squared error between the network output values and the
target values for these outputs. Details of the backpropagation learning algorithm
can be found in [55].

2.2 Previous Work on Measures

Although measures are quite important, there is only a few literatures investigating
the characteristics of performance measures. Caruana and Niculescu-Mizil [9] empir-
ically compared 9 commonly used machine learning measures. Flach [23] used the
ROC space as the tool to theoretically compare measures. Before reviewing these
works, we first give a detailed discussion for ROC space, ROC curve, and AUC (Area,
Under the ROC Curve).

2.2.1 ROC and AUC

The ROC (Receiver Operating Characteristics) curve was first used in signal detection
theory to represent the tradeoffs between hit rates and false alarm rates [19, 24]. It
has been extensively studied and applied in medical diagnosis since the 1970’s [43, 61].
Spackman [59] was one of the first researchers who used the ROC graph to compare
and evaluate machine learning algorithms. In recent years, extensive research on ROC
has been done in machine learning [49, 50]. The area under the ROC curve, or simply
AUC, provides a good “summary” for the performance of the ROC curves. Below we
will provide a brief overview of ROC and its AUC.

A ROC graph is depicted in a two dimensional space. On a ROC graph, the = and
y axes are plotted with the true positive rate TP and the false positive rate F'P
introduced in Section 1.1, respectively. In the ROC space, each classifier with a given
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class distribution and cost matrix is represented by a point (TP, F'P) on the ROC
curve. For a model that produces a continuous output, i.e., the probability estimates
for Bayesian networks, TP and FP can vary as the threshold on the output varies
between its extremes (0 and 1). The resulting curve is called the ROC curve.

The ROC curve compares the classifiers’ performance across the entire range of class
distributions and error costs. Figure 2.2 shows a plot of four ROC curves, each
representing one of the four classifiers, A through D. A ROC curve X is said to be
better than another ROC curve Y if X is always above and to the left of Y. This
means that the classifier of X always has a lower expected cost than that of Y, over
all possible error costs and class distributions. In this example, A and B are both
better than D.

0.8

06

0.44 A

True Positive rate

T T T T
0 02 04 06 08 10

False Positive rate

Figure 2.2: An example of four ROC curves

However, often we cannot say one curve is better than another one. For example,
for curves A and B, we cannot say which one is better in the whole range. In
those situations, or when the class distribution and error costs are unknown, the area
under the ROC curve, or simply AUC, is a good criterion for comparing the two
ROC curves. We use AUC(X) to denote the area under the ROC curve X in the
ROC space. In Figure 2.2 since ROC curves A and B are both better than ROC
curve D, we can easily obtain that AUC(A) > AUC(D) and AUC(B) > AUC(D).
AUC has a special statistical meaning: it represents the probability that a randomly
chosen negative example will have a smaller estimated probability of belonging to the
positive class than a randomly chosen positive example [26]. Moreover, AUC also
equals the quantity of Wilcoxon statistic [24]. Hand and Till [25] present a simple
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approach to calculating AUC of a classifier for binary classification. We will give a
brief description below.

As we discussed earlier, a ROC curve is constructed by plotting different points
(FP,TP) as we move the threshold ¢ between the extreme points 0 and 1. For a
specific threshold ¢, T P(t) is the probability that a randomly chosen positive point
will have a larger probability of belonging to the positive class than t. We assume that
the probability density function of the probability that a randomly chosen negative
point will have a larger probability of belonging to the positive class than ¢ is fp(t).
The threshold ¢ is the probability of randomly chosen negative points belonging to the
positive class, we can move the threshold ¢ to cover the whole F'P distribution. Then
the probability that a randomly chosen positive point will have a larger probability
of belonging to the positive class than a randomly chosen negative point, which is
equivalent to the probability that a randomly chosen negative point will have a smaller
probability of belonging to the positive class than a randomly chosen positive point,
is [TP(t)fp(t)dt.

On the other hand, we can see that the area under the ROC curve is [ TP(t)dF P(t) =
JTP(t)fp(t)dt. Thus we can conclude that AUC is equivalent to the probability that

a randomly chosen negative point will have a smaller probability of belonging to the
positive class than a randomly chosen positive point [25].

calculating AUC of a classifier are ng positive examples and n; negative examples.
We rank all these ng + n; examples incrementally according to their probabilities of
belonging to the positive class. Assume that the ith positive example is ranked as
the r;th example in the ranked list. Then there are r; — i negative examples that have
smaller probabilities of belonging to the positive class than that of the ith positive
example. Since there are totally n; negative examples, the probability of a randomly
chosen negative example that has lower probability of belonging to positive class
than that of the ith positive example is T;Z—:’ Since the probability of choosing the ith
positive example when we randomly choose a positive example is nlo, the probability
that a randomly chosen negative example will have a smaller estimated probability
of belonging to the positive class than a randomly chosen positive example is

{j_l_(ri—i) _ri— i So—ng(no+1)/2’

- Nog M ngny Nony

=

This leads to the AUC formula 1.1 that we have introduced in of Chapter 1.
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SO - no(no + 1)/2
NNy

AUC =

2.2.2 Comparing Measures Empirically

Caruana and Niculescu-Mizil [9] conducted a significant research by empirically com-
paring some performance measures. They used a variety of learning methods to com-
pare nine boolean classification performance measures: Accuracy, lift, F-measure,
AUC, APR, BEP, RMS, MXE, and Probability Calibration. They first performed
a Multidimensional scaling (MDS) analysis and used the space graphs to show the
relationships among measures. They showed that the three probability measures,
RMS, MXE, and calibration, lay in one part of measure space far away from the
ranking measures of AUC, APR, BEP, and lift. In between them fall two threshold
measures of accuracy and F-measure. They also empirically computed the rank cor-
relations among different measures by using learning models that run on some large
real-world datasets. They demonstrated that some measures are closely correlated
(with rank correlations above 0.90), such as AUC with lift, AUC with APR, RMS
with MXE, accuracy with BEP, and so on. To deal with the problem that under a
certain situation it is not known how to choose the best measure, they also proposed
to design a new measure: SAR. SAR combines RMS, accuracy, and AUC into one
measure. SAR is shown to be very robust and is expected to perform well in general
situations. Finally, they also evaluated the performance of learning algorithms on
different measures. They showed that SVMs and boosted trees have excellent perfor-
mance on measures like accuracy, but perform poorly on probability measures such
as RMS. They also showed that it is unexpected that SVMs and boosted trees have
excellent performance on ranking measures such as AUC and APR.

In this thesis we also empirically compare some performance measures. However, our
comparisons are different. We do not attempt to compute the correlations among
different measures. Instead we will establish a framework to compare measures in
Chapter 3. Based on this framework, some popular measures are empirically com-
pared.
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2.2.3 Comparing Measures in ROC Space

Flach [23] theoretically compared some measures by using ROC space as the tool.
As discussed in Section 2.2.1, a classifier can be depicted as a curve in ROC space.
However, a measure cannot be simply depicted as a curve. For a measure with a
fixed value, it can correspond to many points in the ROC space. The collections
of all points that correspond to a fixed measure value constitute a series of curves,
which are called isometrics. Flach [23] explored the characteristics of some commonly
used measures of accuracy, precision, recall, F-measure, and decision tree splitting
criteria of Entropy, Gini by depicting their isometrics. He compared the measures
with their effective slopes of isometrics. He claimed that a measure’s characteristic is
determined by the slope of its isometrics at any point in ROC space. He obtained some
interesting results, such as designing a simplification version of F-measure, deriving
a new decision tree splitting criterion Gini-split that is insensitive to class skews.

In this thesis, we will introduce a different framework to study the relationships among
some commonly used measures. We will focus on studying the consistency relationship
between two measures, and whether one measure has more discriminatory power than
the other.



28

Chapter 3

Comparing Machine Learning

Measures

In this chapter we establish a general framework to compare measures of machine
learning. We propose a set of criteria to provide detailed and complete comparisons
between measures. Based on these criteria, we first compare two popular measures:
accuracy and AUC, and we then compare some ranking measures. These comparisons
are very useful in evaluating and constructing learning algorithms. Based on the
comparison results, we show that generally AUC is better than accuracy in evaluating
learning algorithms. We also give a preference order in selecting ranking measures to
evaluate ranking performance.

3.1 Ciriteria for Comparing Measures

We first propose five percentage criteria and two degree criteria to explore and com-
pare the detailed difference in predictive performance for two arbitrary measures. The
new criteria can answer detailed questions such as how much the two measures are
consistent, inconsistent, and how much one measure is more discriminant than the
other one.

We first discuss the equivalence of two measures. We assume that f and g are
two functions mapping into a total order that represents an evaluation measures on
elements in a domain ¥, and a and b are two elements in V. Intuitively we say f and g
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are equivalent whenever f stipulates that a is better than b, if and only if g stipulates
that a is better than b. For example, when using two scoring systems (measures) to
evaluate students, if one scoring system uses A, B, C, D, and F, which correspond to
Excellent, Good, Average, Pass, and Fail respectively in another scoring system, then
clearly these two scoring systems are equivalent. When two measures are equivalent,
there is a one-to-one mapping between the two measures with the same order.

Another useful notion in comparing two measures is the dominance relation. Intu-
itively, we say that f dominates g if and only if whenever f stipulates that a is better
than b, ¢ stipulates that a is better than or equal to b. As an example, let us consider
the numerical marks and letter marks (the two measures) that evaluate university
students (the domain). Normally, the letter mark A corresponds to numerical marks
from 80 to 100, B from 70 to 79, C from 60 to 69, D from 50 to 59, and F from 0 to
49. If we use f for the numerical mark and g for the letter mark, then for any two
students a and b, if f(a) > f(b) then g(a) > g(b). Therefore the numerical marks
dominate letter marks.

These intuitions can be made precise in the following definitions.

Definition 1 (Equivalence) Two measures f and g are equivalent, if for any a, b
€V f(a) > f(b) iff g(a) > g(b).

Definition 2 (Dominance) A measure f dominates another measure g if for any a,
be U, f(a) > f(b) implies g(a) > ¢(b). In addition, there exist a, b € ¥, f(a) > f(b)
and g(a) = g(b).

Unfortunately, most evaluation measures in machine learning are not equivalent. For
two arbitrary measures, one measure usually does not dominate the other one. For
example, although it can be shown easily that AUC takes more values than accu-
racy, AUC and accuracy are not analogous to numerical marks and letter marks.
Sometimes AUC and accuracy are inconsistent with, or contradictory to each other,
and therefore, AUC does not dominate accuracy. This can be seen in the following
example: Table 3.1 lists two ranked lists of 10 testing examples, presumably as the
result of predictions from two learning algorithms. The AUC of the ranked list a is
%, and the AUC of the ranked list b is ;—g—. Thus the ranked list a is better than
the ranked list b according to AUC. Assuming that both learning algorithms classify
half (the right most 5) of the 10 examples as positive, and the other 5 as negative,
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the accuracy of a is 60%, and the accuracy of b is 80%. Therefore, b is better than

a according to accuracy. This example shows that there exist cases where AUC and
accuracy are inconsistent, and thus, AUC and accuracy do not dominate each other.

Table 3.1: A counter example in which AUC and accuracy are inconsistent.

+

___++| —

a - + +
b + - - | + + + +

For two measures that are not consistent in the whole domain (such as AUC and
accuracy in the example above), we can define percentages of consistency and incon-
sistency, which give precisely the probabilities of two measures being consistent and
inconsistent in comparing two different elements in the domain. Assume that T is
the total number of pairs formed by two different elements in ¥, we have:

Definition 3 (Percentage of Consistency) Let R = {(a,b)|a,b € ¥, f(a) > f(b),g(a) >
g(b)}, the percentage of consistency of f and g is defined as CONy, = %.

Definition 4 (Percentage of Inconsistency) Let R = {(a,b)|a,b € ¥, f(a) >

f(b),g(a) < g(b)}, The percentage of inconsistency of f and g is defined as INCON; , =
|B|
-

Note that the sum of two percentages defined above is usually less than one, as there
are additional situations when comparing two measures, as discussed below. In the
example of numerical and letter marks, there are many cases in which numerical
marks (such as 91 and 98) can tell the difference when letter marks cannot (both 91
and 98 correspond to A). The reverse cannot be true; there is no case where letter
marks can tell the difference but numerical marks cannot. That is, numerical marks
are strictly more discriminant than letter marks. However, this analogy cannot be
carried over to AUC' and accuracy. There are many cases in which AUC can tell the
difference between two ranked lists but accuracy cannot, but counter examples also
exist in which accuracy can tell the difference but AUC cannot. Table 3.2 shows such
a counter example. We can see that both ranked lists have the same AUC (%) but
different accuracies (60% and 40% respectively).

Thus we can define percentage of discriminancy for f over g and for g over f as
follows.
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Table 3.2: A counter example in which two ranked lists have same AUC but different
accuracies

Definition 5 (Percentage of Discriminancy) Let P = {(a,b)|a,b € ¥, f(a) >

f(0),9(a) = g(b)}, and @ = {(a,b)|a,b € ¥,g(a) > g(b), f(a) = f(b)}. The percent-
age of discriminancy for f over g is defined as DISy/, = '—;;', and the percentage of
discriminancy for g over f is defined as DIS/; = %

The last situation is for cases where neither of the two measures can tell the difference.
Table 3.3 illustrates two ranked lists with the same AUC (3/5) and accuracy (60%).
Thus, we can define Percentage of Indifferency below.

Table 3.3: An example in which neither AUC nor accuracy can tell the difference
between two ranked lists.

a _— —_

b — —

+ + + + - - +
+ + + - 4+ + -

Definition 6 (Percentage of Indifferency) Let R = {(a,b)|a,b € ¥, f(a) = f(b), g(a) =

g(b)}, the percentage of indifferency of f and g is defined as IND;, = Lgl.

Figure 3.1 gives an illustration of the five “percentage criteria” for comparing two
measures f and g. Each slice is one “percentage criterion”. The slice with the symbol
“>,>” means that “f(a) > f(b),g(a) > ¢(b)”, thus it represents the percentage
of consistency. Other slices and symbols represent the other criteria correspondingly.
From this figure we can see that the whole space of the comparison can be partitioned
into the five regions according to our five “percentage criteria”, and the sum of the
five percentages is equal to 1.

Clearly, for a measure f to be “better” than g, f and ¢ must be more likely to be
consistent than inconsistent. That is, CONy, > INCON;,. In addition, f should
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Figure 3.1: Illustrations of the five percentage criteria.

more often be more discriminant over g than g over f. That is, DISs/, > DISys.
To view this visually in figure 3.1, the area of “>,>" should be larger than the area
of “>,<”, and the area of “> =" should be larger than the area of “=,>".

Naturally we can define two more criteria that can be directly used to study whether
two measures are statistically consistent, and whether one measure is more discrim-
inant than the other. These two criteria are degree of consistency and degree of
discriminancy respectively. They can be derived in terms of CON, INCON, and DIS.
Definition 7 (Degree of Consistency) For two measures f and g, the degree of

CON;
CONy +INCONy o *

consistency is defined as Cy, =

Definition 8 (Degree of Discriminancy) For two measures f and g, the degree
DISf/g

of discriminancy for f over g is defined as Dy, = £z e
g

The concept of percentage of indifferency (IN D) between f and g in Definition 6 can
also be viewed as the degree of frequency that f and g both cannot discriminate. For
completeness, we also define the degree of indifferency as follows

Definition 9 (Degree of Indifferency) For two measures f and g, the degree of
indifferency of f and g is defined as Ey, = INDy,.

We would naturally require E # 1 (or E < 1), but this is true for almost all useful
measures. For E = 1 to happen, the measures must return the same values for all
elements in the domain. That is, if one measure always returns a constant (such
as 60%), and the other measure also always returns a constant (such as 80%), then
E = 1. Therefore, we will omit the requirement on E in the rest of the discussion.
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There are clear and important implications of using the above two definitions of
measures f and g in evaluating two machine learning algorithms, say A and B. If f
and g are consistent to degree C, then when f stipulates that A is better than B,
there is a probability C that g will agree (stipulating A is better than B). If f is D
times more discriminating than g, then it is D times more likely that f can tell the
difference between A and B but g cannot, than that g can tell the difference between
A and B but f cannot. Clearly, we require that C > 0.5 and D > 1 if we want to
conclude a measure f is “better” than a measure g. Note that the notion that f is
a better measure than g is not based on some subjective evaluation that f is closer
to some true target measure than g; instead, it is based on the objective criteria of
consistency and discriminancy between the two measures f and g themselves.

Definition 10 A measure f is statistically consistent and more discriminating than
g, or intuitively, f is a better measure than g, if and only if C¢g > 0.5, and D¢/g > 1.
We denote this by f > g.

The five percentage criteria and three degree criteria proposed here provide a refined
and detailed comparison between two arbitrary single-number measures. They allow
us to study precisely how much (the probability) of two measures that are consistent,
inconsistent, indifferent, and how much one measure is more discriminating than the
other. This framework can be applied to compare any single-number measures in
machine learning, other experimental science, and engineering areas. They also allow
us to construct new measures that are better than the existing ones.

In the next section we will apply these criteria to give a thorough comparison of two
most commonly used machine learning measures: accuracy and AUC.

3.2 Comparing Accuracy and AUC

The goal of classification learning algorithms is to build a classifier from a set of
training examples with class labels such that the classifier can predict well the unseen
testing examples. The predictive ability of the classification algorithm is typically
measured by its predictive accuracy (or error rate, which is 1 minus the accuracy)
on the testing examples. However, most classifiers (including decision trees [51] and
Naive Bayes [18]) can also produce probability estimations or “confidence” of the
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class prediction. Unfortunately, this information is completely ignored in accuracy.
That is, the accuracy measure does not consider the probability (be it 0.51 or 0.99)
of the prediction; as long as the class with the largest probability estimation is the
same as the target, it is regarded as correct. This is often taken for granted since the
true probability is unknown for the testing examples anyway.

In many data mining applications, however, accuracy is not enough. For example, in
direct marketing, we often need to promote the top X% (X can be 5 or 10) customers
during gradual roll-out, or we often deploy different promotion strategies to customers
with different likelihood of purchasing. To accomplish these tasks, we need more
than a mere classification of buyers and non-buyers. We need (at least) a ranking
of customers in terms of their likelihoods of buying. Thus, a ranking is much more
desirable than just a classification [40], and it can be easily obtained since most
classifiers do produce probability estimations that can be used for ranking (testing)
examples.

If we want to achieve a more accurate ranking from a classifier, one might naturally
expect that we must need the true ranking in the training examples [12]. In most
scenarios, however, that is not possible. Instead, what we are given is a dataset of
examples with class labels only. Thus, given only classification labels in training and
testing sets, are there better methods than accuracy to evaluate classifiers that also
produce rankings? The answer lies in the ROC curve.

Bradley (7] has compared popular machine learning algorithms using AUC, and found
that AUC exhibits several desirable properties compared to accuracy. For example,
AUC has increased sensitivity in Analysis of Variance (ANOVA) tests, is independent
to the decision threshold, and is invariant to a priori class probability distributions
[7]. Recently, other researchers have even used AUC to construct learning algorithms
[22, 39]. But it is not clear if and why AUC is a better measure than accuracy.

In the next subsections, we will apply the comparison criteria proposed in the previous
section and show, both formally and empirically, that AUC is a better measure than
accuracy. Our result suggests that AUC should replace accuracy in comparing
learning algorithms in the future. Our result also prompts us to re-evaluate well-
established results in machine learning. For example, extensive experiments have
been conducted and published on comparing, in terms of accuracy, decision tree
classifiers to Naive Bayes classifiers. A well-established and accepted conclusion in

the machine learning community is that those learning algorithms are very similar
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when compared by accuracy [35, 36, 16]. Since we will establish that AUC is a better
measure, are those learning algorithms still very similar when compared by AUC?
How does recent Support Vector Machine (SVM) [6, 14, 56] compare to traditional
learning algorithms such as Naive Bayes and decision trees in accuracy and AUC? We
perform extensive experimental comparisons to compare Naive Bayes, decision trees,
and SVM to answer these questions in Section 3.2.4.

Conclusions drawn in this section may spur new research in machine learning. As a
new measure (such as AUC) is discovered and proved to be better than a previous
measure (such as accuracy), we can re-design most learning algorithms to optimize
the new measure [22, 39]. This would produce classifiers that not only perform well
in the new measure, but also in the previous measure, compared to the classifiers that
optimize the previous measure [39]. Results in this section suggest that in real-world
applications of machine learning and data mining we should use learning algorithms
to optimize AUC instead of accuracy. Most learning algorithms today still optimize
accuracy directly (or indirectly through entropy, for example) as their goals.

3.2.1 Theoretical Comparison

We first give a theoretical comparison between AUC and accuracy. We will formally
prove that AUC is consistent to, and more discriminant measure than, accuracy. We
substitute AUC for f, and accuracy for g in the definitions of degree of consistency
and discriminancy. To simplify our notation, we will use AUC to represent AUC
values, and acc for accuracy. The domain ¥ consists, in general, of ranked lists of
testing examples. In the Theorems below, however, we restrict the domain ¥ to be
binary (with two classes) ranked lists in Theorem 1, and we restrict the domain ¥ to
be binary, balanced (with the same number of positive and negative examples) ranked
lists in Theorem 2. Since we require C > 0.5 and D > 1 we will need to prove:

Theorem 1 Given a domain ¥ of all possible binary ranked lists, let R = {(a, b)|AUC(a) >
AUC(b), acc(a) > ace(b),a,b € ¥}, S = {(a,b)|AUC(a) < AUC(b), acc(a) >

acc(b),a,b € U}. Then = > 0.5 or |R| > |S].

Theorem 2 Given a domain ¥ of all possible balanced binary ranked lists, let P =
{(a,b)|AUC(a) > AUC(D), acc(a) = acc(b),a,b € ¥}, Q@ = {(a,b)|acc(a) > acc(b),
AUC(a) = AUC(b),a,b € U}. Then |P| > |Q].
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Without loss of generality, we assume that there are ng positive examples and n;
negative examples in any ranked list, and we set the cutoff point between the n;th
example and the (n; + 1)th example (the classifier classifies ny examples as positive
and other n; examples as negative). For brevity in the following discussion we use
the notation AUCh,qz, AUCpin to denote the maximum and minimum AUC values
in a specific context. For example, AUC)q. (@) is the maximum AUC value that any
ranked list with accuracy « can reach, and AUC)n..(r) is the maximum AUC value
that any ranked list r can reach. Lemma 5 is the basis for proving theorem 1. To
prove lemma 5, we propose and prove lemma 1 to lemma 4.

Lemma 1 For a given ranked list v with an accuracy o,
AUCin(r) = ot @=lnom)® - gpyor () = 1 — @otn? (g 32,

4nony dngny

Proof. Assume that there are n, positive examples correctly classified. Then there
are ng — m, positive examples in the negative section. When all ng — n, positive
examples are put on the highest positions in the negative section and n, positive
examples are put on the highest positions in the positive section, AUC reaches the
maximum value. For each positive example in the negative section, there are (n; —
no + np) negative examples ranked lower than it. And for each positive example in
the positive section, there are n; negative examples ranked lower than it. Therefore

n0—np

AUCpaz(0) = =22

N noTy
Similarly when all positive examples are put on the lowest positions in both the
positive and negative sections, AUC reaches the minimum value.

np(N1 — ng + 1)
NNy

AUCpin(a) =

_ (no+mni)?0?—(ng—n1)?

. 2 — .
Since o = 222210 from above two formulas, we can obtain AUC,;, =

n0-+n1 , dngny
AUCpge = 1— 121 _ )2 0

Lemmas 2 and 3 can be directly derived from Lemma, 1.

Lemma 2 For two given ranked lists v and s with accuracies o and 3 respectively,
if @ > f3, then AUCn45(1) > AUC102(8), AUChin(r) > AUCin(8).

(n1 =m0 +mp) + 312,41 ™ iy + (g — np)(ny — ng +nyp)

?
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Proof. From Lemma 1, we have AUC)..(1) = 1 — M(1 — )2, AUC ez(8) =

dngny

1— @t () _ )2 since o > 3, we have AUCpge(r) > AUCia(s). Similarly we

4dngny

have AUC,in (1) > AUCpin(s). O

Lemma 3 For any ranked list r with accuracy a, the number of different AUC values
that v can reach is (a—_cf)—g’"ﬂﬁ +1.

Proof. Since the difference of two adjacent AUC values is h‘oln—l’ the total number of

different AUC values is 2Y%mex(@)-AUCnmin(@) | | _ w +1. 0
nor]

Lemma 4 Let R and S be two sets of ranked lists. R = {r|acc(r) = a, AUC(r) = 3},
S = {rlacc(r) = a, AUC(r) = AUCpnos(@) + AUCpin(a) — 8}. Then |R| = |S|.

Proof. For any ranked list » € R, we perform the following position switch to
obtain another ranked list /. For any positive example in the negative section whose
position is r;, we switch it with the example in the position of n; + 1 — r;. For any
positive example in the positive section whose position is r;, we switch it with the
example in the position of ng — (r; — n;) + 1 + ny. These position switches put all
the positive examples in the positive section into negative section, and put all the
positive examples in the negative section into positive section. Suppose that there
are n, positive examples in 7’s positive section. Thus acc(r’) = 22=2et™M ™ — gec(y).

no+mni
From formula 1.1 we have

AUC(r") iy nprr (M1 + 1= 15) + 3220 (g — (ri = ma) + 1+ 1)
r') = .

NonN1

This can be simplified to

AUC(r") = AUCmqe(@) + AUCpin() — B8

Thus we have r’ € S. Clearly, the position switches make different r € R correspond
to different »’, and vice versa. Therefore the mapping r — ¢’ is a a one-to-one
mapping from R to S. |R| =|S|. O

Lemma 5 is the direct basis of theorem 1.

Lemma 5 Suppose accuraciesa > (3. Let P = {(a, b)|acc(a) = o, acc(b) = 3, AUC(a) >
AUC(b)}, Q = {(a,b)|acc(a) = a,ace(b) = B, AUC(a) < AUC(b)}. Then |P| > |Q)|.
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Proof. 1. If AUChin(0) > AUC,n4,(8), then it is obvious that |P| > 0, |Q|=0,
|P| > |Q|. 2.Otherwise, there are two cases. 1) If AUC4:(8) < (AUChes(@) +
AUCnmin(@))/2. Let AUCpaz(8) > 11 > Y2 > AUCrnin(a). For any ranked lists r, s
with ace(r) = a, AUC(r) = 7, ace(s) = 8, AUC(s) = v; we have (r,s) € Q. For
any ranked list v’ with acc(r’) = a, AUC(r'") = AUC (@) + AUChin(a) — 12 we
have (r',s) € P. By lemma 4 the number of v equals to the number of ». Thus
the number of pairs (r/, s) equals to the number of pairs (r,s). Since it is easy to
obtain that the mapping (r,s) — (s,r) is injective, we can obtain |P| > |Q|. 2)
For AUCmaz(B) > (AUCpas(ar) + AUChin(0))/2. Similar to 1) we can also prove
|P|>|Q|. O

Theorem 1 shows that the consistency of accuracy and AUC for binary datasets
(balanced or imbalanced) is greater than 0.5.

Theorem 1 Given a domain U of all possible binary ranked lists, let R = {(a,b)|AUC(a) >
AUC®), acc(a) > acc(b),a,b € ¥}, S = {(a,b)|AUC(a) < AUC(b), acc(a) >

acc(b),a,b € ¥}. Then #ﬂs—l > 0.5 or |R| > |9|.

Proof. Let Ry = {(a,0)JAUC(a) > AUC(b),accla) = a,acc(b) = B}, Sasg =
{(a,b)|AUC(a) < AUC(b), acc(a) = a, acc(b) = 8}, and suppose o > .

Clearly, R = Ua,ﬂ Rag, S =, 3 Sap, and Ra,p, N Rayp, = &, Sayp, N Sapp, = ¢, for
oy # ag or By # Ba. So |R| =32, 5| Ragl, IS] = 32, 51%p|- By lemma 5, we have
|Rog| > |Sap|. Therefore |R| > |S|. O

For the discriminancy between AUC and accuracy, we only study the case where
the ranked lists contain an equal number of positive and negative examples, and we
assume that the cutoff for classification is at the exact middle of the ranked list (each
classifier classifies exactly half examples into positive class and the other half into
negative class). So in the following lemmas and theorems, we assume ng = n; and we
always use n instead of ng and n,. If we use k; to represent the number of negative
examples ranked lower than the ith positive example, then it is easy to obtain that
ki = r; —i. We use the notation o(r) = > k;, and AUC = % Furthermore we
use |r|+ to represent the number of positive examples in ranked list r. Lemma 6 to
lemma 9 are proposed as the basis to prove theorem 2.

Lemma 6 Let Ry and Ry be two ranked lists sets, and Ry = {r||r| = n,|r|+ =m,0 <
m < 3,0(r) = C}, Ry = {r||r| = n,|r|ly = m+1,0<m < %,0(r) = C}. Then
|Ra| > |Ryl.
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Proof. This lemma is related with the restricted partitions in Number Theory [1]. Let
p(N, M, n) denote the number of partitions of positive integer n into at most M parts,
each < N. It is easy to obtain that |R;| = p(n—m,m, C), |Rs] = p(n—m—1,m+1,C).
So we need to prove p(n —m — 1,m+1,C) > p(n — m,m,C), for m < n/2. This is
the result of [2]. O

Lemma 7 Let R, and Ry be two ranked lists sets. Ry = {r||r| = n,|r|+ = m,0 <
m < §,0(r) = C}, Ry = {r|lr| = n,|rly =n—m,0 < m < %,0(r) = C}. Then
|Ri| = |Ry|.

Proof. For any ranked list r € R;, we switch the example on position 7 with the exam-

ple on position n—i to obtain another ranked list s. Since AUC(r) = EQI:;&T%H)/ 2

AUC(s) = Zgl(”;r(’z:%(mﬂ)/ 2 We then replace all positive and negative examples in
s with negative and positive examples respectively to obtain ranked list s'. It is easy
to obtain AUC(s") = AUC(r), |§'|+ = n—m. Thus ' € Ry. Therefore |R;| < |Ry|.

Similarly we can prove |Ry| < |R;|. We have |R;| = |Ry|. O

Lemma 8 Let o > % > B, and a+ 3 = 1. Ry and Ry are two ranked lists sets.
Ry = {rlacc(r) = o, AUC(r) = AUCpin(a) + 7}, Ry = {s|acc(s) = B, AUC(s) =
AUCrin(B) + v}, Then |Ry| = |Ry|.

Proof. For any ranked list » € R, , from the definition of o, o(r) = AUC i (a)n? +
2

yn?.
be ranked list 7o, then r = rory. Since o(r) = o(re) + o(r1) + ny(n1 — o + 1) =
o(r2) + o(r1) + AUCpin(a)yn?, We have a(r) + o(ry) = yn?. We then construct a
new ranked list s by combining 7 and r; such that s = ry7e. Then acc(s) =1—a =
B, AUC(s) = AUCpin(B) +7. So s € Ry, |R1] < |Ry]. Similarly we can prove

|R2| < |Ri|. Therefore |Ry| = |Ry|. O

Let the positive section of r be ranked list r; and the negative section of r

Lemma 9 Let accuracies o and 3 satisfy one of the following conditions.

1)z >a>p, or

2)8>a>1, or

3)a>%>ﬂandl—a2ﬂ, or

{)B>L>aandl—-a<p.

Let Ry = {r|acc(r) = a, AUC(r) = AUCpin() + 7}, Ry = {slacc(s) = 8, AUC(s) =
AUCmin(B8) + 7} Then |Rq| 2 |Ry|.
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Proof. We first consider the case that o and (3 satisfy condition 1). For any ranked
list s € R, we split the positive and negative sections of s into ranked lists s; and
s2. Then |s1| = |sa|, 0(s1) + 0(s2) = yn?. We extract a subset T; C Ry, T; = {s|s =
8281, [s1] = |sal,acc(s) = B,0(s1) = i,0(s2) = yn? —i}. We also extract a subset
P, C Ry, P, = {r|r = rary,|r1] = |ra|, ace(r) = a,a(r1) =1i,0(ry) = yn? —i}.

Since % >a> B, forany r =rery € P, s = 8381 € T}, 1]+ < ||+ < ‘2—” By
lemma 6, there are more ranked lists 7y than s;. By lemma 7, the number of ranked
lists ry equals to the number of ranked lists 7} which satisfy |rh|, = n — |re|4, and
o(ry) = yn? — i; the number of ranked lists s, equals to the number of ranked lists

sy which satisfy |s5|+ = n — |ss]+, and o(sh) = yn?

— 4. Since |r|4+ > |sh|+, there are
more ranked lists 7o than s,. Therefore |P;| > |T;|. Sum these inequalities for all 4
we can obtain |R;| > |R,|. Similarly we can prove cases 2), 3), 4) from case 1) and

lemma 8. O

Theorem 2 Given a domain V of all possible balanced binary ranked lists, let P =
{(a,b)|AUC(a) > AUC(b), acc(a) = acc(b),a,b € U}, Q = {(a,b)|acc(a) > acc(b),
AUC(a) = AUC(b),a,b € U}. Then |P| > |Q)|.

Proof. Let Ay, = {r|acc(r) = o, AUC(r) = v}, Bs, = {s|acc(s) = B3, AUC(s) =
7}. Suppose a and f satisfy one of the conditions in lemma 9. Let Chp, =
{rlacc(r) = a, AUC(r) = v — AUCnin(B) + AUCpin(e)}. By lemma 9, we have
|Capyl = |Bgy|. Thus Yoy [Aanl - 1Capsl 2 > apny | Aanl - |Bsyl- On the other
hand |Q| = 3_, 5., [Aay| - [Bgyl, and it is obvious that [P| > 37 5 1Aayl - [Caypnl-
Therefore |P| > |Q]. O

Theorems in Section 3.2.1 state that AUC is statistically consistent to, and more
discriminating than, accuracy with binary, balanced datasets. In the following sub-
sections, we perform extensive experiments on AUC and accuracy on a variety of
artificial datasets and real-world datasets. This is necessary for three reasons. First,
as we have only been able to prove the theorems with certain limitations (e.g., binary,
balanced datasets), we also want to know if the theorems are true with imbalanced
and multi-class datasets. This is necessary because most real-world datasets are im-
balanced with multiple class values. Second, empirical experiments on artificial and
real-world datasets will give us intuitions on the ranges of the degree of consistency
C, the degree of discriminancy D, and the degree of indifferency E, on different types
of datasets. Third, our theorems and empirical evaluations on artificial datasets are
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based on the uniform distribution of examples. In real-world datasets, examples are
often non-uniform. The experiments in Section 3.2.4 will directly evaluate the rela-
tions between AUC and accuracy on real-world datasets.

3.2.2 Comparison with Artificial Datasets

We empirically compare AUC and accuracy with artificial datasets. We will use three
kinds of artificial datasets — binary balanced, binary imbalanced, and multiclass — in

our experiments.

3.2.2.1 Balanced Binary Data

Even though we have proved that AUC is indeed statistically consistent and more
discriminating than accuracy if the domain contains all possible binary, balanced
ranked lists, we still perform empirical experiments in order to gain an intuition on
the ranges of the degree of consistency C, the degree of discriminancy D, and the
degree of indifferency E.

To calculate C, D, and E, we exhaustively search all possible ranked lists of the same
length. Since the number of ranked lists increases exponentially with the size of the
ranked lists, we will only use small datasets in our experiments. We test datasets with
4,6, 8,10, 12, 14, and 16 testing examples. For each case, we enumerate all possible

ranked lists of (equal numbers of) positive and negative examples. For the dataset

2n

with 2n examples, there are (n

) such ranked lists. We exhaustively compare all pairs
of ranked lists to see how they satisfy the consistency and discriminating propositions
probabilistically. To obtain the degree of consistency (see Definition 7), we count the
number of pairs which satisfy “AUC(a) > AUC(b) and acc(a) > acc(b)”, and the
number of pairs which satisfy “AUC(a) > AUC(b) and acc(a) < acc(b)”. We then
calculate the percentage of those cases; that is, the degree of consistency. To obtain
the degree of discriminancy (see Definition 8), we count the number of pairs which
satisfy “AUC(a) > AUC(b) and acc(a) = acc(b)”, and the number of pairs which

satisfy “AUC(a) = AUC(b) and acc(a) > acc(b)”.

Tables 3.4 and 3.5 show the experiment results. For consistency, we can see (Table
3.4) that for various numbers of balanced testing examples, given AUC(a) > AUC(b),
the number (and percentage) of cases that satisfy acc(a) > acc(b) is much greater than
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those that satisfy acc(a) < acc(b). When n increases, the degree of consistency (C)
seems to approach 0.93, much larger than the required 0.5. For discriminancy, we can
see clearly from Table 3.5 that the number of cases that satisfy AUC(a) > AUC(b)
and acc(a) = ace(b) is much more (from 15.5 to 18.9 times more) than the number
of cases that satisfy acc(a) > acc(b) and AUC(a) = AUC(b). When n increases, the
degree of discriminancy (D) seems to approach 19, much larger than the required
threshold 1.

Table 3.4: Experiments on statistical consistency between AUC and accuracy for the
balanced binary dataset
# AUC(a) > AUC(b) AUC(a) > AUC(b) C
& acc(a) > ace(b) & ace(a) < ace(b)

4 9 0 1.0

6 113 1 0.991
8 1459 34 0.977
10 19742 766 0.963
12 273600 13997 0.951
14 3864673 237303 0.942
16 55370122 3868959 0.935

Table 3.5: Experiments showing AUC is statistically more discriminating than accu-
racy for the balanced binary dataset

# AUC(a) > AUC(b) acc(a) > aec(b) D
& acc(a) = acc(b) & AUC(a) = AUC(b)
4 ) 0 o0
6 62 4 15.5
8 762 52 14.7
10 9416 618 15.2
12 120374 7369 16.3
14 1578566 89828 17.6
16 21161143 1121120 18.9

These experimental results confirm empirically that AUC is indeed a statistically
consistent and more discriminating measure than accuracy for the balanced binary
datasets.
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We also obtain the degree of indifferency between AUC and accuracy for the balanced
binary datasets. The results can be found in Table 3.6. As we can see, the degree of
indifferency E is very small: from about 7% to 2%, and the trend is decreasing as the
number of examples increases. This is desirable as for most cases (with a probability
1 — E), AUC and accuracy are not indifferent; that is, they are either consistent,
inconsistent, or one is more discriminant than another.

Table 3.6: Experimental results for the degree of indifferency between AUC and
accuracy for the balanced binary dataset.
# AUC(a) = AUC(b) (a,b) E
& acc(a) = ace(d) & a#b

4 1 15 0.067
6 10 190 0.053
8 108 2415 0.045
10 1084 31626  0.034
12 11086 426426  0.026
14 117226 5887596  0.020
16 1290671 82812015 0.016

3.2.2.2 Imbalanced Datasets

We extend our previous results on the balanced datasets with binary classes to im-
balanced datasets. We will experimentally confirm that statistical consistency and
discriminancy still hold in these relaxed conditions.

We first test imbalanced binary datasets, which have 25% positive and 75% negative
examples. We use ranked lists with 4, 8, 12, and 16 examples (so we can have
exactly 25% of positive examples and 75% of negative examples). For accuracy, we
must decide the cut-off point. We assume that the class distributions of training and
testing examples are the same because this is the fundamental hypothesis in machine
learning for performance evaluation. Thus, the cut-off point of the ranked list is at the
75% position: the lower 75% of the ranked testing examples are classified as negative,
and the top 25% of the ranked testing examples are classified as positive. Tables 3.7
and 3.8 show the experimental results for the imbalanced datasets (with 25% positive
examples and 75% negative examples). We can draw similar conclusions that the
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degree of consistency (from 0.89 to 1.0) is much greater than 0.5, and the degree of
discriminancy (from 15.9 to 21.6) is certainly much greater than 1.0. Compared to
the results for the balanced datasets (Tables 3.4 and 3.5), we can see that the degree
of consistency is lower but the degree of discriminancy is higher when datasets are
imbalanced.

Table 3.7: Experiments on statistical consistency between AUC and accuracy for the
imbalanced binary datasets
# AUC(a) > AUC(b) AUC(a) > AUC(h) C
& acc(a) > ace(b) & acc(a) < ace(b)

4 3 0 1.0

8 187 10 0.949
12 12716 1225 0.912
16 926834 114074 0.890

Table 3.8: Experiments showing AUC is statistically more discriminating than accu-
racy for the imbalanced binary datasets

# AUC(a) > AUC(D) acc(a) > acc(b) D
& acc(a) = ace(b) & AUC(a) = AUC(b)

4 3 0 NA

8 159 10 15.9

12 8986 489 18.4

16 559751 25969 21.6

We have also obtained the degree of indifferency for the imbalanced binary datasets
as shown in Table 3.9. Compared to the results in Table 3.6, we can conclude that
the degree of indifferency is basically the same.

To see the effect of the class distribution to the degree of imbalanced consistency
and discriminancy, we fix the number of the testing examples as 10, and vary the
number of positive examples as 5 (balanced), 6, 7, 8, and 9. Table 3.10 shows the
changes of consistency and discriminancy with different class distribution. As we can
see, except for the extreme cases at the two ends, that the more imbalanced the class
distribution, the lower the degree of consistency (but still well above 0.5), and the
higher the degree of discriminancy. These results are very interesting as they provide
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Table 3.9: Experimental results for the degree of indifferency between AUC and
accuracy for the imbalanced binary datasets
# AUC(a) = AUC(b) (a,b) E
& acc(a) = ace(b) & a#b

4 0 6 0

8 12 378 0.032
12 629 24090 0.026
16 28612 1655290 0.017

Table 3.10: Experimental results for showing the variation of degree of consistency
and discriminancy with different class distribution for binary datasets

no M C D
1 9 1.0 s
2 8 0926 223
3 7 0939 155
4 6 095 14.9
5 5 0963 15.2
6 4 0956 14.9
7 3 0939 155
8 2 0926 223
9 1 1.0 00

intuitions on degree of consistency and discriminancy in the binary datasets with
different class distributions.

3.2.2.3 Multiclass Datasets

In previous experiments we only study AUC and accuracy for datasets with two
(binary) classes. It is much more complicated for multiple classes cases and there is no
straightforward approach to extend the definition of AUC from the case of two classes.
Hand and Till [25] proposed a simple generalization of AUC for multiple classes, as
follows. For a ranked list of ¢ classes, each example has a label indicating the class it
actually belongs to. Each example is assigned to ¢ probabilities (p1, pe, - - , pc) forits ¢
classes. For all the examples with class labels ¢ and 7, we first sort them incrementally
by the probability value p;, and we calculate the AUC value as AUC(i, 7). Then we
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Table 3.11: An example for calculating AUC for multiple classes.
class 1 1 2 2 3 3
pr 06 015 03 045 0.1 0.8
pe 015 03 05 025 0.2 0.05
ps 025 055 02 03 0.7 015

sort them incrementally by the probability value p;, and we calculate the AUC value
as AUC(4,i). The AUC between classes i and j is AUC’(i,j) = AUC(i’j);LAUC(j’i).
The AUC of this ranked list is the average AUC values for every two classes, which
is E(c2——1) >i AUC(i,5) [25]. Table 3.11 gives an example for calculating AUC of
multiple classes. The ranked list has 6 examples belonging to 3 classes, and there are 2

examples for each class. The first row in Table 3.11 represents the class labels for each
example. The second, third and fourth rows are the predicted probabilities for each
example belonging to the 3 classes. From this table we can obtain AUC(1,2) = %,
AUC(2,1) = 3, AUC(1,3) = 1, AUC(3,1) = 3, AUC(2,3) = 1, AUC(3,2) = z.
The AUC for this ranked list is then (%+%)/2+(%+3%)/2+(1+%)/2 =32,

o]

To perform experiments with artificial datasets for multiple classes (balanced only),
we actually need to generate (or simulate) probabilities of multiple classes. More
specifically, for each testing ranked list with ¢ classes, the class distribution of each
example is randomly generated (but sum of all class probabilities is 1). The class with
the largest probability is the “correct” class. We make sure that there is an equal
number of examples in each class. We generate a large number of such lists which
covers all possible ranked lists and we then randomly choose two lists from the large
pool of such lists to calculate the relation between their AUC and accuracy values. We
do that 50,000 times from a large pool to get an averaged degree of consistency and
discriminancy to approximate all possible ranked lists with the uniform distribution.

For accuracy calculation, we use the same assumption that the class distribution
in the testing set is the same. Therefore, the list of examples is partitioned into
¢ consecutive portions, and each portion is assigned to one of the c¢ classes. This
assumption is not restrictive as any ranked list is a permutation of this one.

Table 3.12 shows the experimental results for the consistency and discriminancy of
the multiclass datasets. The number of classes ranges from 3 to 10, and there are 2
examples for each class. From these experimental results, we can plot the the degree
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of consistency and the degree of discriminancy as functions of the number of classes,
which are show in Figure 3.2. We can clearly see that when the number of classes
increases, the degree of consistency decreases (the trend suggests that the rate of
decreasing does slow down), while the degree of discriminancy increases. We have
not experimented with imbalanced multiclass datasets. The conclusions of previous
experiments can very likely be extended: the further imbalanced the datasets, the
lower the degree of consistency and the higher the degree of discriminancy.

Table 3.12: Experiments on the consistency and discriminancy between AUC and

accuracy for multiclass datasets
# of classes C D

3 0.897 5.5
4 0.828 7.1
5 0.785 9.5
6 0.757 12.1
7 0.736 15.0
8 0.721 18.3
9 0.705 21.6
10 0.696 25.3
o 1 230
g 08 g%
2 g
g 06 5 20
s 215
g 04 cg 10
5 0.2 g 5
A &
0 : ‘ ‘ ! ‘ (ST . : i ‘
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
# of classes # of classes

Figure 3.2: The degree of consistency (C) and degree of discriminancy (D) depicted as
functions of the number of classes, from experimental results with multiclass datasets.

To conclude, for both balanced or imbalanced, binary or multiclass (3 to 10 classes)
datasets, our experiments suggest that AUC is statistically consistent with accuracy
(C > 0.5), and AUC is statistically more discriminant than accuracy (D > 1).
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3.2.3 Comparison with Real-World Datasets

We conduct further experiments to calculate consistency and discriminancy of AUC
and accuracy. But here we use real machine learning algorithms (instead of a simu-
lation with enumeration of ranked lists) on real-world datasets (instead of artificial
datasets). The algorithms we use are the standard C4.5 [51], Naive Bayes [18], and
an improvement of C4.5 called C4.4 [48]. See Section 2.1 of Chapter 2 for detailed
descriptions of these learning algorithms. Note that the actual selection of the al-
gorithms are not an issue here, neither which one actually performs better in AUC
or accuracy — such questions will be answered in Section 3.2.4. Here we only care if
the two algorithms are consistent or not in AUC and accuracy, and if one measure is
more discriminant than another. That is, we want to confirm Theorems 1 and 2 on
real-world datasets using real learning algorithms.

We use 18 datasets (both binary and multi-class) with a relatively large number of
examples from the UCI repository [4], as shown in Table 3.13. To confirm statistical
consistency and discriminancy between accuracy and AUC on real-world datasets, we
compare every pair (C4.4 vs Naive Bayes, C4.5 vs Naive Bayes, and C4.5 vs C4.4) of
the learning algorithms in the 18 datasets (Table 3.13). To obtain finer results, we
actually compare pairs of learning algorithms on each cross-validation test set (there
are a total of 180 such testing sets from 18 datasets with 10-fold cross validation).
Again, for each pair of algorithms, we do not care which one is better (this will be
answered in Section 3.2.4.1); instead, we only care if the two algorithms are consistent
or not in AUC and accuracy, and if one measure is more discriminant than another.

The results are reported in Table 3.14, and they are certainly consistent with the
Theorems in Section 3.2.1. In the table’s left column, + means, in the “algorithm A
vs algorithm B” comparison, A is better than B, — means A is worse than B, = means
A is the same as B, and # means A is not the same as B (in the paired t-test). Thus,
the number 84 in Table 3.14 means that there are 84 cross-validation testing sets
(among 180) in which C4.4 is better than Naive Bayes in both accuracy and AUC, or
C4.4 is worse than Naive Bayes in both accuracy and AUC. That is, C4.4 and Naive
Bayes are consistent in both accuracy and AUC on 84 cross-validation testing sets.
The number 29 in the table means that there are 29 cross-validation test sets (among
180) in which C4.4 is better than Naive Bayes in accuracy but worse in AUC, or C4.4 is
worse than Naive Bayes in accuracy but better in AUC. That is, C4.4 and Naive Bayes
are inconsistent in accuracy and AUC on 29 cross-validation testing sets. The ratio of
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Table 3.13: Descriptions of the datasets used in our experiments
Dataset Attributes Class Instances

breast 9 2 683
cars 6 2 700
credit 15 2 653
dermatology 34 4 366
echocardio 4 2 61
eco 6 2 332
glass 8 6 214
heart 8 2 261
hepatitis 8 2 112
import 23 2 205
iris 4 3 150
liver 2 2 345
mushroom 21 2 8124
pima 6 2 392
solar 12 6 1066
thyroid 24 2 2000
voting 16 2 232
wine 13 3 178

84/(84+29)=0.743 is then the degree of consistency C. Similarly, the numbers in the
row “acc=/AUC#" indicates the number of cross-validation testing sets that the two
algorithms are same in accuracy but different in AUC, and “acc#/AUC=" indicates
the number of cross-validation testing sets that the two algorithms are different in
accuracy but same in AUC. The ratio of the two numbers (for example, 55/2=27.5)
is then the estimated degree of discriminancy D. From the estimated values of C and
D in Table 3.14, we can clearly see that for all pairs of the algorithms compared over
180 cross-validation testing sets, they are statistically consistent (C > 0.5), and AUC
is more discriminant than accuracy (D > 1).

We can also see that the degree of indifferency of C4.5 vs C4.4 (0.172) is higher than
C4.5 vs NB (0.105), and is higher than C4.4 vs NB (0.056). This indicates that
(C4.5 and C4.4 produce more similar results (ranked lists) than the other pairs (if two
algorithms predict exactly the same, they will be indifferent by any measure). This
is somewhat expected as C4.4 is an improved version of C4.5, so it would produce
similar results as C4.5.
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Last, we can see that the degree of discriminancy of C4.5 vs C4.4 (67) is larger than
C4.5 vs NB (46), and is larger than C4.4 vs NB (27.5). This indicates, intuitively,
that the difference between AUC and accuracy is more evident in the former ones.
Indeed, C4.4 and Naive Bayes are more close in their prediction in AUC (see Table
3.16), and thus, they are more similar in the effect of AUC and accuracy on the
testing datasets.

Table 3.14: The consistency and discriminancy of accuracy and AUC for pairs of
learning algorithms

C4.4vs. NB C4.5 vs. NB C4.5 vs. C4.4

acc+/AUC+ or acc—/AUC— 84 83 45
acc+/AUC— or acc—/AUC+ 29 31 36
Degree of consistency C 0.743 0.728 0.556
ace=/AUCH# 55 46 67
acc#/AUC= 2 1 1
Degree of discriminancy D 27.5 46 67
acc=/AUC= 10 19 31
Degree of indifferency E 0.056 0.106 0.172

3.2.4 Comparing Learning Algorithms on AUC and Accu-

racy

We have established, empirically (Section 3.2.3) and formally (Section 3.2.1), that
AUC is a better measure (using objective criteria of statistical consistency and dis-
criminancy) than accuracy. Most previous work, however, only focussed on compar-
ing the learning algorithms in accuracy. A well-accepted conclusion in the machine
learning community is that the popular decision tree learning algorithm C4.5 [51]
and Naive Bayes are very similar in predictive accuracy [35, 36, 16]. How do popular
learning algorithms, such as decision trees and Naive Bayes, compare in terms of the
better measure AUC? How does the recent Support Vector Machine (SVM) method
compare to traditional learning algorithms such as Naive Bayes and decision trees?
We attempt to answer these questions in this section.
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3.2.4.1 Comparing Naive Bayes and Decision Trees

We conduct our experiments to compare Naive Bayes, C4.5, and its recent improve-
ment C4.4, using both accuracy and AUC as the evaluation criterion. We use the
same 18 datasets (both binary and multi-class) with a relatively large number of ex-
amples from the UCI repository [4], as shown in Table 3.13. SVM is not involved in
this comparison as some datasets are multiple classes (see Section 3.2.4.2 for details).

Our experiments follow the procedure below:

1. Continuous attributes in all datasets are discretized by the entropy-based method
described in [21].

2. For each dataset, create 10 pairs of training and testing sets with 10-fold cross-
validation, and run Naive Bayes, C4.5, and C4.4 on the same training sets and
test them on the same testing sets to obtain the testing accuracy and AUC

scores. !

The averaged results on accuracy are shown in Table 3.15, and on AUC in Table
3.16. As we can see from Table 3.15, the three algorithms have very similar predictive
accuracy. The two tailed, paired t-test with 95% confidence level (same for other t-
tests in the rest of the paper) shows that there is no statistical difference in accuracy
between Naive Bayes and C4.4, Naive Bayes and C4.5, and C4.4 and C4.5. This
verifies results of previous publications [35, 36, 16].

Analyzing the results for AUC in Table 3.16, however, leads to an interesting con-
clusion. The average predictive AUC score of Naive Bayes is slightly higher than
that of C4.4, and much higher than that of C4.5. The paired t-test shows that the
difference between Naive Bayes and C4.4 is not significant, but the difference between
Naive Bayes and C4.5 is significant. (The difference between C4.4 and C4.5 is also
significant, as observed in [48]). That is, Naive Bayes outperforms C4.5 in AUC with
significant difference.

This conclusion is quite significant for the machine learning and data mining com-
munity. Previous research concluded that Naive Bayes and C4.5 are very similar in

1Again the calculation of AUC depends only on the labeled examples (the true ranking is not
needed) and learning algorithms which can produce probability estimations for ranking testing
examples.



Table 3.15: Predictive accuracy values of Naive Bayes, C4.4, and C4.5

Dataset NB C4.4 C4.5
breast 97.54+2.9 92.94+3.0 92.8£1.2
cars 86.4+3.7 88.9+4.0 85.1+3.8
credit 85.843.0 88.1+2.8 88.843.1
dermatology 98.4+1.9 94.0+3.5 94.04+4.2
echocardio 71.9+1.8 73.6+£1.8 73.6+1.8
ecoli 96.7£2.2 96.4+3.1 95.5+3.9
glass 71.84+2.4 73.3+3.9 73.313.0
heart 80.8+7.3 78.9+7.6 81.2+5.6
hepatitis 83.0£6.2 81.3+4.4 84.02+4.0
import 96.1+3.9 100.0+0.0 100.040.0
iris 95.3+4.5 95.3+4.5 95.3%£4.5
liver 62.3+5.7 60.5+4.8 61.1+4.9
mushroom  97.240.8 100.0£0.0 100.04-0.0
pima 71.4+58 71.9+£7.1 71.7+6.8
solar 74.0£3.2 73.0+3.1 73.9£2.1
thyroid 95.74+1.1 96.0+1.1  96.6%1.1
voting 91.4+56 95.7+4.6  96.6+3.9
wine 98.94+2.4 95.04+4.9 95.545.1

Average 86.4 86.4 86.6

prediction when compared by accuracy [35, 36, 16]. As we have established in this
paper, AUC is a better measure than accuracy. Further, our results show that Naive
Bayes and C4.4 outperform the most popular decision tree algorithm C4.5 in terms
of AUC. This indicates that Naive Bayes (and C4.4) should be favored over C4.5 in
machine learning and data mining applications, especially when ranking is important.

3.2.4.2 Comparing Naive Bayes, Decision Trees, and SVM

In this section we compare accuracy and AUC of Naive Bayes, C4.4, and C4.5 to the
recently developed SVM [63, 14, 8] on the datasets from the UCI repository. Such
an extensive comparison with a large number of benchmark datasets is still rare [44];
most previous works (such as Hastie etc. [27]) were limited to only a few comparisons,
with the exception of Meyer etc. [44].

SVM is essentially a binary classifier, and although extensions have been made to
multiclass classification [60, 28] there is no consensus which is the best. Therefore,



Table 3.16: Predictive AUC values of Naive Bayes, C4.4, and C4.5

Dataset NB C4.4 C4.5
breast 97.5+£0.9 96.9+0.9 95.1+2.4
cars 92.843.3 94.14+3.2 91.443.5
credit 91.943.0 90.4+3.2 88.0%+4.1
dermatology 98.6+£0.1 97.541.1 94.643.3
echocardio  63.8+2.1 69.442.2 68.942.3
ecoli 97.0+1.1 97.0£1.0 94.31+3.6
glass 76.1+2.4 73.1£2.6 71.3+3.3
heart 82.7+6.1 80.1£7.8 76.2+7.0
hepatitis 76.5+4.4 62.91+8.2 59.2+6.8
import 91.744.5 944420 95.112.6
iris 94.24+3.4 91.843.8 92.44+4.6
liver 61.545.9 59.6x5.7 60.5+5.0
mushroom  99.74+0.1 99.9+0.0 99.94:0.0
pima, 75.9+4.2 734473 724474
solar 88.7x£1.7 87.7+1.9 85.242.8
thyroid 94.94+1.8 94.3+2.6 92.1+5.5
voting 91.4+3.7 95.242.2 93.4+3.7
wine 95.3+1.8 94.4+1.2 91.6+4.0

Average 87.2 86.2 84.5

we use the 13 binary-class datasets from the 18 datasets in the experiments involving
SVM. Meyer etc. [44] also only used binary datasets for the classification for the same
reason.

For SVM we use the software package LIBSVM [10] modified to directly output the
evaluation of the distance from testing examples to the hyperplane with the maximal
margin as scores for ranking. We used the Gaussian Kernel for all the experiments.
The parameters C' (penalty for misclassification) and gamma (function of the devia-
tion of the Gaussian Kernel) were determined by searching for the maximum accuracy
in the two-dimensional grid formed by different values of C' and gamma in the 3-fold
cross-validation on the training set (so the testing set in the original 10-fold cross-
validation is not used in tuning SVM). C was sampled at 273, 273 271 .. 25 and
gamma at 2715 2713 911 93 Other parameters are set default values by the
software. This experiment setting is similar to the one used in [44]. The experiment
procedure is the same as discussed in Section 3.2.3.

The predictive accuracy and AUC of SVM on the testing sets of the 13 binary datasets
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are listed in Table 3.17. As we can see, the average predictive accuracy of SVM on the
13 binary datasets is 87.8%, and the average predictive AUC is 86.0%. From Table
3.15 we can obtain the average predictive accuracies of Naive Bayes, C4.4, and C4.5
on the 13 binary datasets are 85.9%, 86.5%, and 86.7%, respectively. Similarly, from
Table 3.16 we can obtain the average predictive AUC values of Naive Bayes, C4.4,
and C4.5 on the 13 binary datasets are 86.0%, 85.2%, and 83.6%, respectively.

Several interesting conclusions can be drawn. First, the average predictive accuracy
of SVM is slightly higher than other algorithms in comparison. However, the paired
t-test shows that the difference is not statistically significant. Secondly, the average
predictive AUC scores show that SVM, Naive Bayes, and C4.4 are very similar. In
fact, there is no statistical difference among them. However, SVM does have signif-
icantly higher AUC than C4.5, so does Naive Bayes and C4.4 (as observed in the
early comparison in Section 3.2.4.1). Note that in most previous comparisons, nu-
merical attributes are used directly in SVM. In our experiments, however, we have
discretized all numerical attributes (see Section 3.2.4.1) as Naive Bayes requires all
attributes to be discrete. Discretization is an important pre-processing step in data
mining [42]. The discretized attributes are named 1, 2, 3, and so on. Decision trees
and Naive Bayes then take discrete attributes directly. For SVM, those values are
taken as numerical attributes after normalization. We believe that our comparisons
are fair and valid since all algorithms use the same training and testing datasets after
discretization. If there is loss of information during discretization, the decision trees,
Naive Bayes, and SVM would suffer equally from it. Also note that we did not seek
problem-specific best kernels for SVM. This is fair as Naive Bayes, C4.5, and C4.4,
are run automatically with the default, problem-independent parameter settings.

'To summarize, our extensive experiments in this section allow us to draw the following
conclusions:

e The average predictive accuracies of the four learning algorithms compared
(Naive Bayes, C4.5, C4.4, and SVM) are very similar. There is no statistical
difference between them. The recent SVM does produce slightly higher aver-
age accuracy but the difference on the 13 binary datasets is not statistically
significant.

o The average predictive AUC values of Naive Bayes, C4.4, and SVM are very
similar (no statistical difference), and they are all higher with significant differ-
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Table 3.17: Predictive accuracy and AUC of SVM on the 13 binary datasets
Dataset Accuracy AUC
breast 96.5+2.3 97.3%£1.3
cars 97.0+1.3 98.6+0.4
credit 86.4+£2.9 90.4%3.0
echocardio 73.6+1.8 71.51+2.0
ecoli 96.44+3.1 95.0+2.8
heart 79.7£8.2 82.1£8.3
hepatitis = 85.844.2 64.248.7
import, 100.0+£0.0 93.8+0.6
liver 60.5+4.8 61.61+5.6
mushroom  99.94+0.1  99.940.0
pima 72.2+6.3 722475
thyroid 96.7+1.3  95.84+3.3
voting 97.0£3.5 95.3£0.7
Average 87.8 86.0

ence than C4.5.

o AUC should replace accuracy in measuring and comparing classifiers as AUC
is a better measure in general. This is particularly true as ranking is important
in data mining applications, and AUC reflects ranking much more accurately
and directly than accuracy.

Our conclusions will provide important guidelines in data mining applications on
real-world datasets.

3.2.5 Summary

In this section, we apply the formal definitions of discriminancy and consistency in
comparing evaluation measures for learning algorithms. We establish precise and ob-
jective criteria for comparing two measures in general, and show, both empirically
and formally, that AUC is a better measure than accuracy. This suggests that AUC
should replace accuracy in measuring and comparing classifiers, as AUC is a better
measure in general. We then reevaluate commonly accepted claims in machine learn-
ing based on accuracy using AUC, and obtain interesting and surprising new results.
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We show that the average predictive AUC values of Naive Bayes, C4.4, and SVM are
very similar (no statistical difference), and they are all higher than C4.5 with signifi-
cant difference. This suggests that Naive Bayes, C4.4 and SVM should be preferred
over C4.5 in real-world applications, especially when ranking is important.

The conclusions drawn in this section can have important implications in evaluating,
comparing, and designing learning algorithms. In our future work, we will study the
effect of data discretization on the performance of SVM and other algorithms, and
we will redesign accuracy-based learning algorithms to optimize AUC. Some works

have already been domne in this direction.

3.3 Comparing Ranking Measures

In the previous research of the ranking issue in machine learning, a lot of work has
focused on how to design or optimized ranking algorithms. As we have introduced
in Chapter 1, some true ranking measures such as ED, SRN, M D and some partial
ranking measures such as AUC are widely used in estimating how well a ranking is
performed compared with the ideal ranking. In Statistics there are a lot of researches
on the statistical properties of these ranking measures. However, little work has
been done to directly compare these ranking measures. Just as the significance of
comparing AUC and accuracy in the previous section, it is also important to perform
a detailed and complete comparison among most commonly used rank measures.

In this section we compare six ranking measures of ED, MD, SRN, AUC, OAUC, accu-
racy (See Section 1.1.2) by using our general comparison criteria proposed in Section
3.1. By using artificial datasets we empirically study the degree of consistency and
degree of discriminancy between every two ranking measures. Based on these results
we obtain a preference order discovered for these measures (Section 3.3.1). We also
perform experiments by using real-world datasets and ranking algorithms to confirm
our preference order. It also shows that better ranking measures are more sensitive
in comparing rank algorithms (see Section 3.3.2).

We first intuitively compare some pairs of measures and analyze whether any two
measures satisfy the criteria of consistency and discriminancy. To begin with, we
consider ED and MD because these two measures are quite similar in their definitions
except that ED sums the squared distance while MD sums the absolute value. We
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expect that these two measures are consistent in most cases. On the other hand,
given a dataset with n examples there are a total of O(n®) different ED values and
O(n?) different MD values. Thus ED is expected to be more discriminant than MD.
Therefore we expect that ED is consistent with and more discriminant than MD.

For AUC and OAUC, since OAUC is an extension of AUC, intuitively we expect
that they are consistent. Assuming there are n; negative examples and ng positive
examples, the different values for OAUC is ny Y 2, (ny + ), which is greater than the
different values of AUC (ngn). We can also expect that OAUC is more discriminant
and therefore better than AUC.

However for the rest of the ranking measures we cannot make these intuitive claims
because they have totally different definitions or computational methods. Therefore,
in order to perform an accurate and detailed comparison and to verify or overturn
our intuitions, we will conduct experiments to compare all measures.

3.3.1 Comparing Ranking Measures on Artificial Datasets

'To obtain the average degrees of consistency and discriminancy for all possible ranked
lists, we use artificial datasets that consist of all possible ordered list of length 8
2, We assume that the ordered lists are uniformly distributed. We exhaustively
compare all pairs of ordered lists and calculate the degree of consistency and degree

of discriminancy between two rank measures for ordering.

Table 3.18 lists the degree of consistency between every pair of six rank measures
for ordering. The number in each cell represents the degree of consistency between
the measures in the same row and column of the cell. We can find that the degree
of consistency between any two measures are greater than 0.5, which indicates that
these measures are “similar” in the sense that they are more likely to be consistent

than inconsistent.

Table 3.19 shows the degree of discriminancy among all 6 rank measures. The number
in the cell of the ith row and the jth column is the degree of discriminancy for the

measure in ¢th row over the one in jth column, and vice versa.

From these two tables we can draw the following conclusions. First, these results
verified our previous intuitive conclusions about the relations between ED and MD,

2There are n! different ordered lists for length n, so it is unfeasible to enumerate longer lists.
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Table 3.18: Degree of consistency between pairs of ranking measures for ordering.

AUC |SRN | MD | ED | OAUC | acc
AUC 1 0.88 | 0.89 | 0.87 | 0.99 | 0.98
SRN 0.88 1 0.95 | 0.98 0.89 0.91

MD 0.89 0.95 1 0.95 0.90 0.95

ED 0.87 | 098 | 0.95 1 0.88 0.90
OQAUC § 0.99 | 0.89 | 0.90 | 0.88 1 0.97

ace 0.98 | 091 ;095|090 | 097 1

Table 3.19: Degree of discriminancy between pairs of ranking measures for ordering.

AUC [SRN | MD ED | OAUC | acc
AUC 1 0.88 1.42 0.21 | 0.0732 | 14.0
SRN 1.14 1 1.84 | 0.242 | 0.215 9.94
MD 0.704 | 0.54 1 0.117 | 0.116 6.8

ED 4.76 | 413 | 855 1 0.87 38.2

OAUC || 13.67 | 4.65 | 8.64 1.15 1 94.75

acc 0.071 | 0.10 | 0.147 | 0.026 | 0.011 1

and between AUC and OAUC. The degree of consistency between ED and MD is
0.95, and between AUC and OAUC 0.99, which means that ED and MD, and AUC
and OAUC are highly consistent. The degree of discriminancy for ED over MD, and
for OAUC over AUC are greater than 1, which means that ED is better than MD,
and OAUC is better than AUC.

Second, since all values of the degree of consistency among all measures are greater
than 0.5, we can decide which measure is better than another only based on the
value of degree of discriminancy. Recall (Section 3.1) that a measure f is better
than another measure g iff C¢g > 0.5 and Dg/g > 1. The best measure should be
the one whose degrees of discriminancy over all other measures are greater than 1.
From Table 3.19 we can find that all the numbers in the OAUC row are greater than
1, which means that the measure OAUC’s degrees of discriminancy over all other
measures are greater than 1. Therefore OAUC is the best measure. In the same way
we can find that ED is the second best measure, and SRN is the third best. AUC,
MD, and acc are the worst.
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Finally, we can obtain the following preference order for all six ranking measures:

OAUC - ED = SRN - AUC = MD > acc

From the preference order we can conclude that OAUC, a new measure designed based
on AUC, is the best measure. ED is the close, second best. The difference for these
two measures is not very large (the degree of discriminancy for OAUC over ED is only
1.15). Therefore, we should use OAUC and ED instead of others to evaluate ordering
algorithms in most cases. Further, the two “partial” order classification measures
AUC and accuracy do not perform well as compared with the true-order measures ED
and SRN. This suggests that generally we should avoid using classification measures
such as AUC and accuracy to evaluate ordering. Finally, MD is the worst true-order
measure, and it is even worse than AUC. It should be avoided.

3.3.2 Comparing Ranking Measures with Ranking Algorithms

In this section, we perform experiments to compare two classification algorithms in
terms of the six rank measures. What we hope to conclude is that the better rank
measures (such as OAUC and ED) would be more sensitive to the significance test
(such as the t-test) than other less discriminant measures (such as MD and accuracy).
That is, OAUC and ED are more likely to tell the difference between two algorithms
than MD and accuracy can. Note that here we do not care about which rank algorithm
predicts better; we only care about the sensitivity of the rank measures that are used
to compare the rank algorithms. The better the rank measure (according to our
criteria), the more sensitive it would be in the comparison, and the more meaningful
the conclusion would be for the comparison.

'To generate true order of the lists in our experiments, the target attribute should be
continuous, so the ground truth (i.e., the true order of the lists) can be established.
Consequently, the classification algorithms should be able to accept continuous target
for the training and testing, and to produce probability estimations to rank the testing
examples. This way, we can compare the true order to the predicted order of the
training and testing examples.

We choose Artificial Neural Networks (ANN) and Instance-Based Learning algorithm
(IBL) as our algorithms as they can both accept and produce continuous target. The
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ANN that we use has one hidden layer; the number of nodes in the hidden layer is
half of the input layer (the number of attributes).

We use both artificial and real-world datasets to evaluate and compare ANN and IBL
with the six rank measures. With artificial datasets we can easily control the size
of the data, the number of attributes, the noise level, and the target function. We
generate artificial datasets with 9 discrete attributes and 1 continuous target. We use
the polynomial function f(z) = az® +b2? + cx + d to compute the continuous target,
where z is the sum of all attribute values. Furthermore we randomly add noise to
the target function. The target function is generated with the probability of 20%
being a noise value. The training dataset contains 200 examples. We also select three
real-world datasets Wine, Auto-Mpg and CPU-Performance from the UCI Machine
Learning Repository [5]. The dataset Auto-Mpg has 9 attributes and 1 continuous
class and contains 398 examples. The dataset Wine has 13 continuous attributes and
1 discrete class and contains 178 examples. For this dataset we exchange the first
attribute with the discrete class to obtain a dataset with a continuous target. The
dataset CPU-Performance has 6 continuous predictive attributes and 1 continuous
target and contains 209 examples.

In our experiments, we run ANN and IBL with the 10-fold cross validation on the
training datasets. For each round of the 10-fold cross validation we train the two
algorithms on the same training data and test them on the same testing data. We
measure the testing data with six different rank measures (OAUC, ED, SRN, AUC,
MD and acc). We then perform paired, two-tailed t-tests on the 10 testing datasets
for each measure to compare these two algorithms.

Table 3.20 shows the significance level in the t-test. 3 The smaller the values in
the table, the more likely that the two algorithms (ANN and IBL) are significantly
different, and the more sensitive the measure is when it is used to compare the two
algorithms. Normally a threshold is set up and a binary conclusion (significantly
different or not) is obtained. For example, if we set the threshold to be 0.95, then
for the artificial dataset, we would conclude that ANN and IBL are statistically
significantly different in terms of ED, OAUC and SRN, but not in terms of AUC, MD
and acc. However, the actual significance level in Table 3.20 is more discriminant for
the comparison. That is, it is “a better measure” than the simple binary classification

3The confidence level for the two arrays of data to be statistical difference is one minus the values
in the table.
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of being significantly different or not.

Table 3.20: The significance level in the paired t-test when comparing ANN and IBL

using different rank measures.

Measures || artificial | Wine | Auto-mpg CPU
OAUC 0.021 [ 0.031 [ 8.64x 1074 | 1.48x 1073
ED 0.011 0.024 | 1.55 x 1073 | 4.01 x 103
SRN 0.039 0.053 | 8.89 x 1073 | 5.91 x 1073
AUC 0.084 | 0.062 | 5.77 x 1073 | 8.05 x 1073
MD 0.116 | 0.053 0.0167 5.97 x 1073

acc 0.239 | 0.126 0.0399 0.0269

From Table 3.20 we can obtain the preference order from the most sensitive measure
(the smallest significance level) to the least sensitive measure (the largest significance
level) for each dataset is:

e Artificial: ED, OAUC, SRN, AUC, MD, acc.
e Wine: ED, OAUC, SRN = MD, AUC, acc.
e Auto-mpg: OAUC, ED, AUC, SRN, MD, acc.

e CPU-Performance: OAUC, ED, SRN, MD, AUC, acc.

These preference orders are roughly the same as the preference order of these measures
discovered in the last section:

QAUC = ED ~ SRN = AUC = MD » acc

There are several cases where ED and OAUC, AUC and MD, AUC and SRN are
switched in their order. As we have seen earlier, the difference on discriminancy
between ED and OAUC, AUC and MD, AUC and SRN are small (Doavc/ep = 1.15,
Daveymp = 142, Dgpnjave = 1.14). In any case, the sensitivity order of the rank
measures may be slightly different for individual datasets.

The experimental results confirm our analysis in the last section. That is, OAUC
In addition, MD and
accuracy should be avoided as rank measures. These conclusions will be very useful

and ED are the best rank measures for evaluating orders.
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for comparing and constructing machine learning algorithms for ranking, and for
applications such as Internet search engines and data mining for CRM (Customer
Relationship Management).

3.3.3 Summary

In many real-world applications, such as information retrieval and CRM (Customer
Relationship Management) in data mining, accurate ranking is crucial. Many rank
measures have been used but little theoretical work and practical guideline have been
given to compare them. In this section, we propose a new rank measure (OAUC)
for ordering, and compare it together with five commonly used rank measures for
ordering. We conclude that OAUC is actually the best ranking measure, and it is
closely followed by the Euclidean distance (ED). Our results indicate that in compar-
ing different algorithms for the order performance, we should use OAUC or ED, and
avoid the least sensitive measures such as Manhattan distance (MD) and accuracy.
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Chapter 4

Constructing New and Better
Machine Learning Measures

In Section 3.1 we set up criteria for comparing two evaluation measures and for de-
termining if a measure is better than another. In this chapter we describe general
methods to construct new measures from existing one, and we prove that the new
measures are better (according to the criteria established in Section 3.1) than the
existing ones. This is very useful in real-world data mining applications as better
measures should always be used in comparing different learning algorithms. In ad-
dition, as we will show in Section 4.3, learning algorithms optimized with better
measures also predict better.

4.1 Construction Approaches

One might think that the simplest method to construct a new and better measure is
to build upon a single existing measure. For example, given accuracy as an existing
measure, can 10 times accuracy (10 X accuracy) be a better measure? Obviously
not (as they are equivalent, or there is a one-to-one mapping between these two
measures). The following theorem shows that in general it is not possible to build
a new and better measure based on a monotonic transformation (such as a linear
function) of a single measure.

Theorem 3 For any measure f, assume that ¢(f) is a function of f representing a
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new measure. If ¢ is monotonically incremental®, then ¢(f) is equivalent to f.

Proof: Since ¢(f) is monotonically incremental, then for any two objects a, b, f(a) >
f(b) iff ¢(f(a)) > &(f(b)). Therefore, ¢(f) is equivalent to f, according to Definition
1 in Section 3.1. I

Theorem 3 shows that we can only possibly construct a new measure from two or
Imore measures.

In the rest of this section, we propose two approaches to construct new measures based
on two existing ones, and prove that the new measures are better than the existing
ones. We will use AUC and accuracy as the two existing measures in experimental
verification.

4.1.1 Two-level Measures

Our first approach is to construct a “two-level measure”, denoted as f : g, based on
two measures f and g. Our intuitive idea of the two-level measure comes from sports.
In certain soccer tournaments, many teams compete for a champion. The team who
wins the largest number of the games will be the championship. However, if two
teams win the same number of games, the team with the higher total number of goals
earns the championship. The number of winning games is the first measure, and the
total number of goals in the games is another measure, secondary to the first one.

We can define the two-level measure f : g as follows.

Definition 11 A two-level measure ¢ formed by f and g, denoted by f : g, is defined
as: ¢(a) > ¢(b) iff f(a) > f(b), or f(a) = f(b) and g(a) > g(b); and ¢(a) = ¢(b) iff
f(a) = f(b) and g(a) = g(b).

The following is a simple approximation to form a two-level measure from AUC and
accuracy. If we keep 3 digits for the values of AUC and accuracy, then a new two-
level measure can be 1000 x AUC + acc. For example, when AUC = 0.567 and
acc = 0.123, the two-level measure is thus 1000 x 0.567 4+ 0.123 = 567.123. Clearly,
this new measure satisfies the two-level measure definition (if AUC and accuracy are

'For any a and b, a < b iff f(a) < f(b). Clearly this theorem also applies to monotonically
decremental functions.
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only accurate up to the 4th decimal place). That is, when comparing two learning
algorithms, if AUC of the first algorithm is larger, the new two-level measure of the
first algorithm is always larger no matter what the value of accuracy is; but if AUC
is the same, then the larger the accuracy, the larger the two-level measure — similar
to the example of the the soccer tournaments given above.

The following theorem shows the degree of consistency and the degree of discriminancy
between the two-level measure defined earlier and the existing measures.

Theorem 4 Let ¢ = f: g be the two-level measure formed by f and g, f > g, and
Dy/y # 0. Then Cy = 1, and Dy = co. In addition, Cy 4 > Cyy, and Dy/q = oo.
That is, ¢ is a better measure than both f and g;ie., ¢~ f > g.

Proof:? By Definition 11 there does not exist objects a,b such that “f : g(a) > f:
g(b), f(a) < f(b)”. Therefore INCONy; = 0, Cy4; = 1. Since for any a,b such
that “f : g(a) > f : g(b),g(a) > g(b)” is equivalent to “f(a) = f(b),g(a) > g(b)”
and “f(a) > f(b),g(a) > g(b)”, we have CONy 4 = CONy4+ DISy);. “f : g(a) >
f:9(b),g(a) < g(b)” is equivalent to “f(a) > f(b), g(a) < g(b)”, thus INCON, , =
INCONy 4. Therefore Cy, > Cys, > 0.5. For discriminancy there does not exist
a,b such that “f : g(a) = f : g(b) and f(a) > f(b)”. Since Dy/y > 1, Dy/y # o0,
there exists a,b € ¥ such that “f(a) = f(b) and g(a) > g(b)” which is equivalent
to “f : g(a) # f : g(b) and f(a) = f(b)”. Therefore Dy/; = oo, similarly we have
Dyjg =00. U

Theorem 4 indicates that the two-level measure f : g is indeed a better measure than
f and g. Further, we can prove that f : g dominates f. That is, f : g to f is analogous
to numerical marks to letter marks — there are no cases that the two measures would
disagree.

Theorem 5 f: g dominates f.
Proof: By Definition 11 there does not exist a,b such that f : g(a) > f : g(b) and

f(a) < f(b). Therefore for any a,b, f: g(a) > f : g(b) implies f(a) > f(b). O

To confirm Theorem 4 when it applies to the two-level measure AUC : acc, we conduct
experiment to compute the five percentage criteria (described in Section 3.1) between

2We must show both ¢ > f and ¢ > g because the relation > is not transitive in general.
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the AUC : acc, AUC, and acc. This also gives us an intuition on the degree of the
consistency, inconsistency, discriminancy, and indifference between AUC : acc, AUC,
and acc.

To conduct the experiment, we exhaustively enumerate all possible pairs of ranked
lists with 6, 8, 10, 12, 14, and 16 examples of artificial datasets with an equal number
of positive and negative examples. The five percentage criteria are computed, and the
results are shown in Tables 4.1. We also draw two pie charts showing the percentages
of all five criteria between AUC : acc, AUC, and acc in in Figures 4.1 and 4.2
respectively. Clearly, we can see from the tables and figures that Cyauc =1, and
Dy/auc = oco. Similarly, we can see that Cyacc > Cauc,ace, and Dy/acc = 0o. These
are consistent with Theorem 4.

Another conclusion we can draw about AUC : acc is that from Figure 4.1 we can
see that the CON (97%) is very close to 1, while others are very small or zero. This
indicates that the two level measure AUC : acc is highly consistent with AUC. On
the other hand, the consistency between AUC : acc and acc is much lower (but still
greater than 0.5). That is, AUC : acc is much more consistent with AUC than with
acc.

Table 4.1: Compare the two-level measure ¢=AUC : acc with AUC.

# || CON | INCON | DIS(¢/A) | DIS(A/$) [ IND || C [ D,/a
6 || 0.926 0 0.021 0 0053 || 1| oo
8 || 0.934 0 0.022 0 0045 | 1| oo
10 [ 0.946 0 0.020 0 0034 1]
12 [ 0.957 0 0.017 0 0026 || 1 | oo
14 || 0.964 0 0.015 0 0020 || 1| oo
16 || 0.970 0 0.014 0 0016 || 1| oo

One might think that we could construct an even better “three-level” measure (such
as (f : g) : f) from the newly formed two-level measure f : ¢ and an original measure
f or g, and this process could repeat to get better and better measures. However, this
will not work. Recall that in Theorem 4 one of the conditions to construct a better
two-level measure ¢ = f : g is that Dy/, # co. However, Theorem 4 proves that
Dy/s = Dy, = 0o, making it impossible for ¢ to be combined with f or g for further
constructing new measures. Therefore, we can use this method of constructing a
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IND=1.6% DIS(¢/A)=1.4%
DIS(A/ $)=0%

INCON=0%

CON=97%

Figure 4.1: Illustrations of the five percentage criteria between ¢=AUC : acc with

AUC.

Table 4.2: Compare the two-level measure p=AUC : acc with acc.

# | CON | INCON | DIS(¢/a) | DIS(a/¢) | IND || C | Dy,
6 || 0.616 | 0.005 | 0.326 0 0.053 || 0.992 | oo
8 || 0626 | 0014 | 0316 0 0.045 || 0.978 | oo
10 || 0.644 | 0.024 | 0208 0 0.034 || 0.964 | oo
12 || 0659 | 0.033 | 0.282 0 0.026 || 0.953 | oo
14 || 0671 | 0.040 | 0.268 0 0.020 || 0943 | oo
16 || 0.683 | 0.046 | 0.255 0 0016 || 0.936 | oo

two-level measure from two existing measures only once.

4.1.2 Linear Combinations

The second approach for constructing a new measure is linear combination af + 3¢
from two measures f and g. Without loss of generality, we assume o > 0 and
B > 0, and we normalize o and (3 such that & + 8 = 1. Thus the new measure
&(f,9) = af + (1 — a)g. We use f @ g to represent this measure. The following
theorem proves that the consistency between the new measure f @ g and f (or g) is
more than that between f and g.

Theorem 6 Let ¢(f,g9) = f®g =af+(1—a)g. Then Cy¢ > Ciq, and Cy g > Csg.
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IND=1.6%

DIS(#/A)=~0%

DIS(A/¢)=25.5%

CON=68.3%

INC

Figure 4.2: Illustrations of the five percentage criteria between ¢=AUC : acc with
acc.

Proof: Let R = {(a,b)|f(a) > f(b),g(a) > g(b)}, and S = {(a,b)|f(a) > f(b),g(a) <
g(®)}. R = {(a,b)|¢(a) > ¢(b), f(a) > f(b)}, and &' = {(a,b)|¢(a) < ¢(b), f(a) >
f(b)}. Since ¢ = af + (1 — a)g, it is obvious that R’ = {(a,b)|d(a) > ¢(b), f(a) >
f®)} 2 R+{(a,b)|f(a) > f(b) g(a) =g(b)}, and S’ C S. Therefore, |R'| > |R|, and
|5’} < |S5]|. Since Cgg = IRI+ISI’ thus Cy¢ = !R’||+IIS’ > Ctg. Similarly we can prove
that Cyg > Ceg. O

The following theorem shows that under certain conditions, the new linearly combined
measure f @ g is also more discriminant than f (or g).

Theorem 7 Let f and g be any two measures represented by rational numbers, and
a be an irrational number. Let ¢(f,g9) = fd g = af + (1 — a)g. If Dy # oo,
Dg/s # 00, then Dy /s = 00, and Dy/g = co.

Proof: Let R = {(a,b)[¢(f,9)(a) = ¢(f,9)(b), f(a) # f(b)}, S = {(a,b)|¢(f, 9)(a) #
$(£,9)(b), f(a) = f(b)}. Then Dyjr = 3. R = {(a,b)|af(a)+(1—a)g(a) = af(b) +
(1= )g(b), f(a) # F(B)} = {(a,b)| f(a) — £(b) = L=2(g(b) — g(a)), f(a) # f(D)}. As
(=9 0‘) is an irrational number, it is impossible that f(a) — f(b) = (lzt—‘)‘)(g(b) — g(a))
When f(a) # f(b). Therefore R = ®. Since Dg/g # 00, S # @, so we have D¢ = 00

Similarly we can prove Dy /g = co. O

Similarly, to test Theorems 6 and 7, we conduct experiments that apply to AUC and
acc. We conduct the same experiments on artificial datasets as we did previously.
When choosing o = g, the experimental results are shown in Tables 4.3 and 4.4.
Clearly, the results confirm Theorems 6 and 7.
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Table 4.3: Comparing AUC @ acc = aAUC + (1 — a)acc with AUC in terms of five
percentage criteria.

# || CON [INCON | DiS(¢/A) | DIS(A/4) | IND || C | Dy/a
6 || 0.926 0 0.021 0 0.053 | 1 | oo
8 |[ 0.934 0 0.022 0 0065 | 1 | oo
10 || 0.946 0 0.020 0 0034 | 1 | oo
12 || 0.957 0 0.017 0 0026 || 1 | oo
14 || 0.965 0 0.015 0 0.020 || 0.99 | oo
16 || 0.970 0 0.014 0 0.016 || 099 | oo

Table 4.4: Comparing AUC @ acc = aAUC + (1 — a)acc with acc in terms of five
percentage criteria.

# [[CON [ INCON | DIS(¢/a)

o)
—
w2
|
©

/] IND || C | D

p/a
6 0.616 | 0.005 0.326 0 0.053 || 0.992 | oo
8 0.626 | 0.014 0.316 0 0.045 || 0.978 | oo
10 || 0.644 | 0.024 0.298 0 0.034 || 0.964 | oo
12 || 0.659 | 0.033 0.282 0 0.026 || 0.953 | oo
14 || 0.672 | 0.040 0.268 0 0.020 || 0944 | o0
16 || 0.683 | 0.046 0.256 0 0.016 || 0.937 | oo

Similar to the two-level construction that can be used only once to construct a new

measure, it is easy to show that the linear combination can also be used only once to
create a better measure.

What about the two newly constructed measures, AUC : acc and AUC ®acc? Which
one is better? Using the same five percentage criteria, we can also compare the two
newly constructed measures. By comparing the results between Table 4.1 and 4.3, and
between Table 4.2 and 4.4, we can see that the corresponding five percentage criteria
are approximately same. Thus we can conclude that the new two-level measure
and the linear combination of two measures have roughly the same performance as
measures for the learning algorithms.

The results above also show advantages of the new five percentage criteria proposed
in this thesis. If we just look at C and D between AUC : acc and AUC (as in
Table 4.1), we might easily conclude that AUC : acc is much better than AUC, as
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C =1 and D = co. The five percentage criteria tell us that AUC : acc and AUC
are in fact very similar, as the consistency (CON) of the two is very large (over 0.9).
Similarly, it is the five percentage criteria that indicate that the two newly constructed
measures AUC : acc and AUC @ acc are very similar. Thus, the newly proposed,
more refined five percentage measures have greater advantages over the previously
proposed measures [37, 29].

These general methods of constructing new measures are very useful in evaluating
learning algorithms. For example, we have already shown that AUC is a better
measure than accuracy, and therefore, AUC should replace accuracy in comparing
two learning algorithms. But the two-level measure formed from AUC and accuracy
goes one step further. That is, when comparing two learning algorithms, if AUC is
the same on a testing set, then we compare the accuracy to see which one is better.
This gives rise to a more discriminant evaluation in comparing learning algorithms
than using AUC alone. Again the important feature of our methods is that they
are general methods for constructing better measures based on two existing ones,
regardless of the domains and problems we are working on.

Another advantage of discovering better measures is that learning algorithms should
always try to build a model by optimizing better measures. We will discuss this in
Section 4.3.

4.2 Comparing to RMS

In the previous sections, we have shown methods of constructing new measures (the
two level measure and linear combination), and proved formally that the new measures
are better than the existing ones. The comparison between the new and existing
ones is based on the five percentage criteria. As we indicated earlier, these criteria
are “internal”; that is, they are used to compare the relative differences between
two arbitrary measures. They may not reflect how close these measures would be
compared to a true performance measure in real-world applications.

In this section we compare the newly constructed measures and the existing ones
to an “ideal” measure, and we hope to show that the better the measure, the more
close it is to the ideal measure. That is, we hope to show that the newly constructed
measures are not only better with respect to internal criteria, but also better with

respect to an external criterion.
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Clearly, the true measure in different applications varies. In many applications, it
is often difficult to obtain the true measure before models are learned from data.
Therefore, we often choose the most “strict” measure in optimization (model build-
ing). RMS (Root Mean Square) error [34] is often chosen to optimize in various
applications (such as in management science [54], Economics [11] and Bioinformatics
[3]), and we also choose RMS as the ideal measure to which the newly constructed
and existing measures are compared.

It is easy to see why RMS is suitable for this job. All algorithms for ranking not
only predict the class, but also probabilities of the classes. Given a set of examples
with the true probabilities for all classes, the ideal ranking algorithm would predict
the exact same probabilities as the true ones. In this ideal case, the RMS is 0. If the
predicted probabilities are within a small perturbation of the true probabilities, the
RMS will be small and will reflect the size of perturbation, even if the rank may not
be altered. If the perturbation is large, the rank will be altered and the RMS will
be too large to reflect that. Thus, RMS is the “most strict” measure for ranking and
classification.

To experimentally compare RMS with the newly constructed and existing measures,
we use AUC and accuracy again. In the last section, we construct the two-level
measure AUC' : acc and the linear combination AUC @ acc based on AUC and acc,
and show that AUC : acc and AUC @ acc are very similar, and they are both better
than AUC, which is in turn, better than acc. Now we want to verify experimentally
that AUC : acc and AUC & acc are more correlated with RMS than AUC and acc.

We first randomly generate pairs of “true” ranked lists and perturbated ranked lists.
The “true” ranked list always consists of n binary examples, with the i-th example
having the probability of p; = % of belonging to the positive class. We then generate
a perturbed ranked list by randomly fluctuating the probability of each example
within a range bounded by e. That is, if the true probability is p, the perturbed
probability is randomly distributed in [maz(0, p; — €), min(1, p; +€)]. Table 4.5 shows
an example of the “true” and perturbed ranked lists with 10 examples. Examples
with the probability of greater than 0.5 are regarded as positive, and otherwise as
negative. From this table the values of RMS, AUC, acc, AUC : acc and AUC @ acc
compared to the “true” ranked list can be easily computed as 0.293, 0.68, 0.6, 0.686
and 0.657 respectively.

After we generate many tuples of RMS, AUC, acc, AUC : acc and AUC ®ace, we can



72

Table 4.5: An example of “true” and perturbated ranked lists.

True 01 02 03 04 05 06 07 08 09 10
- - = = = 4+ 4+ + + 4+
DPerturbated | 0.0 0.15 0.6 0.5 095 0.2 0.65 0.7 1.0 04
- - 4+ - 4+ = 4+ + + -

calculate correlation coefficients of AUC, ace, AUC : acc and AUC @ acc compared to
RM S3. The correlation coefficient is defined as follows. For two series values of a; and
b;, suppose that the average values of these two series values are @ and b respectively.
Let Sou = > (a;— @)%, Spp = >_(b; —b)?, Sap = S (a; —a)(b; —b). Then the correlation
coeflicient is r = % Clearly, the correlation coefficient measures how well two
series of values are correlated. If » = 0, it indicates that the two series of values
are random. If » = 1, the two series of values are perfectly positively correlated. If
r = —1, the two series are perfectly negatively correlated. In general, the larger the
7|, the stronger the correlation between two series of values.

We calculate the correlation coefficients between RM S and AUC, acc, AUC : acc,
and AUC @ acc respectively, after generating 200 tuples of these values. For each, we
also vary the value of e. We repeat this process five times, and the averaged corre-
lation coefficients are listed in Table 4.6. We perform a two-tailed paired ¢-test with
95% confidence interval to see whether the differences in these correlation coefficients
are statistically significant. The values in bold means that they are significantly in-
different with the largest values in each row, but they are significantly larger than
the values not in bold.

Several interesting conclusions can be drawn from the table. First of all, the corre-
lation coefficients of AUC, AUC : acc and AUC @ acc are all significantly greater
than that of acc with all € values. It indicates that these measures are all better than
accuracy as they are “closer” to RMS. This confirms our early conclusion that these
measures are better than accuracy according to our five percentage criteria.

Secondly, we can see that when ¢ is small (0.3 and 0.5), there is no significant dif-
ference in correlation coefficients of AUC, AUC : acc, AUC @ acc. But with the
increasing value of €, our newly constructed measures AUC : acc and and AUC @ acc

3Actually AUC, ace, AUC : acc and AUC @ acc are all compared to (1 — RMS) as it correlates
positively with other measures: the larger, the better.
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Table 4.6: Comparing correlation coefficients of ace, AUC, AUC : ace, and AUC@®acc
with RMS.

ace AUC AUC®acc AUC:acc

€ =0.3 ]| 0.2454+0.076 0.322240.072 0.3024+0.073 0.3177+0.072
e =0.5 | 0.4678+0.071 0.5354+0.063 0.52974+0.067 0.53521+0.064
e=0.71| 0.5932+0.01 0.6596+0.015 0.660+0.013 0.6616+0.014
€ = 0.8 | 0.65464+0.051 0.6996+0.041 0.7067+0.041 0.7036+0.041
e=0.9] 0.6656+0.024 0.7137+0.025 0.7188+0.025 0.7168+0.025

become significantly more correlated with RMS than AUC. This again verifies our
early conclusion that the newly constructed measures are better according to our five

percentage criteria.

Thirdly, when € is small (0.3), the values of all correlation coefficients are relatively
small (from 0.2454 to 0.3177), but when e is large (0.9), the values are larger (from
0.6656 to 0.7188). This can be understood, as when the perturbation () is small,
there can often be no change in ranking (AUC = 1) and accuracy (acc = 1). Thus
the values of AUC and acc do not correlate well with RMS. When the perturbation
(€) is large, the rank list (AUC) and accuracy are both affected.

Lastly, there is no significant difference between correlation coefficients of AUC : acc
and AUC @acc. This also verifies early conclusion that the difference between AUC :
acc and AUC & acc is very small according to our five percentage criteria.

In sum, from the experiments conducted in this section, we can conclude that AUC :
acc and AUC @ acc have almost the same correlation with RMS, and both are more
correlated than AUC, which is more correlated than accuracy. We can see that this
confirms our early conclusion that AUC : acc = AUC @ acc = AUC > acc.

In the next section, we will perform experiments to compare the performance of differ-
ent Artificial Neural Networks optimized with the measures of AUC : acc, AUC ®acc,
AUC, acc respectively.
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4.3 Building Models with Better Measures

In Section 4.1, we showed that the two-level measure AUC : acc is better than
AUC (which is in turn better than accuracy). That is, AUC : acc » AUC >
acc. As we have also discussed earlier, a significant advantage of discovering better
measures is that they can be used in building learning models (such as classifiers) by
optimizing the better measures directly. For example, most decision trees are built
by minimizing the entropy, or maximizing the accuracy. In this section, we will show
that by maximizing AUC : acc or AUC, we will get better learning models than by
maximizing the accuracy.

We will conduct our experiments using artificial neural networks (ANNs). This is
because ANNs are much more sensitive to small changes in the optimization process
to produce different weights that are continuous numbers. On the other hand, decision
trees may not be sensitive enough to changes in the attribute selection criterion. For
example, using AUC and accuracy, the same or very similar attributes could be
selected in the tree building process. [22] showed that building decision trees with
AUC did not lead to a significant improvement measured in AUC or accuracy.

Essentially we want to train three ANNs with the same training data optimized
using AUC : acc, AUC, and ace respectively. For simplicity, we call the three ANN
models ANNspc.ace; ANNape, and ANN,,, respectively. Then we test these three
ANN models on the testing tests. The predictive performance of the three different
learning models on the test sets are measured by AUC : acc, AUC, and acc. We do
this many times (using a 10-fold cross-validation) to obtain the averages on testing
AUC : acc, AUC, and accuracy. What we hope to see is that the model optimized
by AUC': acc predicts better than the model optimized by AUC, measured by all of
the three measures (AUC : acc, AUC, and acc). Similarly, the model optimized by
AUC would be better than the model optimized by accuracy.

To optimize ANN with a measure f (f is either AUC : acc, AUC, or acc here), we
implement the following simple optimization algorithm for neural networks. We still
use the standard back-propagation algorithm that minimizes the sum of the squared
differences (same as the RMS error used in Section 4.2, as it is the most “strict”
measure), but we monitor the change in f instead to decide when to stop training.
More specifically, we save the current weights in the neural network, and look ahead
and train the network for N epochs, and obtain the new f value. If the difference
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between the two f values is larger than a pre-selected threshold e, it indicates that
the neural network is still improving according to f, so we save the new weights
(after training N epochs) as the current best weights, and the process repeats. If the
difference between the two f values is less than €, it indicates that the neural network
is not improving according to f, so the training stops, and the saved weights are used
as the final weights for the neural network optimized by f.

We choose € = 0.01 and N = 50. We choose 8 real-world datasets from the UCI
Machine Learning Repository [5]. Each dataset is split into training and test sets
using 10-fold cross-validation. The predictive performance on the testing sets from
the three models ANN4yc.acc;, ANNAaye, and ANN,,. is shown in Table 4.7. We
perform a two-tailed paired ¢-test with 95% confidence interval on the averaged values
of acc, AUC, and AUC : acc predicted by three models. In Table 4.7 we mark the
average value with a “*” to indicate that it is significantly better (larger) than the
value immediately below it.

Several very interesting and surprising conclusions can be drawn from the averaged
results (in bold) in Table 4.7. First of all, measured by accuracy, we can see that
the ANN model optimized by AUC : acc has the highest average accuracy (0.8052),
than the ANN model optimized by AUC (the average accuracy is 0.7907), than
the ANN model optimized by accuracy (the average accuracy is 0.7811), although
the differences are not statistically significant. This is somewhat against a common
intuition in machine learning that a model should be optimized by a measure that
it will be measured on. In general this intuition is true. If your child will be tested
on math, it is best to train her on math instead of French. However, if you have a
better (consistent and more discriminant) measure, it is better off to train the model
using the better measure, even if the result will be evaluated by the original measure.
As a crude analogy, if the math test is graded by the letter marks, it would be more
advantageous to improve your child’s math skills by training her with the numerical
marks. This way, she will be optimizing her scores in numerical marks (with finer
improvements). After she does so, her test score (still measured by the letter marks)
would be better than or equal to the score if she was trained and optimized by the
letter marks.

Secondly, we can compare the averaged predictive results vertically?, and draw the

4Tt is not meaningful to compare results in Table 4.7 horizontally as values of accuracy, AUC,
and AUC : acc are not comparable.
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same conclusions. We can see that, measured by AUC, the ANN model optimized
by AUC : acc performs the best, then the model optimized by AUC, then the model
optimized by accuracy. The same conclusion can be drawn for the measure AUC :
acc. This shows the advantage of using better measures in model building — optimizing
better measures lead to models with better predictions.

Note that our approach of improving predictive performance of machine learning and
data mining algorithms is general as previous methods based on accuracy optimization
can be re-designed and improved by optimizing better measures discovered.

One might wonder if we should simply use RMS for optimizing all learning models.
If the true probabilities are known, then results of this chapter indicate that indeed
RMS should be used to compare and optimize models. On the other hand, only class
labels are given in many real-world datasets. AUC and accuracy (or AUC : acc) rely
only on classification labels. The results of this chapter indicate that AUC : acc (or
AUC) should replace accuracy in comparing and optimizing models in these cases.

4.4 Summary

Evaluation metrics are essential in machine learning and other experimental science
and engineering areas. In Chapter 3, we established general criteria to compare the
predictive performance of any two single-number measures. We propose general ap-
proaches to construct new measures based on existing ones, and prove that the new
measures are better than the existing ones according to the proposed criteria. We
then compare experimentally the new measures with an ideal measure, and show
that it is more correlated with it than the existing measures. Finally, we show that
learning models optimized by the new and better measure predict better than models
optimized by the existing ones. Our work is significant because not only can bet-
ter measures compare and distinguish more accurately between learning algorithms,
the predictive performance of learning algorithms can also be improved when better
measures are optimized in building learning models.
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Table 4.7: Predictive results from the three ANNs optimized by AUC : acc, AUC,
and accuracy. The average value with a “*” indicates that it is significantly better
(larger) than the value immediately below it.

Dataset Model ace AUC AUC : ace
ANN A C.ace | 0.7058 0.6518 0.6589
australia || ANNyco 0.6936  0.6245 0.6314
ANN, e 0.7058 0.652 0.659
ANN AvC.ace | 0.8432 0.6531 0.6615
breast ANN svc 0.8446  0.6553 0.6637
ANN, e 0.8447  0.6527 0.6611
ANNAyc.ace | 0.8686 0.9197 0.9284
cars ANN e 0.8643 0.9297 0.9383
ANN e 0.7829  0.7248 0.7326
ANNAvCiace | 0.9488 0.934 0.9435
eco ANNpce 0.8497  0.9436 0.9521
ANN,c 0.9548  0.9458 0.9553
ANNAvcuace | 07778  0.8101 0.8178
heart ANN e 0.7854 0.8163 0.8242
ANNgee 0.7778  0.8098 0.8176
ANN AvC.ace | 0.8305 0.805 0.8133
hepatitis || ANN sy 0.8305 0.805 0.8133
ANN,cc 0.8305 0.6503 0.6586
ANNAvC.gee | 0.7041 0.7208 0.7279
pima ANNgpyco 0.699 0.7129 0.7199
ANN,cc 0.6068  0.5488 0.5549
ANNAvciaee | 0.7627  0.6802 0.6878
voting ANN e 0.7586  0.6588 0.6664
ANNgee 0.7456  0.6324 0.6399
ANNAvc.acc | 0.8052 0.7718 0.7799
Average || ANNsuc 0.7907 0.7683* 0.7762*
ANN,ce 0.7811 0.7021 0.7099
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Chapter 5
Model Selection with Measures

Model selection is a significant task in machine learning and data mining. Among a
set of models, it attempts to select the model that neither underfits nor overfits for
future unseen data. Since performance measures can be used to evaluate the per-
formance of learning models, they can be used to do model selection. However, it
is still not clear how different measures perform in model selection. In this chapter
we thoroughly explore the model selection abilities of nine measures under highly
uncertain situations. We show that generally we should not use the goal measure
(see Section 5.1) to do model selection. We also show that a measure’s model selec-
tion ability is stable to class distributions and model selection goals, while different
learning algorithms should choose different measures in model selection.

5.1 Model Selection Under Highly Uncertain Sit-

uations

Some machine learning and data mining tasks, such as facial and hand writing recog-
nitions, usually need to train a highly robust and accurate learning model. In these
cases a learning model trained with the default or arbitrary parameter settings is not
enough because it usually cannot achieve the best performance. To satisfy these re-
quirements we vary the parameter settings to train more than one learning model and
then select the best one as the desired model. Instances of selecting learning model
include choosing the optimal number of hidden nodes in neural networks, choosing the
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optimal parameter settings of Support Vector Machines, and determining the suitable
amount of pruning in building decision trees. This gives rise to the model selection
problem, which is an important task in statistical estimation, machine learning, and
scientific inquiry [62, 41]. Model selection attempts to select the model with best
future performance from alternate models measured with a model selection criterion.
Traditional model selection tasks usually use accuracy as model selection criterion.
However, some data mining applications often call for other measures as criteria. For
example, ranking is an important task in machine learning. If we want to select
a model with best future ranking performance, then AUC (Area Under the ROC
Curve), instead of accuracy, should be used as the model selection criterion. A model
selection criterion is called a “model selection goal”. Holdout testing method is & pri-
mary approach to perform model selection. It uses holdout data to estimate a model’s
future performance: repeatedly using a subset of data to train the model and using
the rest for testing. In the testing process we may choose other measures to evaluate
a model’s performance. These measures are called “model evaluation measures”. A
common consensus in the machine learning community is that the model selection
goal measure and the model evaluation measure should be the same.

In practice we often encounter situations where resources are severely limited, or fast
training and testing are required. We only have very limited data for model training
and for future performance evaluation, which is called the highly uncertain situations.
Naturally one may ask whether the common consensus that the model selection goal
measure and the model evaluation measure should be the same is also true under
the highly uncertain conditions. Rosset [53] performed initial research on this ques-
tion with two special measures: accuracy and AUC. He compared the performance
of model evaluation measures AUC and accuracy when the model selection goal is
accuracy. He showed that AUC can more reliably identify the better model compared
with accuracy for Naive Bayes and k-Nearest Neighbor models, even when the model
selection goal is accuracy. However, his work has several limitations. First, he only
chose very limited data (one synthetic dataset and one real world dataset) to perform
the experiment. Second, he did not study model selection with different goals (other
than accuracy) using different evaluation measures (other than AUC and accuracy),
as learning algorithms and class distributions vary.

In this chapter we thoroughly investigate the problem of model selection under highly
uncertain conditions. We analyze the performance of nine different model evaluation
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measures under three different model selection goals, four different learning algo-
rithms, on a variety of real world datasets with a wide range of class distributions.

We have obtained some surprising and interesting results. First, we show that the
common consensus mentioned above is generally not true under highly uncertain
conditions. With the model selection goals of accuracy, AUC or lift, many measures
may perform better than these measures themselves. Second, we show that a mea-
sure’s model selection ability is relatively stable to different model selection goals and
class distributions. Third, different learning algorithms call for different measures for

model selection.

5.2 Evaluating Model Selection Abilities (MSA) of

Measures

We perform experiments to evaluate the model selection abilities of eight commonly
used evaluation measures, accuracy (acc), AUC, F-score (FSC), Average Precision
(APR), Break Even Point (BEP), Lift, Root Mean Square Error (RMS), Mean Cross
Entropy (MXE), and the our new proposed measure SAUC. Details of these measures
can be found in Section 1.1 of Chapter 1.

5.2.1 Experiment Process

We perform experiments to simulate model selection tasks under highly uncertain
conditions. The goal of these experiments is to study the model selection abilities of
measures under different model selection goals, learning algorithms, and class distri-
butions.

In our experiments we choose three model selection goals: accuracy, AUC and lift.
Accuracy is chosen because it is the most commonly used measure in a variety of
machine learning tasks. Most of the previous research adopted accuracy as the model
selection goal [57, 62]. Ranking is increasingly becoming an important task in ma-
chine learning. We choose AUC as a model selection goal because it reflects the
overall ranking performance of a classifier. Actually AUC has been widely used to
evaluate, train and optimize learning algorithms in terms of ranking. We also choose
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Table 5.1: Properties of datasets used in experiments

Dataset Size Training Size | Attribute # | Class # Positive Class Ratio
Letter 20000 2000 16 26 50%, 38.2%, 25%, 11.5%, 7.8%, 4%
Adult 30162 4000 14 2 24.8%

Artificial Char | 31000 2500 6 10 50%, 30%, 20%, 10%

Chess 28060 2500 6 16 47%, 23.5%, 10%, 5%

Page blocks 5473 1000 10 5 10.2%

Pen digits 10992 1000 16 10 50%, 40%, 30%, 1.4%, 7%, 3%
Nursery 10992 1000 8 5 33.3%
Covtype 29000 2900 54 7 48.8%

Connect-4 38770 3877 42 3 65.8%
Nettalk 20000 1000 3 2 28.2%

Musk 7075 700 50(166) 2 45%

Mushroom 8124 810 22 2 48.2%

Isolet 7797 780 60(617) 26 50%, 38.2%, 25%, 11.5%,7%, 4%
Satimage 6435 640 5 7 9.7%, 23.8%, 30.8%, 47.2%
Phoneme 5427 540 5 2 29.4%

Texture 22000 2200 40 14 36.7%

Ringnorm 7400 740 21 2 27%

lift as another model selection goal because it is very useful in some data mining
applications, such as market analysis.

We select 17 large data sets, each with at least 5000 instances. 13 of them are from the
UCI repository [4] and the rest are from [15] and [20]. The properties of these datasets
are listed in Table 5.1. All multiclass datasets are converted to binary datasets by
categorizing some classes to the positive class and the rest to the negative class. For six
multiclass datasets, letter, chess, artificial character, pen digits, isolet and satimage,
we also vary the class distributions to generate more than one binary datasets. For
example, the letter dataset contains 26 classes. We generate 6 different binary datasets
with 50%, 38.2%, 25%, 11.5%, 7.8% and 4% of the positive class by selecting the letters
of A-M, A-J, A-G, A-C, A-B, A as positive class, respectively. We generate different
class distributions because we will investigate whether class distributions influence a
measure’s model selection ability. From the multiclass datasets we can obtain a total
of 41 binary datasets for our experiment as shown in Table 5.1.

We choose four learning algorithms: Support Vector Machine (SVM), k-Nearest
Neighbor (KNN), decision trees (C4.5) and Naive Bayes in our study. We choose
four different learning algorithms because we want to investigate whether different
learning algorithms affect a measure’s model selection ability. For each learning al-
gorithm we vary certain parameter settings to generate 10 different learning models
with potentially different future predictive performance. For SVM, we choose the
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polynomial kernel with the degree of 2 and we vary the regularization parameter C
with the values of 1075,1075 ... | 1,10, 50, and 100. For KNN we set k with different
values of 5, 10, 20, 30, 50, 100, 150, 200, 250, and 300. For C4.5 we vary the tree
construction stopping parameter m = 2,5,10 and the tree pruning confidence level
parameter ¢ = 0.1,0.25,0.35. For Naive Bayes we vary the number of attributes of
each dataset used to train different learning models. We train a sequence of Naive
Bayes models with an increasing number of attributes used, with the attributes of
any former model being a subset of any latter model. For example, for the pen digits
dataset, we choose the first 1, 2, 4, 6, 8, 10, 12, 14, 15, 16 attributes in training
10 different Naive Bayes models. =~ We use WEKA [64] implementations for these
algorithms.

We use the holdout testing method to perform model selection. Our approach is
different from the standard cross validation or bootstrap methods. Here only a small
sample of the original dataset is used to train learning models, and lots of small test
sets are used to simulate the small future unseen data. This is a simple approach to
simulate model selection in highly uncertain conditions [53]. Given a model selection
goal f, a model evaluation measure g, a learning algofithm and a binary dataset, we
use the following experimental process to test the model selection ability of g.

The binary dataset is stratified ! into 10 equal subsets. One subset is used to train
different learning models and the rest are stratified into 100 small equal-sized test
sets. We train 10 different learning models of the learning algorithm on the same
training subset. For each model we evaluate it on the 100 small test sets. For two
models X and Y, X is better than Y iff E(f(X)) > E(f(Y)), where E(f(X)) is the
mean f score measured on X’s 100 testing results. g is used to measure X and Y'’s
testing results on each of the 100 testing sets and compare them to see whether or not
they agree with E(f(X)) and E(f(Y)). If f agrees with g then g selects the correct
model; otherwise g selects the wrong model. We count in how many cases (among
100) that g selects the correct model. This leads a percentage (or probability) that g
can choose the better model between X and Y, representing how well a measure can
do in selecting a model. When all pairs of learning models are considered, we use the
measure MSA to reflect the overall model selection ability of g. It is defined as

l4stratify” means to partition a dataset into some equal-sized subsets with the same class
distribution.
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MSA(g) = 5= Sop

where N is the number of learning models (N = 10), p;; is the probability that
measure g can correctly identify the better one from models ¢ and j.

We repeat the above process 10 times by choosing a different subset for training each
time. We use the average MSA(g) to measure the model selection ability of g.

We use the MSA measure as the criterion to explore two issues from the experimental
results. First, we will compare the MSA of the goal measure with other measures.
This will tell us whether it is true that we should always use the model selection goal
as the evaluation measure to do model selection. Second, we will explore whether
different model selection goals, class distributions and learning algorithms influence
a measure’s model selection ability.

To clearly explore the above two issues, we need to directly present and analyze the
MSA of all the measures in all cases. If a model selection task with a specific model
selection goal, dataset, and learning algorithm is called a “model selection case”, there
are a large number of such model selection cases. One direct approach to clearly show
the MSA of different measures is to use a figure to depict the MSA performance for
each model selection case.

However, the major problem of this approach is that there are too many such figures
to be presented. Since in our experiments we use 41 binary datasets, 4 learning
algorithms and 3 model selection goals, there are totally 41 x 4 x 3 = 492 figures. If
these figures are categorized according to different model selection goals, there are 164
figures for each model selection goal category. On the other hand, it is also difficult
to choose the representative and diverse figures for different model selection cases.

To overcome this difficulty, we use a statistical method to evaluate a measure’s MSA.
To compare a measure’s MSA with that of a model selection goal, we categorize the
model selection cases according to different model selection goals. For each model
selection case, there is a measure that achieves the best MSA. We compute the per-
centage of the cases in which one measure can reach the maximum MSA within a
varying x% tolerance range, to the total cases. This percentage indicates the success
rate that one measure can reach the maximum within an x% range. The success rates
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of different measures can be depicted in a figure, in which each curve line represents
the success rate of a measure.

5.2.2 Comparing a Measure’s MSA with Goal Measure

Figure 5.1(a) depicts the success rates of different measures when we choose accuracy
as the model selection goal, while varying the tolerance ranges from 1% to 5%. We
can see that the measures SAUC, RMS, MXE, AUC, APR statistically perform better
than accuracy for different learning algorithms and datasets. The measures lift and
BEP, however, are constantly worse than accuracy.

In Figure 5.1(b) AUC is used as the model selection goal. Only SAUC, RMS and
MXE perform better than AUC in most of the sub figures. All other measures are
inferior to AUC.

In Figure 5.1(c) lift is used as model selection goal. We can see that except for
BEP all measures are constantly better than lift. Furthermore, by comparing Figure
5.1(c) with Figure 5.1(b) and Figure 5.1(a), we can see that the differences of success

rates between SAUC, RMS, MXE, AUC, APR with lift are much more than their
corresponding differences with accuracy and AUC in Figures 5.1(a) and 5.1(b).

The above discussion shows that under the highly uncertain condition, in general, we
should not use the model selection goal measure to perform model selection. This
result extends the preliminary work of [53] to more general situations.

5.2.3 The Stability of a Measure’s MSA

We next discuss whether one measure’s MSA is stable under different model selection
goals, class distributions, and learning algorithms.

(i)Model Selection Goals

From the analysis of the previous subsection, we can see that a measure’s absolute
ability (MSA) is stable to the model selection goals.

(ii)Class Distributions

To explore whether class distributions influence a measure’s MSA, we analyze the
experimental results according to the datasets with different class distributions. The
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Figure 5.1: Ratio of datasets on which each measure’s MSA is within x% tolerance
of maximum MSA, using accuracy, AUC and lift as model selection goals.

experimental results are categorized into three groups according to the datasets with
class distributions of 40%-50%, 25%-30%, 1.4%-10%, respectively. Each group in-
cludes the experimental results with all model selection goals and learning models.
The success rates of measures are depicted in Figure 5.2. If we rank measures accord-
ing to their MSA, we can see that generally this ranking is stable to class distributions.

(iii)Learning Algorithms

We explore how a measure’s MSA is influenced by different learning algorithms. We
first discuss how different measures perform for the learning models of SVM and
KNN. Here we fix the learning algorithms and vary the datasets and model selection
goals. The success rates of measures are depicted in Figure 5.3(a) and Figure 5.3(b)
for SVM and KNN, respectively.
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Figure 5.2: Ratio of datasets on which each measure’s MSA is within x% tolerance
of maximum MSA, for datasets with varied class distributions.

As shown in Figure 5.3(a) and 5.3(b), the measures can be categorized into three
different groups according to their performance.

The probability-based measures, including SAUC, RMS and MXE, achieve the best
performance. MXE and RMS perform very similarly in most situations. The second
group of measures, including AUC and APR, are inferior to the first group measures
(SAUC, RMS and MXE). The third group includes the measures of accuracy, F-score,
BEP, and lift. This group measures are inferior to the second group measures. F-score
is generally competitive with accuracy. Lift and BEP are the two measures always
with the worst performance.

Surprisingly, the above three groups of measures match the categories of probability-
based measures, ranking measures and threshold measures. Therefore it seems that
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Figure 5.3: Ratio of datasets on which each measure’s MSA is within x% tolerance
of maximum MSA, with SVM, KNN, Decision tree and Naive Bayes algorithms.

there is a strong correlation between a measure’s category with its model selection
ability. An appropriate explanation lies in two aspects. First, the outstanding perfor-
mance of probability-based measures (RMS, MXE) is partly due to the high quality
probability predictions of SVM and KNN learning algorithms. Second, the discrimi-
natory power of the measures also plays an important role. The discriminatory power
of a measure reflects how well this measure can discriminate different objects when it
is used to evaluate them. Generally a measure’s discriminatory power is proportional
to the different possible values it can reach. As an example, for a ranked list with ng
positive instances and n; negative instances, accuracy and lift can only reach n; +ng
and (ng +ny)/4 different values (if we use a fixed 25% percentage for lift). The rank-
ing measure AUC can reach mngn; different values. The probability-based measure
RMS, however, can have infinitely many different values. Thus these measures can
be ranked according to their discriminatory power (from high to low) as RMS, AUC,
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accuracy, lift. This discriminatory power ranking matches with the model selection
performance sequence. Therefore we can claim that a measure’s model selection abil-
ity is closely correlated with its discriminatory power for the SVM and KNN learning
algorithms. The possible reason is that a measure with high discriminatory power
usually uses more information in evaluating objects and thus is more robust and reli-
able. Probability-based measures use the predicted probability information, and thus
they are more accurate than ranking measures which only use the relative ranking
position information. Similarly, ranking measures also use more information than ac-
curacy or lift, which only considers the classification correctness in the part or whole
dataset ranges.

However, compared with SVM and KNN learning algorithms, measures perform dif-
ferently for decision trees (C4.5) and Naive Bayes. The success rate graphs are shown
in Figure 5.3(c) and Figure 5.3(d) for Naive Bayes and decision trees. We can see that
probability-based measures do not always perform better than ranking measures. This
indicates that they might be unstable for some datasets and model selection goals.
By comparing ranking measures with threshold measures, however, we can see that
these two kinds of measures are less influenced by learning algorithms. We can con-
clude that generally the measures of RMS, SAUC, MXE, AUC, APR have the best
performance for decision trees (C4.5) and Naive Bayes algorithms.

[17, 50] have shown that learning algorithms of C4.5 and Naive Bayes usually produce
poor probability estimations. The poor probability estimations directly degrade the
performance of SAUC, RMS and MXE when they are used to rank learning models.
This explains why the probability-based measures perform unstably for C4.5 and
Naive Bayes models. Although the poor probability estimations also influence the
ranking measures of AUC and APR, these influences are not so strong. This also
explains why the ranking measures perform relatively stably.

In summary, from the above discussions we can draw the following conclusions.

1. For model selection tasks under the highly uncertain conditions, the common
consensus that the goal measure should be used to do model selection is not
true.

2. A measure’s model selection performance is relatively stable to the selection
goals and class distributions.
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3. Different learning algorithms need to choose different measures for model selec-
tion tasks. For learning algorithms with good quality of probability predictions
(such as SVM and KNN) a measure’s model selection ability is closely correlated
with its discriminatory power. The probability-based measures (SVM, SAUC,
MXE) perform best, followed by ranking measures (AUC, APR), followed by
threshold measures (Accuracy, FSC, BEP, lift). For learning algorithms with
poor probability predictions (such as C4.5 and Naive Bayes), the probability-
based measures such as SVM, SAUC and MXE perform quite unstably. AUC
and Average Precision become robust and well performed measures.

5.3 Summary

Model selection is a significant task in machine learning and data mining. In this
chapter we perform a thorough empirical study to investigate how different measures
perform in model selection under highly uncertain conditions, with varying learning
algorithm, model selection goals and dataset class distributions. We show that a
measure’s model selection performance is relatively stable by model selection goals and
class distributions. However, different learning algorithms call for different measures
for model selection.

For our future work, we plan to investigate model selection tasks under other uncertain
conditions. We also plan to devise new model selection measures that are specialized
under different conditions.
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Chapter 6
Conclusions and Future Work

In this chapter, we will summarize our work and main contributions, and give several
related research directions for the future work.

6.1 Contributions

In this thesis, we addressed three major issues: Comparing machine learning measures
(Chapter 3), constructing better machine learning measures (Chapter 4) and applying
measures to model selection (Chapter 5). For the first issue, we theoretically and
empirically compared the measures of AUC and accuracy, and some ranking measures.
More specifically, our major contributions in this aspect are listed below.

e We formally proposed five percentage criteria and two degree criteria with the
goal to provide a detailed and complete comparison between two arbitrary one-
number measures. This is significant since it provided a general approach to
evaluate the relative measure performance.

o We used the criteria proposed to give a complete and detailed comparison be-
tween the measures of AUC and accuracy. We formally proved that AUC is
indeed consistent to, and more discriminant measure than accuracy. We also
performed experiments by using artificial and real-world datasets to confirm
the theoretical results. Finally, we reevaluated some popular machine learning
algorithms with AUC and obtained some new and interesting results.
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e We used the proposed criteria to compare six ranking measures. We also pro-
posed a new ranking measure called OAUC. From the experiment with artificial
datasets we computed the degree of consistency and discriminancy between ev-
ery two ranking measures. This led to a preference order of the ranking measures
assessed. An additional experiment with real-world datasets and ranking algo-
rithms confirmed our conclusion about the preference order of ranking measures.

For the second aspect, concerned with the construction of better measures, we fo-
cused on building new measures from existing ones. More specifically, our major
contributions are:

e We proposed two general approaches to construct new measures from two ex-
isting measures. The two methods are linear combination and two-level con-
struction. This work is important since the construction approaches are general
methods that are independent of specific domains or applications.

e We theoretically analyzed the consistency and discriminancy relationships be-
tween the new constructed measures and the original measures. We both for-
mally and empirically showed that the new measures are consistent to, and
more discriminant than the original ones.

e By using AUC and accuracy we constructed two kinds of new measures. We
compared these new measure to another robust and well performed measure:
RMS. We showed that the two new measures are both more closely correlated
with RMS than that of AUC, and AUC is more correlated with RMS than ac-
curacy. We concluded that the new measures are finer than AUC and accuracy.

e We used the new two-level measure, AUC and accuracy to train the Artificial
Neural Networks, respectively, to obtain different learning models. We also used
the three different measures to evaluate the learning models. The experimental
results showed that ANN trained by the new two-level measure performs better
than the learning model trained by AUC, and they are both better than the
model trained with accuracy when evaluated with all three different measures.

For the third issue, we investigated the application of using measures in model selec-
tion tasks. Our major contributions are:
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e We evaluated the model selection abilities of nine performance measures under
the highly uncertain condition with different model selection goals, learning
algorithms, and class distributions. We showed that to achieve better model
selection performance, generally we should not use the goal measure to select
model.

e We showed that the model selection ability of a measure is stable to differ-
ent model selection goals and dataset class distributions. However, different
learning algorithms call for different measures for model selection.

e We showed that for learning algorithms of SVM and KNN, generally the mea-
sures of RMS, SAUC,MXE are preferred for model selection. For learning al-
gorithms of decision trees and naive Bayes, generally the measures of RMS,
SAUC, MXE, AUC, APR are preferred.

6.2 Future Work

We have investigated the issues of measures comparison, new measures construction,
and model selection with measures. The goal of this research is to explore the possi-
bilities of using different or new constructed measures to improve the performance of
learning algorithms. Some work has been done in this direction.

There are several approaches for our future work.

First, we plan to modify the traditional classification algorithms for the purpose of
ranking. By modifying the construction criteria, structures, parameters and so on,
some traditional classification algorithms, such as Bayesian Networks, can produce
more satisfactory ranking performance. We have done some work on improving the
ranking performance for some popular learning algorithms. For example, we proposed
a novel dynamic ensemble re-construction method that aims at improving the ranking
performance of a given ensemble.

Second, we want to reconstruct or optimize different learning algorithms with new
heuristic measures. Traditionally, different machine learning algorithms are con-
structed with different heuristic measures. For example, decision trees are built with
the entropy-based measures; neural networks are trained with least squared errors.
One natural question is how these learning algorithms would perform if they are
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constructed with different measures? Some research has been done in this direction.
The measure of AUC is used to build decision trees and Bayesian Networks [22, 52].
These new learning algorithms show better classification performance compared with
the originals. We will use the proposed new machine learning measures to train and
optimize different learning algorithms.
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