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ABSTRACT

Exploring mauy-body physics with ultracold atoms

Lindsay Jance LeBlane, Doctor of Philosophy, 2011

Graduate Departmoent of Physics. University of Toronto

The emergenee of many-body physical phenomena from the quantum mechanical prop-
erties of aloms can be studied using wltracold alkali gases. The ability to manipulate
both Bose-Einstein condensates (BECs) and degenerate Fermi gases (DFGs) with designoer
polential energy landscapes, variable interaction strengths and out-of-equilibrimn initial
conditions provides the opportunity to investigate collective behaviour under diverse con-
ditions.

With an appropriately chosen wavelength. optical standing waves provide a lattice po-
tential [or one target species while ignoring another spectator species. A “tune-in” scheme
provides an especially strong potential for the target and works best for Li-Na, Li-I, and
K-Na mixtures, while a “tunc-out” scheme zeros the potential for the spectator, and is pre-
forred for Li-Cs, K-Rb. Rb-Cs, K-C's, and 3I-1IC mixtures. Species-selective lattices pro-
vide unique covironments for studying many-body hehaviowr by allowing for a phouon-like
background, providing for effective mass tuning, and presenting opportunities {or increasing
the phase-space density of one species.

Ferromagnetism is manifest in a two-component DFG when the energetically preferred
many-hody configuration segregates components. Within the local density approximation
(LDA), the characteristic energies and the three-body loss rate of the system all give an
obscervable signature of the crossover to this ferromaguetic state in a trapped DFG when

interactions are increased beyond khpa(0) = 1.84. Numerical simulations of an extension
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to the LDA that account for magnetization gradients show that a hedgehog spin texture
cmerges as the lowest encrgy configuration in the ferromagnetic vegime.  Explorations of
strong interactions in I constitute the first steps towards the realization of ferromagnoetism
in a trapped VK gas.

The many-hody dynamics of a 3Rl BEC in a double well potential are driven by
spatial phase gradients and depend on the character of the junction. The amplitude and
frequency characteristies of the transport across a tunable barrier show a crossover between
two paradigms of superfluidity: Josephson plasma oscillations emerge for high barriers,
where transport is via tunnelling, while hydrodynamic behaviour dominates for lower bar-
riers. The phase depewndence of the ll,m-uy-l)()(ly dynamics is also evident in the observation
of macroscopic quantum self trapping. Gross-Pitacvskil caleulations facilitate the interpre-

tation of system dynamics, but do not deseribe the observed damping.
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Thywissen, Rapid sympathetic cooling to Fermi degeneracy on a chip, Nat. Phys. 2,
384 (2006).
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CHAPTER 1

INTRODUCTION

In pursuit of the unknown. physics finds itself exploring ever deeper into length and
cnergy scales extending away from those of human experience. As an understanding of the
behaviour of matter at these extremes is developed, it can be a challenge to conneet the
principles responsible for behaviour on one scale with those on the next. These connections,
however, inerease oy understanding of the fundamental properties of the universe and bring
closer to human understanding those phenomena which seem to defy common sense.

The ficld of atomic physics has proven itsclf valuable in the exploration of physical
phenomena on many scales. In the infaney of this field, the cwerging understanding of
atomic structure was coupled to the development of quantum mechanies, such that the
understanding of one informed the other. and principles such as the quantization of energy
and the exdstence of spin angular momentum cmerged from the partnership. Measureiments
of the distinet spectral features of an atom can be carried out for atoms over many length
scales - from exploring the details of atomic structure in the laboratory, to using absorption
characteristics of the Earth’s atmosphere to determine its composition. to ascertaining the
behaviour of astronomical objects through the shifts of well-known spectral features.

I recent years. atomie physics has proven itself an ideal venue in which to probe the
smallest known energy scales. Upon establishing techniques to render temperature-driven
motion negligible [3, 4], the quantum statistics and indistiguishability inherent to an atom
become evident as an uliracold gas attains quantum degeneracy as a Bo. Einstein conden-
sate (BEC) [5] or a degenerate Fermi gas (DFG) [6] for bosous or fernuons, respectively.
With the freezing-out of thermal degrees of freedom. the direet and exchange interactions
of the atows set the dominant encrgy scales. and the atoms no longer act as individuals. By

studying the transitions from individual to collective hehaviour, these atomic systems re-



veal connections between the quantum mechanies of individual particles and the many-body
behaviour of macroscopic systeins.

The study of many-body physics provides insight into the emergence of macroscopic
phenomena ranging from familiar examples like the structure of solids and origins of mag-
netisn. to more exotic examples like superconductivity. In general, the microscopic degrees
of freedom (the individual motions or state of atoms, for example) can be ignored and a
new macroscopic “order parameter” cmerges as the important degree of freedom for the
problem. The identification of this order parameter can be made through experimental
observation of a system without knowledge of its microscopics. as is the case in systems
like high-temperature superconductors where superconductivity is clearly observed. but the
underlying macroscopic description of its origin remaing an open question. While it is not
necessary to understand the origin of such behaviour bhefore exploiting it as a technology, one
an finagine that identifying the required microscopic properties leading to this behaviour
would enable much broader applications of such technologies.

The precision awd versatility of atomic experiments provide many advantages for study-
ing many-body phenomena. Well known internal transitions of the atom permit selective
addressability and detection, interactions with clectromagnetic ficlds make possible designer
potential encrgy landscapes, Bose or Fermi statistics dictate their relationships with their
neighbours, tunable interactions allow an exploration of various coupling regimes, and wealk
interactions with external decoherence mechanisms allow for long-lived quantum mechan-
ical integrity. Atoms can be used as a set of versatile building blocks, and experiments
an be designed to mimic other physical systems whose behaviour is governed by the same
fundamental principles.

A variety of analogues to condensed-matter systems have heen explored by introducing
quantuin degenerate gages into customized environments, including, for example, the Mott-
insulator transition [7], the Tonks-Giradeau gas [8], superfluidity of fermionic pairs [9, 10],
and Anderson localization [11]. By demonstrating a correspondence hetween atomic and
condensed matter systems, these experiments lay the foundations for the use of ultracold
gases to explore mauny-body physics. Increasing the complexity of the interactions and
envirommnents expericnced by the atoms will allow these experiments to approach a regime
in which the underlying physics is incaleulable. In particular, systems of fermionic atoms
could be arranged to mimic systems in which Fermi statistics, and their requirement of
antisymmnetrization of the wavefunction, render insufficient the computational resources

needed to model systems of reasonable particle number. The atomic systemn could then be



thought of as a “quantwn simulator” [12]  a calculating machine that cowes to its results
by taking a quantum mechanical system, allowing it evolve in a controlled environment,
and rveaping the results from measurements of the final state. Several proposals have been
developed suggesting models that could bhe implemented by ultracold gases as analogues
to condensed matter problems, including, for example, the emergence of high-temperature
d-wave superconductivity from a Fermi-Hubbard model {13] or exotic forms of magnetism
[14).

This thesis discusses three main advances in the development of the use of ultracold
gases for the study of many-body physics. First, a technique for creating customized and
selective potential energy landscapes for mixtures of two or more species of atom. This type
of potential would could provide a means to tune the effect mass of one species. provide a
phonon-like background to atoms trapped in an optical lattice, or allow a mechanism for
a isothermal phase-gpace inerease. Sccond, a proposal for the study of itinerant ferromag-
netism among ultracold fermions is discussed, and the first steps towards its implementation
in fermionic YK are described. The microscopic origins of this many-body behaviour are
not well understood, and these experiments may provide insight into this problem. Third,
the collective transport behiaviour of hosonic 8'Rb in a double well potential is explored.
The character of the transport is explored as a function of the coupling between wells, and
both perfect-fluid hydrodynamics and Josephson-junction behaviour are found, indicating
the limits in which the macroscopic deseription associated with each of these is appropriate

for the system.

OUTLINE

¢ Chapter 2 describes the apparatus for which techniques arve developed and on which
the experiments are performed. This versatile machine produces quantum degenerate
samples of both bosons and fermions using the efficiency and flexibility of an atom chip.
Two methods for manipulation the potential encrgy landscape are discussed. Optical
fields are used as external forces and confinement potentials, and radio-frequency ficlds
are used to manipulate the potential energy surfaces into double-well potentials through

internal state manipulations of the atoms.

¢ Chapter 3 describes a technique that allows for the creation of a lattice-like enviromuent
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for one species of atom while inducing no external potential on another species. This
technique exploits the differences in atomie structure between species to custowmize an
environment in which to study the many-body properties of a mixture of atomice species.
This method could prove useful as a means to tune the effective mass of one species., to
provide a phonon backgrouud to atoms trapped in a lattice potential, or to implement

a mechanism for isothermal phase-space increase.

¢ Chapter 4 describes the emergence of many-body collective behaviowr of ultracold
formions under the influence of strong repulsive interactions, and how this behaviour
mimies itinerant ferromagnetism among clectrons in metals.  Mean-field calculations
suggest that measurements of the total energy will indicate the crossover to ferromag-
netism for trapped gases, and extensions to a local-density approximation indicate that
configurations displaying spin textures could reduce the total energy of the system. The

first steps towards the experimental realization of this system in "I are reported here.

¢ Chapter 5 describes the guantum mechanical transport of a ultracold bosons in a
double well potential. Using a tunable barrier, the character of the transport is studied
as the density in the region connecting the wells is varied from finite to vanishingly small
values, where the classical density is zero and tunnclling is respousible for transport.
We study both the population and phase evolution of this system under various initial
conditions and find that the many-body behaviour can he deseribed as hydrodynainic in

the strong-coupling limit and as a Josephson junction for weak coupling.



CHAPTER 2

A VERSATILE BEC-DFG MACHINE

One of the primary advantages to studying many-body plysics in ultracold gases is the
versatility with which atomic systems can be controlled. Well established methods to ad-
dress an atom’s internal and external degrees of freedom are used to cool a system to the
quantum degenerate regime, to manipulate it upon arrival there, and to measure its final
state upon completion of an experiment.

The “Chip Experiment” apparatus at the University of Toronto Ultracold Atoms Lab
serves as either the real or presumed setting for the experimental and theoretical work
described in this thesis. This experimental apparatus was designed as general-purpose
BEC-DFG machine, using an atom chip for efficiently cooling 3"Rb and K to quantum
degeneracy. It has been used to pursue a variety of scientific questions throughout its young
life, and will continue to do so as it matures.

This chapter describes the general operation of this machine in §2.1, deferring a recent
thesis [15] for most details. Sections 2.2 and 2.3 describe two of the newer tools used to
manipulate the ultracold gases created by this apparatus: optical traps and radio-frequency
dressed potentials, respectively. Details regarding the construction aund operation of these

tools are discussed in those sections.

2.1 A VERSATILE BEC-DFG MACHINE: BASIC PRINCIPLES

The design of this apparatus was carcfully planned to provide a versatile platform from
which to launch experiments using a S"Rb Bosc-Einstein condensate (BEC), a 'K degen-

erate Fermi gas (DFQG), or both. Using an atom chip for fast and efficient evaporation,

(V1
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FiGure 2.1: Apparatus schematics. Left: Experimental apparatus from afar. Red MOT beams,
5 em in diameter intersect in the middle of the glass-box vacuum chamber. Parallel external magnetic
coils provide the quadrupole field for MOT and magnetic trapping, while the large top coil is used
for magnetic transport of the atoms to the atom chip, seen inside the glass vacuum chamber. Right:
Close up of atom chip, inside vacuum chamber. Also shown is the crossed ODT, skinuning the
surface of the atom chip. MO'L heams have heen turned off in this view.

this simple one-chamber experiment provides fast cycle times and reasonable atom nun-
bers with a minimum of technical complication. Details of the operation of the apparatus
are presented elsewhere (see Refs. [16-18] and especially [15]), but a brief description of the
machine is given here.

The main clements of the apparatus are sketched in Fig. 2.1. A Pyrex box acts as the
single vacuum chammber, in which the six magneto-optical trap (MOT) beamns interseet. The
atom chip is suspended by a copper scaffold 5 cm above the NOT beam intersection point.
External maguetic coils provide the magnetic ficld gradients nceded for the MOT, magnetic

trap, and magnetic transport.

2.1.1 GENERIC SEQUENCE FOR BEC/DFG
The standard route to quantun degeneracy, either as a BEC of 3Rb or a DFG of WK
proceeds as follows:

o MOT. The magneto-optical trap (MOT) is formed at the intersection of six counterprop-

agating beams, with 5 cm diameter and ~ —26 MHz detuning from the |[F' =2, mp =
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2) = |F' =3, mp = 3) and |F = 9/2,mp = 9/2) — |F' = 11/2.m» = 11/2) cy-
cling transition resonances in 8Rl and K . respectively. For a 3Rl BEC alone. the
8TRH MOT time ranges from 1 to 5 s, For a DFG or a mixture, the 0K MOT is started
first, and is run for up to 20 s, after which the SR MOT light is turned on together with
01¢ light., and the overlapping beams generate simultancous MOTs. Due to excited-state
collisional loss, we minimize the time during which both MOTs run at the same time.
Typical atom mumbers at the conclusion of this step are, for 3'Rb and YK respectively.

-[VRI).M()’I‘ =2 x 10% and J\TK,MO'[‘ =4 % 107,

¢ Optical molasses. An “optical molasses”™ step is used to further cool the 87Rb . exploiting
sub-Doppler cooling mechanisms in the absence of magnetic fields. The 3R temperature

is reduced from Trparor = 130 pK to Ty molasses = 30 pI.

©o Optical pumping. To optimize the magnetic trapping in subsequent steps, the atoms
are spin-polarized into the low-field-secking stretched states of the ground states |F =
2,mp = 2) for 8Rb and |F = 9/2,mp = 9/2) for 'K . We use ot polarized light on
the F=2— F/' =2 (F =9/2— F' = 9/2) transition for Rl ('°K) to promote then

shelve the atoms in these dark states.

o Magnetic trapping and transfer. Using the same coils as were used for the MOT,
a quadrupole magnetic field is turned on suddenly with a gradient that will trap only
the stretched-state atomns against the force of gravity. After compressing the gas by
inereasing the confinement of the trap, the magnetic field minimum is shifted 5 cm
vertically toward the chip surface by changing the current of the “transfer coil.” We find
a transfer efficiency to the magnetic trap (measured for 8Rb ) of N, &b.Birap/ NibAlOT 2
40%.

o Atom chip trapping. Once the atoms are near the surface of the chip, the “chip trap”
is activated, by Howing current through both the “Z-wire” on the chip and external bhias
coils providing uniform magnetic fields. The atoms are trapped in a highly elongated
cigar-shaped trap. The transfer efficiency from the magnetic trap to the chip trap is
NRb,chip/Nrb.Breap ~ 4%. We believe that free evaporation is responsible for some of the
loss in this process. resulting in the colder atoms being preferentially transferred, which
is to our advantage. The compression of the chip trap increases the temperature, which

we estimate to be Tiy, enip = 300 1.
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¢ Evaporative and sympathetic cooling. A radio-frequency (rf) current is fed through
an auxillary chip wire. parallel to the long axis of the cloud, providing near-field of ra-
diation which couples adjaceut m e states in the mmagnetic trap. Sweeping the frequency
from high to low, the hottest atoms S7RD are cjected from the trap and those left hehind
rethermalize to lower temperatures. If 01 is present. collisions between species bring
them to an equal temperature, allowing the °I to be sympathetically cooled as 7R is
evaporated. With appropriate sweep rates, the phase space densities inerease and quan-
tum degenceracy is achieved. Typical atom numbers are Ngy, e = 2 X 10 for a quasi-
pure S'Rh BEC (when produced alone), and N prg = 4 X 10" for Tk /T = 0.0940.04

for WK DFGs. where T is the Fermi temperature.

¢ Experiment. At this point in the sequence, cither a BEC or DFG is available to be

manipulated in whatever way will answer the question of the day.

o Imaging. Absorption imaging is used to determine both the nwnber and momentuimn
distribution of the cold atoms. Typically. the atoms are released from their trapping
potential and allowed some time of fight (TOF) before imaging. A 100 ps pulse of light
resonant to the cycling transition is incident on the atoms, whose intensity is chosen such
that the absorption of the light by the atoms remains in the low-saturation-parameter
limit (See Appendix B). The resulting shadow image is recorded on a CCD camera after
passing through imaging optics. After the atoms are removed {from the field of view,
either by letting them fall farther or shelving them in a dark state, a sccond reference
image is recorded on the CCD. The amount of light absorbed and its position on the
amera give information about both the total number and momentun distribution of

the atom clouds.

A QUANTUM GAS FOR EVERYONIE

At the “Experiment” point in the sequence, cither a BEC. DFG, or a mixture of the two
is available for study. In most cases, additional steps are taken to create a more interesting
or exotic environment for the quantum gas. In the work presented here. we consider a
number of situations: Chapter 3 considers (theoretically) the case of applying optical lattices
to a mixture of atomic species, taking into special consideration the 11K -¥RD mixture
available in this experiment; Chapter 4 considers transferring a DFG of 9K to an all-optical

trap, applying strong magnetic field to access a Feshbach resonance, where strong repulsive
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interactions can lead to collective hehaviowr: and Chapter 5 considers deformations of the
magnetic trap via rf dressing ficlds. to study the dynamies of a R BEC in a double well.
The apparatus is constructed to allow switching between these configuratious with a change

of commands from the sequencing computer. lending it a high degree of versatility.

2.2 OPTICAL FORCES: TRAPS AND LEVITATION

The use of optical forces is a standard tool for the manipulation of ultracold atomic
gases [19]. Laser light whose intensity is spatially dependent. often as focussed beams or
standing waves, will create a potential energy surface for the gas. In addition to the unique
geometries these potentials make available. schemes using all-optical trapping permit the
trapping of weak-field secking states and tunability of maguetic feld. which are unavailable
in magnetic trapping schemes. With this freedom, the tunability of interaction strength
enters as an additional control parameter, as the Feshbach resonance [20] can be exploited.

In this apparatus, we combine the advantages of the atom chip technology with those
offered by all-optical traps. The potential energy for the far-detuned traps we use is dis-
cussed in §2.2.1, the limitations associated with combining an optical trap with an atom
chip are discussed in §2.2.2 and the application of this optical force as a levitation field is

discussed in §2.2.3.

2.2.1 OPTICAL TRAPPINC POTENTIAL

The origin of the optical forces we consider here is the ac-Stark shift. the second-order
perturbative energy shift due arising from the interaction of an oscillating clectrie field with
an atom. through the dipole operator. With spatially-varying optical ficlds, atoms will
experience spatially-dependent optical forces, which can be used to trap the atoms in what
are sometimes called optical dipole traps (ODTs). For optical frequencies far detuned from

any optical transitions, the far-off-resonant trap (FORT) provides a potential energy [19]

v 3nc*T [ 1 1
Vopt (1) = ~——— (~ — —) I(r), (2.1)
. 2 \& TR, )1

where T' is the natural linewidth of the atomice transition, /(r) is the local intensity, wy =
2me/N is the frequency of the dominant transition. A is the wavelength. A = wy, —wy is

the detuning of the laser light from the dominant optical traunsition, Ay = wy, + wy is the
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counter-rotating term (which becomes important only at large detunings). and wy is the
frequencey of the optical field used for trapping.

In this work. we use single focussed beams to effect the optical potentials that manipulate
the atoms. With the assuption of Gaussian heam optics. we consider generie coordinates
r = (r;,re.ry). We take the direction of propagation along rg and asswune cylindrical

. . . ) D . . . . .
symmetry where the radial coordinate g1z = \/ry 4+ 5 is valid. In this case. the intensity
is Gaussian

2r 2(012 — dty)?
. - -~ . - = 12 3
I(o1213) = —s—oxp ( ~ 222 2i2) ) (2.2)
Tw(ry) wg

where P is the total power in the bean. (g9,.0) is the location of the beam focus. wy is

the beam waist at 3 = 0, where the waist is. in general. w(rs) = woy/1 + (r3/rr)?. and
rr = mw3/\ is the Rayleigh range of the beam. The combination of Egs. 2.1 and 2.2 gives
a full expression for the potential in terms of measurable quantities P and w.

The Gaussian shape of the potential is approximately harmonic at the trap centre, and
cffective trap frequencies can be related to the beam waist and power {19]. The two trap

frequencies arve

‘N":)p[ (0)

P)
muyg

(2.3a)

The optical potentials used in this apparatus are generated from 1064 nm laser light.
from ecither the 500 mW solid state (Nd:YAG & Nd&:YVO4) CrystaLaser (CL-1064-500) or a
10 W ytterbinm fibre laser from IPG (YLR-10-1064-LD). At this wavelength. the detuning is
sufficiently far off-resonance to avoid large heating rates, and to make valid the far-detuned
approximations discussed above for both #Rb (A = 780 nm) and "I (A = 767 nm). Both
lasers pass through power-controlling AOMs before entering fibre optics that act both as
spatial filters and means to transport the light from one location to the next. The output

power from the fibre is actively stabilized via feedback to the AOM.

2.2.2 CROSSED-BEAM OPTICAL TRAP NEAR AN ATOM CHIP

To bring a trapping beam near the swrface of an atom chip. the size of the focus will be
limited by the clipping of the beam at the edges of the chip. For a heamm of a given spot

size. wy. the distance from the chip surface, 2y, will be restricted depending on the width
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FieurE 2.2: Optical trapping near a surface. The schematic shows the geometiy of a focussed
beamn skimming the surface of an atom chip. The beam waist wq is limited by the distance from
the chip 2ywap and the horizontal length from the edge of the trap to the trap position. @ehip. The
plot shows a measurement of the waist size (light squares. left axis) and power throughput (dark
diamonds. right axis) for a 1064 nm beam focussed at various distances zap from the surface of a
16 nmun long surface. The hean is degraded as the beam approaches closer than 200 jun to the chip.

of the chip. repp. Figure 2.2 shows the geometry of this situation. A rough estimate for
the mininnun distance from the chip. z{iy)y can be found by assuming that the beam must

at all tiies allow one beam waist to be transmitted past the edge of the chip. In this case.

o\ 12
H /\‘l. hi - ‘e
Strap = 5111,}:[1) =uwy | 1+ <—(‘£> (2.4)

2]
UG

where A is the wavelength of the trapping light. In this experiment. where A = 1064 um.

Lehip = 8 mm. and wp &~ 16 pm. this expression gives Ziqp = 170 pm. Figure 2.2 shows a
measurement of the spot size and through-power of a beam focussed at various distances
from a 16 mm long surface. The spot size begins to inerease at z,p & 200 pun from the chip.
whichi is close to the estimate. This degradation of the beam is due to the high-momentun
wavevectors being removed at the edge of the chip.

In this apparatus. we trap the atoms ~ 200 jun from the surface of the chip. At this
distance. we can use beams with wy 2 16 pm. We use two focussed 1064 nm beawns
to manipulate the atoms. alone or separately. These are shown schematically in Fig. 2.1
(inset): Fig. 2.3 shows the layout of the optical elements used to ereate these traps. The two
beams. known as "ODT1T" and “ODT2" cross at the location of that atoms. ODT1 (along

y) with a waist of wg & 18 jum and ODT2 (along ) with wg & 35 jun.
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Fravre 2.3: Crossed-beam ODT layout, including imaging axes (view from above). Blue box
shows vacuum cell, with yellow atowm chip inside. Mirror (M), lenses (f). 1064 mn noteh filters
(1. dichroic mirrors (D1: transmits 767/780 nm, reflects 1064 mm) and (D2: transmits 1064 m,
refleets 767/730 nm), and beamr dumps (black X) shown. Solid red lines show the two paths for
the ODTs: QDT is the more-tightly focussed beam. passing through the atoms in the y-direction;
ODT2 is the broader beam, passing through the atoms in the w-direction. Dashed black lines show
the paths of the imaging beams: “radial imaging™ copropagating with ODT1 along the y-direction
and “axial imaging” counterpropagating with ODT2 along .. Note that the lens used for focussing
ODT2 (f == 75 mum, closest to vacuum cell) is also used for imaging,.

Atoms can be transferred with near-unity efficiency from the magnetic trap to either
trap individually. or to a crossed ODTTI+0DT2 trap. The general procedure for transfer is
to turn on the ODTs slowly (~ 100 ms) while the magnetic trap is present. turning off the

magunetic traps with an equivalent time-secale once the ODT is fully on.

2.2.3  OPTICAL LEVITATION FORCES FOR CANCELLING GRAVITY

In some circumstances. we find that the potential energy gradient due to gravity nega-

tively affects the shape of the trapping potential. While this is usually not a problem in
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<.

the tightly-coulined atom chip traps used in owr experiments, we found that the shapes of
rl-dressed adiabalic potentials were more sensitive (see §2.3 for more details). To counteract
this effect, we position the weakly-focussed ODT2 above the location of the atoms., in ovder
to place the lincar slope of the potential at the position of the atoms. By adjusting the
power of this beam, we can exactly cancel the effeet of gravity.

To determine the positioning of the beamn that will hest cancel gravity, we cmploy a
procedure that exerts a pulsed foree on the atoms. The position of greatest linearity in a
Gaussian beant, where gra— ofy = wg/2. is also the point of largest gradient in the potential.
Since the foree exerted by this potential (F(r) = —V17(r)) is greatest at this point. we seck
the position of the beam where we can exert the greatest foree on the atoms. After creating
asmall BEC in the atom chip trap. we furn off the magnetic trap and immediately pulse on
the optical beam ODT2 for a short time. before the atomns have moved significantly. The
position of ODT2 is scanned vertically (in z). and upon measuring the average distance
of the atoms alter some time of flight. we can find the position of the ODT at which the
the atoms have fallen the least, corresponding to the position of greatest upward foree.
Figure 2.4 shows oue sucl measurcment.

After calibrating the position, we position ODT2 at the optimal location, and determine
the minimum power required for levitation of the atoms upon release from the magnetic

trap. We cimploy ODT2 at this power and position to mitigate the effects of gravity.

2.3 CHIP-BASED RF DOUBLE-WELL POTENTIALS

The use of radio frequencey (vf) radiation to deform magnetic potential energy surfaces
hegan in carnest as a tool for forced evaporative cooling. The eHeetive potential seen by the
atoms is modified by the coupling hetween the oscillating vl magnetic ficlds and the statie
potential of the magnetic trap. which can be used more generally to deform the geowetry
ol magnetic potentials [21. 22].

The proximity of the atoms to the vf antennae on a atom chip allows for strong coupling
hetween the 1f radiation and the atoms, which, with polarization considerations, can he
used Lo ereate double well potentials [23]. Like the work described in Refs. [23 25, we use
this technique to deform a single well into a double well. cavefully conirolling the barrier
height and distance between the minima of the two wells with the frequency and amplitude

of the vl tields.
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Fraure 2.4: Optical levitation calibration. ‘Fhe inset shows the foree profile expeeted for a Gaussian
heam, with the grey region highlighting the regime for the data in this plot. Upon being released
from a trap. an atom cloud is subjected to a foree from the optical beam, whose maguitude depends
on the position of the atoms in the beam. The magnitude of the foree is scauned by moving the
beam through the cloud. After the foree is applied, the position of the atom cloud is recorded after
some time of flight. The greater the upward force, the less the atoms fall. The mininuum in the
atom cloud position indicates the levitation bheam position which exerts a wmaximum force on the
atoms, correspouding to the position of greatest linearity in the optical potential. The zero in the
bea position is arbitrarvy, and inereasing values of position move away frow the chip.

The geometry of the atom chip used in this experiment, and the magnetic and ri-dressed
potentials available from it, are described extensively in Ref. [15]. Since the completion of
that thesis, we have worked to further modify the geometry of the traps through the use of
different antennace and optical forces. Section 2.3.1 gives an analytic form for the potetnials
used in this work. and §2.3.2 discusses the necessary corrections needed to compensate
for the approximations made. Seetion 2.3.3 discusses the details of the three-dimensional
geometry of the double well and deseribes modifications to the potential using the optical

forces deseribed in §2.2.
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2.3.1 ROTATINCG-WAVE APPROXIMATION OF POTENTIAL

The double-well potential is created through a coupling between static and rf magnetic

ficlds. In the dressed state picture, these combine to form the effective potential [24]

grpp By (r 2
Viwa (1) = mia( | [t — grpe Bs(r)] + {M}

9

where m’, is the adiabatic magnetic quantum number. gp is the g-factor. pp is the Bohr
ulagn(\t()n. Bg(r) is the static magnetic field, deseribed by an Ioffe-Pritchard potential, and
By (r) = |Bg(r) x By(r)|/|Bs(r)

p(‘rp(‘n(li(?ulnr to the static ficld at cach point, r.

is the component of the oscillating magnetic field locally

The static magnetic trap arises a result of the combination of cwrrent Howing through
the “Z7-wire on the chip. an external bias feld. and an external Toffe field. In combination,
these create an Toffe-Pritchard style trap, a static magnetic field By = B 1% 4 Bara + Bsrs.

whose components are deseribed by [20]

B
B[('I‘l, ‘I‘3) = B/’I‘[ - —9—7'17'3 (26)
1
Bz(l‘g, I',‘;) = —B/T’-_g - %7‘71'3 (27)
B” D 1 P 2 Q
Ba(risra,rs) = Bs(0) + —- (3 — 3(ry +713)) (2.8)

with a magnitude of

Bg 11,1)1;)—\/7(111 )+ B3(ra.rg) + B3 (ry.ra.r3). (2.9)

In the limit of a small cloud, the static potential is well-approximated by a harmonic trap.,
characterized by radial and axial trapping frequencies ws and ws. In terms of these mes
surable values, the static trap-hottom term. the gradient term, and the curvature term ave

given by

Qllw'l')g
Bs(0) = —/—— (2.10)
Mpgrins
mDBg(0 . w3
B = | == 5(0) (wf.)+ﬁ) (2.11)
mypgeps \ - 2
17 —_ TIIu.«; (() 19)
Mpgr i

respectively. where we define wrp = ppgrBs(0)/h as the “trap bottom™ frequeney. In the
coordinate systewn of this apparatus, »; — x. 1o — 2z, and r3 — y such that wyy = w, . and

Wy = w”.
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Ficure 2.5: Geometry of the chip-based rf-dressed adiabatic double well potential. Purple clouds
represent the atom clouds, red beam shows the gravity-compensating levitation bean.

As discussed in §2.2.3. we can use an optical force to compensate for the coffects of
gravity. This additionally compresses the trap along the weak, y. If we characterize this

force through an effective harmonic trapping frequency wy o, the total effective potential

Viwa () = mlesgn(gp) iy /o(r)? + Qi (r) + %'rrz,wioyz, (2.13)

where §(r) = wy — |p3grBs(r) /h] is the detuning, Q4 (v) = upgp By, () /20 is the of Rabi

becomes

frequency,
(1310, 10) Hz,

Typical values for the parameters in Egs. 2.12 and 2.13 are: w(,. ) = 27 X
F =2.m} = 2) state

wpp = 2m X 787 kHz, By 1 = 240 mG. wy 9 = 27 x 95 Hz, and in the

of Rb we use. mpgr = L.

In Eq. 2.13, the first term under the square root defines a shell of resonance upon which
the potential is minimized. The second term indicates the effeet of the polarization on the
coupling: the vertically (in the z-direction) polarized rf radiation used in this experiment
leads to syimmetrie absolute minima on the shell that are the minima of the double well
potential. Figure 2.6 shows the caleulated potentials for various values of the detuning.
dp = d(r = 0). Figure 2.5a shows a schematic of the two clongated clouds below the surface

of the atom chip with the gravity-compensating lager heam.



2.3 CHIP-BASED RF DOUBLE-WELL POTENTIALS 17

Z ()
Z {(un)
Z (um)
7Z{ im)

5 0 2 2 0 2

-2 0 2 :
X (um) X (um) X (um) X (um)
§ 4 é*\ 4 é‘ 4 § 4
= = = =
<2 =2 <2 )
5 5 5 e
> > > >
0 oL AN 0 0
-2 0 2 -2 0 2 -2 0 2 -2 0 2
X (m) X (um) X (um) X (um)
(a) (b) (c) (d)
Ficure 2.6: Calculated RWA potential energies. Lop row shows contours in the x — = planc for

y = 0, with contours at AV (r)/h = 27 x 1 kHz from 0 to 10 kHz, with one additional contour at
V(r)/h = 27 x0.5 kHz. Bottom row shows cuts through potential at y = z = 0 for various detunings.
(a) dg = —27 x 5 kHz, (b) dg = 27 x 0 kHz, (¢) §y = +2x x 5 kHz, and (d) dy = +27 x 10 kHz.

2.3.2 BEYOND-ROTATINC-WAVE CORRECTIONS

In using Eq. 2.13 to calculate owr adiabatically dressed potential, we invoke the rotating-
wave approximation (RWA). However, in this experiment, like others [25]. the coupling
strength is sufficiently strong as to render the approximation invalid. To account for the
corrections to the RWA. we calculate the full potential and compare it to the RWA results.
We obtain a small correction factor used in all subsequent analyses.

The full expression for the energics of the dressed cigenstates for atoms in a magnetic
trap coupled to a strong rf ficld can be found be diagonalizing the full Hamiltonian describing
this system. Following Ref. [25], we consider atoms with total spin F in a static potential

Bg(r) coupled to an oscillating ficld By¢(r) exp(iw,rt), leading to the Hamiltonian

Hprwa (t) = gpun|Bs ()| Fx + hwrd'a + G [BL‘I.J_(T)(LT + h.c.] F,
+G [Bl.f‘”(r)(b-i- + h.c,] F, (2.14)

where G = grup//2(Npn). (Npn) is the average photon number in the rf field, a,T(a) ig the

creation {anuihilation) operator of the rf field. and By, 1 (Byr)) is the complex amplitude of
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the component of Byp(r) perpendicular (parallel) to the static field Bg(r), for each spatial
point r. and h.e. denotes the hermitian conjugate.

To diagonalize the Hamiltonian, we use the basis states {[mp; ANy} for F' = 2, and
we choose a large photon number basis. ANy, = Ny — (NVpn) = —12,..., 12, We assume
(Npn) > 1 such that /Ny +1 & /Ny, We solve for the energies E(r) from H(r)vy =
o) = |F. = 2, AN, = 0) state.

After subtracting off any offset at the trap minimum. we compare this potential energy

E(r)i and seleet the eigenvalue which connects to the

E(r) to the RWA calculation Viywa (r) for the same values of wyy and Bg(r).

To perform the comparison, we choose a single plane at y = . After calculating
E(r,0,z) at some dy. we perform a two-dimensional fit of V(2,0,z). where dy — dy +
dshire- to this potential energy surface. using dgnipe as the fit parameter. In so doing, we
determine a systematic shift by which we adjust the RWA-calculated potentials to account
for the beyond-RWA effeets. Figure 2.7(a) shows the differences between the two methods
of calculaton, while Fig. 2.7(b) shows the necessary shift as a function of the detuning

parameter. Jg.

2.3.3 POTENTIAL ENERCGY GRADIENTS AND THE DOUBLE-WELL POTENTIAL

As is discussed in Ref. [15] (§6.3.1), gradients in the rf field, By o (r) can lead to the
*hbanana” effect, wherein the potential energy is minimized not at two points opposite each
other on the shell of resonance for which fuwr = grupBg(r). but along a “drooping” path
between these points. This can be mitigated by reducing the Toffe biag field and increasing
the gradients of the static trap, Bg(r), such that the relative gradient of the rf field is
smaller. However, we find these measures are not sufficient to completely eliminate banana
cffects.

To reduce the effects of gradients in By (r), we move from antennae close to the atoms
to those farther away. Figure 2.8 shows the layout of the atom chip, and panel (b) shows the
main wires used in these configurations. The central blue ‘Z’-wire provides the main static
trapping gradients that lead to Bg(r). The original rf adiabatic potentials implemented
the red "U’-shaped wires [15], which are only 100 jm from the centre of the trap (while
atoms are trapped = 190 pm from the surface of the chip). The magnetic field gradients
of the rf ficld at the position of the atoms arc reduced by using the green “end” wires, at
1580 jun from the trap position. The RWA potentials calculated for these two scenarios
are compared in Figs. 2.9(a) and (), where (a) uses the former configuration and (b) the

latter. Two main differences are seen: first, the drooping “banana” effect is reduced, and
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Fioure 2.7: Comp(u‘lsons between RWA and full potential calculations. (a) Potential energy curve
through y = z = 0 with d/27 = 0, calculated using full expression Eq. 2.14 (blue dots), RWA
appmmmatlon Eq. 2.13 (red solid line), and RWA approximation with httod shift of dynin/27 =
—1.85 kHz (black dashed line). Insct: difference between full potential and RWA potential with
shift over entire 2D plane at y = 0 used for fit. Color bar indicates in Hz the difference between
the corrected RWA potential and the full caleulation. (b) Fitted detuning shift as a function of

detuning, i.e., the number one should add to the detuning in the RWA expression to obtain the best
estimate of the potential.

second and more drastically, the separation of the clouds looking along the z-axis (bottom
panel) is much improved with the far wires. The centres of the traps in the y direction are
much closer when the end wires are used.

Despite the improvements seen in Fig. 2.9(b), two problems remain. The drooping
effect persists due to the potential gradient of gravity, and a significant twisting of the
potentials away from the y-axis arises from the ‘Z’-shaped geometry of the trapping wire.
The twisting separates the well centres along y to distances on the order of 50 pm. For
experiments hoping to study the coupling and tunnelling between BECs in the double well,
this prevents significant overlap of the condensate wavefunctions between the wells, and
reduces the chance of observing the effects related to that overlap.

To address both the twisting and the drooping. we apply an optical force to the atoms
in this trap to levitate and compress the atoms against gravity, as discussed in §2.2.3. We
use a focussed Gaussian heam, propagating along x and focussed above the atoms in z to

levitate the atoms. The auxillary effect of this optical force is a confincment along y, which
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(a) (h)

FIGURE 2.8: Atom chip schematics. (a) Full layout of the Toronto atom chip. Refer to Ref. [15] for
detailed explanation of each wire. (b) Simplified schematic of atom chip, showing the wires relevant
to rf dressing in these experiments. Not to scale. Blue 'Z’-wire provides static field, and cither the
red U-wires or green bar-wires act as »f antennae for the dressed potentials.

brings the trap centres to the same position in y, allowing for good wavefunction overlap.
This configuration is shown schematically Fig. 2.5 and the calculation of the RWA potetnial
is found in Fig. 2.9(c).

The optical levitation and compression were found to significantly improve the per-
formance of the double well potential for the applications discussed in Chapter 5. These
results show that all potential energy gradients must be accounted for when describing the

potential of chip-based adiabatic rf potentials.
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100 ym

(a) (b) (c)

F1cure 2.9: Effects of gravity on adiabatic double well potentials. Upper row are cuts at y = 0,
with a aspect ratio equal in both dircctions. Bottom row are cuts at z = Zmin, that is, the vertical
position at which the potential is minimized. White arrows show the position of the plance for
the corresponding views. Dark regions show small potential energies, with regular spaced contours
indicating increasing potential energy. Aspect ratio in upper row is 1:1; horizontal dimensions arve
equal in top and bottom rows, though the vertical scale is compressed, as indicated by the size bar
in (¢). (a) Original configuration, U-wire rf source. (b) New configuration, end-wire rf source. (c)
New configuration, end-wire rf source, with optical levitation/compression



CHAPTER 3

SPECIES-SPECIFIC OPTICAL LATTICES

The ability to design the potential energy landscape for an ultracold gas permits the
study many-body phenomens in a variety of environments. Using the forces provided by
oscillating electromagnetic fields, optical potentials can be created in single or multiple well
configurations, the latter often realized as one-, two-, or three-dimensional lattices. The well-
known optical resonances characteristic of each atomic species can be exploited to create
differential optical forces for different atomic species or internal states by choosing carefully
the wavelength used for these potentials. Several such schemes have been implemented: a
“magic wavelength” scheme was used to cancel the differential energy shift between ground
and excited states [27], spin-dependent lattices have addressed individually two internal
states of an atom [28-31], and species specific dipole potential Lias been used to separately
address the species in a mixture [32].

This chapter discusses two techniques by which an optical trap can be used to selectively
address an atomic species while having little or no offect on a second species. The necessary
experimental parameters and several applications of this scheme are discussed. The back-
ground for this technique is discussed in §3.1 and the description of the effects of optical
ficlds on alkali atoms is found in §3.2. Quantitative measures for evaluating the feasibility of
a species-specific potential are defined in §3.3 and applied to two different techniques. These
two methods, the “tune-in” and “tune-out” methods are compared for various mixtures of
alkali atoms. Section 3.4 discusses the interactions between different atomic species in the
selective lattice, including the emergence of a mean-field potential and the thermalization
between species. Applications of a species specific lattice, including phase-space inerease,
phonon inclusion in ultracold gases, and effective mass tuning are discussed in §3.5 bhefore

concluding in §3.6.

[N.]
()
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3.1 BACKGROUND

As the field of ultracold atoms research enters its adolescence, expoeriments are increasingly
including more than one element or isotope. Dual-gspecies experiments offer possibilities for
creating heteronuclear polar molecules [33], sympathetic cooling [34 -37]. and investigating
Bose-Fermi mixtures [35 38] which may provide opportunities for studying boson-mediated
superfluid states [39, 40]. More recently. experiments involving up to three atomic species
have been implemented for sympathetic cooling of two fermionic species [41. 42].

Dually degenerate experiments have so far used external trapping potentials common to
both atomic species. A species-specific trapping potential would add a degree of freedom
to improve sympathetic cooling [43]. to tune effective mass, or to create a lattice for one
species in the presence of a background reservoir. Though careful selection of internal atomie
states can provide differential inagnetic trapping, optical far-off resonant traps (FORTs) and
magnetostatic traps are not species-specific.

Species-selective adiabatic potentials have been proposed [44] and demonstrated [18]
in the case of "R -1°K, where the Landé factors |gp| arc distinct. A radio-frequency
transverse field can be resonant with only one of the two species, sclectively deforming its
dressed potential. Onofrio and co-workers [43, 45] propose using two overlapping FORTSs
at frequency detunings far above and below the dominant ground state transitions of both
species in a two-species mixture. The confincient of cach species can be chosen indepen-
dently by individually adjusting the intensity of the two beams used to create the trap.
Unfortunately, none of these schemes lends itself to a uniform three-dimensional lattice po-
tential for atoms: the radio-frequency scheme fails because it is limited to one-dimensional
periodic potentials and the two-frequency balancing hecause lattice periodicity depends on
wavelength. Recently. two schemes for two-dimensional lattices of fixed spacing with ar-
bitrary wavelength have been created using diffractive optics and high-resolution imaging
406, 47].

In this chapter we discuss the gencration and application of species-specific optical lat-
tice potentials. Our motivation is the strong analogy between atoms in optical lattices
and electrons in crystalline solids. Cold bosons in lattice potentials can be used to ex-
plore strongly interacting many-body physics. such as the superfluid-insulator transition
[7, 48]. At sufliciently low temperatures, cold fermions in lattices [49, 50] might be able to
address open questions about the ground state of the Hubbavd Model [13]. Unlike crystal

lattices, optical lattices do not support the lattice vibrations respounsible for many physical
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phenomena. However, plionon mediation between neutral atomice formions could avise in
the presence of a condensed bosonic species capable of sustaining phonon-like excitations
[39. 40, 51, 52]. Although Bose-Fermi mixtures were recently loaded into optical lattices
[53. 54]. the lattices confined bosons as well as fermnions. Using a lattice to tune the effective
mass of the bosonic background allows a tailoring of the speed of sound in the condensate.
and with it. the spectrum of phonon excitations allowed. To couple phonons to the fermions
at the edge of the Fermi sea, for instance, requires that the speed of sonud in the condensate
exceeds the Fermi velocity [55].

We discuss two approaches to specics-speeific optical potentials. both of which involve
only a single frequency of laser light. The first approach is to tune the laser wavelength close
to the atomic resonance of one species, making its induced dipole moment mch stronger
than that of any othor atomic species present. We refer to this strategy as the “tune-in”
(TI) scheme. A second approach exists for atoms, such as alkalis, with an excited-state fine
structure splitting. Between the resonances of the doublet, a wavelength can be chosen such
that the induced dipole moment is strictly zero. We refer to this strategy as the “tunc-out”
(TO) scheme. Both approaches allow for the creation of a species-specific optical lattice
with a tunable relative potential strength between species.

In the following sections we consider the relative merits of the TT and TO schemes. Woe
focus omr attention on Bose-Fermi combinations throughout. paying special attention to

mixtures including 8 R [17, 49, 56 60].

3.2 OPTICAL POTENTIALS FOR ALKALI ATOMS

We consider the light-atom interaction in the limit of a small excited-state fraction. An
clectromagnetic field induces an electric dipole potential on a neutral atom, which can be
used as a trapping potential for ultracold atomic samples. We cousider the residual effect

of gpontaneous cmission in §3.2.2.

3.2.1 DIPOLE POTENTIAL

An atom in a ground state |g) will experience a potential shift due to coupling by the

light ficld to the excited states |e). We caleulate the sumn of these shifts on cach state |g),
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[Val

including the counter-rotating term. using sccond-order perturbation theory:

Vy(r) = —I—Z [K(‘ld'(klgng - fdd. dail I(r). (3.1)

T 2¢qe h(wr, — weg)  I(wr, + weg)

.
where wy, is the laser frequency. fuveg is the encrgy difference between |e) and |g). d is the
dipole operator. € is the polarvization of the light. and I(r) is the spatially-dependent light
intensity. In the case of atoms in a weak magnetic field. we use the matrix clements defined
in the |F.mygp) basis, where F is the total angular momentum and myp is the magnetic
quantum number.

We will cousider only alkali atoms, which have two dominant ns — np transitions
due to the fine structure splitting. Using nomenclature established by Fraunhofer for the
328, /2 32P1/2 and 3°S, el 32D, /2 transitions in sodiwm. we label the corresponding
lines in cach of the alkalis Dy and Das. respectively. Spin-orbit coupling splits cach excited
state by a frequency Aps = wp, — wp,. while cach ground and excited state is further
split by the hyperfine interaction Aypg and Aiu,‘s! respectively. The atomic data used for
Eq. (3.1) are the measured linewidths and line centres of the Dy and Dy lines. and the
ground and excited state hyperfine splittings [61 -60].

Transitions to higher excited states ns — (n+1) p are neglected by our treatment. YWhen
detuned within A g of the ns = n p transition. the relative magnitude of the ns — (n+1)p
shift is less than 2 x 107> for Cs and 7 x 107 for Li.

As Eqg. (3.1) requires a sum over several states and knowledge of individual matrix
elements. it is uscful to have an approximate but simpler expression for V. If the detunings
Aeg = Wy, —Weg are small compared to Apg. but large compared to the excited state hyperfine

splitting Afjag. an approximate expression for the dipole shift is [19]

7e?D (1 — Pawine 24 Parne
rc < grimng 24 ﬂf”")z(r). (3.2)

/- ~ L
V)~ 5 Al A,

where .2 = 0,41 for m. 0% polarization. respectively. gp is the Landé factor. Ay is
the detuning from the Dy line. wo = (wp, + 2wp,)/3 is the line centre weighted by
line strength, and I' = (I'p, +I'p,)/2 is the average of the Dy and Dy linewidths. Since
I'p,/Tp, = 14+3Apg/wp. one can expeet an accuracy between 7% for Cs and £0.003% for
Li. At small detunings. we cwmpirically find that Eq. (3.2) deviates from Eq. (3.1) by &1%
for detunings win{|A|. |As|}/27 < 1.5v/m GHz. where i is the mass in atomic units.

As an approximate form. Eq. (3.2) negleets the connter-rotating terms. For [A] <

Ays, the strength of the counter-rotating contribution is at most Apg/2wy, relative to the
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contrvibution of one near-resonant dipole transition. Thus the negleeted shift is at most -2%
for Cs. and -0.001% for Li for estimates of the TO wavelength. Scenarios involving larger
detunings require the full expression Eq. (3.1): for consistency, this expression is used in

the following sections unless otherwise specified.

3.2.2  HEATING RATES

Detuning and intensity of optical traps must be chosen with consideration of the inco-

herently seattered trapping light that heats the atoms. For each state

g). we quantify the

rate of scattering in the low satwration limit,

e = L) Teffeld - o)l {( 1 1 ] (3.3)

2("()(' h= W, — w('p,')z (W‘l + w(‘g):z

where T is the natural linewidth of the ¢ — ¢ transition. and Ay = w), — weg. The rate
of scattering of photons can be converted to an average heating rate. Hy = %ER';S(.. where
Er = h2E?/2m s the recoil energy. k= wy, /e, and ¢ is the speed of light. The factor of 2/3
arises due to the partition of energy F = %]\'BT.

This estimate of the heating rate is derived from the product of the spontancous decay
rate and the excited state population. In semiclassical treatments of the heating rate.
absorption and induced emission effects were also found to be important [1]. For a standing
wave potential, the three contributions to the heating rate are found to add in such a way
as to rendoer the heating rate independent of position in the lattice, at a value that is given
by Hy(lmax). where Jpay is the maximun intensity in the standing wave.

Recent caleulations of heating in a lattice accounting for the quantum mechanical motion
of the atoms confirms this position independence, if atoms can access multiple bands within
the lattice [2]. The heating rate for the ground band is less than the above value. and
is smaller for blue-detuned lattices than for red. The heating rate, therefore, will depend
on the configuration used in a particular experiment. and must be adjusted accordingly.
For the purposes of the caleulations in this chapter, we consider Hg(L,mx). which can be
modified as the experimental consideration dictates according to some factor as found. for

exawple, in Ref. [2].
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3.3 SPECIES SELECTION

It 1% not swrprising that optical traps can be species-speeilie given that optical resonances
are uuique to atomice elements and isotopes. However, most species-specifie optical traps,
such as magneto-optical traps, ave tuned to within a fow linewidths of resonance, which is
incompatible with guantum degenerate enseibles. At low temperatures and high density.
any gain in trap depth close to resonance must be balanced against the heating due to
unwanted light seattering (§3.2.2).

[u the subseetions below we consider two-species mixtures. The goal is to apply a dipole
force (o the “target™ species while inducing as little potential as possible on the second
species, which we will call the “spectator™. We deline the “selectivity”™ as
1l

S = 3

(3.4)

where Vi i is the potential induced on the target (spectator).

As discussed in §3.2, in the low saturation limit, hoth the induced dipole potential and

the heating rate are proportional to intensity. We define the intensity-independent ratio

Vi

S = ——-
H, + Hy
to be the “sustainability™, wherve H, is the heating rate of the target (spectator). The
ahsolute value of s sets the scale for possible trapping time!. The laser frequency will be

chosen to maximize both S and |s].

3.3.1 TUNE-OUT METHOD: CANCELLINCG THE STARK SUIFT

The tune-out wavelength scheme exploits the characteristic doublet structure of the alkali
atoms. By choosing a wavelength that lies between the two strongest trausitions. the large
negative energy shift of the Do line is halanced against the large positive energy shift of
the Dy line (see Fig. 3.1). This atom becomes a spectator, while any other species feels the
shift induced by the laser and becomes a target. Sinee the potential shift on the spectator
an be zero, the seleetivity of the tune-out approach is infinite.

The laser frequencey. wyg. at which ¥4 = 0, is determined nunerically nsing Eq. (3.1)

with all [/, my) exeited states in the Dy and Dy manifolds. Table 3.1 shows the tune-out

"Phe sustainability, s. has units of seconds and gives the approximate time it would take to heat the
atoms oul ol the trap



3.3 SPECIES SELICTION 23

5 0.25¢ -
G

>cn

= OF .
>

80

g

& -0.25} -

770 780 790 800

laser wavelength, A (nm)

Fravre 3.1: Energy shift as a hinetion of wavelength for SRb in the [Fomp) = [2,2) state. under
linear polarization. for 1 mW/em?. This general structure will arise for each of the alkali clements.
with the divergences located at the Dy and Do lines. The tune-in scheme for a STRb target is
indicated by the diamond marker on the blue-detuned braneh of the potential energy curve. The
round marker indicates the position of the tune-out wavelength. where the energy shift is zero. Here,
STRD is the spectator.

S T . N o . . *) .
wavelength (or all " RD ground states with 7. x, o, and o polarizations®. An approximate

expression for this wavelength can be derived from Eq. (3.2), giving

L4 Pgymype .
—-—-éﬂ—’/_x[.‘s. (3.6)

wro = Wy -

For ¥ Rb , Eq. (3.6) predicts tunc-out wavelengths of 785.10 nm, 787.54 mn. 790.01 nm.
and 792.19 nm for Pgpmge = -1, -0.5. 0. and 0.5, respectively. Comparing these values to
the results of Table 3.1, we see the that approximations are accurate to 0.04 nm or better.
Equation (3.0) also gives wpo = wp, for the case of Pgpm e = 1. which is inconsistent with
the assumption that |A] > Ajpeg. In fact. sinee Pgrpmy: = 1 corresponds to a dark state
with respeet to the Dy excitation. there is no tune-out wavelength for this case.

We note that in Table 3.1 the tunc-out wavelengths for linear (7 and x) polarizations
are nearly independent of the choice of ground state, in contrast to ot or ¢~ polarizations.
Given this independence. we caleulate the tnune-out wavelengths using Eq. (3.1) for several
of the common alkali isotopes in their stretehed ground states under x polarization (Table

3.2)3.

a9 . . . v, . . — . .

“By x polarization. we refer to an equal superposition of o', i o7 polarizations.

Anlike for o', o, geomelrie considerations allow that linear (cither x or ) polarizalion can be chosen
lor all directions ol a 31) optical lattice when a weak quantizing magnetic field is present along one of the
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Polarization | mpe) Ao Yoo/ I
(1un) (em?/ml)
2. +2) 790.04
2. £1) 790.04
™ 2. 0) 790.04 9.0x10°°
|1, £1) 790.04
|1.0) 790.03
12, £2) 790.04
2. £1) 790.04
x 2. 0) 790.03 9.1x107¢
|1, £1) 790.03
|1.0) 790.04
2.2) 785.13 9.1x107¢
2. 1) 787.58 8.1x10°8
2. 0) 790.03 9.1x 1070
o 12, —1) 792.53 14.5%x 1070
2. —2) (none) -
1. 1) 792.51 14.5%107°
|1.0) 790.03 9.1x107¢
[1.—1) 787.57 8.1x1076
2. 2) (none) -
12.1) 792.50 1htx1076
2. 0) 790.03 9.1x1076
ot 2. —1) 787.59 8.1x1070
2. -2) 785.13 9.1x1070
|1.1) 787.58 8.1x1076
|1.0) 790.03 9.1x1070
|1.—1) 792.51 14.5% 1076

TasLs 3.1: Tunc-out wavelengths and scattering rates in 7 Rb. for scleet polarizations and all
ground states. Two states have no tune-out wavelength, because the Dy line has no F = 3 excited
state.

Tables 3.1 and 3.2 also give the scattering rates per unit intensity (scattering cross-

coordinate axes.
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Element F.omyp) Aro (um) Yee/ I

Eq. (3.1) Eq. (3.2) (em?/mJ)

6L 12.4) 670.99 670.99 2.8

"Li 2. 2) 670.97 670.97 2.4
2Na 2, 2) 589.56 589.56 2.0x1073
R ¢ 2. 2) 768.95 768.95 L4x10~
0K 15.9) 768.80 768.80 1.7x 107"
8TRD |2, 2) . 790.04 790.01 9.1x107°
1330y |<L, 4) 880.29 880.06 1.5x107¢

TABLE 3.2: Tune-out wavelengths and scattering rates for various elements. We have assuned
x-polarization and stretehed states, and show a comparison of Egs. (3.1) and (3.2).

seetion) for the spectator species at the tune-out wavelength. Due to the large dispersion of
fine splitting among the alkalis, scattering cross-sections vary by over 6 orders of magnitude.
To understand the implications for trapping. we need to consider the sustainability, s, of
various pairs of atowmic species. Table 3.3 shows spg in the same mixtures for which sy is
aleulated. Spectators with larger scattering cross-sections at Apey have lower sustainability.
In addition to these data. we note that the ¥3Cs-8"RD spectator-target combination gives
the highest possible sustainability among alkalis in the tunc-out scheme: s = 34 s at a
tunc-out wavelength of Apo = 880.29 nm (not shown in tables).

As an example. consider making a linearly-polarized lattice for IC (|[F = 9/2,mp =
9/2)) only. leaving SR (|F = 2, my = 2)) unaffected by the lattice and confined only by
a background magnetic trap or FORT. If we consider the mixture in a three-dimensional
lattice of arbitrary depth, the 10K potential shift is 1.54 x 107 pKx[I(mW/cm?)]; with
beams of 100 jun waist, the potential shift is 98 nK/mW. If we require the target to
experience a lattice that is 8ER deep! where Ej is the recoil encrgy. we find a 8RD heating

rate of 210 nK/s.

3.3.2 TUNE-IN METHOD: DIFFERENTIAL OPTICAL FORCES

The simplest sclective potential is one in which the laser is tuned close to a resonance
of the target (sce Fig. 3.1). Since scattering rate is inverscly proportional to the squave of

the detuning, we consider only heating of the target such that spp — Vi/H. Considering

1y a 3-dimensional oplical lattice, the first band is [ully confined for lattice depths > 7.1 .
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Target Spectator
S TLi 23Na SS)K STR.b 133CS
o 0.00134 7.77x107! -0.0381 -1.19 -8.26
6Li 100 | 1.37x107% 0.217 0.290 0.332  0.601
10 2.70%x107¢ 2.03 3.11 3.55 6.42
o 1.28x1077  5.77x10™ 0.188 -8.99  -254
10 100 2.35 3.45 1.04x107%  0.267  1.83
10 23.3 34.1 4.68x10~1  3.49 25.6

TABLE 3.3: Sustainabilities, s, of two-species mixtures for tune-out and tune-in schemes. in unitg
of seconds, using Eq. (3.5). The second column indicates the selectivity. Rows with S = oo are
caleulated using the TO scheme while rows with S = 100 and § = 10 usce the TT scheme. For the
lighter spectators, the TT scheme has higher |s|. The heaviest elements and isotope mixtures favor
the TO scheme.

Eq. (3.2) in the limit [A;] < |Ag]. a simple estimate is

/ s
3h
sTr & | ——— J Aq. 3.7
(QER,LFL (3.7)
The choice of detuning A will depend upon the desired selectivity. Assuming the wave-

length is chosen near the D2 line of the target and the spectator is far-detuned, Ag =

(wo —wos) and
20 wé,s|w0.t - wO,s' 1
3l ““SL |A

Sty & (3.8)

Together, Egs. (3.7) aud (3.8) explicitly show the opposing dependence on Ay and the
necessary trade-off between selectivity and sustainability.

Table 3.3 shows the sustainability for bosouic species as spectators and fermionic species
as targets, calculated using Eqgs. (3.1) and (3.3) for tune-in selectivities of 100 and 10. The
inverse scaling predicted by Egs. (3.7) and (3.8) is observed: spp drops by approximately
a factor of ten when Sy is increased by a factor of ten. The product of sp; and Sy in
Table 3.3 varies between 22 s and 36 s for SLi mixtures and between 26 s and 530 s for 'K
mixtures, whereas Egs. (3.7) and (3.8) would predict a ranges of 8 s to 21 s and 64 s to
132 s, respectively, excluding isotope mixtures from the comparison. Finally, we note that

2Na-1K is the optimal tune-in mixture.
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3.3.3 DISCUSSION: TUNE-IN V8. TUNE-OUT

With the data of Table 3.3, we can evaluate the practicality of both the tune-in and
tune-out schemes for Bose-Fermi mixtures of neutral alkali atoms. Since the scattering rate
in the tunec-out scheme can be smaller for elements with larger fine structure splittings, this
approach is better suited to more massive elements®. In particular, the tunc-in scheme is
preferable for Li-Na, Li-K, and K-Na mixtures, and for applications requiring selectivity of
less than 10:1. The tune-out scheme is preferable for Li-Cs, K-Rb, and K-Cs mixtures when
the selectivity required is greater than 10:1, and for Li-Rb mixtures at selectivity of greater
than 20:1.

An isotope mixture of potassium could be compatible with the tune-out scheme, where
s > 100 ws. Isotope-gpecific manipulation within a lithium mixture is less practical due to
sustainabilities of 1 ms or less.

Other factors may also influence whether the tune-in or tune-out approach is preferred.
For experiments with time scales that are slow compared to the thermalization rate (dis-
cussed further in §3.4.2), it may be preferable to heat the minority species and allow for
sywpathetic cooling. If the reservoir of spectator atoms is large, the tunec-in scheme might
be preferred since extra encrgy due to near-resonant heating would be transferred to the
reservoir. For experiments on time scales fast compared to the thermalization rate, the
tune-out scheme might be preferred even if s is smaller. since spectator heating will not
affect the target.

Finally, we note that if a third species is included, it will play a spectator role in the

tune-in scheme and a target role in the tune-out scheine.

3.4 INTERSPECIES INTERACTIONS

3.4.1 MEAN FIELD INTERACTIONS

Interactions between elements may couple the environment felt by the target to the
spectator, spoiling the species-gpecific potential shaping of both schemes. If target atoms are
trapped in a lattice in the presence of a background spectator species, a periodic interaction

potential could arise for the spectator due to its interaction with the periodically modulated

°The fine structure splitting increases approximately as the third power of mass.
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density of the target. A mean-field approach is used to make a simple estimate of the
magnitude of this effect. The interaction potential of the spectator due to the target is
given by

da B2 |ag|ny

‘/int.,s = (39)

Mgt
where ag is the scattering length between specics, ng is the density of the target, and

Mgy = 2mgmy/(ms +my) is the reduced mass. For a lattice potential
Vi(z,y, 2) = nEg cos®(dra/\) cos® (4my [ \) cos®(4mz/ ), (3.10)

k . . . . . .
where n = VP*/ER. the trap is approximately harmonic near the centre of a lattice site
with a characteristic frequency wigy = (d7/A)/nEr/my. Assuming a single atom per site,
the standard harmonic oscillator ground state in such a trap gives a density

: Natr \ 3/2
1y (0) = (””'T“]iﬂ) r (3.11)

The minimum potential seen by the spectator atoms will be dominated by the interactions

with the target. The selectivity is limited to a maximum value

hmgn L/4
- T (3.12)
32m|as |my T EY

Vi
Smax =
e I‘fint,s

In the case of the SLi-8"Rb stretched state target-spectator mixture, the interaction-
limited selectivity is Spax = 3.17/* [60], while for the K-3"Rb stretched-state target-
spectator mixture, it is Sy = 0.227]1/ 4. Tobein a regime where interaction effects might
be ignored, we require Syax > 1 which gives 1 > 0.01 for SLi-8"Rb and 1 > 400 for 107¢.
8TRb . While for the lithium target, this condition is quite rcasonable, the large lattice
depths required for potassium would completely localize the atoms to individual sites and
prevent the exploration of interesting tunneling-driven physics. Overcoming this interaction
limitation and achieving the high selectivity discussed in §3.3 may be possible by tuning a
magnetic field to a value where agpi & 0 near a Feshbach resonance [67]. For instance, with
depth n = 8 and Spax > 10, the scattering length between species is limited to |asi| < 7.5aq,
where ag is the Bohr radius.

Where species selectivity is not the goal, this interaction-induced periodic potential for
a second species could be used to generate alternative lattice potentials. Such potentials
are non-sinusoidal, do not involve a Stark shift, and may have a dynamic structure if target
atoms are mobile. The strength of this induced potential could be controlled through the

interaction strength. such as at a Feshbach resonance, as described above.
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3.4.2 THERMALIZATION

An understanding of the thermalization between species is important when considering
heating or cooling in the trap. The rate at which energy is transterred between the specics
will be relevant in setting the time scales on which adiabatic experiments can take place.
Thermometry is also possible if there is good thermalization between species; a high den-
sity target could be confined within a species-specific lattice while the spectator remains
extremely dilute and thus at lower quantum degeneracy, where temperature is more casily
measured. Conversely, thermal isolation could be useful in shiclding one species from the
spontaneous heating in the other.

In the classical limit, the thermalization rate is proportional to the collision rate of the
atoms in the trap, given by yeou = nowv, where n is the overlap density, o the scattering cross-
section, and v the relative velocity between species. Random collisions act to equilibrate
the system and the rate of rethermalization is Yinerm = CYeoln, where C is a cocfficient that
depends on the geometry of the system. For non-degenerate atoms in a three-dimensional
harmonic trap, C ~ 1/2.7 [68], but may be modified by, for instance, Pauli blocking wherc
in one experiment C = 1/0.75 [69], or by reducing the dimensionality, where, for instance,
thermalization is not completed after thousaunds of collisions [70].

For a degenerate mixture of hosons and fermions, the classical picture of scattering
breaks down and the rate of thermalization decreases as the fermionic system becomes more
degenerate. An estimate of the sympathetic cooling of a uniform system in the degencrate

regime using the quantum Boltzmann equatios s gives the rate of change in the degeneracy

[71]:
d (T 6¢(3) , [T\ ‘
—_— — T Y — . ‘.1
dt (TI’) '/T’? WCOU TF ! (5 5)

where 7., = (3/8)npovr is the collision rate between species, with the scattering cross-
section o = 4wady,, Fermi velocity, vr = h(67nr)'/3/my, ¢(3) =~ 1.20206 is the Riemann
zeta function and Ty is the Fermi temperature. Though other assumptions® of this treatment
are not valid for the systems we consider in this paper, we use this expression to determine
an order of magnitude for the thermalization rate.

Taking boson density ng = 1 x 101 cm™3, fermion density np = 1 x 10" cim™3

using the mass for 1°K, we calculate that d/d#(T/Ty) ~ —350s~ (T/T%)? using the three-

, and

dimensional thermalization cocflicient, which gives a temperature relaxation time of ~ 30 ms

6\We assume that the species arc of cqual mass, that the system is highly degencrate (T/Ty < 1), and
that the bosons are either in the condensate or removed immediately from the system when excited.
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at T = 0.17. This is an order of magnitude larger than the the classical expectation for
the rethermalization time of ~ 2 ms for particles moving at the Fermi velocity. Thus for
rapid experiments in the deeply degenerate regime, thermal contact is essentially broken,
allowing, for instance. the target to be unaffected by the heating of the reservoir in the
tune-out scheme.

In addition to the reduction in thermalization due to Fermi statistics, recent experiments
[31] have found that thermalization between two spin states in a state-dependent lattice is

suppressed, indicating that the confinement of the lattice may also play a role.

3.5 APPLICATIONS OF SPECIES SPECIFICITY

3.5.1 ISOTHERMAL PIIASE SPACE INCREASE

Two-species mixtures can he used to realize various cooling schemes. For example, dark
state cooling by superfluid immersion is discussed in Ref. [72]. We present two simple cooling
scenarios in which the presence of an uncompressed spectator allows the target species to be
compressed with negligible teinperature increase but significant improvement in phase space
density. In both cases, target atoms are first compressed isothermally, spectator atoms are
then removed from the trap, and finally, the target atoms are decompressed adiabatically.

We consider a species-selective single well dipole trap and a species-selective lattice. A
closed cycle is described for both scenarios with atoms beginning and ending in a FORT.
We assume that the heat capacity ratio between spectator and target is infinitely large and
that thermalization in the spectator and between the spectator and target species is faster
than any other time scale considered. The latter agswmption may restrict fermion cooling
to the non-degenerate regime (sec §3.4.2).

In the first scenario, schematically represented in Fig. 3.2, a single species-specific beam
crosses a FORT. Adiabatic cooling reduces temperature in proportion to the ratio of average
trapping frequencies, that is, T; /Ty = @j/wy, where 4, f indicate “initial” and “final”. As
an example, consider K-8"Rb and ®Li-8"Rb mixtures, confined by a 1064 nm, 500 mW
single-beam FORT with a 1/e? radius of 20 jum and a corresponding trap-averaged harmonic
oscillator frequency @i = 27 x 540 Hz for 19K and @y = 27 x 950 Hz for SLi. A 500 mW, 50
nm waist beam at Aro (see Table 3.2) is turned on perpendicular to the FORT to compress

the fermions in a trap with frequency Wy = 27 x 3040 Hz for 10K and @y = 27 x 3810 Hz for
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F1GURE 3.2: A cooling procedure using specics-specific trapping; one-dimensional trap shape repre-
sents three-dimensional trap-averaged shape. The solid line represents a FORT, the dashed line the
species-specific trap; open circles are the spectator species and closed circles are the target. (a) Two
species are trapped in a FORT; (b) the species-selective beam is turned on, compressing and heat-
ing the target species: {c) the target species rethermalizes with the spectator; (d) the spectator is
removed; (¢) the target is adiabatically decompressed to a lower temperature and transferred to a
FORT.

lithinm. After providing sympathetic cooling during the compression of the target atoms,
the rubidium is ejected from the trap by temporarily removing the FORT or by using a
resonant pulse of light. The species-specific trap is then adiabatically ramped down and
turned off, leaving the fermions in the FORT at a temperature approximately 5.7 (4.0) times
colder than when they began for potassium (lithium). Though this is a modest change in
temperature, the phase space density in a harmonic trap is proportional to the inverse cube
of the temperature, indicating a factor of 180 increase in phase space density for potassium
and a factor of 60 for lithinm.

In the second scenario, we consider a 3D lattice created by the tunc-out wavelength?.
The target-specific lattice is ramped on until peak lattice intensity is reached. The spectator
is evaporatively cooled and cjected by reducing the spectator trap depth. The lattice is then

ramped back down isentropically, leaving the target in the initial trap with an entropy and

‘11 and 2D lattices may he a way to increase confinement strength of the first scheme. Assuming high
per-site occupancy, the cooling attained will be governed by single-site physics.
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temperature limited by the “plateau entropy™ discussed in [73]. As shown there. a target
of fermions with unity filling has an entropy platean of zero, which would suggest no lower
limit to the achievable temperature.

An important limitation of these schemes will be the competition between adiabaticity
and heating. For an ideal gas, the condition of adiabaticity requires any changes to take
place in times longer than the inverse of the smallest trap frequency. Using the numbers
given in the 19K-8"Rb example of the crossed dipole trap in the tune-out scheme, we find
that adiabaticity requires a relaxation time of 35 ms, at an intensity of 3.5x 107 mW /cin?,
yielding a heating of 1.3 pl{ during this time, which sets a lower bound for the tempera-
ture attainable in this scheme. Another possible limitation of the cooling schemes is the
interspecies thermalization, which limits the speed of the isothermal step (see discussion in
§3.4.2).

3.5.2 PIHONONS

Unlike crystal lattices of solids, optical lattices do not support phonons. Since these quasi-
particles play a leading role in the physics of condensed matter, it is of interest to introduce
phonon-like excitations into a system of ultracold atoms in an optical lattice. The boson-
mediated interaction between fermions has been studied in both uniform [39, 40, 51, 52]
and lattice systems [55, 74, 75]. Little theoretical work has been done on a system in
which only the fermions are confined to the lattice [76]. Here, the background bosons are
free to interact with the fermions and with one another. If the bosons are degenerate, the
condensate can sustain phonon-like excitations and allow for boson-mediated interactions
between fermions on spatially separated lattice sites.

For the phonons in the condensate to play a role in mediating interactions, their spatial
extent must exceed the lattice spacing. The healing length of a uniform Bose condensate,
& = (8pag )“1/ 2 where p is the condensate density and ay is the scattering length between
species, sets the relevant length scale. Species-specific trapping allows the superfluid hosons
to remain at low density while fermions are tightly bound in the lattice, thereby maximizing
the range of the mediated interaction. A finite selectivity does not prevent mediation of
interactions, since the bosons remain superfluid at depths less than the Mott-insulator
superfluid transition [7]. permitting both tune-in and tune-out schemes to be used for this

application.
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Fraure 3.3: (a) The ratio of the effec-
tive mass to bare mass of the target species
is shown as a function of trap depth .
for both ¢ = 0 and ¢. = 0.5hk. as la-
- beled.  The tight binding approximation
(dashed line) approaches the exact calcu-
. . . lation for m > 1. (b) The cffective mass
g ratio is shown for the case of a SLi target
and a '*3Cs spectator. Whether the ratio
increase or decreases depends on the selee-
tivity S of the lattice. The critical point
is when S = my/m, (= 22.2 in this case),
as explained in the text. The tight binding
my; approximation of the effective mass ratio is
also shown (dashed line).
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3.5.3 EFFECTIVE MASS TUNING

An optical lattice can be used to change the effective mass of the atoms in it, allowing
for the tuning of experimental parameters including interaction strength [77] and tunneling
rate [78]. which can be used, for example, to explore different regimes of collective dynamics

[79]. The effective mass of a wave packet centered at ¢nasi-momentum g. is

d2E]™
m*(qe) = [ , ] (3.14)
dqg? "
where E{q) is the band cnergy. Figure 3.3(a) shows the ceffective mass for ¢. = 0 and

ge = 0.5hk, in a one-dimensional optical lattice potential Vig(2) = Vlli[kt sin? (k).

For deep lattices. an approximate form for the ¢. = 0 case is m* = h2k?/272J. where J
is the tunnelling energy [80]. giving an effective mass enhancement

m* 2V

— & 75 AT 3.15
mo A2/ (3.15)
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The ratio of effective masses for the target and spectator can he estimated from Eq. (3.15):

mt oxp{?ﬁ (1 - \/ms/Srm)} (nu>]/‘.1

mk S3/

(3.16)

mg

Figure 3.3(b) shows the cffective mass ratio for the case of a 8Li target and a '#3Cs spectator.
In particular, it is striking that for § = 10, the ratio decreases with lattice depth. while for
S = 100, the ratio increases with lattice depth. The critical selectivity is well predicted by
Eq. (3.16): at S = mg/my. the effective mass ratio is independent of lattice depth.

Both the tunc-out and tune-in schemes provide the means of choosing selectivity. Sev-
eral tune-in sclectivities are shown in Table 3.3; the tunc-out selectivity can be chosen
simply by choosing a wavelength slightly different from Arg. In the example used here.
the sustainability for S = 10 is better for the tune-in scheme, but tuning to my; > mg,
at moderate lattice depths requires a § = 100. for which the tune-out scheme has higher

sustainability.

3.6 SPECIES SELECTIVE CONCLUSIONS

We have discussed how the choice of wavelength used to create an optical lattice can
tune its selectivity between elements or isotopes. This control should increase the range of
parameters that can be explored in multispecies ultracold atom experiments. The tune-out
wavelength scheme allows for the complete cancellation of the trapping potential for one
species while providing a confining or lattice potential for any other species in the systewn.
This scheme will work best using the heavier alkali atoms. Rb and Cs. as the spectator
clements. and is most successtul for the PIK-133Cs fermion-boson mixture. The alternative
tune-in scheme uses a near-detuned optical potential. creating a much stronger potential
for one element than the others, without the ability to strictly cancel the potential for one
clement. Mixtures involving the Li, Na. and K ag spectators are most compatible with this
approacll. where the "9K-**Na is the most promising fermion-boson mixture.

The power of species selection is in its use to engineer specific lattice environments for
the atoms. including adding a hosonic background to mimic the phonouns present in solids.
and tuning the relative effective mass of two species. Applications for which experiments are
rapid compared to the sustainabilities calculated in §3.3 are especially promising. Species
selection enables cooling in a two-species mixture. and in the case of fermions trapped in a

lattice. reduces the temperature of fermions as they are loaded into a lattice. in contrast to
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current experimental realizations [73. 81]. Though questions regarding the thermalization
in a lattice remain open {2, 310 82], species-specifie Tattices may help to resolve this issue
with their ability to dilferentially address the components of the system. whose path hack

to equilibritan can he measured.



CHAPTER 4

ULTRACOLD FERROMAGNETISM

[n the decade following the realization of the first ultracold degenerate Fermi gas [6].
much ol the scientilie focus in this field has been fixed on the physies of strong interactions
[83 86]. In this pursuit. the manipulation of the interactions between different components
of a cold Fermi gas hecame a standard techmique, and most studies focussed on attractive
interactions between the fermionie constituents to induee BCS- and BEC-like superfluidity
[10. 87].

Despite the prevalence and success of experiments using strongly atiractive interactions
hetween fermions, the equally-aceessible repulsive interactions were not completely ignoved.
Collective behaviours that emerge with attractive interactions do so as a consequence of
the pairing of fermions into molecular or Cooper pair hosons, aud these statisties allow for
the condensation of the pairs. In the reghme of strong repulsive interactions. the colleetive
response is more diveetly inherited from the fermionie statisties of the particles. The canon
of such behaviowrs is diverse and includes one of the most Familiar and vet wmysterious of
physical phenomena  magnetism,

This chapter begins by discussing the development of a quantum-mechanical under-
standing of maguetisny in metals, and the subsequent vealization of its possible cimergence
in ultracold gases in L1, Section -L.2 establishes a wmean-field deseription of a trapped
degenerate Formi gas and applies this to the regime ol strong repulsive interactions. The
cmergence of spin segregation and the macroscopic energetic signatures ol this crossover
are caleulated. In an extension to the local density approximation. a term is added to the
previous approximation in §:1.3 to account [or the energetic cost of magnetization gradients.
and is used to ealeulate the optimal spin texture among trial ansatzes. Details of the nu-

merical caleulations ave given i §4.-1 and recent developments related to these caleulations

11
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are discussed in relation to these results in §L5. Secetion 4.6 discusses the Hrst steps towards
. . . . . . V- . . .
the realization of ultracold forromagnetism in a '°IC system. with explorations of the strong

interactions near a Feshhach resonanco.

4.1 FERROMAGNETISM IN METALS AND QUANTUMN GASES

MAGNETISM IN MISTALS

One of the inherent characteristios of an atom or molecule is its magnetic moment
the tendeney to align itsell with a magnetic feld. At the microscopic level, this moment
originates from the intrinsic spin of the components of the atom or molecule and the orbital
motion of auy charged particles within it. From a macroscopic point of view, magnetisi
arises when these individual components cooperate to form an ovdered arrangement. where
many or all of the magnetic moments are aligned.

A metal becomes ferromagnetic when the cnergy of the system is minimal in the con-
figuration where all or most magnetic moments arve aligned in the same direction. Due to
their relative mobility in a metal compared to the other constituent particles, electrons acts
as the agents of maguetism. and their sping ave the wmagnetic moments of interest. The
Pauli exelusion principle and its demand for antisvmmetrized wavefuncetions among these
fermions dictates the hehaviowr of the eleetron system. A ferromagnetice state will have
all maguetic moments in a synunetrie spin state and requires a fully antisynunetrie spatial
state. The increased sepavation of clectrons in the antisymme{ric spatial state results in a
reduction of Coulomb interactions, and this energy savings will. in soue circiunstances. he
sullicient to induce a ferromagnetic ground state.

[t is perhaps surprising that the interactions driving the system towards ferromagnetic
order are not predominantly magnetie. The electrostatic Coulomb interaction hetween the
charged particles far excecds the strength of magnetice dipole-dipole or spin-orbit interac-
tions hetween particles [88] and is responsible for the magnetism. The spatial wavelunction
dependence of the interactions can be desceribed in terms of various possible exchange in-
teractions.

The nature of these exchange interactions can take different forms, swhich will in tun
affeet the mechanisiis behind a transition to magnetic ordering.  “Direet exchange™ de-

sceribes independent magnetic moments localized to individual [attice sites coupled via the
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Coulomb interaction, which was used by Heisenberg to formulate one of the first models
of ferromagnetisin [89]. Through a very different moechanism. Bloch developed a model for
ferromagnetism with “itinerant exeliange™ in which delocalized electrons interact in a con-
duction band [90]. Experimental evidence suggests that rare earth metal forromagnetisin is
better deseribed by a localized model while that in the transition metals like iron. cobalt
and nickel is primarily itinerant [91].

Heiseuberg™s diveet exclhiange forromaguetism arises from the minimization of total cu-
ergy for the antisynunetric spatial state. For atows at fixed separation. the antisymmetrie
waveluncetion will include nodes between the atoms. such that the wavefunetion overlap., and
thus the Coulomb interaction, is reduced. The correspondence hetween this waveluncetion
and the symmetrie spin state leads to the system’s preflerence for ferromagnetisn.

[tinerant ferromagnetisin was initially proposed to account for the non-integral values
of the magnetic moment per atom found in nickel, cobalt. iron. and other metals [92]. and
allowed for conduetivity while the material was ferromagnetic. Assuming that antiparalilel
spins may approach more closely that parallel, due to Pauli exclusion. the energetic cost of
the Coulomb repulsion is greater for the nnmagnetized (antiparallel) configuration. If this
cnergetie cost exceeds the inerease in kinetic energy due to filling the single-spin-state hand
to higher cnergies. the parallel spin configiration is preferred and ferromagnetisim cmerges.

In an attempt to recoucile the two pictures, Hubbard introduced his now-famous model.
in part. to explain the origins of ferromagnetisin [93]. Citing that the d-bands responsible for
ferromagnetisim display both atomic- and band-like characteristics. he developed a model
to allow for correlations between electrons associated with separated atoms while main-
taining the band structure for the conduction clectrons. For certain model wavehuetions,
ferromagnetism emerges in this model.

The spatial correlations between all eleetrons are an important consideration in these
models. especially for the itinerant-like cases. While parallel spins will avoid eacli other
due to Pauli exclusion. antiparallel sping also avoid cach other due to Coulomb repulsion.
The subsequent veduction in the potential energy. known as correlation eunergy. needs to
be properly accounted for by a correet choice of many-body wavefunction.  Gutzwiller
presented one among the first such solutions [94]. where he constructed a wavefunetion in
which opposite spins avoided existing on the sane lattice sites. By doing so. he reduced the
large repulsive interaction term and was able. within his approximations. to climinate the
ferromagnetic confignration as a ground state. though it was closest to his calculated state

for filling factors near one-half.
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While many models have heen coustructed to uanderstand the basis of ferromagnetisim,
it remaing that many-body fermion problems are computationally challenging and caleu-
lable microscopic models can only begin to approximate reality. The examples discussed
here, along with many more thronghout the literature, show that there is a strong model-

dependence to many of the conclusions.

QUANTUNM GAS MAGNETISM

The realization of ultracold degenerate Fermi gases provided a new vehicle for studics
of collective belhaviour among fermions. The discovery of Feshbach resonances for the
fermionic isotopes of the alkali metal atoms gave experimentalists the tool they needed
to arbitrarily control the interaction strength between fermions. While much exeitement
centred on the attractive nature of the interactions and the ensuing superfluidity of these
systems, observations of repulsive interactions were move quietly reported.

In theoretical quarters. discussions of magnetisi in these ultracold gases slowly emerged.
To mimic the binary spin degree of freedom of the clectron, the study of magnetism in neu-
tral fermion gases considers a two-component mixture, where the “pseudospin” components
are, for example, two Zeeman sublevels within a ground-state hyperfine manifold of an atom.
Contact interactions between these psendospin components play the role of the Coulomb
interaction. Early papers [95 97} describing the effeets of interactions in a two-component
Fermi gas discuss the phase separation of these spin! components for large particle nmunbers
or interaction strengths.

Sogo and Yabu [98] study the energetics of an interacting two-component harmonically
trapped Formi gas, and develop analytic solutions for the density profiles as a function
of interaction strength and particle munber. By increasing the nunber in one component
or spatially separating the two. the total interaction cnergy of the system decreases at
the expense of an increased total Fermi encrgy. Above a critical interaction strength, the
imbalanced and separated solutions are encrgetically favourable, and a transition from a
paramagnetic to a ferromagnetic state is recognized.

While electrons in a metal can flip their spins. through the spin-orbit interaction, thoere is
1o encrgetically-allowed mechanism by which ultracold atoms can change their pseudospin
and flip from one to the other. In agsuming that the particle munber can be exchanged

between components, Sogo and Yabu's results remain outside the realm of experimental

YIn the remainder of this chapter, we generally reler (o the “pscudospin” simply as “spin.”
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realization for alkali atoms. At the sane time, they lend intuition to the analogy between
itineraut metallic magnetism and magnetic-like order in nltracold gases by recogunizing the
competition between interaction and kinetic plus potential energy that allows for a transition
between magnetic and non-magnetic states.

In work more closcly addressing experimental possibilities, Duine and MacDonald [99)
use a beyond-mean-ficld approach to explore possibilities for itinerant ferromagnetisin in
ultracold Fermi gases. Due to the conservation of pseudospin required by experiment, they
propose initializing the systemn in a special ferromagnetic state, where each atom is in an
cqual superposition of the two component states. There is no possibility of interactions
in this initial state given the Pauli exclusion prineiple and the indistinguishability of each
atoin.

In this situation, two atoms might interact if they hecome distinguishable via dephasing,
whiclh might, for example, arise due to a spatial dependence of the energetic splitting of
the two components in the superposition. If the two components, when in a mixed state,
are strongly interacting, this interaction will cost energy as the atoms dephase. Duine
and MacDonald’s results suggest that in the presence of sufficiently strong interactions,
the cost of the interaction energy would suppress the dephasing and the lifetime of the
ferromagnetic state would increase. The strength of the required interaction is mapped
out for various temperatures and a phase diagram shows regions of first and second order
fransitions between magnetized and unmagnetized states. In this scheme, measures of
expansion energy reveal both the amount of interaction energy and the degree to which the
system is in a forromagnetic state.

Further work was doue by Berdnikov, Coleman and Simon exploring the ferromagnetic
transition of a quantwn gas in a trap [100]. Using a Landau-Ginzberg frec energy functional,
they studied various topological possibilitics for the ground state of the system in both
two- and three-dimensions and found that geometries with gradual spatial variations in the
magnetization were preferred ground states.

Recent quantum Monte Carlo (QMC) studies have confirmed that a ferromagnetic state
exists in a gas of ultracold fermions [101]. In this work, the magnetic susceptibility is
aleulated as a function of interaction strength, and is found to diverge for sufficiently
strong interaction strengths. Using these results, a phase diagram for the mmagnetization vs.
interaction strength is mapped out. These results demoustrate that a ferromagnetic state
does exist in these gases, and that further study in ascertaining its charvacter is justified.

With particular inspiration from both Refs. [99] and [100], this chapter describes the
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critical transition strength for ferromagnetic-like behaviour in a trap and the experimentally
ohservable signatures of this behaviour. In a trapped environment, we use a modified local-
density approximation (LDA) to calculate the density profiles for the two components in
the system, and use an encrgy functional approach to calculate the cnergies of various

magnetization configurations.

4.2 MEAN-FIELD DESCRIPTION OF STRONGLY INTERACTING TRAPPED

FERMIONS

The initial goals of this theoretical work were to understand the density profiles of a two-
spin-component trapped ultracold Fermi gas and their dependence upon the interaction
strength between the two spin components. In maintaining the restriction that pseudospin
is conserved in this system, we aim to attain results in the vein of Sogo and Yabu [98] and
determine a criterion for phase separation and thus ferromagnetism.

We use standard mean-field techniques to accomplish this goal. Though we expect that
the local-density approximation (LDA) will break down for large interaction strengths, we
expect it will give a good qualitative picture of the phenomena at hand.

In this section, we discuss the density profiles emerging from such an analysis. We
examine the energetic signatures of this system and discuss how measurable quantities

might indicate the presence of ferromagnetism.

4.2.1 THE INTERACTING FERMI CGAS IN THE LOCAL-DENSITY APPROXIMATION

In analogy to the electron system of a metallic magnet, we consider a two-component
Fermi gas, where the two internal states ave, for instance, two hyperfine or Zeeman sublevels
IS} 9 : b o

of the atomic state. We label these levels

1) and | J) in analogy to the clectron spins these
states emulate.
UNIFORM (UNTRAPPED) SYSTEM

In the uniform (untrapped) system, the hamiltonian describing the two-component Fermi

gas is

: PR s s s
Hl\ll“, uniform = A% Z/(?TT)BEKCkGCKG—*—g /CI";RCiI'{T(:'Ir{iCR«LCRT? (4.1)
o * .
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FIGURE 4.1: Ferromagnetic transition in uniform Fermi gas. Energy vs. magnetization is shown for
various values of kra. The minimum moves from M = 0 for values of kpa < 7/2 to values |M| # 0
for kpa > 7/2.

where g = 4nhi’a/m quantifics the interaction, a is the s-wave two-body scattering length,
ex = hPK?/2m is the kinetic energy, and V denotes the system vohune. The operator
5;& +(Ck,) creates (destroys) a fermion with spin state o and momentwn K, while the
operator ék +(Cr,) acts in position space to create (destroy) a fermion with spin o at position
R.
The density of each component the uniform gas is p, = Ny /V, where Ny is the number
of particles in each spin state, o. The total kinetic energy of the system is
By = §V(EFTPT + Erypy), (4.2)
5 ;
where Ep, = 3 /)?T/ ® is the Fermi encrgy of the o component, and § = (G/TZ)Z/ 3h2/2m. The

total interaction encrgy of the system is
Eiy = -(JV/)TRL' (4.3)

In the uniform system, we can find an analytic solution for the critical transition strength
in the crossover to a ferromagnetic state. If we assume that the system starts with locally

equal densities of py = py = p , we can write the energy of the system Eynitorm = Fkin + Eint

6 dkpa ,
Eunifm'm = EFPV (F + ! > s \’-1.4)
5 3
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s ) . . . . .
where kp = (()7r~/))1/ 3, and Ep = Epy = Epy. If we imagine increasing the scattering
length, a, there may come a point at which the system would segregate into two or more
domains in which the magnetization, M = (pr —py)/(py+py) is non-zero. The total encrgy

would become

4&1,

EmmmuuyzEww(gR1+ADWW+Q-AQWﬂ (1+Anu—ﬂn> (4.5)

We can minimize this energy with respect to the magnetization by studying the first and
second derivatives of Eq. (4.5), OEunitorm (M)/OM and 02 Eyyitorm (M) /OM?2. Visually, we
can sce the change in the minimum energy configuration by plotting Eyitorm (M), as in
Fig. 4.1. For values of kpa < 7/2, the energetic minimum is always at A = 0, and the
system remains unmagnetized. For M = w/2, the second derivative is zero at M = 0,
and there is an inflection in the curve, indicating a transition to a magnetized state. For
kpa > w/2, there exist energetic minima at |Af] s 0. indicating the system’s preference for

a magnetized state.

TRAPPED SYSTEM

To extend this treatment beyond the uniform gas, the LDA is employed. At each point,
the gas is treated as locally-uniform, with an extra potential energy V(R). Rewriting the

hamiltonian Eq. (4.1) with the potential cnergy term gives

. BK ‘81 Al Al & oa
mmw:Z[O)m%%aﬁmwm h%ﬂﬁmﬁﬁﬁwwmm

g
To determine the position-dependent density of each component, and the energetics
associated with cach, the ground state energy can be found by minimizing the energy

functional

Blfpa(R)} = [ PR 2657 05 (R) + gpy(R)pu(R)

R)D pe®) = Brope(R)|,  (47)

where {ps(R)} = {pt(R), py(R)} is the set of density profiles of spin species o = 1,1/,
and Br, arc Lagrange n'lultlphcrs for each spin component, and are, as the nomenclature
suggests, equivalent to the Fermi energy of that spin species in this zero-temperature for-
mulation. These Lagrange multipliers impose the conservation of atom number of each spin

such that [ ®Rp,(R) = N,. This separate constraint on cach spin state is specific to the
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atomic system, where the two components are far-separated in encrgy and spins cannot
spontancously flip. In an analogous condensed matter system, the spin would not similarly

be conserved.

SCALING FOR AN ANISOTROPIC HARMONIC TRAP

In this work, we consider the case of a harmonic trapping potential, which may be
anisotropic. The potential takes the form V(R) = $m Y, w?R?, where i runs over the three
dimensions and w; characterises the trapping frequency in each dimension. The harmonic
trap can he be rescaled to an isotropic one by setting R, = R;(w; /@), where @ = (wywaws)'/?

is the geometric mean of the trap frequencies. The energy functional 4.7 becomes
~ o~ 3 o~ ~ ~
Bl{pn(R))] = [ 28 305 (R) + g5 (R (B)
" o

1 .= ~ ~
—l—imszz Z p(,(R)~Z Eyv ope(R)| . (4.8)

NONINTERACTING UNMAGNETIZED GAS

The average magnetization of the system is m = (Ny — Np)/(Ny + Ny). We consider
the case of equal populations in both spin states, Ny = N; = N/2, where N is the total
atom number, such that m = 0. To determine the appropriate scaling for this system, we
consider the noninteracting case (g = 0). The noninteracting (NI) energy functional can he

written
~ Cam 3 amm 1 =y = ~
EXolpeR)] =) / d“R{513/)'0/%11)+;nvszlepa(R)—Ep,ap(,(R)} .49
o -

The condition of zero magnetization lends a symmetry to the problem and sets Ep gt =
Epy = Ef\” To minimize the energy of the system, we set (SEf\T I /dps = 0 and solve for the
density profiles to find

~ » T o 3/2
po(R) = g3/2 {(E,‘}I — %mszz)} . (4.10)

In this LDA, there is a maximum radiug of the system, beyond which the density is zero.

This maximun radius,

Ry = (4.11)
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can be used as the characteristic length scale for the system. With the rescaled position
variable, we use spherical symmetry to perform the integrations in Eq. (4.9) up to RR,' and

find the characteristic variables of the noninteracting system. The new variables are:

EM — /,’5(3‘7\;')1/37 (4.12a)
NI .
Rj\\/.[ = I) = (L[[()(QLLN) 1/0, (4'12}))
. hes .
EN' = T = ﬁ(gN) 13, (4.12¢)
1/2
NI 4N 1 2N

0) = = — R . 4.12d

P (0) WQ(RRT,])S "’?]‘() 3l d ( d)

where ano = (It/ m@)"? is the harmonic oscillator long_,’rh /IR,[ is the chemical potential

of the gas, EN is the total encrgy of the gas, and /) (0) is the atom density at the trap
centre. The position-dependent density of the noninteracting unmagnetized Fermi gas is
labelied by pi I(R).

DIMENSIONLESS VARIABLES FOR T INTERACTING PROBLEM

For the calculations which follow, we convert our variables to dimensionless form, where
the scaling is with respect to the noninteracting unmmagnetised system (Eqs. (4.12)). The

dimensionless variables are:

R
= —xr: (4.13a
Y )
/)rr :

Ng = (4.13b)

N O)
c= E/EY, (4.13¢)
ero = Fpq/ER, (4.13d)
ko = (671'2/)%[(0))1/3 a (4.13¢)

where r is our dimensionless position variable, n, the density, € the total energy, ey, the
chemical potential of the o component, k9 o the Fermi wavevector at the trap centre for the
unmnagnetized noninteracting gas and k((f‘a, the dimensionless interaction parametoer.

The energy functional Eq. (4.8) can be rewritten in terms of these dimensionless variables

16

{ne()}] = 5 '.d’ rg(""/‘(r)m)/‘( ))+““’

@)y () = 3 (v pr)ng (x)

g

(1.14)
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and assuming that the ground state solution will respect the spherical symmetry of the

rescaled trap, the integral can be written in a single radial dimension

e{ne(r)} = :(g)% / dr 1? [ (71 /3(7) + 2’/3( )) + éi (LILT (ryny(r) — Z(as’”—rz)'ng(r)

T

(4.15)

Variational minimization sets dg/dn,(r) = 0 and leads to the following two cquations for
o {

the two density components

3/2
n(r) = [(ﬁw —r?— 4?’ e T’J,(’))] , (4.16a)

. 4 /70‘ . 3/2
ny(r) = li(ClJ' — 2 é' ¢ TLT(T’))] ; (4.16h)

subject to the constraints

' . w2 ]

The coupled equations 4.16 can be solved iteratively and nwnerically to obtain the

(4.17)

densities for a given interaction strength and atoin number for each species. Typically. we
are interested in the m = 0 confignration. The resulting densitics nq(r) and ny(r) are used
to compute physical observables of the systewm.

Figure 4.2 shows the density profiles obtained for a variety of interaction strengths. We
see that for increasing interactions, the central density is reduced and the cloud is pushed
outside of its r = 1 noninteracting radius. The system is able to minimize its cnergy in
this way until a critical interaction strength is reached, at which point the system prefers
to segregate itself into domains of spin-T and spin-| in the high-density regions. As we find
later. this critical interaction strength is ]LP 1 ~ 1.84, falling between parts (¢) and (d) in
Fig. 4.2. The phasc-separation beging at the trap centre, at which point we can determine
the local Fermi wavevector, ki (0) = (672p( 0))1/ ’ (j’,n(],/ 5(0) We find at the transition
point that ns(0) ~ 0.64, such that kr(0)c = 7/2, as in the wniform case. This agreement
is expected in the LDA since the local properties should mimie the uniform system.

The expansion of the cloud below the critical interaction strength increases the potential
energy of the system and decreases the kinetic energy as the density in the centre is reduced.
For large interaction strengths. the systemn reduces its total energy by segregating into spin-
T and spin-} regions and avoiding all interaction energy. The local nature of the LDA is
evident in the sharp changes of the density profile, indicating shells of alternating spin. As

long-range correlations are completely ignored in the LDA, the system simply adopts the
g V 1E : Y PLy ]
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Frovre 4.2: LDA density profiles for various interaction strengths. The numerical solutions of
n4(r) (blue) and ny(r) (green) are shown for increasing interactions. with equal populations in each
spin state (Ny = Ny = N/2; m = 0). Dashed black lines indicate the ke = 0 noninteracting
solution; grey dashed lines indicate the non-interacting solution for all particles in the same spin
state (N = N: Ny = 0). Interaction parameters indicated in panels.

non-interacting profile for a single spin state, with cach spin occupying a particular region
alone. The relative widths of these shells are coustrained by the conservation of cach spin
state, while the number of shells is an artifact of the munerical solution, and changes with
initial conditions  there being 1o cost to the change of density, the ground state does not
prefer a specific number of shells.

The sharp changes in the density profiles ave unphysical. The kinetic energy cost of
the density gradient must be accounted for in a proper treatment of the system (see §4.3).
Regardless, the existence of a critical la,r}la beyond which the system will tend to spin-

segregate should remain.
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Figure 4.3: Dimensionless mean-field energies
as a function of interaction strength. Irom top
to bottom: kinetic, potential, interaction and re-
lease energies. Solid lines indicate m = 0. while
dashed lines indicate in = 0.25. 0.50. 0.75. 0.99

with decreasing dash length. At Aa = 1.84, there
is a kink in ecach of the cuergies we caleulate,
which corresponds to the phase separation fonnd
in Fig. 4.2. The energy per particle in physical
units may be obtained by multiplying these results
by 3E%/4 where £0 = m@(3N)1/3. As discussed

later, going beyond the LDA leads to negligible
quantitative corrections to these results.

0
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-
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kFa

CHARACTERISTIC ENERGIES AND SPIN POLARISATION

With calculations of the density profiles in hand. the energetie characteristics of the

gas can be determined. We consi

der the encrgies of the entire gas. since it is these bulk

properties which might casily be measured. By identifying terins in the energy functional as

cither kinetic. potential. or interac
Zkin =

pot

Sint =

tion. we can write cach of these contributions separately

64 3 5/3 418
p dr rt 5;71”‘ (r) (4.18)
G4 ;

- (11 r [ “(n4(r) +/1_;((r))]. (4.19)
IS T

4}1()

- /] [ -na(ryn r)} (1.20)
it

where zys,. Zpot. and gige are the kinetie. potential and interaction encreies. respeetively.
kin: Zpot nt fEA )

Ti

~

rapidly switching off the trapping

measure these cuergies experimentally, one option is to record the release energy. by

potential and measuring the momentn distribution of
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the atoms after sowe time of flight. With an instantancous switeh-off process, all interaction
cnergy is converted into kinetie energy, and the release energy oy, measures the sum of the
interaction and kinetic components

6L [, 43 A ,
Sl = —3—— dr - = ‘(; 11;}"'5(1')4——-—-3;_“ ny(rng (. (L21)

3.

Il interactions can be suddenly turned off (by, for example, jumping to a zero in a Feshbach
resonance), the kinetie cnergy alone can be measuwred with this technique.

Figure 1.3 shows the calculations of these four energies as a function of the interaction
parameter Aha. Paying speeial attention to the solid lines. which represent the m = 0
scenario. there is a elear transition at Ale & L&L1 By looking carefully at the density
profiles in this region, we find this is the point of onset of phase separation. The kinetie
aud potential cuergies both acconnt for hall of the total cnergy at /\'ﬂu = (). as expected in
a harmonic trap. Likewise, for very strong interactions, the kinetic and potential cnergies
are again equal, al the value expected for all atoms in a single spin state (N/2 — N Ey —
2'/"‘]']f{,: e = 2173:0). This high-interaction limit indieates that the system is completely
polarised, and as discussed cavlier, acts ax though in a single spin state due to the lack of
“comurnication” hetween domains in the LDA.

We also see that the interaction energy is maximized at this same transition point.
Below the transition, an increasing interaction strength leads to an inercasing interaction
cnergy. At the transition point. the cloud begins to phase-separate, and as a result. spin-
and spin-} atoms avoid cach other. With increasing interaction energy. the system is further
polarized and the overlap of the deusities np(r) and ny(r) vanishes. leading to a decreasing
Zing -

For non-zero magnetisatious. 19ig. 1.3 shows that the transition is less-sharp, and the
differences in energy for different interaction strengths ave less pronounced. but still visible.

We identify the transition to the spin-polarised state as a crossover into [erromagnetisim.
While these energetie signatures ave an indication of the onset of ferromagnetic helhiaviour,
direet prool of ferromagnetisi requires. for example, the observation of spin-polarisee do-
mains. The actual behaviow: of the gas likely depends on elfeets hevond the LDAL sinee a
[erromagnetic state demonstrates long-range order. which is completely absent in the local

approximation.
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1.2.3 ATOM LOSS RATI

Ou the repulsive side of a Feshbach resonance. there is a tendeney for molecular formation
[84, 86, 102]. With large interaction strengths, the three-body collision rate ean heconme
guite high, where two atonm molecules form as a thivd atom carries away the excess binding
cnergy. All three atoms are lost from the sample  the molecule will not be deteeted, and may
not even be trapped, awd the third atom will generally have cnough exeess energy Lo eseape
the trap. 1o working with fermions. the molecular formation process is suppressed, since
non-identical fermions must be the constituents of the dimer, allowing for the experiments
we deseribe to be performed belore significant loss of the sample,

Despite decrcasing the tiie available for performing these experiments, the loss rate
can act as a signature of the ferromagnetie state we seck. As the system spin polarizes, i
becomes less likely that atoms of opposite spin will meet. and losses from the three-body
process deseribed above will deerease. Study of the three-fermion problem [LO3] leads to a

model deseribing three-hody loss.

Aosss = 1.1“’)53(/1{1(1)“ / v ny(@)ng () () + ny (). (-1.22)

0
,
Hoss

where is an unknown prefactor.

Using the LDA density profiles caleulated above. we can determine this loss rate up to
the nuknown ",{3)_\_5. as shown in Fig. 1.1, Paving special attention to the solid m = 0 line.
we see a rapid inerease in the loss rate helow the transition point due to the (Aa)% scaling.
The drop-ofl of the loss-rate beyoud the transition point comes as the system spin polarises
and there is less overlap of the different spin states. suppressing the np(e)ng (¥) term in
the integrand of Fq. ((1.22). The competition hetween these effeets leads to a peak in the
loss rate. which occurs slightly heyond the Mla = 184 transition point we observed in the

cnergelice signativres, due to differences in the sealing of these gquantities.

1.3 BEYOND MEAN-FIELD THEORY: GRADIENT COST

I the preceding seetion, the properties ol the gas were studied within the context ol the
LDA. The density profiles for the interacting mixture within this approsimation display very
luge gradients al the boundaries between spin-polarized domains. The kincetie energy of

{hese gradients 1s negleeted within the LDAL and because this energy cost may he signiticant
(o] & O . (o]
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in the physies of magnetism, we must consider it for a better deseription of the strongly-
interacting syston.

Another characteristic of the LDA is that the interaction cnergy cost comes only [rom
atoms of dillevent spins existing at the same point in space. The locality of the approxima-
tion negleets any cost of interactions hetween atoms ol different spins at nearby locations.
and so the definition of ~up™ and “down™ at cach point in the cloud may be chosen at ran-
dom. In moving beyvoud the LDAL there exists an interaction energy for atows at different
points in space. and there is, therefore, an energetie cost when neighbouring atoms are not
identical.

To extend the energy functional to account for these two elfeets. we promote the local
magnetization to a veetor quantity such that the magnetization can point in different di-
rections on the Bloch sphere at different spatial loeations. and add a surface tension termn
to the cnergy [unctional to account for the density gradicnts. With these changes. we can
study various “spin textures™ in this system and determine which geometry might lead to

the ground state of the system.

L300 ENERCY FUNCTIONAL IN TERMS OF MAGNETIZATION

Instead of delining the densities individually, we consider a local total density and mag-

netisation

n{r) = np(x) + nyp(e) (-1.23)
ne(r) — ny(r)

M) = s

(L21)
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oy
~1

If we expand the energy functional 1. ((L15) in powers of A7(r). keeping terms up to A%(x)
(though terminating the expansion at A7 1(r) would not qualitatively affect our results), we

find the expression can bhe written in two parts as

£ = ga[n(@)] + sp[n(r), M ()], (-1.25)
whoere
:aln(r)]:;f._, '/'(/31. g(”8')>w+%f—'n‘~’(r)—(sle—ﬁ)n(r) L (L)
spn (). M ()] = ;(’ Pr{Aa(@)m® () + A ()M () + Ag(x) A0 ()
| — H n(r)A(r)]. (-L.27)

where the new Lagrange multipliers in the energy functionals ave p = (g3 + 210 ) /2 and
IT = (spy — 1) /2. The first term. 2. depends only on the density profile. We assume
that this is equivalent to that caleulated within the LDAL since it depends only on the
interaction I‘I‘u Corrections to the LDA are small for the atom numbers we use in this
work. making this approximation valid. The cocfficients of the magnetization-dependent

energy [unctional, . are

n®/3(r) I.I,‘a Y

Aolp) — — 7 = 19 )2
Aa(r) 5733 = ——n~(r), (1.28a)
‘ ”')/'3(1,)
. o neny —_— B ()()
i) = S (-1.28h)
Tn?3(r)
Aoy = —— N 7 4 9%
Ag(r) = PSR (1.28¢)

The fivst coeflicient. Ay (r). depends on Ala explicitly. All of the coeflicients s implicitly
depend on A4 wa through the density. This dependence was ignored in carlier phenomenolog-

ical work on trapped fermions in an optical lattice [104].

VECTOR MAGNETIZATION

The magnetisation of our two-component system can be understood as a vector on a
Bloch sphere (Fig. -1.5). where the poles represent the pare states of cach spin component
awd points in between the superpositions of these. Importantly. fermions in any pure state

do not interact. The veetor natwre of the magnetization allows for partial interactions
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Frauri 1.5: Bloch sphere representation of vector magnetization of two-component Fermi gas. (a)
Pure states, m(r)| = 1. Each arvow represents a different magnetization of the system, all of whose
atoms are in the same state. We take ¥y as the quantization axis of our two-state system. Blue:

m(r) = . corresponding to [¢7) = | 1). Green: m(r) = —rf, corvesponding to [v) = | }). Purple:
m(r) == ., corresponding to [7) = | ) + | 4). Red: m(r) = g, corresponding to [v) = | 1) +{] ).
(b) Mixed states, jm(r)] < 1. Blue: m(r) = 0.5%, corresponding to 75% cof the atowms in [y = | 1)
and 25% of the atoms in ) = | }). Red: m(r) = 0.5§. corresponding to 75% of the atoms in

[y = | 1) + | J) and 25% of the atoms in Jgr) = [ 1) — i }).

between two identical states on the sphere. the magnitude of which depends on the overlap
of states.

To account for the veetorial nature of the magnetization in the energy functional, we
promote the magnetization A/ and the Lagrange mwaltiplier H to vectors M and H. The

alue

H| = (14 — 10, /2 gives the difference in local Fermi energies. and has the same
cnergetic form as would a local magnetic field. if the psewdospins were real.? We also include
a surface tension term to account for gradients via a stiffness (4(r). and obtain the energy
functional
16 [ 2 1 6
sp[n(r). M(r)] = —5 /(I v [ Ao ()| M(r)]? +4 () M(x)[" 4 Ag(r)|M(x)]°

3r*

+ ég’s(r)/\i (Viﬂ[j(r))2 —n(r)H(r) - M(xr)

&

(4.29)

N\ . . . 4 e -
where A; = (w; /@) accounts for any anisotropy in the system. The stiffness (g(r) depends

on v ounly through the density n(r). and it can be computed in the uniform Fermi gas

I passing, we note that despite these states being merely “pseudosping.” a real magnetic field would
emerge in a polarized domain, since the states are defined (primarily) by their nuclear spins (sce state
decompositions at relevant fields for 1< in Appendix A.3). Like in clectron systems. the interaction energy
between states is much larger than the spin energy associaled with these nuelei.
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assuming that the magnetization variation is slow on the scale of the interparticle spacing,
but fast on the length scale over which the total density varies, so that density variations
can be ignored in this computation. The Lagrange mwultiplier H(r) must be chosen to
satisfy global constraints on the magnetization, for instance, [ d@®r n(r)Al;i(r) = 0, for cach

component i.

COMPUTATION O "THIS STIFENESS ((r)

We determine the cost of deusity gradients by computing the stiffness (g from the magnetic
susceptibility of the uniform Fermi gas. The excess energy in an applied field H(q) (point-
ing in any direction) is given by AE(q) = %\(q) hi(q)hi(—q) which defines the wavevector-
dependent magnetic susceptibility. The magnetization 1\\[(q) in this external field is sim-
ply 1\7((1) = v(q)h(qg), so that we can sct AFE(q) = %\'""(q)zn\\f}(q)j\f[;(——q). Expanding
v Ha) = yo ' (1 + Dg?) then yiclds

1 b~ o~
AB(Q) = 5xo " (1 + b)) M (—q). (4.30)

The well-known result for a Fermi gas at 7= 0 is that b =1/ 1275,3,., using which the energy

cost becomes, in real space,

. 1 ' 3 v 2 1 AT 2 1.
AE =5 PR [IM(R)| + 12k%(w[,(R)) J : (4.31)
where
IR o N o —1/3 :
Xo = = ——(3mp)" /" (432)

ks m
Rescaling distances for an isotropic harmonic trapping potential, and setting M; = pi, . (0)n(r) M (r),
with 7 = R/RY,. we find

S P . N L\
Cs - 22//33 6(377277(1'))2/3 /)5)\70_(1?%,)3

1

= 2a@EN)E (4.33)

For general values of the magnetization, higher order gradient terms might also hecome

important. We will foeus here on the effeets of this simplest gradient term in the energy
functional.
SIMPLIFIED MAGNETIZATION ENERGY FUNCTIONAL

To simplify the ecnergy functional. we notice that n(r) varies over the length scale of

unity in our dimensionless units. The variations in magnetisation. by comparison, are
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expected to change over much shorter length scales for large atom munbers, where (g(r) is
small (Eq. (4.33)). Within this asswnption, V(n(r)AM;(r)) ~ n(r)VAL(r). and the slightly

simplified energy functional is

16 [ . ; ,
o= g [ e[ AIME + AME + A MO
~ n(r) , )
—n(x)H(r) - M(r) + WA,’(V;A@(I‘))(Vﬂ\fj(r)) , (4.34)
where H(r) is chosen to satisfy
/(131' n(r)A;(r) =0, (4.35)

for each component 7 (for zero net magnetization). Swms over all 4, j are assumed through-
out. Recall that \; = (w;/@)?, where @ = (wiwaws)'/? is the geometric mean of the trap

frequencies.

4.3.2 SPIN TEXTURES

As one possibility for the system to lower its encrgy beyond the LDA result, we consider
alternate spin patterns. Using an energy functional that takes into account both the vector
nature of the spin and the energy cost of spin gradients, we study various spin textures in
a trapped Ferni gas.

To begin, we cousider the isotropic harmonic trap and evaluate two possible spin tex-
tures: the hedgehog and domain wall configurations. Next, we study the effects of trap
anisotropy by deforming the trap into a cigar shape and cvaluating the energetics. In all
cases, we construet an ansatz for the magnetization pattern, and nwmerically minimize the
energy functional within the constraints imposed by this ansatz.

By ensuring that the density and magnetization satisfy the ccus-raints that the to-
tal atom number is fixed and the total magnetization is zero, wo ~.an drop the Lagrange

multipliers and express the total energy as a sum ¥ = g1 + g9 where

16 (. |6 /1 3 ke ‘
€1 S dr 9<£@> —l—l"—a'n.z(r)-l—‘rz‘n,(r) ) (4.36)

3m? 5 2 37

6 /d3r As(F)|M(x) [ + Ay () M(r)[!

g9 =

32

- n(r . . .
+Ag(r)|M(r) |(’+W§A;(V;'rrl,j(x'))l . (4.37)
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X

FicuRrE 4.6: Spin texture ansatz schematics. Black arrows show direction and magnitude of M(r)
throughout the trap. (a) Isotropic hedgeliog, (b) isotropic domain wall, and (c¢) anisotropic hedgehog.

y l“
(a) (1) (c)

4.3.3 ISOTROPIC TRAP: HEDCGENHOCG STATE

One of the simplest spin textures we can consider is the hedgehog state in an isotropic
trap (Fig. 4.6(a)). Isotropy allows us to assume spherical symmetry, with equal trapping
frequencies in all directions. The hedgehog state is one in which the spins point out from the
origin at all points, in the #-direction. The energetic advantage of the hedgehog geometry
is that there arc only ever small changes in the magnetisation point-to-point, and that
neighbouring spins interact with their neighbours only very slighty. Only at the origin does
the spin change drastically, and this is confined to a small volumne.

Within spherical symumetry, we can write

, G_L . ) G n(r 5/3 ]{,’Q ) .
gl — _3% / dr 2 [F <_”(_’2> + ﬂ.,LZ(,,.)+r37;,(7.) ) (4.38)

T 5 2 3T
In the magnetization-dependent energy functional, we set A; = 1 for the isotropic trap. The

hedgehog geometry dictates that we choose M(r) = A (r)#. This leads to

, 64 [ :
el = dr 1

37,

Ag('f‘)l\’[z(’r') + A/L('r')ﬂfl('r) + A()-('r')j\[(’.('r')

n(r) M?(r) dM(r)\? .
2 . . 3¢
+ 144(3N)2/3 { 72 + dr (4.39)

We need not keep track of the zero magnetization constraint, as it is guaranteed for any

choice of A (r) by the hedgehog ansatz symmetry. For particle munbers typical in exper-

iments, N ~ 10! — 109, and ¢ is small. Therefore, we asswne that the average density
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Fraure 4.7: Dimensionless total encrgy, £) + g2, shown as a function of interaction strength,
k2a, for an isotropic harmonic trap. Solid line indicates the hedgehog solution, long dashes are
for the domain wall state at 10 atoms and short dashes for 10* atoms. Shortest dashes are the
non-optimized solution.

profile n(r) obtained from the LDA calculation remains unchanged. We need only consider
changes due to the gradient term.

Starting with some initial magnetization profile, we numerically vary Af(r) through an
“annealing” process to find the profile that minimizes z4. Figure 4.7 shows the total encrgy
g1 of the Liedgehog state as a function of the interaction parameter. We find that above the
transition point, the energy can be made sinaller than that found in the LDA by allowing
for the spin texture to cmerge.

Figure 4.8(a) shows the calculated magnetization profile of the hedgehog state at two
interaction strengths. We find that the magnetization is suppressed in a small region around
the trap centre and vanishes at r» = 0. The form of the magnetization profile near the trap
centre is understood by considering the last two terms in Eq. (4.39). By taking the functional
derivative with respect to M (r) and setting it to zero, one finds that A (r) ~ r? at small
r. Far from the centre, we expect the magnetization to he small, as is consistent with the

magnetization profiles shown in Fig. 4.8(a).

4.3.4 ISOTROPIC' TRAP: DOMAIN WALL STATE

Again considering the case of spherical symmetry, we are able to write down an alternate

ansatz. The domnain wall ansatz is one in which there are two regions of the system - one
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with all of the atomns in one spin state, the second region with atoms in the opposite state
(Fig. 4.6(h)). The syminetry of the system implies a core and an outer shell, with some
shell-shaped domain wall between them. The advantage of the domain wall in terins of
cunergy is that there exist large volumes in which the interaction energy is strictly zero, with
all effects of the interactions localized to the domain wall.

As in the hedgehog ansatz. €; does not depend on the magnetization, so we find the
same expression as EIIJW = ¢! For the magnetization dependent energy functional, \; = 1
in the isotropic trap and we choose M(r) = M (r)r’s for the domain wall geometry, meaning
and atoms arce either in M(r) = 73 or M(r) = —’3, and M (r) tracks the local population

difference between these states. We find

A 4 ' D ¢ 4 .
pw = o / dr 72 | A(r) M2 (r)+ Ay (r) M (r) + Ag(r) M5 (r)

- n(r) ((]M('r’) ) ? ? (4.40)

™
144(3N)2/3 \ dr

where, for Ny = Ny, we must satisfy the constraint [ dr r2n(r)A () = 0.

Similar to the solution for the hedgehog ansatz, we minimize €”W by simulating an
anneal of the magnetization profile (§4.4.2) to find the optimal AS(r), subject to the zero
magnetization constraint. Figure 4.7 shows the encrgy 2°W of the domain wall state, in
comparison to the hedgehog and LDA states. Again, above the transition kﬁla, we find
the domain wall geometry is more favourable than an LDA state, though the hedgehog
geometry has a lower total energy. Figure 4.8(h) shows the magnetization profile of the
domain wall state. The magnetization is suppressed in a small region around the domain

wall but remains nonzero at the trap centre.

4.3.5  ANISOTROPIC TRAP: DISTORTED HEDCEIOG

To extend this analysis nearer to experimental reality, we consider the effects of anisotropy
in the trapping geometry. In particular, we choose the eylindrically symmetric harmonic
trap, where two trapping directions are cqual and strong (w2 = wj ). and the third is
weak (wy < wiz). As mentioned earlier, the LDA results depend only on the mean trapping
frequency and are independent of the geometry - essentially, all dependence on the geometry
drops out in the rescaling of the coordinates. However, the gradient term (Eq. (4.33)) used
to account for the kinetic energy costs of changing magnetization retains a dependence on

the shape of the trap.
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FIGURE 4.8: (a) Magnetization profiles for the hedgehog state at kfta = 1.8 (solid), ke = 1.9 (very
long dashes), k%a = 2.0 (dashes) and ke = 2.5 (short dashes). () Magnetisation profiles for the
domain wall state for k%a as above. The profiles have been calculated for 107 atoms in an isotropic
trap. The hedgehog state has zero magnetization at the trap center while the domain wall state
magnetization is suppressed around the domain wall but remains nonzero at the trap center.

Given that the hedgehog configuration was found to be the lower energy state, we
$ 5 5 &

consider this type of ansatz in the distorted geometry (Fig. 4.6(c)). We assume the magne-

tization adopts the cylindrical symmetry of the trap and assume an ansatz of the form

M(r) = M(p19,r3) <0L]) sin ¢, % sin , cos :,9> . (4.41)

where pip = /rf +r§ and p = arctan(pi2/z) is the polar angle. In spherical symmetry,
this expression reduces to the form we found in §4.3.3. as the direction vector in Eq. (4.41)
reduces to 7. As hefore, the direction of the magnetization is independent of the location
in real space.

With this ansatz, we have |[M(r)

2= M?(g19.13), and

. . M?E O
M(OiM)(OiM ) = Aja(O1a M )?+ A3 (O30 )*+X 12— sin® p

012

+M2 [A2(0120)” + A3(050)°] . (4.42)
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so the integral ] PBr — 27 j dz dgys 2. We can assume that A is an even function of z
and that p(p12.—2) = ™ — (12, 73) (0 that sin® (19, —z) = sin® P12, r3)) to restrict

the encrgy integration grid to z > 0. ensuring that the total magnetization integrates to

zero. The final expression for the energy can thus be recast, with r = /pf, + 22, as
N . s /3 0
64 5 |G /n(r ZEI o o
) =5 drr® | - nlr) + =2 )+ 2nr) | (4.43)
SY/N D 2 37

64_ “Ronax

r;nu:r, —Ty
= — dz / doiz 012 Flo12.13), (4.44)
37 Jo 0

M
n
|

. M? :
n /\IQT Sinzip-i—/\m((‘)]zﬂf)z

Florz.r3) = AgM* + AM ' + AgM O ————
(012.73) 2 + AN+ Agd +1¢L4(3f\7)2/'3 7

+ A3(I30)% + M2 [A12(9120)” + A3(D30)?]
(4.45)

with ©(pi2 = 0,73) = 0 and (g1, r3 = 0) = 7/2 by symmetry. For notational simplicity.
we have suppressed the coordinate labels on n,m, » in the above functional.

Upon performing the numerics. we find that spin textures in the elongated trap differ
from the isotropic case only in the regime of very small atom numbers. In Fig. 4.9, we
plot the magnetization profile as a function of gy and Ry for 100 atomns, and find that the
renormalized gradient of the magnetization is slightly greater in the clongated Ry direction.
Since the trapping foree is less along this direction, the actual gradient in real coordinates

will be weaker and thus the system chooses to configure itself to take advantage of this.

4.3.6 SUMMARY OF NUMERICAL RESULTS

In §4.2. we saw that, within the LDA, a two-component trapped wliracold Fermi gas is
unstable to phase separation at an interaction strength l.f?-u, ~ 1.84. The energetice signatures
of this crossover include a minimum of kinetic energy and a maxinmun in potential and
interaction energies near this interaction strength, We also predict a maxinnun logs rate
from three-body loss near this phase-separation point.

In this section, we moved beyond the LDA to add a terin which accounts for the energetice
cost of density gradients in our system. In this systen. we took into account various
topologies of the magnetization profile to determine the optimun configuration to minimize

these gradient costs. While the energetics of these spin textures were not significantly
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different from the LDA results. there were small changes which indieate that a hedgehog-
like configuration of spin directions would be favoured.

As noted in the previous section. a direet observation of the spin profile would he
necessary to confirm the existence of these spin textures in such a systeny, especially since
the energy differences between them are very small. A technigue like that used to study
spinor gases [105] might allow experimentalists to see these patterns.

While these results give a good qualitative understanding of the physics behind ferro-
magnetism in ultracold Feri gases. there are many cousiderations heyond these approxi-
mations that may prove important to a better inderstanding of this system. Not unlike the
deseriptions of ferromagnetism in metals, the existence and properties of the system likely

depend very strongly upon the assumptions and approximations made. and the evolution
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of our understanding of this system is hound to continue as better models are constructod.

The losses inherent to this system may be one of the most iimportant features to be
brought back out from under the rug. Atoms on the repulsive side of the resonance do have
the tendency to form molecules and cause loss from the atom system. on the order of tens
of milliseconds for K [102]. and hundreds of milliseconds for °Li [84. 86]. This process.
which limits the time available for the experiments and may prevent an equilibrium from
ever heing reached., is among the greatest challenges to experimental observation.

Other criticisins of the above treatment include the treatment of the interaction strength.
A bhetter description would move heyond a simple one-parameter hard-sphere scattering
length to describe the interaction potential between components near the Feshibach res-
onance. Another improvement would be to consider the unitarity of scattering near the
Feshbach resonance and how this might impose a coustraint on the maximum value the
scattering length may assune. These issues involve the many-body physics of the system

and require sophisticated techniques, many of which are discussed in §4.5.2.

4.4 NUMERICAL CALCULATION DETAILS

The caleulations deseribed in the previous sections were performed numerically. While
most were relatively straightforward. this section deseribes some of the technicques used to
reach these results. All caleulations were performed using the C progranuning language.

The optimal density and magnetization profiles for the trapped ferromagnetic Fermi
gas were determinied using the energy functionals described in the above sections. In the
isotropic cases (§4.3.3 and §4.3.4), the optimization is done along a one-dimensional grid
(along r), generally with 200 points. In the anisotropic case. the optimization grid is taken
to be 100 x 100 points. one dimension representing rg and the other pg.

The density profile is caleulated in the LDA., and the initial magnetization profile is
attained using Eq. (4.24). The optimization of the wmagnetization profile proceeds on a
point-hy-poinut basis. [inding the value of the magnetization at each point which minimizes
the total energy of the system. The routine beging with the central point. works outwards
through the cloud. aud repeats nntil convergence. The system is deemed to have converged
on a maguetization profile when the energy fractionally changes by less than 107% after a

full pass through the cloud.
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dobl DERIVATIVES

Determining the optiinal magnetization profile relies on acenrate ealeulations ol the ener-
gies of each magnetization distribution. With the greatest ditferences between cach ansaty,
being the nature of the gradient ol the magnetization, caleulations of the derivative teris
(c.gas v Eg. (L31) must be performed corvectly.

The point-by-point natuve of the optimization can lead to rapid changes in the magne-
tization that may or may not be accounted for in simple renderings of the devivative terms.
These changes may be unphysical and siimple numerical artifacts. To avoid such relies, the
data is smoothed for the caleulation of the derivative nsing a “Savitzky-Golay smoothing
filter™ [106].

The principle of the Savitzky-Golay smoothing filter is to approximate noisy data with
a least-sgnares polynomial it over some window of points belove and after the point of
interest. The value of the derivative of the it al the central point is then taken as the
devivative ol that point. The window then slides one point down. the {it redoune, aud the
new derivative caleulated for that point. The primary advantage of this method is that the
higher-order moments ave retained in the smoothing process by using the fits. The method
is computationally straightlorward, given thal least-squares fits can be performed by lincar
matrix inversion.

The linearity of this problem simplifies the process of fitting to the multiplication of the
data by a series of pre-determined cocllicients. Deseribed al length in Ref. J106] (sce §108
therein), these coeflicients are available as a hinetion in MATLAB?  one set will return
the value of the data point itsell, the next the value of the first derivative, the next the
secoud derivative, and so on. The size of the window and the degree of the polynomial to
which the data are (itted ave the two parameters. For this work, we choose a window ol 11
points - large enough that there is significant smoothing and small enough to retain local

characteristics ol (he data. We use polynomial Hes of ovder L

152 SIMULATED ANNEALINC

Another potential snare in these nwerieal calendations is the existence of local minima
in energy as a function of overall inagnetization profiles. We may be able to find a mag-

netization profile that gives the mininnun energy for profiles similar to the initial state,

We nse the MATLAB function sgolay(4,11). In the context [b,g] = sgolay(4,11). we use (he see-
ond column ol dala o determine the derivalive value for the sixth point in a series ol eleven: x?(6) =
[g(1,D*x(1) + g(2,2)*+x(2) + g(3,2)#x(3) + ...]. where x(n) are Lhe dala points.
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but there may be a condition quite different [rom the initial condition that gives an overall
lower energy. Tnan attempt to allow the numerical routine to find these globally minimizing
profiles, we employ an anncaling procedure. in analogy (o the annealing ol metals where
heat induces increased random motion and allows a goild (o cool into its cnergy-minimizing
cold-temperature strueture.

In performing the mumerical ealeulations deseribed above, it was found that the an-
neating procedure deseribed below was necessary for the isotropic domain wall and the
anisotropic hedgehog ansalzes to reach absolute energetic minima. The parameters used in
the annealing procedure were checked over a wide range of initial conditions to ensure that
no further optimization could be done. For the domain wall case, the optimizalion proce-
dure described above was deomed innecessary and only the anncaling was used to perform
minhimization. For the anisotropic hedgehog, “regular™ optimization was pevlormed fivst,
followed by an annealing sequence.

The analogy to annealing nsed in this procedure comes ol using a Boltzmann-type factor
to determine the probability of accepting some random change to the distribution. For high
teperatures, the Boltzmann distribution is broad and many energies can be acconnted
for with reasonable probability, while for lower temperatures, the distribution dictates that
ouly a narrow range of energies are acceptably prohable.

As with the optimization, we perform the anncaling procedure point-by-point. At the
initialization ol the procedire. an initial avtificial temperature is chosen to set the range
over which the magnetization values may vavy. There are two basic steps (o the annealing
process [LO7T]. I the first step, the value of the magnetization prolile is varied at a single
point. 7. In this work, we assume that the magnetization values arve distributed according
to a Gaussian distribution, that is (he probability of finding a new magnetization value

NOW

mr) ab o given temperature 77 is

i 1 () ()02 ,
Puow (1) = —=—==oxp | - —— (-1.-16)
V2l 2=
when inverted, gives a value ol the magnetization
" L -
m D)"Y omo)M T 2 (L7

,.——l‘y .
V2T ppew (1)

for some randomly chosen probability puew (1). 1o conserve maguetization, the equal and
opposite change is made to another randomly-seleeted nearby point, j. Both changes are

constrained to maintain (e )" < L
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The second step of the anuealing process determines whether this new change to the
maguetization shondd be aceepted. We caleulate the change in total cnergy AE ol the
system made by this change. If (he energy s redueed, we aceept the change outright.
IF the energy s fnereased, we may choose 1o keep the value in our quest (o escape loeal
winima.  The choiee (o keep this new value is based upon the Boltzmann factor for the
cnergy dilference

! AL i
PBoltzmann = ZH—’F CXP 'm (llb)

where fyy is an appropriately chosen constant analogous (o the Boltzmann constant!. We
then use a random number generator to nd a munber Preep Cqually likely to fall hetween
0 and l//\'w'/\'. U pioltzamam ™ Preops We aceept the change in magnetization and proceed
to the next point. I ppolzmann < Pleep- We return to the first step and attempt a different
value (or the magnetization.

This annealing procedure is repeated for every point in the distribution, and repeated
(typically) 10 times per temperature. As this coneludes, a counter variable n is advanced
one unit and the temperature is then reduced according to the =schedule” T,, = 'i})/Q".

where g is the inttial temperature. Typical caleulations nsed Ty = 10 and 1 = 100,

4.5 RECENT DEVELOPMENTS

4501 EXPERIMENTAL BEVIDENCE

[ a bid to answer the question of whether a mixture of two fermionic components would
undergo a (ransition to a (erromagnetic state in a quantum gas, Jo cof al. subjected (wo
hyperline states of a 911 gas to strong repulsive inferactions near a Feshbach resonance [108].
Using measurements of liletime, kinetie energy, and chemical potential as their probes. they
found signatures in these values consistent with a ferromagnetic state.

Though not in quantitative agreement with cither the unitorm model used in that paper
[L08] or this work (§1.2.2, §1.2.3). the qualitative behaviour of the measured quantitios is
i agreement with these models ol itinerant ferromagnetisnn. In the measurement of the
loss rate (Fig. L10(a)). there is an interaction strength at which the three-body loss is

maximal, and a subsequent reduction in loss for yel stronger inferactions, in qualitative

"I'he value of by is indtially chosen (o be the tolal cnergy of the system divided by the initial temperature.
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agrecmenl with Fig, Lob The inerease in loss rate with inereasing interaction strength is
expected die to the dependence of the loss rate on the scattering cross-seetion. The decrease
in loss rate for higher interaction strengths is the indicator of ferromagnetism, indicating
that inferactions are somehow suppressed at these large values, possibly due to a local
polarization of the compouents. The measured peak in loss rate is found for an interaction
parameter Mo larger than 2. and inereases with temperature, while the zero temperatare
calenlation linds the peak at Aa ~ 2.

Measuremenis of the energios show similar qualitative agreement. The experimental

kinetic energy measurements. performed by measiring the expansion energy after a rapid



4.5 RECENT DEVELOPMINTS
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turn ofl of hoth the trap and the interaction strenglh, display minima at particular values
of the interaction parameter (Fig. 1.10(b)). The minimum exists because the large repulsive
interactions existing just belore the onset of ferromagnetic-like hehaviour expand the eloud
and reduee the kinetic energy. Beyoud this transition point, the interactions have less effect
as the cloud segregates and returns to its former size. The same arguunents apply to the
finding of a maxinnmuun in the chemical potential, which is directly related to the cloud
size (IMig. -1.10(¢)). The locations and relative changes in the energies do not fall within
quantitative agreement of the results in Fig. -1.3, but the existence of the peaks and minima
qualitatively corroborate these results.

One possibly obfuseating aspeet of this type of experiment is the tendency for the
formation of molecules on the repulsive side of the Feshbach vesonance. The existence of a
low-cnergy bound state is inherent to the mechanism of the Feshhach resonance, and the
rate at which molecules form is characteristie of the atomic and molecular propertices. As
a result, these experiments ave performed as rapidly as possible, given the constraints on
magnetic field ramp times, but even so. up to 25% of the atoms exist as molecules in these
samples. Though checks were made to ensure the proportion of molecules in the system did
not affeet the results, there may be more-complicated physics involving interactions that

incliwde the molecular component.

£.5.2 0 SUBSEQUENT THEORETICAL WORK

[ the wake of these experimental vesults [108]. interest in ferromagnetism in cold gases has
blossomed. Some of this work {focusses on making better calenlations of the ferromagnetic
transition point. particularly through quantum Monte Carlo (QMC) caleulations [101, 109].
The QMC methods allow [or more complicated and possibly many-hody interactions to
replace the simple havd-sphere seattering approximations made in previous work. Both
studies [LO1, 109] tind that the eritical interaction parameter is reduced by considering
these scattering modoels.

The possible complications due to the presence of molecules in the sample are addressed
in another work [110]. where the dynamices of the experiment ave cousidered. Using a de-
seription for the scattering that accounts for both the energy dependence near the Feshbach
resonance and Pauli blocking, they study the rates of the paiving and ferromagnetic instabil-
ities and find that the pairing instability is always dominant. Additionally, they show that
a maximu in paiving rate ocenrs around kpa ~ 2 and that there is a reduction in kinetie

energy of the unpaired electrons due the shrinking Fermi sea. in qualitative agreement with
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experimental results. These results suggest that pairing alone may account for some of the
offects attributed to ferromagnetisi.

Another vein of work inspired by this experiment considers whether there is an explana-
tion for the non-monotonic behaviour of the encrgies that does not invoke ferromagnetisim.
Zhai asks “whether spin polarization is the only way to reduce interaction energy”™ [111] and
answers with a caleulation showing that a configuration including short-range correlations
renormalizes the interaction strength and leads to the same encrgetic signatures as were
seen in the experiment. The nature of the short-range correlations are similar to those in
the Gutzwiller projected wavelunction, where the probability of two opposite-spin fermions
existing at the same spatial location is suppressed without the cmergence of long-range
order characteristic of a ferromagnet. In particular, a variational selution to the density
profile is introduced by assuming that the probability of opposite-gpin fermions at the same
point is reduced from p? to (1 — §)p?, where § is the variational parameter and (1 — §)
reduces the interaction parameter for repulsive interactions (g > 0).

He points out that without the direct observation of ferromagnetic dowmains, the short-
range correlated configuration cannot be distinguished from the ferromagnetic. In subse-
quent work [112]. Zhai and Cui fonnd that the there were regions of interaction strength
in which both ferromagnetic and short-range correlation fluctuations exist, and that the
ferromagnetic state was, indeed, dominant for sufficiently high interaction strengths. They
poiut out, however, that diffevent correlation mechanisms may be sufficient to eliminate the
forromagnetic tendencies.

In thig evolution of theories, we see a trend not unlike that emerging from the original
models of ferromagnetisin in metals. The existence of ferromagnetism seems to depend very
much on the approximatious used to deseribe the system. Like many problems involving
fermions. calculations ave difficult, and the question of the existence of ferromagnetisim meay
be best settled by an unambiguous experimental signature, such as a direct observation of

spin polarization.

4.6 OBSERVATIONS OF STRONGLY INTERACTING YK ATOMS

The original motivation for the theoretical work in ferromagnetism in trapped fermions
was in preparation for experiments with strongly interacting I, While these experiments

were delayed, and some of the results of the theory confirmed by the MIT experiment [108],
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plans to continue this work remain. Below is a description of the preparations made for
this experiment, completed before the Decemnber 2007 apparatus renewal and the new atom
chip that came with that.

The original plan for these experiments was in keeping with the suggestions put forth
in Ref. [99] - we planned to prepare a ferromagnetie state and observe its subsequent decay
as a function of the interaction strength between states. As such, one of the key ingredients
to experiments exploring ferromagnetism is the ability to manipulate the scattering length
between atoms. To do this, we plan to use an already-discovered Feshbach resonance ({113],
see §4.6.2). In general. these resonances occeur only for atoms in specific hyperfine and Zee-
man states; in particular, high-ficld sceking states. These conditions stipulate that internal
state manipulation is important for preparation, and optical trapping is necessary for con-
finement. The resonance occwrs at a specific value of the magnetic field, and control of this
value is important for control of the interactions between atoms. The following subsections

describe the progress made in readying the apparatus for forromagnetism experiments.

4.6.1 INTERNAL STATE PREPARATION

The experimental sequence used to gather ultracold fermions relies upon magnetic trap-
ping, as described in §2.1.1. The sympathetic cooling done by the 37Rb yiclds a spin-
polarized DFG of YK at the end of the cooling sequence. These atoms, in the low-field
seeking [Fomp) = 19/2,9/2) state must be transferred to an optical trap and their inter-
nal state must be manipulated to obtain the high-ficld secking states we wish to use with
the Feshbach resonance. Either rf- or microwaves will induce transitions from the weak-
field secking states to the high-ficld secking states; both are shown ground state manifold

schematic in Fig. 4.11.

CALCULATING TRANSITION FREQUENCIES

The hyperfine structure of the 9K atom is discussed at length in Appendix A. The
frequency separations between ground states can be found from the Breit-Rabi formula,
which applies to ground state atowms with (J = %) [62] and is an exact diagonalization of
Eq. (A.11)

Ap(J + & Ani(I + 3
. hl's( + ~) +,(][/L[g’II‘I,B:]: Ill.( +zl <1+

> 4mX (B)
2021 +1) 2

Ey/h = 5T 1

, 1/2
+ x~(3)> (4.49)



4.6 OBSERVATIONS OF STRONGLY INTERACTING ‘0K ATOMS 75

A
112 -5/2 F: 7/2
-3/2
-1/2
1/2
3/2
5/2
7/2
e
o0
—
O 7
-
]
9/2
772
5/2
32
12
-12
> -3/2
7o) /2 F=9/2
-9/2

Ficure 4.11: Ground state manifold of ‘0K, in a magnetic ficld. Lower manifold corresponds to
the /" = 9/2 hyperfine states: upper manifold corresponds to the £ = 7/2 manifold. Small numbers
indicate mp quantum number, good at low magnetic ficlds. RF transitions within the hyperfine
manifold are schematically shown by blue curved arrows for the lower manifold, while the orange
straight arrows correspond to the microwave transitions between hyperfine manifolds.

where
- B
X(B) = (9. .(//)/tll, 7 (4.50)
Ahfs(-[ + g)
and App = —285.731 MHz [114], I = 4 [61], g; = 2.00229421 [61], g; = 0.000176490 [61],
and m =m; £ é for all m; € [=1,I]. Additionally, this formula can be used to calculate

the magnetic moments of cach of the ground states as a function of magnetic ficld hy taking

the derivative of this expression.

Oy L (gr—a9nps 2X(B) + 574
Py grppm =+ n 73
(1 Al (1’2(3))

(4.51)

The energics and magnetic moments for 'K are shown in Fig. 4.12, and the transition
frequencies between states for those transitions allowed in the low-field limit are tabulated
in Tables 4.1 and 4.2 for the microwave and rf transitions, respectively.

In addition to determining the appropriate transition [requencies for state preparation

given a magnetic field, an alternate use of these data is for calibration of a magnetic ficld.



4.6 OBSERVATIONS OF STRONGLY INTERACTING WK ATOMS

Magnetic field

|[Fomp) < |Fmb) 20.00 G 202.10 G 22421 G
9/2,9/2) & [7/2,7/2) 1236.4 820.2 775.6
19/2,7/2) <« [7/2,7/2) 1242, 918.2 890.5
9/2,7/2) & [7/2,5/2) 1249.3 998.8 981.6
9/2,5/2) « [7/2.7/2) 1249.2 998.9 081.7
10/2,5/2) ¢ [7/2.5/2) 1255.6 1079.6 1072.8
19/2,5/2) [7/2,3/2) 1261.9 1149.7 1150.4
19/2,3/2) « [7/2.5/2) 1262.0 1149.7 1150.5
9/2.3/2) ¢« |7/2,3/2) 1268.3 1219.8 1228.2
19/2,3/2) < [7/2,1/2) 1274.5 1282.6 1297.1
9/2,1/2) <« [7/2,3/2) 1974.5 1282.7 1297.2
9/2,1/2) « [7/2,1/2) 1280.8 1345.5 1366.1
9/2,1/2) « [7/2,-1/2) | 1287.0 1402.9 1498.8

9/2.-1/2) < |7/2.1/2) 1287.0 1403.0 1498.8
9/2,-1/2) ¢ [7/2,-1/2) | 1293.2 1460.4 1491.3
0/2.-1/2) & |7/2.-3/2) | 1209.3 1513.6 1549.0
9/2,-3/2) « [7/2,—1/2) | 1299.3 1513.7 1549.0
9/2.-8/2) ¢ |7/2,-3/2) | 1305.5 1566.9 1606.7
9/2,-3/2) « |7/2,-5/2) | 13115 1616.8 1660.6
0/2,-5/2) < [7/2.-3/2) | 1311 1616.9 1660.7
9/2.-5/2) « |7/2,-5/2) | 13176 1666.7 1714.5
9/2.-5/2) & [7/2,-7/2) | 1323.7 1713.7 1765.1
0/2,-7/2) & [7/2,-5/2) | 13237 1713.8 1765.2
9/2,-7/2) & [7/2,-7/2) | 1329 1760.7 1815.8
9/2.-9/2) & [7/2,—7/2) | 13356 1805.1 1863.4

TABLE 4.1: Microwave transitions betwoeen "I ground states. All values in Mz,
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Ficurek 4.12: Top row: Hyperfine energies vs. magnetic fiekd for low (left) and all (rvight) ficlds.
Solid (dashed) lines indicate £ (. For low fields, only the lower manifold is shown. Bottom row:
magnetic moments for low (left) and all (right) magnetic ficld values. As above, solid (dashed) lines
show d1v,(_,/0B. The quantum numbers for the states shown are (in the right panels) from top to
hottouw: myp = {=7/2,--- ,7/2.9/2,-+ ,=9/2}, or my = {4~ -+ 4., -, —d} with mg = 1/2 for
the solid lines and —1/2 for dashed lines.

By spectroscopically determining some transition frequency between well-known states, the

magnetic ficld can be measured precisely.

DEMONSTRATING STATE CONTROL

In order to prepare atoms for the demonstration of the Feshbach resonance, we need to
manipulate the internal state to prepare the appropriate combinations for the resonance we
choose. In the magnetie trap, where symupathetic cooling has bronght them near degeneracy.
the atoms are in the magnetically trappable [9/2, 9/2) stretehed state. These are transferred

to a purely optical trap. Here, we wish to make a mixture of atoms in the [9/2, -9/2) and
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Magnetic field

|\Fymp)y 4 o 20.00 G 202.10 G 224.21 G
19/2,9/2) <« 19/2,7/2) 6.4572 98.3764 115.427
19/2,7/2) +  19/2,5/2) (.3909 80.7533 91.1601
19/2,5/2) = 19/2,3/2) 6.3260 70.1665 77.7900
19/2,3/2) « 19/2,1/2) 6.2642 $62.8980 69.0000
19/2.1/2) < 19/2,-1/2) 6.2036 57.5078 $62.6522
19/2,-1/2) « 19/2,-3/2) 6.14:47 53.3060 57.7896
19/2.-3/2) <« 19/2.—-5/2) 6.0875 49.9094 53.9100
9/2.-5/2) <« 9/2,—-7/2) 6.0319 47.0902 50.7211
9/2,=7/2) = 19/2,-9/2) 5.9383 44.3032 47.5979

TABLE 4.2: RE transitions in ground state K, /= 9/2 manifold. All values in MHz.

|9/2, —=7/2) states, that we might address the 202 G resonance (Sce §4.6.2).

First, we transfer the atoms from the weeak-field seeking part of the manifold to the high-
field seeking. Using adiabatic rapid passage. we can sweep an rf field through the resonances
between adjacent states to complete a transter from the weak-ficld sceking stretehed state to
the high-ficld secking one. We turn on the of field {ar above resonance at 11.0 MHz. so as not,
to induce any spurions transitions at turn on. With a quantization field of 19.8 G, we rawp
the of frequency to a value above the resonance for the first rf transition in the ladder, 6.55
MHz (See first colunn of Table 4.2). In 30 ms, we lincarly ramyp the rf frequency from 6.5
MHz to 5.70 MHz, which is below the frequency for the lowest transition on the ladder. The
tf frequency is then ramped down to 1.50 MEHz in 5 s and turned off. Using Stern-Gerlach
imaging. we separately image the different g states and optimise these parameters for
transfer into the mp = —9/2 state.
19/2.-9/2) and |9/2,—7/2) . we add a step before ramping the

frequency to 1.50 MHz. At this point. we ramp the fregueney back up to the resonance
1 1 .

To ereate a mixture

position (in 5 ms) between these two states, which we experimentally determine is 5.90 Mz,
by balancing the populatic as of the two components. The field is then suddenly turned off.
That this is a mixture instead of a pure state arises due to the dephasing inherent in this
experiment. Long wait times allow the atoms to saple the different magnetic fields (due
to imperfeet uniformity of the fields) and the phase relationship in the svperposition is

randomized atom-to-atonn.
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We also show that microwaves can manipulate the state of the atom. With a mixture
created as above in a magnetic ficld of 19.8 G (very near the 20.00 G tabulated in Table

4.2). we transfer atoms from the [9/2. —9/2) to the

7/2.—7/2) state. We measure the atom

number in the myp = —9/2 state and sce a loss around the expected value in Fig. 4.13.

4.6.2 FESHBACH RESONANCE IN 0K

The interactions between two particular internal states of an 19K atom can be controlled
by varying the magnetic field in the vicinity of a Feshbach resonance. Using the results
of Refs. [9. 113]. the scattering length between the |9/2, —9/2) and [9/2, —7/2) states as a

function of magnetic field

7.8
. trta (T8 ) 4.52
ary(B) = 174day ( B —202.10 G) ' o

where 174ag is the background scattering length. 13 is the magnetie field, 202.10 + 0.07 G
is the experimentally measured centre of the resonance hetween these states, and 7.8 £
0.6 G its width. A resonance between the [9/2. —=9/2) and [9/2. —5/2) states has also heen
ohserved, at a magnetic field of 224.21 + 0.05 G with a width of 9.7 £ 0.6 G [115].

To identify the position of the resonance, we rely upon the enhaneed three-body loss
associated with the large seattering length near the resonance. Since the loss rate is pro-
portional to the sixth power of the scattering length [103]. changes in the seattering length,
a, will be mirrored by dramatic changes in the loss rate.

We create a mixtwre ol atoms in the |9/2, —9/2) and 19/2. =7/2) states in an optical
trap and turn on the magnetic Geld smoothly in 20 ms to values near 202.10 G, This field

is held for 500 ms. after which it is smoothly turned off in 100 ms. Figure 4.14 shows the
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Fravre 4.14: Experimental evidence of Feshbach resonance in YK, Round and square points
represent two different data sets, obtained in that order within 1 hour. The magnetic field was
calibrated with Zeeman transition frequencies in ¥ Rb . The dashed line is a Lorentzian fit to all of
the data, with contre at 201.3 4 0.2 G and width 8.10 + .02 G.

total atom munber as a function of the final ficld value. There is a clear loss feature around
201.3 £ 0.2 G. with a width of 8.10 & 0.02 G. This centre value is in good agreement with

the acceepted value.

4.6.3 MAGNETIC FIELD STABILITY
STABILITY CRITERIA

As discussed in the theoretical seetions of this chapter, the relevant control parameter is
the interaction parameter. which is lif?«(l = /.'(,’,( 0)a. To determine the precision with which
we must control the magnetic field. we relate it to this interaction parameter. The scattering
length varies with magnetic field as Fq. (4.52) and the Fermi waveveetor depends on the
density. and thus the munber of atoms and trap parameters. As an estimate. we assimne

that we will use ~ 10" atoms and harmonic trap parameters w = 27 » (1000. 1000. 50) Hz.

- \/L;;—U(/l&\’)'/“ = 1.1, 107m . (1.53)

The region in which the interesting physices exists is that of strong interactions. which

and find

we will define as /.",’,u, > 1. Using the parameters above, this amounts to a magnetice field
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range from 201.22 G to 202.10 G. or a region of 880 inG width. As a comparison, if
w = 27 % (200,200, 50) Hz. the values of magnetic field at which #%a > 1 are 201.61 G to
202.10 G. yielding a range of 490 mG of strong repulsive interactions.

As a minimal requirement for field stability. we might assume that we need to control the
magnetic ficld to within 10% of the ficld range over which interesting interaction parameters
exist. meaning ~ 50 G stability for the weaker trap. In a ~ 200 G field. this requires 1
part in 4 x 10? stability.

For a more stringent requirement on field stability, we consider a demanding measure-
ment techuigque. One means of determining the existence of interactions (and thus a demag-
netized state) in this system is to measure the trausition frequency to an auxillary Zeeman
state [115. 116]. The interactions will shift these transitions by an amount known as the

clock shift, the frequency of which is

2h . - p
Ay = 7;1—/)7(“79 ~ t57) (4.54)

where we are considering the specific case of atoms in

F=9/2.mp = -9/2) and |9/2. —7/2).
and an auxillary state 19/2.=5/2). where pr is the density of the [9/2. —7/2) atoms. agg
is the seattering length between the two states which depend on the maguetice field in the
regime of this experiment. and as7 = 171aq is the background scattering length. since they
are far from that resonance.

One possibility for the stability criterion is to demand a stability with which one can
distinguish between the absence and presence of interactions to a precision equal to the
background scattering length. If we assume a density p7 = 1 x 10" em™. then Ay = 913
Hz. Translating this frequency into a magnetie field. we consider the magnetic moment
differences at 202.10 G:

Jlopie = g = 151 kHz/G (1.55)
fosa = Jiogpa = 170 klz/G. (1.56)

where the subseripts refer to mype. Using the first of these. this implies that a stability of
913 Hz leads to a field stability of ~ 6 mG. In [ractional terms. 6 mG/202.10 G ~ 3 x 1077
a fow parts in 107,
Comparing this munber to the Jin experiment. ¢ Regal's thesis [117] (pl112) cites a
stability of 7 mG. and they can measure up to a 1 kIlz precision on the | —5/2) — | —7/2)

transition. which is similar to the demand of our estimate.
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Freere 4.15: Schematie of Feshbach control civeuit. Magnetic coil current (blue line) is controlled
by high power IGB'T (yellow), with feedback [rom a precision current transducer, Danfysik Ultrastab
867-200 I (ved). The current output {green line) of the transducer is measured by a high-preeision 10
Q (1 pp) resistor (blue highlight) and compared to the set voltage. The set voltage is determined
by a voltage divider with similar precision resistors and powered by a precision voltage source (green
highlight). The set point input allows for small changes on the set voltage.

MAGNETIC FIELD STABILITY

To gain aceess to the tunability of the interaction strength available at a Feshibach res-
ouance, we must, in addition to trapping the atoms optically, stabilize the magnetic ficlds
about the resonance feature. The precision of the magnetic ficld reflects that available for
the interaction strength values. The same coils are used for this high magnetic field as to
create the gradient for the MOT (see §2.1. [15]), but instead of anti-Helmholtz, they will be
switchoed to a Helmholty, confignration. The existing magnetice feld control was implemented

via the power supply cwrrent-limit mode.
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To improve upon this set up, we control the current external to a low-noise power supply
using a feedback loop between a precision current probe and a high-power transistor. We
use the low-noise power supply. Agilent 6684A (10 V / 128 A, noise 1.0 mVyy,g. 10 mV,y,).
We measure the ciorent with Danfysik’s Ultrastab 867-2001 current sensor (temperature
stability and temporal drift characteristics are < 1 ppm /K. < 1ppm/month). The control
scheme is outlined schematically in Fig. <115, The basic principle is to measure the output
of the current sensor across a precision resistor (Vishay VIIIO2IC series, 1 ppm) and compare
this to a set point voltage, which we iimplement in this first version of the cirenit through a
precision voltage reference (Thaler VRE3025, 0.6 ppin/°C) divided down to the appropriate
input value through a resistor-divider network. The resultant error signal is provided as the
gate voltage on a high-power IGBT (Advanced Power Technologios APT200GNGOJ, 600V,
280A) such that it controls the coil current running between the colleetor and emitter.

To test the stability of the magnetic ficld control, we study the width of an atomic
transition with various field control schemes. We nse a transition in 8Rb, loading atoms
in the |/ = 2.mp = 2) internal state into an optical trap. We tune the magnetic ficld to a
value we presume is near the 202 G necessary for the Feshbach control of the WK atoms.

We transfer the RD atoms to the

2, 1) state using an rf frequency near 128 MHz. The of is
turned on suddenly. and left on for 50 ms, and turned off suddenly. As the transform-limited
width associated with this pulse is ~ 20 Hz, widths greater than these wonld indicate an
instability in the magnetic field, whose variations broaden the value of the transition. We
asstne the magnetice feld noise is the dominant broadening mechanism in these ultracold
(but not degenerate) clouds.

These transitions are shown for various configurations of field control in Fig., 4.16.
Fig. 4.16(a) shows the transition for the original magnetic control scheme, and yields the
widest transition. Fig. £L.16(b) shows the transition for the new magnetic control scheme,
in what is called “Configuration I”  a configuration using a switching power supply in
the control civenit. The transitions for “Configuration IT7 are shown in Figs. 4.16(¢) and
4.16(d). IHere, the switching power supply in the control was replaced by an HP E3611A
linear power supply, which is much better at filtering line noise. With widths as small as 6
kHz on a trausition of 128 000 kHz, this initial test showed a reduetion of a factor of 10 in
thie noise. to the level of one part in 2 x 10

Improvements to this circuit (§:1.6.3) need to be made to allow fast switching over a
~ 10 G range, in order to aceess the zero of the Feshbach resonance and turn off interactions.

Changes to the input sigual set-point should allow for this.
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Mo 4.16: Magnetie field stability measurements, made by looking at the width of rf transitions
between STRD states 12,2) and |2, 1). Horizontal scales are not equal. Dashed curves are Gaussian
fits to the data, to approximate a width of the travsition. (a) With original magnetic field control,
o == 70 46 kHz, (b) With new magnetie field control, Configuration I, ¢ = 20 -+ 5 kHz, (¢) With
new magnetic field control, Configuration I, o = 6.1 4 0.3 klz, (d) Same conditions as (¢) with an
increased sampling froquency, o = 5.4 4 0.2 kiz.

4.6.1  LLOOKINCG FORWARD

Before experiments probing ferromagnetisim are ready. a few challenges remain.

The fermions need to he degenerate in the optical trap. at temperatures at or below
0.277. To date in our laboratory, these temperatures have only been reached in the magnetic
{rap via sympathetic cooling with 7Rl . The most likely route towards this is to stop the
sympathetic cooling at some optimized point (before the onset of strong K-Rb losses) during
the cooling process, remove all Rb from the magnetic trap, and load fermions into the optical
trap. Tlere, a spin mixture conuld be made, which would then allow for thermalization during

a subsequent all-optical evaporation process. A Feshbach-enhanced scattering length could
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be used to optimise the procedure. At high enough magnetice ficlds, these states can be
isolated spectroscopically and one could he removed from the trap. At this point, the
desired state could be initialized through appropriate vf or microwave transitions.

Once cold fermions have been produced in the optical trap, and the magnetie Held
stability is decwed sufficient for the experiment, one issue facing this experiment is the loss
rate to molecular production. There have heen some measurements of this loss [113]. hut
it should be measured at the densities and trap configurations we will be using. These
measurements will set a time scale in which the experiments looking for ferromagnetis
must to completed and may ingist on more stringent requircments of timing control than
are currently available.

One of the first. and most straightforward experiments to perform would be that on
which we originally planned — the proposal of Duine and MacDonald [99]. Using the tools
developed above, atoms in an identical superposition state of the two Zeeman levels affeeted
by the Feshbach resonance would be put in the region of strong interactions. By measuring
the timescale for which the atoms remain in the ferromagnetically ordered identical states,
we could observe how the preservation of a ferromagnetic state depends on the strength
of the interactions. Using a trinuming gradient coil, we could change the magnetic field
gradients seen by the sample and measure how the dephasing induced by the ditferent

energy enviromment across the cloud affects the preservation of this ferromagnetism.



CHAPTER 5

BEC DYNAMICS IN A TUNABLE DOUBLE WELL

The condensation of hosons into a single ground-state wavefunction is a well understood
example of individual quantum mechanical objects transitioning into a many-body state.
The emergence of a single phase parameter atbests to the quantum mechanical nature of
this mesoscopic objeet. The first measurements of this phase came of probing the phase
difference between two separated condensates [118], circruventing the restriction forbidding
the measurement of a single phage. When there exists some wavefunction overlap between
nearby condensates, the phase difference across the barrier can be well-defined and will, as
first described by Josephson for superconductors [119], drive transport across the junction.
Recent double well BEC experiments have exploited these properties to realize tunnelling
transport [120] and to generate exotic quantum mechanical states [121].

Dynamical studies can veveal properties of the underlying hamiltonian governing the
general behaviour of system. In a BEC, quantum mechanical transport is driven by spatial
gradients in the phase. In the double well system, the character of the transport hetween
the wells in particularly sensitive to the spatial phase gradients in aud across the barrier
region. By tuning the height of the barrier, and thus the density and healing length of the
BEC at the point connecting the wells, the character of the macroscopic transport changes,
revealing the many-hody properties of the system.

In this chapter, a BIEC is introduced to a tunable magnetic double well potential, where
all harrier heights from zero to cffectively-infinite are explored. This chapter studies the
quantum transport of the BEC across the barrier for various out-of-equilibrium initial con-
ditions at variable harrier heights. By studying both mass transport and phase evolution.,
we fnd the system behaves as a single “perfect” - inviscid, irrotational - fluid for low bar-

riers and strong coupling bhetween the wells, and as a Josephson junction for large harriers

86
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or large initial imbalances where tuunelling is the dominant mechanism of transport.

This chapter begins in §5.1 by establishing the context for these experiiments in terms
of work donce in similar systems both in the condensed-matter and gquantum-gas worlds. A
deseription of the underlying equations of motion in the strong and weak-coupling regimes
follows in §5.2, and the experimental tools specific to this chapter are described in §5.3.
For small initial imbalances, mass-transport behaviours are deseribed in §5.4, revealing
a crossover hetween superfluid hydrodynamics and Josephson transport. Observations of
Josephson-like behaviowr in the mass transport for large initial iimbalances is veported in
§5.5. In §5.6, the decay of population imbalance is studied. Phase signatures of quantum

transport arve discussed in §5.7 and the fmplications of this work are considered in §5.8.

5.1 BACKGROUND AND CONTEXT FOR DOUBLE WELL EXPERIMENTS

Long before the idea of a double well was applied to dilute-gas BECs, it was studied
within the context of other many-body systems. The interesting properties of double-
well physics cmerged as techuological advances provided better superconducting materials,
and effeets like tunnelling could be measured. Brian Josephson was the first to deseribe
a set of behaviours characteristic of a tunnelling junction between two superconducting
systems, cach of which is described by its own wavefunction. These Josephson effects
were discovered in a variety of systemns. including superfluid helium. In the era of the
ultracold gas, these gquantum fluids have also been studied in double well environments,

with motivations including precision interferometry and exotic quantum state manufacture.

JOSEPIISON JUNCTIONS IN CONDENSED MATTER PHYSICS

[ the early 1960’s, fabrication technicques, especially thin-film deposition. were developed
to the point where superconducting materials could be manipulated into a variety of struce-
tures. Obscrvations of tunnelling between superconducting layers separated by an insulator
[122, 123] indicated that the electron wavefunction extended beyond the classical bounds
of the superconducting material.

Brian Josepshon, in thinking about the nature of the superconducting ovder paramcter,
realized that the quantum mechanical phase difference bhetween two nearby but insulated
superconducting regions would be well-defined and observable if the system could satisfy

the number-phase uncertainty relationship by allowing clectrons to tunnel between the
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regions [124]. His caleulations showed that a superconducting current would travel across
the insulating barrier and predicted two effeets [119]: frst. for external currents less than
some critical value, there would exist a supercurrent flowing across the junction with zero
voltage drop; second, for external currents above the critical value. a sinusoidally varying
supercurrent flows across the junction, with a frequency that depends on the potential
energy difference hetween the regions. These stationary “de”™ and oscillatory “ac” effects
are defining characteristics of the Josephson junction. In the ac case, the evolution of the
phase depends on the potential energy difference between the two regions in a simple way:
b =AFE /h. where ¢ is the difference in the phase across the junction, and AE is a generic
energy difference between them, which is this particndar case takes the form AE = 2eV,
where ¢ is the clectric charge and V' is the voltage difference across the junction. Evidence
for these effects was seen very soon after their prediction in superconducting-insulating-
superconducting sandwich geometries [125 127).

Though tunnel junctions were conceived as the original infrastructure upon which Joseph-
son junctions were based, these devices do not hold a monopoly on Josephson-type phe-
nomena. Similar behaviour has been found across weak links [128, 129]. in which the
superconducting regions are physically, but weakly, connected. The criterion establishing
this weakness dictates that the effeetive length of the link be much smaller than the co-
herence length of the superconducting order parameter in the connecting region [129], such
that the non-local quantum-mechanical nature of the system is important, even if tunnelling
is not present. These devices typically exhibit a 27-periodice (though not necessarily sinu-
soidal) eurrent-phase relationship. The simpler manufacture and small capacitance of these
weak links are two practical advantages leading to their frequent use in Josephson junction
devices.

More recently, Josephson effects have been explored in superfluid helinm weak-link sys-
tems. Two reservoirs of cither 3He [130, 131] or "He [132] are connected through the small
holes in a microaperture array, in which the size of the holes was comparable to the super-
fluid healing lengtl. Using a sensitive pressure detector! to measure small differences in
pressure, superfluid flow between regervoirs was shown to exhibit both the stationary de-
and oscillatory ac-Josephson effects.

In superfluid helinm, the healing length can be tuned via temperature due to its diverging

behaviowr near the lambda point. The nature of the current-phase relationship is explored

. T'his detector, fiitin "1\-’ relies upon a SQUID, hased on the Josephson eflect, to sensitively measure small
s gLy, : ; o
displa(‘mn(»nls.
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in the transition between the large healing length regime, where transport between the
reservoirs must rely on tunnelling, and the sall healing length regime, where superfiunid
flow is allowed through the aperture [133]. A lincar current-phase relationship is found in
the small healing length regime. characteristic of hydrodynaiics, while the relationship is

sinusoidal for large healing lengths. consistent with Josephson-like hehaviour.

DousLE-wELL BECS AND JOSEPHSON JUNCTIONS

Before the first dilute-gas BEC was realized. the possibility of using two of them to create
a Josephson junction was discussed [134]. drawing an analogy between the two supercon-
ducting reservoirs of a Josephson junction and close-but-separated condensates. The frst
explorations of nearby condensates demonstrated the measurable phase difference hetween
wells through matter-wave interference [118]. These observations inspired many theoretical
discussions of Josephson effects in double well BEC systems [135-139]. In general, these
proposals exploit the two-mode model (TMM) to garner their results, assigning independent
wavefunctions and phases to cach side of the double-well junction with a well-defined phase
difference between the wells.

The first experiments to observe Josephson physies with cold atoms were done in optical
lattices [140, 141]. In that work, a one-dimensional lattice of many wells was used, with
tunnelling between neighbouring sites determining the oscillatory behaviour measured. In
the first experiment [140], analogics are made between the observed Bloch oscillations and
the ac-Josephson effect, in that the frequency of oscillation depends on the potential differ-
ence between neighbonring sites. In the second experiment [141], periodic mass transport
across adjacent wells is established as a conscquence of the exchange between kinetic and
potential (interaction) cnergies. establishing a “plasma-like” oscillation, in analogy to the
exchange of cnergy between the electric field and the tunnelling energies in a solid-state
Josephson junction [127].

The first direct observation of Josephson dynamics in a true double well was in Ref. [120].
With in situ imaging, population differences between two wells could be measured, while
the phase information was obtained from matter-wave interference patterns. Plasma os-
cillations woere observed and the current-phase relationship plotted. Some beyond-TMM
characterisation of this system was required to predict the frequency of these dynamics
[142]. In subsequent work [143], both the de- and the ac-Josephson effects were observed in
an atomic gas system. In the ac-effect, often called “macroscopic quantum self-trapping”

(MQST). the frequency of the population oscillations depends on the chemical potential
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difference hetween the wells.

Unique to the quantun gas implementations of the double-well system is the ability to
dynamically transform the shape of the potential. from, for instance. a single to a double
well. Adiabatie deformations of this type can be used to generate number squeezed states
[121, 144, 145]. This squeezing manifests itself as a reduction in the fluctuations in the atom
mumnber of cach well upon repetition of the splitting process, which arises due to an energetic
advantage if the fluctuations are sub-Poissonian. The number-squeezing paramcter £y =
on /o & /kpT/ ;e [121]. where oy is the standard deviation of the munber measurements,
(rf,{r = /N is the standard deviation for Poissonian statistics. T is the system temperature
and g its chemical potential. Esteve ef al. show that their results are consistent with thermal
cquilibrium and find €y = 1/v/2 [121]. In coutrast, the work of Jo et al. [1d4, 145] cites
a squeezing factor as small as &y &~ 1/25, though the temperature is twice the chemical
potential. The mystery surrounding these results may lie in the difference in geometry
between these experiments, the former set in nearly spherical traps, while the latter is
an elongated geometry. Phase fluctuations in the clongated trap [146-148] may suggest
these experiments were out-of-equilibrium and indicate that the dynamics of the system are
important to the gencration of squeezed states.

Further to the initial squeezing experiments, Ref. [149] demonstrates both squeezing and
antisqueezing, the former at the lowest temperatures, and the lattor at intermediate tem-
peratures, where bosonic bunching dowinates. Entanglement of the two separated BECs
was also demonstrated in the Ref. [121] through number and phase measurements. The use
of these squeezed and entangled states is especially attractive in the context of atom inter-
ferometry [23, 150, 151], where one might be able to make use of the reduced fuctuations
to improve the sensitivity of precision measurements.

The adiabatic transformation from a single to a double well used in many previous
experiments traverses the crossover from the regime where hydrodynamics ave valid to the
regime where a TMM accurately describes the system. While previous dynamical studies
of the Josephson junction [120, 143] have discussed the results in the context of a TMNM,
the harrier was not clearly greater than the chemical potential, and the assuunption of weak
coupling may not have been valid.

By characterizing the dynamics throughout the crossover in this work, the qualitative
character of the transport hetween the wells is established and the regions in which a certain
deseription is valid can be identified. Such an understanding of the many-body transport is

required to choose appropriate rates of change for adiabatic deformation and to fully exploit
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the potential for creating exotic quantum mechanical states.

5.2 THEORETICAL DESCRIPTIONS OF A BEC IN DOUBLE WELL

Calculations involving BECs are greatly simplified, compared to microscopic deseriptions
of fermions or Boltzimann particles. by the existence of the macroscopic many-hody ground
state wavefunction that defines the system. In the non-interacting system, this wavefunetion
would simply be the many-body product of the single particle ground state wavefunctions.
The existence of the s-wave contact interaction complicates this deseription to some degree.
though the solutions to a modified Schrédinger equation, known as the Gross-Pitacvskii
equation (GPE) do very well to deseribe the BEC in many situations. Though for compli-

ated potentials, the GPE must be solved numerically to obtain exact results. there exist
several regimes of approximation in which simpler models allow for a hetter intuitive under-
standing of the system. In the single- to double-well transition, two of these approximations

arce the hydrodynamic deseription, and the two-mode model (TMM).

5.2.1 GROSS-PITAEVSKII TQUATION

The dynamics of a BEC are often well-deseribed by the nonlinear Schrédinger equation
known as the Gross-Pitacvskii equation (GPE) [152. 153], where the nonlinear mean-field
term accounts for interactions between particles. This deseription is valid for low cnergies,
when the interactions ave local (the scattering length a is less than the interparticle spacing)
and the particle number N is much greater than unity. The cvolution of the condensate

wavefunction, ¥(r, 1), obeys this T'= 0 GPE

L O (r.t) K, Y ,

zhy——‘()f— = ——-r)——V‘\Il(r,‘lr) + (Vo (x) + g (x. 1)) T(x.8) (5.1)
/ 2m

where Vox (1) deseribes the external potential and g = 47(‘/1.2(1,/ m is the interaction param-

oter, and m is the particle mass. The time-independent version of this equation gives an

encrgy cigenvalue equivalent to the chemical potential, je. through
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pO(E) = 5= V2U() + (Vo () + 919 () ) B(w), (

and implies a time-dependence to the wavefunetion such that ¥(r, ) o< exp(—ipt/h).
By examining Eq. (5.2) we can evaluate the typical length scale over which the conden-
) g L Yl g

sate wavefunction varies. Ignoring the effect of the external potential V(r) and defining the
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. . . 2 N . N
local density of the condensate p(r) = |¥(r)]", we can define a local healing length. €(r).
as the length scale of variation where the kinetie energy term s equal to the interaction

cnergy term, h%/2mé(r) = gp(r). such that

2mygp(r)

In the context of the double well systemn. the value of € in the harrier region is important
when considering transport between the two halves of the system. For low barriers, the
density p(r) is relatively high and € small. leading to hydrodynamic behaviour. When the
barrier is high and depletes the density in the barrier region, & grows and quantum transport
phenowena become important.

The GPE deseribes o broad range of phenomena in BECs, including studies of disorder
and localization [154]. soliton dynamics [155-157], vortices [158. 159]. and BKT physics
[160, 161]. As in these systems, we expeet the GPE to captwre the low-cnergy excitations
we study.  For the specific potentials used in this work. the GPE can by simplified to
show limiting hehaviours - on one end of owr continwumn, we expeet hydrodynamics to rule.
while at the other, a two-mode model (TMM). Both of the these simplifications are derived
from the GPE, but better reveal the origins of the physics in their austerity. These limits
represent two of the canonical regimes of superfluidity, and are explained in detail in the

subsections to follow.

5.2.2 HYDRODYNAMICS

An interacting BEC exhibits the properties of a superfluid. The GPE equation can be
rendered to reveal these characteristics throngh a set of hydrodynamic equations deseribing
perfect irrotational and inviscid fluid hehaviour.

To reveal the hydrodynamics? of a BEC, we write the condensate wavefunction in terms
of its density and phase. U(r.t) = /p(r, ) exp(—io(r, 1)), where p(r. ) = [U(r. 1) is the
density and ¢(x,t) = p(r)t/h is the phase. Just as with the lincar Schrodinger equation.
the probability flux for the wavefunction is given by [162]

jrt) =~ <2L,];7> [T (r. )VE(r,1) — U(r. )VI*(r.1)]. (5.4)

2 . . . e 3 . .
“flere and throughout this chapter, we use the term “hydrodynamic™ to refer to superfluid hydrodynamics,
in contrast to collisional hydrodynamics which describes a different regime.
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from which we can define a local superfluid veloeity vg(r.t) = j(r.1)/p(r.t). This velocity

depends on the gradient of the phase.

<t
91
~—

I
vi(r.t) = %Vo(r. 1) (

and because V x vy = (I/m)V x V(r.t) = 0. the condensate is irotational. a delining
characteristic of superfluidity.
Using this definition for supoerfiuid veloeity, we can rewrite the GPE in terms of the

p(r.t) and vg(r.6):

PED 45 et )] = 0 (5.6)
)179%;—L) + V [r) + %mv:;)(r. l)] =) (5.7)

where
fi(r.t) = Ve (r) + gp(r. 1) — I Vol 1). (5.8)

N

Equation 5.6 is the continuity equation. describing the local conservation of mass flow in the
condensate. Equation 5.7 is the equation of motion for the veloeity, and ensures conservation
of momentwm. The second term deseribes the foree - the gradient of the energy  which
drives fluid flow. The driving terms in the square brackets represent the local chemical
potential, fi(r), and the kinetic energy of the superfiuid flow.

The first two terms in the expression for the local chemical potential (Eq. (5.8)) give
the contribution from the Thomas-Fermi approximation, while the last term, the only place
in these formulae where i appears, is called the “quantum pressure” term. This kinetice
energy term arises from to the zero-point motion of the particles. and does not give rise to
particle currents [153]. If we define a characteristic length scale over which the condensate
wavefunetion and density change. d, the magnitude of the quantum pressure is ~ h2/2md? =
(€2/d*)gp(r.t). The quantum pressure can therefore be neglected in comparison to the
interaction term when changes in the condensate wavefunetion oceur on a length seale less
than the healing length, € < d. In the double-well system. d is of the order of the distance
between the well minimum and the centre of the barrier. The negleet of the quantin
pressure term must be justified. in particular. in the barrier region where the density is

lowest.



5.2 THEORETICAL DESCRIPTIONS OF A BEC IN DOUBLIS WELL 94

HYDRODYNAMIC APPROXIMATION OF POPULATION DYNAMICS

To predict the character of the dynamies in the hydrodynamic regime, we take an ap-
proach which treats the system as a harmonic oscillator, whose [requency corvesponds to
the frequency of population transfer across the system. Using the continuity equation and
equation of motion for the condensate in the hydrodynamic reginme (Egs. (5.6) and 5.7). and
negleeting the quantum pressure term (by assuming h — Q). we can formulate the problem.
In essence, we use the equation of motion to determine the foree an imbalanced population
exerts ou the system, which we associate with a “spring force.” as we expeet the foree to
depend on the initial population difference. The spring constant associated with this foree
will be associated with the frequency of motion., much as a simple harmonic oscillator of
mass m displaced by a distance x oxperiences the force F = —ka = —mw?r.

The oscillating variable in this system would be the population difference, 2 = (N —
NL)/N. where Ni(ry is the munber of atoms in the right (left) well, and NV = Ng + N, is

the total atom number. We seck a harmonice solution of the form

) ,

Z o= "(A)HDZ (59)
where wrpy is the frequency of motion in this hydrodynamice regime. The frst time derivative
of Zis

. N R — N[‘ N R
Z= = 5.10
N N (5.10)

where we use the fact that NV is constant in time. The time dependence on one side of the

well can be written
Np = / pdPr =~ V- (pve) Pr
AWH AYS
= - / - {pvy) dS (5.11)
Js

where Vy is the volume of the right well. S is the area of the plane separating the two wells.
and 7 is the unit normal vector for this plane. The coutinuity equation (Eq. (5.6)). aud
the Gawss’s theorem are used in this expression. and p will be evaluated on the surface. S.

Substituting this into the expression for 2 and taking the second derivative,

2——2([ /‘1 (pvg) dS
TN e
5 o

=— = [ n-(pvs+ pvs) dS. (5.12)
N Js
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To cevaluate the freqguencey. wip. we assiune that the svstem begins at rest. such that
vi(f = 0) = 0. and the frst term goes to zero. The time derivative of v, is given by
the hydrodynamic equation of motion. Eq. (5.7), and

.. 9
Zl 0 mN

//)n V (Vext(r) + gp) dS. (5.13)

The geometry of this double well systemn is such that the normal vector 1 = .. such that
the only component of the gradient which contributes is the r-component. Assuming some

initial imbalance. Z(t = 0) = Zq.

o= =5~z [ |0 5 V) 4 90 (5.11)

We negleet the quantum pressure term in this analysis. such that the Thomas-Fermi
solutions for the density are appropriate. For the initially imbalaneed system., we cousider
in addition to the double well potential Vg a simple linear gradient across the barrier giving
a potential Vo grad = Gr. The density profile will be found from the combined potential.
Vot + Gro At ¢ = 0. the gradient is removed swddenly. leaving the density profile in a
non-cquilibrium initial condition. We calculate this initial density profile in the tilted trap

using the Thomas-Fermi approach. where
gpre(r) = = (Ve () + Gur). (5.15)

where prg is the density profile at ¢ = 0. The gradient terin in Eq. (5.14) is

.

g . .
oy (et (¥) +gp10(0)) = (Ym )+ = Ve () — G)

= —G. (5.16)

This approximation simplifies the (‘.\'prossi()u for the characteristic frequency.

i = m\ZU // prv dydz. (3.17)

which indicates that the frequeney can be found by simply evaluating the density at the
strface between the two wells and integrating over the region by which the two halves are
connected. From this expression, we see that the wi"m decreases as the area connecting the
wells deereases. and falls to zero when the barrier surpasses the chemical potential.

Using the parameters for our double well potential. the hydrodynamic approximation
for the frequencey of population oscillation is shown in Fig. 5.1. As expected. the frequencey
decreases as the density in the barrier region is reduced. and it becomes strictly zero when

the pepp < 14,. This ealeulation is compared to the data in Fig. 5.9.
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Fraunre 5.1: Hydrodynamic approximation for population oscillation in the double well potential,
using a Thomas-Formi density profile.

5.2.3 TwO-MODIE MODEL

In contrast to the low-barrier hydrodynamic regime of double well systemns. the high-
barrier regime is characterised by a vanishing density in the barrier region. The large healing
length found here requires the inelusion of the quantum pressure term in the equations of
motion, and quantimn transport and tunnelling become important to the systent’s dynamics.
When the density in the barrier region is sufliciently low. the condensate wavelunction can
be described separately for each of the wells. giving rise to the two-mode model (TMNM)
often used to deseribe separated superfluid and supercondueting junctions of this type.

The basic assiption of the TMM is that there are two well-defined spatially-separated

wavefunctions with a perturbative tunnelling connection hetween them. In the time-independent

GPE (Eq. (5.2)), we need only consider the two lowest cigenstates  the symmetric and an-
tisymmetrie ground states. which are nearly degenerate. The eigenvalues for the symunetrice
and antisynunetrie eigenstates ¢y(r) and v, (r) are

" " /1,2 9 . 2 )

Hsa = / "f’s,a(r) <"5‘I;;V~ + Voxt (1) + ,(/f\’rlli‘s,n(r)Id> ‘U's,a(r) dr. (5-18)
where we have chosen a normalization such that / |'¢/v,,.,a(r)|2 dr = 1. where N is the total
number of atoms.

Following the formalism of Ref. [163], we begin with the many-hody Hamiltonian

= / drd <~;’—‘\tﬂ‘v‘~’¢f + Y ()0 %\‘iﬁ\iﬁ\inir> (5.19)
. m : 2

<
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where the condensate wavelunetion is written as a ficld operator. and using the creation

operators {or the two eigenstates described above, (11,;,, is rewriltlen as
U = g0l 4 aal. (5.20)

Witht a change of basis rom synunetric and antisynunetrie states to states localized in the

right and left wells. owr two modes are then deseribed by the vight and left operators

if = & (n +al) = (- a;) . (

Using this new basis. a two-mode Hamiltonian can be written [163]

[
| N
—
~—

H’l‘;\ml.rull = B ((‘,f]r{[/“ - (},TI(AI[‘)z e ii; (&L[I,L -+ ()Ali“(},n) + RS ((1,'{(11 +ay, (JR) (5.22)
where

Eo = l(// [ |* 0| (5.23a)

Ey= 5 (,1/‘l Jis) — ;ﬂ}lz——t—l / |1,/'{,|2|1/'{,]2 - |'z;"_5.|l‘)|'u'v3|2(lr (5.23D)

§Ee =Y / P10l + T Pleal? = 20 Pl dr (5.23¢)

The first term of the hamiltonian [A]'I\M arun deseribes thie charging energy of the system,
which depends on the interaction parameter, g. through the charging energy E¢. The
sccond term in the hamiltonian describes the tunnelling in the system, with £ quantifying
the energy splitting between the two lowest cigenstates, the mixing of which leads to the
dynamics between the wells. The last term in Eq. (5.22) is negligible?. and so we ignore it
from this poiut forth.

The dynamics of this TTamillonian can be most casily determined in the Heisenberg
picture. We introduce two new operators
(}f} ap - (“llT o, . &L&L + (},}L (R
——— b=

z N N

i
|
—~~
[Wa
Qv
g
g

rewrite the Hamiltonian

- EcN? .
[y = —(S‘—Z - Eja. (5.25)

<

BAL o — 0, the ratio 6/5¢/Fe ~ 107, and is smaller for larger 8o, where the validity of this TMA] is
better justificd, as shown in §5.1.
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- . . N AT a AT & AT
and use the commutation relation for the operators £, d] = 2((1,{{(:.]4 — (:i‘u[{)/N“ Lo work
out the time dependence of the operators. Using the general Heisenberg equation of motion

for a generic operate ¢, iha = [&, H], the equations of motion for the operators are

dZ ey, —ala
_— . —B“——,*l‘-—l{‘ (52621)
(1/ 'IJ\/
da .l an - ala
t iN (5 )
where
FEoN . 25
U= and  J = —. 5.27
o N (5.27)

Replacing the quantuin mechanical operators by complex munbers (A'Ir{ — Wp, where

Tray = \/Nirayeno, (5.28)

Ny is the number of atoms, and O,y describes the macroscopic phase of the condensate
on the right (left) side of the double well, the new variables can be expressed as

_ Np — Ny, i

= - : 0 =06y, —0k.
N + Vi, Lo (

<
]
)
=

the TMM Hamiltonian can be written as

I _.
I’[’[‘MM = —jl‘[)ﬁ <%Zz —JV1- Z2cos ()) s (530)

Z &

and the equations of motion in terms of Z and ¢ are
dz . 5 . .
T JV1—Z%sin¢ (5.31a)
m .

do . Z ‘
— = J———co0s Z. 5.311
% J —1—22((M)+U (5.31h)

In this formalisin. the variable Z deseribes the population difference hetween the two wells,
and ¢ describes the guantiun mechanical phase difference between them. The evelution of
the populations depends sinusoidally on ¢, whicl is characteristic of a Josephson junction.
The evolution of the phase depends primarily on the second term in the right-hand-side
of Eq. (5.311), which deseribes the chemical potential difference between the wells. When
Z # 0. and the wells are well-separated such that J < U. the difference in chemical
potential Aje/h = UZ between the wells provides the encrgy difference AE that drives the

evolution of ¢.
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Fraure 5.2: Population and phase dynamics in the T™MM. Using J = 27 x 10 Hz and U =
27 x 1000 Hy, the evolution of the population imbalance Z and phase difference ¢ are caleulated.
Blue curve shows Z(t = 0) = 0.25, undergoing MQST, while red curve shows Z(t = 0) = 0.05,

undergoing plasma oscillations. Both calculations use ¢(¢ = 0) = 0. In this case, Z¢ = 0.199.

A close analogy between these equations of motion and those describing a rotating
pendulum provide a picture for the dynamics. The pendulun deseribed by Egs. (5.31) has
an angular momentum Z, rotation angle ¢, and length proportional to v1 — Z2. For the
pendulum, a small initial momentum will result in the pendulun’s swinging back and forth
about the bottom of its trajectory, the wmomentum and phase oscillating sinusoidally. This
motion is analogous to the stationary de-Josephson effect, also known ag plasma oscillations.
For large initial mowmenta, the pendulumn will swing up above its maximum and continue
to swing in the same direction. its phase angle ever increasing. This motion corresponds
to the oscillatory ac-Josephson offects , which in the context of cold atoms is referred to as

macroscopic quantumn self-trapping (MQST).
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PLASMA OSCILLATIONS

In the limit of small amplitude perturbations about 2 = 0 and ¢ = 0, we can rewrite

Eq. (5.31) to sccond order in Z and ¢ as

1z
—— = _, 5.32a
(l/ ](D (J 3 1)
¢ .
i% = (J+U)Z, (5.32)
[Q¥A
such that
2
du‘f“z = —J(J+U)Z. (5.33)
ar-

These equations deseribe harmonic wotion, where Z(f) o exp(iw,f) and the plasma fre-

quency is

wWp = J (J + U) (534)

The red lines in Fig. 5.2 show the dynamies in this linit.

In this regime, the population difference Z and phase ¢ oscillate sinusoidally about zero.
In the absence of interactions (U — 0), the plasma frequency wy, =+ J, where the tunnelling
rate shiimply corresponds to the energetic splitting between the symmetric and antisymmetrice
state of our ansatz. The presence of interactions increases the rate of transport between the
two wells. The “plasma” nomenclature stems from the analogous effect in superconduct-
ing Josephson junctions, where energy is periodically transferred hetween the clectric field
and the junction coupling energy [127], the type of collective longitudinal oscillation of an
clectron gas that is called a plasmon [164].

Using the same small Z, ¢ approximation, the Hamiltonian can be written as

hiN (U +J J

H L hammonic = 224 ¢
NN harmonic 5 9 + 2(,b

which is recognized as a harmonic oscillator hamiltonian, where the variables Z and ¢ are
anonically conjugate variables, with commutation relation (to the same order in £ and
&) [2,6] = —2i/N. This small amplitude approximation to the Hamiltonian is relevant in
many situations where the double well system is adiabatically deformed from a single well,

maintaining the ground state wavefunction.

MACROSCOPIC QUANTUM SELF-TRAPPING

Foregoing the small Z and ¢ approximation. the equations of motion Egs. (5.31) lead to

ac-Josephson type effects and macroscopic quantn self-trapping (MQST). In connection to
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the carlicr penduhun analogy. these effects parallel the pendulum swinging around its pivot
always in the same direction. For initial population imbalances Z or phases ¢ greater than
some critical value, the population difference hecomes trapped, with more atoms always on
one side of the double well. Asswining zevo initial phase difference between the wells, the
population difference between the wells becomes trapped when the phase difference winds
to ¢(t) = w before Z changes sign. and the subsequent evolution of the phase drives the
population Z back towards its initial value. This critical value is

2

Z(,':U

J(U = J). (5.36)

The “ac”™ terminology in this regime is due to the regular sinusoidal phase evolution.
The population difference Z will oscillate about a non-zero value, and this establishes a
mean non-zero chemical potential difference between the wells, which dictates a nearly-
lincar always-increasing value of the phase difference ¢, which, modulo-27, looks like phase-

winding. The blue lines in Fig. 5.2 show these effects.

5.3 EXPERIMENTAL IMPLEMENTATION

Using the adiabatic rf double well potentials deseribed in §2.3, we can explore the dynam-
ics of a "Rb BEC. In this section, the relevant TMM parameters for this trap are caleulated,
the characterization of the potential is discussed, and the experimental procedures specific
to double well experiments are explained.

As desceribed in §2.3,, the double well potential arises as the result of 1f coupling hetween
Zeeman levels of the 87Rb atoms in a magnetic chip trap. The height of the barrier and
the separation of the wells are varied with the frequency of the rf radiation. wy¢, which we
reference to the static “trap bottom” magnetic field Bg(0) through the detuning parameter
So = wer — |ppgrBs(0)/h]. As we increase the detuning, the barrier height and the well

separation both increase.

5.3.1 TMM PARAMETERS

Given a deseription of the trapping potential and total atom number, various character-
istic energies of the system can be caleulated. In particular, we are interested in the value
of the barrier height 1, the symmetric ground state chemical potential, jug, and the TMM

parameters U, J, and w,.
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Fiaure 5.3: Parameters of our potential. (a) Barrier height (long dashes) and chemical potential
(short dashes) for N = 8000. (b) TMM parametcrs U/27 (short dashes), J/27 (long dashes) and
wy /27 (solid line) for N = 8000 and the potential described in this section. The uniform beyond-
RWA shift (see §2.3.2) has been applied in all cases.

To find the barrier height, only information about the geometry of the system is needed.
The barrier height, V. is defined as the difference hetween the minimum value of the
potential along a along y = =z = 0 and the value of the potential at @ = y = 2z = 0.
The remaining values depend on the atom nmumber and require a solution to the GPE. We
solve for the ground state wavefunctions, given the potential at some detuning dg and atom
nwmber N. From these, the values of 1 = g, U, and J are calculated using Egs. (5.18).
5.23, and 5.27.

In general, Fig. 5.3(a) shows that the chemical potential, g, is roughly constant for the
range of detunings used, and the barrier height increases with dg. The TMM parameters.
shown in Fig. 5.3(b), reveal that pu/h ~ U/2w, as expected. The tunnelling parameters J
decreases roughly linearly until g =~ V. at which point the decrease is exponential. The
plasma frequency, wy, falls between these two values, and because of the J dependence on

do, also falls off lincarly, then exponentially. with d&g.

TUNNELLING PARAMETER APPROXIMATION

The calculation of the tunnelling parameter, due to its rapid decay for large barriers, is
vory sensitive to the form of the wavefunction used in the calculation. While we expect the

GPE to provide an accurate result for this parameter, we can also use an analytic approx-
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imation to confirm and interpret the results. For sutficiently high barricrs, the tunnelling
parameter can be found using a WKB-like approximation of the BEC wavelunction [135].
Expressions for the wavefunction and corresponding probability current in the barrier re-
gion allow for calculation of the dynamics across the junction, which can be compared to
the GPE results.

To simplify the calculation, a one-dimensional approximation is used. A fit to the three-

dimensional potential along @ can he expressed as

2

9
x .
Vextp =W, | 1 — (;‘(;) (5.37)

where #ap are the positions of the well minima and V, is the barrier height. Making a
TMM-type approximation, we assume a total wavefunction for the system () = ¢p(a) +
/9y (), where ¢ = (pp — poz)t/h. The WKB approximation for the wavefunction centred
to the right of the barrier is [135]

Yr(r) = (h(.‘],'() - "1'1))2> 1/2 ) X
i 167w D3a 2m [Voxe,ip () — N]‘]/[

om\ /% [* 1/2
exp | — <le—> / dax'2m [V;xt,m(a:’)—-;(] - (5.38)

&

where 2}, is the half-width of the barrier (as shown in the inset of Fig. 5.4), A = 0.397 is found
by matching solutions inside and outside the potential, and D is the boundary thickness,
which sets the distance near the classical turning point over which a Thomas-Fermi wave-
function is not valid, which in this potential is D = [(8m/h%xo) ((uVi(1 — / 1/ V) /2]~ /3.
The wavefunction in the left well is found in a similar manner.

Assuming equal populations between the wells (Ng = Ny, = N/2; ur = pp, = p) and
finding the probability current in the barrier, the population transport can be expressed as
dNg/ dt = —Iysin ¢ where
A2 (g — ap,)? T I

2whaxg b —L—o— Vb

/2 pay/x 2

2mwi B/:E0 N z

exp | —2xq b da! [(1—a™)?2—[1- a2
h? 0 20

By comparing this dynamical equation with Eq. (5.31a), we find that Jwikp = 2Ip/Niot-

Ip=

1/2

(5.39)

In Fig. 5.4, we show the calculations for the tunnelling paraumeter. The result from
the GPE (solid line, as calculated for Fig. 5.3) is shown along with the above calculation

(dash-dotted line). Though these solutions are not identical, the scaling is similar.
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Fraure 5.4: WKIB approximation of tunnelling parameter. The solid line is the full GPE result,
J/27, shown in Fig. 5.3, the dash-dot line shows the tunnclling parameter Jwikp/27 for a 1D
potential whose characteristics are those along the path in x between well centres, and the dashed
line is the tunnelling parameter for a 1D system with a potential as scen along the shell of resonance
in the 2 — y plane. Upper inset shows a contour plot of the full potential at y = 0, along with the
two paths indicated. The lower inset gives a schematic of the one-dimensional double well and the
parameters used in the calculation of Jwis.

To better understand the tunnelling parameter in our experiments. we consider the
details of our potential. As discussed in §2.3.1, there is a shell of resonance along which the
minimuni of the potential would fall if polarization effects were absent. When accounting
for the polarization. there remains some “stretching” of the potential minima along this
path, and for barriers dg 2 4 kHz (for our typical parameters). there is an inflection in the
shape of the potential along the » = y = 0 line, such that a pair of local minima emerge
at z #£ 0. The path through this point provides a lower barrier connecting the two wells
than the path of the shortest distance between them. The upper inset of Fig. 5.4 shows a
contour plot of the potential at y = O and the two paths considered: the dash-dotted Hne
is the original path, and the dashed line is the one just described.

We repeat the same calculation of the tunnelling parameter for this second path. using a
barrier height given by the height of the potential at this new minimum along the x =y =0
line, with xg being the length of the elliptical arc connecting the absolute minimum to this
new point. This tunnclling parameter is shown as the dash-dotted line in Fig. 5.4. The

barrier height increases less rapidly along this path than across the centre of the potential,
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and results in stronger tunuelling.

If the strongest tunnelling path is chosen. the one-dimensional approximation should
give an upper limit for the tunnelling parameter, since all other tunnelling pathways will
be weaker. The curved path in this analysis always gives a tunnelling paramceter greater
than the one calculated with the full 3D GPE. Qualitatively, these results show roughly
the same trend and scaling of the tunnelling parameter with respect to detuning. These
results highlight the importance of using a full three-dimensional simulations to determine
the tunnelling characteristics. For the low-barrier work in this thesis, the longer path is
irrelevant, though the stronger counection along the shell may have implications for the

high barrier work discussed in §5.6.1.

5.3.2 CHARACTERISING TIIE DOUBLE-WELIL

In addition to calculating the dependence of the system parameters on the experimentally
controlled detuning dg, some trap characteristics can be measured directly. While we do
not have sufficient imaging resolution to measure the distance between the wells in situ, an
interference experiment can provide information about the spacing between wells.

We begin by cousidering a single BEC that has been split in two, such that the halves
remain phase coherent. With the centres of the split BECs separated by a distance d, the
condensates are released from their traps and allowed to fall under the influence of gravity.
Assuming the traps are harmonic, the condensate wavefunctions are Gaussian. For initial

wavefunctions

ETOR(L) r 4+ d/2)2
Unr) = (R exp {—(—ng} (5.40)

where Ry is the Gaussian width of the wavepacket and ¢ py,) is the initial phase of the right

(left) condeunsate, the time evolution, according to the Schrédinger equation, gives [153]

e!Oray+olD) (r £d/2)%(1 — ilt/mR3)
Il ) = — . — 5.4
where /() = [Ry — ilit/mRo]*/?, and the width after some time is
: ‘ nt\?
R?=R? — ). 5.42
l 0 + (’m,Ro) (J )
In considering the full density distribution p(r.#) = [¢(r,t)]> = [VNryr(r, )+ Ny (@, 1))

there will be an interference term

2/ W Re [l )03 )] ~ A cos ( T —dnt o) (5.43)
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whoere A collects all of the time-independent terms. In our geometry. d = dib, so the fringes
we observe should be perpendicular to the a-divection. The spacing between fringes. A, is
the distance between adjacent maxima in the density distribution, such that

mRER3 2wt

Ay =927 ~
! "Thtd md

(5.44)

where the long-time-of-flight approximation has been made in the last step, where Ry =
ht/mRy. The density distribution is integrated along y alter some time of flight ¢, from
which Ax can be measured (see §5.3.3). Inverting Eq. (5.44) for d gives the separation
between the wells.

The assumption of the absence of interactions is not valid in our system of 5TRD atoms.
and the wavefunctions are not Ganssian. Using a similar derivation, the initial wavefunctions
and their time evolution are calculated from the GPE. In these calculations. the momentum
distribution at carly times gives the density distribution in long time of flight.

Figure 5.5 shows the fringe and well spacing for the double well potential as a function of
vf detuning, dp. The inset gives an example of an averaged interference pattern at dg /27 =
14 kHz. We sce good agreement between the calculation and the measurcment in shape,
though a shift of the theory line dg — Jp + 2.1 kHz is required to attain absolute agreement.
The necessity of this shift is likely aue to the systematic uncertainties in measuring Bg(0),

which are on the order of 4=1 kHz.

5.3.3 INITIATINCG AND MEASURING DYNAMICS

To study a BEC in a double well trap, we begin by preparing a 5'Rb condensate in the
usual way (§2.1.1). We modify the final steps of the cooling to climinate any unwanted
collective excitations by creating the BEC in a partially split trap. Dynamics are initiated
by preparing an out-of-equilibrium distribution and allowing its evolution. The population

distribution between the wells is measured using standard absorption imaging.

PrePARING A BEC FOR DOUBLE-WELL EXPERIMENTS

The general sequence for the preparation of a BEC in §2.1.1 is slightly wmodified for the
following double-well experiments. In the “Evaporative cooling”™ step. we proceed as usual
until the atoms are just above degencracy. At this point in time, we introduce the adiabatic
rf dressing to gradually deform the potential and complete the forced rf evaporation in a

dressed trap.
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We choose trap parameters for the evaporative cooling such that the trap is fattened
at the centre, with zero barrier. With a typical static trap bottom wrppy; = 27 X 787 klz. we
lincarly ramp on the rf dressing power By from 0 to 240 mG at a frequency do = Oppep =
27 x (=22 kHz) in 100 ms. Simultancously, we raise the frequency of the rf evaporation
knife, as the cffective potential is now additionally separated from the adjacent mye state
by the Rabi frequency Oy = mpgrpa3 By /I The evaporative cooling is finished in this trap
with a single 100 ms linear ramyp of the vf knife to a final value that produces a quasi-pure

BEC with the desired atom munber, N.

BIASING AND INITIATING DYNAMICS

We bias the system to create out-of-equilibrinm population distributions by introducing
an optical force to the system. as described in §2.2. By weakly focussing a 1064 nm “hias
beam,” (which is a misaligned and expanded ODT1) with beam waist w = 65pm and power
Phins propagating in the the y-direction at a point in the a-z plane off-centre from the
barrier, we can provide a roughly lincar optical potential across the junction. When we
choose to prepare a biased sanple. we ramp on the power of this beam in 100 ms before
the BEC is created (see Fig. 5.6(a)).
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Fraure 5.6 Biasing the double well. (a) The BEC is prepared in a biased double well, where the
tilt potential originates from an ODT [ocussed off-contre from the double well (in this case. at large
2.} The focus is much larger than the size of the system, such that the potential is roughly linear
across the wells. (b) The bias potential is removed to initiate the dynamics. By suddenly removing
it, the systems is left in an out-of-equilibrium distribution. with a higher chemical potential (and
more atowms) on one side than the other.

To split the clouds. we leave the bias beam on and inerease wye (and thus dg) to the
desired value dy = dpoiq in 20 ms. We have checked that this ramp is adiabatic  slow
cnough so as not to change the final results. The bias beam power. Ppiag. is ramped off in
0.5 ms. which leaves a population imbalance in a symmetric potential (Fig. 5.6(b)). We
allow for dynamical evolution of the systew for a time ¢, after which we freeze dynamies by
rapidly increasing both By and wyr to separate the clouds and raise the barrier. The steps

listed in this paragraph arc illustrated in Fig. 5.7.

MEASURING DOUBLE-WELL POPULATIONS

To determine the changing population imbalance. we use absorption imaging to count
the numbers of atoms in the right and left wells, Ny and N, respeetively. The dynamics
are frozen after #),4,1q by raising the barrier and separating the well minima diabatically via
rapid changes in both rf frequency and amplitude. The initial stage of this ramp eliminates
the tunnelling between wells, leaving two completely separated samples. Because ouly the
relative atom nmnber between these samples is important. the heating associated with
the rapid changes in the potential after separation is inconsequential, so long as the atom
number does not change in the process. The clouds are then separated to ~ 70 p. at
which point the imaging resolution is more than sudicient to image the left and right clouds
independently.

All magunetic and rf traps are twrned off suddenly. After 1.3 ms time-of-fight (TOF)
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Fraure 5.7: Timing sequence for double-well dynamics. Top: power in bias bean. where Py is
adjusted to create the desired imbalance at ¢+ = 0. Bottom: detuning. dg. of rf frequency. BEC is
prepared with dprep < 0. then ramped up adiabatically in 20 ms to the desired value dpaia. At the
completion of fg1q. do is rapidly inercased.

(for all magnetic ficlds to off completely). an absorption image is recorded. The absorption
robe is directed along the y-axis so that the image is taken along the long axes of th
prol lirected along the y-a that the image is tal long the long axes of the
clouds and two round clowds are seen. A detailed discussion of the imaging system and

technicques can be found in Ref. [15].

PIIASE ANALYSIS

As previously discussed. the phase difference hetween opposite sides of the double well
is determined from the interference of the matter waves after release from the trap and
long time-of-flight. Reference [15] (§7.1.1) discusses in depth the fitting procedure used to
extract the phase of the fringe pattern. In short. the two-dimensional absorption images of
momentum space distributions are stunmed along a direetion perpendicular to the line con-
necting the centres of the original two clouds. A Gaussian envelope encloses the sinuscidal

fringe pattern. and we fit to the function

X 2 —1xg)? 275(r —x AT
flr) =cxp <—(—‘)(T;)_)_) [1 +V cos (——(IL) + (f')f,./\J . (5.45)

where x is the distance along the direction connecting the cloud centres. o, and xg are the

=05

size and centre of the Gaussian envelope. V is the visibility of the fringes. Axr is the fringe

spacing. and og is the phase we wish to measure.
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To find the average of a large number of measurements of phase. as is needed in the
repeated measurements made in the following experiments, we must take care in deseribing
the phase because of its being measured modulo 27, To find the average phase angle,
phasors are constructed F{og.) = expligp.) and averaged in the vector sense, to give a mean
phasor length, R = 1/N x| 3", Fy(on)]. The angle of this averaged phasor then extracted,
O = L3, Fulon)). For a well-defined phase, the phasors will add in the same direction
and R will [all close to wnity. For random phases, the phasors will add destructively and R

will tend to zero.

5.4 HYDRODYNAMIC TO JOSEPHSON TRANSITION:

SMALL INBALANCE POPULATION DYNANMICS

The study of transport across a harvier reveals important properties about the many-body
physics governing the system. When the healing length in a superfhiid is small, the local
velocity and density are well-defined and the How is hydrodynamic. The introduction of a
barrier in this superfluid creates a region of low density and large healing length. such that
the transport through the this region will depend on long-range properties of the systemn.
When the density in the barvier region classically vanishes, phenomena like tunnelling are
significant and Josephson effects emerge.

Using the tunability of the barrier height. we study the systemn’s dynamical respounse
to small population imbalances as a function of the barrier height. and characterize the
transport as a function of the coupling between the wells. GPE caleulations ave compared
with these results. and facilitate an interpretation of the transport. In the low-barrier strong-
coupling regime, a hydrodynamic deseription of the system is valid, while when the bharrier is
higher than the chemical poteatial, a TMM is sutficient and Josephson behaviours emerge.
In this work., we sce a gradual crossover between these behaviours through intermediate
barrvier heights.

5.4.1 POPULATION OSCILLATION MEASUREMENTS

We use the population difference hetween the wells as a function of time. Z(f). to char-
acterize the dynamics of the system.

The system s prepared as deseribed in §5.3.3 with initial imbalances Z(0) = 0.05 to
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0.10. and allowed Lo evolve as deseribed in §5.3.3. The population distribution Z(¢) is
measured after a hold time £, A new sample is prepared for each measurement. with 4 to 6
measurenients made per hold time. Tn general, we saple dyuamics for hold times betsween
15 and 30 ms with sampling rates ranging hetween 100 and 400 Hz,

An example time series is shown in Fig. 5.8(a). We sece a clear indication of the popu-
lation oscillating back and forth between the wells, in the presence of a decay bringing the
population towards Z = 0 over a longer time scale. This decay will ignored for the present
analyses and Turther discussed in §5.6. A close examination of the data reveals that the
behaviour is more than a simple damped sinusoid: a Fourier trausform (FT) of these data
reveal two distinet frequencies rising above the noise floor (Fig. 5.8(b)).

We repeat these measurements at many values of dg. In the data presented here. the
total atom number is Ny 4+ Ny = 6300 £ 100 £ 1700 where the first error bar is statistical
(variations in Np + Ny, run-to-run) and the second systematic (absolute atom munber
calibration uncertainty, sce Appendix C). Using our deseription of the potential and the
atom munber, we use the Thomas-Fermi approximation to determine the chemieal potential
joat cach dy. and Eq. (2.13) (in addition to the corrections as deseribed in §2.3.2) to

determine Vi,.

FREQUENCY ANALYSIS

To prepare the data for Fourier analysis, we eliminate any small offset from the asymptotic
value of 2 by subtracting from cach point the mean value of Z(t) across the entire time
series. where the mean might he non-zero due to a small equilibrivin imbalance in the
systenn. To smooth the transformed data, the time series is padded with zeros to a total of
1021 points. When identifying peaks in Fourier space. we ignore points helow the frequency
given by [/l whoere ¢ is the longest hold time., which would be artifacts of the windowing
introduced by the fnite period of measurement. The two peaks with the greatest heights
ave identified and used as the data points in Fig. 5.9. The colour map behind these data is
an interpolation between the Fourier speetra (which run along vertical lines) at cach data
point.

The nneertainty in the frequency measurement is found by simulating data with the
same level of noise as the original time series. The quantity of noise is determined by fitting

thie time series to a 2-frequeney decaving exponential function

Zt)y=c " [y sin(2mwy (= 1o1)) + ao sin(2mis(t — tye))], (5.16)
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Fraure 5.8: (&) Population imbalance. z. vs. time for 8y = 27 x 0.1 kHz, N = 5900. The dashed
line is a decaying two-frequency sinusoidal fit to the data, using fixed frequencics from (). Each
poiut represents 6 BECs, error bars statistical. (b) Fourier transform amplitude spectrum of data
showing two distinet peaks at 268 + 6 and 151 + 13 Hz rising above the noise floor (grey).

where 7 is a tine coustaut for decay, ay(z) is the amplitude of the fivst (second) frequency
component. and vy is the first (second) frequency component, and ¢y gy is the constant
accounting for the phase shift of the first (second) component. The standard deviation
of the residuals from this fit gives the noise level. We simudate 100 sets of data with the
sawe parameters as those given by the fit, with the same total time and density of points.
but with different randomized instances of Gaussian noise whose standard deviation is the
saue as that measured. Taking the frequency measurements from cach of these trials, we
determine the smallest range inside of which 63% of the measurements le. This coufidence
interval is used as the ancertainty in the frequency measurement,

The noise Hoor in the Fourier trausform is established in a similar fashion. Using the
result for the noise level from the time series, we simulate Gaussian noise and take the
Fowrier transform of this. The noise Hoor shown in Fig. 5.8(h) is the mean plus one standard
deviation of the maxinuun peak amplitudes found in 100 such sinnlations.

Figure 5.9 shows the population oscillation frequencies as a function of ¥,/ and d&y. For
stnall values of barrier height. two frequency components are evident in the data. and both
are plotted. For highoer barriers, only one frequency component can reliably be extracted

from the Fourier spectrum, and this alone is plotted.
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Fraure 5.9: Frequencies of simall-imbalance double well population dynamics vs. rf detuning (mea-
sured) and barrier height (caleulated). Experimental points (white civeles) represent the two highest
Fourier components at cach detuning: crror bars are statistical. Dashed lines represent calculated
(3D GPE) frequencies for N = 8000 and Z(0) = 0.075. The solid line indicates the plasma oscillation
frequeney predicted by the TMM. The white dashed line is the hydrodynamic frequency, wpp /27,

measurcinents shown, interpolated wmumerically hetween points, @+ a guide to the eye of the strength
of ecach component. White bars at ¥,/ ~ 0.1 indicate the bounds of the GPE simulation corre-
spouding to the systematic plus statistical uncertainty in atom number. The statistical uncertainty
in dg is £(27 x 0.5) kHz (not shown).

AMPLEPUDE ANALYSIS

In addition to information about the frequencies of population oscillation, data such as
that in Fig. 5.8 yields information about the relative amplitudes of the modes excited by
the initial population iimbalance. From the fits to the data (Eq. (5.46)). the amplitudes the
two analyzed modes are given by a) and as. The fractional dominance of the lower mode
an be quantified as #) = ay /(a1 + a2). The uncertainties in these values are determined
in a similar way to those in the frequencies; we use the noise level in the residuals of the
fit. simulate and fit 100 sets of data with similar parameters. and use the 68% coufidence

interval of these results to represent our uncertainty.
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Fraure 5.10: Fraction of low-frequency mode in population dynamics. Dashed line shows the GPE
simulation for 8000 atoms with initial imbalance Z(0) = 0.075. The grey shaded area represents the
variation of the GPE caleulations over the range of Z(0) = 0.05 to 0.10. The vertical error bars are
statistical; the statistical uncertainty in dg is 27 x 0.5 kHz (not shown). The GPE caleulation gives
A =1 when Vy/p~ 1.1,

This fraction is plotted as a function of §y and V;,/p in Fig. 5.10 for barrier heights at

which two frequencies could be reliably measured.

5.4.2 GPE CALCULATIONS

Given the broad applicability of the GPE to BEC systems, we sought to use the fully
time-dependent three-dimensional GPE to simulate the dynawmics we observe in our tunable
double well. We compare our experimental results to these simulations to determine the
origin and explain the changing amplitude of the frequency compounents in the population
oscillations.

The calculations presented here use Eq. (5.1) to determine the condensate wavefune-
tion in the RWA potential (Eq. (2.13)). Corrections to account for beyond-RWA cffects
accounted for, as discussed in §2.3.2. with a shift of the detuning, dg. All GPE caleulations
in this work were performed with N = 8000. which is the atom munber for which the best
agreement was found in the results shown in Fig. 5.10. The initial imbalance for the calcu-
lations is Z(0) = 0.075. which is turned off suddenly. As in the experiment, we extract a
value of Z(¢), counting the number of atoms on cach side of the well after a variable hold
time, #. Unlike in the experiments. the full density distribution is available and can be
studied to determine the nature of the motion in all dimensions.

Figure 5.11 shows one time series simulation. with experimental data superimposed. The
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F1eurE 5.11: Direct comparison of data to the GPE caleulation, for dg = 27 x 0 kHz. Blue line
represents the GPE calculation result, black points are the experimental data from Fig. 5.8(a). The
two panels show the same data for (a) 24 ms and (b) 64 ms. Calculation data were shifted back in
time by 0.5 ms to account for the experimental ramp-down time of the bias field.

dynamics which cmerge from the GPE caleulation are similar to those in the experiment in
that two frequency components are evident, though the experimentally observed decay is
absent. We extract frequency and amplitude information from the GPE calculations using

the same FT and fit methods as are used on the experimental data.

HEALING LENGTII CALCULATION

From the density distributions found in the GPE calculations, the trap-centre healing
length can be found by caleulating &(r = 0) (Eq. (5.3)). Assigning a characteristic length
scale of the system, d, to be the distance from the mininnun of the well to the middle of the
barrier, the ratio of healing length to system size can be determined. As noted in §5.2.2,
the size of healing length relative to the system size dictates whether the neglect of the
quantim pressure term is valid. Figure 5.12 shows that the trap-centre healing length is
smaller than the system size until the barrier surpasses the chemical potential (W), > o).
indicating a hydrodynamic description of the system is not longer valid in this high barrier

regime.
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Fieure 5.12: Healing lengeh as a function of double-well coupling. The characteristic systew size,
d, is the distance between the well minimum and the barrier maximum. Courtesy of F. Plazza.

5.4.3 INTERPRETATIONS OF SMALL AMPLITUDE TRANSPORT
FREQUENCY CHARACTERISTICS

The experimental frequency data are compared to the GPE simulations (solid lines) in
Fig. 5.9, with very good agreement in the shape and slope of the frequency vs. detuning
characteristic. As in the experimental data. multiple frequency components arc evident
in the simulation for low barriers. To compensate for a systematic unknown in Bg(0),
we perform a single-paramcter fit of the data to the GPE results and find that a shift of
o1l = 27 x (5.1 £ 0.1) kHz aligns the data to the theory (Fig. 5.9).

Also plotted in Fig. 5.9 is the prediction of the TMM for the system parameters. Though
it drastically diverges from the data in the low-barrier limit, it lies close to both the exper-
imental points and the GPE simulation in the high barrier limit, indicating that this lower
mode transforms into the plasina mode as the barrier is raised.

In the opposite limit, the healing length is much smaller than the characteristic system
size and hydrodynamics dominate the system behaviour. Rich dynamics are observed in
this regime, where ¥, < . The appearance of more than one population oscillation mode
arises as a consequence of trap anharmonicity. interactions, and trap anisotropy. If our trap
were harmonie, a linear bias would excite only a single dipole mode. The bharrier breaks
harmonicity along the splitting direction and allows the linear perturbation (€ = 1, m = 0,
where 2 is the azimuthal axis) to excite multiple modes [165]. These 2 excitations are
coupled to transverse (y,z) motion through the nonlincar atom-atom interaction term in
the GPE.
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In axial symmetry. only the m = 0 mode would result in population differences between
the wells. The anisotropy of the trap in the y-z plane leads to the mixing of this mode
with higher order modes which contain transverse (y.z) character, and the resulting mixed
modes, with some m = 0 character, both result in population transfer.

The leading character of the two modes we measure can he identified through an analysis
of the time-dependent density distributions. If owr trap were smoothly deformed to a
spherical harmonic potential, the two lowest modes connect to odd-parity modes [166, 167]:
the lower mode conunects to the lowest m = 0 mode (coming from the ¢ = 1 mode at
spherical symmetry), while the higher mode originates from the lowest m = 2 mode ({ = 3
at spherical symmetry). This was checked nwnerically with the GPE by deforming the trap
into a fully harmonic axially symmetric trap, and following the mode frequencies throughout
this process.

Away from the hydrodynamic regime, the predicted frequency of the plasma mode from
the TMM is also plotted in Fig. 5.9. While the dynamics we observe at wealk couplings
fall outside of the TMM., the lower frequency mode approaches the TMM value for barriers
Vy 2 1.1u. In keeping with the behaviour of the healing length, the TMM, which relies
on quantumn transport, is valid only in the regime where the guantum pressure term in the

GPE cannot be neglected.

AMPLITUDE CIHARACTERISTICS

The amplitudes of the population oscillations from the simulations are compared with
experimental measurcements in Fig. 5.10. As the barrier height increases, the lower frequency
dipole-like mode increasingly dominates. The fractional contribution of this mode nears
unity as the frequency of this mode approaches that predicted by the TMM, indicating that
this lower mode attains the character of the Josephson plasma mode as the barrier is raised.

When the barrier is raised from zero, the higher mode is at first more easily excited
due to an increased anharmonicity along 2 as the trap hottom becomes flatter. By further
increasing the barrier, the higher frequency mode disappears from the population oscillation
spectrum due to the vanishing excitation of transverse modes. As the wavefunctions in cach
individual well arc increasingly localized to the effectively harmonic minima, the linear bias
no longer excites intra-well transverse motion. Furthermore, in the lincar perturbation
regime. the inter-well Josephson plasma oscillation, like all Bogoliubov modes, cannot itself

trigeger any other collective mode.
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5.4.4 IMPLICATIONS OF SMALL-AMPLITUDE POPULATION OSCILLATION RESULTS

In the experiments described in this section, we describe the first measuwrements exploring
the transition from hydrodynamic to Josephson tunnelling regimes in a double well system.
We find rich dynamics in the strongly-coupled low-barrier hydrodynamic regime, where the

aleulated healing length in the barrier region is small. These dynamics transition towards
a single low-frequency mode of population transfer between the wells, consistent with a
de-Josephson-type effect and a healing length in the barrier region larger than the system
size.

Experiments using an adiabatic deformation of a trap from a single to a double well
cross through this transition on their way to the creation of various interesting quantun
states [121, 144, 149-151]. An understanding of the dynamics throughout this regime is
important if the criteria for adiabaticity are to be maintained throughout. In the high-
barrier regime, this criterion can be calculated with the TMM [168], but as we obscrve, the
lowest frequency mode falls below the TMM prediction for barrier heights just less than the
chemical potential.

These results highlight the importance of a quantitative understanding of the double
well systein. Though we observe population oscillations that, at first glance, resemble the
plasma oscillations of a Josephson junction, the system may be in the hydrodynamic limit
and the TMM will not apply. If the physics in question rely on a tunnelling connection,
as in experiments that purport squeezed states, this distinction is important. However, the
observation that “Josephson-like” behaviour exists outside the TMM, as it does in the weak-
link condensed matter systems, demonstrates the generality of these phenomena and the

continuity of the many-body behaviour throughout the crossover into a tunnelling regime.

5.5 POPULATION DYNAMICS OF LARGE IMBALANCES

As discussed in §5.2.3, a BEC in a double well will become self-trapped for sufficiently
large initial population imbalances. The phase difference between the wells, driven by the
large chemical potential difference between them, winds quickly. The direction of popula-
tion transport between the wells depends on the value of the phase, and its speed by the
tunnelling parameter. If the population transfer is slow enough, it does not cross the Z =0

point before the change in phase implores the atoms to repopulate the side of the potential



5.5 POPULATION DYNAMICS OF LARGE IMBALANCES 119

with more atoms in it. In the TMM, the dynamics cross over into this MQST regime when
the tunnelling parameter J is small, restricting the flow of population across the wells, and
the chemical potential, p, is large, driving the rapid phase winding. We find this behaviour
emerging for barrier heights slightly below the chemical potential, where the TMM was
unable to predict the plasma oscillation frequency in §5.4 and cannot be an accurate model

for the system.

5.5.1 ONSET oF MQST

Given a set of trap parameters, and thus a value of J, the onset of MQST can be measured
by ohserving the initial at which the population difference Z no longer crosses through
Z = 0. Systems with large initial imbalances are prepared by increasing the power of
the biasing beam DPhig, to values that give imbalances up to Z(t = 0) = 0.4, using the
techniques described in §5.3.3 and §5.3.3. A series of Z(¢) values is obtained for many
hold times at several values of the initial imbalance, over times much longer than the
characteristic dynamics of the system and on the ovder of typical decay times. For cach
initial imbalance, all measurements of Z(t) are averaged. If the system remains in the
regime of plasma oscillations, the averaged imbalance (£) is expected to be zero, while for
a system undergoing MQST, (Z) #£ 0

Figure 5.13(a) shows that the average imbalance (£) remains near zero for small initial
imbalances, and becomes non-zero above some larger initial imbalance. We are able to
determine a point of onset of MQST with a simple two-piece linear fit, where the first fit
has zero-slope, the second slopce is free, and the meeting of these lines indicates the transition
to non-zero population imbalances for long hold times and the onset of MQST.

These measurements are somewhat obscured by the presence of decay in this systewn.
While both a TMM and the GPE predict the self-trapping will exist forever, we find that the
population imbalance exhibits some decay and tends towards Z(0) = 0 after a characteristic
time that depends on the barrier height (see §5.6). For this reason, the slope of the second
piece of the line is not unity, as might be expected. In addition, the decay inherent to this
system erases the jump in (£) that would be expected at Z(0) = Z¢. This effect of the
decay can be simulated by adding to the equation of motion Eq. (5.31a) an Ohmic damping
term (§5.6.1, [171]), and is shown in Fig. 5.13(b). The effect of the decay on both the slope
and the absence of the jump are confirmed. Despite the obfuscating properties of the decay,
we are able to conclude that there is a qualitative change in dynamics as a function of

initial imbalance in these measurements which corresponds to the observation of the onset
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Ficure 5.13: Onset of MQST. (a) Average value of imbalance vs. initial imbalance, V/p = 0.75
(6 = 27 x 3.1 kHz, N = 5500). As initial imbalance is increased, the average value of Z crosses over
from its equilibriuin value near 0.03 to some larger value. The relationship is not one-to-one due
to decay of the self-trapped state for low-barriers. The solid line is a guide to the eye, showing the
transition to the self-trapped state beginning at Z(¢ = 0) = 0.18. (b) Calculated average imbalance
vs. initial imbalance in the presence of decay. Parameters used are N = 5000, U = 27 x 750 Hz,
J =27 x 0.88 Hz, with a decay time 7 = 75 ms. (¢) Calculated Z¢ vs. barrier height (black cireles,
courtesy of F. Piazza) and value extracted from data in (a) (diamond).

of selt-trapping.

GPE calculations similar to those done for the small-amplitude oscillations, show that
self-trapping cmerges within the GPE, cven in the strong-coupling regime. Fig. 5.13(c)
shows the results of these calculations, as well as the result from Fig. 5.13(a). Clearly, the
calculation does not adequately describe these dynamics, and it is likely that the decay of
the population imbalance contributes to the diserepancy. However, it should be noted that

the example we show here dewmonstrates that MQST occwrs for g > V4, where there remains
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a significant coupling between the wells.

5.5.2 MQST POPULATION OSCILLATIONS

The population dynamics of MQST can be directly observed by measuring the time de-
pendence of Z(t). Using the same preparation method as deseribed in §5.5.1, the population
dynamics are measured with a finer time resolution. Figure 5.14 shows an oscillating popu-
lation imbalance about a non-zero and decaying value of Z. In the TMM, these oscillations
are attributed to the sinusoidal cuwrrent-phase relationship charvacteristic of the Josephson
junction (Eq. (5.31b)). and indicate that the phase difference across the wells is well-defined
and drives the population across the junction as it evolves. In this case, where W,/ = 0.8
and the TMM is not expected to apply. there exist indications of a phase-driven population
in the oscillatory behaviour of Z(t).

These observations of Josephson-like behaviour in the intermediate coupling regime,
where the results of §5.4 would indicate that the TMM is not a valid description of the
system. indicate that “Josephson”-like effects exist in regimes where there remains a di-
reet connection between wells. As demonstrated by the calculation of the healing length
(Fig. 5.12), the system’s properties arc increasingly non-local as the barrier is raised. and
extend across the barrier region even before the physical connection between the wells is clas-
sically broken when i = V4. The Josephson behaviowr is associated with the non-locality of
the relevant quantities describing the system - as the local hydrodynamic deseription fails,
the long-range parameters like phase and number difference across the wells become good
parameters of the system. Like the condensed matter weak-link junctions described in §5.1,
Josephson effects emerge when the long-range properties are important, even if tunnelling

transport is not yet the only connection between the regions.

5.6 DECAY OF POPULATION IMBALANCE

Throughout our exploration of the tunable double well, we find an unavoidable decay in
the population imbalance. as displayed in both Fies. 5.8(a) and 5.14. The origin of this
decay remains an open question. In attempts to understand its origin, we have measured
the characteristic times for the population imbalance to reach zero as a function of various

system paramcters, including barrier height and temperature.
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Fraure 5.14: MQST population oscillations for 14,/p = 0.8, N = 8300 £ 200. Dashed line is
intended as a guide to the eye; using a sinusoidal + lincar fit, we find the frequency of population
oscillations is v = 266 + - Hz.

5.6.1 THEORETICAL TREATMENT OF DRECAY

The phenomenon of population decay. whether of the plasma oscillations or MQST, is
not often treated in theoretical descriptions of BEC double-well dynamics. Though the
zero-temperature GPE model deseribed in §5.4.2 vory well deseribes the frequencies and
amplitudes of the dynamics we observe, it does not display any indication of the decay
of the population oscillation signal over its 64 ms time span. as seen in Fig. 5.11. The
absence of decay in the GPE calculations climinates the possibility that this is due to sowe
dephasing from higher-frequency modes that might have been excited alongside those we
measured.

One theoretical treatment considering decay in the double well systomn attributes it
to finite temperature. Zapata, Leggett and Sols [169] consider the transfer of the non-
condensed atoms across the barrier in botlr high and low barrier configurations. They find
within their assumptions that the dissipation is “Olmic.” that is. it the curent dZ/dt x
—GZ. They find that in both the high-barrier limit that G ~ T? exp (=V,/kpT) while in
the low-barrier limit G ~ T2. Other theoretical treatments {170, 171}, in reference to [169)]

add a “phenomenological” decay term with an Ohmic dependence.
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Fraure 5.15: Decay of small amplitude population oscillations. (a) Decay time. 7. for small
imbalance population oscillation data. (b) Reduced decay thue 7/77. or small imbalance population
oscillation data, where we normalize by the period of the low-frequency oscillation. For both (a)
and (b). two points fall above the top edge of this plot, likely the result of fitting difficulties.

5.6.2 OBSERVATIONS OF DECAY
DECAY OF PLASMA OSCILLATIONS

The analysis in §5.4 ignored the presence of decay in the system. To quantify this deunping
for the small-amplitude perturbations. we use the decaying two-frequency fit (Eq. (5.46))
to determine the characteristic time for decay. Figure 5.15(a) shows the value of 7 as a
function of the detuning dy. and Fig. 5.15(b) shows the same data normalized by the period
of the lower frequency oscillation. Ty = 1/, We find that the decay time is roughly two
oscillation periods. for the data discussed in §5.-L. The error bars obtained for this data are
quite large. due to the difficulty of extracting a characteristic decay time from a time series
whose total length is approximately equal to the decay time.

We can evaluate the effect that this decay will have on the frequency of population
oscillation by asswuning the system is a simple harmonic oscillator. In the presence of decay.
the frequency of motion wq = 27v (Eq. (5.46)) is wodified as wq = /wj — ~2. where wy is
the natural frequency of the system. and 4 = 1/7 is the decay constant. To estimate this
frequency shift in our systen. we use v = 1/271 = wqeeay/47. In this case. wq = 0.997w.

which is nuich smaller than the uncertainties in the measurement.
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Durcay ov MQST

The decay of Z is also evident in experiments with larger initial population imbalances.
where the systom undergoes MQST. In this case, we measure the decay by fitting the data
Z(1) to a simple exponential decay and extracting the 1/e decay time. 7. Figure 5.16(a)
displays two such curves for ditferent values of barrier height. The rate of decay is slower
for the higher harvier. as might he expected. To further guantify this. we caleulate the
tunnelling parameter J (§5.2.3) [or each set of experimental parameters. and plot the rate
of decay, 1/7 as a function of J. There is a weak power-law dependence, which we extract
by fitting the data to a lincar function on a log-log plot (Fig. 5.16(1)). We find that the

) ; 29
decay rate depends on the tunnelling parameter as 1/7 x JU22,

TEMPERATURE DEPENDENCE

As a means to better understand the origin of this popudation decay. we also study the
decay rate as a function of the system temperature. To quantify temperature, the conden-
sate fraction is used as a measure. The experiments ave performed by alternately measuring
the characteristic time for decay, 7 (as in Fig. 5.16(a)) aud condensate fraction. Neo/ N, for
identical prepavations. The coudensate fraction measurements are performed immediately
before the splitting process (after the “preparation™ step in Fig. 5.7). by releasing the atoms
from the trap and recording a momentum distribution along the y axis after 13 ms time
of flight (see Appendix C for details of the fitting procedure that determines condensate
fraction).

Because the change in temperature is effected through evaporation. the munber, N. is
not constant. To account for the change in tunnelling parameter J caused by the change in
nuber, we normalize the decay rate to the tunnelling rate, through the power-law fit found
at constant temperatwre in Fig. 5.16(b). Using the condensate fraction as the parameter
indicating temperature, we plot the normalized decay rate to find no significant dependence
of the decay rate on temperature.

The non-dependence of the decay tine upon temperature is surprising. and may indi-
ate that the origin of the deecay is technical. A more expansive stidy of the decay, over
broader ranges of tunnelling parameters and tempoeratures, is needed to bettor understand
the phenomenon.  In addition. the finite-temperature modelling of this system may lend
insight into the source of this dissipation. using, for example, "ZNG™ [172] techniques to

sidate the dynamies of the system.
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Fraure 5.16: Deeay of large amplitude population oscillations. (a) With large initial inbalances,
decay curves for do == 2 x 12 kilz {squares) and o = 27 x 27 klz (cireles) with 1/e decay times
7= L0 and 720 s, respectively. (b) Rate of decay (1/7) vs. tunnelling parametoer, J at constant
temperature and N = 9100 4+ 700. The dashed line is a fit giving a power law relationship that
gives the relationship 1/7 o JO215E0.008 © Pl pynnelling rate is varied by changing the height of
the harrier, with detunings rauging from dg = 5 to 13 kHz. (¢) We measure the decay rate as a
funetion of condensate fraction by varyving the condensed fraction and number. The decay rate is
noralized to the tunnelling parameter for cach set ol experimental conditions using the power-law
relationship found in (b). Given a value of J for cach experimiental point, the normalized decay rate
is the measured rate divided by the rate given by the fit in (b) at this value of J.

5.7 PIHASE SIGNATURES

While (he experimental work discussed to this point interrogates the population differ-
cnces between wells, the phase difference between the condensates in cacli well can also be
measured. As discussed in §5.3.2. if the clouds [rom the two wells are allowed to overlap

alter some time of fHight. interference fringes will be visible along the direction connect-
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ing the centres of the clouds. The phase of these fringes. with respeet to the envelope, is
representative ol the quantum mechanical phase difference between the clouds. Using this
information, we have an additional tool for probing the understanding of the double-well
systen.

A direet comparison of these data to that presented in previous sections is hampered by
a change in the apparatus between the taking of the data in this section to those in previous
sections. The phase data presented here were collected belore a “proper” technique was
developed for compensating gravitational forees. and so there existed in these double well
traps the “banana”™ deformation that changes the tunuelling pathways ([15]. §2.3.3). As
a result, though every attempt has been made to mateh the calibrations from this older
configuration with the newer results of previous sections. the correspondence between values
of dy between secetions is not divecet. To emphasize this difference to the reader, the detuning

values in this seetion will be denoted as dg.

5.7.1 COINIERENCE TIME MEASUREMENTS

To establish the [easibility of using phase dynamics to reveal the behaviour of the double
well systen, we studied the repeatability of phase measurements over many realizations of
a BEC in the double well potential. Starting with a single well, the trap is deformed into
a double well configuration. If the BEC is subject to the same process for cach repetition
of the experiment. the phase difference between the wells should evolve in the same way.
and the phase measured in the momentum distribution should remain constant. If these
phase measurement arve repeatable. we know that the experiment is well controlled. and
that reliable measurcments of the phase can bhe obtained.

Early results are discussed in Ref. [15] (§7.1.2). In the present work. the coherence of the
relative phase between the wells is measured as a function of a hold time after the splitting
process.  Many phase measurements are repeated at ecach hold thme, and the degree of
repeatabiity is gquantified as the degree of coherence as measured by the quantity R. which
is defined in §5.3.3.

Figure 5.17 shows one such measurement. The usual splitting procedure is performed
with no initial imbalance, and the atoms are held in the split trap for some variable time. We
sce that the mean phasor length deereases with time. thongh the fall off is quite slow in this
well-connected configuration. Also shown are three examples of the individual measurement
results in Fig. 5.17(b.c.d) and the measure of R and ¢y,

These results are encouraging, suggesting that well-resolved phase measurements can he
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Fiaure 5.17: Colerence time measurements, dg = 6.5 kIz (a) Mean phasor length, R. vs time.
{bye,d) Individual phase measurements (black diamonds) plotted at angle ¢ and radius correspond-
ing to the visibility, V. Red line indicates the caleulated value of length R at angle ¢g. Phases
measured at (b) 10 ms, (¢) 75 ms, and (d) 100 ms hold time.

made even after relatively long hold times.

5.7.2 JOSEPHSON DYNAMICS

In carlier sections. the population dynamics of both small (§5.4) and large imbalances
(§5.5) were studied in detail. In compliment to these measurements. the phase signatures
of these dynamics can also be measured. Though these were not studied in the same detail,
this section presents proof-of-principle demonstrations of hoth de- and ac-Josephson effect

hehaviouy.

PLASMA OSCILLATIONS IN PIASE

For small initial population imbalauces. §5.2.3 deseribes a harmonic oscillator hamilto-

nian (Eq. (5.35)). in which Z and ¢ are conjugate variables. In this description. as in a
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simple harmonic oscillator, energy iy periodically transforred between the interaction and
the tunnelling energies. in analogy to the transfor between potential and kinetic energy of
the oscillating pendulun.

Using the same technigques deseribed in §5.3.3 to initiate population dynamics in the
small anplitude regime. we measure both the population imbalance oscillations and the
conjugate oscillations in phase. Figure 5.19 demonstrates the oscillatory behaviour of both
Z and ¢ for identical experimental conditions. The measured oscillation frequencies from
these sets of data agree with one another at w), = 27 x (115 £ 1) Hz for the population

oscillations and w), = 27 x (117 & 2) Hz for the phase.

Prase wiNpDING IN MQST

The phase evolution for the large population imbalances. as suggested by the oscillating
population dynamics observed in §5.5.2, is responsible for MQST. As shown in Fig. 5.2, the
phase should always increase in this regime, unlike the oscillatory behaviour observed for
plasma oscillations. In the limit of small change in populations (J <« U; Z(t) = const),
the Josephson equation holds, and the phase evolves linearly in time, as ¢(¢) = UZt. The

frequency of these phase oscillations is waigsr = UZ, which is just the chemical potential
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Fraune 5.19: Phase winding and MQST. After preparing an initial imbalance of Z(0) = 0.0640.01
at dy = 27 x 24 kHz with N = 7000, the systom is allowed to evolve for some hold time, after which
the phase is measured. Solid black points show the average pliase as a function of hold time, where

the open points represent the results of individual measurcments. Dashed grey line indicates a fit
to the data assmning 27-periodic linear phase winding, giving a frequency wyogr = 2m x 220 Hz.

difference between the wells.

While we were never able to capture both the population oscillations for the same
parameters (and on the same day) as the phase winding dynamics, they have been observed
separately. By creating a large initial population imbalance as deseribed in §5.5, the MQST
dynamics were initiated. Fig. 5.19 shows the evolution of the phase over across one period.
The fit to these data yields a frequency of wyiqgr =~ 27 X 220 Hz, where the approximate
equality is because of the uncertainty in fitting to only one period of oscillation.

The method of phase imprinting could he used as an alternate means to engineer an

out-of-cquilibrium initial condition, with which the dynamics could be initiated.

5.7.3 PIHASE IMPRINTING

Just as the when there exists a number difference Z # 0. the phase difference between the
wells will evolve if a chemical potential difference is established with an external potential.
Through precise control of such an external potential. the phase difference between the
wells could be controlled and the method could be used as a tool to “write” a specific phase

difference into the system.
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Fiaurk 5.20: Phase imprinting with 8y = 27 x 8 kHz, N = 8000, and balanced populations. Optical
power, in arbitrary units, was applied for 0.5 ms and the phase observed. The solid points are the
average of 10 measurements, which are shown individually as the open circles. The rate of phase
difference accumulation is determine from the dashed grey line fit and gives d¢/ dt = —0.907 rad
per unit optical power.

Using the same laser beam (ODT1) that biases the wells for initiating population dy-
namics. a potential energy difference is established for the Z = 0 populations. The BEC
is released from the double well potential and the momentum distribution is analyzed to
determine the relative phase between the wells as a function of the strength of this potential
difference.

Figure 5.20 shows a measurement of the phase imprinting. Unlike in previous sections,
we prepare a halanced population in the double well system. For 0.5 ms, we apply a pulse
of light whose focus is to the outside of both wells, such that the inteunsity incident on one
well is greater than the other. As a function of the power of this beam, we measure the
phase difference between the wells and find that it has a roughly linear dependence on this
power. A linear-modulo-27 fit shows that the phase winds with a rate d¢/ dt = —0.907 rad

per unit optical power!

. Assuming the atom number is perfectly balanced, the chemical
potential difference will be entirely due to the potential energy difference between the two

wells, the difference between the two wells is Wyias/h = 27 X 450 Hz.

“The optical power for this experiment was nol calibrated, though it is known that this scale is linear in
real optical power.
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5.8 LESSONS FROM A TUNABLE DOUBLE WELL

One of the great advantages of studying many-body problems with a quantum gas is the
ability to precigely control an atomic system’s parameters. Through the combination of
magnetic trapping and rf-induced internal state manipulation, we exploit this advantage to
create a tunable double well potential for a BEC, where we can transform the environment
from a single to a double well. The particular focus of the work presented in this chapter
is the study of dynamical properties as a function of the barrier height.

The major result of this work is the observation of the transition between a hydro-
dynamic regime of superfluid dynamics at low barrier heights and a Josephson tunnelling
regime at barriers higher than the BEC chemical potential. We see a low-lying mode of the
hydrodynamic system transform into the Josephson plasma mode as the harrier is raised,
indicating the continuity of the physics between these regimes. The presence of an un-
avoidable higher-lying mode in the hydrodynamic regime indicates that the geometry of
the system is an important consideration in the design of devices that require a transition
between these regimes to perform the splitting of a condensate.

While the TMM describes the frequencies of these dynamics for high barriers, its di-
vergence from the experimental results at barrier heights lower than the chemnical potential
warns against using this model too freely when establishing criteria for adiabaticity in split-
ting processes. However, in our measurements of MQST, we find that this TMM-derived
Josephson-effect remains in the intermediate regime of harrier heights and is predicted by
the GPE. These results establish that the domain of Josephson-type effects in this BEC
system extends beyond the regime of validity of the TMM.

These results both indicate the regimes in which the hydrodynamic and TMM approxi-
mations of the GPE are valid, and confirm that the full GPE is an accurate predictor of the
frequencies and amplitudes of the dynamics in all regimes we consider. The observation not
accountted for hy the GPE is the damping of the population dynamics, which remains the
most striking open question in this system. Our measurements scein to indicate that the
damping of these dynamics is independent of temperature, and that the time for damping
depends only very weakly on the tunnelling parameter, J. While further work may he re-
quired to climinate the possibility that the source of this noise is technical, calculations that
include temperature and other non-GPE excitations may shed insight into this problem.

This work, which hegan in an attempt to understand the parameters U and J and their

role in the dynamical splitting process on the path to squeezed state generation [15], has
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demonstrated that the geometry of the system is important, and that the full three dimen-
sions of the system must be included in any analysis. We have found that though dynamical
signatures qualitatively resemble those predicted by the TMM, the parameters of these dy-
namics do not necessarily provide a direct measure of the TMM parameters. Instead, we
sce a continuous transformation of the dynamics from a regime where hydrodynainics are
valid to one where a TMM is valid. These results should better inform future experiments
employing dynamical splitting processes to perform interferometry [23, 150, 151] or to create

unconventional quantwn states [121, 149].
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CONCLUSIONS AND OUTLOOK

The foundation on which this thesis is built is an experimental apparatus designed and
built to produce ultracold 'Rl BECs and 9K DFGs, atomic ensembles in which thermal
motion is negligible and interactions between particles dominate the energetics. The avail-
ability of these quantum degenerate samples inspired theoretical and experiiental studies of
ultracold Bose and Fermi gases in configurations designed to expose particular many-body
effects, including ferromagnetism, hydrodynamics, and Josephson tunnelling.

Three principal contributions are presented in this thesis. First, a technique using
the spectroscopic distinguishability between atomic species to selectively manipulate one
species in a mixture is developed. and the applications of this tool are discussed. Second,
the signatures of a ferromagnetic state in a trapped two-component Fermi gas are predicted
and the foundations for the experimental realization of this transition in an ultracold gas
of 99K are laid. Third, the many-body dynamics of a ¥Rb BEC in a tunable double well
system are explored, with a focus on the crossover behaviour between hydrodynamic and
tunnelling transport between the wells. These topics are smnmarized below, with reflections

on the prospects for further study.

SPECIES SELECTIVITY

Chapter 3 describes a new technique for manipulating a species mixture of ultracold
alkali atoms. Using the differences in the spectroscopic character hetween atomic species,
the effect of an optical field on each species can be tailored through choice of wavelength.
We show that when this wavelength is chosen to fall between the two strong transitions
in the alkali atom, there will be zero potential energy shift for a reservoir species, while

there remains a shift for a target species. Similarly, the wavelength can he chosen near
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the strong transition for the target specics, rendering negligible, hy comparison, the shift
on the reservoir. Upon evaluating the potential encrgies and losses associated with these
schemes in mixtures of alkali atoms, we find that both are experimentally feasible: the
tune-in scheme is better suited to heavier elements while the tune-out scheme should work
well for mixtures of the lighter elements.

With an increasing number of ultracold gas experiments using two or more atomic
species [35, 56, 58-60, 173, 174], techniques like this species selectivity make possible the
exploration new many-body systems. As a tool to reach colder temperatures, selective
addressability has been used to transfer cntropy from a target species to a reservoir species
[32], providing additional cooling to reach lower energy scales and new regimes of many-
body physics. If the optical field is established as a standing wave, a lattice potential
can be imposed upon one species, leaving the other delocalized from the lattice sites. For
shallow lattices, this technique could tune the effective mass of the target species [77] to
create a more favourable ratio of masses between species. In mixtures of fermions and
bosons, a bosonic background species could mediate interactions hetween identical fermions
on separated lattice sites, through, for example, phonon excitations [51- 53, 175]. In general,
species specificity provides access to at least one additional degree of freedom in the system,
which can be used to implement an increasingly detailed environment for the atoms, which

might prompt the discovery of new many-body phenomena.

ULTRACOLD FERROMAGNETISM

Chapter 4 discusses the signatures of itinerant ferromagnetism in trapped ultracold
fermions subject to strong repulsive interactions. At the crossover to the ferromagnetic
state, mean-field, local-density calculations predict observable discontinuous features in the
bulk energies of the system, which were confirmed by an experiment [108]. Further calcula-
tions show that the cnergetic costs associated with magnetization gradients give a preference
to the three-dimensional magnetization configuration that distributes the gradients across
the entire system, in a hedgchog geometry.

To access the regime of strong interactions with 1°K . the experimental apparatus was
adapted to include optical traps and stabilized magnetic fields. Using a two-state mixture
of K , strong interactions were observed as a loss feature near the Feshbach resonance.
While questions remain regarding its three-hody loss rates in the repulsively interacting
regime, WK offers advantages over SLi: its greater mass allows for quicter imaging, and

its narrower Feshbach resonance implies that smaller, and therefore faster, magnetic ficld



changes are required to change the interaction strength.

The apparatus is well-poised to continue exploring ferromagnetism in a trapped Fermi
gas, both to confirm the results observed in SLi [108] and to complement these results
by distinguishing between the ferromagnetic state discussed here and other possible cffects
displaying similar energetic signatures [110, 111]. To determine unambiguously if the systemn
is ferromagnetic, a direct measure of magnetic propertics is required - the observation of
domains or a measurement of the magenetic susceptibility [176] may help to clarify the state
or the system.

Exact calewdations for strongly interacting fermion systems are beyond the capabilities
of modern computational methods. A thorough experimental understanding of the ground
state of this system would constitute one of the first realizations of a cold-atom quantuin
simulator, and could answer questions about the minimal set of conditions required for a
system to undergo a magunetic transition. By establishing the experimental techniques in
this system and demonstrating the feasibility of using ultracold gases as quantum simulators,
increasingly complicated simulations could be performed by, for example, adding a lattice

potential to the trapping geometry [13, 177-179].

DounLi wiELL BEC DYNAMICS

Chapter 5 explores the many-body dynamics of a double-well BEC system over a wide
range of barrier heights. A crossover between two standard paradigims of superfluidity is ob-
gerved as the system crosses over from hivdrodynamie to tunnelling hehaviour as the barrier
is varied and the BEC density in the region connecting the wells disappears. For Vi, 2 1.1,
we make the first direct observation of tunnelling transport through a magnetic barrier and
find that the dynamics here are predicted by the two-mode model. Further experiments
show that the macroscopic quantum self-~trapping behaviour expected in the regime of tun-
nelling dynamics is found at some barrier heights less than the chemical potentials, as low
as W, = 0.8

An awareness of the appropriate description of a double-well BEC system is immportant
when determining the parameters of an experiment. Transformations from a single to
a double-well arc often required [23, 121, 149-151], and the hydrodynamic to tunnelling
crossover is traversed. For the split BEC to remain in the many-hody ground state, this
transforimation must be adiabatic. The lowest excitation energies of the system in the
hydrodynamic regime are smaller than in the tunnelling model, indicating that a more-

stringent limitation is placed on the limits of adiabaticity than might be assumed in hy
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two-mode model [168]. Our observations that qualitative Josephson-style behaviour exists
outside the regime of validity of the TMM indicate that the obgervation of such effects is
not a sufficient condition for the application of the TMM. We show that a thorough study of
the system’s dynamics can be used to characterize the regimes of validity of various models.

Double well BEC systems, cspecially as implemented with an atom chip technology
as described in this thesis, may prove useful as interferometers [23, 150, 151]. By further
developing the understanding of the many-body physics in this systeni. squeezing [121, 149]

could be improved to increase the precision of these measurements.

CLOSING REMARKS

The relationships between the interaction propertics of individual quantiun mechanical
objects and the many-hody effects they encourage provide insight into the connection be-
tween the quantum mechanical and classical worlds. Using what are distinetly individual
quantum objects —~ 5'Rb and 19K atoms - we find that we are able to measure the collective
parameters of system composed of these objects, such as, for example, their phase, mass
transport or magnetization. Though the specific origins of the many-body effects discussed
in this thesis depend on the details of the constituent particles and their enviromments. a
common property emerges: a system can often lower its energy by having its constituent
particles act communally.

In the context of ultracold atoms. the diversity of many-body phenomena predicted in
the literature is vast. By continning to reduce the energetic scales characterizing these
systems. the dominant interactions driving the collective response may expose new classes
of behaviour. Exploring this variety of many-body phenomena will lead to new questions
about the quantum mechanical world, while simultancously increasing our understanding

of its manifestations in the classical world with which we are more familiar.



APPENDIX A

UK HYPERFINE STRUCTURE AND TRANSITION

MATRIX ELEMENTS

The contents of this appendix are largely the reproduction of a report prepared as a final
project for PHY2206S (Atomic and Molecular Pliysics) in the spring semester of 2006. with
the more detailed derivations omitted. In the spirit of similar reports prepared by Daniel
Steck for some of the other alkali metals [62 64. 180]. this collection of data is intended to
be a useful resource for those working with 0L

This appendix includes a brief discussion of the fine structure splitting in YK in §A.1.
The hyperfine structure is discussed for the ground and first excited states in §A.2. and
is calculated over a wide range of magnetic fields in §A.3. in extension of the Breit-Rabi
calculations done in §4.6.1. The transition matrix elements for the electric dipole transition

arc found and tabulated in §A.4.

A.1 FINE STRUCTURE

To good approximation. the alkali metals are “hydrogen-like™ in that they have a single
electron in the s-state orbitting a charged core. For hydrogen. the core is just the nucleus,
while for the higher atomic mumbers it is the nucleus swrrounded by closed shell eleetron
orbitals. The Coulomb interaction of this clectron with the core. together with the inter-
action between the angular momenta of the electron’s orbit and its spin. gives rise to the
discretization of energy levels for the electron known as the fine structure.

For an electron orbitting a charged core, we consider an angular momentum. L. associ-
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Property Value Ref.
Atomic nnmbeoer (2) 19
Total nucleons (£ + N) 10
Relative natural abundance 0.011 T(1) % [181]
Atomic mass (i) 39.963 998 43(21) anmm | [181]
Nuclear spin (1) 4 [1381]
D1 Transition Wavelength (281/3 - 21’1/-_;) 770.10929 nmn

12 985.170 cm ! [182]
D2 Transition Wavelength (381/._) — 2[’_-;/‘_)) T66.70207 mmn

13 0:12.376 cm ™! [182]

TanLe AL 1: General propertios of IK

ated with the orbital angular momentum. and an intrinsic angular mowmentun. 8. due to
the spin of the electron. These are coupled through the spin-orbit interaction [162]. Adding
these contributions, we obtain a value for the total angular momentum of the cleetron.

J =L+ S. The value of J follows the triangle rule (e |L - S| < J < L+ 9).

In this work. we consider the two lowest lying (ransitions. Since. by selection rules. L
must change by one. the lowest lving traunsition is from the L = 0 gronnd state is to the

L

i

1 state. This level is doubly-degenerate. due to the two possible values of the spin.
S = 41/2. These two lines are known as the Dy and the Dy lines. and have total angular
momenta J = % and J = :? respectively.

The fine structure splitting is wost accurately determined experimentally. and measured
values will be used. Table ALl gives the transition wavelengths for the DL and D2 lines.

which are separated by 3 nm in 1<,

A.2 HYPERFINE STRUCTURE

The next degree of precision in determining the energy lovels ol an alkali atom is to
consider the effect of the nuelens. There will be two main contributions to the Hamiltonian
which deseribes the energy of the atom: one due to the effeetive magnetie ficld arising from
the spin of the nucleus, I, the other from the fnite extent of the charge distribution of the

nucleus and the associated higher-order cleetrie multipole moments.
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A2 1 EFrRers OF NUCLEAR SPIN

In the fine structure caleulations, nueclear spin is negleeted heeause of the large mass of
the nueleus in comparison to the cleetron. Moving beyond these approximations. it is one
ol the primary considerations. The energy shifts avise due to the interaction ol the nuelear
spin with the effective maguetic field of either the orbital electron or an external magnetice
liekd.

INTERNAL FFFRCTS

As with the cleetron spin. S, we can associate with the nueleus an intrinsic angular
momentuu, or spin, called I This spin is the vesult of the addition of the spins of cach of
the constituent particles in the nucleus, and is determined experimentally. The spin of the
I nueleus is 1 = 1 [181].

Tn the absence ol an external magnetice ficld, the term in the Hamiltonian that accounts

for the energy of the nuelear spin in the magnetie field of the orbitting electron is
125 \ .
][|;‘(\] - —T 'BJ. (1\1)

where ge; is the maguetic moment of the nuelews. By is the effective magnetie field due
{o the orbitting clectron, defined by its angular momentum and J. Whereas with the fine
struceture, we considered LS coupling. here, we consider 1. coupling.  Separate clectron
cnergy levels are well-detined by the angular momentwm J. and are much more closely-
spaced thau the fine structure energy levels. o this approximation I and J are hoth good
quantiun numbers. We can then assume the nuclear magnetic mowment is proportional to
its angular momentun
iy = gL (A.2)
where g is the effective g-factor for the nueleus, iy = (me/my ). is the nuelear magneton.
pz = he/2me is the Bohr magneton. and m, and my arve the cleetronic and nuclear masses.
ln writing Eq. (A.1), we assiune that 13 acts only in the eleetronie (and not the nuclear)
stubspace and can it is proportional to J. In (his case. the hamiltonian can bhe written as a

product of two operators. each acting on their own subspace
Hy o o= A - J. (A.3)

whoere Ay depends on details of the atomie strueture and can be caleulated (see, {or exam-
ple. Ref. [183]). For the purposes of this Appendix, we use an experimentally determined

value, which is morve accurate than the caleulations (See Table AL2).
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EXTERNAL BIIPECTS

I addition to the effeets within the atom. the nuclear and elecetronic spins can also
interact with external magnetie tields, which is known as the Zeeman effect. The termn in
the hamiltonian arising rom the external magnetic field is

Hpog = % (e B+ /_L[~B) (A
where the terms gy = gyupd and p; = gpppl deline the g-lactors. By invoking the
projection theorem, expressions for the gy factors can be obtained:

J(J+1) - S(S+ 1)+ L{L+1) N (HJ(J+ D+ S+ —L(L+1)
2J(J+ 1) i 2J(T +1)

94 =91 (A.5)

where g, and gy are experimentally determined values (the Landé g-factors) for the mag-
netie dipole moments of the electron orbital angular momentum and clectron spin, quoted
in Table A.2. along with the measured values of gy. where available.

xpressions for the strong and the weak feld limits of Hp are comuon in quantumn
wechauics or atowic physics textbooks (see, g, [184]). In the weak field, the sum of
clectron and nuclear angular momentum F = T4+ J provides a new set of good quantum
wumbers [ and mge. The [Fompe) states are the eigenstates of the system and the external

field Hamiltonian can be written

1y = EgrF - B. (A6)
i
where
FU+ 1) — [+ 1)+ J0+1) FFP+ D)+ IT+1)~J+1) -
qgr = g4 + g1 . (A

2F(F+ 1) ’ 2F(F 4+ 1)

In the high field limit. the effeets of the magnetie field on the clectron are far greater
than those on the nuclews. vendering the coupling between them negligible,  Here (and.
indeed, everywhere). the cigenstates can be defined by |y my. Iomy) and the hamiltonian
hecomes

strong L ,
it = H (9,3 + 9/ -B. (A8)

In this work. all magnetic ficlds are cousidered and the [Jomy. Iomy) states are used
thronghout to caleulate the cnergy of the hyperline interactions, due to the magnetic fields
being diagonal in this basis. Taking into account all effects due to the nuclear spin. we find
a hamiltonian

My = Ayel-J + /% (gsd + g/ 1) -B. (A.9)
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A2 THE ELECTRIC QUADRUPOLE MOMENT

For a complete deseription of the interaction between the angular momenta of the electron
and the nueleus. a multipole expansion ol the charge distributions of both the nueleus
and the electron is required. The derivation of Eq. A3, in which we assiune both that
the magnetic mowmwent of the nuclens and the ficld ereated by the orbiting electron arve
proportional to their angular momenta, is cquivalent to using only the monopole moments
for both distributions. For clectron spins J > 1/2. higher order moments may be important.
Parity congiderations restrict the nueleus from having odd multipole moments. and so the
quadrupole moment is the next correction to these results [185].

Details of this caleulation can be found. for example, in Refs. [185. 186]. The hamiltonian
containing the quadrupole contribution to the hyperfine splitting is
B
2021 = 1)J(2J = 1)

3
2

Hey = 3132+ 2(1-J) -T°J7% . (A.10)

The coctlicient By has been measured for the D2 line in WK (see Table A.2). This
quadrupole term is relevant only to the D2 line as both the ground state and DI lines

have J = 1/2. whose symmetry prevents a quadrupole term from entering the expansion.

A.3 CALCULATING THE HYPERFINE SPLITTING FOR ALL MAGNETIC

FIELDS

Taking into account both the effects of the nuclear spin and the clectric quadrupole
mowment (the latter ouly for the D2 line). the hyperfine Hamiltonian can be written.
. D] 3 B 9
gg(IJ)'“i'“*_‘,:IJ—I"J" L3

/
T

s = AngsI - I + DBy (gymy+ g B (A.11)

where all terms have been defined in §A.2. Expoerimental values for Ay, Bup. aud the
g-factors arc given in Table A.2.

The hypertine splitting can he easily calculated in either the low magnetic field or the
high magnetic ficld situations. In the first. the magnetic field dependent effects are treated

as a perturbation and the good quantum mumboers arve given by

F.myp). In the latter, the
clectric quadrupole term is treated perturbatively, and the states |Jomyg, Iomy) define the

good eigenstates. However, neither approacl gives a complete deseription of the magnetic
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Ground (281/3) D1 ('“)P]/._)) D2 (2P3/2)
Ants (MH2) “985.731(16) [187] | -3440(11) [188] | -7.48(6) [188)]
Bug (MHz) n/a n/a -3.23(50) [188]
Isotope shift, Av (MHz) 125.58(26) [188] n/a n/a
(relative to 3)
0 2.00229421(24) [61] |  0.665885! 1.3341022281
g1 0.000176490(34) [61]
gs -2.002 319 304 3622(15) [189]
qi, 0.99998627(25)* (from [189])

TasLi A.2: Electronic and magnetie parameters for “9I< All values arve determined experimentally
. + . . . .
unless otherwise noted. ' Caleulated using gy, gr, with Eq. (A.5): * Caleulated using gy, = 1 —

M/ Muue.

field dependence of the hyperfine splitting. To determine the energies at all values of the
magnetic field, Eq. (A.11) must be numerically diagonalised!.

To perforin such a caleulation, it is necessary to choose a set of states wnder which to
write the original Hamiltonian. The |J.omy. Iomy) states are a good choice, as expressions
for the matrix clements necessary for the calculation can be found. In particular, if we can
determine the matrix clements with respect to the nuclear spin term of the Hamiltonian by
considering the operator

1
I-J=LJ, + (1T +1.7,), (A.12)

using

(I.my £ UL Lomp) = /(L Fmp)(I £my +1), (A.13)

and writing down the non-zero matrix elements for the operator (A.12). The relevant matrix

"An analytic solution does exist for the J = 1/2 case, and is known as the Breit-Rabi formula. This is
the deseription for the ground state hyperfine characteristies used in §1.6.1. In this Appendix, all values
are calculated using the numerical method. though, of course. this gives the same results as the Breit-Rabi
formula for J = 1/2.
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F'=5/2 [54.51(25) MHz]
F’=7/2 [30.55(10) MHz]|

21) -

372 F’=9/2 [-2.33(22) MHz]

F’=11/2 [-45.69(38) MHz|
F'=7/2 [86.23(28) MHz]

2Pl/’)

2 A

F'=9/2 [68.98(22) MHz|

766.702 07 nm

(44 2
D2 13042.876 cm’!

770.109 29 nm
12 985.170 cm!

CCD 1 2%

F =712 [714.328(40) MH7]

125.58(26) MHz

1285.790(72) MHz.

/ F=9/2 [-571.462(32)MHz]|

Ficure A.1: Level diagram for °K; calculated at zero magnetic field. All values derived from
congtants in Table A.2.

cloments can be expressed:

(Jomy, I.mg|L-J|J,my. I,my) = mymy

1
(Jomyg, Iymg|L-J|J,my+1,I,mr—1) = 5 VT +mp(J —my+1)

x /(I =mp)(I+m;+ 1)
1
5 VT =m)(J+my+1)

x /(I +my)(I —my+1).

(Jomy, LmgL-J|Jomy— 1. Lomr+1) =

(A.14)
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Ficuri A.2: Hyperfine energy shift for the ground state (23, J2) of 0K as a function of magnetic
field. The highlighted curve is used in the calculation in §.
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Ficure A.3: Hyperfine encrgy shift for the D1 manifold (3P, J2) of 10K as a function of magnetic
field

Similarly, for the electric quadrupole tern, it is useful to cousider the operator
. 3 PO
j‘:3(I.J)3—|—3I~J——I‘)-Jz (A.15)

and determine the matrix elements with respect to it. These can be found in Appendix C
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Energy shift, Eh s /h (MHz)

-300 : L 1
0 20 40 60 80
Magnetic Field, B (G)

FIGURE A.4: Hyperfine encrgy shift for the D2 manifold (*P3/») of 9K as a function of magnetic
field. The highlighted curve is used in the calculation in §.

of Ref. [185] are are expressed:

1 . .
(my,mr|flmy,my) = 5 [3m7 —I(I +1)] [3mj — J(J +1)]

3
(myg,mylfimy—1,m;+1) = 1(2777,,1 —1)(2mr+1)

[N

x [(J+mp)(J—=my+ (I —mp){I+mr+1)]

3
(myg,mrlflms+1,mr—1) = Z(Qm,/ +1)(2m; —1)

[N

X [(J=myp)(J+my+ )T +mg)(I —mr+ 1))

. 3
(mg,my|flmys —2,mr +2) = i [(J+m)(J+my+1)(J —my+1)(J —my+2)

M

X (I —mp)(I —mr=1)T +mp+1)I +ms+2)]

3
(myg,mg|flms+2,m; —2) = ZL-[(] —m)(J—my—=1)(J+my+1)(J+m;+2)

n—

X (I +mp) (I +mp— 1) —m;+1)(I —my+2)]
(A.16)
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Finally, the term involving the magnetic field is diagonal in the |[J,my, I,m) basis,
which makes the caleulation of the relevant matrix elements relatively simple.

The actual calculation of the energies can be performed numerically, and was done
using MATLAB. For each of the three manifolds considered, a vector containing each of the
possible states was created, i.c. for the 23, /2 (ground) state, there are 18 substates defined
all possible combinations of m; and m; where —% < my < % and —4 < my; < 4. The
Hamiltonian matrix is constructed by calculating cach element individually. For example,

if the state vector is defined as (using an |m.y, mr) notation)

11/2,4)
11/2,3)
11/2,2)

¥ myamy —

then we may define an 18 x 18 Hamiltonian matrix as

(1/2, 4| Huss|1/2,4)  (1/2, 4| Hi|1/2,3) (172, 4| Hige|1/2,2) - - -
(1/2,3|Hugs|1/2,4)  (1/2,3|Hu|1/2,3)  (1/2, 3| Hyg|1/2,2) - --

th = .
: (1/2,2|I‘[hfs|l/2,4> (1/2,2|Hyg|1/2,3)  (1/2,2|Hugs|1/2,2) - - -

This matrix is then calculated for a value of magnctic field, B, and numerically diag-
onalised. The energy cigenvalues are stored, and this process is repeated for 10 000 small
increments in magnetic field. By plotting the encrgy eigenvalues for all magnetic field val-
ues, we find that the low field eigenstates gradually merge into the high-field eigenstates.
A schematic of the zero-field structure is shown in Fig. (A.1). The results of the full caleu-
lations, shown in Figs. (A.2), (A.3), and (A.4) for the ground (281/2), D1 (2]:)1/2), and D2
(*Py/2) levels, demonstrate the gradual transformation from |F,mp) states to the [m.z, mr)

states.

STATE SELECTIVITY

In the high field, the ground state splitting can be larger than the natural linewidth of a
transition between the ground and excited states. This allows for the selective imaging of
one ground state, since the other will be far off-resonance.

As a practical example, consider the the states that connect to low-field [9/2,-9/2) and

|9/2,-7/2) states, which have a Feshbach resonance at 202.10 G. Asswning o~ imaging on
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the Dy line, we consider the energetics of three transitions: (1) |F = 9/2,mp = —9/2) —
|F'=9/2,mp =—11/2), and (2) |[FF =9/2,mp = —-9/2) - |F =9/2,m; = —11/2).

The cnergetic difference hetween these transitions is shown in Fig. A.5. At 202.10 G,

the difference in energy between transitions is AFE = 27 x 34 MHz, which, with a linewidth
of I'ps = 27 x 6.01 MHz, arc cnsure that one can image on onc transition while remaining
several linewidths away from the other.

At this magnetic field, the ground states used in the Feshbach resonance are, written
in terms of the |my,my) basis, can be found from the numerical diagonalization, and are

(|F.,mp) = [my,my)):

19/2, —9/2) = | — 4, —=1/2) (A.17)

19/2, —7/2) = —0.2359| — 4,1/2) — 0.9718| — 3, —1/2). (A.18)
Likewise, for the excited states (|F, m/p) — |m),m/}))

7

[11/2, —11/2) — | — 4, —3/2) (A.19)
11/2, —9/2) — —0.0485| — 4, —1/2) — 0.9988| — 3, —3/2). (A.20)

A.4 TRANSITION MATRIX ELEMENTS

he charged particles that make up an atom can be manipulated with electromagnetic
The charged particles that make up an at 1 pulated with elect gnet
fields. Light at optical frequencies strongly couples encrgy levels with adjacent values orbital

angular momentum, L.

A.4.1 THE REDUCED MATRIX ELEMENT

When considering the interaction of atoms and electromagnetic ficlds, the electric dipole

term is the largest perturbation to the atomic energy levels [190]. This operator, defined by
Hpy=d-E(0,t) = —er - E(0, t) (A.21)

where E(0,t) is the time-dependent electric field at the origin, r is the position operator
at the origin, and d is dipole operator, can be treated using titne-dependent perturbation

theory. Assuming that all transitions will be made with near-resonant light, the rotating
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19/2, —9/2)

ja—
=)

frequencies (MHz)
o
S

19/2,-7/2)

=)

difference in transition

Y

0 50 100 150 200 250 (‘_‘_( K
Magnetic field (G) 19/2,-9/2)

F1GURE A.5: State sclectivity for imaging 'K at various magnetic ficlds. The transitions considered
arc indicated to the right, for the Do trausition. The differences in these transiton frequencies are
plotted as a function of magnetic fleld: the solid line indicates the difference hetween the transitions
F=9/22mp = -9/2) = |F = 9/2,mp = ~11/2) (1) and |{F = 9/2,mp = ~7/2) = |F =
9/2,mp = —9/2) (2). The natural linewidth of this transition is I'pa = 27 x 6.01 MHz. Near the
Feshbach resonance, the transitions are hoth well distinguished: at 202 G, the difference between
(1) and (2) is 34 MHz.

wave approximation (RWA) is justified, and the dipole matrix clements can be expressed

in terms of the dipole matrix clements, (sce, for example, Ref. [191])

21/ £\12
Aiff=——=——F = (A.22)
Tiife 3mweghc
where 7y, is the radiative lifetime, wy is the angular frequency of the electromagnetic field. 4
and f stand for the initial and final states, respectively, and A;y is the rate of decay hetween
these states.

To evaluate the matrix clement in Eq. A.22, we begin by expressing the dipole operator

as
L
= —¢ y(1) .
d=-—¢ E ry  €q (A.23)
g=—1
. . 1) . .
where the e is the electric charge, 7'((, ) are first-rank spherical tensors, and the e, are the

unit direction vectors for each 7'((, ). Bach of these vectors represents a specific polarization
of the light ficld: e4q represent cireularly polarized light (o). while eg is w-polarized; these
vectors form a complete basis in polarization space. The dipole matrix clement between

an initial state (defined by the angular momentum P; and projection m;) and a final state
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(with Py and projection my) can be expressed using the Wigner-Eckart theorem?

(lel/) _ 1))1’ —7nf+l’+1< I()r(l)”/>z (Pf 1 P/‘ > ey (A.Qél)

q—my

where (if|er(D || £) is the reduced matrix clement, which is independent of m; ; and ¢ and the
term in round brackets is the Wigner 3-7 symbol, which is related to the Clebsch-Gordan
coefficient and provides the sum of the three angular momenta. The rate of this transition,

from Eq. A.22 is

A‘l‘./'

0l
5"6()11('3 mi g —my

)
V|2 Z(P" L ) (A.25)
q
where the orthogonality of the e, gives only the elements diagonal in .
In general, the lifetime between specific initial and final states is not resolved; instead.,
a total decay from one cxcited level to the ground level, A‘ o=

A. AT YR E
m; Aif is measured. By

swunming A;; over all possible initial states,

) SN2 w3 Her(D1] £)12
ZAI/ p— h("[< (’()||/>| Z(Pll P/> _ 0 ‘WHT ””', (A.26)

o o \ i g —my 3meohe? (2P + 1)

where we have used the normalization condition for the 3-j symbols to obtain the (277 4-1)

factor.
The reduced matrix element can be expressed in terms of Alol =1 /’llx(f):.-
: : 1/2
. i .37(’60]2,(:"(2[’/. + 1) Aot
(iller™110) = 3 al = /2P + 1 iy (A.27)

“
where p1;7 is the dipole matrix element described for a two-level system. Using this expres-
sion with Eq. A.24, the amplitude of any transition can be expressed in termns of the reduced
matrix element and a 3-j symbol. Using the lifetimes for transitions between J manifolds,

the {{(J]jer(][.J)] can be found, and are shown in Table A.3.
A.4.2 REDUCING THE DIPOLE OPERATOR
In small magnetic fields, where many atomic physics experiments arve performed. the

cigenstates | F,mp) are good. To express the dipole matrix elements hetween states in this

basis. Eq. (A.24) is used
F1 F
") ( )

(F.my l(f‘f‘,,]
mye ¢ —mh,

! v) — (__1)21"’-~—m/n+lv'+1 (F

2All sign and normalization conventions follow Ref. [[92], which are also lollowed by Mathematica.
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D1 (*Py/») D2 (*Pyy) | Ref
Tiite 26.79(T) us | 26.45(7) ns | [193]
(Jl|erM|J7y | 4.102(5) ¢ -aq | 5.811(T) ¢-aq | -
Jg g 2.906(4) ¢-ag | 2.901(4) ¢ - ag -

TaBLE A.3: Lifetimes of D1 and D2 levels and associated reduced matrix elements for 'YK, wlhere

¢ is the elementary charge and «q is the Bohr radius.

The sclection rules in the low-field regime dictate AF = 0, x1, AMp = 0,£1, and F =
0 — F' = 0 transitions are not allowed [194]. The reduced matrix element in this basis is
not directly accessible. To connect this basis to the J basis, in which the reduced matrix
element is known. we consider the addition of angular momenta defining the states in the

basis. Since F = I+ J, we can use the Wigner 6-7 symbols to write (F (37“((, )[|F "} in terms

of (J ||(f'r,(,1) [|77) [192]. The reduced matrix elements is found to be

JT 1
F R T

(Fller D) = (—1)" 1 JEF D@ ) { } (TllerM1 Ty (A29)

where the term in the curly brackets is the 6-j symbol.

To determine the overall transition matrix element for the

F.my) states, we substitute

Eq. (A.29) into Eq. (A.28) and by collect all coefficients (including 3-j and 6-j symbols)
into one, to obtain the expressions, using two different conventions

(F. 7n,[n[(’.7',(ll)lF', mhey = C1(J I, Fymge, F' ey ) (T'||er(]]T) (A.30)

= C’il(']: Jl: F mye, Flr 'n'//«'r Q) gt (A31)

where oy 0 = Ci(J, J1 Fomp, F' o, q) /V2J" 4+ 1 and the coefficients are

gt JJ1 [ F1 F
CV( T Fomp, F'ombe q) = (1) J(oF + 1)(2F + 1) { d } ( )

FF'I mp g —m/;
(A.32)
Co(J,J . Fomp Flomle.q) = /(2 + 1) C\(J, . Fomp, F' mby) (A.33)

depending on total angular momentum. F. hyperfine substate, mp. total orbital angular
momentum, J, and the polarization of the excitation. ¢. These cocfficients were calculated
with the help of Mathematica with the functions “ThreeJSymbol™ and “SixJSymbol.” The

cocfficients ¢y are calculated in Mathematica using

C2[F_, mF_, Fp_, mFp_, J_, Jp_,q_] :=
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(-1)"(3Fp +J +F - mFp) Sqrt[(2 Jp + 1) (2 F + 1) (2 Fp + 1)]
ThreeJSymbol [{F, mF}, {1, g}, {Fp , -mFp}]
SixJSymbol[{J, 1 , Jp}, {Fp, 4, F}];

where the variables with “p” stand for the primed equivalents. These cocefficients are listed
for the FF = 9/2 — J' = 3/2 trausition (D, line) in Table A.i.: the remaining three

transitions can be calculated in a siimilar fashion.

A.4.3 HIGH-FIELD TRANSITION MATRIX ELEMENTS

In strong magnetic ficlds. the states defined by quantum numbers |J. my. I.my) ave good
cigenstates. as was scen in earlier discussion. The selection rules are AJ = 0. &1, AL = *1.
Amy=0,%1 and Amy =0 [194]. We can see this by writing the Wigner-Eckhart equation
for these states. Eq. (A.24)

J 1T

N Ayt o\ (132 —mg 4] (D) 1
(Jomyg. Lomglery | my. Iomy) = (=1)=" 7" er DT (m,] ¢ —nt,

/
> (I.mg|I'.m)
(A.31)
where the final matrix clement enforces the selection rule my = m/. since the nuclear part

is unaffected by the dipole field. The 3-j coefficients give the my selection rule.
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TaprLe A Coefficients (J.J1 Fomp. F'.mb.) for hyperfine dipole matrix elements for EM transitions to the Do (*Py») manifold for

F=YYaomps — F mhy. where mp = mp — 1 for o, mhy = myp for 7. and mh = mp - 1 for o~
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APPENDIX B

INTENSITY DEPENDENCE OF OPTICAL DENSITY

B.1 OPTICAL DENSITY FOR RESONANT LIGITT: CALCULATIONS

B.L.T ATOMS AT REST

To oblain quantitative results [rom absorption imaging, we measwre the amount and
spatial distribution of light scattered from an incoming near-resonant beam. We compare
the intensity for beams with and without atoms and define the quantity. “optical deosity™
(OD) for a beam travelling in the ry direction

v [ A
OD(rg.m) = —1n (fl)(l'l-"2)> . (1.1

where Ip{ry. re) is the intensity of the incident bheam recorded when no atoms arve present .
and T(r(.rs) is the intensity measured alter the light has heen seattered by the atoms.
The rate at which the atoms scatter light [rom the tncoming beam depends on the

natural Hnewidth and the exeited state fraction. which can be expressed as

D o
Ise 2 14 [/[s:l( ~ )

where [ is the intensity of the incoming light. gy = Wlu'l’/ii,\"; is the saturation intensity.
Ads the resonant wavelength and s the natural linewidth of the transition.

As a heam {ravels in the ry direction, the loss in its intensity as a funetion of distance
i cquivalent to the power seattered from the beam. given by

d/ I
———— N "..w.(. —_ [ e N ( l).;
Oy = e = ”(1-1» [/lsm> (13.3)

1
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.__
ot
Z

where wy, is the transition [requeney of the transition used {or imaging. p is the density
of the afoms, and oy = 3A/27 is the resonant scatiering cross section. Integrating this
cquation we lind the implicit expression lor I (because OD(ry ) depends on 1 and 1)

](l'|‘ I';g) — ]()(T‘]. I'-_))

jsz\l

OD(r1. 1) = ODolr1. ) + . (1B.4)

where ODg(ry.rm) = =g | p(riore.rg) dig is the zero-intensity limit of the OD. When the
absorption is small, |/ — Jy] < Ly and the second term can be negleeted. The lines in

Figs B.1 (a.h) show the solutions to this equation for three values of ODy.

13.£.2 RuCoOI-~-INDUCED DOPPLER SIHPT

A second consideration in quantifying the optical density is the vecoil of the atoms caused
by the absorption and reemission of photous in the imaging process. The Doppler shift
associated with this motion will put the atoms out of resonance, modifying the absorption
characteristics. I we asswme that the atom’s veloeity uercases, on average. by one recoil
veloeity, vy, every scattering lifetine, /g then the velocity as a function of time is
v(l) = e, The Doppler shilt from the resonance frequeney is wp(t) = ko(f). where &
is the waveveetor of the incident light. Asswming that laser is set to being on resonance.
wp(l) is the time-dependent detuning lor (hese recoiling atoms. The Doppler-modified.

time-dependent seattering rate is

—
3

[,/7521(
20 il ; 2
Lt T/ Lsar + [‘,\“(1 «r///lh.u)""[}

A}S(',I)(/) = (I3.:

[a3
—

(8]

Using the same method ol integrating the expression for the scattered power Eq. 13.3.

this time replacing vqe by gen. we come (o

I —1 [\:le ]NZI(

. [+ L
OD) = ODg + o fevpt)? [ - — : + In (————‘—)} 13.6)
( 0 Isnl ( , / + [s;\( [() + Isul, [() + [S:ll (

where. for elarity. we suppress the (rp.m) dependence of [ and [y Taking the time average
of this expression. (OD) = ﬂl—( _['[M OD di, where £y is the total imaging time,

- I — 1y (l"“r[lu()z [ - L ( [+ Iy >} 5~
OL) = 0Dy + + - , +n|{———1}. B.
( > 0 lsnl 3 [+ [snl [() + [sn( ]() + [su( ( ’)

The lines in Figs. Bol(e.d) show the solutions to this equation for three ODg.
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Fraenrnr Bol: Optical density intensity dependence. Measured optical density OD vs. normalized
ntensity, 1o/l Datais identical in all plots. theory lines negleet Doppler shift. as in from Eq. for
(a) and (h): theory lines include Doppler shift for (¢) awd (d). Theory lines are for ODg = 0.08 (dash-
dot). 0.06 (solid) and 0.0 (dashed). Left plots are on a lincar scale, right plots have a logarithmic
I/ Loy scale.

B.2 OPTICAL DENSITY MEASUREMENTS

We measured the intensity dependence of the optical density by taking repeated images
of an ultracold cloud of S Rb atomws. We asstune that all clouds are prepared with the same
density characteristics, and (hus a constant ODg. We use o = 100 ps pulses. vary the
incident intensity [y, and measure OD as a function of Ty, The results are plotted with
the curves that both negleet (Figs. 13.1(ah)) and include (Figs. B.L(c.d)) the Doppler shift.
We see the data clearly requires the consideration of the Doppler shift Lo account for the
reduction in OD observed as a function of inteusity.

To avoid the etfeets of the Doppler shift. we perform all of our experiments in the
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simall To/lgy regime. specitically, o/l &~ 0.1, which as can be scen in the logarithmic
plot Fig. B.1{d). the point after which the intensity dependence of the imaging hecomes
important.



APPENDIX C

ATOM NUMBER CALIBRATION

It is often important to kuow as preciscly as possible the number of atoms in various
experiments. While the use of absorption imaging on the cycling transition should properly
account for the munber, magnetic fields may slightly point in the wrong direction, and the
polarization of the imaging light may be imperfect. To calibrate the atom number, we
use the transition point for BEC and its dependence upon N. Both temperature and this

transition point can be determined with better accuwracy than N.

C.1 CONDENSATE FRACTION MEASUREMENTS

As part of the method to calibrate the atom munber, we must determine the conden-
sate fraction as a function of temperature, in order to find the temperature at which the
condensate appears. In a partially condensed cloud, there is both a thermal and conden-
sate component. Because the condensate oceupies only the ground state, its momentuim
distribution is much narrower than that of the thermal cloud, which occupies many higher
momentum states.

We prepare ¥R BECs in a well defined trapping potential. and measure their mo-
mentwn distributions by turning off the potential and observing the expanding cloud after
some time of flight. The momentun distribution is bimodal - there is a broad thermal
distribution with a narrow peak in the centre corresponding to the BEC. Two pieces of
information are available from this measurement: the munber of atoms in cach component,
and the temperature of the thermal cloud.

To analyze the data, we fit a Bose-Einstein distribution function to the thermal wings
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of the momentum distribution. The optical deunsity distribution gives yields the two-
dimensional integrated-density profile, OD = —In(I/Iy) = ows [ p(r) drs, where o is
the scattering cross-section. Figure C.1(a) shows an optical density profile for a cloud of
STRb after 8 ms time of fight. The bimodal structure is evident in the left image. To
analyze the thermal part of the distribution, the central region, containing the information
about the condensate, is masked out, ag in the right image.

A two-dimenstional function describing the thermal Bose cloud is fit to thermal part of
the OD distribution, the fitting function for which is

2

o )2 o )2
ODy(ry,1m) = ODB‘: X g9 <z OXp <— (r—7ac) — (ra ,,h) )) “+ myry + mary + ODprga

20% 203

(C.1)

k . . . . .
where OD}} X g2(z) is the peak OD, z = exp(p/kiT) is the fugacity, (., r2.¢) is the centre of
the cloud, (11, ms) account for any slope in the background, and ODyygq is the background
OD value. The function, g is the Bose-Einstein function, which we approximate near the

fransition point as
g2(z) = (1 — 2) log(1 — z) + 1.98z — 0.162% — 0.172%. (C.2)

Profiles of this two-dimensional fit are shown in Figs. C.1(b) and (c), where the image and
fits have been summed along the perpendicular direction. The red curves show the function
ODy(r1,72), while the blue fit is to the entire bimodal distribution. The arca under the
red curves indicate the thermal atom number and their widths give the temperature.

The temperature of the cloud can be determined from the widths as kpl; = 77‘Lw;-z()‘;-2 /(1+
wit?). where w; is the trapping frequency in the 7 direction. The number of thermal atoms

can be found by integrating over the part of the ODyy, distribution that is due to the atomic

L - (ri—rac? (o= ra)?
» 3 [)]\ . _ 1 2.0 A 2¢ .
Tres / / dry dr, ()D(’h * g2 (Z P < 20-‘12 20_:5 . (0.3)

The total atom number, N, is obtained by numerically integrating over the entire OD

signal

-[\Tl' h =

profile, after subtracting from the data the hackground slopes and offset from the fit. Using

this, the condensate fraction Ner/N and temperature are both available.
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Figure C.1: Condensate fraction measurement.

C.2 FINDING THE TRANSITION TEMPERATURE

To determine the transition temperature to BEC, we make BECs at a number of tem-
peratures above and below the transition point, which we can find roughly by looking for
the visual onset of bimodality in the cloud. The condensate fraction N¢/N, temperature,
T, and total number N are extracted from each image as deseribed above. Figure C.2 (top
panel) shows the condensate fraction as a function of temperature. The bottom panel shows
the total munber of atoms at each temperature point, corresponding to the above data.

We determine the condensation temperature by finding the onset of BEC using the
intersection of two lincar fits near the transition. Taking into account both finite-size and

interaction effects [195], the condensate temperature, T for a gas of bosons in a harmonic
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Fraure C.2: Number calibration us-
ing BEC trausition temperature. Top:
Condensate fraction vs. temperature.
Linear fits to the coloured points (red
above Tu, blue below) cross at Tt.
Large green point indicates the loca-
tion of the crossing of the fits, T¢ =

640 £ 40 nK. Bottom: Atom number
ZB as a function of temperature (due to
o evaporation). Large green point indi-
3 cates T, where N = 21000 + 3000
[ond
g atoms.
Z
E
o
I

trap is

T =T2 <1 —1.326-2 NV G) — 06849 ar (C.4)
’ a0 'B
heo N 173
TQ e ( . > . C5
“ Tk \CB) ' (©5)

where TQ is the critical temperature in the ideal case, @ is the geometric mean of the trap
frequencies and wyy = (wy +wy +w,)/3 is the arithmetic mean, kp is Boltzmann’s constant,
¢(n) is the Riemann-zeta function, « is the s-wave scattering length. apo = (h/ma)"/? is
the harmonic oscillator length of the trap, and N is the number of atoms.

Given this relationship between temperature and number, we translate the measured
condensation temperature (T¢r = 640 £ 40 nK) into a corresponding atom munber and
comparc that to the one measured (in the bhottom pancl). Propagating these numbers
and their uncertainties, we arrive at a calibration factor Nyciuat = Nmeaswed X (1.3 £ 0.3),
which accounts for the systematic uncertainty in our atom number, which is, for example,
N = 6600 41700 in §5.4.
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