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Abstract

DNA copy number alterations (CNAs) are genetic changes that can produce ad-

verse effects in numerous human diseases, including cancer. CNAs are segments

of DNA that have been deleted or amplified and can range in size from one kilo-

bases to whole chromosome arms. Development of array comparative genomic

hybridization (aCGH) technology enables CNAs to be measured at sub-megabase

resolution using tens of thousands of probes. However, aCGH data are noisy and

result in continuous valued measurements of the discrete CNAs. Consequently,

the data must be processed through algorithmic and statistical techniques in order

to derive meaningful biological insights. We introduce model-based approaches

to analysis of aCGH data and develop state-of-the-art solutions to three distinct

analytical problems.

In the simplest scenario, the task is to infer CNAs from a single aCGH experi-

ment. We apply a hidden Markov model (HMM) to accurately identify CNAs from

aCGH data. We show that borrowing statistical strength across chromosomes and

explicitly modeling outliers in the data, improves on baseline models.

In the second scenario, we wish to identify recurrent CNAs in a set of aCGH

data derived from a patient cohort. These are locations in the genome altered in

many patients, providing evidence for CNAs that may be playing important molec-

ular roles in the disease. We develop a novel hierarchical HMM profiling method

that explicitly models both statistical and biological noise in the data and is capable

of producing a representative profile for a set of aCGH experiments. We demon-

strate that our method is more accurate than simpler baselines on synthetic data,

and show our model produces output that is more interpretable than other methods.

Finally, we develop a model based clustering framework to stratify a patient
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cohort, expected to be composed of a fixed set of molecular subtypes. We intro-

duce a model that jointly infers CNAs, assigns patients to subgroups and infers the

profiles that represent each subgroup. We show our model to be more accurate on

synthetic data, and show in two patient cohorts of distinct types of lymphomas how

the model discovers putative novel subtypes and clinically relevant subgroups.
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Chapter 1

Introduction

1.1 DNA copy number alterations and human disease
DNA copy number alterations (CNA) contribute to the pathogenesis of numerous

human diseases including cancer. Also called segmental aneuploidies and chro-

mosomal aberrations, CNAs are discrete genomic intervals in a particular sample,

ranging in size from 1 kilobase (Kb) to whole chromosomes, where the number of

copies of DNA is higher (amplification, or gain) or lower (deletion, or loss) than

in a reference sample (usually with two copies) [1]. A schematic diagram showing

a CNA deletion and a CNA amplification on one chromosome is shown in Fig-

ure 1.1. A genomic region of loss is shown on the left, and a genomic region of

gain is shown on the right. CNAs related to human disease can occur as somatic

mutations (as in the case of cancer) where tissue-specific cells are affected, or as

congenital abnormalities where germline cells are affected [2]. CNAs can also oc-

cur in normal, healthy individuals. Such aberrations are known as copy number

variations (CNV) and they represent naturally occurring copy number states in the

human population. In contrast to disease-related CNAs which are indicative or

causative agents of disease, CNVs characterize individual genomic variation. As

such, they can be responsible for phenotypic differences between individuals [3, 4]

and are usually benign.

Studying CNAs has a broad scope of applicability in the understanding of hu-

man genetics and disease. To illustrate this, we consider the example of the trans-
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Figure 1.1: A schematic diagram of copy number alterations showing a single
chromosome with 2 CNAs. The chromosome is shown on the bottom,
the normal reference DNA in the middle and the tumour DNA on the
top. Segment A-B in the normal (red) is not present in the tumour rep-
resenting a CNA loss (deletion) and segment C-D (green) is present in
the tumour with 2 additional copies representing a CNA gain (amplifi-
cation).

formation of a normal human cell to a neoplastic cancerous cell. During this pro-

cess, a normal cell successively acquires epigenetic changes (that do not modify

the genome) and genetic changes (many of which are CNAs), which give rise to

growth and proliferation advantages [5]. This is true of nearly all cancer cells.

Identifying the CNAs can therefore provide baseline genetic evidence of how a

cancerous cell, in terms of its genomic structure, is different from a normal cell.

This latter point has implications in our understanding of the clonal evolution of a

tumour [2], its molecular characterization, the potential development of diagnostic

and prognostic tests, and the development of targeted therapies.

CNAs are often studied concurrently in samples taken from several individuals

(from a patient cohort) with the same disease (see for example [6–9]). There are

several key pieces of knowledge that can be gained from studying CNAs in a patient

cohort. First, we can identify the CNAs for each patient individually. This allows

us to relate the presence or absence of a given CNA to clinical outcome/response

to therapy data, in order to make inferences about CNAs that may be clinically

relevant. A significant complication that arises from determining the CNAs in

each patient is that some may be a benign byproduct of the clonal evolution of

the tumour, and may be irrelevant to the disease. We refer to these alterations as

“passengers” [10]. Detection of recurrent CNAs (see Figure 3.1 for example) in

the patient cohort addresses this issue. These are CNAs that appear more often than
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expected in the cohort and provide evidence of disease-specific “driver” CNAs that

may have been selected for in the clonal evolution of a tumour [2]. Such patterns

form a CNA profile for the cohort and can suggest CNA-induced disruption of

biochemical mechanisms [11] and/or expression of genes [12] and thus contribute

to our understanding of the relevant CNAs for a particular disease.

A confounding issue in the determination of recurrent CNAs is that many co-

horts will be composed of molecularly heterogeneous subgroups of patients [13].

If these cohorts are assumed to be homogeneous, CNA patterns may not be visible.

Moreover, the neoplastic state of tumours can arise from alternative mechanisms,

some of which are mutually exclusive. We can assume that tumours from different

patients can have arisen through alternate evolutionary paths [2]. Identifying these

alternate paths by defining different patterns of alterations within a cohort can re-

veal important recurrent CNAs that may have been undetectable under the assump-

tion of molecular homogeneity. Importantly, if clinical outcome data is available,

molecular subtypes can be correlated in order to test how molecular alterations

confer differential prognoses or response to therapy (see [14, 15] for landmark

examples from gene expression data).

1.1.1 Key biological questions related to CNAs

We focus on three key biological questions related to the analysis of CNAs in a pa-

tient cohort: a) Where are the CNAs in each patient (Chapter 2)? b) Where are the

recurrent CNAs in the cohort (Chapter 3)? c) What are the molecular sub-groups

in the cohort and what are their CNA patterns (Chapter 5)? These questions form

the clinical and biological motivation behind the body of work presented in this

dissertation. Before providing the specifics of our proposed solutions, we first dis-

cuss how CNAs can be measured using array comparative genomic hybridization

technology given DNA samples.

1.2 Measuring CNAs with array comparative genomic
hybridization

CNAs can be measured by a number of different technologies, collectively called

genomic hybridization arrays. The general experimental protocol is to select a set

3



of DNA probes that cover small intervals of the genome. The number ( 30,000-

500,000) and size (10-150Kb) of the probes vary, depending on the specific plat-

form. We will consider whole genome array comparative genomic hybridization

(ACGH) [16, 17] which has 30,000 probes of ∼100Kb in size which cover the

whole human genome in an overlapping tiling arrangement. Other platforms such

as SNP genotyping arrays are also used for detecting CNAs and we will discuss

these technologies in Section 2.4. In aCGH (depicted schematically in Figure 1.2),

the probes are spotted on a glass slide to form the array. Sample DNA and reference

DNA are then differentially fluorescently labeled, mixed together and hybridized

to the slide. The relative fluorescence intensity of the sample vs. reference (mea-

sured by image analysis) is taken as a log ratio for each probe in the array. This

results in an ordered set of measurements (by physical genomic location) cover-

ing the genome. The measurements have a noisy correspondence to the relative

number of copies of DNA of the sample compared to the reference.

An example of the data for one chromosome is plotted in Figure 1.3 (a). This

data (see DeLeeuw et al [19]) is generated from a mantle cell lymphoma cell line

HBL2 and will serve as a running example throughout the text. The horizontal

axis represents physical location on the chromosome from p-arm to q-arm and

the vertical axis represents the log ratio. The large gap in the center of the plot

corresponds to the location of the centromere, where for technical reasons it is

difficult to map probes. In Figure 1.3 (b), the data are shown as labeled by an

expert [19]: CNA gain probes are indicated by green circles, and CNA loss probes

are indicated by red squares. CNA neutral probes are blue crosses.

1.2.1 Statistical characteristics of aCGH data

There are three main characteristics of the data that we can observe from Fig-

ure 1.3. First, log ratio levels correspond to CNAs: losses result in negative ratios,

gains result in positive ratios, and neutral regions in zero ratios, but the correspon-

dence is noisy. Second, CNAs tend to occur in runs, spanning several contiguous

probes. Therefore the CNA state (loss, neutral, gain) is generally dependent on its

neighbours. Third, some probes do not follow this trend and produce outlier log

ratios (indicated by arrows in Figure 1.3 (b)). These outliers are important to con-
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Figure 1.2: Schematic representation of the aCGH experimental protocol, ex-
tracted from Chari et al [18]. Sample and reference DNA are differ-
entially fluorescently labeled, combined and co-hybridized on the ar-
ray. The array is prepared by spotting probes selected from the physi-
cal map of the human genome. Fluorescence intensities are measured
through image processing and a log ratio of intensities is produced for
each probe on the array. One can then plot the log ratios as a function
of physical location of the corresponding probe (shown right).

sider. Outliers can be explained as experimental noise due to measurement error or

mismapped probes; very small real CNAs; or possibly CNVs. The characteristics

of noisy signals, spatial correlation and outliers will be important when we develop

our models in Chapters 2, 3 and 5.

Obviously, we will not know the labeling when the data is generated in an

experiment. Since a typical study will involve tens of samples and each sample has

30,000 data points, manually labeling the data into regions of loss, neutral or gain

is a labour intensive task that may be subject to investigator bias. We therefore turn

to computational approaches to help consistently and accurately detect CNAs from

aCGH.
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(a)

(b)

Figure 1.3: (a) Example aCGH data from DeLeeuw et al [19] for chromo-
some 1 of mantle cell lymphoma cell line HBL2. The horizontal axis
is the physical chromosomal location of the probe and the vertical axis
is the corresponding log ratio. (b) Same data as (a) with CNAs labeled
by an expert. Blue crosses indicate neutral probes, green circles are
gains and red squares are losses. Some outliers (chosen arbitrarily) are
indicated by arrows.

1.3 Research goals
In this dissertation, we discuss three important research goals in the context of

computationally detecting CNAs from aCGH data. The goals correspond to the

key questions listed in Section 1.1.1. We develop statistical models to A) detect

CNAs in a single aCGH sample, B) detect recurrent CNAs in multiple aCGH sam-

ples and C) cluster aCGH samples from a cohort into subgroups. These distinct

computational problems are depicted schematically in Figure 1.4. The left column

6



shows the research goals, the right column shows the input and expected output

for each goal. The major contributions of this dissertation are the specification of

novel models and accompanying inference algorithms as solutions to each of these

goals. We briefly outline the proposed computational problems and our solutions

here, but refer the reader to the corresponding chapters and published work for

details.

1.3.1 Goal A: inferring CNAs from a single aCGH experiment

The objective in Research goal A is to infer CNAs in a single aCGH experiment

in order to delineate genomic regions of interest for further investigation. This

work is outlined in Chapter 2. This task is by far the simplest of the three, but

the framework introduced in its solution is critical to the solutions presented for

the more complex goals. Recall Figure 1.3. This shows the raw aCGH data and

corresponding CNAs inferred by a cytogeneticist. Our task is to replicate the ’calls’

of the cytogeneticist using statistical models. As a solution, we present a novel

hidden Markov model (HMM) to infer CNAs from an aCGH experiment. This

work was originally published in Shah et al [20].

1.3.2 Goal B: detecting recurrent CNAs from multiple aCGH
experiments

Research goal B (Figure 1.4B), is to infer recurrent CNAs from a set of aCGH

experiments, whose corresponding patients form a phenotypic group (eg non-small

cell lung cancer patients). The idea is to determine a pattern of CNAs, called a

profile, that is common to the patients. The schematic in Figure 1.4B shows a

toy example, where aCGH data from 5 patients is the input and the output is a

probability curve showing where the recurrent gains and losses are most likely to

be. As previously discussed, this gives insight into the molecular characteristics

of the phenotype to further understand the disease. Our work on this problem

is discussed in Chapter 3. The proposed solution is an extension of the HMM

presented in Chapter 2 for goal A into a hierarchical HMM that models recurrent

CNAs. This work was originally published in Shah et al [21].
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Figure 1.4: Schematic diagram of major research goals. Left column shows
the goals indicating the corresponding chapters. Right column shows
schematic diagrams of inputs (shaded rectangles) and outputs (unshaded
rectangles). Arrows between boxes indicate dependencies. The more
complex models depend on the simpler ones. In goal A, we want to
classify each probe in the single sample input as loss, neutral or gain. In
goal B, we want to infer a recurrent CNA profile from a set of samples.
In goal C, we want to discover subgroups and their profiles in a set of
samples.
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1.3.3 Goal C: unsupervised clustering of aCGH experiments

Research goal C (Figure 1.4C) is to perform unsupervised clustering on a set of

aCGH experiments where the cohort of patients is assumed to be composed of a

fixed set of molecular subtypes. This is called subgroup discovery and has impor-

tant application in suggesting multiple molecular mechanisms for acquiring disease

characteristics and/or discovery of new molecular subtypes of disease. The toy ex-

ample, shown in Figure 1.4C shows input data from 10 patients. The algorithm

subgroups the patients into 2 groups (indicated by arrows) and computes the pro-

files for each group (labeled CNA profile 1 and 2). We present a novel model based

clustering framework for this problem in Chapter 5.

1.4 Model-based approaches to analysis of aCGH data
Probabilistic graphical models (PGM) offer a robust and principled framework in

which to model patterns in noisy and complex data [22]. This framework allows

the expression of uncertain (noisy) data in terms of generative underlying proba-

bility distributions. PGMs represent probability distributions using graphs, where

nodes are random variables in the system and edges represent probabilistic depen-

dencies between nodes [23]. The observed data and the hidden underlying proba-

bility distributions can thus be represented in a unified framework (see for example

Figures 2.4-2.7).

We take the approach of considering CNAs as latent patterns in the observed

aCGH data. We adopt machine learning techniques and PGMs to infer the latent

quantities from the observed data. These quantities are inferred with levels of

uncertainty that are dependent on the noise characteristics of the data. With this

approach in mind, we develop a comprehensive statistical modeling framework for

aCGH data that is both flexible and modular. The basic idea is to specify models

assumed to have generated the data, then estimate the parameters of the models

so as to best explain what we observe. To this end, PGMs offer a convenient

way in which to express hierarchical probabilistic models, for example Bayesian

probability distributions with conjugate priors [23]. This is a critical aspect of our

approach, as we leverage prior knowledge and intuition into our analysis in order to

specify models that have intrinsic biological meaning, thus leading to interpretable
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results for clinical investigators. In addition, we will show in Chapters 2, 3 and 5,

the physical structure of the data can be conveniently represented using PGMs.

PGMs also allow us to build arbitrarily complex models using components of

our framework to solve a given task. For each biological question involved in de-

termining CNAs in a patient cohort, outlined above in Section 1.1.1, we propose

novel and accurate model-based approaches using PGMs. As the problems in-

crease in complexity (ie research goal C is more complex than research goal B,

which in turn in more complex than research goal A), the solutions leverage the

simpler models and simply incorporate them in a more complex structure. More-

over, PGMs provide a general “inference engine” [23] that can be applied to fitting

arbitrarily complex models to data. We employ this theory in the development of

our framework and inference routines.

1.5 Data sets
In order to see the utility, and to evaluate how well our solutions were working,

we applied the methods related to our research goals to several real-world data sets

generated by colleagues at the BC Cancer Agency. Table 1.1 lists the disease entity

they represent, the number of aCGH experiments (cell lines or patients as the case

may be), which research goal was applied, the Chapter that refers to the data set,

and the status of the project. In all we tested and applied our models on seven

different disease entities and a total of 339 aCGH samples.

The application ranged from cell-line data to clinical samples. A key point is

that for some cell lines, we had ground truth data (CNAs were determined by man-

ual analysis and some of those were verified by fluorescence in situ hybridization)

and thus quantitative metrics could be computed to evaluate the accuracy of our

approaches. In addition, the characteristics of cell line data is that they produce

much cleaner signals than in clinical samples and therefore, made for very good

initial benchmarking data sets on which to develop our algorithms. However, it

was always our intention to evaluate how our algorithms would perform on pre-

viously unstudied clinical data sets for which no ground truth was available. The

106 aCGH samples generated for follicular lymphoma (the subject of Chapter 4),

made for an ideal case study with the goal of revealing new science with respect
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Table 1.1: Real-world aCGH data sets on which we have applied our models
Disease # Ref Goal Chap status

mantle cell lymphoma 8 cell lines [19] A 2 complete
blastic-type lymphoma 11 [24] A 2 complete

enteropathy T-cell lymphoma 30 [25] A 2 complete
follicular lymphoma 106 [7] A,C 4,5 complete

lung cancer 39 cell lines [11] B 3 complete
diffuse large B-cell lymphoma 92 n/a A,B,C 5 ongoing

Hodgkin lymphoma 53 n/a A,B,C n/a ongoing

to this disease. By working extensively with this data set, we were able to assess

qualitatively how well our approaches were working on real data. This process

required a focused collaboration with our colleagues that resulted in improving our

models for robust application, enabling new and relevant clinical and biological

inferences. In a similar vein, we remain engaged in two ongoing studies (bottom

two rows of Table 1.1) in diffuse large B-cell lymphoma (DLBCL - 92 cases) and

Hodgkin lymphoma (HL - 53 cases) where we continue to refine our models for

CNA characterization of these diseases in a clinical setting.

In addition to the real-world data sets described above, we generated synthetic

data for each goal in order to test the theoretical properties of our models. This

enabled quantitative benchmarking against standard methods (see Chapters 2, 3

and 5 for details).

1.6 Dissertation outline
The rest of the dissertation is organized as follows: In Chapter 2, we demonstrate

our approach to detecting CNAs from a single aCGH experiment. We outline two

novel extensions to hidden Markov models that confer higher accuracy over stan-

dard methods, and introduce the statistical framework that forms the foundation for

all work presented in this dissertation. Chapter 3 discusses our contribution to prob-

lem of detect recurrent CNAs in a set of aCGH experiments derived from a patient

cohort. This work extends the models discussed in Chapter 2 to the multiple sample

case. We derive a novel method that explicitly models driver and passenger CNAs,

and thus successfully filters out the passengers, while reporting sparse profiles of
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CNAs that represent putative driver alterations in the cohort. We demonstrate how

our methods are more sensitive to finding signals in the data that may be lost us-

ing standard methods. Chapter 4 is an important chapter that describes the first

high-resolution genomic profile for follicular lymphoma, that resulted in making

refinements to our model presented in Chapter 2 for clinical application. We show

how our methods led to the description of clinicopathologically significant CNAs

that are now being rigourously pursued as candidate driver CNAs with prognostic

relevance in this disease. We also seeded the idea of the clustering while working

with this data that led to the concepts presented in Chapter 5. Chapter 5 introduces

a novel model-based approach, based on a mixture of HMMs, for clustering aCGH

data. This method outperforms partitioning and hierarchical clustering methods,

and in an application to two rich clinical data sets demonstrates that it is capable

of discovering clinically relevant molecular subtypes. In the FL cohort mentioned

above, we show how our model successfully deals with heterogeneous molecular

subtypes by stratifying patients into groups with prognostically distinct molecular

profiles. Chapter 6 is a summary of our results and offers thoughts on future di-

rections for the research presented herein. Each of the technical chapters 2-5 are

intended to be self-contained and can be read independently of the others.
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Chapter 2

Detecting CNAs from array CGH
data

Summary
In this chapter, we consider the problem of inferring CNAs from a single aCGH ex-

periment (research goal A). We begin by outlining the related work on this topic in

Section 2.1 including smoothing, segmentation and state-space models; and illus-

trate potential limitations of previously published contributions. In Section 2.2, we

introduce our contribution, an extension of a continuous emission hidden Markov

model that explicitly models the statistical properties of aCGH data. We show

in Section 2.3 how our novel HMM that borrows statistical strength across chro-

mosomes for parameter estimation and explicit modeling of outliers outperforms

standard baseline models using cell line data and synthetic data with ground truth
1. In Section 2.4, we discuss the impact of this work to the bioinformatics, cancer

and cytogenetics research communities and outline ideas for future directions.

1Some of the material in this chapter was previously published in: S P Shah, X Xuan, R J
DeLeeuw, M Khojasteh, W L Lam, R Ng, and K P Murphy. Integrating copy number polymor-
phisms into array CGH analysis using a robust HMM. Bioinformatics, 22(14):431439, Jul 2006.
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Figure 2.1: Output from Quantreg, a smoothing algorithm due to Eilers and
Menenzes [26]. The output provides a smooth trace through the data,
but does not provide any explicit predictive information about the lo-
cation of the CNAs. Figure extracted from Eilers and Menenzes et al
[26].

2.1 Related work: algorithms for single sample aCGH
analysis

2.1.1 Notation and preliminaries

The analytical goal in this chapter is to infer CNAs from aCGH data derived from

a single aCGH experiment. Let y1:Nc ∈ IR be the log ratios observed from the

aCGH experiment, where y1:Nc = {y1, . . . ,yNc}. For a given probe t, yt is noisily

related to log Is
t

Ir
t

where Is
t is the fluorescence intensity of the sample (or tumour)

DNA at probe t and Ip
t is the fluorescence intensity of the reference (or normal)

DNA at probe t. The intensity measurements are proportional to the DNA copy

number number, which for the reference is usually 2. yt is noisy due to technical

errors and systematic variability arising from numerous sources and we assume the

data has been normalised against these systematic biases2. We consider a single

chromosome c at a time (this reflects the physical arrangement of DNA in the

cell), with probes indexed from (1,2, . . . ,Nc) where Nc is the number probes on

the chromosome and the indices denote the probes’ relative ordering by physical

location on the chromosome. We wish to identify which probes in the data are

2Normalization is not the focus of the work presented in this thesis, but we refer the reader to
Khojasteh et al [27] for detailed explanation of the sources of error and how they are corrected. This
normalization method is used for all data presented herein.
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likely to represent a CNA. We will examine how various authors in related work

have modeled y1:Nc in order to interpret the data with respect to CNAs. In general,

previous approaches can be characterised into four main categories: smoothing,

segmentation, independently and identically distributed (IID) mixture models, and

state space models. We will show the general characteristics of these methods and

demonstrate their limitations. In Section 2.2, we propose improvements to these

methods in order to gain accuracy in predicting CNAs.

2.1.2 Smoothing algorithms

We begin our discussion with smoothing algorithms. Smoothing approaches, such

as [26, 28] generally model y1:Nc using regression to fit curves to the data. The

output is a smooth trace x1:Nc through the data that is calculated by considering

neighbouring probes. For example, Eilers and Menenzes [26] fit a curve to the data

by minimizing:

J(x1:Nc) =
Nc

∑
t=1
|yt − xt |+λ

Nc

∑
t=2
|xt − xt−1| (2.1)

with respect to x1:Nc . A typical example of smoothing output is shown in Figure 2.1

(extracted from Eilers and Menenzes [26]), depicting a smooth curve through the

data. While this is helpful in that the data are denoised, smoothers do not provide

explicit predictive information about which probes are CNAs - our primary objec-

tive in aCGH analysis. Smoothing algorithms are therefore used primarily as a data

visualisation tool which must be subjectively interpreted to make real conclusions

about the data. A somewhat more practical approach is realised by segmentation

algorithms.

2.1.3 Segmentation algorithms

The bulk of the literature on aCGH analysis is related to segmentation algorithms.

A segment is a contiguous set of probes assumed to share the same mean log ratio.

Segmentation approaches partition the data into piecewise constant intervals by

determining the segment boundaries, also referred to as chromosomal breakpoints.

Segmenters therefore provide the users with a list of locations where the data is

changing sharply. The breakpoints are usually determined so as to minimize the
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within segment variation. Examples of segmentation algorithms include: DNA-

Copy [29, 30], CGHSeg [31], aCGHSmooth [32] and GLAD [33]. Segmentation

of aCGH data is also an example application of the multiple changepoint problem

studied by Fearnhead [34]. Fearnhead’s formulation of the problem models the

data within a segment as follows:

~yi = ~Gi~β i + εi (2.2)

where i represents the ith segment in the data, ~Gi is a matrix of basis functions

for the ith segment under a polynomial piecewise constant assumption, ~β i is the

set of model parameters (eg mean for polynomial of order 1) for segment i and ε i

represents random Gaussian noise with mean 0 and segment-specific variance σ2
i .

Given this model, the task is to infer the number and positions of the changepoints.

Figure 2.2 shows two examples of the output of segmentation using Fearn-

head’s algorithm [34] (a) and DNACopy (b)— considered to be the best segmenta-

tion algorithm in two separate evaluation studies [35, 36]. As Figure 2.2 illustrates,

the drawback of segmentation is that there is no intrinsic biological meaning of the

mean level of the segments. In fact, the data could be segmented into an arbi-

trary number of levels. Segmentation often produces an over-represented number

of states in comparison to the biologically meaningful CNA states (note the sin-

gle clone segments and numerous segments in the ground truth neutral regions).

Post-processing is therefore required to infer the (loss, neutral, gain) CNA states.

Algorithms such as GladMerge [33] and MergeLevels [36] are designed for this

purpose. We have found that in general segmentation followed by post processing

is susceptible to false positives. This is shown in Figure 2.3 which is the output of

DNACopy (Figure 2.2(b)) post-processed with MergeLevels. From here onwards

we will refer to this algorithm as DC+ML. We will demonstrate that it is more ef-

fective to jointly infer segments and changepoints simultaneously in Section 2.3.2.

2.1.4 IID Mixture models

A solution to the over-represented number of segments problem is to classify each

probe into a fixed number of states K. We can assign biological meaning to the

states, therefore the output is immediately interpretable. For example, IID Gaus-
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(a) Fearnhead

(b) DNACopy

Figure 2.2: Example output of 2 segmentation algorithms on HBL2 chromo-
some 1: (a) Fearnhead and (b) DNACopy. The green horizontal lines
indicate the mean level of the segments. The vertical lines indicate the
ground truth changepoints. In both cases, the segmentation algorithms
are predicting more segments than indicated by the ground truth.

sian mixture models (GMM) applied to aCGH by Hodgson et al [37] provide the

desired output. We sketch this model as a directed graphical model (Bayesian net-

work) in Figure 2.4. In GMMs for aCGH, the number of K = 3 states represent

CNA loss, neutral and gain ({L,N,G}). GMMs introduce a set of Zc
1:Nc

multino-

mial random variables, where Zc
t = k means probe t on chromosome c is in state k.

The prior probability, p(Zc
t = k) is represented by πc(k). The key part of the model

is a probabilistic dependency of yc
t on Zc

t :

p(yc
t |Zc

t = k) = N (yc
t |µc

k ,σ
c
k ) (2.3)
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Figure 2.3: Example output of DNACopy + MergeLevels. The over-
segmentation from DNACopy results in three false positive loss pre-
dictions in comparison to the ground truth.

Therefore, yc
t is assumed to be generated by a state dependent Gaussian distribu-

tion3parameterized by µc
k ,σ

c
k . The marginal distribution of y is therefore:

p(yc
t ) =

K

∑
k=1

πc(k)N (yc
t |µc

k ,σ
c
k ) (2.4)

a convex combination of the Gaussian emission densities, weighted by πc. The

parameters (πc,µc
1:K ,σ c

1:K) can be fit to the data using maximum likelihood or MAP

estimation in an expectation maximization (EM) framework (see Bishop (2006), ch

9 [22]). Since our goal is to infer the CNA state from the data, we can make use of

Bayes’ rule and calculate posterior probabilities γt(k) = p(Zc
t = k|y1:Nc ,µc

k ,σ
c
k ):

γt(k) =
πc(k)N (yt |µc

k ,σ
c
k )

∑l πc(l)N (yt |µl,σl)
(2.5)

Typical output on HBL2 chromosome 1 (same data as in Figure 1.3) of the MAP

method is shown in Figure 2.8 (top). The output indicates the posterior probability

that each probe is a loss, neutral or gain, which is our desired output.

An important consideration in the MAP estimation is the use of conjugate prior

3This is an approximation that in our experience fit the data well in the vast majority of cases. In
a small subset of the data, loss regions and gain regions showed slight skewness and thus alternative
distributions such as Gamma might be used. This is a potential topic for future work.
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GMM

Figure 2.4: Probabilistic graphical model of the Gaussian mixture model
(GMM). Square nodes are parameters or hyperparameters, round nodes
are random variables. Shaded nodes are known quantities, unshaded
nodes are unknown. The large rounded rectangles are called plates rep-
resent repetition of the contents inside. Arrows between nodes indicate
probabilistic dependency between variables. We let c denote the chro-
mosome and k represent the state. We show the generative mechanism
for yc

t as a state-dependent Gaussian emission density with parameters
µc

k ,σ
c
k indexed by the latent variables Zc

t , representing CNA states. πc is
a multinomial distribution over the states and δ π is a Dirichlet prior dis-
tribution over πc. In this model, the latent state labels are independent,
therefore spatial correlation is not modeled. Please refer to Figures 2.5,
2.6 and 2.7 for Markov extensions to this model that do model spatial
correlation.
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HMM-SC

Figure 2.5: Graphical model of the continuous emission HMM (HMM-SC).
See legend of Figure 2.4 for description of graphical model notation.
In comparison to the GMM (Figure 2.4), Zt

c are no longer plated for
probe t. Instead Zc

t is dependent on Zc
t−1 and a transition matrix Ac,

thus modeling spatial correlation with Markov dynamics. In the HMM-
SC model shows that parameters µc,σ c,Ac are inside the chromosome
plate, indicating they are chromosome specific.

distributions on the parameters of the model µ,σ (we drop the c superscript for

brevity). These are modeled as follows:

µk ∼N (µk|mk,σ
2
k νk) (2.6)

where mk is the prior mean of µk and νk is the variance of the prior.

σ
−2
k ∼ Gam(σ−2

k |αk,βk) (2.7)

where Gam is the Gamma distribution and αk,βk are the shape and scale hyperpa-

rameters respectively. Setting the hyperparameters (mk,νk,αk,βk) is particularly

important in such models because we wish to assign intrinsic meaning to k where

k = 1 is loss, k = 2 is neutral and k = 3 is gain. Therefore, it is imperative that

µ1 < µ2 < µ3 hold in order for the output to be interpretable. This condition en-

forces identifiability of the states and prevents the label switching problem [38].
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HMM-P

Figure 2.6: Graphical model of HMM-P. In comparison to Figure 2.5, we
pull the µ,σ ,A parameters outside the chromosome plate, indicating
they are pooled (and thus, shared) across chromosomes, and we drop
the c superscript. This leads to more accurate parameter estimation as
the inference is informed by more data (all chromosomes vs one chro-
mosome).

Maintaining identifiability can be accomplished through various techniques, one

of which is to set strong priors on mk by setting νk to be small (eg 10−4). We

will discuss this further in Section 2.2.3, but by way of introduction, we illustrate

two separate runs of the GMM in Figure 2.9 with strong (νk = 10−4) (a) and weak

(νk = 1) (b) enforcement of µ1 < µ2 < µ3.

In addition to the label switching problem, the main limitation of GMMs is

that each log ratio is assumed to be independent of all the others. Therefore spatial

correlation is not considered in inferring the CNA states. Note that in Figure 2.8

(top) the data are coloured according to their vertical position, but not according

to their horizontal position. In addition, as shown in Figure 2.10 the values of

the converged parameters do not fit well to their empirical values (based on the

ground truth labeling). We will show how this can be improved by modeling spatial

correlation below.
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HMM-R

Figure 2.7: Graphical model of (HMM-R). HMM-R is similar to HMM-P
(see Figure 2.6), but we add an extra process, Oc

t which models state-
specific outliers. This is expected to reduce state transitions at outlying
data points, thus reducing false positive CNA predictions. Please see
text for details.

2.1.5 State space models

This class of models considers spatial correlation while classifying each probe into

one of a fixed number of discrete classes or states. As in GMMs, we have the same

semantic meaning of the states {L,N,G}. Useful and popular state space models

for aCGH are hidden Markov models (HMM) [39]. HMMs are particularly appro-

priate as they attempt to simultaneously classify and segment the probes under a

unified model.

Hidden Markov Models

Similar to the segmentation algorithms described above, HMMs segment the data

into piecewise constant intervals, but instead of allowing an arbitrary number of

levels, HMMs restrict the number of levels to a fixed number of K = 3 states as in

GMMs. HMMs for aCGH have three important components: a latent sequence of
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Figure 2.8: Comparison of p(Zt = k|y1:N ,θ) = γt for the GMM, HMM-SC,
HMM-P and HMM-R for chromosome 1 of HBL2. The data points
are plotted using [γt(L),γt(G),γt(N)] as a Red-Green-Blue colour vec-
tor for each probe. This allows a visual comparison to Figure 1.3 (b)
and demonstrates that the HMM-R most closely resembles the ground
truth. Systematic improvements over GMMs are achieved by HMM-SC,
HMM-P and finally HMM-R. Arrow indicated in the plot for HMM-P
are single clone predictions likely to be false positives. These are not
predicted by HMM-R. This figure is best viewed in colour.
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(a)

(b)

Figure 2.9: Illustration of the label switching problem on chromosome 2
of mantle cell lymphoma cell line NCEB1. (a), top shows p(Zt =
k|µk,σk,π) = γt(k) of the GMM using a strong prior where the proba-
bilities are shown using [γt(L),γt(G),γt(N)] an RGB colour vector with
red=loss, green=gain and blue=neutral. The obvious loss near the cen-
tromeric end of the q-arm is correctly predicted as such. The bottom row
of (a) from left to right show the Gaussian class conditional densities
using the converged values of µ,σ ; the log-likelihood plotted against
iterations of the EM algorithm; the trace of µ against iterations of the
EM algorithm (green is µ3, blue is µ2 and red is µ1); and the trace of σ .
The trace of µ indicates that µ1 < µ2 < µ3 is satisfied. (b) in contrast
when a weak prior is used, label switching occurs and the converged
value of µ3 < µ1. As a result, the loss region is erroneously predicted
as a gain.
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Figure 2.10: Convergence of model parameters for GMM. From left to right,
the plots are the same as in bottom row of Figure 2.9. Note the prob-
lematic µG and σG parameters (two right-most plots) that do not fit
their empirical values (based on ground truth labeling) well. The em-
pirical estimates are denoted by horizontal lines. This results in many
false negative predictions (see Figure 2.8 (top)).

discrete states, Zc
1:Nc

for Nc probes on chromosome c; a set of emission densities

conditional on Zc
t :

p(yc
t |Zc

t = k) = N (yc
t |µc

k ,σ
c
k ) (2.8)

where µc
1:K ,σ c

1:K are specific to each chromosome, K = 3; and a K-by-K stochastic

transition matrix A:

p(Zc
t = j|Zc

t−1 = i) = Ac(i, j) (2.9)

Zc
t is a multinomial random variable where Zc

t ∈ {L,N,G}. HMMs have the ben-

eficial properties in that the hidden sequence of states Zc
1:N have biological inter-

pretability (similar to GMMs) and they model spatial correlation by way of the

state transition matrix Ac which encourages Zc
t to be the same as its neighbours.

The initial position is modeled as a stationary Dirichlet distribution p(Zc
1 = k) =

πc(k). A and π have standard Dirichlet conjugate priors parameterized by δA and

δπ respectively. A directed graphical model of the HMM, adapted for aCGH is

depicted in Figure 2.5. The model depicts the probabilistic dependency of Zt on

Zt−1, thus modeling the spatial correlation in the data. Please see [22] for details

on directed graphical models and how they relate to state transition diagrams for

HMMs.
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Inference in HMMs

For each chromosome in turn, the inference goal of HMMs is to determine the

most likely sequence of states Zc
1:N given yc

1:N and the model parameters θ c =
(µc,σ c,Ac,πc) while simultaneously estimating θ c. Similar to the GMM, this is

accomplished in the EM framework. In the HMM case, p(Zc
t = k|yc

1:Nc
,θ c) = γc

t in

the E-step is computed using the efficient O(Nc) Forwards-Backwards algorithm

[22]. θ c is estimated in the M-step using standard MAP conjugate updating (simi-

lar to the GMM setting). We consider this the baseline HMM, upon which we make

important extensions, described in Section 2.2. Full details of the inference algo-

rithm are given in Bishop [22], chapter 13. We refer to this algorithm as HMM-SC

(HMM, single chromosome) from here onwards. Figure 2.8 (HMM-SC) shows the

output of HMM-SC on our running example chromosome 1 of HBL2. While the

HMM is better than the GMM (more ground truth CNA probes are predicted), note

that it still has false negatives. As in the GMM, this is perhaps due to the model pa-

rameters not matching their empirical values (based on the ground truth labeling)

exactly (see Figure 2.11). In Section 2.2 we will show extensions to this baseline

HMM are more accurate in predicting CNAs as they converge to model parameter

values that are much closer to the empirical values.

Choosing the number of states in an HMM

One important issue with HMMs (and GMMs) is the requirement to choose the

number of states. Thus far we have only considered 3-state models ({L,N,G}),
however the biology may be more complicated than these models allow. If we

consider the number of DNA copies of a normal person to be two, there may be

one or two copies lost in a deletion. For gains, there may be arbitrarily many

copies gained. Therefore to model the biology closely, we may require additional

states in the HMM. Furthermore, in clinical samples, the ploidy (two-copy nor-

mal) assumption does not always hold [39]. Tumour genomes may be triploid or

tetraploid which significantly affects the actual number of copies the samples can

have. In addition, the tumour DNA sample is often contaminated with DNA from

normal tissue that inherently affects the dynamic range of the observed logratios

and may consequently make inference of discrete states more difficult. It is notable
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Figure 2.11: Convergence of model parameters for HMM-SC. From left to
right, the plots are the same as in bottom row of Figure 2.9. Note that
µG and σG parameters (two right-most plots) do not fit their empirical
values (based on ground truth labeling) perfectly well. This results in
many false negative predictions (see Figure 2.8 (2nd from top)). We
will see in Section 2.2 how these parameter estimates can be improved
for increased accuracy.

that three-state [40–42], four-state [20, 43], and six-state models [44] have been

proposed. In addition, others have chosen the number of states based on penalised

likelihood criteria such as AIC [39, 41]. We will demonstrate the effect of choosing

different numbers of states in Section 2.3.3.

Other SSMs

Aside from HMMs, two other notable methods have been proposed that qualify as

SSMs. Broet and Richardson [40] model spatial correlation using mixture model

approach by way of a latent 1D Gaussian random field as opposed to a latent dis-

crete 1D random field (ie HMM). Their approach produces posterior probabilities

(analogous to γt as mixture weights of each probe belonging to each of three states

({L,N,G}) which can then be classified using thresholding or Bayes allocation

rules. More recently, Shi et al [41] proposed a switching Kalman filter approach

that can model spatial trends in the data that deviate from the piecewise constant

assumption.
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2.2 Methods: a novel HMM for inferring CNAs from
aCGH data

In this section we outline three novel contributions we have made to modeling

aCGH data with HMMs for both quantitative and qualitative improvement in CNA

analysis. They include: i) improving HMM parameter estimation ii) modeling out-

liers and iii) automatic setting of hyperparameters. These are the main differences

in our approach over other aCGH HMM methods such as as Fridlyand [39] and

Guha [43].

2.2.1 Improving HMM parameter estimation by pooling

Thus far in our discussion, we outlined related work, all of which considered each

chromosome in the data independently. In Shah et al [20], we showed that it is

possible to pool the data across all the chromosomes when estimating certain pa-

rameters (µ,σ ,A) of the model. This small extension to the HMM, which we

call HMM-P (for pooled), results in considerable accuracy advantages. Based on

the assumption that the mean log ratio levels for {L,N,G} are consistent across

chromosomes, the improved accuracy can be explained because the estimation of

(µ,σ ,A) can be guided by several fold more data points and thus borrow statistical

strength from all chromosomes. Also, we often have the case where one or more

chromosomes do not exhibit data that should belong to one of the states. If such

a chromosome is treated independently, the parameter estimation for the ’missing’

state defaults to the prior and is therefore not informed by any data. The HMM-P

model is shown in Figure 2.6, which shows the (µ,σ ,A) parameters outside of the

chromosome plate, indicating that they are shared across chromosomes.

Note that Engler et al [42] proposed a pseudolikelihood SSM for the case where

the data consists of a set of experiments (samples). Their method uses pooled

estimates across chromosomes and samples. As we will discuss in Section 2.2.3,

this may not be appropriate if the samples exhibit heterogeneous levels of {L,N,G}
due to differential mixtures of normal and tumour cells in the sample preparation,

variability in the hybridization quality or different baseline ploidies [39].

The effect of the pooling procedure can be seen in Figure 2.8 (HMM-P) and

Figure 2.12 which show a sharp reduction in false negatives and much more accu-
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Figure 2.12: Convergence of model parameters for HMM-P. From left to
right, the plots are the same as in bottom row of Figure 2.9. The param-
eter values converge more closely to the empirical values compared to
HMM-SC (Figure 2.11) by considering all the data in the parameter
estimation M-step. However, the convergence is still not exact.

rate parameter estimation compared to GMM and HMM-SC. The majority of the

errors, (some of which are indicated by arrows in Figure 2.8) are due to misclassi-

fication of outliers. In the next section, we show how modeling outliers can further

improve CNA detection accuracy and parameter estimation.

2.2.2 Modeling outliers

Thus far, we have considered the data as belonging to one of {L,N,G} states. We

call these states ’inlier’ states. We propose to augment the state space of the model

to consider an alternate generative mechanism for the data, the ’outlier’ process.

We call this new model HMM-R (for HMM robust). The motivation for this is

given in the previous section in Figure 2.12.

We initially proposed a robust HMM capable of modeling outliers [20]. This

was a simple approach that considered outliers from all the data (global outliers)

with a single uniform distribution (simulated with a broad Gaussian) and inliers in

the standard way as in HMM-P. Thus we modified the class conditional density as

follows:

p(yt |Ot ,Zt = k) =

{
N (yt |µ0,σ0) if Ot = 1

N (yt |µk,σk) if Ot = 0
(2.10)

Thus Ot acts like a “switching parent” variable, which selects between the outlier

parameters µ0,σ0 or the inlier parameters, µk,σk. Examples of these distributions

are shown in Figure 2.14 (b - top) for inliers and Figure 2.14 (b - middle) for
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outliers. The outlier distribution approximates a uniform distribution.

We refined the outlier processing to consider outliers in the context of their

neighbouring probes. We call these context-specific outliers. Figure 2.14 (a) il-

lustrates the rationale behind this extension. The black arrows indicate two data

points, one outlying from a neutral state and the other outlying from the loss state

(red points). The outlying points both fall very close to the mean of the Gaussian of

the gain state and therefore are susceptible to transitions to the gain state. Further-

more, they are not global outliers and so they would not be considered outliers by

our previous method. Obviously, neither of these probes should be classified as a

gain. To prevent misclassification of these probes, we introduce state-specific out-

lier density functions (one for each inlier state), shown in Figure 2.14 (a) capable

of capturing locally outlying data points that would not be captured by our previous

outlier distribution shown Figure 2.14 (b), middle. To achieve this, we introduce

a binary switching (or Bernoulli) random variable Ot where Ot = 1 indicates that

the log ratio for probe t is an outlier and Ot = 0 indicates that it is an inlier, to be

modeled by the Z Markov process. We therefore modify the emission density as

follows:

p(yt |Ot ,Zt = k) =

{
ψ(yt |µk,σy) if Ot = 1

N (yt |µk,σk) if Ot = 0
(2.11)

where

ψ(yt |µk,σy) =

{
χ−2(µk− yt |σy,ν0)/2 if yt ≤ µk

χ−2(yt −µk|σy,ν0)/2 if yt > µk
(2.12)

We use the state mean of the outlier’s neighbours to calculate a class conditional

density that is based on a χ−2 distribution, but is symmetric. We denote this distri-

bution as ψ(y|µk,σy) where µk is the mean of the state of the neighbours and σy is

the global standard deviation of y1:N . The distribution is symmetric about µk and

integrates to 1. A clear example of the inlier and outlier densities for the loss state

is shown in Figure 2.13. The shapes of all the emission densities superimposed are

shown in Figure 2.14 (b) bottom.

The graphical model for HMM-R is shown in Figure 2.7. Table 2.1 contains

the list of conditional probability distributions for the model. Outliers are depicted

by O. As can be seen from the arrows pointing into Y , there are now two pro-

cesses to generate the data: the inlier process modeled by Z and the outlier process
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Figure 2.13: Inlier and outlier emission densities for HMM-R. We show the
inlier density for the loss state (red curve), a standard Gaussian distri-
bution, while it corresponding outlier density is depicted in black. The
outlier density has a ’hole’ centered at the mean of its corresponding
inlier density, and has heavy tails that are better able to capture local
outliers.

p(A(i, .)|δ A) ∼ Dir(A(i, .)|δ A)
p(πc|δ π) ∼ Dir(πc|δ π)

p(Zt = k|Ot = 0,Zt−1 = j,A) ∼ A( j,k)
p(Zt = k|Ot = 1,Zt−1 = j,A) = I( j = k)

p(Ot = 1|Ot−1 = 1) = εo

p(Ot = 1|Ot−1 = 0) = λ

p(λ |a,b) ∼ Beta(λ |a,b)

p(yt |Ot ,Zt = k) ∼
{

ψ(yt |µk,σy) if Ot = 1
N (yt |µk,σk) if Ot = 0

p(µk|mk,νk) ∼ N (µk|mk,σ
2
k νk)

p(σ−2
k |αk,βk) ∼ Gam(σ−2

k |αk,βk)

Table 2.1: Conditional probability distributions for HMM-R
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(a)

(b)

Figure 2.14: (a) Motivation for contextual outliers. Plot shows ground truth
losses as red squares, ground truth gains as green circles. The points
delineated by the arrows are outlying from their neighbouring clones
but lie close to the mean of the gain state and therefore the model is
susceptible to transitions at these points. (b) model for inliers (top),
global outliers (middle) used in Shah et al [20] and contextual outliers
(bottom) where the distribution will have a much greater likelihood of
capturing the points illustrated in (a).
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modeled by O. The arrows between adjacent O nodes indicate that we enforce

singleton outliers. As explained earlier, outliers may correspond to real CNAs, but

the problem is that they are indistinguishable from experimental noise [45]. With

high-dimensional arrays many investigators require CNAs to span at least 2 con-

secutive probes [45–47], so the singleton enforcement is well justified. Therefore,

we consider Ot−1 when evaluating p(Ot) and only allow Ot−1 = 1 and Ot = 1 with

very low probability. The conditional probability distribution for Ot = 1 is:

p(Ot = 1|Ot−1 = 1) = εo (2.13)

p(Ot = 1|Ot−1 = 0) = λ (2.14)

where λ represents the prior probability of an outlier. λ has a conjugate Beta

prior parameterized by (a,b). εo, 0 ≤ εo << 1, is the probability of having 2

consecutive outliers. These parameters are used to define the outlier transition

matrix B:

B =

(
1−λ λ

1− εo εo

)
(2.15)

The set of parameters for HMM-R is consequently augmented to

θ = (µ,σ ,A,π,B,λ ).

To ensure that outliers are considered in the context of their neighbours, we set

Zt to Zt−1 if Ot = 1. We call this state latching. Therefore when determining

Zt+1, the inlier Markovian dynamics are maintained even though Ot = 1. This

is similar to a 2nd order Markov process in that when Ot = 1, Zt+1 depends on

Zt−1, but because of the state latching condition, the computational cost during

inference is not significantly increased. Note that when the model makes temporary

“excursions” to the outlier state, it is not penalised by the state transition matrix A.

Formally, the conditional probability distribution for Zt = k is given by:

p(Zt = k|Ot = 0,Zt−1 = j,A) = A( j,k) (2.16)

p(Zt = k|Ot = 1,Zt−1 = j,A) = I( j = k) (2.17)
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Figure 2.15: Convergence of model parameters for HMM-R. From left to
right, the plots are the same as in bottom row of Figure 2.9. The param-
eter values converge more closely to the empirical values compared to
HMM-P (Figure 2.12) by pooling all the data in the parameter estima-
tion M-step.

HP Description Setting
mL Prior Gaussian mean on µL (loss state) -2σy

mN Prior Gaussian mean on µN (neutral state) 0
mG Prior Gaussian mean on µG (gain state) 2σy

ν1:K Prior Gaussian variance on µ1:K (strong prior) 10−4

α1:K Prior shape parameter for Gamma prior on σ
−2
1:K 10+σy

β1:K Prior scale parameter for Gamma prior on σ
−2
1:K 1

a,b Beta(a,b) prior on outlier (104σy,105)

δ A Dirichlet prior on A

 0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9


δ π Dirichlet prior on πc (0.25,0.5,0.25)

Table 2.2: Hyperparameters (HP), descriptions and settings for HMM-R

Processing outliers also allows the parameters in the model to be estimated

more accurately, as shown in Figure 2.15. We will demonstrate how these impor-

tant modifications yield better accuracy in Section 2.3.2.

2.2.3 Setting hyperparameters

The hyperparameters (the parameters of the conjugate priors, eg m,ν) of the model

need to be set at run time. The HMM-R hyperparameters include (m1:K ,ν1:K ,δA,δπ ,a,b)

and are listed in Table 2.2. This leaves the user with many free parameters to set.

This could be cumbersome when processing 10s or 100s of samples, given that
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Algorithm 1 Expectation Maximization algorithm for HMM-R. We omit the π

term for brevity and assume εo to be fixed. τc represents the 1 : Nc indicies (t) of
the probes on Chromosome c. Supporting functions are given in Algorithm 2. The
input is the logratios, Y1:N and the output are the marginal posterior probabilities
γZ and γO. ForwardsBackwards is described in Bishop [22].

1: (m,ν ,α,β ,δA,a,b) = setHyperparameters(Y1:N)
2: (µ,σ ,A,B) = initialiseParameters(m,ν ,α,β ,a,b)
3: for iter = 1,2, . . . do
4: /* Compute states (E step) */
5: b1:Nc = makeLocalEvidence(Y1:N ,µ1:K ,σ1:K)
6: AZO = makeTransitionMatrix(A,B)
7: A′,O′ = 0 /* reset pseudocounts */
8: for c = 1,2, . . . ,C do
9: γZO

τc
= ForwardsBackwards(AZO, bτc)

10: γZ
τc

= marginalise(γZO
τc

,O)
11: γO

τc
= marginalise(γZO

τc
,Z)

12: A′ = A′ + countTransitions(γZ
τc
,Nc,K)

13: O′ = O′ + countTransitions(γO
τc
,Nc,2)

14: end for
15: /* Update parameter values (M step) */
16: for k=1,. . . ,K do
17: /* Update emission density parameters */
18: nk = ∑t γZ(k)
19: ȳk = 1

nk
∑t γZ

t (k)yt

20: ν̄k = 1
nk

∑t γZ
t (k)(yt − ȳk)2

21: µk = σ2
k mk +nkνkȳk

22: ᾱk = αk + 1
2 nk

23: β̄k = βk + 1
2 nkν̄k

24: σ
−2
k = ᾱk/β̄k

25: end for
26: /* Update transition parameters */
27: for j=1, . . . , K do
28: A( j,k) = A′( j,k)+δA( j,k)

∑l A′( j,l)+δA( j,l)
29: end for
30: /* Update outlier parameters */
31: λ = a+O′(inlier,outlier)

b+a+N−2

32: B =
(

1−λ λ

1− εo εo

)
33: end for
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Algorithm 2 Supporting functions for Algorithm 1
1: Function (m,ν ,α,β ,δA,a,b) = setHyperparameters(Y1:N)
2: σy = standardDeviation(Y1:N)
3: mL =−2σy

4: mN = 0
5: mG = 2σy

6: ν1:K = 0
7: α1:K = 10+σy

8: β1:K = 1
9:

10: Function (µ,σ ,A,B) = initialiseParameters(m,ν ,α,β ,a,b,δ A,ε0)
11: µk = mk
12: σ

−2
k = α

β

13: A = δ A

14: λ = a
a+b

15: B =
(

1−λ λ

1− εo εo

)
16:

17:

18: Function b1:N = makeLocalEvidence(Y1:N ,µ1:K ,σ1:K)

19: bt(i,k) =
{

ψ(yt |µk,σy) if i = 1
N (yt |µk,σk) if i = 0

20:

21: Function MAB = makeTransitionMatrix(A,B)
22: MAB = A×B
23:

24: Function (γ) = marginalise(p(X = x,Z = z),Z)
25: γt = ∑z p(Xt = x,Zt = z)
26:

27: Function C = countTransitions(Z,N,K)
28: for i=1, . . . , K do
29: for j=1, . . . , K do
30: C(i, j) = ∑

N
t=2 p(Zt−1 = j,Zt = i)

31: end for
32: end for
33:

34:
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several characteristics in the data contribute to inter-sample variability in the log

ratio levels of losses and gains and noise characteristics of the data. Examples

include quality of the hybridization, the tumour/normal admixture of cells in the

sample preparation and the ploidy of the tumour cells in the sample. Setting the

hyperparameters therefore requires careful treatment. We devised a simple data-

driven heuristic to set the hyperparameters. We calculated the standard deviation

σy of the data and set the hyperparameters as follows:

mL =−2σy,mN = 0,mG = 2σy (2.18)

We set the mean of the neutral state to zero based on the assumption the data has

been normalised (using a method such as Khojasteh et al [27]) so that the neutral

state usually corresponds to a log ratio of 0. We set the mean of the aberrant states

to reflect the typical deviations expected in this sample. This allows the model

to adapt to automatically different noise levels. We set the prior variance on the

mean to νk = 10−4. This was chosen to avoid the label switching problem (see

Section 2.1.4) and to reflect that our method for choosing m was appropriate in the

majority of the data we have observed. We set the shape parameter, αk, of the prior

Gamma distribution on σ−2 to αk = 10 + σy to account for noise variability and

βk = 1, the scale parameter to reflect that this is a weak prior. The Beta prior on

outliers are set as follows. a = 104×σy,b = 105 to scale the outlier probability to

the overall noise in the data. We have found HMM-R to be robust to settings of

δA and δπ , the Dirichlet priors on A and π respectively. In practice we use a weak

prior encouraging self transitions for δA and a uniform prior for δπ .

This method produces good results for both cell line and clinical data (see

Section 2.3.2) with no free parameters for the user to set. Of course the software

allows advanced users to set the hyperparameters manually if desired. Note that

given enough ground truth data, we could set the hyperparameters using empirical

Bayes. It is not clear how much data is sufficient to do this robustly.

2.2.4 EM algorithm for HMM-R

The inference algorithm for HMM-R is similar to HMM-P, except we make ad-

justments for the extra variables O and λ . The full details of the algorithm are
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sketched in Algorithm 1. The quantities of interest we which to infer are the prob-

ability probe t is in state k, γZ
t = k and the probability that probe t is an outlier,

γO
t . To begin we must initialize the parameters θ = (µ,σ ,A,π,λ ,B). We use their

expected values according to their priors:

µk = mk (2.19)

σ
−2
k =

αk

βk
(2.20)

A = δA (2.21)

π = δπ (2.22)

λ =
a

a+b
(2.23)

B =

(
1−λ λ

1− εo εo

)
(2.24)

The E-step (Algorithm 1, line 4) is modified by grouping Z and O into a megavari-

able ZO with 2K states (where K is the number of CNA states). We collapse the

2 transition matrices A and B into 2K-by-2K transition matrix. We can then infer

γZO
t = p(ZOt |Y,θ) with Forwards-Backwards. As in HMM-P, this is done for each

chromosome independently. We marginalise out O to obtain:

γ
Z
t = ∑

o=0,1
γ

ZO
t (o) (2.25)

In the global outlier model, we ignored outliers in this step. In this model, since

outliers are context-specific and have state meaning, we want to include them in

the parameter estimation in the M-step. We marginalise out Z to obtain:

γ
O
t = ∑

k=L,N,G
γ

ZO
t (k) (2.26)

The parameters can then be updated in the M-step in the standard way as shown in

Algorithm 1 beginning on line 15. In practice, if one wants to avoid interpreting

the marginal probabilities given by Forwards-Backwards, a final run of the Viterbi
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algorithm (see Bishop [22] for details) which gives the most probable sequence of

states can be run once the model has converged.

2.2.5 Student-t emission model

If explicit modeling of outliers is not required, a class conditional Student-t distri-

bution, parameterized by (µk,λk,νk), the mean, precision and degrees of freedom,

can be used in place of Equation 2.11. This results in:

p(yt |Zt = k) = St(Yt |µk,λk,νk) (2.27)

This emission density is robust to outliers and greatly simplifies inference by elimi-

nating the outlier generative mechanism from the model. Thus the model is similar

to HMM-P, but with a Student-t emission density rather than a Gaussian. This was

also used in the models reported in Chapters 3 and 5.

2.3 Results

2.3.1 Experiments on cell line and clinical data

We evaluated GMM, HMM-SC, HMM-P, HMM-R and DC+ML to assess which

method was the most accurate at detecting CNAs. The algorithms were run on

three data sets, all with ground truth annotation. The first set consisted of 8 mantle

cell lymphoma (MCL) cell lines [19]. The remaining two were clinical samples:

one set of 30 enteropathy T-cell lymphoma (ETL) samples [25] and one set of 11

blastic-type lymphoma (BL) (unpublished data). In all, there were 49 samples used

in the evaluation.

Evaluation protocol

We used standard receiver-operator characteristic (ROC) curves to determine the ac-

curacy of the methods. Each probe was given a binary label as a CNA (1) or not (0),

based on the ground truth information. For GMM, HMM-SC, HMM-P, and HMM-

R we calculated the true positive rate (TPR) as the proportion of CNA probes that

were predicted as CNAs and false positive rate (FPR) as the proportion of pre-
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(a) MCL (b) BL (c) ETL

Figure 2.16: Distribution of AUC for MCL (a) BL (b) and ETL (c) shown
as box and whisker plots. The clear trand is that the best model is
HMM-R, followed closely by HMM-P which is considerably better
than HMM-SC which in turn is better than GMM.

dicted CNA probes that were not ground truth CNA probes. For GMM, HMM-SC,

HMM-P and HMM-R, we calculated p(CNAt) = γt(L)+ γt(G) and ’called’ probe

t a CNA if p(CNAt) exceeded a threshold τ . We then computed FPR and TPR for

various values of τ , plotted TPR vs FPR and computed the area under the ROC

curve (AUC) as a single measure of accuracy. Since DC+ML is non-probabilistic

in its output, we plotted a single point on the ROC curves to compare it with the

other methods.

2.3.2 Pooling and outlier processing lead to increased accuracy

Figure 2.16 shows distributions of AUC as box-and-whisker plots for the vari-

ous models on the MCL, BL and ETL data sets. For the MCL data, HMM-

R (0.99±0.00), HMM-P (0.99±0.00) were significantly more accurate (one-way

ANOVA, p = 3.9×10−7) than both HMM-SC (0.95±0.01) and GMM (0.91±0.01)

(mean AUC± stderr shown in parentheses). Similar results were seen in the BL

data. HMM-R (0.99±0.01) and HMM-P (0.98±0.01) were significantly more ac-

curate (one-way ANOVA, p = 10−4) than both HMM-SC (0.82±0.05) and GMM

(0.86±0.02). For ETL, HMM-R (0.98±0.01) and HMM-P (0.98±0.00) were sig-

nificantly more accurate than GMM (0.83±0.02) (one-way ANOVA, p=5×10−10).
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Figure 2.17: Receiver operator characteristic (ROC) curves for each sam-
ple in the MCL data. Vertical axis is TPR and horizontal axis is
FPR. Results are shown for GMM (red circles), HMM-SC (pink tri-
angles), HMM-P (blue crosses) HMM-R (green stars) and DC+ML
(black stars). HMM-R and HMM-P are always above and to the left
of the other algorithms. Some samples do not show a data point for
DC+ML because it is off the scale.

The ROC plots for each sample are shown in Figures 2.17, 2.18 and 2.19 for MCL,

BL and ETL. These plots allow us to compare performance of DC+ML (recall this

is segmentation followed by post-processing). For nearly every one of the 49 sam-

ples, our 2 novel HMM variants (HMM-P, and HMM-R) outperform DC+ML and

the other two standard models, GMM and HMM-SC. This is shown by their re-

spective ROC curves always lying to the left and above the single data point for

DC+ML, and the curves for GMM and HMM-SC. (Recall that DC+ML is non-

probabilistic and therefore not amenable to full ROC curve analysis. Instead we

compute a binary point estimate of FPR and TPR). These results systematically

show the expected improvements obtained by modeling spatial correlation over the

GMM (by HMM-SC); the improved parameter estimation by pooling (by HMM-

P); and adding contextual outlier processing to the model (by HMM-R). Note that

the results of the HMM-R are consistently very accurate, which, despite variability

in the clinical data sets (BL, ETL), demonstrates that the hyperparameter setting
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Figure 2.18: ROC plots for BL data. For legend and axes description, see
Figure 2.17. HMM-R and HMM-P are better than the other algorithms.
In general, the HMM-R curves are above and left of HMM-P.

method outlined in Section 2.2.3 is working well. In these experiments there were

no free parameters, and all hyperparameters were set automatically based on the

data.

2.3.3 3 state model works best

We investigated the effect of using 3, 4, 5, and 6 state models (HMM-R only) as

there is little consensus in the literature on this issue (see Section 2.1.5). The 4-state

model had an extra gain state, the 5-state model had 2 loss states, a neutral state

and 2 gain states. The 6-state model had an additional gain state over the 5-state

model (as proposed by van de Wiel et al [44]). Figure 2.20 shows that the 3 and 4

state models were the most accurate in all 3 data sets. Mean accuracy for MCL was

0.99±0.00, 0.99±0.00, 0.92±0.04 and 0.91±0.05 AUC respectively for the 3, 4, 5
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Figure 2.19: ROC plots for ETL data. For legend and axes description, see
Figure 2.17. HMM-R and HMM-P are better than the other algorithms.
In general, the HMM-R curves are above and left of HMM-P.
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(a) MCL (b) BL (c) ETL

Figure 2.20: Distribution of AUC for 3, 4, 5 and 6 states of HMM-R for MCL
(a), BL (b) and ETL (c). The 3 and 4 state models are consistently the
best for all data sets.

and 6 state models. For BL, accuracy was 0.99±0.01, 0.98±0.01, 0.96±0.02 and

0.96±0.02 AUC. A similar trend was observed for ETL: 0.97±0.01, 0.97±0.01,

0.79±0.05 and 0.78±0.05 AUC for 3, 4, 5 and 6 state models. From these results,

it is clear that the 3 and 4 state models are the most accurate and in the context of

the HMM-R, additional states generally only hurt performance.

There are specific cases, however where the 3-state model missed ground truth

losses. Consider the data from BL sample B11326 - see ROC curves in Figure 2.18,

top row, 3rd from left). The results are not as accurate as many of the other samples.

Chromosomes 1 and 2 for this sample are shown in Figure 2.21 (a) and (b) respec-

tively. Figure 2.21 (c) shows the results with a 3-state model which misses many of

the ground truth losses, while (d) shows results of a 5-state model (2 loss states, 1

neutral state and 2 gain states) which recovers the losses. In this specific case, there

are 2 distinct loss levels. The 3-state model can only pick out one, while the 5-state

model can accurately detect both. Note that identifiability is maintained by using

strong priors to maintain the ’order’ of the states (ie µ1 < µ2 < µ3 < µ4 < µ5)

as was shown previously for the 3-state model. This example demonstrates that

occasionally it may be necessary to alter the number of states in the model. We im-

plemented the number of states as a user settable parameter, therefore our software

can easily adapt to special data sets with no adjustment.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.21: Example where 3-state model is not adequate. (a) and (b) show
ground truth labeling of sample B11326 from the BL data. There are
two distinct loss levels, likely due to single copy and two-copy dele-
tions. The single copy deletions are not well modeled by the 3-state
model (c,d), but are well-modeled by the 5-state model (e,f) which has
2 loss states.

2.4 Discussion
We described a novel approach to inferring CNAs from aCGH data using en ex-

tended HMM that leverages the statistical properties of aCGH data. We demon-

strated systematically how our extensions of parameter estimation by pooling, con-

textual outlier processing and objective hyperparameter setting contribute to very

accurate predictions of CNAs from single sample aCGH data and improved on

standard approaches. This work has resulted in a solid theoretical model with ac-

companying implementation upon which to develop new ideas. The foundations

laid in this chapter are built upon in subsequent chapters where we address research

goals B and C: detection of recurrent CNAs from multiple aCGH experiments in

Chapter 3 and clustering aCGH data in a population expected to be composed of
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molecular subtypes in Chapter 5. In addition, we applied the HMM-R in a clinical

setting. In collaboration with Dr. Doug Horsman’s group, we generated aCGH

data for 106 follicular lymphoma patients and the HMM-R was used as an analyti-

cal tool to detect prognostic markers in this disease. This is the subject of Chapter 4

and a recent clinically focused publication [7].

2.4.1 Impact

The work presented was among the first use of HMMs for aCGH analysis. Our

original paper [20] has since been cited 19 times (Google scholar) and was in-

cluded in a recent benchmarking study that ranked it in the highest performing

group of algorithms [48]. Moreover, the HMM-R model is being used in sev-

eral local cytogenetics research projects (Horsman lab, Dr. Randy Gascoyne lab

and Dr. Wan Lam lab) at the BC Cancer Agency. The HMM-R method has also

been used at the Ontario Cancer Institute in collaboration with Dr. Ming Tsao for

a lung cancer project and the Children’s and Women’s hospital in collaboration

with Dr. Patrice Eydoux in a study focusing on congenital CNAs in mental re-

tardation. To promote usability by other researchers, we developed a distributable

stand-alone software package with a user-friendly graphical user interface. This

will be packaged with the SeeGH software [49] to support users of the SMRT ar-

ray platform. The implementation of the HMM-R, written in MATLAB is available

at: http://www.cs.ubc.ca/∼sshah/acgh as part of a toolbox called CNA-HMMer .

This package includes an implementation of the H-HMM algorithm we present in

Chapter 3. In addition the Shah et al [20] was cited in the recently developed Mat-

lab Bioinformatics toolbox demonstration on aCGH data analysis using HMMs.

2.4.2 Limitations and future work

Several assumptions are explicit in our model. First, we assume that the data can

be classified into a fixed number of states that must be determined a priori. In some

settings, this may be too restrictive. For example, high-level amplicons (gains of

many copies) are of interest to identify as distinct from lower-level amplicons since

the may represent targeted regions of the genome. Beal et al [50] present an in-

triguing paradigm in which the HMM formulation is assumed to have a countably
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Figure 2.22: HMM with non-stationary transition matrix to account of un-
equal spacing of probes. In contrast to Figures 2.5-2.6, this model has
a transition matrix at each probe t that is parameterized by dt , the dis-
tance between t− 1 and t. The greater the distance, the more likely a
transition.

infinite number of states. Rather than optimize these parameters, they are inte-

grated out using Dirichlet processes. Thus, they define a type of non-parametric

HMM that does not require the specification of the number of states a priori. Ex-

tending and adapting our models using this technique is an open problem that may

provide additional utility of our aCGH based HMM, especially when it is not clear

how to set the number of states. Some post-processing would be necessary to make

biological inferences from the potentially infinite number of states. Related to the

number of states problem, Rueda et al [51] have made some progress in this area

by using Bayesian model averaging in a reversible jump MCMC framework, thus

expressing the model uncertainty in the number of states.

We assume that the probes are uniformly spaced across the chromosomes.

While this is generally true in the SMRT arrays [16], complementary platforms

such as Affymetrix SNP arrays have unequal spacing between probes. Colella et

al [52] handle this situation by specifying a non-stationary transition matrix (one

transition matrix per probe) assumed to be generated by a distance-based Dirichlet
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prior. Thus, the transition matrix becomes:

p(Zt = j|Zt−1 = i) =

{
ρ

K−1 if i 6= j

1−ρ if i = j
(2.28)

where

ρ =
1
2
(1− e−

d
2L ) (2.29)

with d representing the distance between t and t − 1, and L an expected length

between transitions. The graphical model is shown in Figure 2.22. At represents

the location specific transition matrix whose parameter settings are dependent on

d. We have implemented this parameterization of the HMM into our model and

found that for the data presented herein, the results are the same. However, appli-

cation of our model to inference of copy number from SNP arrays (future work)

should employ the distance based non-stationary transition matrix to compensate

for unequal spacing of the probes. In addition, this model is easily extended to the

multiple sample case (see Chapter 3). Stjernqvist et al [53] describe a continuous

index HMM, whereby transitions are not specified at the level of probes, but at the

level of nucleotides. This method is expected to perform better in the presence of

unequal probe spacing and can ’interpolate’ at a finer resolution where the state

transitions are situated. Unfortunately, the inference algorithm of Stjernqvist et

al may be computationally impractical as analysis of single chromosome took 25

CPU hours [53].

This concludes our chapter on single sample aCGH analysis. In the next chap-

ter, we describe our work on research goal B: detecting recurrent CNAs from mul-

tiple aCGH experiments.
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Chapter 3

Detecting driver CNAs from a set
of aCGH experiments

3.1 Summary
In this chapter, we present a solution to the problem of inferring recurrent CNAs

from a set of aCGH data (research goal B). The key contribution is that we demon-

strate the benefit of using statistical models capable of inferring recurrent CNAs

from the raw data directly (as opposed to the standard approach of using discretized

data). We investigate three novel methods capable of leveraging the statistical

strength present in the raw data and demonstrate that a model based on a hierarchi-

cal HMM performs best in a theoretical setting using simulated data and an applied

setting using real data. We describe the biological motivation for this problem in

Section 3.2. In Section 3.3, we develop the notation and formalise the computa-

tional problem. We then outline related work in this area (Section 3.3.2) noting

that most of the described methods appeared after our contribution [21], but are

relevant to the discussion 1 In Section 3.4 we describe the three novel approaches

to the problem and demonstrate in Section 3.5 how our contributions confer sig-

1Some of the material in the related work section has been accepted for publication in: Shah
SP. Computational methods for identification of recurrent copy number alteration patterns by array
CGH. Cytogenetic and Genome Research. In Press. S. Karger AG, Basel
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nificant advantages over baseline models 2. The key contribution is a hierarchical

HMM that explicitly models passenger and putative driver alterations, increasing

specificity, and borrows statistical strength in the raw data across samples, increas-

ing sensitivity. We conclude with a discussion of the limitations of our approaches

and suggest future directions in Section 3.6.

3.2 Introduction to multiple sample analysis
A recurrent CNA in a cohort of patients is a CNA found at the same genomic loca-

tion in multiple samples. Therefore, recurrent CNAs define a pattern that provides

a molecular characterization of the cohort’s phenotype, potentially identifying dis-

rupted molecular processes, molecular targets for diagnosis, and development of

novel therapeutics. Recent work has revealed previously undescribed recurrent

CNAs that are implicated in cancer [8, 54], demonstrating that the catalogue of

disease-related CNAs is far from complete. Generally, it is assumed that recurrent

CNAs are evidence for so-called ”driver” alterations, or alterations that are symp-

tomatic and/or causative of the disease [12]. Indeed, some of these alterations are

used for prognostic testing [55] and the development of diagnostic tools [56]. Fur-

thermore, recurrent CNAs are thought to be selected for in the clonal evolution of

a tumour and their study can suggest the presence of genes involved in disrupted

cancer-related biochemical pathways [11]3. Note that we make the explicit as-

sumption that recurrent CNAs are merely candidate driver alterations that can be

prioritized for functional studies to fully determine their roles. The ”passenger”

CNAs, in contrast, are those that are patient specific and are generally not shared

across the population. They can be considered random effects and may result from

acquired genomic instability, non-pathological copy number variations [3, 4] or

other mechanisms that are not well-understood. Thus, separating driver CNAs

from passenger CNAs is critical to reveal potential diagnostic/prognostic markers

2Some of the material in this chapter was previously published in: S P Shah, W L Lam, R
T Ng, and K P Murphy. Modeling recurrent DNA copy number alterations in array CGH data.
Bioinformatics, 23(13):450458, Jul 2007.

3We note parenthetically that the ability to detect driver alterations depends on the molecular
homogeneity and composition of the patient cohort. If the cohort is heterogeneous (composed of
several distinct molecular subtypes), important driver alterations of a rare subtype could be obscured
by patterns from the remainder of the population. This topic is the focus of Chapter 5.
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as well as therapeutic targets for improved clinical care and management of the

disease [57].

In this Chapter, we describe the development of statistical models for the de-

tection of recurrent CNAs across multiple aCGH experiments from a cohort of

individuals. In Figure 3.1 we show aCGH data from a set of 8 mantle cell lym-

phoma cell lines, originally published in DeLeeuw et al [19]. (Note that routine

studies often consist of 10s or 100s of cases, but we use this smaller example for

illustrative purposes.) Recurrent CNAs, identified by visual inspection, are shown

in the blue shaded areas. The problem of computationally detecting such recurrent

CNAs is relatively under-represented in the bioinformatics literature. As such, the

limitations of current algorithms in practice are not yet fully understood.

3.2.1 Statistical properties of the data

To further illustrate the complexity of this problem, we show examples from lung

cancer cell lines in Figures 3.2-3.4 over small regions containing three different

types of recurrent CNAs on chromosomes 8, 9 and 1. Figure 3.2 shows a recurrent

CNA harbouring the MYC oncogene.

One common strategy to identify such a recurrent CNA is to first pre-process

individual samples to make calls of losses and gains (using, for example HMM-

R (see Chapter 2)), and then to infer recurrent CNAs using a threshold frequency

of occurrence [12, 19, 47]. We call this process AF for alteration frequency (see

Section 3.4 for details). While AF may detect signals as shown in Figure 3.2, pre-

processing or discretizing the sequences separately may remove information by

smoothing over short or low-amplification CNAs. However, by jointly considering

all the data without pre-processing, we can borrow statistical strength [58] across

the samples and identify locations where the signal is shared in the raw data. For

example, in Figure 3.3, we show data at the locus containing an important NSCLC

gene, carbonic anhydrase IX (CA9) [59, 60]. Logratios of probes overlapping the

gene are shown as blue stars and are indicated with arrows. This shared CNA may

be hard to detect using AF because when processing individual samples, single

probe CNAs are often indistinguishable from experimental noise [45]. With high-

dimensional arrays many investigators require CNAs to span at least 2 consecutive
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Figure 3.1: Example aCGH data from 8 mantle cell lymphoma cell lines [19]
showing two examples of recurrent CNAs (shaded in blue) found on
chromosome 2. Each horizontal set of dots represents the log ratios of
a given cell line (or patient). The red dotted lines indicate the 0 log ra-
tio (or expected neutral value). The probes that lie in the blue shaded
areas (recurrent loss on the right, and recurrent gain on the left in four
cell lines depicted by red arrows) comprise the desired output of an al-
gorithm to detect recurrent CNAs. Note that for the recurrent CNAs,
statistical strength across patients can be leveraged to detect them. Also
note that CNAs tend to span regions of contiguous probes, thus spa-
tial correlation across the chromosome should be leveraged. Finally
the amplitude of the signal for each patient should be considered in the
analysis.
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Figure 3.2: aCGH profiles for five NSCLC cell lines (labeled on the left)
showing a high level shared amplification of a region spanning approx
3Mb containing the MYC oncogene on chromosome 8 (shown with ver-
tical line). Horizontal red lines indicate the 0 log ratio level for each
sample. Vertical grey lines indicate the position of a known gene of
interest in NSCLC.

53



Figure 3.3: aCGH profiles for five NSCLC cell lines (labeled on the right)
showing a single clone shared aberration at the CA9 locus on chromo-
some 9. Horizontal red lines indicate the 0 log ratio level for each sam-
ple. Vertical grey lines indicate the position of a known gene of interest
in NSCLC.
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Figure 3.4: aCGH profiles for five NSCLC cell lines (labeled on the right)
a low-level amplification on chromosome 1 including TNFRSF4 and
TP73 - both implicated in NSCLC. This region is an example of a re-
current CNA that may be undetectable if each sample is pre-processed
separately.
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probes [45–47]. However, if a single probe CNA is shared across many samples, it

may correspond to an important biological feature.

Figure 3.4 shows a third type of signal that is a low-level or subtle shared

CNA. The region includes two known lung cancer related genes, TNFRSF4 [61]

and TP73. When compared to the MYC region in Figure 3.2, the level of amplifi-

cation for TNFRSF4 is much lower and is more difficult to distinguish from noise.

However, cell lines H2122, HCC193 and HCC366 appear to share the low-level

amplification. Furthermore, the TP73 (a putative tumour suppressor involved in

cell death [62] ) loci exhibits low-level negative signals in three of the samples.

These signals may be lost if each sample is pre-processed in isolation due to pre-

mature thresholding.

Most of the genome will not exhibit shared CNA patterns. Figure 3.2 (right

end) shows a region from ∼135-140Mb (bounded by blue vertical lines) that is

heterogeneous across the samples. One sample (HCC827) has an amplification

while two are neutral (HCC193, H2087) and two are deletions (HCC366, H2122).

This ambiguity in the signal across samples will be important when we develop

our model in Section 3.4.

To address the goal of detecting recurrent CNAs from aCGH data, we present

novel statistical models that extend the single sample hidden Markov model pre-

sented in Chapter 2 to the multiple sample case. We consider three different ways

to do this. The first simply modifies the observation model of the HMM so that at

each location, a vector of observations is generated, one per sample. We call the

state sequence of the HMM the “master” sequence. It represents a classification

of each probe location into a loss, neutral or gain state and hence it represents the

canonical signal that encodes recurrent CNAs.

The second model augments this by allowing each observation in each sample

to either be generated from the master sequence, or from its own private sequence.

This allows for sample-specific random effects to be superimposed on the canonical

signal. We demonstrate that this improves performance significantly. Finally, the

third model augments the state space of the master sequence to allow undefined

states, which represent locations which are ambiguous (such as the 135–140MB

region in Figure 3.2). This allows the master to focus on the highly conserved

regions, and to ignore heterogeneous locations. We will show that the resulting
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output we infer is comparatively sparse, making it easier to create a short list of

candidate locations for experimental follow up.

The remainder of this Chapter is organised as follows. We will outline nota-

tion and the computational problem as well as related work in Section 3.3. We

describe our contributions to this problem in Section 3.4. In Section 3.5.1 we

demonstrate our results on simulated data, where we know the ground truth, and

in Section 3.5.2, we demonstrate results on well-studied lung cancer cell line data

[11]. In Section 3.6 we summarize this chapter, discuss some limitations of our

approach and suggest future research directions.

3.3 Related work

3.3.1 Notation and computational problem

The concept of separating putative driver alterations from passenger alterations is

mirrored by the notion of computational dimensionality reduction and/or feature

selection. If we consider the set of probes in the array as features, the task is to se-

lect a small number of features that are likely to represent recurrent CNAs, and thus

a molecular profile of the disease. To help formalise this problem, we introduce

notation in this section and define the computational problem of inferring recurrent

CNAs from aCGH data. A schematic diagram of computational workflows to aid

the reader is shown in Figure 3.3.1. The algorithms we will discuss in Section 3.3.2

differ in their steps taken to traverse this diagram, starting at the raw aCGH data

in ending with recurrent CNAs. We will see how the paths through the workflow

diagram confer certain advantages/disadvantages in prediction of recurrent CNA.

The algorithms in the white box on the left operate on called or discrete data, while

the algorithms in the white box on the right operated on raw data (see next section).

The aCGH data consist of a log ratio Y p
t ∈ IR of hybridization intensity of tumour

DNA vs normal DNA for each probe t ∈ (1, . . . ,T ) in the array and for each patient

p ∈ (1, . . . ,P) in the population. (Note that we have changed the notation to reflect

multiple patients in the input and thus the c superscript for chromsome from Chap-

ter 2 is replaced with a p for patient). Y 1:P
1:T = D thus represents the full data matrix

and represents a noisy measurement of actual copy number. Note that we assume
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Figure 3.5: Workflows for inferring recurrent CNAs from aCGH data. We
show the various steps used in predicting recurrent CNAs from aCGH
data. The top part of the diagram shows the preprocessing steps some al-
gorithms use to map raw data to called data. The algorithms in the white
box on the left then process the called data to infer recurrent CNAs while
those in the white box on the right process either continuous segmented
data or the raw data directly. Also shown are which algorithms use prob-
abilistic inference or permutation testing to produce their results. Please
refer to Table 3.3.2 for availability of software.
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that Y 1:P
1:T is derived from a normalization step that has adjusted for technical biases

and artifacts from the experimental protocol (see [63–65] for details).

A common step in analyzing aCGH data is to find a mapping Y p
1:T → Zp

1:T

for each patient p where Zp
t = k represents a discrete copy number state, k ∈

{loss,neutral,gain}, to de-noise the data. These states correspond to: regions

of genomic deletion; no change; and amplification, thus interpreting each probe’s

continuous log ratio with a biologically meaningful discrete label. As discussed

in Chapter 2, to infer this mapping computationally is non-trivial (mainly due to

sources of noise in the data) but has been extensively studied. We refer to the Z1:P
1:T

matrix as called data and the Y 1:P
1:T as raw data. The algorithms for inferring recur-

rent CNAs can be grouped to a large extent on whether they accept called or raw

data as input. We will discuss the relative merits of the extant approaches and how

the called or raw data can affect results. The output of all algorithms for detecting

recurrent CNAs is a profile, which we represent by φ1:T . In some cases φ1:T will

represent a statistic or probability that a probe is recurrently altered, in other cases

φ1:T is simply a binary representation indicating presence or absence of a recur-

rently altered probe. It is assumed by most algorithms that recurrent CNAs span a

relatively small fraction of the probes in the array.

3.3.2 Computational approaches for inferring recurrent CNAs

We divide the current approaches for inferring recurrent alterations into two cate-

gories: those that input the called data matrix Z1:P
1:T and those that input the raw data

matrix Y 1:P
1:T . In general, there are three axes or dimensions across which the vari-

ous approaches operate: i) the actual amplitude of the log-ratio signal contained in

Y 1:P
1:T , ii) spatial correlation across probes (ie across columns in the data matrix) and

iii) concurrence across the population (ie across rows of the data matrix). These

dimensions are depicted with double-ended grey arrows on Figure 3.1. We will see

how different algorithms exploit these characteristics. Note that an underlying as-

sumption of some algorithms is that the patient cohort is relatively homogeneous.

Preprocessing the data to separate the patients into subgroups with shared molec-

ular patterns, or by known clinical subtype should be done if possible. We will

discuss computational progress in this area in Chapter 5.
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Algorithms for called data

The simplest algorithm for inferring recurrent CNAs from Z1:P
1:T is simply to com-

pute a frequency of alterations for each probe such that:

φt(k) =
1
P

P

∑
p=1

I(Zp
t == k) (3.1)

where I(Zp
t == k) is a function indicating that Zp

t is in state k. Sets of probes

from φt(loss) and φt(gain), are then selected based on frequency thresholding (for

a recent example, see [66]). We refer to this method as alteration frequency (AF).

While AF may be effective in some cases, it is limited in that it does not directly

output meaningful statistics or probabilities to the investigator to quantify and thus

compare the observed results.

Many authors treat the recurrent CNA problem as finding regions in the Z1:P
1:T

matrix spanning contiguous set of probes in CNAs that maximally overlap across

the patients. An example of this approach is reported in Aguirre et al [6] and avail-

able in the Bioconductor [67] package cghMCR (see Table 3.3.2 for availability).

This method uses a step-wise approach and a permutation test to find recurrent

CNAs based on a statistical score. The data are first segmented with DNACopy

[29, 30]. Segments above an upper and lower user-settable threshold are labeled

as CNAs resulting in the previously discussed Y p
1:T → Zp

1:T mapping. Highly al-

tered CNAs are retained as important regions that define discrete locus boundaries.

These regions are compared across patients to identify overlapping groups of pos-

itive or negative value segments. Minimal common regions (MCRs) are defined

as regions having at least a user-defined recurrence rate across samples and where

the median logratio for the probes with the segment across patients is above the

95% percentile in a permutation test. This method was the first to suggest a com-

putational approach for identifying recurrent CNAs. Although it was shown to be

effective in [6], it is somewhat ad-hoc and depends on number user-settable thresh-

olds. One does not typically know how to correctly choose these thresholds, and a

particular setting may not generalize well to other data sets.

A more mathematically motivated approach is presented by Rouveriol et al

[68]. They present a formal definitional framework based on a binarized rep-
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Algorithm Input data Availability
cghMCR [6] Called http://www.bioconductor.org
CMAR [68] Called from author
STAC [69] Called http://cbil.upenn.edu/STAC
CoCoA [70] Raw n/a
H-HMM [21] Raw http://www.cs.ubc.ca/∼sshah/acgh
KC-SMART [71] Raw n/a
QuantiSNP [52] SNP http://www.well.ox.ac.uk/QuantiSNP
GISTIC [72] SNP http://www.broad.mit.edu

Table 3.1: List of algorithms for recurrent CNAs, their data input and their
availability if applicable.

resentation of the data (treating losses and gains separately and independently).

The framework is used to develop two algorithms for discovering recurrent CNAs

termed minimal altered region (MAR) and constrained minimal altered region

(CMAR). A simplistic summary of the CMAR algorithm is that it searches for

small rectangles of 1’s in the input binary matrix, similar in concept to bi-clustering.

Both are data mining methods based on finding closed constrained itemsets (se-

quences) in the binary matrix restricted to sequential data - a necessary extension

due to the spatially ordered nature of the aCGH probes in the genome. The CMAR

algorithm has a worst case running time of O(T 2), which may limit its use to aCGH

platforms with smaller numbers of probes.

Diskin et al [69] also input a binary matrix similar to Rouveriol et al. Their

method, STAC, computes two complementary statistics for quantifying the likeli-

hood of observed recurrent CNAs. The first estimates how often the observed fre-

quency of an alteration would occur by chance. This is expected to uncover highly

frequent alterations. The second is termed a footprint statistic, and is computed on

the results of a greedy search strategy to find overlapping ’stacks’ of alterations in

the population. This is expected to detect recurrent CNAs that are low-frequency

yet possibly of clinical importance. In both cases, permutation analysis is per-

formed to assess the statistical significance of what is observed. The statistical

output allows the prioritization for experimental follow up not possible in Rou-

veriol et al which produces binary output, however the permutation step may be

impractical for very high resolution arrays.

cghMCR, CMAR and STAC all input called data. Working with called data
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has its advantages in that with respect to some characteristics, the data are assumed

to be de-noised. Thus, the specificity of predictions is expected to be high. How-

ever, in the next section we discuss how working with called data may limit the

sensitivity of predictions in certain circumstances.

Algorithms for raw data

Thus far, we have considered algorithms that require discrete called data, or the

Z1:P
1:T matrix, described above as input. Several authors: Lipson et al [73], Shah et

al [21] (explained in Section 3.4), Klijn et al [71] and Ben-Dor et al [70] assert that

inputting the raw data as input has advantages over called data.

Ben-Dor et al [70] argue that the amplitude of aberration should contribute to

the inference of recurrent CNAs. Consider the case where the data are discretized

into a small number of states (eg {loss,neutral,gain}), then (for example) high

level amplicons, which arguably provide stronger evidence of being selected in the

clonal evolution of the tumour, would contribute equally as a single copy gain to

discovering recurrent CNAs. Furthermore, important high level amplicons may be

infrequently targeted, making them harder to detect by methods discussed thus far.

To leverage the amplitude of the signal, Ben-Dor et al use a statistical framework

based on the concept of measuring probe penetrance. The approach begins by seg-

menting the raw data using continuous segmentation (using StepGram [73]), thus

producing a intermediate form of the data that preserves amplitude, but is piece-

wise constant. Depending on the amplitude and the relative abundance of CNAs in

the sample, a statistic is computed to quantify the significance of each CNA. More

formally, given a region R spanning a putative CNA in a given patient p, the algo-

rithm computes how many other regions of R’s size in the continuous segmented

data of p have at least the same average amplitude across patients. This computes

a patient-specific score s(p,R). Given P patients, the statistical significance of

observing the data spanned by R in the whole population is given by an adjusted

probability density function based on the Binomial distribution. This approach dif-

fers from the methods described in Section 3.3.2 in that it provides probabilistic

output and models the signal amplitude across patients.

Klijn et al [71] suggest a method called KC-SMART, a locally weighted re-
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gression algorithm based on kernel convolution to compute a smoothed estimate of

the recurrent CNAs. The method also considers all three dimensions of the data:

amplitude, spatial correlation and frequency of alteration. Using Y 1:P
1:T as input,

the data are separated into positive and negative log-ratios. The positive ratios are

summed across patients and the negative ratios are summed across patients. These

sums are used in computing the amplitude of a Gaussian kernel convolution func-

tion, whose values are then smoothed, providing a single estimate for the combined

log ratios across the population at an arbitrary genomic position. Thus the profile is

a smooth, continuous representation of the raw data matrix. Statistical significance

of the amplitude of the peaks is assessed using permutation analysis. A key feature

of the algorithm is that the width of the kernel is defined by the user, and thus can

be tuned to find large recurrent CNAs and small recurrent CNAs.

3.3.3 Related algorithms for SNP arrays

Genotyping technology is also commonly used for copy number analysis. Single

nucleotide polymorphism (SNP) chips can interrogate more than 1 million loci in

the human genome in a one experiment and consequently robust computational ap-

proaches have been developed for their analysis. Although not explicitly designed

for aCGH, the approaches described in this section are easily modified to use with

aCGH data and thus are very relevant to the discussion.

Colella et al [52] suggest an HMM approach, QuantiSNP, with and emission

model expressed in terms of the allele-specific intensities of the array. The hid-

den states in the model represent the combined copy number and genotype for

each probe. The transition matrix between these states is non-stationary, and is

computed using a distance based prior, accounting for unequal genomic spacing

of the probes. Importantly, this method introduces Bayes factors for assessing sig-

nificance levels for altered regions. These significance measures are computed on

segments, whereas most HMMs for aCGH output likelihood of the best sequence,

or probe-specific probabilities. For population-level analysis, the authors suggest

placing a transition matrix at each probe that is jointly updated across patients.

Thus the non-stationary transition matrix models recurrent CNAs by leveraging

statistical strength across patients. We discuss this model further in Section 3.6.2.
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Beroukhim et al [72] suggest a method called ’Genomic Identification of Signifi-

cant Targets in Cancer’ (GISTIC) based upon a step-wise workflow similar in spirit

to KC-SMART, albeit with some notable differences. In Beroukhim et al, the am-

plitude of the logratios (inferred from the allele-specific probes) are summed across

patients to compute a probe-level score. The probes are repeatedly permuted and

scores are recalculated for each permutation. The probes with scores in the original

data that occur rarely by chance are selected by thresholding. A novel contribution

is that the data in significant ’regions’ are post-processed to characterize ’peaks’ as

focal alterations (for example that span single genes), broad alterations (for exam-

ple that span entire chromosomes), or overlapping peaks of both types. In contrast

to Klijn et al where small and large peaks are found by iterative runs with differ-

ent parameter settings, GISTIC explicitly classify large and small peaks in a single

run. We have described published extant methods for recurrent CNA detection. We

now describe our own contributions to this problem.

3.4 Methods
We implemented 4 models to study the problem of detection of recurrent CNAs

from a set of aCGH data. We take a model-based approach that leverages our

previous work described in Chapter 2. As mentioned above, a pattern consists

(roughly speaking) of a list of locations which are highly conserved (either Loss,

Neutral or Gain). The pattern can be represented as a “master” sequence of states

M1:T where Mt ∈ {L,N,G} is a multinomial random variable and t ∈ (1,2, ...,T ).
The locations where M1:T = L or M1:T = G are considered putative driver CNAs,

and represent the output of our methods. Since we will often be uncertain about

what the pattern should be at any given location, we will summarize our uncertainty

using the (marginal) posterior distributions φt = p(Mt |D), which we call a profile.

When we have data from different groups (as in our lung cancer data), we learn a

different profile for each group, φ
g
t = p(Mg

t |Dg). As shown in Section 3.5.2, we

analyze four different phenotypic groups of lung cancer (ie g = 1 : 4). However,

we will drop the g superscript for brevity. (Note that the problem of learning such

groups from data is the subject of Chapter 5.)

Our task is related to learning profile HMMs for multiple sequence alignment

64



[74], but it is harder because the raw data is noisy and continuous-valued. Below,

we describe four different approaches to the problem. The first is the method most

widely used in current practice, and the remaining three are novel methods that we

propose.

3.4.1 Alteration frequency (AF) model

As mentioned earlier, the simplest approach, AF, first processes each sample (or

patient) Y p
1:T into a discrete sequence Zp

1:T , where Zp
t ∈ {L,G,N}. We chose the

HMM-R method (see Chapter 2) for this implementation of AF to allow a more

direct algorithmic comparison to the multiple sample HMMs we describe below.

Note that other algorithms could be used for this step. For example, Coe et al

[11] used aCGH-smooth [32] to pre-process the lung cancer data presented in Sec-

tion 3.5.2. After preprocessing, we compute the empirical distribution over each

state in each location to yield the profile φt = p(Mt |D), which can be represented

as a K×T stochastic matrix, where K = 3 is the number of states, T is the length of

the sequence, and each column sums to one. This can be further simplified to just

compute the empirical probability of a recurrent CNA at each location, to yield a

1×T vector. The disadvantage of this method is that the mapping from Y p to Zp is

done on each sample separately, so information cannot be shared across samples.

Thus the method may smooth over important signals, as we will see.

3.4.2 Factored likelihood HMM (FL-HMM)

The second model, which we call “factored likelihood HMM” (FL-HMM), is a

standard HMM model for M1:T (modeling the fact that CNAs tend to occur in

runs), but where we modify the likelihood function to generate multiple samples

instead of a single sample. Specifically, we assume the samples are conditionally

independent given Mt and use a Gaussian observation model, yielding

p(Y 1:P
t |Mt = j) =

P

∏
p=1

N (Y p
t |µ

p
j ,σ

p
j ) (3.2)

The observation model is a product over the emission densities of the samples,

hence the term “factored likelihood”. We have one mean and variance parameter
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Figure 3.6: FLHMM model shown as a directed graphical model (Bayesian
network). Circles represent random variables and rounded squares rep-
resent parameters. We only show the models for 3 probes, but in reality,
the number of random variables is proportional to the number of probes
on the chromosome, Tc. Unknown quantities are unshaded and observed
quantities are shaded. Y p

c,t represents the observed log ratio of patient p
in chromosome c at location t, Mc,t ∈ {L,N,G} is the hidden master
state. The shaded square nodes represent fixed hyper-parameters. Ar-
rows between nodes indicate probabilistic dependencies. Boxes around
variables are called “plates” and represent repetition of the contents in-
side. Thus we see that the observation parameters µp and σp are shared
(tied) across chromosomes (since they are outside the c plate) but are
specific to each sample (since they are inside the p plate), while the
HMM parameters AM, πM are shared across chromosomes and samples.

for each of the 3 states of the HMM identical to the parameters described in Sec-

tion 2.2. The mean and variance are patient specific, to model the fact that different

samples often have quite different noise characteristics (see Section 2.2.3). In ad-

dition we pool the estimates of µ
p
j and σ

p
j for statistical strength as described in

Section 2.2.1. The variable Mt has Markovian dynamics with transition matrix AM,

representing the probability of switching between the L/N/G states. The starting

state distribution is denoted πM. The model is shown as a directed graphical model
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Figure 3.7: BFLHMM model shown as a directed graphical model (Bayesian
network). Refer to caption for Figure 3.6 for details of the graphical
model. Y p

c,t represents the observed log ratio of patient p in chromosome
c at location t, Mc,t ∈{L,N,G} is the hidden master state. In comparison
to Figure 3.6, here we introduce Zp

c,t ∈ {L,N,G}, a hidden “slave” state
expected to buffer the Mc,t from large patient-specific deviations from
neutral (please see text for details).

in Figure 3.6.

We add standard conjugate priors to all the parameters [58]. Specifically, for

the multinomial distributions we use Dirichlet priors, AM ∼ Dir(δM) and πM ∼
Dir(δπM), where the matrix of pseudocounts δM encourages self-transitions, and

δπM encourages the neutral state. For the sample-specific emission density parame-

ters, the priors, hyperparameter setting and initializations procedure is identical to

the procedures outlined in Section 2.2 for HMM-R.

We use a Markov chain Monte Carlo (MCMC) inference algorithm to estimate

the parameters of the model. This means that the parameters µk are sampled from
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Figure 3.8: HHMM model shown as a directed graphical model (Bayesian
networks). Refer to caption for Figure 3.6 for details of the graphical
model. Y s

c,t represents the observed log ratio of sample s in chromosome
c at location t, Mc,t is the hidden master state and Zp

c,t is the hidden
“slave” state. Here we augment the state space of Mct ∈{L,G,N,U} and
introduce Markovian dynamics on the Zp

ct process (see the horizontal
links and the new AZ , πZ parameters). Please refer to text for details.

their posterior distributions. This could be problematic in the rare case that the

sampled estimate of µ1 is greater than the sampled estimate of µ3. Recall from

Chapter 2, that we must ensure identifiability of the hidden states (i.e., to ensure

state 1 means loss, 2 means neutral and 3 means gain). To do this, we use a trun-

cated Gaussian on µ
p
j , to ensure µ

p
1 < µ

p
2 < µ

p
3 . The lower truncation bounds are

set to mp
k −σ

p
y and the upper truncation bounds are set to mp

k +σ
p
y . This is similar

in nature to Guha et al [43]. Algorithm 3 shows the posterior distributions that

each of the parameters are sampled from. Let θ = (µ1:P
1:K ,σ1:P

1:K ,AM,πM) be all the

parameters of the model. We can estimate the parameters of this model, p(θ |D),
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using a Markov chain Monte Carlo (MCMC) algorithm called blocked Gibbs sam-

pling [75]. This entails alternating between sampling M1:T as a block using the

forwards-filtering backwards-sampling (FFBS) algorithm, and sampling the param-

eters individually conditioned on M1:T and the data: see Algorithm 3 for details.

Alternatively, we can compute a point estimate, θ MAP = argmaxθ p(D |θ)p(θ), us-

ing the EM algorithm. In either case, we initialize AM with 0.9 on the diagonals

and 0.1 spread over the remaining entries. We initialize πM to favour neutral states.

We can then run EM/ MCMC.

Note that we have also implemented a Student-t emission model in the EM

setting with untruncated priors that equally well in practice and has fewer hyperpa-

rameters to set. This is because we can use untruncated, strong priors to control the

identifiability problem (see Section 2.3.3) and in EM, the identifiability of the states

is not subject to sampling. Moreover, EM converges much faster than MCMC re-

sulting in dramatic runtime speedups, but as discussed below, it may result in less

accurate predictions.

3.4.3 Buffered factored likelihood HMM (BFL-HMM)

The problem with the FL-HMM model is that Mt is summarizing the raw data

Y 1:P
t . If any single sample at a given position has a large deviation from neutral,

the master is likely to think that location is aberrated (because the neutral state

cannot generate large aberrations). Thus large but rare deviations will be added to

the profile. (This problem was also noticed by Lipson et al [73].) A simple fix to

this is to add a “buffer” to each observation, Zp
t ∈ {L,N,G}, which is responsible

for generating the observation Y p
t . Now the master will summarize these discrete

states rather than the raw data. A key point is that in contrast to the AF model, we

estimate Z and M simultaneously. See Figure 3.7.

In more detail, the BFL-HMM can be defined as follows. The “slave” Zp
t pro-

cesses are modeled as noisy versions of the master process: p(Zp
t = j|Mt = k) =

Aε( j,k), where

Aε =

 ε
1−ε

2
1−ε

2
1−ε

2 ε
1−ε

2
1−ε

2
1−ε

2 ε

 (3.3)
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Algorithm 3 Blocked Gibbs sampling algorithm for H-HMM. We omit the πM and
πZ terms for brevity. FFBS stands for forwards-filtering backwards-sampling. The
input is y1:P

1:T , initial estimates for Z1:P
1:T ,µ pσ p and ε . The output is the marginal

posterior probability p(Mt |.)
1: for iter = 1,2, . . . do
2: /* Sample states */
3: for t = 1 : T do
4: B( j, t) =

{
∏s Aε( j,Zp

t ) if j ∈ {L,G,N}
∏s AZ(Zp

t−1,Z
p
t ) if j = U

5: end for
6: M1:T ∼ FFBS(AM,B1:T )
7: for p = 1 : P do
8: for t = 1 : T do
9: B( j, t) = N (yp

t |µ
p
j ,σ

p
j )

10: At
Z(i, j) =

{
Aε(Mt , j) if Mt ∈ {L,G,N}
AZ(i, j) if Mt = U

11: end for
12: Zp

1:T ∼ FFBS(A1:T
Z ,B1:T )

13: end for
14: /* Sample parameters */
15: AM ∼ Dir(δM +∑c,t I(Mct = i,Mc,t+1 = j))
16: CZ = ∑c,s,t I(Zp

ct = i,Zp
c,t+1 = j)I(Mt = U))

17: AZ ∼ Dir(δZ +CZ)
18: for s = 1 : P do
19: for j = 1 : K do
20: np

j = ∑c,t I(Zp
ct = j)

21: ȳp
j = 1

np
j

∑c,t I(Zp
ct = j)yp

ct

22: λ̄
p
j = 1

np
j (ν

p
j )2+(σ p

j )2

23: (σ̄ p
j )−2 = 1

(ν p
j )2 +

np
j

(σ p
j )2

24: µ
p
j ∼N

(
λ̄

p
j ((σ p

j )2mp
j +np

j (ν
p
j )

2ȳp
j ),

¯(σ p
j )

2)
25: β̄

p
j = 1

2 ∑
np

j
n=1(I(Z

p
ct = j)(yp

ct − ȳp
j ))

2

26: λ
p
j ∼ Ga(α p

j +np
j /2,β p

j + β̄
p
j )

27: end for
28: end for
29: end for
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p(AM(i, .)|δM) ∼ Dir(AM(i, .)|δM)
p(πM|δπM) ∼ Dir(πM|δπM)

p(Mt = j|Mt−1 = i,AM) ∼ AM(i, j)
p(AZ(i, .)|δZ) ∼ Dir(Az(i, .)|δZ)

p(πZ|δπZ ) ∼ Dir(πZ|δπZ )

p(Zp
t |Z

p
t−1,Mt ,AZ,Aε) ∼

{
AZ(Zp

t−1,Z
p
t ) if Mt = U

Aε(Mt ,Z
p
t ) if Mt ∈ {L,N,G}

p(Y p
t |Z

p
t = k,µ

p,σ p) ∼ N (Y p
t |µ

p
k ,σ p

k )
p(µ

p
k |m

p
k ,ν p

k ) ∼ N (µ
p
k |m

p
k ,(σ p

k )2
ν

p
k )

p((σ p
k )−2|α p

k ,β p
k ) ∼ Gam((σ p

k )−2|α p
k ,β p

k )

Table 3.2: Conditional probability distributions for H-HMM

Here ε is the probability that the slave copies the master state. If we set ε = 0, the

slaves never copy the master, so the posterior profile will equal the prior profile,

i.e., we will not have learned anything, since Mt will be disconnected from the

data Y p
t . As we increase ε , each slave is influenced by the master with increased

strength. Thus more of the samples will get reflected in the profile. If we set

ε = 1, we are requiring that the slaves perfectly copy the master. This reduces to

the FL-HMM model. In practice, we find it best to set ε ∼ 0.8. See Section 3.5.2

for further discussion on the effect of ε . We can estimate the parameters in this

model using MCMC or EM. We simply modify the algorithm to handle the fact

that the observation model is now (a product of) a mixture of Gaussians, with

mixing weights p(Zp
t = j|Mt = k).

3.4.4 Hierarchical HMM (H-HMM)

The problem with the BFL-HMM is that the slaves have to copy the master with

probability ε at every location, even if this location is highly variable. We extend

the model by adding an undefined (don’t-care) state U to the master. Now if Mt =
U , the slaves follow their own private Markovian dynamics, modeling local runs

which are not shared (or assumed to be passengers), as shown in Figure 3.8. The
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complete list of conditional probability distributions for this model is shown in

Table 3.2. If Mt 6= U , they copy the master with probability ε as before:

p(Zp
t |Z

p
t−1,Mt ,AZ,Aε) ={
AZ(Zp

t−1,Z
p
t ) if Mt = U

Aε(Mt ,Z
p
t ) if Mt ∈ {L,N,G}

The effect of this is that only highly conserved regions are stored in the profile; in

the highly variable regions, the profile says “undefined”. This makes the profile

sparser, and easier to interpret. This is shown below in Figure 3.11. The degree of

sparsity is controlled by ε: as we increase ε , the sparsity decreases, since more of

the slaves influence the master (see Figure 3.13).

Estimating the parameters in this model is harder, since the Zp chains become

coupled due to the hidden common cause M (c.f., factorial HMMs [76]). However,

conditioned on M1:T , the Zp
1:T are independent and can be sampled in parallel using

FFBS, so blocked Gibbs sampling is still easy. See Algorithm 3 for details. (Note

that in the simpler BFL-HMM and FL-HMM models, we could integrate out the Z

parameter since they are not Markovian, making the E-step easier.) An interesting

feature of this model is that there are competing processes to explain the slaves.

If the slave copies the master, its conditional probability distribution (CPD) is de-

termined by Aε , otherwise the CPD is determined by AZ . Since AZ is potentially

estimated from a large subset of the data, it tends to converge to have diagonal val-

ues near 1. In contrast Aε is fixed and therefore can be overwhelmed by the slave

process. To avoid this, we use a strong prior on AZ to discourage it from reaching

near 1 on the diagonals, but still allowing it to be estimated from the data. This

results in a ’fairer’ competition between the AZ process and the Aε process.

We initialize the parameters as in the FL-HMM model. To initialize the states,

we first sample each Zp
1:T using FFBS, with the master process turned off. We

then initialize Mt to be the consensus majority state across Z1:P
t , as in AF. As an

alternative to MCMC, which is computationally demanding due to the number of

MCMC samples required for convergence (1000s), we could use a Monte Carlo

EM framework, where the E-step consists of alternately sampling M1:T |Z1:P
1:T , and

Z1:P
1:T |M1:T and the M-step consists of maximizing the parameters of the model given
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M1:T and Z1:p
1:T . Preliminary comparisons indicate that EM tends to converge faster

but may give poorer results, perhaps because it is more prone to getting stuck in

local optima.

3.4.5 Running time

Parameter estimation in all 4 models takes O(T ) time. This makes the technique

scalable for use in high density oligonucleotide arrays or SNP arrays, frequently

used for DNA copy number analysis, that may contain 500,000 or more probes

per experiment. In practice the running time depends on the number of EM/M-

CMC iterations. For EM on the H-HMM model, we find the system converges

within about 10 steps and takes about 90 minutes to learn a model from 20 samples

with 32,000 probes each. (All experiments were performed in Matlab 7.2.0.294

(R2006a) on a Intel Xeon CPU @2.4GHz.) EM for the BFL-HMM and FL-HMM

is much faster, since the E step can be performed exactly using the forwards-

backwards algorithm, avoiding a Monte Carlo approximation.

3.5 Results

3.5.1 Quantitative results on synthetic data

Real data sets rarely have fully verified ground truth locations of recurrent CNAs.

Thus, applying standard metrics to assess accuracy on real data is difficult. To over-

come this, we created a synthetic data set derived from real data. We used eight

mantle cell lymphoma samples originally published in Deleeuw et al [19] and used

for a qualitative assessment in [68] and modified it to give us ground truth CNAs.

We used the data for chromosome 20 (672 probes) which was reported to be rel-

atively free of CNAs. We permuted the order of the data for each sample so as

to remove any undetected shared signals that may be present across samples. We

then inserted a recurrent CNA gain and a recurrent CNA loss at fixed positions

of width w, in a fraction f of the samples. The clones within the region were

shifted up/down (for gain/loss) by σpτ where p is one of the chosen patients, σp

is the empirical variance of that patient’s sample, and τ is the signal to noise ratio

(SNR). Thus σpτp preserves the sample-specific heterogeneity of the noise. In or-
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Figure 3.9: Example of the simulated data for w = 50, τ = 0.9 and f = 0.75.
Green lines (on the right) bound an inserted CNA gain, and red lines (on
the left) bound an inserted CNA deletion.
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(a) (b)

Figure 3.10: (a) ROC plot for the synthetic data for H-HMM (green stars),
BFL-HMM (blue crosses), FL (red triangles) and AF (purple circles).
TPR and FPR were calculated using results for all data, and there-
fore represent a summary of how the models compare over w, τ , f
and ε . AUC for each model is indicated in brackets in the legend.
H-HMM had the best performance overall (AUC=0.87), followed by
BFL-HMM (AUC=0.82), AF (AUC=0.77) and FL (0.55). (b) Dis-
tributions of AUC for H-HMM, BFL-HMM, FL-HMM and AF over
all values of w, τ , f and ε . H-HMM and BFL-HMM had statisti-
cally significantly better performance than AF and FL-HMM (one way
ANOVA (p� 0.01). Whiskers indicate standard error bars. The mean
and standard error AUC for the models was 0.84±0.01 for H-HMM,
0.82±0.01 for BFL-HMM, 0.76±0.01 for AF and 0.59± 0.01 for FL-
HMM.

der to “soften” the borders of the aberrations, we extended the borders by γ probes,

where γ ∼ Gam(α,1) (α proportional to w - see text below). Here γ was sampled

independently for each sample to ensure the exact borders of the aberrations were

not shared. Finally, for each sample, we randomly sampled a location outside of

the ground truth recurrent CNA and inserted a gain or loss (randomly chosen) of

width w′. Figure 3.9 shows an example of the synthetic data for w = 50, f = 0.75,

τ = 0.9, w′ = 100 (∼ 15% of the chromosome). The recurrent loss is at position
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100-149 and the recurrent gain is at position 450-499. Comparing this figure to

the real data in Figures 3.2-3.4, we see that the synthetic data is quite realistic and

challenging.

We evaluated AF, FL-HMM, BFL-HMM and H-HMM on synthetic data for

w = (1,10,50), f = (1/2,3/4,1), α = (1,5,10) and τ = (0.3,0.6,0.9,1.2). For the

BFL-HMM and the H-HMM, we set ε = (0.8). Note for this large scale experiment

we used (Monte Carlo) EM instead of MCMC for inference, to save time. However,

preliminary results suggest that MCMC does work better, despite its increased cost.

Similar to experiments described in Section 2.3.1, we computed receiver oper-

ator characteristic (ROC) curves based on p(Mt = A) = p(Mt = L)+ p(Mt = G)
where p(Mt = A) is the probability that a recurrent CNA is predicted at position

t. Using the ground truth labeling of the data, the false positive rate (FPR) is de-

fined as FP
N the number of probes incorrectly predicted as a CNA (FP) over the

total number of non-CNA probes. The true positive rate (TPR) is defined as T P
P ,

the number of correctly predicted CNA probes (TP) over the true number of CNA

probes. We plotted TPR vs FPR curves (varying a threshold on p(Mt = A)), and

calculated area under this curve (AUC) as a measure of accuracy to test the effect

over w, f ,τ and ε across the various models.

Figure 3.10(a) shows a single summary ROC plot combining results for all

values of w, f ,τ and depicts the overall accuracy performance of the models. H-

HMM had the highest accuracy (AUC=0.87) followed by BFL-HMM (AUC=0.82),

AF (AUC=0.77) and FL (0.55). Figure 3.10(b) shows the mean AUC over for every

setting of w, f ,τ (repeated three times). The mean and standard error AUC for the

models was 0.84±0.01 for H-HMM, 0.82±0.01 for BFL-HMM, 0.76±0.01 for AF

and 0.59± 0.01 for FL-HMM. H-HMM and BFL-HMM were significantly more

accurate than AF and FL-HMM (one way ANOVA, p� 0.01). Although H-HMM

had slightly higher mean of AUC than BFL-HMM, the result was not statistically

significant. However, we show in the next section on lung cancer data that in

practice, the H-HMM is considerably more useful to the investigator as it returns

sparser, yet relevant predictions.

76



3.5.2 Qualitative results on lung cancer data

Ultimately we are interested in applying a model to aCGH data from clinically rel-

evant samples. To compare the output characteristics of the various models, we

ran the algorithms on aCGH samples from 39 well-studied lung cancer cell lines,

originally published in [11, 47]. This data is particularly relevant since phenotype-

specific patterns of recurrent CNAs have been experimentally validated. The sam-

ples can be subdivided into four groups: NSCLC Adenocarcinoma (NA), NSCLC

Squamous cell carcinoma (NS), SCLC classical (SC) and SCLC variant (SV). Eigh-

teen samples are NA, seven are NS, nine are SC and five are SV. This data has been

rigorously studied and discordant shared patterns validated using PCR and gene

expression have been identified across the major and minor groups [11, 47]. We fit

separate profiles φ
g
1:T , one per group, using each of the four models and we qualita-

tively assess the characteristics and biological relevance of the output, using results

reported in [11] as a guide.

The experiments on synthetic data showed H-HMM and BFL-HMM are the

best models. In this section we show how the explicit modeling of the ambiguity

in the data by H-HMM displays a clear advantage over the other models. Recall

that in Figures 3.2-3.4 we showed parts of chromosomes 8, 9, and 1 to illustrate

different types of recurrent CNAs at important locations. Figures 3.11 and 3.12

show the output of H-HMM (ε = 0.8), BFL-HMM, FL-HMM and AF on the full

chromosome 8 and the p-arm of chromosome 9. p(Mt = gain) is plotted in green

and p(Mt = loss) is plotted in red. The clear trend is that H-HMM has sparser

output and clearly predicts important regions in isolation. The sparsity is due to

the output being dominated by positions where p(Mt = U) = 1. Note arrows at

MYC and CA9 for comparison to Figures 3.2 and 3.3. Considering Figure 3.11 in

more detail, the p-arm (left) has a relatively high frequency of deletion and this

is cleanly predicted by all models. In contrast, the centromeric half of the q-arm

shows ambiguity in the AF plot. Both BFL-HMM and FL-HMM are unable to

resolve the ambiguity as they are forced into a {L,N,G} state, while the H-HMM

can ’opt-out’ of making a consensus prediction at these locations, choosing only to

predict a CNA when the data cleanly support one (eg MYC locus). This illustrates

the sparsity of the H-HMM compared to the other models.
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Figure 3.11: Output from top to bottom of H-HMM, BFL-HMM, FL-HMM
and AF for the NA group, chromosome 8. The x-axis is the chro-
mosomal position and the y-axis is predicted probability. Red plots
indicate p(Mt = L) and green plots indicate p(Mt = G). Note the
sparse, yet accurate predictions for the H-HMM at the MYC locus
(recall Figure 3.4) and the p-arm loss prediction which recapitulates
known results [47]. The other models either over-predict (BFL-HMM,
FL-HMM) or under-predict (AF) the shared aberrations.

A similar result was seen for chromosome 1 at the TPFRSF4 and TP73 loci

(see Figure 3.13 for results of H-HMM). Notice that BFL-HMM and FL-HMM

also predict CNAs at these important genes. However, it is quite evident that they

both over-predict, making it hard for an investigator to discern biologically relevant

CNAs from spurious predictions. From Figure 3.11, we also see that AF has a peak

at the MYC locus, but is unable to detect the recurrent CNA at CA9 (Figure 3.12)

with high frequency. In all 3 generative models, the signal is clearly predicted.

The combination of sparsity due to modeling ambiguity and the ability to tune ε

allows the user to effectively set the false positive rate of the H-HMM. An example

of the value of this is shown in Figure 3.13, displaying the results for group SC for

various values of ε . The sparse output for ε = 0.8 reveals isolated peaks of high

probability at locations of genes (TNFRSF4, TP73, TNFRSF9, ZNF151, E2F2,
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Figure 3.12: Output from top to bottom of H-HMM, BFL-HMM, FL-HMM
and AF for the NA group for the p-arm of chromosome 9. (see Fig-
ure 3.11 for axes description). Similar to Figure 3.11, notice the sparse,
yet accurate predictions for the H-HMM especially at the single probe
CA9 locus (recall Figure 3.3). The AF method does not predict CA9.
BFL-HMM and FL-HMM both predict CA9, however they are over-
predicting many other regions not likely to be shared CNAs.

FGR, EIF3S2, DMAP1, FUBP1, RAB13, HDGF, PPCC, NTRK1, TRAF5), whose

expression is known to be altered in lung or other cancers. For example, ZNF151

and E2F2 were found to have copy number induced gene expression changes in

[11]. Interestingly, the H-HMM predicts the TP73 region as a narrow loss embed-

ded within the gain region harbouring TNFRSF4 shown in Figure 3.4. TP73 was

detected at only 22% frequency in AF and was not detected at all in BFL-HMM.

Additional relatively narrow but high probability peaks correspond to the EIF3S2

locus, which mediates the TGF-β pathway, FUBP1 a transcriptional activator of

MYC and the co-amplification of TNFRSF4 and TRAF5, which are known inter-

actors and activators in the NF-κB pathway [61]. These results are computational

predictions, yet many provide compelling evidence that they merit experimental

follow up.

To investigate whether H-HMM recapitulates the results in [11], we examined
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Figure 3.13: Output from H-HMM on chromosome 1 for different values of
ε for SC group. For ε ≥ 0.8, gain probability ’peaks’ correspond to
locations of several genes (annotated with arrow) implicated in lung or
other cancers.

a subset of genes reported to be differentially disrupted in the two major groups,

NSCLC and SCLC. These 22 genes are involved in key lung cancer pathways

and therefore represent a highly relevant set of markers as a reference to assess

our output. The H-HMM predicted shared aberrations in regions harbouring 14

of the 22 genes in at least 1 of the subgroups of NSCLC and SCLC. We counted a

prediction if p(Mt = L) > 0.5, or p(Mt = G) > 0.5 for losses and gains respectively.

The predicted genes included STMN1, E2F2, SC, ZNF151, ID2, MAPK9, EGFR,

CDK2NA, KNTC1, HMGB1, HSPH1, JJAZ1, NLK, JUNB, TIAM1, DSCAM. Five

of the regions were detected at ε ≤ 0.7, eleven at ε ≤ 0.9 and the remaining regions

at ε = 0.95. This gives us a reasonable estimate for how to calibrate ε in order to

predict relevant CNAs. The H-HMM did not predict recurrent CNAs harbouring

the remaining genes PRDM2, SOX11, MAP3K4, ING1, SMAD4, CCDC5, TCF4.

We assessed if the H-HMM could determine differences in the profiles of the

phenotypic groups (NA, NS, SC, SV), as this was part of the focus of the study

of [11] and [47]. Figure 3.14 shows that the H-HMM produces very different pro-
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Figure 3.14: H-HMM output for chromosome 9 showing discordant patterns
among the lung cancer groups (NA, NS, SC, SV).

files for chromosomes 9 across the different subgroups. This example chromosome

was chosen as is was previously shown to have different patterns of CNA [11, 47].

Although anecdotal, our qualitative results give us confidence that the H-HMM

is predicting biologically relevant recurrent CNAs. Combined with the result that

the H-HMM is sparser in its output, we believe the H-HMM has the right char-

acteristics of presenting biologically meaningful results to the investigator while

maintaining a low false positive rate.

3.6 Discussion
We developed three novel methods that extend the single sample HMM for aCGH

to the multiple sample case in order to infer recurrent CNAs. Our results indicate

that the H-HMM, which simultaneously infers discrete labels for the samples and

promotes sparsity by modeling ambiguity in the data is quantitatively and quali-

tatively better than simpler models and standard methods. In informal qualitative

assessment we showed that the H-HMM produces meaningful biological output

when compared to a list of experimentally validated genes. The H-HMM was able
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to detect previously reported discordant patterns among the lung cancer groups - a

key requirement to determine phenotype specific CNA patterns.

3.6.1 Other applications of H-HMM

Quality controls enforced in the procedure for generating aCGH data attempt to

limit experiments that produce uninterpretable data due to noise. Occasionally,

data is produced that pass through the quality control, but are still noisier than

usual. In such cases, the experiment is often repeated, producing a replicate for a

given sample. Replicates may also be produced by design. The H-HMM model

is well suited to jointly analyze replicates from the same sample in order to infer

a consensus CNA pattern in the presence of noise. In addition, our model could

easily be extended to jointly analyze data from individuals generated from multiple

platforms.

The output of the H-HMM has potential uses beyond identifying recurrent

CNAs. As discussed earlier, it represents a sparse CNA profile of the cohort and is

therefore a type of feature selection algorithm that identifies altered probes relevant

to the disease entity under study. Therefore, these features could be used to train a

classifier to recognize the phenotype associated with the cohort.

3.6.2 Limitations of H-HMM

The H-HMM has several limitations which need to be addressed. As mentioned

earlier, there is competition between the slave process and the master process to

explain the data, without restricting the slave transition matrix AZ . In regions with

very strong consensus, this model sometimes prefers to explain the data using the

slave process rather than the master process. Qualitatively, the Student-t emission

model seems to be more robust to this phenomenon. This remains an open problem

and further study is necessary to evaluate the possible solutions.

Another limitation of H-HMM is that it is not likely to detect low frequency

shared CNAs as the model forces the master to choose a discrete state. We propose

that a discrete master sequence may be too limiting to detect low frequency alter-

ations. We have addressed this in two important ways. First, we have adapted the

model described in Colella et al [52] for aCGH data. This model was described for

82



Figure 3.15: Multiple sample CMM. This is an extension of the model shown
in Figure 2.22, where the non stationary transition matrices At are
shared by all patients (At is outside p plate). Therefore, similar to the
H-HMM, statistical strength can be borrowed across patients. How-
ever, the representation of the profile is continuous, rather than dis-
crete, therefore low frequency events may be captured (see Figure 3.16,
for example).

the single sample case in Chapter 2. Figure 3.15 shows the graphical model for the

multiple sample case. We call this model the continuous master model (CMM).

Figure 3.15 shows that the profile is represented by non-stationary, shared transi-

tion matrices At . The inference of At is dependent on all the patients, and thus,

borrowing statistical strength across samples is still leveraged, but the master se-

quence is continuous, and capable of outputting low frequency events. Figure 3.16

shows a qualitative comparison of the H-HMM and CMM on the FL cohort. The

CMM has desirable qualities in that it allows the investigator to quickly identify

small regions of recurrent alteration.
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Figure 3.16: Comparison of recurrent CNA predictions of CMM and H-
HMM on chromosome 1 for 106 follicular lymphoma patients (see
Chapter 4). The top plot shown losses and the bottom plot shows gains.
In this figure we superimpose the probability curves of frequency of
manual calls (black), AF loss (red), AF gain (green), CMM (pink),
H-HMM (blue) and H-HMM where Mt = U (light blue). The charac-
teristics of the output show that H-HMM is very sparse in comparison
to AF and CMM, making the data easy to interpret. However, CMM
(black arrows) detects signals that H-HMM does not. These may be
important low frequency events missed by H-HMM.

In addition to the CMM, Chapter 5 discusses how infrequent, but important

CNAs may be obscured by molecular heterogeneity in the data, and therefore

missed by H-HMM. In Chapter 5, we describe a clustering approach for detect-

ing putative driver CNAs in the presence of such heterogeneity.
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Chapter 4

Case study: Genome-wide aCGH
profiling of follicular lymphoma

4.1 Summary
In this chapter, we present a case study of determining CNAs from aCGH data 1.

This was a collaborative study between Dr. Douglas Horsman’s group and myself.

My role in the project was in designing and implementing the analysis strategy for

this data. One important outcome is that we learned how to tune the parameters

of the HMM-R for clinical application, and learned that indeed the model is per-

forming very well on a real-world, previously unstudied data set. I performed all

the bioinformatics related to this project including collaborative participation in the

clinical data statistics. I am a co-first author on the accepted publication.

We generated aCGH data for 106 diagnostic biopsies of follicular lymphoma to

characterize regional genomic imbalances. Using an analytical approach that de-

fined regions of copy number change as intersections between visual annotations

and the HMM-based algorithm, we identified 71 CNAs that were recurrent in 10%

of cases. These ranged in size from 200 kb to 44 Mb, affecting chromosomes

1The material presented in this chapter has been accepted for publication: K-J Cheung, S P Shah,
C Steidl, N Johnson, T Relander, A Telenius, B Lai, K P Murphy, W Lam, J M Connors, R T Ng, R D
Gascoyne, and D E Horsman. Genome-wide profiling of follicular lymphoma by array comparative
genomic hybridization reveals prognostically significant DNA copy number imbalances. Blood - in
press, 2008
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1, 5, 6, 7, 8, 10, 12, 17, 18, 19, and 22. We also demonstrated by cluster anal-

ysis that 46.2% of the 106 cases could be sub-grouped based on the presence of

+1q, +6p/6q-, +7 or +18. Survival analysis showed that 21 of the 71 regions corre-

lated significantly with inferior overall survival (OS). Of these 21 regions, 16 were

independent predictors of OS using a multivariate Cox model that included the In-

ternational Prognostic Index (IPI) Score. Two of these 16 regions (1p36.22-p36.33

and 6q21-q24.3) were also predictors of transformation risk and independent of

IPI. These prognostic features may be useful to identify high-risk patients as can-

didates for risk-adapted therapies.

4.2 Introduction
Lymphoid malignancies account for 5% of cases of cancer in the U.S. and have

continued to rise in frequency at 3-4% annually [77, 78]. Of the different types

of indolent lymphoma, follicular lymphoma (FL) is most prevalent and has a vari-

able clinical course with a median survival of 10 years [79]. While management

strategies have changed, advanced-stage FL remains an incurable disease using

conventional therapies [80]. Approximately 85% of FL is associated with a spe-

cific balanced translocation, t(14;18)(q32;q21), that leads to overexpression of the

anti-apoptotic gene BCL2 due to its relocation in proximity to an IgH enhancer

element [81–84]. This genetic abnormality alone, however, is unlikely to produce

clinical FL, as BCL2 over-expressing transgenic mice do not develop lymphoma

[85, 86] and t(14;18)-bearing lymphocytes have been frequently demonstrated in

healthy individuals [87, 88].

If the pathogenesis of FL results from a sequential accumulation of genetic al-

terations [89], the analysis of early neoplastic lesions may define the critical events

associated with the initial development and further progression. To the best of our

knowledge, there have been 12 large studies reported in the Western Hemisphere

in the last decade that have investigated chromosomal imbalances in FL using a

combination of techniques including conventional karyotyping, comparative ge-

nomic hybridization (CGH) and single nucleotide polymorphism (SNP) technol-

ogy. The reported recurrent copy number alterations have consistently included

losses of 1p32-36, 6q, 10q and 17p, and gains of 1q, 2p, 7, 9p, 12, 17q, 18q and
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X [90–101]. The analysis by Hoglund et al [102] utilized computational analysis

of a large number of published G-banded FL karyotypes to define early from late

accruing genetic imbalances and demonstrated four putative pathways of clonal

evolution in FL [102]. This karyotype-based study was hampered by the inherent

inaccuracies of G-banding analysis and excluded from consideration all marker

chromosomes and unbalanced chromosomal additions that are common features of

FL karyotypes. Further examination of such complex karyotypes by multi-colour

karyotyping may improve the definition of these recurrent aberrations [103], how-

ever, the metaphases typically obtained from short term lymph node cultures allow

only for the detection of DNA imbalances that exceed 5-10 Mb in size and may

represent only a fraction of the sideline diversity present in FL genomes. No stud-

ies to date have utilized a combination of high-resolution genomic analysis and a

large FL cohort composed exclusively of diagnostic biopsies.

The advent of array comparative genomic hybridization (array CGH) technolo-

gies now provides the capability to detect subcytogenetic DNA copy number gains

and losses. These techniques have led to improvements in the characterization of

both acquired and inherited genetic abnormalities [104]. In this study we have ap-

plied whole genome tiling path BAC array CGH, with a >200 kb resolution for

detection of copy number alterations in clinical specimens and a reported toler-

ance of up to 70% contamination by non-tumor cells [105], to a cohort of 106

FL diagnostic specimens with complete clinical information. We have generated

a comprehensive profile of regional copy number imbalances with which to iden-

tify significant prognostic correlates in relation to both survival and transformation

risk.

4.3 Materials and Methods

4.3.1 Patient materials

The 106 FL cases were selected from the Lymphoid Cancer Research Database

of the British Columbia Cancer Agency (BCCA) in Vancouver, British Columbia,

identified between 1987 and 1996 based on the availability of sufficient frozen di-

agnostic tumour material and information on clinical outcome. Importantly, these
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cases were enriched in part for cases where two or more sequential specimens were

available from the indolent phase or when transformation had occurred. Trans-

formation was defined as either histologically proven (biopsy demonstrating large

B-cell lymphoma), or clinically proven (one or more of the following: sudden

rise in LDH to > twice the normal level, rapid discordant localized nodal en-

largement, and new unusual extranodal involvement of organs such as brain, lung

and bone). The time to transformation was defined as the time from diagnosis to

clinical or pathological endpoint described above. The International Prognostic

Index (IPI) Score was used to risk-stratify these patients because information on

the haemoglobin level and number of nodal sites were not available to generate a

FLIPI score [106]. All cases were classified as FL based on the criteria defined

by the World Health Organization classification of tumours of haematopoietic and

lymphoid tissues [107]. Of the 106 cases, 20 have been included in previously

reported studies [96, 102].

4.3.2 Cytogenetic analysis

Cytogenetic analysis of lymph node specimens was performed as previously de-

scribed [96]. Fluorescence in situ hybridization (FISH) was performed using the

LSI IGH/BCL2 probe according to the manufacturers protocol (Vysis, Downers

Grove, IL, USA) to detect the presence of IGH/BCL2 genomic fusion. For vali-

dation of deletion of the 1p36.32 locus, the RP13-493G06 or RP11-756P03 BAC

clones were selected from the array CGH profile and prepared for use as FISH

probes as previously described, while BAC RP11-229M05 at 1q32.3 was used for

copy number control [108]. For validation of the 6q23.3 locus deletion, the RP11-

703G08 BAC was used, while RP11-516E15 at 6p12.3 served as copy number con-

trol. All BAC clones had previously been identity-verified by BAC-end sequencing

and hybridized to normal metaphases to confirm the expected site of chromosomal

localization. The frequency of false deletion for each BAC FISH probe was es-

tablished by hybridization to normal lymphocyte cell suspensions and ranged from

0.5 to 3.0%. For the purpose of this study the cut-off value for true deletion was

set at >5%.
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4.3.3 DNA extraction

Genomic DNA extraction was performed according to standard procedures using

proteinase K digestion and fresh frozen tissue or cells stored at -80C. The DNA

was further purified using the Gentra puregene tissue kit (Qiagen, Mississauga,

Ontario).

4.3.4 Whole genome tiling path BAC array CGH

The sub-mega base resolution tiling array contains 26,819 BAC clones spotted in

duplicate and covers >95% of the human genome [16]. Array CGH was performed

as previously described [109]. The array slide was scanned using a charged-couple

device camera system to capture the cyanine-3 and cyanine-5 channels (Applied

Precision, Issiquah, WA). The images were then analyzed by SoftWoRx microar-

ray analysis software (Applied Precision), followed by a stepwise normalization

procedure [110]. Data were filtered based on both replicate standard deviation

(data points with >0.1 standard deviation removed) and signal to noise ratio (data

points with a signal to noise ratio <3 removed). Copy number alterations were vi-

sualized using the SeeGH software available at http://www.flintbox.ca/technology.

asp?tech=FB312FB [111].

4.3.5 Computational analysis

Intersection analysis

Scoring of array CGH data was performed separately by two methods: visual anal-

ysis by a cytogeneticist (D.E.H.), using a criterion for an aberration defined as

an apparent log ratio shift away from baseline in a minimum of three adjacent

BACs ( 200kb or larger), and computational analysis by determining probability of

aberration (loss, neutral, or gain) for each clone using the program CNA-HMMer

v0.1 (available at http://www.cs.ubc.ca/∼sshah/acgh/), which is based on a Hid-

den Markov Model (HMM) [20]. Only those alterations identified by both HMM

and visual interpretation were accepted as true. We modified the emission model

of the HMM described in Shah et al to be a mixture of Student-t distributions,

achieving the equivalent robustness to outliers while producing output that was
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more interpretable to the investigator [20]. In addition, this modification required

fewer hyperparameters to be set, which were selected automatically using an ’em-

pirical Bayes’ type approach [21]. Concordance between the visual calls and the

HMM predictions was assessed by calculating the area under the receiver operator

characteristic (ROC) curve. ROC curves are a plot of the true positive rate (TPR -

proportion of clones called as an aberration that were also predicted by the HMM)

against the false positive rate (FPR - proportion of clones predicted as aberrant by

the HMM that were not called visually). The area under the ROC curve (AUC) is a

single measurement that represents the trade-off between TPR and FPR. AUC was

calculated for each sample. The average AUC in this study was 0.93. A perfect

AUC would be 1. All analyses were run using default settings.

Cluster analysis

Clustering of the 106 cases was performed using the K-medoids (also called par-

titioning around medoids) algorithm. The input data X(i, j) represented the copy

number of clone j in case i. Only clones that showed a 10% rate of recurrent loss

or gain determined by intersection analysis were used for clustering. A Hamming

distance function of a case to a medoid was used and the algorithm was run 1000

times using random initializations of the medoids. The run producing the lowest

total distance of cases to their assigned medoids was reported. The number of

clusters was chosen to be five based on the previous work by Hoglund et al [102].

Clinical correlations

The log-rank test using the Kaplan-Meier method was performed for univariate

analysis assessing the prognostic significance of each of the 71 regional aberrations

on survival and the risk of transformation. Each case was dichotomized as positive

or negative for each of the 71 regions, where positive was defined as having at

least one alteration in the region. The Cox proportional-hazards model was used to

identify only those regions reaching significance independant of the IPI score. All

clinical statistical data were computed using the SPSS version 11 software.
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4.4 Results

4.4.1 Clinical data

The clinical, morphologic and cytogenetic information on the cohort is presented in

Table 4.2. In brief, 56% were male and 44% were female with a median age of 53

years. Forty-two percent of the patients died, with a median overall survival time

of 10.83 years after diagnosis. Overall, 50% of patients had developed transformed

lymphoma over a median follow up time of 7.33 years. The median time to trans-

formation was 6.61 years. The majority of patients who developed transformed

lymphoma had biopsy proven transformation (64%). These patients had a similar

clinical outcome as those whose transformed lymphoma was diagnosed on clini-

cal grounds. Transformed lymphoma was the cause of death in 64% of patients,

supporting the observation that transformation is an important cause of mortality

in these patients and may be a confounding factor in assessing the risk of genetic

alterations affecting survival in patients who develop transformed lymphoma.

Treatment of these patients varied due to changes in era-specific approaches

to management (Table 4.2). The effect of the addition of rituximab to standard

chemotherapy could not be assessed reliably because of small numbers of pa-

tients (n=12; log-rank test on overall survival and transformation, p=0.7), recent

incorporation of rituximab into primary treatment (after 2004) varying times of

introduction (diagnosis, first progression, relapse, multiple relapses) and variable

combination with standard agents (single agent or combination in multiple drug

regimens).

4.4.2 Cytogenetic data

Ninety-three of the 106 cases had been studied by karyotype analysis and/or FISH

using the IGH/BCL2 fusion probe. The t(14;18) or variant was present in 75 of

these 93 cases (81%) but was absent in 18. Thirteen cases were not investigated by

these techniques but had the standard morphologic features of FL.
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Clinical characteristics n=106 (%) surv p trans p

Median Age (yrs) = 53
Male 59 (56) 0.4 0.7
Age > 60 33 (31) 0.2 0.5
PS > 1 13 (13) 0.003 0.3
LDH > normal 24 (25) 0.008 0.1
Extranodal sties > 1 13 (12) 0.4 0.6
Stage III/IV 74 (70) 0.01 0.1

IPI score: 0.003 0.02
0-1 34 (32)
2-3 24 (32)
4-5 6 (6)
Diagnostic Pathology:
FOLL1 63 (60)
FOLL2 33 (31)
FOLL3A 9 (9)

Primary therapy:
Observation 26 (24)
Rad alone 15 (14)
Single agent chemo 12 (11)
Multi-agent chemo +/- rad 41 (39)
Multi-agent chemo + rituximab 12 (11) 0.7 0.7

Outcome:
Transformation: 53 (50) 0.02
Biopsy proven 34 (64) 0.6
Clinical 19 (36)

Death: Unrelated 3 (7)
From transformation 29 (64)
From progressive indolent FL 13 (29)

Median follow up alive = 7.33 yrs
Median overall survival = 10.83 yrs
Median time to transformation = 6.61 yrs

Table 4.2: Patient characteristics of 106 FL specimens acquired at diagnosis.
Abbreviations: PS: ECOG performance status; LDH, lactate dehydroge-
nase; IPI, international Prognostic Index; FOLL1 = follicular lymphoma
grade 1, FOLL2 = grade 2, FOLL3A = grade 3A, rad = radiation, chemo
= chemotherapy, FL = follicular lymphoma. surv p = logrank p-value
(survival). trans p = logrank p-value (transformation)
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(A)

(B)

Figure 4.1: Composite frequency ideogram plot of genome-wide copy num-
ber alterations in 106 diagnostic FL cases based on intersection anal-
ysis. (A) The frequencies of aberrations, represented by green signals
for losses and red signals for gains, in the autosomes were derived from
intersection analysis, where the union was taken between calls made
visually by a cytogenetic pathologist and those determined by CNA-
HMMer v0.1. (B) Composite frequency ideogram plot showing only
those aberrations affecting 10% cases. The data were visualized using
the SeeGH software. Genetic losses or gains are represented by green
and red signals, respectively. The horizontal bar below each ideogram
represents gain and loss frequencies of +0.25 and -0.25, respectively.

93



4.4.3 Profile of copy number alterations in FL

Each array CGH profile was annotated individually by visual inspection and by

computation without knowledge of the associated karyotype. The individual pro-

files were combined to generate a genome-wide copy number profile of the 106 di-

agnostic FL specimens. Figure 4.1A represents a global composite profile ideogram

of all aberrations affecting the 22 autosomes as determined by the intersection anal-

ysis. Figure 4.1B shows an ideogram of only those regions that were affected in

≥10% of cases. This 10% cutoff produced 71 altered regions ranging in size from

200 kb to 44 Mb. Overall, 97 of 106 cases (91.5%) had aberrations detected by

array CGH with a median of 16.1% and a range from 0% to 32.2%. The most fre-

quently altered region was band 1p36.22-p36.33 ( 11 Mb in size), showing 25.5%

frequency of deletion. Table 4.3 provides details on the 71 regions of alteration.
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A B C D E I J M N O P Q

Chr ID # Start End Chr band Size Freq US CSI UT CTI Genes

(bp) (bp) (bp) (pval) (pval) (pval) (pval)

1p- 1 1120588 12511370 p36.22-p36.33 11390782 0.25 0.012 0.023 0.004 0.006

1q+ 2 144203231 149149179 q21.1-q25.1 4945948 0.13 NS NS

3 149346998 171525137 q21.13-q25.1 22178139 0.16 NS NS

4 173318349 186631007 q25.1-q31.1 13312658 0.14 0.039 NS NS

5 192104220 215373858 q31.2-q41 23269638 0.17 NS NS

6 216564705 223861673 q41-q42.12 7296968 0.12 0.049 0.041 NS

7 225671030 233337746 q42.13-q42.3 7666716 0.12 0.049 0.041 NS

8 236546601 244497402 q43-q44 7950801 0.11 0.014 0.018 NS

9 246412897 246741718 q44 328821 0.1 NS NS

5p+ 10 568397 2059719 p15.33 1491322 0.1 0.003 0.002 NS

6p+ 11 101435 8166300 p24.3-p25.3 8064865 0.12 NS 0.01 0.023

12 9910293 15045693 p23-p24.3 5135400 0.11 NS 0.002 0.009

13 15322212 17396937 p22.3-p23 2074725 0.11 NS 0.002 0.009

14 18182851 19088319 p22.3 905468 0.1 NS 0 0.001

15 19741746 23462851 p22.3 3721105 0.1 NS 0 0.001

16 23588018 37906515 p21.2-p22.2 14318497 0.14 NS 0.006 0.009

17 39096919 42527171 p21.1-p21.2 3430252 0.11 NS 0.028 0.046

Continued on next page...
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A B C D E I J M N O P Q

Chr ID # Start End Chr band Size Freq US CSI UT CTI Genes

(bp) (bp) (bp) (pval) (pval) (pval) (pval)

18 42763847 44815780 p21.1 2051933 0.1 0.035 NS 0.008 0.007

6q- 19 67856203 102485267 q12-q16.3 34629064 0.17 0.003 0.007 NS

20 104959688 145932243 q21-q24.3 40972555 0.17 0.016 0.038 0.002 0.001

21 146006611 158842383 q24.3-q25.3 12835772 0.12 NS NS

7p+ 22 76475 9330205 p21.3-p22.3 9253730 0.16 0.007 NS NS

23 11733679 12411228 p21.3 677549 0.11 0.021 NS NS

24 13834918 57826849 p11.1-p21.2 43991931 0.15 0.049 NS NS

7q+ 25 65183346 75792082 q11.21-q11.23 10608736 0.11 NS NS

26 77519343 79287368 q21.11 1768025 0.11 NS NS

27 79508881 81760593 q21.11 2251712 0.11 NS NS

28 82203999 82396484 q21.11 192485 0.11 NS NS

29 84076954 88755109 q21.11-q21.13 4678155 0.11 NS NS

30 89067084 95807510 q21.13-q21.3 6740426 0.11 NS NS CYP51

31 97314220 99254745 q21.3-q22.1 1940525 0.1 NS NS

32 101780109 102036700 q22.1 256591 0.1 NS NS

33 107062787 108434145 q22.3-q31.1 1371358 0.1 NS NS

34 114602302 115391679 q31.2 789377 0.1 NS NS

Continued on next page...
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A B C D E I J M N O P Q

Chr ID # Start End Chr band Size Freq US CSI UT CTI Genes

(bp) (bp) (bp) (pval) (pval) (pval) (pval)

35 115770526 117527587 q31.2-q31.31 1757061 0.1 NS NS

36 119932154 124328532 q31.31-q31.33 4396378 0.1 NS NS

37 124779872 128206833 q31.33-q32.1 3426961 0.11 NS NS

38 131217474 135972389 q32.3-q33 4754915 0.11 NS 0.034 NS

39 136860444 140073345 q33-q34 3212901 0.11 NS NS

40 140508716 144516051 q34-q35 4007335 0.12 NS NS

41 147152251 151714055 q35-q36.1 4561804 0.12 NS NS

42 151938143 158777885 q36.1-q36.3 6839742 0.12 NS NS

8q+ 43 86699540 86900037 q21.2 207338 0.12 0.046 0.02 NS

44 127567638 144615332 q24.13-q24.3 17047694 0.16 NS NS KCNK9

NIBP

PTK2/FAK

PTP4A3

10q- 45 83519320 109743759 q23.1-q25.1 26224439 0.2 NS NS PTEN

12q+ 46 39241592 40479848 q12 1238256 0.1 NS NS

47 41164595 41849783 q12 685188 0.1 NS NS

48 42875295 43431071 q12 555776 0.1 NS NS

Continued on next page...
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A B C D E I J M N O P Q

Chr ID # Start End Chr band Size Freq US CSI UT CTI Genes

(bp) (bp) (bp) (pval) (pval) (pval) (pval)

49 45222971 47260459 q13.11 2037488 0.12 NS NS

50 47315713 48862941 q13.11-q13.13 1547228 0.11 NS NS

51 49766128 53769742 q13.13-q13.2 4003614 0.21 NS 0.038 NS

52 54124295 71253094 q13.2-q21.1 17128799 0.17 NS NS MDM2

17p- 53 433730 5025418 p13.2-p13.3 4591688 0.13 NS NS

54 5418209 6976115 p13.1-p13.2 1557906 0.11 0.021 0.021 NS

55 7297479 7963869 p13.1 666390 0.1 0.019 0.01 NS p53

56 7873762 8172436 p13.1 298674 0.11 NS NS

57 8633350 9331199 p13.1 697849 0.11 NS NS

17q+ 58 28335370 34341092 q11.2-q12 6005722 0.12 0.003 0.017 NS

59 35115643 37009923 q12-q21.2 1894280 0.12 0.003 0.017 NS

60 40291911 49011357 q21.31-q22 8719446 0.13 0.012 0.037 NS

61 50468106 53853636 q22 3385530 0.12 NS NS ZNF161

62 58325527 62428590 q23.2-q24.2 4103063 0.13 0.031 0.019 NS

63 64191239 69931286 q24.2-q25.1 5740047 0.12 0.007 0.007 NS

64 73418360 77524868 q25.3 4106508 0.11 0.021 0.017 NS

18p+ 65 35421 15060997 p11.21-p11.32 15025576 0.23 NS NS

Continued on next page...
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A B C D E I J M N O P Q

Chr ID # Start End Chr band Size Freq US CSI UT CTI Genes

(bp) (bp) (bp) (pval) (pval) (pval) (pval)

18q+ 66 16793577 59123838 q11.1-q21.33 42330261 0.25 NS NS BCL2

67 60284518 61729287 q22.1 1444769 0.1 NS NS

68 63894258 64156108 q22.1 261850 0.1 NS NS

69 70236233 76098439 q22.3-q23 5862206 0.12 NS NS

19p- 70 8566514 8784792 p13.2 218278 0.13 NS NS

22q- 71 21112875 21296725 q11.22 183850 0.1 NS NS

Table 4.3: Detailed information on the 71 regional aberrations affecting ≥10% of FL cases in intersection anal-

ysis (Data based on NCBI build 36.1). Columns are annotated with letters for easy reference in the text.

Freq=Frequency of aberration, US=Univariate survival, CSI = Cox survival with IPI, UT = univariate transfor-

mation, CTI = Cox transformation with IPI
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4.4.4 Association between copy number alterations and clinical
parameters

When using the relative number of alterations per case to predict clinical outcome,

defined as the number of altered BAC clones determined by intersection analysis

divided by the total BAC clones (26,819) expressed as a percentage, we showed

that there was no significant correlation between cases with 10% alterations and

those with 10% in terms of overall survival and transformation risk (log-rank test,

p=0.7 and p=0.06, respectively). However, significant correlation with overall sur-

vival and transformation risk was observed if cases with 5% alterations were com-

pared with those containing 5% (log-rank test, p=0.02 and p=0.03, respectively).

Univariate analysis indicated that 21 regions correlated significantly with poor

survival (Column M of Table 4.3), as did performance status, LDH, stage, and the

IPI group (Table 4.2). Of these, 16 regions were independent of IPI in multivari-

ate analysis (Column N of Table 4.3). Univariate analysis showed that 12 regions

correlated significantly with risk of transformation (Column O of Table 4.3). The

IPI group, but not the individual factors, was also predictive of transformation (Ta-

ble 4.2). Ten of the 12 regions were identified as IPI-independent predictors of risk

of transformation in multivariate analysis (Column P of Table 4.3). Del(1)(p36.22-

p36.33) and del(6)(q21-q24.3 (identified by ID# 1 and 20, respectively) were not

only associated with transformation and inferior outcome (see Figures 4.2 and 4.3)

but were also IPI-independent predictors for both clinical variables (highlighted in

grey in Table 4.3) and thus were selected as candidate regions for validation.

4.4.5 Validation of array CGH data

Two BAC clones, RP13-493G06 and RP11-756P03 that mapped to 1p36.32 and

spaced 200 kb apart, were used for validation of the array CGH-detected 1p36

deletion. We performed FISH using these BAC clones on 10 selected cases. The

RP11-229M05 probe at 1q32.3 was used as a control. Two of the 10 cases were

determined by CGH intersection analysis to have no log ratio shift (no alteration)

while 8 cases had evident deletions at 1p36.3 of variable size. The concordance rate

between FISH and intersection analysis was 10 of 10 cases. Figure 4.4 shows the

array CGH ideogram and FISH results for three representative cases, one without
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Figure 4.2: Kaplan-Meier survival of ID#1 [del(1)(p36.22-p36.33)] and #20
[del(6)(q21-q24.3)]. Log-rank test was performed to assess significance
(p≤0.05).
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Figure 4.3: Kaplan-Meier time to transformation of ID#1 [del(1)(p36.22-
p36.33)] and #20 [del(6)(q21-q24.3)]. Log-rank test was performed to
assess significance (p≤0.05).
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Figure 4.4: FISH validation of the 1p36.22-p36.33 region (ID# 1) which
presented significant correlation with clinical outcome. aCGH (upper
panel) and FISH (lower panel) demonstrating a case without deletion
at 1p36.3 (normal), a case with heterozygous deletion at 1p36.3, and a
case with homozygous deletion at 1p36.3. The 1p36.32 probe was la-
beled red while the control probe at 1q32 was labeled green. The upper
panel for each case shows the HMM-R predictions.

a deletion, one with a heterozygous deletion and one with a homozygous deletion.

As the region 6q21-q24.3 was too large (over 40 Mb) for case-specific FISH vali-

dation, we further narrowed this region by seeking areas of overlapping deletions

affecting >15% of cases. Figure 4.5 shows the refinement of a broadly deleted

region of the 6q arm (at the 10% cutoff level) to four small discrete regions of dele-

tion (at the 15% cutoff level). The area that correlated significantly with survival

and transformation risk corresponded to the single peak in band 6q23.3. The size

of this peak was less than 300 kb and spanned from 93,765,93 to 94,111,251 bp

(NCBI build 36.1). We used BAC clone RP11-703G08 for this region and RP11-

516E15 from 6p12.3 as control for FISH analysis of 10 selected cases. Two of 10

cases were determined by intersection analysis to have no alteration while eight
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Figure 4.5: A composite array CGH ideogram profile of 6q alterations af-
fecting ≥10% and ≥15% of FL cases was generated by intersection
analysis. The alteration indicated by the black box in the 15% ideogram
corresponds to the 6q23.3 region targeted for FISH validation.

104



cases had deletions by array CGH (as small as 810 kb) overlapping at 6q23.3. The

concordance rate between FISH and intersection analysis was 10 of 10 cases. Fig-

ure 4.6 shows the array CGH ideogram data and FISH results for two representative

cases, one with homozygous deletion and the other showing homozygous deletion

at 6q23.3 with proximal and distal heterozygous deletion.

4.4.6 Correlation of array CGH findings with cytogenetic data

To illustrate the sensitivity of the array CGH platform compared to karyotype anal-

ysis, we examined the extent of correlation between array CGH and cytogenetic

data in the 1p and 6q regions. Of the 27 cases with deletion of 1p36 detected by

array CGH, 17 had karyotype data and of these only 7 (41.2%) showed an evident

deletion or unbalanced translocation. Similarly, of the 22 cases with deletion of 6q

detected by array CGH, 14 had karyotype data and 9 (64.3%) showed either whole

chromosome loss, iso(6p) or deletion of 6q, whereas five cases showed normal 6q

morphology.

4.4.7 Identification of high-level amplicons

In an attempt to identify high-level amplification in our cohort, we performed a

simple computational thresholding approach where an amplicon was defined as 1)

one that consisted of 3 or more contiguous BACs, 2) the log ratio of a BAC in

an amplicon was at least 4 standard deviations above the mean log ratio of the

sample, and 3) the frequency with which an amplicon occurred was at least 5%

in order to minimize random aberrations in an individual case due to genomic

instability, we found a high-level amplicon in 18q12.2 recurrent in 6.6% of cases

(Table 4.4. By visual annotation using >1 log2 ratio shift as the definition of high-

level amplification, 11 instances were found in four cases (Table 4.4).

4.4.8 Identification of secondary pathways

Based on a computational analysis of karyotype data, it was reported that dup(1q),

del(6q), dup(7), and der(18) may constitute four distinct events arising secondary

to t(14;18) in the early development of FL [102]. Using a clone-based approach

(high resolution array CGH) and the application of a robust computational analysis,
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Figure 4.6: FISH validation of the 6q23.3 region (ID# 20) which presented
significant correlation with clinical outcome. aCGH (upper panel) and
FISH (lower panel) demonstrating a case with homozygous deletion and
a case with homozygous deletion at 6q23.3 and proximal and distal het-
erozygous deletion. The 1p36.3 and 6q23.3 probes were labeled red
while the control probe at 1q32.3 and 6p12.3 were labeled green. Green
arrows in FISH indicate the presence of heterozygous deletion while
yellow arrows indicate the presence of homozygous deletion. For array
CGH, each dot represents a BAC clone and the light blue lines represent
visual calling of aberrations. Loss is indicated by a shift to the left of
center and gain by a shift to the right of center. Vertical lines are -1 and
+1 scale bars of log2 ratios. In the upper panels, HMM-R predictions of
the deletions are shown.
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Region DNA coordinates Genes of interest #

18q12.2 33040900-33600413 BRUNOL4 7
1p11.2-p12 119415209-120497765 NOTCH2 2
1q21.1-q22 143222462-153482569 PIAS3, BCL9, MCL1

IL6R, ADAM15, TNFAIP8L2 1
mir-554, mir-190b, mir-92b

1q23.2-q23.3 158419998-161795584 PEX19, DDR2, UHMK1 1
mir-556

1q23.3 159989344-161290912 DDR2, UHMK1, mir-556 1
12p11.21-p12.3 18053500-31175376 RERGL, PIK3C2G, KRAS

RASSF8, SSPN, mir-920 1
12q13.3-q21.1 56316396-72147648 OS9, TSPAN31, CDK4

RASSF3, TBK1, WIF1
DYRK2, IL22, MDM2 1

RAP1B, YEATS4, FRS2
RAB21, mir-548c

18q21.1 42698818-42831630 1
Xp11.4 37696318-40787875 1
Xp11.3 42402004-42902505 1
Xp11.1 57834572-58333582 1

Table 4.4: Detailed information on high-level amplicons in the 106 FL cohort
(Data based on NCBI build 36.1)

we attempted to determine if similar pathway definitions could be obtained in our

cohort. We first extracted the 4,912 BAC clones from the 71 regions of alterations

and applied the k-medoids algorithm to the 106 cases to find clusters based on

Hamming distance. Figure 4.7 presents a heat map where green signals indicate

losses and red signals indicate gains. Of the 106 cases, 12 (11.3%) were clustered

with dup(1q), 9 (8.5%) with dup(6p)/del(6q), 9 (8.5%) with dup(7), and 19 (17.9%)

with dup(18). The remaining cases clustered into a group that exhibited no obvious

pattern of alterations.

4.5 Discussion
The study reported here describes tiling path array CGH data for 106 cases of FL

based exclusively on diagnostic biopsies. Seventy-one regions of alteration were

identified to be recurrent in 10% or more cases. Of the 71 regions, 21 were shown

to correlate significantly with inferior survival, however, only 16 were considered
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Figure 4.7: The K-medoids algorithm (where K=5) was applied to cluster
both 106 cases (x-axis) and 4,912 BAC clones derived from 71 regions
of aberrations. Four distinct clusters, +1q, +6p and 6q-, +7, and +18,
were identified. The rest exhibited no obvious pattern of aberrations.

independent predictors from the IPI in a Cox multivariate model. Some of these

regions, including deletion at 1p36.22-p36.33 (ID# 1), deletion at 6q21-q24.3 (ID#

20), gains at 17q11.2-q12 (ID# 55), 17q12-q21.2 (ID# 56), 17q21.31-q22 (ID#

57), and 17q24.2-q25.1 (ID# 60), provide a refinement of regions that were pre-

viously shown to be prognostic factors in overall survival [82, 112]. Our study

also demonstrates that 12 of 71 regions were predictors of transformation risk in

univariate analysis including: deletion of 1p36.22-p36.33 (ID# 1), gains of nearly

the entire p arm of chromosome 6 (from p21.1 to p25.3, ID# 11-18), deletion of

6q21-q24.3 (ID# 20), gain of 7q32.3-q33 (ID# 38), and gain of 12q13.13-q13.2

(ID# 51). Other groups have reported CGH gains on both 6p and 7p to correlate

with transformation from FL to DLBCL [93, 97], however, the 1p36 region has not

been previously correlated with transformation.

While our investigation shows that two regions, deletions at 1p36.22-p36.33

and 6q21-q24.3, correlated with both inferior survival and higher transformation

risk and were independent IPI prognostic predictors, many aberrant regions showed

no positive correlation between these two clinical parameters. For instance, gains
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of 6p were associated with higher transformation risk but had no effect on survival

rate; likewise, gains of 5p and 17q that were associated with poor survival did not

correlate with higher rate of transformation. Three possible explanations could be

offered for these findings: 1) transformation and overall survival were not tightly

linked in all cases, 2) some cases of FL behaved very aggressively, but did not

show histological or clinical features used to define transformation in this study

or, 3) the median follow-up was too short to appreciate an obvious relationship

between transformation and overall survival in this cohort. This might explain why

we did not observe a higher percentage of patients (42%) who had died during the

observation period.

The most frequently altered region identified in this study was deletion of chro-

mosome band 1p36.22-p36.33 ( 11 Mb in size) that occurred in 25.5% of cases.

From the perspective of karyotype analysis, the faint subbands in 1p34 through

1p36 render cytogenetic analysis of 1p36 difficult and even relatively large dele-

tions of this region may be overlooked, resulting in underreporting of deletions

that could negatively affect previous correlations with prognosis. Of interest, a re-

cent study by Ross et al found that 50% of 58 low-grade FL showed copy-neutral

loss of heterozygosity (LOH) (also called acquired uniparental disomy (aUPD)) at

1p36, demonstrating that other mechanisms of gene inactivation may be involved

at this and other sites [99]. Both deletions and copy-neutral LOH at the terminal

portion of 1p have been implicated in other cancer types, including neuroblas-

toma, melanoma, germ cell tumors, lung cancer, and epithelial ovarian cancers,

suggesting the presence of a tumor suppressor in the region [113]. A number of

candidate genes reside in this region, including the cell cycle protein CDC2L1, the

tumor necrosis factor (TNF) related receptor proteins such as TNFRSF9/14/18/25,

the zinc finger transcription factor PRDM16, and the apoptotic factor DFFB. In

related studies based on karyotype data we have observed that deletion of 1p36 oc-

curs more frequently in transformed FL than in diagnostic cases (40% versus 24%,

one-tailed p=0.0282) and that deletion of this region is seen in 50% of high-grade

transformations with associated MYC translocations (manuscript in preparation).

This latter association may in part explain the strong correlation of 1p36 with in-

ferior survival and transformation observed in this study, as our cases may be en-

riched for patients that had experienced these events. It suggests that deletion of
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1p36 may predispose patients to subsequent transformations with high proliferation

rate, as described by Davies et al and Lossos et al, rather than lower proliferative

transformations [114, 115].

Deletion of 6q is detected frequently in acute lymphoblastic leukemia, chronic

lymphocytic leukemia, multiple myeloma, DLBCL and FL [108, 116]. Different

studies have shown various regions to be involved, however, only one of these has

focused specifically on FL in which a 2.3 Mb region of deletion was identified

at 6q16.3 in 15% FL cases [108]. Our data show that nearly the entire 6q arm

was involved in the majority of cases, though at the 15% cutoff level, only four

very small regions of loss were defined. None of these regions overlap with that

of the Henderson et al study [108]. The 500 kb deletion in 6q15 contains the

CASP8 associated protein 2 involved in Fas-mediated apoptosis. Of particular in-

terest is deletion of the 6q23.3 band that has been reported in 30-38% of ocular

MALT lymphomas and FL [99, 116, 117]. Our array CGH data indicate that the

150 kb deletion at 6q23.3 affecting more than 15% of FL cases coincided with the

TNFAIP3 (TNF- induced protein 3) gene. Deletion of this region was validated by

FISH, suggesting that TNFAIP3 may be critical in FL development and/or progres-

sion. Furthermore, TNFAIP3 was implicated in a recent study based on correlation

between genomic loss and gene expression, while it was unclear in another study

as to whether TNFAIP3 or PERP (TP53 apoptosis effector) was implicated since

sequencing analysis failed to uncover any mutations [99]. Deletion of TNFAIP3

can constitutively activate the NF-kB signaling pathway as it is a zinc finger pro-

tein inhibitor of NF-kB [118]. However, since deregulation of NF-kB appears to

be uncommon in FL,46 other functions of TNFAIP3 may be responsible, or PERP

may be involved since it lies only 200kb from TNFAIP3. Current evidence indi-

cates that PERP induces TP53-mediated apoptosis and its deletion could lead to

the promotion of tumor growth [119].

Although our cohort was partly enriched for diagnostic cases where a spec-

imen was also available from a later transformation event, this selection did not

significantly alter the expected median overall survival time (8-10 years versus our

observed 10.83 years after diagnosis) and the expected median time to transforma-

tion (7 years vs our reported 6.61 years) for this disease. Based on the 3% annual

transformation rate observed in FL [77], we would expect 22% of cases to have
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transformed, whereas 50% of the study patients had transformed to DLBCL. This

enrichment allowed us to detect genetic changes that are associated with transfor-

mation that would have been missed if too few patients in our study did not have

that event. Given the high correlation between transformation and death, confir-

mation of the full clinical impact of cytogenetic alterations detected in this study

should be validated on an unselected series of FL patients.

To exclude the possibility of random aberrant events, we also validated the copy

number profile generated from the 106 FL diagnostic cases against an independent

cohort of 37 FL (with similar age, grade and stage characteristics), 30 cases of

mantle cell lymphoma (MCL), and 30 normal specimens. Our results indicated that

40 of the 71 (56.4%) aberrant regions, such as 1p36.22-p36.33 (ID# 1), 1q42.13-

q42.3 (ID# 7) and 18p11.21-p11.32 (ID# 65), were unique to FL (Kruskal-Wallis

test, p<0.05; data not shown) while others, such as 6p23-p24.3 (ID# 12) and 6q21-

q24.3 (ID# 20), were shared by both FL and MCL. Overlapping regions between

the normal controls, FL and MCL were also evident in regions such as 8q21.2

(ID# 43) and 5p15.33 (ID# 10) which represented copy number polymorphisms

identified by this platform.

A number of CNVs as small as 80 to 200 kb can be detected by the array CGH

platform [120] and may be evident in the global profile as discrete regions showing

both duplication and deletion. Some CNVs may not exhibit this pattern and have

been shown to be as large as a few megabases in size [121]. Since many CNV

breakpoints cannot be precisely defined, and most importantly, that 58% of CNVs

overlap with known RefSeq genes [121], we have elected not to filter these CNVs

using any stringent criteria. A full understanding of the significance of the CNVs

will require additional information on population-based frequencies, observed fre-

quencies in specific types of lymphoma and the possible functional consequences

exerted through associated genes, SNPs or other mechanisms.

Using only the percentage of alterations as a predictive measure of clinical out-

come, we found that significant correlation with overall survival and transformation

risk was present only if a criterion of 5% or more alterations (rather than 10%) was

applied to dichotomize the cases. An explanation for this observation may be that

as the criterion of percentage becomes too extreme (as in the example of 10% or

more alterations), fewer and fewer cases will constitute one of the groups, thereby
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significantly affecting statistical comparisons. Nevertheless, our findings were in

general agreement with the commonly held notion that with increasing number of

aberrations in the genome, prognosis is negatively affected [100].

This study has also shed further light on other recurrently altered genomic

regions in FL. Potential genes that have been implicated in lymphomas are pre-

sented in Column Q of Table 4.3. For instance, the cytochrome gene CYP51 on 7q

has been found overexpressed in lymphomas.16 In 8q, four candidate genes have

been suggested: a potassium channel protein KCNK9, NF-KB-activating protein

NIBP, the protein tyrosine kinase PTK2/FAK, and the protein tyrosine phospha-

tise PTP4A3.22 The PTEN phosphatase tumor suppressor at 10q23.1-q25.1 has

been of constant interest [122]. MDM2 at 12q13.2-q21.1 has been reported to

have altered expression that may negatively affect the stability of p53.51 Corre-

lation between gene expression and genomic changes provided evidence that the

Interleukin-3 zinc finger transcription factor ZNF161 at 17q23.2 may be involved

[112]. BCL2 may be overexpressed as a result of extra copies of chromosome

18, especially in DLBCL [123], however, the bands 18q11-18q21.33 proximal to

the BCL2 locus are also consistently over-represented in FL, implicating a gene

proximal to the t(14;18) breakpoint in this amplification [96, 99].

Our search for high-level amplicons that occurred in at least 5% of cases led

to the localization of a region in 18q22, which contains the BRUNOL4 gene. This

gene belongs to a family of RNA-binding proteins involved in multiple aspects of

RNA processing [124]. Its function in hematopoietic cells, however, has not been

studied. Eleven other amplicons were found that occurred in less than 5% of cases.

Viardot et al showed that among eight amplicons found in their 124 patients, their

regions in 1q23-q25 and 12q13 overlapped with ours [100] as did the bands 8q24

and 12q13-q14 in Bentz et al study [91].

In an attempt to dissect the sequence of cytogenetic events occurring in the

clonal evolution of FL, Hoglund et al conducted one of the first studies using

published karyotype data to reconstruct the common pathways of clonal evolution

secondary to the t(14;18). 26 Using principal component analysis to reduce data

complexity for multivariate correlations, four major events consisting of dup(1q),

dup(7), del(6q), and der(18) were identified to arise independently after the t(14;18).

We attempted to utilize a clone-based approach to cluster both the 106 diagnostic
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patients and 4,912 BAC clones extracted from the 71 regions of alteration. Us-

ing different methods and a mostly non-overlapping FL cohort, we have replicated

the findings of the previous karyotype-based study. These data, in conjunction

with previous findings, suggest that the early events of clonal progression in FL

may evolve along a number of distinct pathways. These events may represent al-

ternative critical steps following the primary event of BCL2 deregulation that are

essential to the promotion of early clonal expansion, leading eventually to clinical

manifestation of disease and transformation to more aggressive histologies. It is

interesting to note that altogether 46.2% of our cases were represented in one of

the four clustered groups, dup(1q), dup(6p)/del(6q), dup(7), and dup(18q), while

the rest showed alterations that could not be explained by this approach. These

may be cases where other types of biological mechanisms, such as copy-neutral

LOH and/or methylation of genes of critical importance may be operative.

In conclusion, our data have confirmed and refined regions of aberrations found

in previous findings and provided further insight into the distinct molecular path-

ways related to FL development using the clone-based cluster analysis. Most im-

portantly, our study has identified deletion of 1p36 and 6q23 as significant prog-

nostic indicators of clinical outcome. These correlations have been strengthened

by the ability of high resolution analysis to detect submicroscopic deletions not

previously detectable using other methods. The clinical relevance of these genetic

alterations and their impact on disease progression will require additional stud-

ies of large patient cohorts, ideally managed with uniform therapy and lacking a

selection bias.
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Chapter 5

Model based clustering of aCGH
data with simultaneous inference
of calls, clusters and profiles

5.1 Summary
In this chapter, we investigate the problem of inferring molecular subtypes from

aCGH data (Research goal C) 1. We introduce a novel statistical framework, HMM-

MIX that is capable of clustering patients in a cohort into distinct groups where

patients assigned to a group share CNAs, defined by a group-specific profile. In

an application of the model to clinical data derived from a cohort of 106 follicu-

lar lymphoma patients, HMM-Mix revealed subtypes that have previously unde-

scribed prognostic significance. Moreover, in a cohort of 92 diffuse large B-cell

lymphoma (DLBCL) patients, a novel subtype was discovered by HMM-Mix. In

addition, we show that our model is significantly more accurate than simpler base-

line models, including a published method tailored for aCGH, in a simulation study

where subgroup assignments were known. The chapter is organised as follows: in

Section 5.2, we introduce the biological and clinical motivation behind searching

1A version of this chapter has been submitted for publication: SP Shah, K-J Cheung, N Johnson,
RD Gascoyne, DE Horsman, RT Ng and KP Murphy. Model based clustering of array CGH data.
Proc Natl Acad Sci U S A. In press.
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for molecular subtypes. In Section 5.3 we describe the HMM-Mix model, the sim-

pler baselines and the data sets. Section 5.4 shows the results on the clinical data

and the simulation study. In Section 5.5, we offer suggestions for future directions

of this work.

5.2 Introduction
A critical complicating factor in the analysis of recurrent CNAs arises from the

frequent observation that patient cohorts under study for a particular type of cancer

exhibit heterogeneity in their molecular profiles. This has been demonstrated in

breast [125], ovarian [126], and prostate cancers, as well as lymphomas [7, 102]

among others, suggesting that the patients should be stratified into molecular sub-

types where the patients within a group share a common group specific driver CNA

profiles. This concept has been successfully applied many times over using gene

expression data [125, 127], however it has been relatively under-studied in aCGH

data.

Considering a cohort of patients as a composite of a fixed set of molecular sub-

types has distinct advantages when determining recurrent CNAs. In the presence

of large amounts of molecular heterogeneity, important driver alterations specific

to a subgroup may be obscured and rendered indistinguishable from passenger al-

terations (or biological noise) in the data. By grouping or clustering the patients,

within-group patterns are more likely to emerge, providing two advantages: groups

of patients can be assessed for distinct clinical outcomes, and recurrent CNAs that

might otherwise go undetected can be revealed. Subgrouping patients also has

the potential of revealing CNAs that co-occur within a subtype and CNAs that are

mutually exclusive between subtypes.

Importantly, it has been observed that definable molecular subtypes often corre-

late with clinical outcomes and in fact can, once identified, be considered as distinct

disease entities [13] with different prognoses and/or response to therapy. Recent

discovery of clinically relevant molecular subtypes by aCGH [8, 54] suggest that

the inventory of CNA-derived molecular subtypes in cancer is not complete. Large

scale projects such as the Cancer Genome Atlas Project [128] and the International

Cancer Genome Consortium (ICGC: http://www.icgc.org) are now generating ge-
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nomic array data sets from tumours from hundreds of patients for specific cancer

types, thereby providing excellent potential for the discovery of new CNA-derived

subtypes. In order to take full advantage of these data, robust and accurate com-

putational algorithms for discovering molecular subgroups must be developed to

keep pace with the data generation.

To address this goal, we introduce a novel statistical framework, HMM-mix, us-

ing model based clustering for inference of molecular subtypes from aCGH data. A

key advantage of HMM-Mix is that it carries out joint inference of three quantities

of interest: the discrete probe-level copy number calls, the assignment of patients to

groups, and the profiles that define each group. This distinguishes HMM-Mix from

standard methods that necessarily use a phased approach where these quantities

need to be inferred in disjoint, independent steps. In addition, our approach per-

forms simultaneous clustering and feature selection, similar in concept to Law et al

[129], but with specific adaptation to aCGH data and built upon statistical frame-

works introduced in our previous work in Chapters 2 and 3. Other approaches can

employ feature weighting, however this can only be performed once at runtime. We

demonstrate how the joint inference of the quantities of interest and simultaneous

feature selection confer a significant performance advantage over both partitioning

and hierarchical clustering methods [130] in a simulation study. More importantly,

we show how the HMM-mix reveals clinically relevant subgroups in data derived

from a cohort of 106 follicular lymphoma (FL) patients, originally reported in Che-

ung et al [7], and reveals previously unreported patterns of alteration in a cohort of

92 diffuse large B-cell lymphoma (DLBCL) patients that is the subject of a forth-

coming manuscript [131].

5.3 Methods
Clustering algorithms can be divided into three categories: partitioning, hierarchi-

cal, and methods based on mixture models [129]. In this section, we introduce our

model-based HMM-Mix framework, describe two partitioning algorithms we im-

plemented for aCGH, and a hierarchical clustering algorithm designed for aCGH

that was previously described in [130]. The latter approaches provide benchmarks

against which we evaluate HMM-Mix.
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Figure 5.1: Proposed HMM-mix model for clustering aCGH data, repre-
sented as a directed graphical model [132]. Shaded nodes are observed/-
fixed, unshaded nodes are hidden (unknown). The two boxes represent
repetition over patients and groups. Y p

t ∈ IR is the observed aCGH lo-
gratio at probe t in patient p. Zp

t ∈ {L,N,G} is the discrete state, rep-
resenting whether probe t is a loss, neutral or gain. Given Zp

t = k, Y p
t

is assumed to be sampled from a class conditional Student-t distribu-
tion with parameters µ

p
k ,λ p

k and νk (not shown). Gp ∈ {1, . . . ,G} is the
group that patient p belongs to, which is sampled from a multinomial
with parameter πG. θ

g
t is the multinomial parameter over Zp

t , which is
sampled from a Dirichlet with parameter αMg

t
, where Mg

t ∈ {1, . . . ,C}
represents the state of the sparse profile for probe t in group g. Ag

M
is the transition matrix for the profile model. Conditional probability
distributions are shown in Table 5.1
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5.3.1 The HMM-Mix model for clustering aCGH data

The principle idea in HMM-Mix is to extend the concept of explicitly modeling

driver and passenger alterations described in Chapter 3 to the multi-group setting

where we assume that the patient cohort is composed of distinct molecular sub-

types (ie each patient belongs to one of g ∈ (1, . . . ,G) groups). The goal is to

simultaneously infer a profile that represents each group and discover the optimal

stratification of the patients into the groups. The mixture model-based clustering

concept is described in the general context in Raftery and Dean [133]. In our ap-

proach, the profile for each group is parameterized by a sparse HMM. Thus the

data set as a whole is modeled as a mixture of G HMMs. We sketch the HMM-

Mix model in Figure 5.1 as a graphical model. We represent the aCGH logratios as

Y p
t ∈ IR for each probe t ∈ (1, . . . ,T ) in the array and for each patient p∈ (1, . . . ,P).

Each probe maps to unique genomic coordinates and can therefore be positionally

ordered along the chromosomes. Y 1:P
1:T represents the full data matrix. For each

datapoint we assume there is a discrete mapping from Y 1:P
1:T → Z1:P

1:T where Zp
t ∈ k

and k is a discrete copy number state ∈ {loss,neutral,gain} as described in previ-

ous chapters 2. The model assumes the observed data for each patient comes from

a mixture of profiles, where each profile is modeled by a compound Dirichlet-

Multinomial distribution represented by θ
g
1:T and Mg

1:T (see below for details) and

the group that each patient belongs to by a single multinomial Gp = g. We assume

that a small set of probes represent the group-specific driver alterations and the rest

of the probes can be explained by patient-specific passenger alterations. We now

explain in detail how this is modeled.

Dirichlet Mixture Prior for sparse profiles

We assume the passenger probes are generated from a ’background’ distribution,

while the driver probes are generated from a group-specific ’foreground’ distri-

bution. Our framework is therefore designed to explicitly separate probes from

the background from probes from the foreground. Moreover, we want to identify

probes for which the patients in the group are highly biased towards gain or loss.

2We note that the model could easily be extended to accommodate more states, however for
simplicity, we restrict ourselves to three states in this chapter.
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Defining the set of probes that make up the foreground is therefore analogous to

simultaneous feature selection and clustering as described by [129] for gene ex-

pression.

To accomplish this, we assume that θ
g
t is generated from a Dirichlet mixture

prior α1:C. Dirichlet mixtures have been successfully used in related contexts, for

example to model HMM-based profiles for protein families [134]. Here, we use

an indicator variable Mg
t = c to index the appropriate component of the mixture

to be used to estimate θ
g
t , where c ∈ {L,0,G} and we fix the number of com-

ponents, C = 3. Therefore, p(θ g
t |M

g
t = c,αc) gives us an estimate of how likely

the cth component of the mixture was to have produced θ
g
t . This estimate is an

evaluation of the Dirichlet density function at θ
g
t , with parameters α1:K

c . We set

αL = [aL,1,1],α0 = [1,a0,1],αG = [1,1,aG], where aL,0,G represents how ’peaked’

the Dirichlet distribution is for each of its components, and aL,aG >> a0 ≥ 1.

α0 can be considered a weak prior for the background distribution for passenger

probes, where the patients in the group are heterogeneous or neutral in these lo-

cations. In contrast, αL and αG are priors for loss and gain probes respectively,

where the strength of how uniform the columns are, depends on a. A key point is

that we pool the data for all probes expected to be in the background in order to

estimate the background distribution θ
g
0 , while the data for the foreground distribu-

tions remains location specific. Having inferred M1:G
1:T , we can then look at probes

t̂ for which Mg
t 6= 0 to obtain the probes of interest, and report these probes as a

’definition’ of the profile for group g.

Note that θ has similar characteristics to the value φ output by AF discussed

in Chapter 3. However a major difference is that θ is generative, whereas φ is not.

Therefore, θ influences the Z calls which is an important feature in our model, as

we will see.

HMM-Mix model specification

The model is a mixture of HMMs [135] with standard transition matrices, Ag, each

a C−by−C matrix that represents:

Ag(i, j) = p(Mg
t = j|Mg

t−1 = i) (5.1)
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The Markovian dynamics on Mg
1:T model the fact that the recurrent losses and gains

will span sets of contiguous probes (see Chapter 3 for further details).

The emission model for HMM-Mix is a function of the observed data Y 1:P
1:T and

the current cluster responsibilities Gp. We use the conditional probability distri-

butions of the model in order to compute standard quantities that can be used as

input to the Forwards-Backwards framework for HMMs. Thus, the emission ma-

trix Bp
t (c,g) for patient p given its cluster assignment g and Dirichlet component

c ∈ {L,0,G} is defined as follows:

Bg
p,t(c) = p(Y p

t |M
g
t = c,Gp = g,αc) (5.2)

where

p(Y p
t |M

g
t = c,Gp = g,αc) =

∑
k

p(Y p
t |Z

p
t = k)p(Zp

t = k|Mg
t = c,Gp = g,αc) (5.3)

p(Y p
t |Z

p
t = k) = St(Y p

t |µ
p
k ,λ p

k ,νk) (5.4)

where µ
p
1:K and λ

p
1:K and ν1:K (fixed) are patient specific parameters (mean, pre-

cision and degrees of freedom) of class conditional density Student-t distributions

assumed to emit Y p
t and

p(Zp
t |M

g
t = c,Gp = g,αc) =

Γ(∑k αk
c )

Γ(1+∑k αk
c )

K

∏
k=1

Γ(I(Zp
t = k)+αk

c )
Γ(αk

c )
(5.5)

Note that we have integrated out θ as defined in Brown et al [134] where

Γ(x) =
∫

∞

0
tx−1e−tdt (5.6)

Given the cluster assignments for all the data, the emission matrix for a given group

g therefore becomes:

Bg
t (c) = ∏

p
p(Y p

t |M
g
t = c,Gp = g,αc)I(Gp=g) (5.7)
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Given Bg
1:T and Ag, the sequence Mg

1:T can be computed using the standard forwards-

backwards algorithm [22] (on a per chromosome basis) which returns the posterior

marginal probabilities

γ
g
t (c) = p(Mg

t = c|Y 1:P
1:T ,G1:P,Ag) (5.8)

of probe t for group g of Dirichlet component c having had generated the observed

data. In order to infer the most likely sequence of Dirichlet components, we use

the Viterbi algorithm.

Referring to the graphical model shown in Figure 5.1, we can read off the

conditional independence properties of the variables in the Markov blanket (see

[22]) of Zp
t in order to compute the appropriate marginal probability:

p(Zp
t = k|Y p

t ,Gp = g,θ g
t ) = p(Zp

t = k|θ g
t )p(Y p

t |µ
p
k ,λ p

k ) (5.9)

These quantities can in turn be used to update µ and λ as described in Archambeau

[136].

We denote the weights of the mixture by πG: a multinomial distribution where

the components π
g
G model the proportion of the cohort assigned to group g, 0 ≤

π
g
G ≤ 1 and ∑ π

g
G = 1. Given πG, we update the cluster assignments as follows:

p(Gp = g|Y p
1:T ,Mg

1:T ,α,πG) =
π

g
G ∏t Bg

p,t(M
g
t )

∑h πh
G ∏t Bh

p,t(Mh
t )

(5.10)

It is also possible to update the hyperparameters of the Dirichlet prior α , de-

pending on the data. This may be useful if we wish to have group-specific back-

ground distributions parameterized by α
g
0 . Given (Mg

1:T ,Z1:P
1:T ,G1:P) we can calcu-

late the counts ~Zg
c where Gp = g and Mg

t = 0. We can then estimate new parameters

α
g
0 |~Z

g
c using the iterative Newton-Rhapson method described in Minka [137].

Prior specification

All relevant parameters are assumed to be distributed according to their standard

conjugate priors and are accordingly updated using maximum a posteriori (MAP)

updating during inference. µ,λ are distributed according to a normal-gamma pa-
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p(Mg
t = j|Mg

t−1 = i) ∼ Ag(i, j)

p(θ g
t |M

g
t = c,α) ∼ Dir(θ g

t |α1:K
c )

p(Zp
t = k|Gp = g,θ) ∼ Mult(Zp

t = k|θ g)
p(Gp = g|πG) ∼ Mult(Gp = g|πG)

p(Y p
t |Z

p
t = k,µ

p
k ,λ p

k ) ∼ St(Y p
t |µ

p
k ,λ p

k ,νk)

p(µ
p
k |m

p
k ,η p

k ) ∼ N (µ
p
k |m

p
k ,

η
p
k

λ
p
k

)

p(λ p
k |S

p
k ,γ p

k ) ∼ Gam(λ p
k |S

p
k ,γ p

k )
p(Ag(i, .)|δA) ∼ Dir(Ag(i, .)|δA)

p(πG|δπ) ∼ Dir(πG|δπ)

Table 5.1: List of conditional probability distributions of HMM-Mix.

rameterized by (m,η) for µ and (S,γ) for λ and are set according to the descrip-

tion in Archambeault [136]. We assume the rows of Ag are distributed according

to a Dirichlet prior, parameterized by δA, where we place emphasis on self-self

transitions. Finally, we impose a flat Dirichlet prior, parameterize by δπ , on πG,

assuming that all groups are equally likely a priori. All conditional probability

distributions are given in Table 5.1.

Inference

We fit the model to the data using iterated conditional modes (ICM). Inference

using EM is intractable in this model since the profile parameters are coupled.

Moreover, an MCMC approach to infer full posterior distributions of the unknown

quantities would be impractical due to the number of samples required. The quan-

tities of interest: the cluster assignments, the profiles, the calls and the parameters

are updated in sequence until convergence is reached. The runtime complexity of

the algorithm is O(T ) but in practice is proportional to the number of groups G and

patients P as well.

As in most model-based approaches, initializations of its parameters needs to

be carefully considered. We initialize µ,λ ,Z1:P
1:T by fitting a modified version of the
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Algorithm 4 Pseudocode for iterated conditional modes algorithm for HMM-Mix.
Input: raw data Y 1:P

1:T , number of groups G and Dirichlet prior αloss,0,gain. Output:
clusters G1:P, calls Z1:P

1:T and profiles M1:G
1:T . K = 3, the number of copy number

states is fixed. Ng is the number of patients assigned to group g. Updating of the
Ag

M transition matrices, π
g
M initial state distributions and µ,λ emission parameters

are omitted for brevity. Supporting function listed in Algorithm 5
1: /* Initialise calls and emission model parameters */
2: for p = 1,2, . . . ,P do
3: mp

1:K ,η p
1:K ,Sp

1:K ,γ p
1:K = setHyperparameters(Y p

1:T )
4: Zp

1:T ,µ
p
1:K ,λ p

1:K = HMM-R(Y p
1:T ,mp

1:K ,η p
1:K ,Sp

1:P,γ p
1:K)

5: end for
6: /* Initialise groups from calls */
7: G1:P = multipleRestartWKM(Z1:P

1:T ,G) /* see Section 5.3.2 */
8: /* Initialise profiles from groups and calls */
9: for g = 1,2, . . . ,G do

10: πG(g) = δπ (g)+Ng

∑h δπ (h)+Nh

11: Mg
1:T = initialiseProfile(Z1:P

1:T ,G1:P,g)
12: end for
13: B = computeEmissionDensity(Y 1:P

1:T ,M1:G
1:T ,G1:P,α1:C)

14: /* Begin ICM */
15: for iter = 1,2, . . . ,maxiter do
16: /* Update the clusters */
17: for g = 1, . . . ,G do
18: Gp = argmaxg

π
g
G ∏t Bg

p,t(M
g
t )

∑h πh
G ∏t Bh

p,t(Mh
t )

19: end for
20: /* Update the profiles */
21: Mg

1:T = Viterbi(Bg
1:P,1:T ,Ag

M,πg
M)

22: /* Update the calls */
23: for p = 1, . . . ,P do
24: for t = 1, . . . ,T do
25: Zp

t = argmaxk ∑g Mult(Zp
t = k|θ g

t )St(Y p
t |µ

p
k ,λ p

k ,νk)I(Gp=g)

26: end for
27: end for
28: /* Update µ,λ (omitted) and recompute emission density */
29: B = computeEmissionDensity(Y 1:P

1:T ,M1:G
1:T ,G1:P,α1:C)

30: end for
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Algorithm 5 Supporting function for Algorithm 4
1: Function B = computeEmissionDensity(Y 1:P

1:T ,M1:G
1:T ,G1:P,α1:C)

2: for g = 1, . . . ,G do
3: for p = 1, . . . ,P do
4: for t = 1, . . . ,T do
5: for c = 1, . . . ,C do
6: Bg

p,t(c) = p(Y p
t |M

g
t = c,Gp = g,αc) /* See equation 5.2 */

7: end for
8: end for
9: end for

10: end for

single sample HMM (using a Student-t emission density rather than Gaussian) de-

scribed in Shah et al [20] (see Chapter 2) to the data from each patient separately.

The cluster groupings are initialized using WKM (see Section 5.3.2) with Z1:P
1:T as

input. Figure 5.3.1 shows an example run of HMM-Mix initialised with WKM

on synthetic data (described in Section 5.3.5). As is shown, in the figure, the ini-

tial clusters are a crude approximation to the truth. As the algorithm proceeds to

convergence, the resulting clusters are far more accurate.

Given the initial cluster groupings and Z1:P
1:T , Mg

1:T is initialized by using the

entropy, Eg
t for each probe for patients in group p:

Eg
t =−∑

k
f (Zt = k,g)log( f (Zt = k,g)) (5.11)

where f (Zt = k,g) is the normalized frequency of Zt = k for all patients in group

g. Highly entropic probes are initialized to the background distribution, while

positions relatively homogeneous for loss or gain are initialized accordingly.

5.3.2 Baseline algorithms

To compare HMM-Mix to partitioning based methods, we derived and imple-

mented two K-medoids based algorithms. The first algorithm, KM, is based on

a standard distance-based algorithm that outputs a clustering Gp = g given the dis-

crete call matrix Z1:P
1:T and the number of groups. G is chosen by the user, or it can

be estimated heuristically from the data using the Silhouette coefficient [138] (see
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WKM initialisation

HMM-Mix converged

Figure 5.2: WKM initialisation and convergence of HMM-Mix, showing how it
dramatically improves the clustering in relation to the true class labels (shown
right in each figure). The data is shown as a matrix of Z1:P

1:T with each row repre-
senting a patient and each column a probe. The colouring is representative of a
call where Zt

p = loss is green, Zt
p = gain is red and neutral probes are blue. The

horizontal white line separate the clusters. The ground truth classes are shown
on the right as different grayscale shades. In a perfect clustering the grayscale
shades would be arranged in uninterrupted blocks. In comparison to the WKM
initialisation, the HMM-Mix converged estimate is far more accurate.
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Section 5.3.4). We use Hamming distance to define the distance d(i, j) between

two patients i and j, as follows:

d(i, j) =
T

∑
t=1

δ (Zi
t ,Z

j
t ) (5.12)

where δ (Zi
t ,Z

j
t ) = 0 indicates that the discrete state at position t for patients i and

j are equal. Otherwise δ (Zi
t ,Z

j
t ) evaluates to 1. Based on an initial random assign-

ment of the medoids to G distinct patients, the algorithm seeks to locally minimize

the total distance of each data point to its assigned medoid. In an iterative frame-

work, the algorithm searches for medoid assignments that reduce this total distance

until a local minimum in the search space has been reached 3. KM is prone to find-

ing local minima and is sensitive to initializations, however the efficiency of the

algorithm affords us the option to use a multiple restart framework. The two-step

procedure of initializing the medoids randomly and running the algorithm to con-

vergence is repeated 1000 times and the run producing the minimum total distance

is kept.

Weighted K-medoids (WKM)

The KM algorithm described above treats all probes (features) equivalently when

computing the distance function. Due to patient specific passenger CNAs that are

likely not related to disease, we assume that only a small subset of features are im-

portant in determining the ’distance’ between 2 patients with respect to the disease.

We present a modified distance function that leverages the entropy of the features

to compute the distance. The intuition is that probes spanning driver alterations

that are different between subgroups will be more entropic than other probes. We

show in Section 5.4 that this significantly improves performance. We calculate the

entropy, Ht , of each probe as follows:

Ht =−∑
k

f (Zt = k)log( f (Zt = k)) (5.13)

3Note that in general KM is far more efficient than the closely related k-means algorithm since
the distance matrix d(i, j) need only be computed once. In k-means, the means are updated to a
new value at each iteration and the distance from each patient to each of the new means must be
recalculated.
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where k ∈ {loss,neutral,gain} and f (Zt = k) is the (normalised) frequency probe t

in state k taken over all patients where ∑
K
k=1 f (Zt = k) = 1. To minimize the effects

of outliers from E1:T , we apply a logistic transformation to obtain feature weights

W1:T where:

Wt =
1

1+ e−
Ht
α

(5.14)

where we set α = 0.25 is a smoothing constant chosen heuristically to avoid ex-

treme weights4 We modify the distance function between two patients i, j given in

Equation 5.12 as follows:

d(i, j) = ∑
t

Wt δ (Zi
t ,Z

j
t ) (5.15)

Therefore the WKM algorithm is identical to the KM algorithm except that it uses

Equation 5.15 in place of Equation 5.12 to compute distance.

Hierarchical clustering for aCGH

In recent work, van Wieringen et al. [130] introduce a system called “Weighted

clustering of called array CGH data” (WECCA). This represents the first clustering

approach to be tailored specifically to the aCGH data and is a specialized imple-

mentation of hierarchical agglomerative clustering. They define novel similarity

(opposite of distance) and linkage metrics for hierarchical clustering that leverage

the properties of the aCGH data. The authors also establish a weighted form of

similarity, similar in spirit to the weighted-Hamming distance described above, al-

though the weights are expected to be provided by the user, rather than empirically

calculated.

5.3.3 Advantages of HMM-Mix over baseline methods

The HMM-Mix approach differs from KM, WKM and WECCA in three impor-

tant ways: i) we use an adaptive feature selection approach where the features are

selected simultaneously with the cluster assignments. WKM and WECCA both

allow feature weighting, but this is only done once at runtime, preventing the fea-

4Without this smoothing transformation we found the dynamic range of the entropy measure was
too great and did not lead to satisfactory results.
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ture selection from being modified during the process of the clustering procedure;

ii) HMM-Mix uses Y 1:P
1:T as input. In previous work [21] (see also Chapter 3), we

demonstrated that this confers an advantage over using Z1:P
1:T when inferring re-

current CNAs profiles since shared signals can be better elucidated by borrowing

statistical strength present in the raw data. This has also been shown by Klijn et

al [71]; iii) the HMM-Mix framework enables the updating of the discrete calls in

the presence of the profiles by inferring the calls, the cluster assignments and the

profiles jointly in a single inference routine. In contrast KM, WKM and WECCA

all require discrete data as input, do not update the calls and do not produce pro-

files as output. For KM, WKM and WECCA, the process of inferring calls, cluster

assignments and profiles is necessarily step-wise potentially leading to information

loss progressing through the steps. Finally, HMM-Mix is a probabilistic model and

thus, can be used without modification in a more complex setting.

5.3.4 Choosing the number of groups

A limitation in mixture model-based clustering is the requirement of specifying the

number of groups a priori. In many contexts the investigator may not know how

many groups to expect in the population. It may therefore be desirable to estimate

the number of groups in an automated way. For distance based methods such as

KM and WKM, the Silhouette coefficient computes a measure of clustering that

considers both cohesion (how similar the points in a cluster are), and separation

(how different the clusters are). For each data point, the Silhouette coefficient

[139] is computed as:

si = (bi−ai)/max(ai,bi) (5.16)

where ai is the average distance to points in i’s cluster and bi is the minimum

average distance to points in another cluster. Therefore, −1≤ si ≤ 1 where si = 1

is the optimal value (the case where ai = 0). An overall measure of clustering is

the average Silhouette coefficient:

S =
1
N

N

∑
i=1

si (5.17)

128



For two given clusterings where the number of groups was set to be k̂,k, if Sk̂ > Sk

then that indicates k̂ groups is better than k.

5.3.5 Data sets and evaluation protocol

Clinical data

We applied HMM-Mix to data derived from patient cohorts created to study i)

follicular lymphoma (FL) (see Figure 5.3) and ii) diffuse large B-cell lymphoma

(DLBCL) (see Figure 5.5). The FL data was previously reported in Cheung et

al [7] (see also Chapter 4) and consists of 106 patients expected to fall into at

least 4 genetic subtypes [102]. A characteristic of FL is that in some percentage

of patients, the tumour undergoes a transformation to DLBCL, a more aggressive

subtype of lymphoma where patients have poorer survival rates. Developing a

prognostic CNA profile predictive of transformation is therefore of great interest

for clinical management of FL. We measured the concordance of the predicted

subgroups to this clinical data in an effort to discover prognostically relevant sub-

groups. The DLBCL data is the subject of a forthcoming manuscript [131] describ-

ing the aCGH findings in 92 patients with de novo DLBCL all treated uniformly

with multi-agent chemotherapy (CHOP) and anti-CD20 monoclonal antibody rit-

uximab. These largely represent consecutive cases from a population-based reg-

istry, but were enriched for primary treatment failures.

All clinical data were produced using the SMRT array platform [16] and con-

tain approximately 27,000 probes per sample.

Simulated data

To test and compare performance of the various algorithms, where the true cluster-

ing was known, we generated simulated data. Based on real cell line data reported

in DeLeeuw et al [19], we generated simulated data set in a manner similar to that

described in Chapter 3. We performed 100 random draws (simulating patients)

from the eight cell lines and extracted the 672 probes on chr 21 (chosen because

it was reported to have relatively few alterations in the MCL cell lines). For each

of the 100 patients, we shuffled the 672 clones and randomly assigned the pa-
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tient to one of G groups. For each group, we preset coordinates of one recurrent

gain and one recurrent loss. These group specific coordinates defined the pro-

file for the group. The alterations were embedded into each patient’s data at their

group-specific coordinates with a small amount of randomly sampled noise added

to the edges of the alterations to prevent perfectly overlapping recurrent alterations.

Losses were logratio shifts of one standard deviation down and gains were shifts

of one standard deviation up. Finally, for each patient, we randomly embedded

alterations of length L at locations different than the group-specific alterations in

order to simulate patient-specific ’passenger’ alterations expected to be unrelated

to the group profile. We created 10 replications with G = 3,5,10 and L = 50,75

yielding 60 data sets.

Evaluation protocol

Given a data set for which the groupings are known, it is of interest to determine

how well a given clustering algorithm reproduces the ground truth groupings. We

refer to ground truth groupings as classes and predicted groupings (by any algo-

rithm) as clusters. Consider a class matrix C(i, j) where C(i, j) = 1 if datapoints

i, j are in the same class and C(i, j) = 0 if they are in a different class. Similarly,

consider a cluster matrix P(i, j) where P(i, j) = 1 if i, j are predicted to be in the

same cluster and P(i, j) = 0 if i, j are predicted to be in different clusters. To de-

termine the clustering accuracy of the algorithms on the simulated data, we use the

Jaccard coefficient. We compute the following quantities as described by Tan et al

[139].

• f00: the number of pairs of data points i, j for which both C(i, j) = 0 and

P(i, j) = 0

• f01: the number of pairs of data points i, j for which C(i, j) = 0 and P(i, j) =
1

• f10: the number of pairs of data points i, j for which C(i, j) = 1 and P(i, j) =
0

• f11: the number of pairs of data points i, j for which C(i, j) = 1 and P(i, j) =
1
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The Jaccard coefficient is defined as:

J =
f11

f01 + f10 + f11
(5.18)

where 0≤ J≤ 1 and J = 1 indicates a perfect agreement of the clusters with classes.

5.4 Results

5.4.1 HMM-Mix discovers clinically relevant subgroups in FL data

We applied HMM-Mix to the FL cohort of 106 patients [7]. We initialized the

model using WKM with 100 multiple restarts and we determined G = 6, the num-

ber of a priori groups using the maximum Silhouette coefficient over G = (2, ...,8).
Figure 5.3 shows the WKM initializations and HMM-Mix converged clusters for

the FL data. Figure 5.3(a) shows the initial Z1:P
1:T matrix where rows are patients and

columns are probes. The rows are ordered according to their WKM cluster assign-

ments. The green, red and black probes are predicted losses, gains and neutrals

respectively. Figure 5.3C (bottom) shows the converged estimates of HMM-Mix

where the rows have been ordered according to the HMM-Mix cluster assignments,

and the data displayed are the re-estimated calls in the presence of the profiles. Fig-

ure 5.3(b) (top) shows the profiles of each group and it is clear that the re-estimated

calls are heavily influenced by their corresponding profiles.

The results are characterized by the following groups (1): +7 (meaning gain of

chromosome 7) (7 patients); (2): a ’null’ group with no recurrent alterations (67 pa-

tients); (3): a group with +18 (19 patients); (4): a group with +1q and a small loss at

1p36 (7 patients); (5): a singleton outlier (1 patient); and (6): +6p/6q- (5 patients).

Notably +1p, +6p/6q-,7+, and 18+ are known genetic pathways for acquired al-

terations in FL reported in Hoglund et al, detected using G-banded karyotyping

[102]. Importantly, groups 1 and 6 had significantly reduced time to transforma-

tion (TTT), shown in Figure 5.4 (black and yellow Kaplan Meier curves respec-

tively) by log-rank test (p<0.01), suggesting clinicopathologic significance of +7

and +6p/6q- as potential prognostic indicators for FL. Furthermore, we note that

the clusters produced by HMM-Mix on the entire data set mirror those reported in

131



(a) FL WKM initializations

(b) FL HMM-Mix

Figure 5.3: Clustering of FL data showing the initial calls and WKM clusters (top)
and the converged estimates of the calls, clusters and profiles by HMM-Mix
(bottom). (a) The calls and clusters depicted as a heat map for WKM with
G=6. The rows of the data indicate the patients and the columns indicate the
probes. Red indicates gain, green loss and black neutral. The rows are ordered
according to their assigned groups as predicted by WKM. (b) The posterior
probability of the calls (where blue represents p(Zp

t = neutral)), the clusters
and the profiles (top) for the G=6 groups. In comparison to (a) the clusters are
readily apparent from the data, they appear to be tighter and the re-estimated
calls are clearly influenced by the profiles, resulting in far less noisy, and far
more interpretable output. Importantly, 4 of the 6 groups (labeled on right)
recapitulate the previously reported subtypes for FL. Group numbers that cor-
respond to the time to transformation curves (Figure 5.4) are annotated on the
right of (b). Groups 1 and 6 both had statistically significantly shorter time to
transformation.
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Figure 5.4: Time to transformation Kaplan-Meier curves for each group of
patients as predicted by HMM-Mix for the FL cohort. Groups 1 and 6
(black and yellow) had significantly reduced time to transformation by
log-rank test with 5 degrees of freedom. (The green curve corresponds
to the singleton group shown in Figure 5.3). These correspond respec-
tively to the groups characterized by 7+ and 6p-/6q+ (see Figure 5.3)
and suggests that these recurrent CNAs confer inferior prognoses to the
patients in these groups.
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Cheung et al [7] where WKM was used in a supervised setting, where the Z1:P
1:T ma-

trix was determined by manually curating computational predictions of CNAs and

feature selection was performed by only including probes that exhibited a recur-

rent CNA in at least 10% of the patients (see Chapter 4 for details). In addition, the

number of groups (5) in Cheung et al was chosen using supporting evidence from

the literature, while in the HMM-Mix analysis, it was determined automatically

from the data by Silhouette. HMM-Mix was therefore able to recapitulate clusters

determined with significant manual interpretation of the data using a purely com-

putational approach, and provide interpretable output to the investigator for further

follow up. Finally, comparison between the WKM clusters and HMM-Mix clusters

(Figure 5.3 (a) and (b)) shows that WKM only placed 2 patients in group 1 whereas

HMM-Mix placed 7. Given that the outcome data (Figure 5.4) suggests that group

1 had prognostic significance, this result shows that despite what could be con-

sidered a ’poor’ initializations, HMM-Mix was still able to identify the clinically

relevant groups.

5.4.2 DLBCL data

Figure 5.5 shows the resultant subgroups from the 92 patients in the DLBCL co-

hort. Comparison of Figure 5.5(a) (initial calls and clusters) and (b) (HMM-Mix

calls and clusters) shows that the algorithm is achieving the desired effect of fo-

cusing on putative driver or highly recurrent within-group alterations and ignoring

non-recurrent passenger alterations, thus separating signal from noise. The data

fell into 5 distinct groups characterized by a ’null’ group with no discernible pat-

tern and four groups characterized by: 1p-/+1q/+2p/+11q/15-, +7, 6q-, and +3/+18.

The last group is a previously unreported pattern of alteration in DLBCL. Previous

work had identified that both changes show increased frequency in the so-called

activated B cell (ABC) subtype of DLBCL [140], but had not recognized that these

two alterations travel together and may indeed define a unique molecular subgroup.

This discovery merits further investigation as to its clinical significance in relation

to survival and response to therapy.
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(a) DLBCL WKM initialization

(b) DLBCL HMM-Mix

Figure 5.5: Clustering of 92 DLBCL profiles into 5 groups. Comparison be-
tween WKM initialization (a) and HMM-Mix (b) clearly shows HMM-
Mix ability to reduce noise and report only highly conserved within-
group patterns. The bottom cluster for HMM-Mix (b) shows a poten-
tially novel subtype with gain of chr 3+/18+.
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Figure 5.6: Distribution of accuracy of WECCA, KM, WKM and HMM-
Mix for synthetic data generated with six different parameter settings.
HMM-Mix was the most accurate for all six settings (see Table 5.2 for
details). Each data set was composed of P = 100 patients with 672
probes each. From left to right there were G = 3,5,10 embedded groups
in the data. The top row had randomly placed aberrations of L = 50 and
the bottom row with L = 75. Distributions of Jaccard coefficient over
10 replicates of the G,L settings are shown as notched box plots where
non-overlapping notches indicate statistical difference of the medians
(red horizontal lines) with 95% confidence.
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5.4.3 HMM-Mix more accurate in simulation study

Figure 5.6 shows the distribution of accuracy of WECCA, KM, WKM and HMM-

Mix resulting from the simulation study. We show the Jaccard coefficient dis-

tributions over the 10 replicates of the G,L data generating parameters described

above in Section 5.3.5. Table 5.2 contains the mean± standard error for each of

the datasets for the four methods. HMM-Mix showed the highest accuracy for all

six settings. For number of groups G = 3 and passenger alteration length L = 50,

HMM-Mix and WKM were more accurate than WECCA at recovering the ground

truth classes and statistically more accurate than KM (one-way ANOVA, p< 0.01).

For G = 3, L = 75 HMM-Mix was more accurate than WKM and statistically

more accurate than both KM and WECCA (p< 0.01). For G = 5, L = 50, similar

results were observed. HMM-Mix was more accurate than WKM and statistically

more accurate than both KM and WECCA (p< 0.01). For G = 5,L = 75 and

G = 10,L = 50 HMM-Mix was statistically more accurate than all other meth-

ods (p< 0.01). Finally, for G = 10,L = 75 all methods performed poorly, how-

ever HMM-Mix was still more accurate than KM and significantly more accurate

(p< 0.01) than WKM and WECCA.

HMM-Mix was generally robust to the size of the randomly placed passenger

alterations (see for example results for G = 5,L = 50,75 shown in Figure 5.6 B

and D). This suggests that the model is able to maintain its ability to detect group-

specific alterations in the presence of additional noise created by larger passenger

alterations. We also tested the robustness of HMM-Mix to initializations by com-

paring JC of the HMM-Mix predicted clusters when initialized by KM and WKM.

We found that for G = 3,5, L = 50,75, converged results were nearly identical,

despite the fact that WKM was significantly more accurate than KM for all four

data sets. This suggests that in these settings, HMM-Mix is able to overcome a

poor initialization, most likely due to its ability to re-estimate the calls and adapt

the feature selection during inference. We suspect that these characteristics al-

low it to escape from local optima more readily than WKM approach that cannot

re-estimate the calls and requires the feature selection to be fixed at runtime. Inter-

estingly, HMM-Mix was considerably more sensitive to initialization in the G = 10

setting, indicating that in the presence of fewer datapoints per group, initialization
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Table 5.2: Accuracy results for simulation study
Dataset WECCA KM WKM HMM-Mix ANOVA P-val

G=3 L=50 0.959±0.018 0.916±0.027 0.996±0.004 0.996±0.004 4 × 10−3

G=5 L=50 0.692±0.048 0.734±0.034 0.932±0.018 0.976±0.007 6×10−8

G=10 L=50 0.296±0.022 0.375±0.033 0.317±0.031 0.580±0.065 7 ×10−5

G=3 L=75 0.611±0.030 0.828±0.029 0.923±0.022 0.965±0.009 4 ×10−12

G=5 L=75 0.460±0.019 0.548±0.057 0.730±0.043 0.964±0.011 6 ×10−11

G=10 L=75 0.131±0.010 0.202±0.010 0.138±0.010 0.223±0.032 1 ×10−3

is more important. We parenthetically note that we repeated the simulation ex-

periment with P = 500 datapoints and noted higher accuracy in all settings, most

notably G = 10 (data not shown).

5.5 Discussion and future work
The HMM-Mix model presented in this paper is effectively able to discover sub-

groups and profiles that define those subgroups given a set of aCGH data derived

from a patient cohort. We showed the model’s capability of finding clinically rele-

vant subtypes in an FL cohort and a previously undescribed subtype in the DLBCL

cohort. We demonstrated how the joint inference procedure of inferring copy num-

ber calls, cluster assignments and profiles, coupled with adaptive feature selection

makes HMM-Mix significantly more accurate than partitioning and hierarchical

clustering methods. Future work will entail further exploration of the 7+ and 6p-

/6q+ subgroups detected in the FL cohort for prognostic significance for TTT and

determining clinical relevance of the DLBCL subgroups we reported. Extension

of HMM-Mix to high density SNP arrays (eg Affymetrix 6.0) will be of interest as

patterns of both genotype and copy number can be elucidated. HMM-based mod-

els for SNP arrays introduced in Colella et al [52] and Scharpf et al [141] will be

investigated for extension to the clustering setting using the HMM-Mix framework

introduced here.
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Chapter 6

Conclusion

The goals of this dissertation were to solve three important and challenging prob-

lems in array CGH data analysis, namely the inference of DNA copy number alter-

ations (CNAs) in data derived from a cohort of patients. We developed and applied

model based analytical approaches for the detection of CNAs in a single aCGH

experiment, recurrent CNAs in multiple experiments, and subgroup discovery in

cohorts exhibiting molecular heterogeneity. For each of these tasks, we improved

on standard and/or available methods, producing state-of-the-art solutions. Our so-

lutions combine to form a robust and comprehensive statistical framework based

on principled probabilistic graphical models and machine learning techniques for

processing aCGH data. Working together with clinical and biomedical researchers,

we developed and applied our methods to real-world settings, leading to new in-

sights in 2 types of lymphoma and the first high-resolution description of CNAs in

follicular lymphoma.

6.1 Summary of contributions

6.1.1 Robust HMM for single sample aCGH analysis

We developed a novel continuous emission robust HMM (HMM-R) tailored specif-

ically to aCGH. Using a fully Bayesian representation of hidden copy number

states with implicit biological meaning, we proposed an improved parameter es-
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timation method during inference that leveraged statistical strength present across

chromosomes, leading to significantly more accurate results. In addition, we speci-

fied a model to explicitly model outliers in the data, preventing spurious singleton-

probe CNA predictions. Finally, we developed a heuristic, data-driven method to

set the hyperparameters and initialize our model and demonstrate highly accurate

results on real data with virtually no free parameters for the user to set. This work

forms the backbone of our framework and was leveraged extensively in our other

contributions.

6.1.2 Inferring recurrent CNAs from a set of aCGH data

We extended the HMM for single sample analysis to the problem of detecting re-

current CNAs from a set of aCGH data. We developed a hierarchical HMM (H-

HMM) that explicitly models passenger and driver CNAs as separate generative

processes. This novel idea results in sparse and specific predictions of recurrent

CNAs and produces output that is more favourable to the investigator than baseline

models. In addition, our model borrows statistical strength present in the raw data

across patients resulting in increased sensitivity over baseline models. The output

of our model is a profile that represents the putative important alterations in the

cohort.

6.1.3 Model-based clustering of aCGH data

We used the idea of modelling passengers and drivers and extended its application

to a multi-group setting in model-based approach to cluster patients into subgroups

called HMM-Mix. We proposed a model that simultaneously clusters patients into

subgroups, infers the profiles and re-estimates the CNA calls in the presence of the

profiles. We showed how this inference technique improves on baseline models

that perform these steps as discrete and disjoint steps. Furthermore, we perform

adaptive feature selection in our method capable of modifying feature selection

during inference of the clusters. This allows the model to focus on highly con-

served CNAs in the group-specific profiles yielding more accurate clustering of the

data.
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6.1.4 Genome-wide profiling of follicular lymphoma

We applied HMM-R and HMM-Mix to data derived from a cohort of 106 follicular

lymphoma patients. Our analysis produced the first genome-wide, high resolution

molecular portrait of this disease. We found prognostically significant CNAs, now

under investigation for clinical relevance in more focused studies. Experimental

validation of HMM-R predictions led to confirmation of 8/8 genomic deletions in

the 1p36 region of chromosome 1. 2/2 controls that were predicted as normal also

validated. These results showed that our methods are working well in a clinical

setting. HMM-Mix was able to reproduce known molecular subtypes and 2 clini-

cally relevant subtypes whose patients exhibited reduced time to transformation to

a more aggressive form of lymphoma.

6.2 Future work
Our contributions form a solid foundation we can build upon for more complex and

sophisticated bioinformatics problems. For example, while it has been suggested

that gene expression is often related to copy number [12], the relationship between

the two is complex and not yet fully understood [142]. While numerous matched

datasets of aCGH and gene expression arrays now exist, development of principled

methods for their joint analysis is an open problem. Extending our framework for

application to the problem of jointly analyzing gene expression and copy number

would be a reasonable place to begin.

In addition to copy number alterations which result in modified DNA struc-

ture and sequence of the tumour genome, epigenomic changes due to chromatin

remodelling and altered methylation patterns play a key role in the gene expression

patterns of tumours [143]. As genome wide assays produce data measuring epi-

genetic changes, these data will need to be integrated with copy number and gene

expression data in order to obtain a comprehensive spectrum of the mutational

changes in a tumour. Developing effective analytical solutions to integrating these

data will be necessary in order to derive knowledge of which genes/biochemical

pathways are disrupted in disease.

As previously discussed, SNP genotyping arrays are in widespread use for

studying genetic diseases [144]. As shown by Colella et al [52] and Beroukhim
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et al [72], sophisticated models have been proposed for recurrent CNA detection.

However, to our knowledge, model-based clustering methods have not. Extending

our HMM-Mix framework to SNP arrays is therefore an open problem to pursue.

Next generation sequencing (NGS) technology is providing a sea change in the

field of genomics. NGS has emerged as an effective tool to sequence genomes

at relatively low cost for fairly high coverage. In addition to detecting SNPs, se-

quence mutations, and small insertions and deletions, the nature of the data enables

sequence coverage to be used as proxy for copy number changes [145]. This trans-

lates into nucleotide resolution breakpoint detection and a digital, direct measure

of DNA copy number. Moreover, paired-end technology allows the detection of

copy number balanced changes such as inversions and translocations that are not

detectable using aCGH. We have begun to apply our models on output from this

data with good success. However, the nuances needed to properly tailor the models

for the most effective results are not yet understood. This is another open problem

we are actively working on.

6.3 Concluding thoughts
The fields of computational biology and cancer biology are now intricately linked.

As we try and decipher the important molecular events in the progression of cancer,

principled analytical approaches must be applied to the data to not only detect rel-

evant events, but to generate new hypotheses for follow up. As we showed in the

FL and DLBCL cohorts, new candidate biomarkers with prognostic significance

were revealed, generated via predictions by methods presented in this dissertation.

As these candidates are pursued, additional data requiring rigorous analyses are

produced and the cycle begins anew. It is our hope that our models are continu-

ously applied to new data sets enabling investigators to generate new hypotheses

related to copy number changes in human diseases. Much work remains in deter-

mining a catalogue of “driver” alterations in cancer. We can only hope that the

work presented herein will provide useful tools to accelerate this process.
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