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Abstract 

 

Persistent organic pollutants (POPs) and adipose tissue hypoxia have been shown to 

independently affect adipocyte functions.  The goals of this study were to (1) determine the 

effect of PCB-77, PCB-153, and DDE on the differentiation of human preadipocytes, and (2) 

investigate the cross-talk between PCB-77 and hypoxia in differentiated human adipocytes.  

First, human preadipocytes were exposed to PCB-77, PCB-153, or DDE during the entire 14-day 

differentiation period.  We found no effect of low POP levels on lipid accumulation.  Second, 

differentiated human adipocytes were exposed to a combination of PCB-77 and hypoxia.  We 

demonstrated gene-specific cross-talk between PCB-77 and hypoxia, showing an additive effect 

of PCB-77 on VEGF, MCP-1, and adiponectin, as well as an inhibition of PCB-77-induced 

expression of CYP1A1 by hypoxia. This work has expanded our understanding of the role of 

POPs and hypoxia in differentiated human adipocytes. 
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Chapter 1  

 

Introduction 

 

1.1 General overview 

 

Obesity, or excess adiposity, is a risk factor for serious metabolic problems including type 2 

diabetes (Kahn, Hull, & Utzschneider, 2006), cardiovascular diseases (Van Gaal, Mertens, & De 

Block, 2006), and some types of cancer (van Kruijsdijk, van der Wall, & Visseren, 2009), among 

numerous others.  As the prevalence of obesity continues to rise, increasing attention is being 

directed towards understanding the role of adipose tissue, particularly since adipose tissue is now 

recognized not only as a site for energy storage but also as a dynamic endocrine organ (Poulos, 

Hausman, & Hausman, 2010).  This newly acquired knowledge has expanded our understanding 

of the association between excess fat mass and related metabolic disorders.  More specifically, 

research has shown that high levels of adiposity are often associated with a state of chronic, low-

grade inflammation (Maury & Brichard, 2010).  In fact, inflammation is frequently identified as 

a main factor linking obesity with other metabolic disorders, although the factors leading to the 

inflammatory response itself still remain unclear.  This thesis focuses on two potential factors, 

persistent organic pollutants (POPs) and adipose tissue hypoxia, involved in the inflammatory 

response of human adipocytes. 

The first factor is a group of man-made organic compounds called persistent organic 

pollutants.  POPs contaminate our environment and contribute to adverse health effects in living 

organism.  We are exposed to POPs mainly through the ingestion of food products, at which 

point they bioaccumulate in lipid-rich sites in the body due to their lipophilic properties (Liem, 
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Fürst, & Rappe, 2000; Schafer & Kegley, 2002).  As the largest site for lipid storage in the body, 

adipose tissue consequently acts as the main reservoir for POP storage (Müllerová & Kopecký, 

2007).  Many POPs are known endocrine disruptors but the health risks associated with chronic 

POP exposure are still unclear.  It has been suggested that POPs may act as obesogens, meaning 

that exposure would increase the differentiation of human preadipocytes to form new adipocytes 

(Tang-Péronard, Andersen, Jensen, & Heitmann, 2011).  To date, there are no studies examining 

the effect of POPs on preadipocyte differentiation using a human cell model.  In addition, it is 

unclear how differentiated human adipocytes storing POPs contribute to inflammation in the 

obese state. 

The second factor is adipose tissue hypoxia, a feature more recently identified and suggested 

to characterize obese adipose tissue.  Local hypoxic patches are proposed to develop in adipose 

tissue due to inadequate oxygen diffusion to hypertrophic adipocytes (Trayhurn & Wood, 2004).  

As a response to oxygen deprivation, hypoxic adipocytes are thought to release greater levels of 

inflammatory adipokines.  Rodent studies clearly show reduced partial oxygen pressure in obese 

adipose tissue (Hosogai et al., 2007; Ye et al., 2007), however the existence of adipose tissue 

hypoxia in humans is still controversial (Goossens et al., 2011; Hodson, Humphreys, Karpe, & 

Frayn, 2013; Pasarica et al., 2009).  Nonetheless, in vitro and animal studies support a role for 

hypoxia in inflammation development during obesity (Wood, Stezhka, & Trayhurn, 2011; Ye et 

al., 2007). 

POPs and hypoxia are potentially harmful for the cell and can therefore activate specific 

signaling pathways, thus allowing the cell to respond appropriately.  More precisely, some 

cytotoxic responses to POPs are mediated through the aryl hydrocarbon receptor (AhR) (Denison 

& Nagy, 2003), while hypoxic responses are determined primarily by the hypoxia-inducible 



3 

 

factor-1 alpha (HIF-1α) (Semenza, 2012).  Both AhR and HIF-1α are nuclear transcription 

factors that act by dimerizing with a common sub-unit, the aryl hydrocarbon receptor nuclear 

translocator (Arnt).  As a result of this overlap, we might expect the simultaneous exposure of 

adipocytes to POPs and hypoxia to elicit a different response than the one observed from 

exposure to each factor independently.  To our knowledge, the cross-talk between the AhR and 

HIF-1 pathways in human adipocytes has not yet been established.  Exploring this cross-talk is 

the primary objective of this thesis. 

This thesis is organized as a series of articles.  Following the general introduction, a review 

article accepted for publication in Obesity Reviews is included as the literature review section in 

the first chapter (see Appendix I for letter of acceptance).  The second chapter is a detailed 

description of the methods used to collect and analyse data.  The third chapter is Manuscript 1, 

which explored the effect of POPs (PCB-77, PCB-153, and DDE) on human preadipocyte 

differentiation.  The fourth chapter is Manuscript 2, which investigated the interaction between a 

selected POP, PCB-77, and hypoxia in the inflammatory response of differentiated human 

adipocytes.  Finally, the fifth chapter is a general discussion that highlights the main findings, 

strengths, and limitations of the thesis, as well as areas for future research.   
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1.2 Abbreviations 

 

AhR – Aryl hydrocarbon receptor 

Arnt – Aryl hydrocarbon receptor nuclear translocator 

BMI – Body mass index 

CYP1A1 – Cytochrome P450, family 1, member A1 

DDE – Dichlorodiphenyldichloroethylene  

ELISA – Enzyme-linked immunosorbant assay 

HIF-1 – Hypoxia inducible factor-1 

IL-6 – Inteuleukin-6 

MCP-1 – Monocyte chemotactic protein-1 

PCB-153 – 2, 2’, 4, 4’, 5, 5’-Hexachlorobiphenyl 

PCB-77 – 3, 3’, 4, 4’-Tetrachlorobiphenyl 

POP – Persistent organic pollutant 

qPCR – Quantitative polymerase chain reaction 

RNA – Ribonucleic acid 

RT – Reverse transcription 

TNF-α – Tumor necrosis factor-alpha 

VEGF – Vascular endothelial growth factor 
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1.3 Literature review – Persistent organic pollutants meet adipose tissue hypoxia: Does 

cross-talk contribute to inflammation during obesity? 

 

The following manuscript was accepted for publication in the peer-reviewed journal Obesity 

Reviews and conforms to the submission guidelines of this journal. 
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1.1.1 Abstract 

 

Lipophilic persistent organic pollutants (POPs) accumulate in lipid-rich tissues such as 

human adipose tissue.  This is particularly problematic in individuals with an excessive adipose 

tissue mass, a physiological state that may be additionally characterized by local adipose tissue 

hypoxia.  Hypoxic patches occur when oxygen diffusion is insufficient to reach all the 

hypertrophic adipocytes in the tissue.  POPs and hypoxia independently contribute to the 

development of adipose tissue-specific and systemic inflammation often associated with obesity.  

Inflammation is induced by increased pro-inflammatory mediators such as tumor necrosis factor-

alpha, interleukin-6, and monocyte chemotactic protein-1, as well as reduced adiponectin release, 

an anti-inflammatory and insulin-sensitizing adipokine.  The aryl hydrocarbon receptor (AhR) 

mediates the cellular response to some pollutants, while hypoxia responses occur through the 

oxygen-sensitive transcription factor hypoxia-inducible factor (HIF)-1.  There is some overlap 

between the two cell signaling pathways since both require a common sub-unit called the aryl 

hydrocarbon receptor nuclear translocator (Arnt).  As such, it is unclear how adipocytes respond 

to simultaneous POP and hypoxia exposure.  This brief review explores the independent 

contribution of POPs and adipose tissue hypoxia as factors underlying the inflammatory response 

from adipocytes during obesity.  It also highlights that the combined effect of POPs and hypoxia 

through the AhR and HIF-1 signaling pathways remains to be tested. 
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1.1.2 Obesity and adipose tissue inflammation: The basics, revisited 

 

Obesity has become a leading worldwide health burden by increasing the risk of developing 

related health disorders such as type 2 diabetes (1), cardiovascular disease (2), and some types of 

cancer (3), among others.  Understanding the link between the excess adipose tissue defining 

obesity and the development of metabolic diseases has been increased by our expanding 

knowledge of the dynamic energy storage and endocrine functions of adipose tissue.  Specialized 

cells called adipocytes are responsible for lipid storage and are the major component of adipose 

tissue in terms of weight, while pre-adipocytes, endothelial cells, and macrophages make up the 

remaining fraction (4).  Through the secretion of adipose-specific protein factors called 

adipokines, adipocytes play a major role in the regulation of fuel utilization, glucose metabolism, 

immune function, appetite, and other physiological processes (5).  A recent article by Lehr and 

colleagues has expanded the list of adipokines secreted from human adipocytes to include a total 

of 263 proteins (6). 

A shift towards the secretion of primarily pro-inflammatory adipokines is observed during 

obesity.  In fact, adipokine release is correlated with adipocyte volume, although this association 

is lost for anti-inflammatory adipokines such as adiponectin and IL-1ra after correcting for cell 

surface (7).  Tumor necrosis factor-alpha (TNF-α) is a major contributor to the inflammatory 

process and, in addition to its receptor (soluble tumor necrosis factor receptor-2, sTNFR-2), is 

positively correlated with adipocyte volume (8).  TNF-α exposure induces an up-regulation of 

pro-inflammatory adipokines interleukin-6 (IL-6), TNF-α itself, and monocyte chemotactic 

protein-1 (MCP-1) gene expression in differentiated adipocytes (9).  IL-6 contributes to the 

development of insulin resistance (10), while MCP-1 promotes the localization and accumulation 
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of macrophages in adipose tissue (11).  There is also evidence that a high number of 

macrophages can stimulate the conversion of pre-adipocytes to macrophages (12).  This further 

amplifies adipose tissue inflammation since macrophages are the major producers of pro-

inflammatory cytokines and chemokines from adipose tissue in the obese state (11).   

Inflammation is among a number of factors associated with the growth of adipose tissue 

during obesity (Figure 1).  The normal biological function of inflammation is to act as a 

protective mechanism.  In fact, it has beneficial effects even during obesity that include 

promoting adipose tissue remodeling to support growth, clearing dead cells, increasing energy 

expenditure, and limiting food intake (13).  However, inflammation can become pathological and 

lead to metabolic complications when it persists.  In the case of obesity, the beneficial effects 

may be outweighed by the harmful effects like promoting insulin resistance and endothelial 

dysfunction, which can progress to type 2 diabetes and atherosclerosis, respectively.  The 

underlying factors that trigger chronic inflammatory responses from adipose tissue are still not 

clear, although potential factors have been identified.  The following sections will describe the 

current knowledge surrounding two emerging factors potentially contributing to inflammation 

during obesity: persistent organic pollutants (POPs) and adipose tissue hypoxia.  The final 

section will explore the possibility of POP and hypoxia interactions with emphasis on the 

overlapping cellular signaling pathways.  

1.1.3 Inflammation: the role of POPs 

 

Persistent organic pollutants accumulate in human adipose tissue and are correlated with 

obesity-related health issues 
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Over the past decades, interest in the role of environmental pollutants on human health has 

been growing.  Under the broad umbrella of environmental pollutants, persistent organic 

pollutants (POPs) are organic, man-made compounds derived primarily from industrial activities.  

These synthetic chemicals are or were used as pesticides, plasticizers, flame retardants, and 

surfactants, among others (14).  POPs can be further classified into groups based on chemical 

structure, namely organochlorine (OC) pesticides, polychlorinated biphenyls (PCBs), dioxins, 

polybrominated flame retardants (BFRs), and other compounds (15).  POP mixtures contaminate 

the air, soil, and water; however, humans are exposed to POPs primarily through food sources, 

especially fatty foods of animal origin such as milk, meat, and fish (16, 17).  Since POPs are not 

readily metabolized or excreted, their levels increase with the food chain levels, a process called 

biomagnification (14).  Furthermore, with increasing climate change, POPs that had deposited in 

the Arctic due to cold temperatures are beginning to revolatilize.  In fact, POP levels in Arctic air 

over the past two decades have increased and continue to rise (18), indicating the relevance of 

studies focused on POP toxicity even though a large number have since been banned (14).   

Adipose tissue, the most important lipid-storage site in the body, acts as a reservoir for a 

large fraction of these lipophilic contaminants, a process called bioaccumulation.  Recently, 

Bourez and colleagues have shown that PCB bioaccumulation in adipocytes is determined by 

adipocyte triglyceride content and lipophilicity of the PCB congener (19, 20).  Additionally, as 

mentioned previously POPs are highly resistant to environmental and biological degradation, 

thus they biomagnify in the food chain (21).  Therefore, once stored in the body, POPs remain 

stable for years and can contribute to chronic adverse health effects.  An increasing number of 

epidemiological studies show an association between POP levels and the prevalence of the 

metabolic syndrome (22) and some metabolic disorders such as insulin resistance (23), type 2 
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diabetes (24–31), and cardiovascular diseases (32).  Furthermore, Pelletier and colleagues have 

observed strong positive correlations between plasma organochlorine concentrations and BMI 

and fat mass, indicating that obese individuals have greater organochlorine levels relative to 

plasma lipids than lean individuals (33). These results are supported by Kim et al., who similarly 

demonstrate that the total body burden of POPs relative to fat mass is 2 to 3 times more elevated 

in obese compared to lean individuals (34).  These results are supported by many studies 

showing that individual and combinations of serum POPs are correlated with different measures 

of adiposity including BMI, fat mass, and waist circumference (35–40). 

Most epidemiological studies employ plasma POP levels in their analyses.  This is justified 

since strong positive correlations between plasma organochlorine concentrations and 

subcutaneous abdominal and femoral adipose tissue have been observed (33, 34).  In other 

words, adipose tissue POP levels reflect those measured in the plasma.  POPs have been shown 

to modulate in a positive and negative manner the determinants of adipose tissue growth.  These 

determinants are adipocyte hypertrophy (increase in adipocyte size) and hyperplasia (increase in 

adipocyte number), although hyperplasia is only observed up to 20 years of age in humans (41).  

Indeed, the insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane (p,p'-DDT) has been found 

to increase adipocyte differentiation in a concentration-dependent manner (42), while 

organochlorines PCB-77, PCB-153, and DDE increase human pre-adipocyte proliferation in 

vitro (43).  Furthermore, the biocide tributyltin enhances lipid accumulation and aP2 expression, 

a marker of adipocyte differentiation (44), and low PCB-77 concentrations induce adipocyte 

differentiation in 3T3-L1 adipocytes, as well as body weight gain in mice (45).  In contrast, 2, 3, 

7, 8-tetrachlorodibenzo-p-dioxin (TCDD) exposure has been reported to inhibit adipocyte 

differentiation (46).  Overall, POP toxicity is modulated by adipose tissue (47) and the effect of 
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POPs is likely dependent on the level of exposure, as well as the mechanism leading to toxic 

effects. 

Aryl hydrocarbon receptor responds to POPs by up-regulating xenobiotic-metabolizing 

enzymes and plays a role in inflammation 

POPs are known endocrine disruptors and can interfere with adipocyte endocrine function.  

The cellular mechanisms responsible for the toxic effects of POPs have not yet been fully 

elucidated; however evidence indicates a certain role for the aryl hydrocarbon receptor (AhR).  

AhR is a ligand-activated transcription factor involved in detoxification and immune response 

(48).  Some POPs are known AhR agonists, namely the most potent 2, 3, 7, 8-

tetrachlorodibenzo-p-dioxin (TCDD), which has been assigned a toxic equivalency factor (TEF) 

of 1.  Other congeners acting via the same mechanism are referred to as ‘dioxin-like’ and are 

assigned a TEF relative to that of TCDD based on available in vitro and in vivo studies (49).  

These include dioxin-like co-planar PCBs such as PCB-77 with an assigned TEF of 0.0001, 

meaning its effects are less toxic than those of TCDD (17).  As depicted in Figure 2a, the dioxin 

or dioxin-like compounds first enter the cell and bind to AhR.  This complex then translocates to 

the nucleus and dimerizes with a second sub-unit, the aryl hydrocarbon receptor nuclear 

translocator (Arnt) (50).  The newly formed complex identifies and binds to xenobiotic response 

elements (XRE) and induces the expression of xenobiotic-metabolizing enzymes such as those 

from the cytochrome P (CYP) family (50).  There also exists a non-genomic pathway through 

which ligand-activated AhR can elicit inflammatory responses, reviewed in detail by Matsumura 

(51). 
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There are an increasing number of studies interested in the role of AhR in adipose tissue 

inflammation.  Arsenescu et al. showed that exposure to an AhR antagonist abolished the 

inflammatory effects of the AhR ligand PCB-77 in murine adipocytes.  Furthermore, endothelial 

cells exposed to co-planar PCB congeners 77, 126, and 169 increased inflammatory signaling 

pathway NF-κB DNA binding activity, as well as the expression of an adhesion molecule 

involved in endothelial cell function called vascular cell adhesion molecule 1 (VCAM-1).  This 

could not be observed in AhR-KO mice, showing that the increase in VCAM-1 could be 

dependent on AhR (52).  Studies performed in human multipotent adipose-derived stem cells 

indicate that genes involved in inflammation, immune response, and metabolism were among the 

most affected following treatment with TCDD, co-planar PCB-126, and/or non-coplanar PCB-

153 (53).  The introduction of AhR-antagonist α-naphthoflavone reduced the effects of TCDD 

and PCB-126, both of which are AhR ligands.  In the same study, mice treated with TCDD had 

increased levels of pro-inflammatory adipokines and AhR activated gene expression, which was 

abolished in AhR-KO mice.  Furthermore, TCDD-treated mice had greater macrophage 

infiltration, characteristic of obese adipose tissue (53).  The activation of the AhR pathway in 

adipose tissue in the obese state has not yet been determined in humans in vivo; therefore, it is 

difficult to predict its contribution to inflammation during obesity in humans.  Nonetheless, it 

appears as though POPs act through AhR to stimulate a pro-inflammatory state within adipose 

tissue. 

1.1.4 Inflammation: the link with O2 tension 

 

Adipose tissue hypoxia: a matter of debate 
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As illustrated in Figure 1, adipose tissue expansion requires adipocyte hypertrophy, along 

with a concurrent expansion of vasculature to support the growth process.  Trayhurn and 

colleagues first suggested that, during obesity, the distance that oxygen must diffuse to supply all 

adipose tissue cells with adequate oxygen can reach up to 140-180µm, which exceeds the 

diffusion limit of approximately 100µm (54–56) (Figure 3).  As a result, hypoxic patches are 

created within adipose tissue when its expansion is greater than the ability for vasculature 

development to keep up.  Adipose tissue hypoxia has been observed in obese rodents by indirect 

methods including immunohistochemistry using pimonidazole as an exogenous marker and 

increased local lactate production as an endogenous marker, as well as adipose tissue 

hypoperfusion (55).  A second study in rodents also observed adipose tissue hypoxia using 

indirect hypoxia probes and a group of hypoxia-response genes (57).  Additionally, they 

employed direct measurements of interstitial partial oxygen pressure using an oxygen meter, 

finding a 70% decrease PO2 in adipose tissue of obese mice (57).  In humans, adipose tissue 

oxygen levels were quantified by the insertion of a polarographic Clark electrode in the 

subcutaneous adipose tissue of lean and obese individuals.  Significantly lower oxygen levels 

were observed in the obese group compared to those of the lean group (58).  In contrast, a 

separate study by Goossens and colleagues showed no difference in adipose tissue oxygenation 

in lean and obese individuals using a microdialysis method (59).  In fact, the obese group showed 

adipose tissue hyperoxia, which the authors suggest is due to a lower adipose tissue oxygen 

consumption (59).  Since there is considerable overlap between the pO2 values for lean and obese 

subjects in both studies, the presence of adipose tissue hypoxia in humans is still controversial.   

Moreover, it has been well documented that adipose tissue blood flow (ATBF) is 

compromised during obesity.  McQuaid and colleagues clearly show a reduced basal level of 
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ATBF in obese vs lean men.  Plus, a spike in ATBF is observed after each meal in lean men, 

while there is no response in abdominally obese men (60).  Limited ATBF was proposed to 

contribute to adipose tissue hypoxia by decreasing oxygen supply to the tissue.  Indeed, O2 

delivery to adipose tissue was reduced in obesity.  However the authors suggest that the adipose 

tissue is glycolytic but not hypoxic due to a low consumption of oxygen (61).  It is possible that 

oxygen supply varies during stages of adipose tissue expansion and obesity progression. 

HIF-1 mediates cellular responses to hypoxia by regulating metabolism, angiogenesis, and 

vascular remodeling 

Oxygen is highly important for mammalian cell survival, thus multiple processes exist to 

maintain oxygen homeostasis.  At the cellular level, the hypoxia-inducible factor (HIF)-1 acts as 

the master oxygen sensor and mediates cellular responses to chronic hypoxia (62).  The HIF-1 

transcription factor is activated upon the heterodimerization of two sub-units, O2-sensitive HIF-

1α and constitutively expressed aryl hydrocarbon receptor nuclear translocator (Arnt or HIF-1β), 

also required for AhR activation as previously stated.  Figure 2b shows that under normoxia, 

HIF-1α is hydroxylated by prolyl hydroxylase-domain proteins (PHD) leading to its degradation 

by the proteasome (62, 63).  In this process, oxygen acts as the limiting factor for PHD activity 

(63).  Under low oxygen levels, HIF-1α is not hydroxylated and remains stable, allowing it to 

translocate to the nucleus where it dimerizes with Arnt and binds to hypoxia-response elements 

(HRE) to promote transcription.  HIF-1 is involved in gene expression of over 60 known genes 

with functions ranging from glucose metabolism, angiogenesis, and cell death (63, 64). 

HIF-1α mRNA can be detected in human subcutaneous adipose tissue (scAT) and its levels 

are increased in obese vs lean women (65).  Moreover, surgery-induced weight loss leads to 
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decreased HIF-1α expression in the scAT of the same women.  Interestingly, gene expression 

analyses show that the HIF-1α over-expression occurs in macrophages but not isolated 

adipocytes (65).  Plus, a separate study found no difference in HIF-1α mRNA between obese and 

lean individuals (66).  It seems as though HIF-1α protein and not mRNA may be a more 

appropriate indicator of hypoxia (67).  Even so, there is evidence that other obesity-related 

factors beside hypoxia can stabilize the HIF-1α protein such as adipogenesis and insulin (68).  

Nonetheless, HIF-1α expression is also positively correlated with BMI in adipocyte progenitor 

cells, plus adipocyte progenitor cells show greater proliferation when incubated at 1% O2 

compared to normoxia (20% O2) (69).  As pointed out by the authors Maumus and colleagues, 

the microenvironment surrounding the progenitor cells has a great impact on their proliferation; 

this includes the secretion of adipokines by surrounding cells as well as adipose tissue hypoxia.   

When faced with a hypoxic microenvironment, classic hypoxic-response genes are activated 

such as those involved in metabolic processes.  For example, glucose uptake is increased due to 

an HIF-1 mediated up-regulation of GLUT-1 receptors (70, 71).  Pyruvate dehydrogenase kinase 

is up-regulated by HIF-1 and serves to shut down the citric acid cycle by deactivating pyruvate 

dehydrogenase, the enzyme responsible for converting pyruvate to acetyl CoA (72, 73).  Thus, a 

switch to anaerobic glycolysis occurs and the main ATP source becomes lactate production via 

lactate dehydrogenase (74).   

Another set of genes activated by hypoxia are those involved in angiogenesis (the formation 

of new blood vessels from pre-existing ones) (75), and vascular remodeling (changes to the 

blood vessel structure) (76).  Vascular endothelial growth factor (VEGF) promotes angiogenesis 

(70) and matrix metalloproteinases (MMPs) are vascular remodeling proteins (77); both are up-

regulated in an attempt to re-structure the vasculature within expanding tissue.  Also, studies in 
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murine adipocytes show an HIF-1-mediated increase in apelin, an adipokine involved in aspects 

of cardiovascular function including angiogenesis, when exposed to 1% O2 or chemical HIF-1 

activators (78).  Overall, hypoxia can have a profound impact on adipose tissue structure and 

function through HIF-1 activation. 

Hypoxia leads to inflammatory responses from adipocytes: in vitro and in vivo evidence 

Hypoxia is a hallmark feature of numerous inflammatory disorders including inflammatory 

bowel disease (79) and rheumatoid arthritis (80).  As mentioned previously, hypoxia may be 

involved in the development of low-grade inflammation during obesity.  In vitro, human 

adipocytes exposed to varying degrees of hypoxia demonstrate a pro-inflammatory state by 

increasing IL-6 secretion, as well as decreasing anti-inflammatory adiponectin (71).  Also, HIF-1 

is known to up-regulate leptin gene expression, a pro-inflammatory adipokine with many other 

functions (81).  Inflammatory responses to hypoxia are not limited to cell culture studies.  

Adipose tissue inflammation and reduced adiponectin levels are observed in mice with obesity-

induced adipose tissue hypoxia (57).  Adipose tissue hypoxia also initiates other responses that 

may indirectly lead to inflammation.  More specifically, hypoxia has been shown to block 

insulin-stimulated glucose uptake, decrease fatty acid uptake, and stimulate lipolysis in murine 

adipocytes and in rodents (82).  Furthermore, hypoxia was found to induce cell death through 

both necrosis and apoptosis in a time-dependent manner (82).  Cell death is increased in obese 

mice and humans, which leads to a pronounced macrophage infiltration.  Macrophages mainly 

surround necrotic adipocytes where they fuse to form giant multinucleated cells that activate 

inflammatory processes and clean up cell debris and lipid droplets (83).  As inflammation itself 

is known to invoke metabolic and vascular changes, the stimulation of inflammation by hypoxia 

creates a cycle that promotes disease progression if the inflammatory signal is not attenuated. 
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Establishing a role for hypoxia and HIF-1 in obesity is a current research challenge.  If there 

are in fact hypoxic patches in adipose tissue, is it enough to activate HIF-1 and consequently lead 

to gene activation?  It seems likely based on the current knowledge, although further 

investigation is required. 

1.1.5 POPs meet hypoxia: ‘Arnt’ as a common factor  

 

Cellular responses are the product of a network of interacting factors 

The microenvironment surrounding a cell is constantly being monitored to ensure appropriate 

cellular responses.  Multiple signals occur at once and activate various signaling pathways within 

the cells.  The resulting responses are often not the result of a single gene or protein, but a 

complex network regulated to elicit proper responses.  Deciphering these networks is crucial in 

understanding normal biological function and disease states (84).  As such, network analysis is 

becoming an increasingly useful tool in molecular biology of diseases. 

Cross-talk exists between AhR and HIF-1α signaling pathways in various in vitro and in 

vivo models 

Previous sections have provided evidence that POPs and adipose tissue hypoxia could 

independently contribute to the inflammatory response of adipocytes during obesity.  There also 

exists an overlap between the xenobiotic and hypoxic cellular signaling pathways.  Both AhR 

and HIF-1α are members of the basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) family of 

transcription factors and require Arnt to form an active complex.  Taking this into account, we 

might expect the simultaneous stress of POPs and local hypoxia in adipose tissue to result in 

different patterns of gene expression than those which would be observed with each stressor 

http://en.wikipedia.org/wiki/Transcription_factors
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acting alone.  Studies using several different cell lines and animal models have concluded that 

cross-talk between AhR and HIF-1 does occur but the results are not always in agreement.  The 

term ‘cross-talk’ is often employed but rarely defined.  Here, cross-talk refers to one pathway’s 

agonist also affecting a separate pathway because both pathways share molecular targets.  Cross-

talk between systems has the potential to increase or decrease the response of a single stressor 

acting on a single pathway (85).  To date, we are unaware of any studies regarding the 

interaction of POPs and hypoxia in inflammation development in adipocytes.  It is unknown if 

AhR ligands affect HIF-1 or if hypoxia affects AhR activation in murine or human adipocytes.  

This section aims to outline the main findings of available studies regarding AhR and HIF-1 

cross-talk.   

It was first hypothesized that cross-talk occurs because AhR and HIF-1α compete for a 

limiting factor, in this case Arnt.  In fact, studies in mouse (Hepa-1), rat (H4IIE), and human 

(HepG2) hepatoma cell lines found that AhR and HIF-1α are not in competition for Arnt, as it 

was present in excess in the nucleus with only a small fraction of the entire pool being used for 

gene expression (86).  Although it is unclear if all Arnt proteins in this pool are in fact available 

for dimerization, the rapid and constant degradation of AhR and HIF-1α proteins following the 

induction of gene expression liberate Arnt for further action. 

Some studies have observed an inhibitory effect of hypoxia on the AhR pathway.  Studies in 

fish cells exposed to hypoxia (1% O2) and an AhR agonist (BaP, PCB-126, or BkF) demonstrate 

an inhibitory effect of hypoxia on AhR signaling, as measured by an AhR reporter gene.  Upon 

over-expressing Arnt, AhR signaling was restored.  There was also a minor effect of AhR 

agonists on HIF-1 signaling, which was not influenced by Arnt over-expression (87).  This 

suggests a unidirectional cross-talk and may be explained by greater affinity between Arnt and 
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HIF-1α (87).  A separate study identified an additive effect of hypoxia and dioxin on Epo mRNA 

expression, later on identifying xenobiotic response elements in addition to hypoxia response 

elements in the Epo promoter region (88).  Also, hypoxia was found to decrease AhR-mediated 

CYP1A1 gene expression, as well as AhR mRNA levels in human pulmonary microvascular 

endothelial cells (89) and human lung carcinoma cells (90). 

In contrast, other studies have found that AhR agonists could interfere with hypoxia 

signaling.  A study in a species of teleost fish found that prior exposure to PCB-77, a known 

AhR agonist, prevented the hypoxia-induced increase in glycolysis equilibrium enzyme activity, 

suggesting that exposure to AhR-activating environmental pollutants can affect the tolerance to 

hypoxia (91).  Contrarily, orange-spotted grouper fish showed increased hypoxic response when 

treated with BaP, an AhR agonist found in cigarette smoke, compared with hypoxia alone, while 

the AhR pathway remained unaffected by hypoxia (92).  Pertaining to mammalian systems, 

Seifert and colleagues showed that combined TCDD and hypoxia exposure reduced HIF-1α 

stabilization (93).  Also, a mice model with induced hindleg ischemia was used to test the 

regulation of angiogenesis in the presence of an AhR agonist.  AhR-null mice showed increased 

HIF-1α levels and HIF-1α-Arnt DNA binding activity leading to a greater angiogenic response 

(VEGF expression) as compared to wild type mice after exposure to BaP (94).  Furthermore, 

mouse hepatoma cells treated with TCDD reduced hypoxia-induced carbonic anhydrase IX (CA 

IX) induction (95).  In all, it is clear that the cross-talk responses between xenobiotic and 

hypoxic exposure are inconsistent between studies. 
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Experimental limitations prevent the application of cross-talk findings to human 

adipocytes  

To date, many cross-talk studies have been conducted using fish models.  However, due 

to fundamental differences existing between fish and mammals (87), the results of these studies 

cannot be extrapolated to human adipocytes.  Even within mammalian cell models, differing 

responses are observed.  A study conducted in human breast carcinoma and human hepatocyte 

cell lines showed differences in AhR responsiveness leading to varied ability of hypoxia to 

interfere with AhR signaling, highlighting the importance of choosing the appropriate cell/animal 

model (93).  AhR: HIF-1α: Arnt ratios may differ between species or cell lines and can impact 

cross-talk (96).  As pointed out in many studies, both the AhR and HIF-1α transcription factors 

share not only a main sub-unit (Arnt) but also many co-activators (87, 88, 94).  Their 

involvement in the cross-talk process is currently undetermined but these co-factors may 

significantly impact gene regulation during POP and hypoxic stress.  Additionally, the regulatory 

regions of AhR- or HIF-1-induced genes has been found to contribute to cross-talk (97, 98).  

Other factors possibly explaining the different results obtained between studies include the level 

or administration technique of hypoxia, the AhR agonist used, and the use of a reporter gene 

versus an endogenous gene (87). 

1.1.6 Implications and Perspective 

In summary, it is clear that many factors contribute to the development of inflammation 

during adipose tissue expansion.  The studies mentioned here point to some form of cross-talk 

between POP- and hypoxia-initiated inflammatory signaling pathways.  However, a large 

diversity of cellular and animal models has been employed and this interaction has yet to be 

tested with human adipocytes.  It is difficult to predict the inflammatory response of adipocytes 
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to a combination of POPs and hypoxia: Will there be an inhibitory effect?  An additive or 

synergistic effect?  Will these interactions be mediated through AhR and HIF-1 pathways?  

Additionally, this brings up many questions regarding human physiology: Are individuals with a 

greater POP burden more or less likely to develop and/or respond to hypoxia within adipose 

tissue?  Can the measure of POP burden and adipose tissue oxygenation predict inflammation 

and other metabolic risks?  Many outstanding questions exist and require further study.  

Understanding these types of interactions can allow us to better predict the response to multiple 

stressors and identify pertinent biomarkers to assess the severity of inflammation within adipose 

tissue in individuals with obesity.  It is noteworthy to mention that responses to POPs and 

hypoxia are normally adaptive and only become pathological if the signals persist for extended 

periods of time, as is the case with an overexpansion of fat mass observed during obesity. 
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1.1.8 Figures 

 

 

 

 

 

 

Figure 1: Overview of the changes that occur during adipose tissue growth 
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Figure 2: Xenobiotic and hypoxic signaling pathways 

A) AhR/Arnt mechanism: AhR ligands such as the dioxin TCDD and the coplanar PCB-77 pass 

through the cell membrane and bind to AhR.  The complex then translocates into the nucleus and 

dimerizes with Arnt.  Binding of the AhR/Arnt complex to xenobiotic-response elements (XRE) 

induces gene expression.   

B) HIF-1α/Arnt mechanism: Under normoxic conditions, prolyl hydroxylases use oxygen to 

hydroxylate HIF-1α, which initiates the ubiquitin-proteasomal pathway and eventually leads to 

HIF-1α degradation.  Under hypoxic conditions, prolyl hydroxylase is unable to hydroxylate 

HIF-1α.  Thus, stable HIF-1α translocates to the nucleus, dimerizes with Arnt and activates gene 

transcription by binding to hypoxia-response elements (HRE). Abbreviations: HIF-1α: hypoxia-

inducible factor 1 alpha; Arnt: aryl hydrocarbon receptor nuclear translocator; AhR: aryl 

hydrocarbon receptor. 
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Figure 3: Oxygen diffusion in adipose tissue 

A) Normal adiposity: Oxygen diffusion gradient (~100µm) is sufficient to supply all cells with 

adequate oxygen.   

B) High adiposity: Oxygen diffusion gradient does not allow the supply of oxygen to all cells, 

creating hypoxic patches within the adipose tissue. 
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1.4 Objectives and hypothesis 

 

This study investigated (1) the role of select POPs on preadipocyte differentiation and        

(2) the interaction between an AhR-activating POP and hypoxia to elicit inflammatory response 

from adipocytes.  Specific objectives and hypotheses for each study are as follows: 

 

Manuscript 1 – Low levels of select persistent organic pollutants do not affect human 

preadipocyte differentiation 

This study’s goal was to determine the effect of selected prevalent POPs on human 

subcutaneous preadipocyte differentiation.  Based on previous studies performed with coplanar 

POPs on murine adipocyte cell lines, we expected that a lower concentration (3.4µM) of PCB-

77, a coplanar PCB acting as an agonist of AhR, PCB-153, a non-coplanar PCB, or DDE, a 

pesticide, would significantly increase the lipid accumulation in differentiated adipocytes 

compared to the control condition, while a higher concentration (34µM) would significantly 

decrease the lipid accumulation.  Furthermore, we anticipated that the addition of an AhR 

antagonist would counteract the effects of the AhR ligand PCB-77 but not PCB-153 or DDE. 

 

Manuscript 2 – PCB-77 and hypoxia cross-talk in differentiated human adipocytes: Role in 

inflammation 

This was the primary study, which aimed to determine the changes in inflammatory 

adipokine gene expression and secretion of differentiated human subcutaneous adipocytes 

exposed to a combination of PCB-77 (3.4µM or 340µM) and hypoxia (2% O2 or 8% O2).  
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Quantification of mRNA (gene expression) and protein (secreted proteins) levels was determined 

for leptin, vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), monocyte 

chemotactic protein-1 (MCP-1), tumor necrosis factors-alpha (TNF-α), and adiponectin.  Gene 

expression was also determined for CYP1A1 and AhR.  We expected to confirm the decrease in 

adiponectin and increase in MCP-1 previously observed during PCB-77-only exposure in murine 

adipocytes.  We also expected to confirm the decrease in adiponectin and increase in leptin, 

VEGF, and IL-6 observed in human adipocytes following hypoxia-only exposure.  Building on 

these results, we anticipated that the combined exposure to PCB-77 and hypoxia would elicit 

additive inflammatory effects.    
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Chapter 2  

 

Methods 

 

2.1 Experimental design 

Study 1: Human preadipocytes were exposed to a concentration of 3.4µM or 34µM of 

PCB-77, PCB-153, or DDE with or without α-naphthoflavone during the entire 14 day 

differentiation period.  Next, the accumulation of lipids was quantified using a triglyceride assay. 

 

Study 2: Differentiated human adipocytes were exposed to a combination of PCB-77 (3 

levels: vehicle, 3.4µM, and 340µM) and hypoxia (3 levels: 21% O2, 8% O2, and 2% O2) for 24 

hrs.  Inflammatory adipokines levels were quantified in the cell culture media for leptin, VEGF, 

IL-6, TNF-α, MCP-1, and adiponectin by ELISA.  Inflammatory gene expression for leptin, 

VEGF, IL-6, TNF-α, MCP-1, and adiponectin was quantified by qPCR conducted on RNA 

isolated from the adipocytes.  The gene expression for CYP1A1 and AhR was also quantified by 

qPCR.  

 

2.2 Human subcutaneous preadipocyte culture 

Obtaining cells and lot composition 

Cryopreserved subcutaneous preadipocytes were purchased from ZenBio Inc. (Research 

Triangle Park, NC, USA).  Upon arrival, cells were immediately stored in liquid nitrogen and 

cell culture media was stored at -20°C.  All experiments were performed using cells from the 
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same lot and following the manufacturers protocol (ZenBio, Inc., 2010).  See section 2.8 Tables 

and Figures, Table 1, for lot characteristics. 

Plating cryopreserved subcutaneous preadipocytes 

According to the ZenBio protocol, preadipocytes were removed from liquid nitrogen and 

thawed in a water bath set at 37°C.  Next, cells were transferred to a sterile centrifuge tube 

containing 10 mL of Preadipocyte Medium (PM-1) and centrifuged at 1,200 rpm (282xg) at 

20°C for 5 minutes.  Upon aspiration of supernatant, the cells were resuspended in PM-1 and 

were added to each well of a 96-well (Study 1) or a 6-well (Study 2) sterile cell culture plate 

(Corning Life Sciences, Corning, NY, USA).  The plates were placed in a sterile, humidified 

incubator at 37°C with 5% CO2 for 24 – 48 hrs until cells reached confluence (Fig. 4a).  Full 

confluence is reached when the entire surface of the well is covered with cells. 

Preadipocyte differentiation – Study 1 

Upon reaching full confluence, the entire medium was aspirated and replaced with 

150µl/well of Adipocyte Differentiation Medium (DM-2) containing DMSO as a vehicle, or 

selected POPs.  For the preparation of the media, see section 2.3 POP treatment preparation 

and hypoxia incubation.  Following a 7-day incubation period, 90µl/well was removed and 

replaced with 120µl/well of Adipocyte Maintenance Medium (AM-1) also containing the 

treatment. 

Preadipocyte differentiation – Study 2  

Upon reaching full confluence, the entire medium was aspirated and 3mL of Adipocyte 

Differentiation Medium (DM-2) was added to each well.  Plates were then incubated at 37°C 
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with 5% CO2 for 7 days.  After 7 days (Fig. 4b), 1.8 mL of DM-2 media was removed and 

replaced with 2.4 mL of Adipocyte Medium (AM-1).  The incubation conditions remained the 

same.  At the end of the 14-day period, an accumulation of large lipid droplets in the cytoplasm 

was observed, indicating that the preadipocytes had differentiated into mature adipocytes 

(Fig.4c). 

2.3 POP treatment preparation and hypoxia incubation 

 

3, 3’, 4, 4’-Tetrachlorobiphenyl (PCB-77), 2, 2’, 4, 4’, 5, 5’-Hexachlorobiphenyl (PCB-

153) and dichlorodiphenyldichloroethylene (DDE) were purchased from Ultra Scientific (North 

Kingstown, Rhode Island, USA).  Stock solutions (0.01M) were made by dissolving PCB-77, 

PCB-153, and DDE in an organic solvent (DMSO, Sigma Aldrich, Oakville, ON, CA) and 

vortexing for a few minutes.  The stock solutions were diluted using cell culture media (DM-2 or 

AM-1) to obtain the desired final concentration of the pollutant (DMSO as a vehicle, 3.4µM, 

34µM, or 340µM).  Similar solutions were prepared with the addition of 20µM α-naphthoflavone 

(Sigma Aldrich, Oakville, ON, CA), an AhR antagonist. 

Study 1 was conducted in a 96-well plate, with each experimental condition performed in 

4 wells.  Fig. 5 shows the plate layout and specific experimental conditions.  POPs were 

maintained in the culture media during the entire 14-day differentiation period.   

Study 2 was conducted in 6-well plates, with each experimental condition performed in 

triplicate.  Fig. 6 shows the plate layout and specific experimental conditions.  Plates exposed to 

21% O2 were placed in a sterile, humidified CO2 incubator at 37°C with 5% CO2 for 24 hrs.  

Plates exposed to 2% O2 and 8% O2 were placed in a specialized hypoxia incubator (HERAcell, 
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Thermo Fisher Scientific, Waltham, MA, USA) at 37°C with 5% CO2 for 24 hrs.  Decreased 

oxygen levels were attained by replacing oxygen with nitrogen in the incubator. 

2.4 Adipogenesis quantification 

 

The Triglyceride Assay Kit (Cat# TG-1-NC, ZenBio Inc., 2010) was used to quantify 

cellular lipid accumulation in Study 1.  First, the media was removed and the cells were washed 

with a Wash Buffer.  Then, the cells were incubated with a Lysis Buffer to allow the release of 

intra-cellular lipids.  The lysates were incubated for 2 hrs at 37°C with a reagent to hydrolyze the 

triglyceride molecules, releasing fatty acids and glycerol.  In this time, glycerol standards 

ranging from 3.125µM to 200µM were prepared.  Finally, the samples and standards were added 

to a 96-well plate with a reagent to generate a color detectible at 540nm.  The glycerol 

concentration for each sample was determined by subtracting the blank reading and using the 

equation for the standard curve.  The standard curve was generated by placing a line of best fit 

through the data points of the standard wells, with the absorbance on the y-axis and glycerol 

concentration on the x-axis. 

2.5 Adipokine quantification by ELISA 

 

Enzyme-linked immunosorbent assays (ELISA) were performed to quantify adipokine 

levels in the culture media.  All kits were obtained commercially (Quantikine ELISA, R&D 

Systems, Minneapolis, MN, USA) and performed following the manufacturer’s protocol.  

Briefly, standards were prepared and samples were diluted with calibrator diluents.  The 

standards and samples were added in duplicate to each well of a 96-well plate pre-coated with 

adipokine-specific antibodies and incubated for 2 hrs.  Following several washes, an enzyme-
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linked adipokine-specific conjugate was added to each well and the plate was incubated for 1-2 

hrs.  The wells were washed again and a substrate solution was added, initiating the development 

of color in proportion to the amount of adipokine initially bound to the antibody in the well.  

Following a 20-30 min incubation period, a stop solution was added to each well.  Finally, the 

absorbance at 450nm was measured to determine the intensity of color in each well.  A measure 

at 540nm was used to correct for optical imperfections in the plate.   

A standard curve was generated by placing a line of best fit through the data points of the 

standard wells, with the absorbance on the y-axis and adipokine concentration on the x-axis.  The 

concentration for each sample was determined by subtracting the blank reading and using the 

equation for the standard curve.  Finally, the concentration values were multiplied by the initial 

dilution factor. 

2.6 RNA extraction and gene quantification by qPCR 

 

RNA extraction 

The cell culture media was removed and stored at -80°C until further analysis.  Following 

the instructions for the RNeasy RNA extraction kit (Qiagen), cell lysis buffer and ethanol was 

added to each well and mixed by pipetting.  The lysate was added to spin columns placed in a 

2mL tubes.  Following centrifugation for 15s at 8000 x g, the flow-through was discarded and 

the RNA bound to the membrane was washed with several buffers supplied in the kit.  Finally, 

the RNA was eluted using 30-50µl of RNase-free water.  A volume of 2µl was used to determine 

RNA yield by measuring the absorbance at 260nm using a BioTek Synergy HT instrument 
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(BioTek Instruments Inc., Winooski, VT, USA).  RNA samples were stored at -80°C until 

needed. 

Reverse transcription 

The reverse transcription reaction allows the synthesis of complimentary DNA (cDNA) 

from RNA thanks to the activity of a reverse transcriptase enzyme.  This was accomplished using 

the QuantiTect Reverse Transcription kit (Qiagen).  Briefly, 1µg RNA from each sample was 

incubated for 2 mins at 42°C with a gDNA Wipeout buffer.  Then, a master mix containing the 

reverse transcriptase enzyme, buffer, and primer mix was added and incubated at 42°C for 

15mins, followed by 95°C for 3 mins to deactivate the reaction.  cDNA samples were stored at -

80°C until further analysis. 

Quantitative polymerase chain reaction (qPCR) 

Quantitative polymerase chain reactions (qPCR) were performed following the protocol 

outlined by the EVOlution 5 x EvaGreen qPCR Mix (Montreal Biotech Inc., Montreal, QB, CA).  

Each reaction, performed in duplicate, consisted of 25ng cDNA template, gene-specific primers 

(QuantiTect Primer Assays, Qiagen), and EvaGreen master mix.  An initial denaturation step of 

95°C for 10 mins activated the polymerase and was followed by 40 cycles of denaturation (95°C 

for 10s), annealing (60°C for 15s), and elongation (72°C for 15s).  EvaGreen is a fluorescent dye 

that is specifically incorporated into double stranded DNA (dsDNA) and can therefore be used as 

a detection probe.   As the template cDNA is amplified during the qPCR run, the proportion of 

fluorescence is directly associated with the amount of EvaGreen that is bound to dsDNA.  
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Data analysis 

Cycle threshold (Ct) values were calculated and normalized to the expression of the β-

actin gene.  The Ct value indicates the number of cycles required for the fluorescence of the 

qPCR to exceed the threshold level, i.e. the background levels of fluorescence.  β-actin is a 

commonly used housekeeping gene whose expression does not fluctuate between experimental 

and control conditions.  The Ct values were obtained by calculating the average of technical 

replicates and then ΔCttreated and ΔCtcontrol were calculated as follows:  

ΔCt treated = Ct (gene of interest_treated) – Ct (normalizer_treated) 

ΔCt control = Ct (gene of interest_control) – Ct (normalizer_control) 

The average of replicate ΔCt (biological replicates) was taken and the ΔΔCt was calculated: 

ΔΔCt = ΔCt treated – ΔCt control 

Finally, the fold change between the control and experimental conditions was determined: 

Fold change = 2 
(-ΔΔCt) 

For example, to compare the gene expression for adiponectin between condition 2 (treated) and 

condition 1 (control): 

ΔΔCt = ΔCt (Adiponectincond2 – β-actincond2) – ΔCt (Adiponectincond1 – β-actincond1) 

 



45 

 

2.7 Statistical analysis 

All data are expressed as a mean with standard error (±).  For Study 1, a two-way 

ANOVA with the non-repeated factors of “POP concentration” (3 levels: DMSO, 3.4µM, and 

34µM) and “AhR antagonist” (2 levels: with and without) was used to analyze the dependent 

variable of lipid accumulation.  For Study 2, a two-way ANOVA with the non-repeated factors 

of  “PCB-77 concentration” (3 levels: DMSO, 3.4µM, and 340µM) and “oxygen tension” (3 

levels: 2%, 8%, and 21%) were used to analyze the dependent variables of (1) leptin, VEGF, IL-

6, TNF-α, MCP-1, and adiponectin protein levels in the cell culture media and (2) leptin, VEGF, 

IL-6, TNF-α, MCP-1, adiponectin, AhR, and CYP1A1 gene expression levels.  In the case of 

significant findings, post-hoc comparisons with Bonferroni corrections were performed using 

independent t-tests.  The significance level was set at p<0.05.  All statistical analyses were 

performed using the statistical software package SPSS 22.0 for Windows (SPSS Inc. Chicago, 

Illinois, USA). 
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2.8 Tables and Figures 

 

Table 1: Lot composition characteristics of cryopreserved preadipocytes  

Lot # L041102 

Number of donor(s) in lot 1 

Gender of donor(s) Male 

Age 31 

BMI 31.52 

Smoker Unknown 

Ethnicity Unknown 

Location Abdomen 

Medication None 
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a)  b)  

c)  d)  

 

 

Figure 4: Photographs of unstained human adipocytes during differentiation  

 

a) Confluent preadipocytes 24 – 48 hrs after plating (20X magnification) 

b) Adipocytes 7 days after inducing differentiation (20X magnification) 

c) Mature adipocytes 14 days after inducing differentiation (20X magnification) 

d) Mature adipocytes 14 days after inducing differentiation (40X magnification)  
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Figure 5: Plate layout and experimental conditions for Study 1 

Preadipocytes were exposed to the specified POP during the 14-day differentiation period, at which point cells were lysed and lipid 

accumulation was assessed.  A 96-well plate was employed and each experimental condition was performed in quadruplicate.  

Abbreviations: α-NF: alpha-naphthoflavone
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Figure 6: Plate layout and experimental conditions for Study 2 

Differentiated adipocytes were exposed to a combination of PCB-77 and hypoxia for 24hrs, as 

indicated.  Six-well plates were employed and each experimental condition was performed in 

triplicate 
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3.1 Abstract 

 

With the prevalence of obesity on the rise, any factor affecting adipose tissue 

development or function is under investigation.  This includes persistent organic pollutants 

(POPs), a group of lipophilic environmental contaminants that bioaccumulate in adipose tissue.  

We aimed to determine the effect of select POPs on human preadipocyte differentiation.  We 

also tried to determine the role of AhR, a ligand-activated transcription factor responsible for the 

effect of some POPs.  As such, we exposed human preadipocytes to 3.4µM or 34µM of PCB-77, 

a coplanar PCB acting as an agonist of AhR, as well as the non-coplanar PCB-153 and the 

pesticide DDE, during the entire 14-day differentiation period.  In order to test the involvement 

of AhR, we employed the antagonist alpha-naphthoflavone.  We found a concentration 

dependent effect of PCB-77 exposure on triglyceride accumulation, where 34µM PCB-77 

inhibited triglyceride accumulation and 3.4µM had no effect.  There was also no effect of PCB-

153 or DDE on triglyceride accumulation. The AhR antagonist alpha-naphthoflavone 

significantly inhibited triglyceride accumulation.  These findings suggest that individual POPs do 

not promote the formation of new adipocytes from existing preadipocytes. 

 

Keywords 

PCB-77; PCB-153; DDE; Human preadipocytes; Adipogenesis; α-naphthoflavone 
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3.2 Introduction 

 

Persistent organic pollutants (POPs) are man-made, carbon-based chemicals that 

primarily originate from industrial activities and consequently contaminate our environment.  

Humans are exposed to POPs through various sources including air, soil, and water.  Food 

however is the primary source of exposure, especially lipid-rich foods of animal origin such as 

milk, meat, and fish [1, 2].  Since most POPs are highly lipophilic and resistant to environmental 

and biological degradation [3, 4], they are stored in human adipose tissue, the largest site for 

lipid storage in the body, where they remain stored for years [5].  This storage of POPs in 

adipose tissue is often considered a protective mechanism since it limits the systemic exposure to 

toxic lipophilic compounds [6].  However, POPs are known endocrine disruptors that have been 

shown to directly affect adipose tissue itself, which could result in adverse health effects.  With 

the rise in the prevalence of obesity and obesity-related co-morbidities, determining the effect of 

POPs on adipose tissue, and in particular on adipogenesis, has become a current research 

challenge.   

Two major events make up the process of adipogenesis, otherwise known as the 

formation of new mature adipocytes.  The first step is determination, where mesenchymal stem 

cells become preadipocytes.  While these two types of cells are morphologically identical, 

preadipocytes are committed to the adipocyte lineage and therefore cannot become any other 

type of cell [7].  Preadipocytes do however retain the ability to replicate/proliferate [8].  The 

second major step in adipogenesis is terminal differentiation, where preadipocytes undergo a 

cascade of events and become terminally-differentiated adipocytes [7].  At this stage, adipocytes 

express adipocyte-specific genes encoding adipogenic proteins that allow the cells to synthesize 

and accumulate lipids.  A variety of factors are required to induce differentiation including 
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several transcription factors and coactivators, along with specific hormonal, nutritional, and 

neuronal signals [8].  It remains to be determined if POPs can stimulate or inhibit human 

preadipocyte differentiation. 

A recent systematic review indicated that exposure to dichlorodiphenyldichloroethylene 

(DDE), a metabolite of the insecticide dichlorodiphenyltrichloroethane (DDT), was almost 

always associated with increased body weight in humans [9].  In addition, separate cell culture 

studies found that DDT itself and the biocide tributyltin increase lipid accumulation and 

adipocyte-specific genes in murine adipocytes [10, 11].  Furthermore, we have previously 

determined that some organochlorines, namely 2, 2’, 4, 4’, 5, 5’-hexachlorobiphenyl (PCB-153) 

and DDE, increase the proliferation of human preadipocytes in culture [12].   

In contrast, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic dioxin, has been 

shown to inhibit murine preadipocyte differentiation, as indicated by a reduction in lipid 

accumulation and adipocyte-specific gene expression [13].  TCDD is also known to cause the 

wasting syndrome, where the individuals exposed show largely reduced body weight, among 

other symptoms [4, 14].  The toxic effects of TCDD exposure are primarily mediated through the 

ligand-activated transcription factor aryl hydrocarbon receptor (AhR).  AhR is the main cellular 

sensor for many exogenous chemicals, including some POPs.  Activated AhR regulates the 

expression of many detoxification genes and its activity has even been shown to inhibit 

adipogenesis [15], yet its role in POP-induced regulation of adipogenesis remains unclear.  

Contrarily, multiple studies have reported that lower doses of AhR-activating chemicals may 

have an obesogenic effect [16].  For instance, a study in murine adipocytes shows that exposure 

to the AhR ligand 3, 3’, 4, 4’-tetrachlorobiphenyl (PCB-77) increases preadipocyte 

differentiation [17].   
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In all, these studies suggest a role for POPs in preadipocyte differentiation that is likely 

dose-dependent and regulated by AhR.  We expect that lower POP levels, which better reflect 

actual physiological levels in human tissues, would promote the differentiation of preadipocytes.  

Building on previous findings, the goal of this study was to determine the concentration-

dependent effect of three persistent organic pollutants, PCB-77, PCB-153, and DDE, on the 

differentiation of human preadipocytes to adipocytes.  We also sought to determine if any effects 

were AhR-mediated by employing a commonly used AhR antagonist, α-naphthoflavone. 

3.3 Materials and Methods 

 

Treatment preparation 

3, 3’, 4, 4’-Tetrachlorobiphenyl (PCB-77), 2, 2’, 4, 4’, 5, 5’-Hexachlorobiphenyl (PCB-

153), and dichlorodiphenyldichloroethylene (DDE) were purchased from Ultra Scientific (North 

Kingstown, Rhode Island, USA).  Stock solutions were prepared by dissolving each POP in the 

organic solvent dimethyl sulfoxide (DMSO).  The PCBs and DDE were diluted with 

Differentiation Medium (DM-2, ZenBio Inc.) or Adipocyte Maintenance Medium (AM-1, 

ZenBio Inc.) to obtain a final concentration of 3.4µM or 34µM.  Similar solutions were prepared 

with the addition of 20µM α-naphthoflavone (α-NF, Sigma Aldrich, Oakville, ON, CA), an AhR 

antagonist. 

Human preadipocyte differentiation and POP exposure 

Human subcutaneous preadipocytes were purchased from Zen-Bio Inc. (Research 

Triangle Park, North Carolina, USA).  Preadipocytes were plated with Preadipocyte Medium 

(PM-1, Zen-Bio Inc.) at a cell density of 40 000 cells/cm
2
 in a 96-well plate (Corning Life 

Sciences, Corning, NY, USA), following the manufacturer’s instructions.  The plates were 
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placed in a sterile, humidified incubator at 37°C with 5% CO2 for 24 – 48 hrs until cells reached 

full confluence.   

To test the effect of POPs on preadipocyte differentiation, the PM-1 was aspirated and 

replaced with DM-2 containing DMSO (control condition, 0.3% v/v) or the pollutants (PCB-77, 

PCB-153, or DDE) at 3.4µM or 34µM.  To determine the role of AhR in POP-induced regulation 

of differentiation, preadipocyte were exposed to 20 µM α-NF for 30 mins before adding the 

POPs, as described in [17].  After 7 days, the media was replaced with Adipocyte Maintenance 

Medium (AM-1) also containing the pollutants with or without α-NF.  As such, the experimental 

treatment was maintained during the 14-day differentiation period.  Each experimental condition 

was performed in quadruplicate. 

Assessment of preadipocyte differentiation by lipid accumulation 

Triglyceride accumulation was quantified using a Triglyceride Assay kit (Cat. # TG-1-

NC, Zen-Bio Inc.).  Briefly, cell culture media was removed and the cells were lysed, thus 

releasing the intracellular lipids (mainly triglycerides).  Next, triglycerides were hydrolyzed, 

yielding 1M glycerol and fatty acids per 1M triglycerides.  Finally, glycerol levels were 

quantified using a spectrophotometer plate reader to assess total triglyceride accumulation. 

Statistical analysis 

All data are expressed as a mean with standard error (±).  A two-way ANOVA with the 

non-repeated factors of “POP concentration” (3 levels: DMSO, 3.4µM, and 34µM) and “AhR 

antagonist” (2 levels: with and without) was used to analyze the dependent variable of lipid 

accumulation.  The significance level was set at p<0.05.  In the case of significant findings, post-

hoc comparisons with Bonferroni corrections were performed using independent t-tests.  All 
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statistical analyses were performed using the statistical software package SPSS 21.0 for 

Windows (SPSS Inc. Chicago, Illinois, USA). 

3.4 Results 

 

We exposed human preadipocytes to two concentrations (3.4µM and 34µM) of PCB-77, 

PCB-153, and DDE with or without α-NF during a 14-day differentiation period.  To assess the 

level of differentiation, we measured triglyceride accumulation for each experimental condition.  

As indicated in Fig. 1a, we found a significant effect of PCB-77 concentration on triglyceride 

accumulation (p<0.0001).  Upon further analysis, we found no difference between 3.4µM PCB-

77 and the control (p=0.327), while triglyceride levels were significantly lower at 34µM PCB-77 

as compared with the control (p<0.001).  In addition, as shown in Fig. 1b-c, we found no 

concentration effect for PCB-153 (p=0.358) and DDE (p=0.139) on triglyceride levels.  Finally, 

for all POPs tested, the conditions ‘with’ α-NF showed significantly lower triglyceride levels 

than those ‘without’ α-NF (p<0.001). 

3.5 Discussion 

 

Over the past decades, there has been a growing interest in the role of environmental 

pollutants on human health.  Persistent organic pollutants are a group of environmental 

contaminants known to bioaccumulate in adipose tissue and show endocrine-disruptive 

properties [3, 6, 18, 19].  Our study aimed to determine the effect of select POPs on human 

preadipocyte differentiation, as measured by triglyceride accumulation.  Our lowest 

concentration (3.4µM) was chosen because it reflects the levels of PCBs found in human serum 

[20] and it allowed us to compare our findings to other studies using similar concentrations [12, 

17, 20, 21].  More specifically, 3.4µM reflects the levels of PCBs found in humans that were 
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exposed to high PCB levels through their work or upon accidental acute exposure/ingestion [22, 

23].  Plasma PCB levels commonly reported in humans vary from 1 to 50 nM according to the 

country and especially the dietary habits of the population [24–27].  Finally, a higher 

concentration (34µM) was chosen to determine the concentration effect.   

We found no change in triglyceride accumulation between preadipocytes exposed to the 

lowest concentration of PCB-77, PCB-153, and DDE, as compared to the control.  Similarly, 

studies in murine preadipocytes showed no increase of differentiation for cells exposed to PCB-

153 and only a modest increase in differentiation for cells exposed to PCB-77 [17].  While 

murine cells are a useful model to predict cellular processes in humans, fundamental differences 

between the two cell lines can lead to different physiological responses.  For instance, the media 

composition and time necessary to induce differentiation is different for murine and human cells 

[28].  Furthermore, there are inter-species differences in CYP-mediated drug metabolism and 

murine cells show a greater metabolic response to toxic compounds even when normalized with 

weight [29].  These differences can explain why we have found no effect of 3.4µM PCB-77 on 

human preadipocyte differentiation while Arsenescu’s study found a small but significant 

increase [17]. 

Unlike PCB-153 and DDE, PCB-77 is a known AhR ligand.  Since AhR activation [30], 

as well as the AhR ligand TCDD [13], inhibit adipogenesis, it is not surprising that an elevated 

concentration of PCB-77 inhibited differentiation in our study.  Based on these results, we 

hypothesize that a concentration greater than 3.4µM is necessary to activate the AhR pathway 

and decrease human preadipocyte differentiation in vitro. 



58 

 

To determine if a compound acts by activating AhR, many studies have used an 

antagonist named α-naphthoflavone (α-NF) that acts by binding to AhR to prevent its activity 

[13, 17, 20, 30–33].  As such, we employed α-NF to test the role of AhR in POP-induced 

changes in preadipocyte differentiation.  Unexpectedly, we observed a decrease in triglyceride 

accumulation with α-NF treatment both alone or with POPs.  Since AhR has been shown to 

inhibit differentiation of murine adipocytes [15], we expected that blocking AhR activity with α-

NF would lead to cellular triglyceride levels comparable to the control condition.  Contrary to 

these expectations, α-NF inhibited triglyceride accumulation, as shown in Fig. 1a-c.  We then 

identified a recent study showing that α-NF independently inhibits murine preadipocyte 

differentiation [34].  Previous studies also found that α-NF can act as both an agonist and 

antagonist to AhR, depending on the concentration [35].  These findings suggest that the use of 

α-NF as an AhR-specific antagonist may not be recommended in every situation.  A better 

approach would be to employ gene silencing techniques to directly knockdown AhR gene 

expression. 

To conclude, our results suggest that exposure to a low dose such as 3.4uM of PCB-77, 

PCB-153, or DDE alone does not promote human preadipocyte differentiation.  However, in this 

study preadipocytes were exposed to individuals POPs, which may have negligible effects in 

comparison to the POP mixtures found in vivo in adipose tissue.  Since little is known about the 

effect of POP combinations, future studies should look at the effect of multiple POP exposures 

on human preadipocyte differentiation.  We also recommend the use of a different AhR 

antagonist in future studies, as α-NF shows other effects besides blocking AhR, such as 

inhibiting preadipocyte differentiation [34].  Nonetheless, determining the role of POPs in 

obesity remains relevant since they are involved in the disruption of other adipocyte functions, 
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such as inducing inflammation, cell death, and insulin-resistance [17, 21, 32].  Moreover, since 

POPs are found ubiquitously in the environment and in human tissues, determining the exact 

impact of POP on human health remains an area of investigation. 
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3.7 Figures  

 

 

 

Figure 7: Fig 1 Triglyceride accumulation in differentiated human adipocytes exposed to 

PCB-77, PCB-153, and DDE 

Human preadipocytes were exposed to two concentrations of coplanar PCB-77 (a), non-coplanar 

PCB-153 (b), and insecticide DDE (c) with and without α-NF for 14 days.  Following the 

incubation period, cells were lysed and triglyceride accumulation was determined by measuring 

glycerol.  Data are expressed as mean ± standard error (n=4), with significance set at *p<0.05 

0 

10 

20 

30 

40 

DMSO DMSO 
+αNF 

3.4µM 3.4µM 
+αNF 

34µM 34µM 
+αNF 

G
ly

ce
ro

l (
µ

M
) 

PCB-77 

* * 

* 

* 

0 
5 

10 
15 
20 
25 
30 
35 

DMSO DMSO 
+αNF 

3.4µM 3.4µM 
+αNF 

34µM 34µM 
+αNF 

G
ly

ce
ro

l (
µ

M
) 

PCB-153 

* * * 

0 
5 

10 
15 
20 
25 
30 
35 

DMSO DMSO 
+αNF 

3.4µM 3.4µM 
+αNF 

34µM 34µM 
+αNF 

G
ly

ce
ro

l (
µ

M
) 

DDE 

* * * 

a 

b 

c 



64 

 

Chapter 4  

 

Results 
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4.1 Abstract 

 

Persistent organic pollutants and adipose tissue hypoxia have been shown to 

independently stimulate inflammatory responses from adipocytes.  Some pro-inflammatory 

responses are mediated by the aryl hydrocarbon receptor (AhR) and the hypoxia-inducible factor 

(HIF)-1 signaling pathways, which show areas of overlap such as the use of a common 

dimerization partner.  The goal of this study was to examine the cross-talk between AhR and 

HIF-1 in the inflammatory response from differentiated human adipocytes.  We found that PCB-

77 had an additive effect on hypoxia at 8% O2, but not 2% O2, for VEGF, MCP-1, and 

adiponectin protein levels.  Furthermore, the PCB-77-induced increase in CYP1A1 gene 

expression was inhibited by hypoxia.  These findings indicate that POP and hypoxia cross-talk in 

human adipocytes occurs in a gene-specific manner. 

Highlights  

 As previously reported, hypoxia increases leptin, VEGF, and IL-6, and decreases MCP-1 

and adiponectin, protein levels in a dose-dependent manner 

 PCB-77 has additive effects on hypoxia-induced changes in VEGF, MCP-1, and 

adiponectin levels in the culture media  

 Hypoxia inhibited PCB-77-induced increases in CYP1A1 gene expression 

 PCB-77 and hypoxia cross-talk in differentiated human adipocytes is limited to certain 

genes 

Keywords 

Inflammatory adipokines; Xenobiotics; Hypoxia; AhR; HIF-1  
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4.2 Introduction 

 

Obesity, or excess adiposity, is often associated with a state of chronic, low-grade 

inflammation.  The contribution of adipose tissue to this inflammatory state has received much 

attention since adipocytes in the obese state increase the secretion of pro-inflammatory factors 

such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and monocyte chemotactic 

protein-1 (MCP-1), while also decreasing the major anti-inflammatory adipokine adiponectin 

(Park et al., 2005).  Higher levels of circulating inflammatory proteins are thought to contribute 

to the pathogenesis of obesity-related metabolic disorders such as insulin resistance and 

endothelial cell dysfunction.  Several factors have been hypothesized to stimulate the 

inflammatory response from adipocytes, including persistent organic pollutants (POPs) and 

adipose tissue hypoxia. 

POPs are environmental contaminants that bioaccumulate in lipid-rich tissues due to their 

lipophilic properties (Müllerová and Kopecký, 2007).  The combination of bioaccumulation and 

resistance to degradation leads to a biomagnification of POPs with the levels of the food chain, 

thus POPs can be detected in the plasma and adipose tissue of most living organisms, including 

humans (Pelletier et al., 2003).  Stored POPs act as endocrine disruptors and have been suggested 

to promote inflammatory responses by activating specific cellular signaling pathways.  In 

particular, the response to some POPs such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 

3, 3’, 4, 4’-tetrachlorobiphenyl (PCB-77) are mediated by the aryl hydrocarbon receptor (AhR) 

(Wilson and Safe, 1998).  These POPs act as exogenous ligands for the cytosolic protein AhR, 

which then translocates to the nucleus to dimerize with a second factor called aryl hydrocarbon 

receptor nuclear translocator (Arnt).  The AhR-Arnt complex promotes gene expression by 



67 

 

binding to genes with xenobiotic response elements (XREs) found in their regulatory region, 

such as CYP1A1, a phase I drug-metabolizing enzyme (Mimura and Fujii-Kuriyama, 2003). 

Adipose tissue hypoxia is another factor possibly involved in adipose tissue 

inflammation.  The concept of adipose tissue hypoxia was first proposed in a review article 

where the authors suggest that as adipocytes become hypertrophic during obesity, the 

development of vasculature is insufficient to provide oxygen to all the hypertrophic cells within 

the tissue, leading to the creation of hypoxic patches (Trayhurn and Wood, 2004).  This has been 

well characterized in obese rodents (Hosogai et al., 2007; Ye et al., 2007).  However, results 

from human studies are contradictory.  One group found reduced oxygen levels in obese adipose 

tissue compared to a lean group (Pasarica et al., 2009), while others found no change (Goossens 

et al., 2011; Hodson et al., 2013).  Nonetheless, differentiated human adipocytes in culture show 

a dose-dependent response to hypoxia (Wood et al., 2011).  The majority of cellular responses to 

hypoxia are regulated by the hypoxia inducible factor (HIF)-1.  Similar to AhR, HIF-1 is a 

transcription factor composed of two subunits, the oxygen-dependent HIF-1α and constitutively 

expressed Arnt.  HIF-1α-Arnt complexes drive hypoxia-induced gene expression by binding to 

hypoxia response elements (HREs) (Semenza, 2001).  In excess of 100 genes are directly 

regulated by HIF-1, including adipocyte-specific leptin and angiogenesis-promoting vascular 

endothelial growth factor (VEGF) (Semenza, 2000). 

AhR and HIF-1α belong to the basic Helix–Loop–Helix/Periodic, AhR nuclear 

translocator, Single-minded (bHLH/PAS) family of proteins, which are responsible for 

monitoring many aspects of the micro-environment including toxic chemicals and oxygen 

decreases (Lindén et al., 2010).  Consequently, AhR and HIF-1α share a common subunit, Arnt.  

Due to the overlapping cellular signaling pathways, we recently proposed that POP and hypoxia 
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cross-talk may promote inflammation in adipocytes (Myre & Imbeault, 2013).  Here, cross-talk 

refers to one pathway’s agonist also affecting a separate pathway due to shared molecular 

targets.  To date, it is unknown if the simultaneous exposure of human adipocytes to an AhR 

ligand and hypoxia will lead to a different response than by activating each pathway 

independently.   

The objectives of this study were to confirm previous findings showing an increase in 

inflammatory marker secretion from differentiated adipocytes exposed to PCB-77 and hypoxia 

independently.  We then aimed to build on these findings to assess the impact of simultaneous 

PCB-77 and hypoxia exposure.  This was the first study to our knowledge looking at this 

interaction in differentiated human adipocytes.  We quantified leptin, VEGF, IL-6, MCP-1, TNF-

α, and adiponectin protein and gene expression levels, as well as CYP1A1 and AhR gene 

expression.  We hypothesized that there would be an additive effect of PCB-77 and hypoxia in 

adipokine protein and gene expression, as well as CYP1A1 and AhR gene expression.   

4.3 Materials and Methods 

 

4.3.1 Human subcutaneous preadipocyte differentiation  

Human subcutaneous preadipocytes obtained commercially (ZenBio Inc., Research 

Triangle Park, NC, USA) were plated in Preadipocyte Medium (PM-1, ZenBio Inc.) at a cell 

density of 40 000 cells/cm
2
 in a 6 well plate (Corning Life Science, Corning, NY, USA).  The 

plates were placed in a sterile, humidified incubator at 37°C with 5% CO2 for 24 – 48 hrs until 

cells reached full confluence.  Next, the PM-1 was aspirated and replaced with Differentiation 

Medium (DM-2, ZenBio Inc.) containing a PPAR-γ agonist to induce differentiation.  After 7 

days in DM-2, a portion of DM-2 was replaced by Adipocyte Maintenance Medium (AM-1, 
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ZenBio Inc.).  At 14 days post-induction, multiple lipids droplets could be observed in the 

cytoplasm, at which point the cells were considered to be mature adipocytes. 

4.3.2 Differentiated adipocyte exposure to PCB-77 and hypoxia 

3, 3’, 4, 4’-Tetrachlorobiphenyl (PCB-77, Ultra Scientific) was dissolved in DMSO to 

make a 0.01M PCB-77 stock solution.  The stock solution was diluted with AM-1 to reach the 

desired final concentrations (3.4µM or 340µM).  Mature adipocytes (14 days post-induction of 

differentiation) were exposed to a combination of PCB-77 (3.4µM or 340µM) and hypoxia (2% 

or 8%).  The low oxygen tensions were achieved using a specialized CO2 incubator (HERAcell, 

Thermo Fisher Scientific) by replacing oxygen with nitrogen.  The control plates contained 

DMSO as a vehicle and were incubated at 21% O2.  In all, the experimental exposure lasted 24 

hrs and each experimental condition was tested in triplicate.   

4.3.3 Adipokine quantification by ELISA 

Cell culture media was removed prior to RNA extraction and stored at -80°C until further 

analysis.  Adipokine concentrations were measured in the recuperated culture media by ELISA 

(R&D Systems, Minneapolis, MN, USA).  The assays were performed in 96-well plates 

following the manufacturer’s protocol.  Assay sensitivities, or minimum detectible doses, were 

as follows: leptin, 7.8 pg/ml; VEGF, 5.0 pg/ml; IL-6, 0.70 pg/ml; MCP-1, 1.7 pg/ml; TNF-α, 1.6 

pg/ml; and adiponectin, 0.246 ng/ml.  Due to low levels of secreted proteins at every oxygen 

level, we believe that 340µM PCB-77 had cytotoxic effects.  Previous in vitro studies have 

employed concentrations no greater than 68µM of PCB-77 (Arsenescu et al., 2008; Chapados et 

al., 2012; Hennig et al., 2002; Majkova et al., 2009; Wang et al., 2010).  As such, the conditions 



70 

 

containing 340µM PCB-77 were excluded from the statistical analyses.  Also, we were unable to 

detect TNF-α for all experimental conditions, probably due to a lack of sensitivity of the kit. 

4.3.4 RNA extraction and quantification by qPCR 

Cell lysis and total RNA extraction was performed with the commercially available 

RNeasy kit (Qiagen), following the manufacturer’s protocol.  Extracted RNA was then reverse 

transcribed to create a cDNA library using the QuantiTect Reverse Transcription kit (Qiagen).   

Quantitative polymerase chain reactions (qPCR) were performed for each gene of interest 

using 25ng of cDNA template and QuantiTect Primer Assays (Qiagen) as gene-specific primers.  

EvaGreen technology was used as a detection probe (Montreal Biotech Inc., Quebec, Canada).  

An initial denaturation step of 95°C for 10mins activated the polymerase and was followed by 40 

cycles of denaturation (95°C for 10s), annealing (60°C for 15s), and elongation (72°C for 15s).  

The Ct values obtained were normalized to the expression of the β-actin gene and the ΔΔCt 

method was used to determine fold change between each experimental condition and the control.
 

4.3.5 Statistical analysis 

All data are expressed as a mean with standard error (±).  A two-way ANOVA with the 

non-repeated factors of “PCB-77 concentration” (2 levels: DMSO and 3.4µM) and “Oxygen 

concentration” (3 levels: 2%, 8%, and 21%) were used to analyze the dependent variables of 

leptin, VEGF, IL-6, MCP-1, and adiponectin protein levels in cell culture media, as well as 

leptin, VEGF, IL-6, MCP-1, CYP1A1, and AhR gene expression levels.  In the case of 

significant findings, post-hoc comparisons with Bonferroni corrections were performed using 

independent t-tests.  The significance level was set at p<0.05.  All statistical analyses were 
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performed using the statistical software package SPSS 21.0 for Windows (SPSS Inc. Chicago, 

Illinois, USA). 

4.4 Results 

 

We found no PCB*Oxygen interaction for leptin protein levels (p=0.955, Fig. 1a) or gene 

expression (p=0.369, Fig. 2a).  We identified a main effect of oxygen level on leptin protein and 

gene expression levels (p<0.0001), showing that leptin levels were increased with hypoxia, as 

expected.  There was no main effect of PCB-77 on either the protein or gene expression for 

leptin. 

A PCB*Oxygen interaction was found for VEGF protein levels (p=0.009, Fig. 1b) and 

gene expression (p=0.003, Fig. 2b).  In the case of the protein levels, the interaction indicated 

that PCB-77 had an additive effect on VEGF levels at 8% O2 but not at 2% or 21% O2.  In 

contrast, the interaction for the gene expression indicated that PCB-77 had an inhibitory effect on 

VEGF expression at 2% O2 but not at 8% or 21% O2. 

As with leptin, there was no PCB*Oxygen interaction for IL-6 protein (p=0.634, Fig. 1c) 

or gene expression (p=0.057, Fig. 2c).  Il-6 protein levels were increased with hypoxia, as shown 

by the main effect of oxygen (p=0.00013), while there no effect of PCB-77 (p=0.761).  

Similarly, IL-6 gene expression was increased with hypoxia (p<0.0001), but not with PCB-77 

(p=0.167). 

Despite missing data, we found a PCB*Oxygen interaction for MCP-1 protein levels 

(p=0.006, Fig. 1d), showing that PCB-77 inhibited MCP-1 production at 8% O2, but not at 2% 

O2.  A main effect of oxygen showed that MCP-1 levels were decreased with hypoxia (p=0.003), 
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whereas no main effect of PCB-77 was identified (p=0.061).  There was no interaction (p=0.573, 

Fig.2d) or main effects for oxygen (p=0.208) or PCB-77 (0.181) at the gene level for MCP-1.   

A PCB*Oxygen interaction for was found for adiponectin protein levels (p=0.001, Fig. 

1e), meaning that the addition of PCB-77 additively decreased protein levels at 8% O2 but not at 

2% O2.  Furthermore, adiponectin levels were independently decreased with oxygen (p=0.0001) 

and PCB-77 (p=0.008). 

We found a significant PCB*Oxygen interaction for CYP1A1 expression (p=0.001, Fig. 

3a).  That is to say that PCB-77 increased CYP1A1 gene expression at 21% O2 with PCB-77 

compared to the DMSO control, however this increase was attenuated with hypoxia at both 8% 

and 2% O2.  Consequently, main effects for oxygen (p=0.002) and PCB-77 (p=0.003) were 

identified.  Finally, despite the significant changes in CYP1A1, there was no interaction 

(p=0.762) or main effects of hypoxia (p=0.338) or PCB-77 (p=0.826) for AhR gene expression 

(Fig. 3b).  

4.5 Discussion 

 

Without appropriate cellular responses, exposure to toxic environmental contaminants 

and oxygen deprivation could compromise the survival of the cell.  Fortunately, specific 

signaling pathways are activated in response to stressful stimuli.  However, these pathways do 

not exist in isolation and in some cases common factors are required for multiple pathways, 

which can potentially lead to cross-talk or interaction between signaling pathways.  The 

objective of this study was to examine the interaction between PCB-77 and hypoxia in the 

inflammatory response from differentiated human adipocytes. 
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First, we measured leptin and VEGF, two genes known to be directed regulated by    

HIF-1.  Leptin is secreted almost exclusively from adipocytes and its levels reflect the total lipid 

content in the body, i.e. is increased with greater adiposity (Considine et al., 1996; Kim et al., 

2011).  Leptin is a major endocrine factor with diverse physiological functions including the 

regulation of energy homeostasis and appetite, reproduction, angiogenesis, and immune function, 

among others (Frühbeck et al., 2001).  As an HIF-1-inducible gene, it is not surprising that we 

and others have found leptin to be increased with hypoxia (Grosfeld et al., 2002; Kanda et al., 

2006; Wood et al., 2011).  We found no additional effect of PCB-77 on leptin secretion or gene 

expression (Fig. 1a and 2a), suggesting that PCB-77-activated pathways do not interfere with 

leptin expression.   

VEGF plays a major role in angiogenesis, a process of creating new blood vessels from 

existing ones, which promotes the development of vasculature required for adipose tissue growth 

(Sung et al., 2013).  As a classic HIF-1-stimulated gene, VEGF is often employed as an indicator 

of hypoxia response in cross-talk studies.  As previously demonstrated, we show that hypoxia 

increases VEGF protein secretion from differentiated human adipocytes (Kanda et al., 2006; 

Wood et al., 2011).  We found that PCB-77 was able to further increase VEGF protein levels at 

8% (Fig. 1b), which suggests that PCB-77 has an additive effect to hypoxia in the regulation of 

VEGF.  In fact, there may even be a role for AhR in the induction of vasculature development 

(Stevens et al., 2009).  A separate study found an additive induction of the erythropoietin (Epo) 

gene in response to combined AhR-activating TCDD and hypoxia (Chan et al., 1999).  Further 

analysis identified XREs in addition to HREs in the Epo regulatory regions.  We do not expect 

this to be the case for VEGF since PCB-77 exposure under normoxia did not increase VEGF 

protein or gene expression levels; however this remains to be tested.   
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In comparison to the protein levels of VEGF, we found a reduction in gene expression at 

2% O2 with PCB-77 compared to 2% O2 with DMSO (Fig. 2b).  Contrary to the additive effect 

of PCB-77 on VEGF proteins, these results suggest that PCB-77 can inhibit hypoxia signaling 

and lead to a decreased angiogenic response.  Similarly, mice with induced hindleg ischemia 

treated with AhR ligand benzo[a]pyrene (BaP) inhibited the hypoxia-induced upregulation of 

VEGF, which consequently lead to an inhibition of angiogenesis (Ichihara et al., 2007).  The 

differences in VEGF protein and gene expression levels are not completely surprising.  Indeed, 

recent reports indicate that in general, weak association exist between gene transcripts and 

protein levels (Vogel and Marcotte, 2013).  Due to the close relationship between adipogenesis 

and angiogenesis, further studies clarifying the factors that can potentially alter these processes 

are necessary.   

We also measured IL-6, MCP-1, and TNF-α, pro-inflammatory adipocyte-derived 

cytokines that are increased with obesity but are not directly regulated by HIF-1 (Park et al., 

2005).  These proteins are better known as cytokines since they are not only released from 

adipocytes but mainly immune cells.  First, IL-6 strongly stimulates lipolysis and impairs insulin 

signaling (Frühbeck et al., 2001).  IL-6 was increased in a dose-dependent manner with hypoxia, 

as previously reported (Kanda et al., 2006; Wood et al., 2011).  Despite findings showing that 

PCB-77 treatment increases IL-6 secretion from human umbilical vascular endothelial cells 

(HUVEC) (Wang et al., 2010) and hepatocytes (Hennig et al., 2002), we found no additive effect 

of PCB-77 on IL-6 protein or gene expression from differentiated human adipocytes.  However, 

it appears that PCB-77 may have an additive effect on IL-6 gene expression at 8%O2 (Fig. 2c, 

p=0.057), although this was not statistically significant.   
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Next, MCP-1 is a chemotactic protein that is released to attract macrophages to a specific 

area (Kanda et al., 2006).  Although MCP-1 is released by adipocytes, the primary source of 

MCP-1 is the secretion from macrophages and endothelial cells (Kanda et al., 2006).  PCB-77 

has been shown to up-regulate MCP-1 in endothelial cells (Majkova et al., 2009), but we saw no 

main effect of PCB-77 in differentiated adipocytes (Fig. 1d and 2d).  In contrast, we did observe 

a reduction in MCP-1 with hypoxia, as previously reported (Famulla et al., 2012).  Despite 

missing data, we found that MCP-1 protein release is reduced at 8% O2 with PCB-77, whereas 

this additive reduction is absent at 2% O2.  

Another adipocyte-specific adipokine is adiponectin and in comparison to many other 

adipokines its levels are decreased in the obese state.  Due to its anti-inflammatory and insulin-

sensitizing effects, reductions in adiponectin are suggested to contribute to the pathogenesis of 

obesity-related comorbidities, including inflammation, insulin resistance, and atherosclerosis 

(Ukkola and Santaniemi, 2002).  We have confirmed previous findings showing that PCB-77 

exposure leads to a decrease in adiponectin protein secretion by adipocytes (Arsenescu et al., 

2008).  We also show that hypoxia independently reduces adiponectin protein levels in human 

adipocytes, which is supported by several other studies (Grosfeld et al., 2002; Kanda et al., 2006; 

Wood et al., 2011; Ye et al., 2007).  Furthermore, we observed that PCB-77 had an additive 

effect on adiponectin decreases at 8% O2, but not at 2% O2 (Fig. 1e).   

Unlike the previously discussed adipokines known to be regulated by hypoxia, CYP1A1 

is a drug-metabolizing protein upregulated by exogenous chemicals via AhR (Mimura and Fujii-

Kuriyama, 2003).  It acts by biotransforming potentially toxic chemical to increase their water 

solubility and eventually their excretion (Stevens et al., 2009).  Although CYP1A1 is mainly 

expressed in the liver, Ellero and colleagues have described its induction in human white adipose 
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tissue (Ellero et al., 2010).  We quantified the gene expression for CYP1A1 to test the impact of 

hypoxia on a gene directly regulated by AhR.  Hypoxia alone had no effect on CYP1A1, while 

PCB-77 exposure in normoxia increased CYP1A1, as expected.  The combination of hypoxia 

with PCB-77 exposure inhibited the PCB-77-induced increase in CYP1A1 (Fig. 3a).  This is in 

accordance with other studies in mammalian cell lines (Allen et al., 2005; Chan et al., 1999; 

Schults et al., 2010; Zhang and Walker, 2007).  Hypoxia inhibition of CYP1A1 has been found 

to be HIF-1-independent in hepatocytes (Allen et al., 2005), however the direct role of HIF-1 has 

yet to be determined in adipocytes.  It should be mentioned that others have found no effect 

(Pollenz et al., 1999; Seifert et al., 2008) and even additive effects (Frericks et al., 2008) of 

hypoxia on CYP1A1 induction.   

In summary, we have found that the cross-talk between PCB-77 and hypoxia in 

differentiated human adipocytes differs between adipokines.  Lee and colleagues have also 

showed additive and competitive forms of cross-talk between genes regulated by dioxin and 

hypoxia signaling pathways; these include genes with various functions such as coagulation, cell 

proliferation, fatty acid metabolism, and others (Lee et al., 2006).  Mechanisms other than 

competition for Arnt, such as shared co-activators, are likely involved in the cross-talk (Chan et 

al., 1999; Fleming et al., 2009; Ichihara et al., 2007; Nie et al., 2001).  Other experimental factors 

influencing the cross-talk include the choice of AhR ligand and the technique for hypoxia 

induction.  The choice of AhR ligand is crucial since activation time varies widely between 

ligands, their molecular targets differ, and some lead to ligand metabolism whereas others are not 

degraded (Stevens et al., 2009).   

Furthermore, despite numerous cross-talk studies, this is the first study performed in 

differentiated human adipocytes.  Therefore, it is also difficult to compare our results with other 
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studies since results are inconsistent between species and cell-types.  Seifert and colleagues have 

reported differences in AhR responsiveness following hypoxia treatment between cell types 

(Seifert et al., 2008).  Plus, Nie and colleagues suggest that differences in AhR: HIF-1α: Arnt 

ratios between cell lines may alter the outcome of cross-talk (Nie et al., 2001).  However, these 

ratios in human adipocytes are currently unknown.  Further research is needed to determine the 

detailed mechanisms involved in POP and hypoxia cross-talk.   

To conclude, the cross-talk between AhR and HIF-1 may influence the metabolism of 

POPs in individuals with increased adiposity further characterized by adipose tissue hypoxia, as 

indicated by the inhibition of CYP1A1 expression by hypoxia.  Also, a larger POP burden may 

play a role in the angiogenic process necessary for adipose tissue growth.  Our findings also 

suggest that POPs and hypoxia act in an additive manner to regulate adipokines involved in 

inflammation during obesity.  Clearly, a complex and intricate network of signals is involved in 

the inflammatory response of adipocytes in the obese state. 
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4.7 Figures 

 

 

 

Figure 8: Fig. 1 Adipokine protein levels following PCB-77 and hypoxia exposure 

(a) Leptin, (b) VEGF, (c) IL-6, (d) MCP-1, and (e) adiponectin.  Values are mean ± SEM (n=3).  

* Significantly different between DMSO and 3.4µM PCB-77 at a given oxygen level (p<0.05)   
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Figure 9: Fig. 2 Adipokine gene expression levels following PCB-77 and hypoxia exposure 

(a) Leptin, (b) VEGF, (c) IL-6, (d) MCP-1.  Values are mean ± SEM (n=3).  * Significantly 

different between DMSO and 3.4µM PCB-77 at a given oxygen level (p<0.05)   
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Figure 10: Fig. 3 Gene expression levels for CYP1A1 and AhR following PCB-77 and 

hypoxia exposure 

(a) CYP1A1 and (b) AhR.  Values are mean ± SEM (n=3).  * Significantly different between 

DMSO and 3.4µM PCB-77 at a given oxygen level (p<0.05)  
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Chapter 5 

 

General discussion 

 

5.1 Key findings 

The accumulation of POPs in adipose tissue has been linked to measures of obesity 

including BMI, waist circumference, and percent body fat (Elobeid, Padilla, Brock, Ruden, & 

Allison, 2010; Lee et al., 2011; Roos et al., 2012).  This is true for lower levels of POPs that fail 

to elicit obvious acute toxic effects, such as the levels resulting from everyday environmental 

exposure (Arsenescu, Arsenescu, King, Swanson, & Cassis, 2008; Elobeid et al., 2010; Tang-

Péronard, Andersen, Jensen, & Heitmann, 2011).  Furthermore, several in vitro studies have 

demonstrated a role for various POPs in the formation of new adipocytes (Inadera & Shimomura, 

2005; Moreno-Aliaga & Matsumura, 2002; Newbold, 2010; Sargis, Johnson, Choudhury, & 

Brady, 2010).  However, Study 1 was the first to assess preadipocyte differentiation with 

exposure to POPs in human primary cells.   

We found that a low concentration (3.4µM) of PCB-77 elicited no change in triglyceride 

accumulation, while a higher concentration (34µM) inhibited differentiation.  In comparison, 

exposure to PCB-153 and DDE at both concentrations had no effect on preadipocyte 

differentiation.  We know that PCB-77 acts as an AhR ligand, while PCB-153 and DDE do not 

act via this pathway.  We hypothesized that the PCB-77-mediated inhibition was due to AhR, 

which is also known to inhibit preadipocyte differentiation.   
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In addition, we found that the AhR antagonist α-naphthoflavone (α-NF), employed to test 

the role of AhR in POP-mediated effects on differentiation, inhibited differentiation alone or 

with the PCBs or DDE.  As a result of the discovery that it produces AhR-independent effects, 

such as inhibiting differentiation (He et al., 2013), we recommended that it should not be 

employed as an AhR-specific antagonist in future studies.   

In all, these findings suggest that PCB-77, PCB-153, and DDE exposure alone do not 

increase preadipocyte differentiation in human cells.  Nonetheless, although these POPs may not 

be directly involved in the differentiation process of preadipocytes, they have been shown to 

disrupt adipocyte function in other ways, for instance by promoting inflammation, as shown in 

Study 2. 

In a recent review, we proposed that cellular cross-talk between AhR-activating POPs 

and adipose tissue hypoxia may occur in the obese state, leading to greater inflammatory 

responses (Myre & Imbeault, 2013).  Study 2 was the first to determine the inflammatory 

response of differentiated human adipocytes exposed to a combination of the AhR ligand     

PCB-77 and hypoxia.  Following a 24hr treatment period, we measured the protein and gene 

expression levels of key adipokines involved in inflammation, namely leptin, VEGF, IL-6, MCP-

1, TNF-α, and adiponectin.  Furthermore, we measured the gene expression level for CYP1A1 

and AhR, involved in the response to exogenous toxic compounds.  We found that PCB-77 had 

an additive effect on VEGF, MCP-1, and adiponectin protein levels at 8% O2 but not at 2% O2.  

Furthermore, hypoxia inhibited the PCB-77-induced increase in CYP1A1 mRNA.  To our 

knowledge, this is the first study exploring the interaction of multiple factors on human 

adipocyte inflammation.  In all, our findings suggest that the interaction between PCB-77 and 

hypoxia in adipocytes is dependent on the gene or protein and the level of hypoxia. 
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5.2 Strengths 

Our studies were conducted in vitro using human subcutaneous preadipocyte primary cell 

culture.  In vitro techniques have previously been validated as biologically relevant models to 

predict in vivo processes (Bérubé, Prytherch, Job, & Hughes, 2010; Cross & Bayliss, 2000).  The 

primary cells used in our studies are asexual diploid cells that are obtained directly from an 

individual (see Chapter 2, Table 1).  Although there is a possibility of variability between donors, 

it has been found that in general, their response reflects the actual response in the body (Bérubé 

et al., 2010).  Within the field of adipocyte biology, in vitro preadipocyte and adipocyte models 

have been invaluable in studying the processes of adipogenesis, adipokine secretion, lipid 

metabolism, and gene/protein expression, among others (Poulos, Dodson, & Hausman, 2010).  

The specific use of primary human preadipocytes in our studies has the advantage to reflect the 

human in vivo context better than murine (e.g. 3T3-L1, 3T3-F442A) cell lines.  Additionally, 

using an in vitro technique allowed us to control the growth conditions, thus eliminating many 

confounding variables that exist in vivo, for instance differences in POP burdens and genetic 

backgrounds between individuals, among others.  Therefore, we were able to isolate pollutant-

specific and oxygen-specific responses at a cellular level. 

 

5.3 Limitations 

Despite the many advantages associated with the use of primary cell culture, this method 

is subject to certain limitations.  For instance, two-dimensional cell culture does not encompass 

the three dimensional complexity of multi-cellular organisms (Bérubé et al., 2010; Grimm, 

2004).  However, in our studies this can be considered an advantage because it provided a 

controlled setting to study precise cellular responses (Grimm, 2004).  It remains to be determined 
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if adipocytes respond differently when surrounded by other cells types or in a living organism.  

Furthermore, our studies only focused on the responses from adipocytes, yet adipose tissue is 

composed of several other cell types including preadipocytes, endothelial cells, and 

macrophages.  It would be interesting to determine their response to the same experimental 

conditions.  Nonetheless, in our case human primary preadipocyte culture was a cost-effective, 

relevant model to address our research questions.   

Another limitation is the experimental exposure to individual pollutants rather than 

mixtures containing multiple pollutants.  While in reality humans are exposed to a combination 

of pollutants, we wanted to isolate the individual effect of each pollutant in order to determine 

specific mechanism involved in the cellular response.  As such, the results obtained may not 

reflect those observed in vivo, but they are indicative of the individual toxicity and mode of 

action for each pollutant. 

The final limitation discussed here is that our experimental design did not allow for true 

biological replicates.  As discussed by Lazic, this is a common problem in cellular biology 

experiments since oftentimes the cells employed are all obtained from the same person (Lazic, 

2010).  We attempted to overcome this limitation by performing each experimental condition in 

three or four cell culture wells.  However, we realize that this is an inadequate solution because 

each well underwent the same conditions, such as cell culture media, incubator conditions, etc.  

We did however confirm some results found in other studies, which strengthens the validity of 

these findings.  For example, our results confirm the changes in adipokine secretion from human 

adipocytes exposure to various oxygen levels, as determined by Wood et al. (Wood, Stezhka, & 

Trayhurn, 2011).  In the future, researchers should attempt to include biological replicates, i.e., 

samples from multiple subjects, in the experimental design of their cell culture studies. 
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5.4 Future research 

To expand the findings of Study 1, future research should examine the effect of pollutant 

mixtures, since this would better reflect the in vivo POP burden.  Also, while we only assessed 

lipid accumulation as an indicator of differentiation, it would also be of interest to quantify the 

levels of adipocyte-specific genes such as peroxisome proliferator activator receptor gamma 

(PPAR-γ) and CCAAT/enhancer-binding proteins (C/EBPs), which are the main transcription 

factors responsible for differentiation (Rosen & MacDougald, 2006), as well as lipoprotein lipase 

(LPL), adipocyte lipid-binding protein (aP2), and cluster of differentiation (CD36), which are 

involved in lipid metabolism and increased in adipocytes (Arsenescu et al., 2008).   

To build on the results found in Study 2, future research should continue to explore the 

cellular responses to factors promoting inflammation, especially since many aspects of POP-

hypoxia cross-talk remain unclear.  The amount and proportion of AhR, HIF-1α, and Arnt 

proteins in adipocytes should be determined.  Also, a better understanding of the direct role of 

AhR and HIF-1α are necessary.  To isolate the specific role of these transcription factors, we 

suggest the use of silencing RNA (siRNA), a recently developed tool for gene silencing.  This 

technique consists of introducing a short RNA molecule into the cells that selectively targets and 

destroys specific mRNA transcripts.  Furthermore, we should seek to understand how the cells 

comprising the stoma-vascular fraction of adipose tissue respond to POP and hypoxia exposure.  

This is relevant since these cells make up over half of adipose tissue and are highly involved in 

its inflammatory state.   

There are also numerous avenues of research that remain unexplored with regards to the 

impact of POPs, hypoxia, and their interaction on human adipose tissue.  For instance, there is 

likely a role of endoplasmic reticulum stress via markers of the unfolded protein response (UPR) 
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(Attie & Scherer, 2009), a pathway activated in human adipose tissue and positively correlated 

with levels of adiposity (Sharma et al., 2008).  Similarly, there may be a level of impaired 

mitochondrial function resulting from POP and hypoxia exposure, which has been shown to lead 

to a greater production of reactive oxygen species and a decrease in adiponectin secretion in 

adipocytes (de Ferranti & Mozaffarian, 2008).  The effect of POPs and hypoxia on endoplasmic 

reticulum and mitochondrial function has yet to be determined.   

 

5.5 Conclusion 

 

Our work with differentiated human adipocytes has expanded our understanding of the 

role of POPs and hypoxia in adipocyte functions.  More specifically, our results show that human 

preadipocyte differentiation is not affected by low levels of select POPs.  We also report that 

POPs and hypoxia interact to regulate the protein and gene expression levels of some adipokines, 

namely VEGF, MCP-1, and adiponectin, as well as the gene expression for CYP1A1.  While our 

work is a first step in understanding the underlying mechanisms involved in POP and hypoxia 

cross-talk, many unanswered questions remain and should be addressed in future studies.  It is 

also important to remember that these types of responses are adaptive and often only lead to 

adverse health problems following chronic exposure. 
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