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ABSTRACT 

The evolution of prostate cancer from normal epithelium via the preneoplastic lesion of high-

grade prostatic intraepithelial neoplasia to invasive carcinoma is characterised by a number of 

particular genomic abnormalities that are predominantly generated in the preneoplastic phase. 

Whilst there are numerous candidates for the cause of these alterations, telomere dysfunction is 

thought to be a major contributor. Telomeres are the terminal ends of human chromosomes, and 

when dysfunctional can lead to break-fusion-bridge cycles and multi-polar mitoses that generate 

numerical and structural chromosomal instability.  

The results presented reinforce the association of telomere dysfunction with the generation of 

certain markers of genomic instability such as abnormalities of the arms of chromosome 8. 

Furthermore, this work clarifies that the TMPRSSS2-ERG aberrations are not telomere related 

phenomena and are associated with a genomic deletion in a proportion of cases. Similarly, the 

PTEN microdeletions did not appear to have an association with telomere attrition. A previously 

unrecognised association between the telomere length in various types of prostatic epithelia and 
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adjacent stroma is defined, suggesting evidence of a micro-environmental field effect in the 

generation of prostatic neoplasia. Finally, when examined retrospectively, it appears that 

telomere attrition, both in the HPIN epithelium and the stroma has independent prognostic value 

in the diagnosis of prostate cancer after a previous diagnosis of HPIN. 

Taken together, the research presented suggests important avenues for further research to 

determine the nature of barriers to the evolution of prostatic carcinogenesis such as oncogene- 

and telomere-induced senescence that may be exploited for therapeutic gain. These 

understandings may also help tailor management for prostate cancer such as risk stratification 

for men with HPIN and the use of targeted agents such as AKT inhibitors and telomerase 

inhibitors. In more advanced disease, translational application of this work has enabled a clinical 

trial of cytarabine in the treatment of metastatic hormone refractory prostate cancer. 
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1. BACKGROUND 

 

 

 

 

SUMMARY 

Prostate cancer is a heterogeneous neoplasm both with regard to its development, molecular 

abnormalities and clinical course. Here, we summarise novel understandings of the early 

molecular events in prostatic carcinogenesis that may underlie both the molecular and clinical 

heterogeneity. Issues covered include those related to stem cells and embryonic signalling, 

oncogene/tumor suppressor abnormalities, androgen signalling, apoptosis and the nature of 

tumor-stromal interactions. Emphasis is placed on signalling pathway abnormalities, their 

causation, consequences and interactions. For example, genomic abnormalities involving the 

TMPRSS2-ETS and PTEN loci and the resulting signalling effects suggest the importance of 

genomic instability as a crucial factor in the emergence of this neoplasm. Together with new 

insights into signalling pathways consequent to abnormalities such as these, a greater 

understanding of the pathophysiology involved in prostatic carcinogenesis will lead to targeted 

approaches for both therapy and chemoprevention in the future. 

 

 

BASED ON WORK IN; 

Joshua AM, Evans A, Van der Kwast T, Zielenska M, Meeker AK, Chinnaiyan A, Squire JA., 

Prostatic preneoplasia and beyond., Biochim Biophys Acta. 2008 Apr;1785(2):156-81.  
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1.1 Introduction 

Prostate cancer is the most commonly diagnosed malignancy in men in North America, 

with over two hundred thousand cases expected to be diagnosed in 2008 alone (1, 2). It is also a 

heterogeneous neoplasm with regard to its development, molecular abnormalities and clinical 

course. For example, in western populations, 1 in 6 men are diagnosed with prostate cancer 

whilst only 1 in 34 die of metastatic disease (3). Understanding the basis of this clinical 

heterogeneity is of fundamental importance as if detected while still organ-confined, prostate 

cancer can be potentially cured by either a surgical procedure (radical prostatectomy) or 

radiotherapy. However, not all men require curative treatments due to the frequent slow course 

of this disease and competing morbidity and mortality.  Therefore, there is a clear need for 

further research to discover the pathological mechanisms behind prostatic carcinogenesis that 

may lead to improved prognostic and predictive biomarkers that will amy lead to tailored 

treatment for the men who suffer from this disease.  

 

1.2 Histology and Neoplastic pathology of the prostate gland 

The prostate is a walnut-sized glandular structure, whose main function relates to the 

secretion of fluid to provide nutritional support to semen. The prostatic epithelium is made up of 

four major cell types; secretory, basal, transient amplifying (an intermediate between the 

previous two (4) and neuroendocrine cells. The secretory cells line the prostatic glands and 

ducts and are responsible for the physiological secretions of the gland. The basal cells are much 

less abundant and rest on the basement membrane adjacent to the basal aspect of the secretory 

cells. Their absence is a useful marker of prostate cancer. Neuroendocrine cells are scattered 

throughout the gland and are believed to be involved in the regulation of prostatic secretory 
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activity and cell growth. The prostate is supported by a stroma composed of smooth muscle 

cells, fibroblasts, lymphocytes and neurovascular tissue in a supporting extra-cellular matrix.  

There are three anatomical prostatic glandular zones: the peripheral (PZ), the transitional 

(TZ), and the central zone (CZ). Benign prostatic hypertrophy (BPH) occurs almost exclusively 

within the TZ of the prostate, and up to 80% of men aged 70–80 years have histological 

evidence of BPH (5). Most prostate cancers occur in the PZ, at the dorsal and dorso-lateral side 

of the prostate; only <30% of prostate cancers consist of TZ tumors, they have lower 

biochemical recurrence rates and are less malignant than tumors originating in the PZ (6).  

 

1.3 Preneoplastic lesions of the prostate 

Currently, high-grade prostatic intra-epithelial neoplasia (HPIN) is considered most 

likely to represent a forerunner to prostate cancer (CaP) on the basis of pathological (7), 

epidemiological (8, 9) and cytogenic (10) evidence.  

HPIN is characterised by architecturally benign prostatic acini and ducts, lined by 

cytological atypical cells. The cytological changes are characterized by prominent nucleoli in a 

substantial proportion (≥5%) of cells, nuclear enlargement, nuclear crowding, an increased 

density of the cytoplasm, and variation in nucleolar size. HPIN lesions can be subdivided into 

four different architectural patterns; tufted, micropapillary, flat and cribiform (11). Unlike CaP, 

however, HPIN is confined to the gland by intact basement membrane and a well-defined basal 

cell layer.  

Pathologically, HPIN and CaP are correlated; HPIN can be found in up to 70-80% of 

prostate glands that show presence of carcinoma (12). The volume of HPIN in a prostate is 

related to tumor stage and Gleason grade (7) as well as the risk of relapse (13, 14). HPIN is 

multifocal and situated mainly in the PZ of the gland (7, 8, 12, 15). Additionally, there are 
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similarities in their epidemiology; the incidence of HPIN is found to increase with age and to 

precede cancer initiation by at least 5 years.  It is theorised that about 1/3 of cases with HPIN 

will progress to CaP within 10 years(16).  

Analyses of co-existent HPIN and prostate cancer demonstrate similar chromosomal 

abnormalities such as the characteristic loss of chromosome 8p and gain of chromosomes 8q, 7, 

10q and Xq (17, 18). Indeed, recent microarray evidence has suggested that the majority of the 

alterations in expression of genes that occur during disease progression occur in the transition 

from benign epithelium to HPIN rather then from HPIN to prostate cancer (19) (see Figure 1.3). 

An alternative, possibly earlier, precursor of CaP is proliferative inflammatory atrophy 

(PIA). PIA is defined by discrete foci of proliferative glandular epithelium with the 

morphological appearance of simple atrophy (20) or postatrophic hyperplasia (21) occurring in 

association with inflammation. The key features of this lesion are the presence of two distinct 

cell layers, mononuclear and/or polymorphonuclear inflammatory cells in both the epithelial and 

stromal compartments, and stromal atrophy with variable amounts of fibrosis. PIA is proposed 

to be a common proliferative response to environmental damage such as inflammation and 

oxidant stress in aging men.  Subsequently, HGPIN and prostate cancer lesions are thought to 

arise as a consequence of the genome damage (22, 23).  Pathological evidence linking CaP and 

HPIN with PIA are mixed (24-30). Recent expression array profiling suggested that PIA may 

only be a very early precursor, or unrelated, to prostate cancer development (19). However, PIA 

does express molecular signals of early neoplastic transformation such as GSTP1 

hypermethylation (31), increased GSTA1 and COX-2 (32, 33), reduced NKX3.1 expression 

(34), early chromosomal abnormalities (35), elevated Bcl-2  (36) and telomere shortening (37). 

Thus, although both the aetiological and pathological observations suggest the involvement of 

PIA in prostatic carcinogenesis, further study is needed.  
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1.4 Morphological context of carcinogenesis within the prostate 

Originally proposed in the context of oral cancer by Slaughter et al., (38) field 

carcinogenesis describes a concept whereby clinically occult multifocal preneoplastic foci 

emerge within the epithelium of an anatomic region exposed to the same carcinogen(s). These 

lesions may not be apparent at histological examination but molecular techniques for detecting 

carcinogenic alterations such as p53 loss, loss of heterozygosity and microsatellite instability 

have found evidence of such change in a variety of epithelial neoplasms and surrounding 

epithelia (39, 40). Notably, such a concept is often absent in discussion about the nature of 

prostatic carcinogenesis despite the fact that 80% of radical prostatectomy specimens 

demonstrate more than one (average five) neoplastic foci (41, 42) and the occurrence of 

multicentric HPIN in approximately 70% of radical prostatectomies (7). There is strong 

evidence to suggest that prostate cancer is not derived from a single precursor cell; both markers 

of allelic imbalance (43) (44-46)and more recently analyses of TMPRSS2-ETS    fusion genes  

suggest the emergence of independent foci throughout the peripheral zone in multiple 

studies(47, 48). 

As with other neoplasms, these foci of genetic change may extend further from a 

preneoplastic or neoplastic focus than can be appreciated by traditional histology; markers 

associated with neoplastic progression such as AMACR (49, 50), EPCA (51), Akt-1 (52), GST-

Pi, telomerase (53), altered proliferation/ apoptosis (54) and nuclear morphology (53, 55) have 

all been found to be altered in normal epithelium surrounding a neoplastic focus. Indeed, 

expression microarray studies have found 70% similarity in the genetic profile between tumor 

samples and prostatic tissue adjoining the tumors (49). 

Traditionally, field carcinogenesis referred only to the epithelial component of the 

relevant organ, however, there is emerging evidence that prostatic stroma is affected by the 
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prostatic milieu either as a primary or secondary phenomena; For example, hypermethylation of 

GSTPi and RARB2 were found in a subset of histologically normal appearing stroma from 

radical prostatectomy specimens (56).  

The above findings suggests that the PZ of the prostate is likely subject to multiple 

etiological factors leading to the emergence of a field effect of carcinogenesis. The selective 

nature of the carcinogenic insult that leads to effects predominantly in the PZ remain unclear; 

however regional differences in sex steroid metabolism (57), dietary carcinogen and 

inflammation localisation (22) or a differential between proliferative and apoptotic indices have 

been suggested(58). 

 

1.5 Prostate Cancer and Stem Cells 

Traditional stochastic theories of carcinogenesis predicted that every cell within a tumor 

can form a new primary tumor, and this understanding formed the basis for most tumor 

therapies to the present day (59). Recently, more interest has been placed on the stem cell model 

of carcinogenesis that predicts that only a subset of tumor cells have replicative potential that 

are often defined on their ability to repopulate tumor growth in serial transplantation models 

(60). This cancer stem cell hypothesis represents a modern-day interpretation of the proposal 

made by pathologists such as Rudolph Virchow and Julius Cohnheim 150 years ago that cancer 

results from the activation of dormant embryonic-tissue remnants (61, 62). This idea, 

subsequently refined by Till and McCulloch (63), and experimentally verified by Dick and 

colleagues (64), suggests that these self-renewing cancer “stem cells” or cancer initiating cells 

(CICs) are organ-specific cells that have the biologic property of self-renewal and with each 

division to produce both progenitor cells and at least 1 offspring that maintains the stem cell 

phenotype in a regulated manner. 
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Whilst stem cell research is most developed in hematologic malignancies, recent 

identification of putative CICs in various solid malignancies (65-68) has been reported. Several 

lines of evidence suggested the normal prostate stem cell lies within the basal compartment (69), 

and a recent candidates for a murine prostate CIC has recently been identified (70) as a  

Lin(-)Sca-1(+)CD133(+)CD44(+)CD117(+) cell. Ultimately, the characterisation of CICs and 

the nature of their involvement in human prostatic carcinogenesis hold great potential for 

understanding carcinogenesis but much validation remains to be done (recently reviewed in (71-

73)).  

 

1.6 PRO-CARCINOGENIC FACTORS 

1.6.1 Embryonic signalling cascades  

The regulation of stem cells and in particular their dysregulation in prostate cancer is 

thought to occur through a relatively small number of signalling pathways such as Hedgehog 

and Wnt (74). These pathways are all likely to be co-regulated to maintain stem cell homeostasis 

and their dysregulation may be crucial to the emergence of a dedifferentiated phenotype (75-77).  

1.6.1.1 Hedgehog 

The “Hedgehog” proteins are highly hydrophobic secreted proteins that are encoded by 3 

signalling genes Shh (Sonic Hedgehog), Ihh (Indian Hedgehog) and Dhh (Desert Hedgehog). 

Shh binds to the specific receptor Ptc (Patched) on the cell surface. It ultimately activates an 

intracellular signal transduction pathway activating the Gli (GLIoma-associated oncogene 

homolog) family of transcription factors.  This family of transcription factors has multiple 

oncogenic effects; (1) stimulation of proliferation by activation of regulators of G1/S and G2/M 

phase progression: (2) inhibition of apoptosis by direct induction of Bcl-2 expression and (3) 
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enhancement of invasiveness and metastasis by direct activation of epithelial to mesenchymal 

transition (EMT)-promoting factors such as Snail (78, 79).  

The expression of these hedgehog proteins is high in the fetal human prostate and 

decreases to low levels in adult prostate tissue (80) where it is thought to regulate prostatic 

epithelial homeostasis (81, 82) by inhibiting proliferation and promoting terminal differentiation 

of ducts (83). Despite initial studies (84) suggesting a critical role of Hedgehog proteins in the 

development of prostate cancer and metastases, an adequate understanding of the pathway is yet 

to be realised (85). Indeed, only recently has the paracrine requirement for hedgehog signalling 

been clarified in cancer (86). Several studies suggest that high levels of Shh and Gli1 expression 

are found in localised prostate cancer as well as adjacent normal tissue in the same gland, and 

further increases occur in advanced prostate cancer. The mechanisms for these changes is 

unknown although loss of the suppressor protein SuFu has been proposed, especially as it is 

found at 10q24, a region with frequent LOH in prostate cancer (87 , 88). An alternative 

mechanism may involve the recently identified GLI modulator ZIC2 that is overexpressed in 

progressive disease (19).  

1.6.1.2 Wnt 

Similar to the Hedgehog pathway, the Wnt pathway is implicated in directing embryonic 

growth, and governing processes such as cell specificity, proliferation, polarity, response to 

androgen and migration (89). The canonical Wnt pathway is characterised by binding of Wnt 

proteins, through transmembrane receptors (90), to ultimately form a complex with Axin (91). 

Axin acts as a scaffold protein for a complex involving the APC gene and Beta-catenin, 

facilitating phosphorylation of both APC and Beta-catenin (92). Consequently, cytoplasmic 

Beta-catenin is translocated to the nucleus (93), where it associates with the T-cell factor (Tcf) 

and lymphoid enhancer (LEF) family of transcription factors (94). The B-catenin/ Tcf/ LEF 
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complex activates transcription of target genes with relevance to carcinogenesis including those 

that regulate cellular proliferation (C-MYC (95), C-JUN (96), Cyclin D1 (97), cellular migration  

(uPA, CD44, MMP-7) and cellular differentiation (FGF2, PPAR-gamma). 

There are multiple levels of evidence suggesting a role of Wnt signalling in prostatic 

carcinogenesis. For example, expression of a stable Beta-catenin in a mouse model produces 

lesions with similar appearance to HPIN, as early as 10 weeks of age, but these do not progress 

to invasion or metastases in animals up to 5 months (98). Beta-catenin nuclear 

immunohistochemical staining was found in 28 of 122 (23%) radical prostatectomy specimens 

in one study (99) and 25 of 49 (51%) specimens in another (100) with both studies showing an 

increase of 20-30% of immunopositive cases in more advanced metastatic lesions 

1.6.2 Epigenetics 

Epigenetic changes are important in causing changes in gene expression in prostate 

cancer. They occur with advancing age in the prostate (101), early in prostatic carcinogenesis 

(102) and co-ordinately throughout the genome (103) however their cause remains obscure. 

Some evidence suggests that epigenetic regulatory mechanisms are sensitive to external 

influences such as diet and oxidative stress, and therefore may act as interpreters of the effect of 

these environmental stimuli in prostatic carcinogenesis (104-106).  

 

1.6.2.1 DNA Methylation 

Along with most neoplasms a global decrease in genomic hypomethylation is noted in 

prostate cancer (107), which has been associated with the emergence of chromosome instability 

both in mouse (108) and man (109). However, it is the focal hypermethylation of critical genes 

that appears to be more important. Genes commonly found to be methylated in prostate cancer 
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affect diverse cellular processes, many of which have roles in tumor processes such as hormonal 

response (AR, ESR1/2, RARB, RARRES1), cell cycle control (CCND2, CDKN2A), tumor 

invasion/ architecture (APC, CAV1, CD44, CDH1, CDH13, LAMA3, LAMB3, LAMC2), 

repair of DNA damage (GSTP1, MGMT), apoptosis (XAF1, CRBP1, TMS1) and signal 

transduction (DAB2IP, DAPK1, EDNRB, RASSF1) (110). Conversely, other genes are 

demethylated e.g. UPA (111) and heparanase (112) which may have functional importance for 

the invasive phenotype. These methylation changes have been reviewed extensively (113, 114) 

although three genes in particular are worthy of further mention given their importance to early 

carcinogenesis.  

1.6.2.1.1 GST-Pi 

GSTpi is a member of a family of enzymes that play an important role in reducing 

oxidative stress (23) by detoxification and catalyzing the conjugation of many hydrophobic and 

electrophilic compounds with reduced glutathione. It is hypermethylated and silenced in more 

than 90% of prostate cancers, as well as HPIN, PIA, tumor associated stroma and associated 

endothelial cells (56, 115). Interestingly, in other malignancies, this gene is often upregulated 

and thought to contribute to drug resistance (116). Therefore it is perplexing that this enzyme 

and indeed glutatione metabolism in its entirety is downregulated in prostatic carcinogenesis 

(19). 

 

1.6.2.1.2 14-3-3σ (SFN, HME1) 

The expression of 14-3-3σ is decreased in over 90% of HPIN and prostate cancer 

samples (117), often by promoter methylation (118). The importance of this p53 dependent gene 

is twofold; it has a role in mitotic translational machinery (119) and inhibits Akt(120). Thus 

cells with inactive 14-3-3σ, through either defects in p53 or promoter methylation, are likely to 
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have greater phosphorylation of Mdm2 (121), with G1/S and G2/M progression as well as p27 

nuclear export and degradation (122). 

1.6.2.1.3 E-cadherin 

E-cadherin (CDH1) is a critical gene involved in the maintenance of normal tissue 

architecture and cell adhesion and is thought to have a role as a metastases suppressor gene, 

with subsequent repression promoting cell survival in metastases (123). Its reduced expression 

appears to be predominantly due to promoter methylation (124) and has prognostic importance 

in prostate cancer (125 , 126). Additionally, decreased E-cadherin augments androgen receptor 

signalling (127) by releasing B-catenin from intracellular sequestration to augment ligand-

dependent signalling of the androgen receptor. 

1.6.2.2 Histone Acetylation 

There is increased expression of the family of histone deacetylase enzymes in prostate 

cancer (128) and a renewal of interest in the importance of histone modification following the 

discovery of the association between histone deactylase 1 (HDAC1) activity and the occurrence 

of ETS fusion genes (see section 1.6.3.1.1). Strong to moderate HDAC1 overexpression is 

evident in malignant human prostate tissue examined with immunohistochemistry (129). 

HDAC1 target genes include Bax, p21WAF1/CIP1, p27, CK18 (cytokeratin 18) as well as the 

androgen receptor, p53 and maspin (130-135).  

 

1.6.2.3 Histone Methylation 

Histone methyltransferase enzymes are altered in prostate cancer with the most 

prominent example being the EZH2 complex, which is a critical component of a complex that 

methylates lysine 27 on histone H3. Expression of EZH2 decreases with aging (136), is 
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increased by AKT (137), represses the INK4a/ARF complex (138), is involved in stem cell 

differentiation (139) and is regulated by a microRNA (140). It appears to increase the risk of a 

number of adverse clinical outcomes in prostate cancer, and is generally associated with poor 

prognosis or advanced disease (139, 141).  

1.6.3 Chromosomal Instability and Recurrent genomic rearrangements 

Genomic instability is a general term to describe the overall processes that increase the 

rate of mutation, enabling cells to develop new and aggressive phenotypes, and to adapt to 

changing selection pressures.  Mechanisms of instability fall into two broad groups:  

microsatellite or chromosomal (142). Microsatellite instability involves simple DNA base 

changes in short, tandomly repeated nucleotide sequences known as microsatellite regions. Due 

to their repetitive nature, they are a common site of replication errors or defects in the DNA 

repair processes including base excision repair (BER), mismatch repair (MMR) and nucleotide 

excision repair (NER) (143, 144). Chromosomal instability describes the cellular processes that 

increase the rate that whole chromosomes, or large portions of chromosomes are gained, lost or 

rearranged in tumors (145) and is thought to be due to specific acquired defects in cellular 

mechanisms that maintain genomic stability (see Figure 1.1). It can be further subclassified into 

structural and numerical instability. A consequence of chromosomal instability is simultaneous 

growth of diverse tumor subpopulations (146). Indeed, the majority of aberrations during 

tumorigenesis do not persist and are transient (non-clonal).  By definition, a tumour exhibiting 

chromosomal instability should be expected to present intra- and inter-sample genomic 

heterogeneity (146), phenomena that are present in both local and advanced prostate cancer 

(147, 148). 

Analysis of the cytogenetics and genomics of prostate cancer and precursor lesions such 

as PIN have shown that specific chromosomal alterations are recurrent and take place early in 
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the malignant process (18, 149). Previous studies have suggested that several common genomic 

loci are either gained (7q22, 8q21-qter, 16p12-13) or lost in a high proportion of HPIN (6q16, 

8q21-qter, 10q22-23, 13q13-26, 16q22-qter). Recently reviewed by Saramaki and Visakorpi 

(150) a few trends from these analyses are evident; (i) Losses tend to predominate earlier in 

carcinogenesis, suggesting haploinsufficency (consequences secondary to the absence of the full 

gene dosage) as a likely phenomenon that contributes to transformation (110, 151). (ii) The rate 

of evolution of genomic instability is higher in HPIN and proportionally less in more advanced 

stages of prostate cancer. This is consistent with a mechanism of telomere generated 

chromosomal instability (152) although other mechanisms such as centrosome defects (153, 

154), DNA repair defects (155 , 156) and checkpoint defects (157) found in prostate cells  are 

possible (158). (iii) The aberrations found give insight into genetic loci that have functional 

importance in the cancer phenotype. For example, initial comparative genomic hybridisation 

studies (CGH) studies lead to the identification and verification of NKX3.1 (8p21.2), PTEN 

(10q23.3), E-cadherin (16q22.1) and gain of EZHZ2 (7q36.1), and Xq12 (AR) in prostatic 

carcinogenesis.  

Additionally, novel loci identified on the basis of higher resolution technologies are also 

of increasing interest such as losses of MXI1 (10q25.2) (a MYC antagonist), FOXO1A 

(13q14.11) (an inhibitor of AR signalling), ATBF1 (16q22.3) (transactivator of the CDKN1A 

cyclin-dependent kinase inhibitor) and gains of MCM7 (7q21.3) (part of a complex that binds 

DNA origins and prepares them for initiation of replication). 
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Figure 1.1: Genomic instability in prostatic carcinogenesis.  Depicted is a concept of a 
genetic hit that confers an advantage for growth and survival leading to clonal outgrowth 
of cells harboring the mutation.  Accumulation of these random genetic hits in cells over 
time leads to emergence of malignant cells that proliferate to give rise to a tumor.  
Proliferation of cells with aberrant genomic stability mechanisms results in 
genotypically heterogeneous population of cells, acquiring genetic mutations at an 
accelerated rate. Consequently, multiple malignant outgrowths, genotypically distinct 
from each other and from the original progenitor cells may arise.  This hypothesis is in 
keeping with the characteristic multifocal and genetically heterogeneous appearance of 
prostate cancer. 
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1.6.3.1 “Outlier” based classification of Prostate Cancer 

1.6.3.1.1 TMPRSS2-ETS  family translocations 

Undoubtedly, the greatest breakthrough in the understanding of prostatic carcinogenesis 

within the last decade has been the discovery of the role of the ETS family of oncoproteins in 

prostate cancer. These genetic translocations and microdeletions were originally described on 

the basis of novel microarray meta-analysis based on an “outlier profiling” technique and 

confirmed with RACE, RT-PCR and FISH (159 , 160). The findings were subsequently 

confirmed by several groups (161 , 162 , 163). Conceptually, they provide the important link 

between androgen signalling in prostatic carcinogenesis and key pathways of oncogenic over-

expression necessary for malignant transformation.  

The fusion genes are generated when aberrant genetic translocations generate a fusion 

between various partner sequences (most commonly an androgen dependent serine protease 

called TMPRSS2 (21q22.3)) and one of a family of the ETS transcription factors (e.g. ERG 

(21q22.3), ETV1 (7p21.2), ETV4 (17q21.31)) (159 , 164 , 165)). To date, the TMPRSS2-ERG  

fusions appear to account for the majority of occurrences (50-80%), with ETV1 accounting for 

up to 20% (166). The resulting fusion transcript generates multiple mRNA products by both 

alternative splicing and variant breakpoints within a multi-focal tumor, the majority of which are 

thought to lead to translated protein (167). The cause of these translocations is unknown but 

homology between repetitive elements such as Alu repeat sequences has been suggested (168, 

169). 

Currently, the known fusion genes are thought to occur in up to 60-70% of clinically 

localised prostate cancers. The pattern of rearrangement of the most common TMPRSS2- ERG 

gene fusion is rather complex.  Both genes have the same transcriptional orientation, separated 

by 2.9 Mb of genomic sequence, and 5’ TMPRSS2 fuses in-frame with 3’ ERG.   Thus the 
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TMPRSS2-ERG  fusion must either be accompanied by a small hemizygous interstitial deletion 

at 21q22 or undergo a more complex rearrangement to generate a fusion gene.  It has been 

shown that about 50% of TMPRSS2-ERG  fusions undergo concomitant microdeletion (161 , 

170 , 171). The nature of the rearrangement in the remainder is unknown but may involve 

complex or variant translocations (172, 173). More studies have recently clarified the genomic 

abnormalities found with the ETV1 gene (174). Surprising fusion partners were detected in 

prostate tumors with ETV1 outlier expression including untranslated regions from androgen-

induced genes (SLC45A3, ACSL3) (175) an endogenous retroviral element (HERV-

K_22q11.23), a prostate-specific androgen repressed gene (C15orf21) and a strongly expressed 

house-keeping gene (HNRPA2B1).  

It is now becoming clear that ETS fusion gene rearrangements are also present in a 

subset of ~25% (176) of HPIN (hypothesised to be those destined to progress to prostate cancer) 

and occasional LGPIN (177). Interestingly, despite the relative absence of fusions in HPIN, 

expression profiling suggests that ETS targets are over expressed in this lesion (19). This 

suggests that there maybe other genes with overlapping targets/ secondary effects on ETS gene, 

such as C-MYC, or alternatively that as yet undefined feedback control is exerted over these 

targets in HPIN which is overcome once TMPRSS2-ETS  fusions occur.  

Insight into the effect of the TMPRSS2-ETS  fusions can be gleaned from a number of sources. 

In general, the ETS family of proteins are known to be important in several oncogenic pathways 

(178); ERG is known to have roles in histone methylation (179), apoptosis (180) and displays 

transforming abilities (181). Bioinformatic analyses of microarrays suggest that ETS 

overexpressing tumors compared to non-ETS overexpressing tumors have relative over-

expression of WNT, MAPK and FAS signalling pathways as well as the aforementioned histone 

deacetylase 1 (HDAC1) (182). More recent data about the functional effect of ETV1 and ERG 

overexpression in cell lines suggests that they promote the expression of genes relevant to the 
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metastatic phenotype such as the MMP family (166, 183), which lead to increased invasiveness 

in in vitro models (184, 185). In vivo mouse modelling has noted the appearance of HPIN in 

mouse models with ETV1 and ERG overexpression (174). Interestingly, ERG knockdown in 

VCaP cells (a cell line known to contain the translocation) also induces a transcriptional 

program consistent with prostate differentiation (186, 187).  

Intuitively, the existence of a fusion gene would suggest a poor prognosis, but their 

clinical importance was initially unclear as early studies suggested that ERG overexpression was 

a positive prognostic factor for a number of clinical variables such as time to PSA recurrence 

(188). Subsequently, Wang et al., analysed mRNAs from 35 tumors containing the TMPRSS2-

ERG fusion and found 8 types of mRNA fusion transcripts, and multiple fusion mRNAs in 

approximately 50% of them. They found that expression of fusion mRNAs containing the native 

translocation initiation codons in frame with the ERG protein, particularly TMPRSS2 ATG, is 

associated with aggressive disease. Conversely, in those cases without the native translocation 

initiation codon, the fusion transcripts were expressed at generally higher levels, perhaps 

compensating for their lower activity. Thus, when looking at overall expression levels, the 

tumors with higher levels of ERG mRNA may appear to have a better prognosis. As 

retrospective and prospective studies become more mature, this issue will be clarified; current 

reports of the relationship between ETS fusion and prognosis is inconsistent (188-191) although 

larger studies suggest association with a poorer prognosis (192) especially in tumors with a 

duplication of the TMPRESS2-ERG fusion (193). 

Two further ETS family members with tumour suppressive properties have been 

described recently to have a role in the evolution of prostate cancer; PDEF and ESE-3. 

Therefore, it may be that the balance between the ETS family members present is crucial in 

determining the overall effect on the cellular phenotype (186). For example, PDEF is a 

transcription factor that interacts with the androgen receptor, NKX3.1, TGF-B and Wnt 
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pathways and may have a critical role in suppressing epithelial-mesenchymal transition (EMT) 

and cellular proliferation (194, 195, 196 , 197).  

Decreased expression of ESE-3 is found in 80% of prostate cancer and when reexpresed 

in prostatic cell lines it inhibits clonogenic survival and induces apoptotic death by increasing 

the levels of procaspase-3 (198). It has also been suggested to have an effect on epithelial 

differentiation (199). 

1.6.3.1.2 SPINK1 overexpressing prostate cancer 

The discovery of a subgroup of ETS rearrangement-negative prostate cancers has been 

reported recently on the basis of further bioinformatic-based “outlier” analysis. This subset, 

which is believed to compromise 10% of prostate cancer is characterised by the late 

overexpression of the SPINK1 gene (serine protease inhibitor, Kazal type 1, chr 5q32). The 

aetiology of the overexpression is not clear. Nevertheless, preliminary experiments suggest that 

SPINK1 expression is an independent predictor of biochemical recurrence after resection and 

SPINK1 knockdown in a model cell line attenuates invasion, paralleling the role of the ETS 

family of proteins(200).  

1.6.3.2 Telomere Mediated Instability 

Telomeres are the terminal ends and associated nucleoprotein complexes of eukaryotic 

chromosomes which contain up to two thousand repeats of the sequence, TTAGGG (201).  

Their primary role is to ensure chromosomal integrity by preventing recognition of chromosome 

ends as DNA double strand breaks thereby preventing degradation and recombination (202). 

Telomeres have a unique structure whereby the terminal end of the DNA loops back and inserts 

itself into the terminal telomeric repeat sequence, known as the “t-loop” (203) via a short 3’ 

overhang. Telomere shortening and dysfunction may be due to several mechanisms such as 
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oxidative stress (204, 205), stochastic deletion (206) or the “end-replication” problem of 

chromosomal ends (207).  

This latter phenomenon is due to the DNA replication machinery using short RNA 

primers during lagging-strand synthesis.  After their removal, the machinery is unable to fill in 

the gap created at its 5’ end (208, 209) which results in telomere shortening at a rate of around 

50-150bp per cell division (208). This latter phenomena is believed to provide the cell with a 

tumor suppressor mechanism by acting as a “mitotic clock” to limit cellular proliferation likely 

in a p53 dependent manner. However, following malignant alterations, such as p53 loss, cells 

continue to proliferate in the presence of shortening and dysfunctional telomeres (see Figure 

1.3), there is thought to be unravelling of the loop structure and loss of protective cap function.  

Thus the open chromosome ends are “sticky” and facilitate end-to-end fusion (often to the sister 

chromatid), with formation of dicentric chromosomes and anaphase bridges. These anaphase 

bridges facilitate chromosomal instability with fusion and rearrangements through “break-

fusion-bridge cycles” (BFB) (210, 211). Characteristic chromosomal abnormalities found 

include large terminal deletions, double minutes, multipolar mitoses and inverted repeats (212) 

(see Figure 1.2). The BFB cycle has been reported to be responsible for genetic intratumor 

heterogeneity (213, 214) . Support for a model in prostatic carcinogensis similar to Figure 1.3 

comes from previous work in our lab by Al-Maghrabi et al (215) and Vukovic et al, (216) who 

defined the extent of telomere shortening and chromosomal instability in HPIN and the 

subsequent prognosis of  HPIN. 

1.6.3.3 Telomerase Actions 

Whilst rearrangements are likely to lead to cell death due to mitotic catastrophe, 

surviving populations of genomically unstable cells may emerge that eventually stabilise both 

their telomere lengths and the level of instability through re-expression of an ribonucleoprotein 
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enzyme called telomerase (217) that adds telomeric sequence DNA to the chromosomes. These 

additional sequences are thought to reduce, although not abolish, the rate of emergence of 

genomic instability (152) (see Figure 1.3). Intriguingly, a number of ETS transcription factors 

such as ESE-3 have been associated with the induction of cellular senescence from a number of 

stimuli including oxidative stress, oncogene activation and telomere shortening, thus 

provocatively linking alteration in ETS transcription factors to the emergence from senescence 

(218). 

Another model (219) proposes an additional protective function of hTERT (or 

telomerase) at telomeres, independent of its effect on bulk telomere length. Evidence supporting 

this model comes from; the finding that a hypomorphic hTERT did not extend bulk telomere 

length but significantly prolonged human primary cell life span (220, 221).  Second, knockdown 

of hTERC in human cancer cells caused rapid growth inhibition before any detectable bulk 

telomere shortening (222). Third, further knockdown of the low endogenous hTERT in primary 

human fibroblasts attenuated their DNA damage response (223). Fouth, mouse TERT 

overexpression in a transgenic mouse model induced proliferation of hair follicle stem cells 

even in TERC-deleted animals (224).  

Finally, despite the presence of active telomerase, a distinct class of extremely short 

telomeres, “t-stumps” are present in a number in human cancer cell lines with a defect in 

checkpoint pathways. These t-stumps contain arrangements of telomeric repeat variants and a 

minimal run of seven canonical telomeric TTAGGG repeats, but all bind at least one TRF1 or 

TRF2 protein in vitro. Whilst the abundance of these t-stumps can be altered by manipulating 

hTERT levels in cancer cells, the exact mechanisms of this are unclear. Nevertheless, the above 

results suggest that in the setting of active telomerase and compromised checkpoints 

characteristic of human cancer cells, hTERT (or telomerase) may have as yet undefined roles in 

telomere protection although this has not been validated in prostatic tissue to date. 
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Figure 1.2 The first event following telomere attrition is loss of the end of the chromosome, 
which is followed by either the addition of a new telomere producing a small terminal deletion, 
or fusion of chromatids (often sister chromatids after DNA replication). With two centromeres 
attached to one another, the fused sister chromatids then bridge during anaphase and break, 
leading to inverted repeats in one daughter cell and a terminal deletion in the other. If the 
chromosome fails to acquire a new telomere, there will be additional BFB cycles and further 
DNA amplification. BFB cycles can lead to nonreciprocal translocations, which result in the 
loss of the telomere on the donor chromosome, transferring the BFB cycles to these 
chromosomes. Looping out of the amplified DNA as a result of the inherent instability of 
inverted repeats can also lead to the formation of DM chromosomes that can be involved in 
high-copy gene amplification. Multipolar mitosis may also arise following telomere attrition, 
giving rise to unpredictable genomic instability. Reproduced from Murnane JP, Sabatier L., 
Chromosome rearrangements resulting from telomere dysfunction and their role in cancer. 
Bioessays; 26(11):1164-74. 2004 
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Figure 1.3 As discussed, telomere shortening has been documented in a number of human 
preneoplastic lesions and their corresponding carcinomas. The mechanism of shortening is 
displayed above; progressive shortening occurs concurrently with proliferation in the 
preneoplastic stage. Subsequently, when the telomeres are critically short (and the cells at 
“crisis”), there is a dramatic increase in genomic instability which is diminished by the re-
expression of telomerase. This role of the telomere is in contrast to its purported role in early 
disease where they may elicit a DNA damage response and therefore act as a tumor suppressor 
mechanism. Replicative crisis refers to Oncogene induced senescence (see section 1.7.1). 
Modified from Chin et al., In Situ analyses of genome instability in breast cancer, Nature 
Genetics, 2004 36 (9), 984-8. 
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1.6.4 Androgen Signalling 

Androgen and the androgen receptor (AR) (located on Xq11.2) are fundamental to both 

prostatic development and prostatic carcinogenesis(225). The AR partly mediates its effects 

through androgen responsive stroma (226-229) which in turn secretes paracrine mediators such 

as KGF (230) whilst in contrast, the luminal cell androgen receptor is responsible for regulating 

function such as secretion.  

The AR is dependent on co-regulatory proteins to modulate gene expression; 

coactivators (e.g. NCOA1, NCOA2, NCOA3, PCAF, CBP, TIP60 and p300) facilitate 

transcription by recruiting protein complexes to DNA that alter the chromatin structure to a 

more transcriptionally active form, and co-repressors (e.g. retinoid and thyroid (SMRT) 

hormone receptors, nuclear receptor co-repressor (NCOR) mediate chromatin condensation and 

silence transcription (231, 232).  

AR-regulated genes have multiple actions in the prostate that may contribute to carcinogenesis. 

For example, in addition to the ETS fusion genes, androgen action also stimulates production of 

the Wnt-induced secreted protein-2 (WISP-2), a secreted growth factor that binds and activates 

integrins and stimulates mitosis. Additionally, apoptosis is decreased through the production of 

the anti-apoptosis protein c-FLIP and caspase-2 is decreased (233). There are also data to 

indicate that androgens can function nongenomically through AR action in the cytoplasm 

through the mitogen-activated protein kinase (MAPK) signal cascade (234).  
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1.6.5 NF-KB 

The role of NF-KB signalling has been under appreciated in early prostatic 

carcinogenesis. Prostate cancer cells have been reported to have constitutive NF-kappaB activity 

due to increased activity of the IkappaB kinase complex (235). NF-kappaB may promote cell 

growth and proliferation in prostate cancer cells by regulating expression of genes such as C-

MYC, Cyclin D1, and IL-6 (235). Additionally, NF-KappaB-mediated expression of the AR 

(236, 237) as well as genes involved in angiogenesis (IL-8, VEGF), invasion and metastasis 

(MMP9, uPA, uPA receptor) may further contribute to the progression of prostate cancer (235).  

1.6.6 C-MYC 

The C-MYC oncogene has been long suspected to be involved in prostatic 

carcinogenesis on the basis of the amplification of the 8q24 cytoband. It is part of a larger 

family of transcription factors (such as MAX, MAD, MXI-1) that work in recognising a DNA-

binding element known as an E-box (238). Transfection experiments both in vivo and in vitro 

have demonstrated that C-MYC is sufficient to cause neoplastic development (239-241).  The 

mechanisms by which C-MYC causes this transformation or contributes to the malignant 

phenotype are unclear but decreased PTEN and NKX3.1 expression (239, 242) as well as 

increased telomerase (hTERT) and TMPRSS2 expression have been suggested (243) . Given 

these findings, it is not surprising that the expression of C-MYC is also prognostic and 

correlates with histological grade (244-246). The frequency of C-MYC amplification in primary 

prostate cancer tumours ranges from 0-44% (245, 247-249), and until recently the timing of its 

overexpression was controversial (250). The most recent, and accurate analyses of C-MYC 

protein expression suggest that it is an early change in prostatic carcinogenesis, overexpressed in 
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70-80% of HPIN and prostate cancer lesions, with trends to decreased expression in higher 

Gleason grade lesions. Interestingly, there appears to be no relationship between 8q24 copy 

number and MYC protein staining, suggesting that other genes in 8q24 may have pathological 

significance. Recent data implicate 2 loci with unknown function adjacent to the C-MYC 

position on 8q24 as important risk factors for prostate cancer (251, 252); it is provocative to 

speculate that these variants could affect C-MYC (~260 kb telomeric), although this remains 

unproven (252). Additional loci, identified on the basis of their involvement in Burkitts 

lymphoma, extend 400kb telomeric to C-MYC (within the PVT1 locus) and are thought to 

contain microRNAs that influence C-MYC expression. For example, the microRNA closest to 

C-MYC, hsa-miR-1204 leads to increased expression of C-MYC when experimentally 

overexpressed and importantly, high levels of expression of the hsa-miR-1204 precursor is also 

seen in several epithelial cancer cell lines such as breast and colon with MYC/PVT1 

coamplification, suggesting an emerging role for these miRNAs in tumorigenesis (253, 254). 

Their role in prostatic carcinogenesis remains unexplored, although this region has been noted to 

be amplified in studies CGH and aCGH studies of prostate cancer (255). 

 

1.7 BARRIERS TO TUMORIGENESIS 

1.7.1 Oncogene Induced Senescence 

Oncogene induced senescence (OIS) is a phenomenon, originally described in the 

context of ras transfection (256), which acts as a barrier to precancerous evolution likely due to 

a DNA damage checkpoint, secondary to oncogene induced replication fork collapse (257). 

Unique markers for the identification of this senescent state remain unclear but a number of 

candidates have been proposed (see section 5.2). OIS has been suggested to occur in numerous 

solid neoplasms including prostate (258) (see Figure 1.3), although verification is required. 
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Telomere dysfunction leading to a DNA damage signal is another cause of senescence that 

might occur after OIS (259-261). 

1.7.2 Tumor Suppressor Genes 

1.7.2.1 P53 

P53 and its related pathways play critical roles in directing the cellular responses to 

DNA damage and oncogenic stress. Canonical DNA damage signals are thought to signal 

through ATM and Chk1/2 kinases to activate p53, leading to the up-regulation of p21 and 

inhibition of cell cycle progression via binding to and inhibiting the activity of cyclin-CDK2 or -

CDK4 complexes. An alternative arm of the pathway involves p14ARF, which acts to block the 

ability of MDM2 to degrade p53 (262, 263). 

Unlike other neoplasms, p53 abnormalities are thought to appear only late in prostate 

cancer progression. This view however, warrants re-evaluation due to advances in 

immunohistochemistry and sequencing methodologies (264). In modern studies, abnormal p53 

staining is seen in at least 1/3 of early stage tumors (265-273) which is higher than the levels 

reported a decade previously (274-278). Indeed, levels may even be higher due to issues relating 

to heterogeneity within the tumour (279), sampling (268), “silent” mutations (280) and effects 

of post-translational regulation (281, 282). Functional impairment may also be present, as up-

regulation of MDM2 expression has also been found in up to 40% of prostatectomy specimens 

(283). Finally, functional studies of primary cell cultures derived from radical prostatectomies 

fail to elicit a p53 response to radiation (284). These effects on inappropriate cell cycle 

progression may be compounded by a constitutional checkpoint defect in normal prostatic 

epithelium at the CDK1/2-Tyr15 phosphorylation step by the Wee1A tyrosine kinase(157). 
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1.7.2.2 RB 

The retinoblastoma (Rb) pathway acts primarily to regulate the progression of cells from 

the G1 phase of the cell cycle to the initiation of DNA replication in S phase. The pathway is 

centred on regulation of the protein product of the retinoblastoma gene and its interaction with 

the E2F transcription factor family in order to activate the transcription of virtually the entire 

group of initiation factors that participate in DNA replication. Additionally, at least 3 cyclin-

CDK complexes target RB during cell cycle progression. Cyclin D/CDK4/6 phosphorylates RB 

during early G1, cyclin E-CDK2 is responsible for late G1 Rb phosphorylation, whereas cyclin 

A-CDK2 maintains hyperphosphorylation of RB during S phase (285). In turn, these 

cyclin/CDK complexes are regulated prominently by p16 and p27. 

The role of the RB pathway in prostatic development is suggested by mouse models (286 

, 287) but relatively little work has been done to detail the extent of biallelic loss of RB in 

prostate cancer samples. Nevertheless, studies of chromosomal markers by CGH have found 

that deletions are evident at the RB1 locus on chromosome 13q21 in at least 30% of prostate 

tumours (88) with estimates of 10% biallelic loss.  

The RB pathway can also be downregulated through abnormalities of the regulators of 

the pathway. Whilst abnormalities of cyclin D/CDK4 and E2F are found uncommonly, the two 

other members of the pathway, p16 and p27 appear to be of particular importance.  

Paradoxically, p16 appears to be overexpressed in up to 80% of prostate cancers (288-

290) as well as HPIN and PIA (30). Indeed most studies have suggested that it is associated with 

a poor prognosis (290) even when found in surrounding HPIN (289). The reason for the over-

expression is unclear; but, it may involve uncharacterised changes in binding proteins that 

regulate p16 function such as BMI-1 (291). In normal tissues, transient p16 overexpression is 

seen in response to cellular stress including telomere dysfunction, HPV infection and aberrant 
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mitogenic signals (292). Therefore its continued presence in a proportion of prostate cancers 

may be an indication that other permissive changes in the pathway have taken place to allow 

bypass of senescence and efficient replication to take place (293).  

P27 is a critical regulator of cyclin E/CDK2 activity and of the G1 checkpoint 

downstream of RB, and as such may be a gatekeeper for the inactivation of the RB pathway in 

prostate tumors. It may also possess tumor suppressive activity independent of its role in the Rb 

pathway (294) possibly by increasing either directly or indirectly, the levels of genomic 

instability in the tumors. Reduced p27 expression is characteristic of prostate cancer, and 

associated with a poor prognosis (295, 296) as well as being found in HPIN and PIA (297) 

where it may act as a barrier to senescence (298). 

1.7.2.3 PTEN 

The phosphatase and tensin homologue (PTEN) is the second most frequently mutated 

human tumor suppressor gene (299) and maps to the 10q23 locus that is a common target for 

deletion in prostate cancer (300). PTEN functions as a lipid and protein phosphatase. However 

its lipid phosphatase activity on phosphotidylinosital-3,4,5-triphosphate (PIP3), inhibiting 

PI3Kinase (301) is thought to be more important. Briefly, PI3K is activated after upstream 

receptor tyrosine kinase growth factor receptors become activated and bind to the p85 subunit. 

This component binds to the catalytic component (p110) and activates PI3K. PI3K then 

phosphorylates the inositol ring of PI4P or PI4,5P2 to generate PI3,4P2 and PI3,4,5P3, which 

act as secondary messengers (302). These specialised phospho-lipids recruit proteins such as 

AKT, PDK1 and JNK (303) to the plasma membrane. After phosphorylation and activation, 

AKT dissociates from the plasma membrane and phosphorylates multiple proteins with 

functions relevant to carcinogenesis such as apoptosis (BAD (304), CASP3, CASP9 (305)), cell 

cycle regulation (MDM2 (306), p27 (307)), cell growth/proliferation (mTOR (308), IkB kinase 
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(309)) cellular homeostasis (Wnt (310), and DNA repair/instability (CHK1 (311)).  Recent 

evidence also suggets that PTEN (via AKT and the transcription factor E2F) may regulate the 

expression of Cdc6 and cyclin E2, two proteins associated with cell cycle progression through 

the G1S barrier and with prostate metastases in vivo (312). 

The importance of PTEN has been rekindled with an increased appreciation of the 

effects it has alone, independent of Akt inhibition including; (1) Direct association with p53, 

increasing its stability, protein levels and transcriptional activity, (2) Regulation of cell cycle 

arrest via protein phosphatase-dependent interaction with cyclin D, (3) Maintenance of 

chromosomal stability by associating with the centromeric protein CENP-C and increasing the 

levels of the homologous repair protein RAD51 (313, 314), (4) Action on other protein 

substrates such as FAK, ETS-2 and Sp1(315). 

Multiple lines of evidence attest to the importance of PTEN/Akt in the development of 

prostate cancer but evidence from murine modelling in particular is persuasive. Whilst 

conventional deletion of both alleles of PTEN leads to developmental defects and early death, 

PTEN heterozygous mice develop HPIN, but without progression to invasive cancer (316, 317). 

Importantly, heterozygous or homozygous loss of p27 (318), NKX3.1 (319) and INK4A/p19 

(320) all exacerbate the phenotype whilst prostate-specific homozygous deletion leads to 

invasive cancer with 100% penetrance (321). With the development of therapeutics targeting 

this pathway, relevant cellular and mouse modelling suggest that it is the Akt1 isoform (322) 

and mTOR activation that are the primary effectors responsible for the neoplastic phenotype and 

that the effect of mTOR inhibitors can be inhibited by BCL-2 overexpression. 

At least 4 mechanisms are involved in PTEN inactivation in human cancer; chromosome 

deletion or loss of heterozygosity, somatic mutations, oxidation (323) and methylation. Whilst 

early studies of PTEN in human prostate tissues suggested that PTEN deletion was a late event 

in carcinogenesis, it appears that a substantial proportion of both HPIN and prostate cancer 
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lesions in human tissue contain abnormalities of PTEN, in particular if haploinsufficency is 

important as suggested by murine models (324). In addition, the lack of PTEN (in particular 

homozygous deletions) either alone or in association with high levels of phospho-AKT appear 

to portend a number of poor clinical outcomes (325-330). 

1.7.2.4 NKX3.1 

NKX3.1 is a prostate specific homeobox gene whose relevance to prostatic 

carcinogenesis was described originally on the basis of a loss of heterozygosity of chromosome 

8p21.2 in 50-85% of prostate cancer cases (88, 331 ). Murine models suggest both a 

haploinsufficient effect on carcinogenesis and both haploinsufficent and homozygous synergy 

with PTEN and CDKN1B/P27 (332 , 333). Expression in human prostate tissue correlates with 

the degree of gene inactivation by deletion, methylation or both (334). NKX3.1 staining 

intensity is significantly diminished in PIA and PIN lesions compared with normal epithelium 

(34). In more advanced prostate cancer, there is an association between 8p deletions and 

NKX3.1 expression suggesting that genetic deletions may be more important in the progression 

of invasive disease whilst decreased NKX3.1 expression is more important in initiation of 

disease (335).  

NKX3.1 mutant mice display deregulated expression of several oxidation related 

enzymes with concomitant increased levels of oxidative damage in prostatic preneoplastic 

lesions, which accumulate in overt carcinoma (336). Finally, NKX3.1 appears to have a central 

role as an integrator of multiple signal pathways including the AR, PTEN and p53 that may have 

relevance in the initiation of prostatic carcinogenesis (337).  
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1.7.3 Stromal Dependence 

Investigating the contribution of the cellular microenvironment and the tumor-stromal 

interaction to the generation of prostatic preneoplasia is critical in developing a greater 

understanding of prostate cancer causation. Phenomena such as the inhibition of prostate cancer 

growth when co-inoculated with normal prostatic fibroblasts (338), the stimulation of prostate 

cancer growth with cancer-associated or spontaneously-immortalised fibroblasts (339 , 340) and 

the dependence on orthotopic (rather than ectopic) sites for metastatic ability (341) suggest that 

the stroma must co-evolve with the neoplastic epithelium to maintain its neoplastic phenotype 

(342-344). Prevailing theories of carcinogenesis describe the development of an “activated” 

tumor-associated stroma with the expression of myofibroblastic markers such as increased 

vimentin and actin (345, 346). The best characterised molecules that may affect both afferent 

and efferent interactions are TGF-Beta, the androgen receptor and the insulin growth factor 

family (reviewed in (342)). 

 

1.7.3.1 TGF-Beta signalling 

TGF-Beta signal transduction is initiated by heterodimerization of two cell surface 

serine/threonine kinase receptors (TßRI and TßRII).  Subsequent phosphorylation of the SMAD 

proteins act as the primary intracellular effector of TGF-Beta signalling (347), which activate a 

wide variety of downstream targets, all of which have antiproliferative or pro-apoptotic effects. 

For example, there is increased expression of the cyclin dependent kinase inhibitor p27Kip1, up 

regulation of BAX, down regulation of BCL-2, activation of caspase-1 (348, 349) and of 

IGFBP-3 (the protein involved in sequestration of IGF-1) (350).  Additionally, normal prostatic 

fibroblasts also express the TGF-Beta receptor and are highly responsive to its actions (351). 

Indeed, mice in which the TGFß2 receptor has been inactivated specifically in prostatic stromal 
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fibroblasts develop preneoplastic lesions in the prostate (352). Putative mechanisms by which 

the absence of TGF-Beta activation in the stroma may have this action on prostatic epithelial 

cellular growth include paracrine Hepatocyte Growth Factor (HGF) production (352), inhibiting 

androgen signalling, and a relocation of androgen receptor localisation from the nucleus to 

cytoplasm (353). During carcinogenesis epithelial cells gain resistance to the growth suppressive 

effects of TGF-Beta, possibly through loss of the relevant receptors by methylation (354, 355). 

Subsequently, dysfunctional signalling may lead to pro-carcinogenic actions leading to the 

induction of proteases (356).  

Finally, there is evidence from microarray expression studies to suggest that TGF-Beta 

secreted by tumor cells acts on stromal cells to promote tissue remodelling and wound healing 

that assists tumor growth and invasion (357) via the production of the angiogenic mediator, 

connective tissue growth factor (CTGF) in the extracellular matrix (358).  

 

1.7.3.2 Insulin Growth Factor family 

There are 2 types of IGFs, IGF-1 and IGF-2 with associated receptors, as well as 6 IGF 

binding proteins (IGFBPs), which are involved in modulating the effects of these growth factors 

(359). Of these, IGF-1 and IGFBP-3 are the most important in prostatic carcinogenesis (360). 

The two downstream pathways involved in IGF action are the mitogen activated protein kinase 

(MAPK) pathway and the phosphatidylinositol-3 (PI3K) pathway, both of which promote cell 

proliferation and inhibit cellular apoptosis (361). The consensus is that IGF-1 acts in a paracrine 

fashion in the prostate, with production in the stroma and activity in the epithelial cells (362) 

although it remains unclear at what stage of carcinogenesis it is of greatest importance (363-

365). Insulin growth factor binding proteins (IGFBPs) also influence IGF signalling; for 

example, IGFBP-5 appears to potentiate IGF-1 signalling (366) and is stimulated by androgen 
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(364), whilst levels of IGFBP-3 may determine the overall activity of the IGFs (367) in that it 

attenuates the subsequent activation of the AKT pathway (368, 369). The IGFBP-3 gene is often 

inactivated by methylation (370) in prostate cancer and the protein is also degraded by PSA 

(368). IGFBP-3 may also have suppressive actions on tumor growth that are independent of its 

actions through the IGF axis, adding further complexity to the role of this growth factor (371). 

1.7.4 Evasion of Apoptosis 

There are two main mammalian pathways of apoptosis; the “extrinsic” pathway involves 

signals transduced through cell surface death receptors such as TNF-R1, TRAMP or TRAIL, 

while the “intrinsic” pathway is triggered by various forms of stress such as radiation (372, 373) 

before activation of the common caspases. These pathways interact with many of the signalling 

pathways described above. For example, Akt activation appears to inhibit apoptosis at a number 

of points including the prevention of cytochrome c release from mitochondria, phosphorylation 

of the pro-apoptotic protein BAD, phosphorylation of procaspase-9 (305, 374, 375) and 

phosphorylation of the FKHR family of transcription factors (376, 377). An additional 

modulator of the apoptotic response is the Bcl-2 family. Bcl-2 is a critical anti-apoptotic 

mediator, along with Bcl-XL that opposes the pro-apoptotic effects of the BAX subfamily (Bax, 

Bak, Bok) and the BH3 subfamily (Bad, Bid, Bik, Blk, Hrk, BNIP3 and BimL). Nevertheless, 

prostate cell lines all contain intact cell death programs that become activated in response to 

different apoptotic stimuli (378, 379).  

Expression of apoptosis related genes have not been evaluated rigorously in prostate 

cancer. For example, for Bcl-2, some reports indicate increases in expression from low but 

detectable levels in benign epithelium (380) to at least 50% of HPIN cases (381, 382) to near 

universal staining in androgen independent disease (383) with an association with tumor grade 
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(384, 385). Other studies have suggested significantly higher expression of Bcl-2 in HPIN 

compared to cancer (380, 386).  

Generally, apoptotic indices when measured in prostate specimens show an increase 

from benign to cancerous cells (386). Whilst there is some evidence that the phosphorylation of 

BAD may be crucial in protecting prostate cancer cells from apoptosis, the heterogeneity seen in 

vivo is likely to limit the applicability of these findings (387). 

 

1.8 INTEGRATED MODEL  

There are at least 2 major limitations in proposing a pathway to prostatic carcinogenesis. 

First, prostate cancer is a heterogeneous disease, with multiple pathways to the malignant 

phenotype. For example, both the “outlier” based subclassification (described above) and other 

studies suggest that at least 3 distinct subtypes of prostate cancer can be defined, although the 

overlap between definitions remains unclear (388, 389). Secondly, the studies available to guide 

hypothesis generation are limited to evidence from static rather than longitudinal human studies. 

Nevertheless, a general overview is worthwhile to put the evidence into a temporal and 

conceptual context (Figure 1.4). 

It is reasonable to assume that the aetiology of the epigenetic field effect in prostatic 

carcinogenesis is the forebear to further carcinogenic change. The underlying aetiology is likely 

to involve oxidant stress either via inflammatory mediators or dietary insufficiency (see review 

by (37, 390)). Attempts at cellular repair at this stage may lead to the emergence of the PIA 

phenotype accompanied by proliferative defects in genes such as C-MYC and p27. Epigenetic 

changes further inactivate genes such as those encoding TGF-Beta receptors (that regulate 

epithelial-stromal dependency) or NKX3.1 (predisposing the epithelium to further oxidant 

stress) and susceptibility to genomic damage (possibly via progressive telomere shortening) as 



 35

well as leading to increased androgen driven proliferation. At this stage, the presence of an 

intact p53/ RB/ p27 pathway may prevent lesions from progressing to a more invasive 

phenotype by inducing a senescence/ apoptosis response, although abrogation of this response 

by increased BCL-2 levels may occur. ETS factors are likely up regulated through undefined 

mechanisms in this earlier stage of carcinogenesis. Further cellular replication in the presence of 

shortened telomeres leads to the onset of chromosomal instability with the emergence of 

characteristic changes such as 8p and 6q loss that have as yet undefined implications. All of the 

aforementioned changes would be potentiated by PTEN abnormalities that simultaneously 

increase cellular proliferation (possibly via augmenting androgen signalling), increase instability 

and modulate apoptotic mechanisms. With the reactivation of telomerase (see Figure 1.3), the 

relevant cells are immortalised but physiological regulatory mechanisms restrain the cellular 

phenotype until selective pressure leads to the emergence of an ETS related translocation likely 

through an anomalous repair event. The co-opted tumor associated stroma likely facilitates 

tumor growth and invasion through the secretion of soluble factors to increase invasion. 

Subsequently, increasing expression of embryonic signalling pathways and epigenetic regulators 

likely further de-differentiate the cellular phenotype in early malignancy facilitating the 

development of an invasive aggressive phenotype. Ultimately, this lessens the dependency on 

androgen signalling as other pathways drive cell cycle progression and tumor evolution. (see 

Figure 1.5). 
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Figure 1.4 An integrative illustration of a proposed model in prostatic carcinogenesis 
incorporating themes discussed in the text. Events align along the vertical axis with the 
histology along the uppermost row. PIA – Prostatic Inflammatory Atrophy. HPIN – High Grade 
Prostatic Intrapeithelial Neoplasia. G – Gleason Score. Reproduced from Joshua et al., Prostatic 
preneoplasia and beyond, Biochim Biophys Acta. 2008 Apr;1785(2):156-81. 
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Figure 1.5 An illustration of the significant pathways and interactions mentioned in the text. 
Each pathway is illustrated by a particular colour and shape. Interactions within a particular 
pathway are illustrated by a different shade of the same colour. Grey lines indicate interactions 
that interact amongst signalling pathways. Positive interactions are indicated by arrowheads 
whereas bars illustrate inhibitory interactions. Jagged lines indicate binding/ sequestration 
interactions. Reproduced from Joshua et al., Prostatic preneoplasia and beyond, Biochim 
Biophys Acta. 2008 Apr;1785(2):156-81. 
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1.9 RATIONALE 

The multi-step acquisition of oncogenic hits over several decades of life is thought to 

underlie genetic events leading to prostatic carcinogenesis.  Recent studies have suggested that 

at least one of the hits affects genes involved in maintenance of genomic stability.  Indeed, 

cytogenetic studies of prostate preneoplastic lesions and CaP tumors show evidence of 

phenotypic and genotypic heterogeneity such as ETS alterations concurrent with multifocal 

histology in early disease.  However, the mechanism driving such instability process during 

prostate carcinogenesis has not been described.  Telomere dysfunction has emerged as a 

plausible source of chromosomal abnormalities in epithelial carcinogenesis.  Short, 

dysfunctional telomeres can initiate chromosomal instability through repetitive chromosome 

end-to-end fusion and breakage (BFB cycle) and have been shown to promote tumorigenesis.  

Immortalization through stabilization of telomeres via telomerase is thought to be a key step in 

tumor formation. Analysis of telomere length and chromosomal abnormalities in CaP will allow 

for a better characterization of genomic instability process underlying prostatic cancer initiation 

and progression. 

1.10 HYPOTHESIS 

I postulate that telomere dysfunction is a significant driving force behind the 

chromosomal instability process in prostatic carcinogenesis.  Thus, excessive shortening of 

telomeres and chromosomal instability could be correlated during prostate tumorigenesis. 

Furthermore, the resulting chromosomal instability might influence tumor biology and have 

prognostic importance. Finally, the causes of telomere dysfunction should be evident as a 

definable field effect in prostatic carcinogenesis. 
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2. TELOMERE LENGTH AS A PROGNOSTIC MARKER 

IN HPIN 

 

SUMMARY 

The onset of chromosomal instability in the development of prostate cancer is likely to facilitate 

the formation of crucial genomic aberrations both in the precursor lesion high-grade prostatic 

intraepithelial neoplasia (HPIN) and in CaP. Instability generated by telomere attrition is one 

potential mechanism that could initiate chromosomal rearrangements. In this study, variation in 

normalized telomere length was examined in a cohort of 68 men without CaP who had HPIN 

only on prostatic biopsies. Coherent with our primary hypothesis, significant associations 

between telomere attrition and eventual diagnosis of CaP in the HPIN and in the surrounding 

stroma were found. Kaplan-Meier analysis of telomere length demonstrated a significantly 

increased risk for the development of cancer with short telomeres in the surrounding stroma [P = 

.035; hazard ratio (HR) = 2.12; 95% confidence interval (95% CI) = 0.231-0.956], and a trend in 

HPIN itself (P = 0.126; HR = 1.72; 95% CI = 0.287-1.168). Cox regression also demonstrated a 

significant relationship between the time from the original biopsy to the diagnosis of cancer and 

telomere length in HPIN and the surrounding stroma (both alone and in combination with 

baseline prostate-specific antigen). Together, these analyses lend support to the hypothesis that 

telomere attrition in prostatic preneoplasia may be fundamental to the generation of 

chromosomal instability and to the emergence of CaP. 

BASED ON WORK IN; 

Joshua AM, Vukovic B, Braude I, Hussein S, Zielenska M, Srigley J, Evans A, Squire JA. 

Telomere attrition in isolated high-grade prostatic intraepithelial neoplasia and surrounding 

stroma is predictive of prostate cancer. Neoplasia. 2007 Jan;9(1):81-9. 
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2.1 Introduction 

As discussed in Chapter 1, prostate cancer exhibits genotypic and phenotypic 

heterogeneity with multifocal distribution in the gland. Each malignant focus must proceed 

through the multistep nature of carcinogenesis, involving the acquisition of the malignant 

characteristics of cancer cells (reviewed in (391)). Given the slow development of CaP, it is 

likely that the acquisition of genomic instability is a means by which more aggressive neoplastic 

characteristics are acquired, as it will accelerate the evolution of the malignant clone(s). 

Previous cytogenetic studies in both HPIN and CaP suggest that chromosomal instability 

appears to be a major contributor to genomic instability in prostatic carcinogenesis (10, 43, 46, 

244, 392).  Telomere dysfunction is a mechanism of chromosomal instability (see section 

1.6.3.2), it is technically difficult to demonstrate pathognomic intermediaries of the telomere 

dysfunction such as BFB figures in paraffin embedded material, although it has been noted in 

prostatic cell lines (393). Additionally, other mechanisms driving  genomic instability may be 

present in prostatic tissue such as chromosomal segregation defects (e.g. Aurora B 

overexpression (394)) and DNA replication defects (e.g. PSMA overexpression (395)) that may 

obscure correlative analyses. 

The importance of chromosomal instability is that it is predicted to accelerate the rate at 

which preneoplastic cells acquire the characteristics of overt cancer cells. Provocatively, 

telomere dysfunction has been demonstrated to have prognostic value in a number of 

preneoplastic lesions such as Barretts oesophagus (396), ulcerative colitis (397, 398), DCIS 

(Ductal carcinoma in situ of the breast) (399) and bronchial dysplasias (400). It has also been 

demonstrated to have prognostic ability for time to recurrence of prostate cancer following 

prostatectomy (401). However, as a potentially relevant biomarker, greater clinical relevance 
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needs to be demonstrated in a scenario where it would alter clinical management such as the 

stratification of prostatic biopsies with HPIN into low or high risk, thus perhaps allowing 

patients to avoid the morbidity associated with repeated biopsies. Developing an assay for 

measurement of the length of telomeres in prostatic biopsies and evaluating its prognostic 

potential for the development of CaP from HPIN are described here. 

The occurrence of multifocal HPIN and CaP in up to 80% of prostatectomies suggests a 

field effect in the peripheral zone of the prostate (43). The molecular nature of this field effect is 

thought only to involve the prostatic epithelium. We reasoned that telomere length in the 

prostatic stroma might also be altered in the peripheral zone for two reasons. Firstly, etiological 

agents involved in prostatic carcinogenesis may affect telomeres in the whole gland rather than 

just the epithelium. Secondly, it is conceivable that inheritance of shorter constitutional telomere 

length (affecting both epithelium and stroma) may itself be a risk factor for neoplastic 

progression in the prostate, as has been demonstrated in other malignancies (402).   

To explore these concepts, we examined normalised telomere length in a cohort of men 

who had isolated HPIN on prostatic biopsies with follow-up of up to 5.5 years. In this study the 

amount of telomeric attrition in HPIN was accompanied by a proportional shortening in the 

surrounding stroma.  We conclude that the extent of telomere attrition in such tissues may allow 

for improved prognostication of HPIN lesions into low and high-risk for development of 

eventual CaP, and provide insights into the genomic mechanism of carcinogenesis in prostatic 

preneoplasia. 
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2.2 Materials and Methods 

2.2.1 Tissue accrual 

Patient samples used in this study comprised a retrospective cohort obtained from 

prostatic biopsies obtained through UroPath Canadian Pathology Speciality Services over the 

period 1998-2000. The Research Ethics Board of the University Health Network, Toronto, 

Canada, approved this study.  

2.2.2 Description of Cohort 

Men were biopsied using a sextant technique with 6 possible sites for biopsy. 7/34 (21%) 

men had the cancer diagnosed at the site of the HPIN biopsy available for study, 12/34 (35%) 

had cancer diagnosed on the same side, whilst 19/34 (56%) had cancer diagnosed on the 

opposite side. The characteristics of the cohort are described in Table 2.1. 
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 Mean Standard 

Deviation 

Median Range 

PSA 8.8 6.95 8 0.7-51 

Age 66 6.7 67 51-82 

Time from first 

to final biopsy 

19m 17 14.5 1-69 

Time to 

diagnosis of 

cancer (n=34) 

15.5m 12 14 1-42 

Number of 

biopsies until 

cancer 

diagnosed 

(n=34) 

1.5 1 1 1-5 

Gleason Score 

(n=34) 

6 0.5 6 5-8 

 

Table 2.1 
Description of clinical and pathological variables of the study cohort. 
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2.2.3 Pathology 

Biopsy samples were formalin fixed and paraffin embedded. One biopsy was analysed 

from each man. The biopsies usually consisted of a slither of tissue (approx 1-2mm by up to 

15mm). The initial cohort comprised 94 patients, all of whom had a diagnosis recorded of HPIN 

upon initial pathology review of prostatic biopsies.  Following re-evaluation of deeper sections 

by Dr Andrew Evans, a cohort of 68 patients was identified for inclusion in this study that had 

evidence of HPIN and adequate stroma on deeper sectioning. There were 2-4 deeper slides 

available from the original hematoxylin and eosin (H&E) slide used for HPIN identification, 

orientation and further analyses. These regions, and surrounding areas of matching stroma were 

examined for telomeric and centromeric content using quantitative fluorescence in-situ 

hybridisation (QFISH). All investigators were blinded to patient outcome during the study 

period. 

2.2.4 QFISH 

QFISH was performed using pan-telomeric and pan-centromeric peptide nucleic acid 

(PNA) probes on unstained 5 µm sections. Telomere (C3TA2)3 and centromere (16-mer α-repeat 

DNA) specific (403) probes were directly labelled with Cy3 and FITC fluorescent dyes 

respectively, and were obtained from Applied Biosystems (Foster City, CA, USA). A standard 

technique for PNA FISH (404) was applied with minor modifications as described previously 

(216). Slides were counterstained with DAPI/antifade (Vectashield, Burlingame, CA, USA) and 

analysed. 

2.2.5 Image capture 

Regions of interest were identified and marked on the overlying H&E section. 

Corresponding pathology was identified on the FISH slides. Slides were analysed with a Leica 
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DMRA2 epifluorescence microscope (Leica Microsystems, Wetzlar, Germany) equipped with 

appropriate filter sets, a 100W mercury lamp and a 100X/1.4 NA oil immersion lens. Twelve-bit 

grey scale image were produced with a Hamatasu ORCA ER-17 camera (Hamatasu, 

Bridgewater, NJ, USA) and the OpenLab 4.0.3 software package (Improvision, MA, USA). 

Filter Set 43HE (For  Cy3; Excitation 550/25, Emission 605/70), Filter Set 17 (For FITC; 

Excitation 485/20, Emission 535/40) and Filter Set 01( For DAPI; Excitation 365, Emission 

420) were used (Carl Zeiss, USA). Optimized exposure times were 300 ms (Cy3), 150 ms 

(FITC) and 10 ms (DAPI). 

In order to compensate for different focal depths, 10 consecutive images were z-stacked 

using an automated Leica CTRMIC interface (Leica Microsystems, Wetzlar, Germany) into a 

composite image that was used for quantification. Images were saved and exported to the 

ImageJ software package (405) . Exposure times of the telomere and centromere signals were 

optimised to be within the linear range of fluorescence assessment. Once these times were 

optimised, they were kept constant for all further experiments. An average of 50 cells were 

examined from each HPIN and stroma in every slide to quantify the telomeric and centromeric 

signals by QFISH. Stromal cells were selected for analysis, avoiding areas of photobleaching 

and lipofuscin autofluorescence, typically within 1mm of HPIN.   

2.2.6 Image Assessment 

Quantitative assessment of the telomere/ centromere signal intensity was performed on 

the captured images and used to determine the relative changes in telomere length and DNA 

ploidy. After export to ImageJ, non-overlapping nuclei were defined in a region of interest. 

Subsequently, quantitative analysis was performed on a per nucleus basis, on Cy3 (telomere) 

and FITC (pan-centromere) images using visual thresholding to outline the relevant signals 

(406). The intensities of all pixels outlined within a predefined nuclear boundary were summed 
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on a per cell basis and tabulated.  The absolute values for the pan-centromeric QFISH indicate 

partial ploidy change, polysomies, hybridisation differences or amount of nuclear material in a 

section. For example, theoretically there will be a doubling of telomere signal per centromere as 

a result of every extra chromosome per HPIN cell. Thus, to control for differences in ploidy and 

hybridisation, all telomere intensities were expressed as a ratio of telomeric to centromere 

intensity ratios for each nucleus. These ratios were then averaged across the whole slide. An 

example of the approach taken in this study is illustrated in Figure 2.1. 



 47

 
 
 

 

Figure 2.1 A representative example of the analysis utilised in HPIN biopsies. (A) Areas of 
interest were identified and corresponding QFISH images were generated on a deeper slice of 
tissue, with corresponding areas of stroma (B) and HPIN (C) analysed. The images have been 
coloured to facilitate visual inspection with telomere PNA probe (Cy3-red) and centromere PNA 
probe (FITC-green). 
 



 48

2.2.7 Statistical Assessment 

All statistical assessments were carried out with the “R” software package (407). This 

software package is an open-source language and environment for statistical (linear and 

nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering) and 

graphical techniques, and is highly extensible as it allows users to add additional functionality 

by defining new functions.  

All correlations were examined with normalised telomere lengths. Statistical analyses for 

correlations for outcome to CaP were carried out using logistic regression and likelihood ratio 

tests for significance. P values are considered significant at the 0.05 level for the association of 

telomere length and the development of prostate cancer only, the other P values presented are 

subject to errors of multiple comparison testing and are hypothesis generating only. Standard t-

tests were used to detect differences between mean telomere values of those men that did and 

did not develop cancer. Cox regression modelling was used to determine the association of time 

to diagnosis with normalised telomere length as well as the calculation of hazard ratios and 

confidence intervals for Kaplan-Meier analysis. Standard Kaplan-Meier analysis was carried out 

to explore the time to diagnosis of cancer stratified by telomere length in HPIN.  

 

2.3 Results 

2.3.1 Fluorescence Variables 

2.3.1.1 Absolute Fluorescence Values 

Overall combined centromeric intensity in HPIN revealed that centromeric fluorescence 

was 22% greater compared to the surrounding stroma (SD 31%) (Figure 2.2A). In comparison, 

overall combined telomeric intensity measured in HPIN divided by that of the surrounding 
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stroma revealed that the telomeres in HPIN had an intensity that was on average 36% of the 

surrounding stroma  (SD 21%) (Figure 2.2B). The positions of the centromeric and telomeric 

signals within the cells were not recorded, and their analysis was beyond the capabilities of the 

software used.  
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Figure 2.2 - To examine the relative amount of chromosomal material in HPIN versus 
surrounding stroma we plotted (A) the frequency distribution of the ratio of centromeric 
fluorescence intensity measurements in HPIN compared to the surrounding stroma. On 
average fluorescence was 22% greater (SD 31%) in HPIN compared to the surrounding 
stroma. To examine the relative amount of telomere attrition in the prostate we plotted 
(B) the frequency distribution of the ratio of the telomeric fluorescence in HPIN divided 
by that of the surrounding stroma. As described in the text, the average in the 
surrounding stroma was 64% less (SD 21%). (C) Frequency distribution of the 
normalised telomere values (telomeric fluorescence/ centromeric fluorescence) in HPIN 
and (D) in stroma for study cohort.  
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2.3.1.2 Normalised Fluorescence Values 

Inspection of the normalised QFISH values alone for both HPIN and stroma did not 

reveal any population of uniform telomere length amongst the cells (Figure 2.2C, 2.2D). There 

did not appear to be any relationship between telomere length in HPIN or stroma and patient age 

at initial biopsy (Adjusted R2 = 0.052, 0.104 respectively). Additionally, there was also no 

correlation between prostate specific antigen (PSA) level and telomere length, suggesting that 

these may be independent phenomena (Adjusted R2 = -0.007, 0.006 respectively). 

2.3.2 Statistical Correlations 

2.3.2.1 Analysis for outcome to CaP 

As the cohort of men did not have time or event mandated biopsies, we initially 

calculated logistic regression statistics for the diagnosis of CaP after particular time points had 

elapsed. The time variable corrects for men who were lost to follow-up after a negative biopsy 

subsequent to the time indicated in Table 2.2.  

Time Men at 

Risk 

HPIN Stroma PSA HPIN + 

PSA 

Stroma + 

PSA 

Immediately 68 0.026 0.029 0.021 0.012 0.010 

3 months 64 0.050 0.038 0.032 0.019 0.015 

6 months 61 0.075 0.046 0.046 0.036 0.026 

12 months 56 0.056 0.043 0.107 0.049 0.046 

 

Table 2.2 P values for logistic regression between outcome to CaP at various time points and 
telomere length in HPIN and Stroma as well as PSA at baseline 
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Multivariate modelling at these time points, combining telomere length measurements 

and PSA, also showed high levels of significance e.g. at 3 months, PSA + HPIN (p=0.019), PSA 

+ Stroma (p=0.015). P values calculated for the association between telomere length and PSA 

by logistic and multivariate analysis are in Table 2.2. Alternatively, standard t-test analysis and 

accompanying boxplots for telomere length in both HPIN (t-test, p=0.03, 95% CI 0.004-0.080) 

and stroma (t-test, p=0.04, 95% CI 0.004-0.188) with final diagnosis are illustrated in Figure 

2.3A and 2.3B. 

2.3.2.2 Cox Regression modelling for time to diagnosis 

Cox regression modelling demonstrated that telomere length of HPIN and surrounding 

stroma also predicted the time to diagnosis of cancer from the initial biopsy, both alone 

(p=0.015 and p=0.021 respectively) and in combination with PSA (HPIN and PSA, p=0.006; 

Stroma and PSA, p=0.010; PSA and HPIN and Stroma, p=0.015). 

2.3.2.3 Site of cancer and Gleason score 

There did not appear to be any relationship between the telomere length of the biopsy 

and the ultimate Gleason score of the prostate tumours (Figure 2.4B). To determine whether the 

relative telomere length within different regions of the gland at the time of biopsy was 

predictive of the site that was diagnosed subsequently with cancer, a comparison between the  

sites biopsied, and the side of the gland that was diagnosed with cancer was performed (Figure 

2.4C).  Whilst the numbers are limited, trends in both HPIN and stromal telomere length suggest 

that biopsy sites that eventually had cancer detected had shorter telomeres than those in whom 

cancer was detected on the same side but at a different site or on the opposite side of the gland.  
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Figure 2.3 (A) Boxplot of relative telomere length in HPIN comparing groups of men 
who did and did not develop cancer. Thick black line represents median value. Upper 
border of blue rectangle represents 25% percentile, Lower border represents 75% 
percentile. Circles represent outliers based on 1.5X Inter-quartile range. Bars extending 
above and below represent upper and lower limits of data. (t-test, p=0.03, 95% CI 0.004-
0.080) (B) Boxplot of relative telomere length in Stroma comparing groups of men who 
did and did not develop cancer. (t-test, p=0.04, 95% CI 0.004-0.188) (C) Kaplan-Meier 
Analysis of HPIN Telomere length, stratified by median value for the time to develop 
cancer (p=0.126, HR=1.72, 95% CI 0.287-1.168). (D) Kaplan-Meier Analysis of Stromal 
Telomere length, stratified by median value for the time to develop cancer (p=0.0346, 
HR=2.12, 95% CI 0.231-0.956). 
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Figure 2.4 (A) Relationship between normalised HPIN and Stromal Telomere Length in prostatic biopsies. (B) 
Boxplots of normalised telomere lengths in HPIN and stroma according to Gleason score of eventual cancer. 
Numbers in brackets adjacent to labels on X axis represent the number of cases with that outcome in the cohort.(C) 
Boxplots represent sites of diagnosis of CaP grouped by their relationship to where the biopsy was taken. X axis 
labels refer to the type of analysis, with the first letters referring to the site of the eventual cancer; either the same 
site, the same side or the opposite side of the prostate gland the subsequent lettering indicates either HPIN or 
surrounding stroma. The numbers in brackets refer to the number of men in those groups. 
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2.3.2.4 Analyses from correlation of telomere length in HPIN and stroma 

A notable finding was the significant association between the telomere length in the 

HPIN and that in the surrounding stroma (Adjusted R2=0.4697, p=1.14X10-10) (Figure 2.4A). 

2.3.2.5 Analyses from Stratification of Telomere Length 

As a further exploratory analysis, telomere length was stratified into “short” and “long” 

with the cut-off point at the median value. Kaplan-Meier analysis of the time to diagnosis of 

cancer stratified by telomere length in HPIN and stroma reveal trends to significance (p=0.126, 

HR=1.72, 95% CI 0.287-1.168) and (p=0.035, HR=2.12, 95% CI 0.23-0.96) respectively 

(Figures 3C, 3D). A trend was also noted for PSA (p=0.093, HR=1.8, 95% CI 0.89-3.63) but not 

for age (p=0.522, HR=0.8, 95%CI 0.63-2.57). 

 

2.4 Discussion 

Understanding the molecular processes driving prostatic carcinogenesis has important 

clinical consequences, as studies of biopsies and autopsies suggest that PIN may precede cancer 

by about a decade (11). Previously, our laboratory demonstrated a decreasing gradient of 

telomere length in radical prostatectomy samples from benign epithelium to HPIN far from the 

cancer to HPIN close to the cancer to CaP itself (216) (see Figure 1.3).  The present QFISH 

study was the first to examine normalised telomere length measurements using cell-by-cell 

analyses of both pre-neoplastic epithelial tissue and stromal components of the prostate in a 

large enough cohort to detect a correlation between epithelial and stromal telomere lengths 

(Figure 2.1).    
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The results presented reveal insights concerning both telomere biology and the process 

of prostatic preneoplasia. The 22% increase in centromeric intensity in HPIN compared to the 

stroma (Figure 2.1A) is consistent with previous studies from our laboratory, indicating that in 

early HPIN gross ploidy change is rare, although subsets of patients have characteristic 

chromosomal gains (215). The 64% reduction of telomere length in the same tissue (Figure 

2.1B) might be a surrogate marker for the number of times the pre-neoplastic epithelium has 

replicated compared to the surrounding stroma.  The left shifted distribution of this ratio (Figure 

2.2B) may indicate that there is variable timing to the reactivation of telomere maintenance in 

HPIN. Additionally, other factors may influence telomere length, since change in ploidy, 

concurrent telomerase expression, (408, 409) and additive oxidative stress (410) are all likely to 

influence the relative rates of attrition. The findings of the present study are coherent with that 

of Meeker et al., who examined 11 HPIN lesions from 6 patients after radical prostatectomy. 

Similar telomeric fluorescence in prostatic stromal and basal epithelial cells was found, with a 

73% decrease of telomere length in luminal HPIN compared to the basal cells, comparable to 

our finding of a 64% decrease compared to surrounding stroma.  

Overall, the data suggest that those men with biopsies showing shorter telomeres have a 

greater likelihood of being diagnosed with cancer. Shorter telomeres may either have been 

inherited as a constitutional trait, or have been acquired somatically because of induction of 

attrition by tissue-specific environmental factors. In either case, in HPIN lesions where cells 

have longer telomeres, there may be a tumour suppressor mechanism active, as the prostatic 

cells do not possess enough permissive mutations for continued proliferation to take place in the 

setting of a telomere induced DNA damage signal (261). As discussed in section 1.6.3.2, 

telomere length may act as a mitotic clock.  It follows that areas of HPIN with shorter telomeres 

may have replicated more and/or been subjected to greater oxidative stress thereby leading to a 

greater potential for stochastic events such as defects in p53 or p27 that ultimately contribute to 
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the genomic instability and acquisition of the chromosomal rearrangements that are associated 

with the emergence of carcinoma (216).  

Our findings lend support to the hypothesis that there may be broadly two types of 

HPIN; one arrested in oncogene induced senescence (with longer telomeres) and another that 

has bypassed OIS, continued to proliferate, and generated critically short telomeres (see Figure 

1.3). Support for this model comes from; (1) the PTEN knock-out model of prostate cancer 

which found heterozygous PTEN deletion lead to a p53 dependent senescence barrier that would 

likely occur to early in the evolution of HPIN for a telomere induced barrier (411), (2) High 

levels of ATM, CHk2 and gH2AX activation in HPIN (258) indicating the presence of an 

activated DNA damage response, (3) Telomerase expression at varying levels in HPIN and high 

levels in prostate cancer (408, 409, 412). 

Whilst current evidence suggests that histologically normal prostatic tissue adjacent to a 

CaP may harbour subtle oncogenic change(401, 413, 414) there are only limited data suggesting 

that the surrounding stroma is also subject to oncogenic modification (56). Preliminary evidence 

of such a phenomenon was first reported by Fordyce et al., (401) who found reduced telomere 

length in histologically normal prostate tissue (containing both epithelium and stroma) in tissue 

adjacent to foci of CaP.  The findings in the present study indicate that telomere attrition also 

occurs in the stroma. As the prostatic stroma is not thought to replicate to any significant degree 

during the process of prostatic carcinogenesis, these data suggest that aetiological factors 

possibly related to prostatic carcinogenesis may affect both compartments of the prostatic 

microarchitecture. Dietary antioxidant deficiency and chronic inflammation are considered 

candidates for this effect, as they both act though oxidative stress to which telomeres are known 

to be particularly susceptible (204, 415). Corroborative evidence (416) suggests that senescent 

prostatic fibroblasts (which are likely to be those with short telomeres), secrete a number of 

growth factors such as HGF that may facilitate prostatic carcinogenesis through mechanisms 
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such as co-activation of androgen receptor signalling (417). Taken together, these studies 

suggest a link between the well-established role of tumour-stromal interaction (339) and 

telomere dysfunction in prostatic carcinogenesis. 

Despite the intriguing observations made, there are limitations to this analysis. The 

patient biopsies originated from different community practices throughout Ontario, Canada and 

did not have consistent time/event-mandated further biopsies. We were limited in only analysing 

one HPIN containing biopsy site in the sextant biopsy set from every man rather than a thorough 

analyses of telomere length in every biopsy site which would allow a greater understanding of 

the evolution of telomere dysfunction in the three dimensional anatomy of the prostate gland. 

Additionally, ascertaining telomerase expression would have been useful in our cohort, but there 

are no reliable methodologies to do this in paraffin embedded sections (418).  Our patient 

numbers were limited, which likely accounts for the differences in significance between the 

Kaplan-meier assessments of the HPIN and stroma. Unfortunately, normal peripheral blood was 

not available to further explore the contribution of constitutional telomere length in this study. 

Finally, it is possible that a proportion of the men who were diagnosed with CaP during the 

study period had foci of neoplasia that were missed on the initial biopsy.  

In conclusion, this study suggests that analysis of telomere attrition might assist with 

diagnosis and prognosis in prostatic neoplasia. Further studies may examine the potential for 

greater prognostic value with other emerging markers of HPIN and prostate cancer (419-421). 
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3. THE ROLE OF TMPRSS2-ERG GENE FUSIONS IN 

THE EVOLUTION OF PROSTATE CANCER 

 

 

SUMMARY 

The description of novel recurrent ETS – related gene fusions in up to 80% of prostate cancer 

cases has emphasized the importance of understanding the origins and biologic implications of 

genomic instability in prostatic carcinogenesis. In this study, analysis of 15 prostate cancer cases 

by reverse transcription-polymerase chain reaction was used to detect six ERG-related gene 

fusion transcripts with TMPRSS2. No TMPRSS2/ETV1 chimeric fusion was detected in this 

series. Three-color fluorescence in situ hybridization confirms that TMPRSS2/ERG fusion may 

be accompanied by a small hemizygous sequence deletion on chromosome 21 between the ERG 

and TMPRSS2 genes. Analysis of genomic architecture in the region of genomic rearrangement 

suggests that tracts of microhomology could facilitate TMPRSS2/ERG fusion events. 

 

BASED ON; 

Three-Color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates genomic 

microdeletion of chromosome 21 is associated with rearrangement, Yoshimoto M, Joshua AM, 

Chilton-Macneill S, Bayani J, Selvarajah S, Evans AJ, Zielenska M, Squire JA., Neoplasia. 

2006 Jun;8(6):465-9. 

Note: M. Yoshimoto and A.M. Joshua contributed equally to this work. 
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3.1 Introduction 

Whilst well recognized in the haematological cancers, structural aberrations were 

thought to be rare in common solid tumours until the discovery in late 2005 of the TMPRRS2-

ETS fusion genes in CaP. Initially alluded to by Petrovics et al. (188) who described the high 

level of overexpression of the ETS-related gene (ERG1) in the prostate Cancer (CaP) 

transcriptome it was Tomlins et al. (159) who described novel gene fusions involving either 

ERG or related genes, ETV1, ETV4 (164) and ETV5 (422) that underlie their  previously 

described overexpression.  

 Here we provided independent confirmation of the translocation by FISH, demonstrated 

its presence in 6 of 15 (40%) CaP specimens and described two novel variant transcripts in a 

multi-centric tumour.  In addition, break-apart three-color FISH was used to confirm that a 

deletion between TMPRSS2 and ERG on chromosome 21 was associated with gene fusion 

events. This three-colour analysis was necessary to unravel the mechanisms involved in the 

translocation as dual colour FISH (as used in the original paper by Tomlins et al. (159)) is 

unable to distinguish between 3 possible scenarios of alterations at the TMPRSS2-ERG  locus on 

chromosome 21(423), one of which may have been telomere mediated as it involved a repeat 

amplification (see Figure 3.1). 
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Figure 3.1. Schematic representation of possible chromosome mechanisms that can give rise to 
the TMPRSS2-ERG fusion oncogene in prostate carcinogenesis, and the expected FISH signal 
pattern in interphase nuclei using a dual-color, break-apart assay with 2 probes flanking the 
ERG gene (the normal pattern would be 2 pairs of colocalized red and green signals). A, 
TMPRSS2-ERG fusion obtained by a deletion between the 2 genes, resulting in 1 isolated red 
signal (corresponding to the 3'ERG probe) owing to the loss of one green signal (corresponding 
to the 5'ERG probe). B, TMPRSS2-ERG fusion obtained by insertion of DNA material between 
the 2 genes into a third chromosome, identified by the splitting apart of 1 red and 1 green signal. 
C, TMPRSS2-ERG fusion obtained by a translocation between the 2 chromosome 21 homologs, 
resulting in 1 isolated red signal and the juxtaposition of the corresponding green signal with the 
colocalized red and green signal from the other chromosome 21 (hardly distinguishable from the 
deletion mechanism illustrated in A, but clearly different from the insertion FISH pattern). Box 
with darker shade blue indicates ERG gene; box with lighter shade blue, TMPRSS2 gene; dark 
blue circle, interphase nuclei; green circle, 5'ERG probe; red circles, 3'ERG probe. Figure 
adapted from; Teixeira: Am J Surg Pathol, 32(4), 2008.640-644 
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3.2 Materials and Methods 

3.2.1 Pathology 

Fifteen CaP tissue samples were obtained from radical prostatectomies.  Part of the 

tissue was embedded in frozen section medium and stored at -80˚C until tumor-rich tissue was 

selected for RNA extraction.  FISH analysis was performed on adjacent sections.  Tissue 

sections were also stained with hematoxylin and eosin and subjected to standard 

histopathological evaluation to determine pathological grade, tumor content and whether single 

or multifocal CaP was present.  Gleason scores ranged from 6-9 and one tumor sample (78-01) 

was considered to have multicentric histology.  

3.2.2 PCR/ Sequencing 

 To determine the prevalence of ETS rearrangement, reverse transcription and PCR (RT-

PCR) amplification (GeneAmp RNA PCR Core Kit, Applied Biosystems) was carried out as 

described by Tomlins et al. (159).  Duplicated RT-PCR products from 15 CaP cases were sized 

by electrophoresis on a 1.5% agarose gel and by a DNA 1000 LabChip Kit (Agilent 2100 

Bioanalyzer, Agilent Technologies, Inc., Palo Alto, CA, USA).  These products were then gel 

purified and sequenced directly using an ABI PRISM 377 sequencer (Figure 3.2). 
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Figure 3.2  Rearrangement of the TMPRSS2 and ERG genes in CaP.  A. RT-PCR products from 
six CaP cases were sized using the Agilent 2100 Bioanalyzer.  The fragments were analyzed 
with a ladder marker to determine the size of each variant TMPRSS2/ERG transcript.  
Depending on the breakpoints within each, the fragments were 800, 600, ~430, and ~350 base 
pairs.  B. Sequence electropherograms of the mutant TMPRSS2/ERG transcripts from case 78-
01.  Two unique variant transcripts were found to be present in this case; one containing exons 1 
and 2 of the TMPRSS2 gene and exons 5 and 6 of the ERG gene, and the other containing exon 
1 of the TMPRSS2 gene joined to exons 5 and 6 of the ERG gene.  The arrows indicate gene 
breakpoint.  C. Schematic representation of the exon composition of the TMPRSS2/ERG gene 
fusion products from variants CaP cases. 
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3.2.3 FISH 

To confirm the presence of TMPRSS2/ERG fusions we used interphase FISH assays on 

corresponding frozen sections.  A break-apart FISH strategy was employed in the analysis of the 

ERG gene rearrangement using BAC DNA probes published previously (159).  This approach 

consisted of two DNA probes positioned at opposite sides of the breakpoint region of the ERG 

gene, ERG 5’ and ERG 3’ loci, and differential labeling using the Ulysis, Nucleic Acid Labeling 

kit (Molecular Probes, Eugene, OR, USA).  The OregonGreen-labeled RP11-95I21 BAC probe 

spans the ERG 5’ and extends inward into exon 10.  The red-fluorescein labeled RP11-476D17 

BAC probe spans the ERG 3’ locus and extends inward past exon 4.  There is a 35 kb gap 

between the 3’ and 5’ ERG probes.  The TMPRSS2 gene was identified using the Pacific-blue 

labeled RP11-35C4 BAC probe, which starts 2.7 Mb from 5’ end of the ERG gene (Figure 3.3).  

The FISH criteria to evaluate TMPRSS2/ERG rearrangement were: (1) visualization of separate 

green 5’ ERG and red 3’ ERG signals, and (2) enumeration of each green, red and blue signal. 

The DAPI-stained tumor nuclei (dark blue) were identified in the adjacent H&E stained 

frozen tissue.  The normal signal patterns of the probes were confirmed by the co-localization of 

Oregon Green labeled 5’ ERG (green signals), Alexa Fluor 594 labeled 3’ ERG (red signals) and 

Pacific-Blue labeled TMPRSS2 (pale blue signals) in normal peripheral lymphocyte metaphase 

and normal interphase cells (Figure 3.4A).  The ERG rearrangement was confirmed by the split 

of one of the co-localized signals in addition to a fused signal of the unaffected chromosome 21 

(Figure 3.4B).  A minimum of 300 signals per probe was counted to confirm the TMPRSS2/ERG 

rearrangement in CaP specimens previously analyzed by RT-PCR.  A decreased ratio for the 5’ 

ERG probe mapping to the genomic interval between the TMPRSS2 region and 3’ ERG (Figure 

3.3) was indicative of a hemizygous deletion.  These experiments were optimized using FISH 
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ratios present in normal adjacent tissue and deletion cut-off values were defined as a ratio of 

green 5’ ERG signal over red 3’ ERG ≤ 0.80 (424) when break-apart FISH analysis indicated a 

fusion genomic rearrangement was present. 
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Figure 3.3 Location and names of the BAC probes and gene locations used in the analysis.  Gene 
locations are taken from the May 2004 assembly of the UCSC Genome Browser.  Numbers indicate 
base pair location along the chromosome.  Colors correspond to the fluorochromes used in the 
fluorescence in situ hybridization experiments.  
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Figure 3.4.  FISH analysis showing rearrangement of TMPRSS2 and ERG genes in CaP. A. FISH confirms the co-
localization of OregonGreen labeled 5’ ERG (green signals), AlexaFluor 594 labeled 3’ ERG (red signals) and Pacific-
Blue labeled TMPRSS2 (light blue signals) in normal peripheral lymphocyte metaphase and normal interphase cells.  B. In 
CaP cells, the break-apart FISH results in a split of the co-localized 5’ green/3’ red signals in addition to a fused signal 
(comprising green, red and blue signals) of the unaffected chromosome 21.  Using the TMPRSS2/ERG set of probes on 
CaP frozen sections, TMPRSS2 (blue signal) remains juxtaposed to ERG 3’ (red signal) (see white arrows), while co-
localized 5’ ERG signal (green) is lost, indicating the presence of TMPRSS2/ERG fusion and concomitant deletion of 5’ 
ERG region. 



 69

 

3.3 Results and Discussion 

3.3.1 Analysis 

Of the 15 tumors analyzed, 6 (40%) possessed an ERG rearrangement, confirming the 

FISH findings of the original study (55%; 16/29) (159).  Although none of our samples had an 

ETV1 rearrangement, this observation is not surprising since the original paper only detected the 

ETV1 fusion transcript in a small proportion of samples (25%; 7/29).  More recent data suggest 

that this may be because ETV1 has numerous upstream partners that may not have been 

detected using our FISH or PCR probes (174). Using the Agilent Bioanalyzer, the fragment 

lengths were precisely determined.  Five of the six positive ERG/TMPRSS2 fusions had lengths 

consistent with published findings, however one tumor sample (CaP 78-01) contained two 

variant TMPRSS2/ERG transcripts of 430 base pairs and 350 base pairs.  Automated DNA 

sequencing of gel purified transcripts from CaP 66-01 and CaP 79-01 (both typical 

TMPRSS2/ERG fusions), and from CaP 78-01 (upper and lower fragments) confirmed fusions of 

the TMPRSS2 with the ERG gene.  Sequence analysis of both gel purified fragments from CaP 

78-01 revealed two distinct in-frame rearrangements generating novel TMPRSS2/ERG fusion 

transcripts.  The variant TMPRSS2/ERG transcript of 430 bp resulted in the fusion of exons 1 

and 2 of the TMPRSS2 gene and exons 5 and 6 of the ERG gene, and the smaller variant 

TMPRSS2/ERG transcript of 350 bp resulted in the fusion of exon 1 of the TMPRSS2 gene to 

exons 5 and 6 of the ERG gene (Figure 3.2C).  It is conceivable that these fusion events 

represent protein splice variants or independent genomic alterations occurring within one clonal 

tumor outgrowth, or may represent independent fusions from this multicentric tumor. Applying 

the break-apart green (ERG 5’ locus) and red (ERG 3’ locus) FISH strategy allowed for the 

confirmation of TMPRSS2/ERG fusion in frozen sections from 6 different patients. Within these 
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6 patient samples, deletion between TMPRSS2 and ERG was detected in 3 samples. In all cases, 

the enumeration with flanking TMPRSS2 (pale blue) and 5’ ERG (green) in tumors showed that 

the ratio was < 0.80 consistent with a deletion affecting the intervening genomic DNA. This 

high ratio was needed to ensure that the deletions seen are not due to cutting artefact secondary 

to sectioning or the large nuclei or differences in DNA condensation (425). 

3.3.2 Genomic Architecture and Origin of Genetic Translocations 

Whilst there are many transcripts recognized, the human ETV1 gene has up to 14 exons 

with a DNA binding domain in the last exon, whereas the ERG gene has 11 exons with 

recognized functional domains occurring across exons 5,6 pointed (PNT) interaction domain 

and exon 11 (ETS DNA binding domain).  TMPRSS2 has 14 exons with functional domains in 

the latter half of the protein only.  Both ERG and TMPRSS2 lie on chromosome 21 at cytobands 

21q22.3 and 21q22.2 respectively, with approximately 3 Mb between them and lie in the same 

transcriptional orientation, with TMPRSS2 localized more telomeric than ERG.  As can be seen 

in Figure 3.3 the 5’ end of both genes faces the telomere. Given this genomic organization, and 

the observation that 5’ TMPRSS2 fuses in-frame with 3’ ERG, an interstitial deletion of the 

intervening 3 Mb of DNA must take place.  Indeed, our three-color FISH analysis confirms loss 

of genomic content from this region of chromosome 21.  This finding raises the question of 

concomitant haploinsufficiency of one or more genes mapping to this deleted interval. Deletion 

of the TMPRSS2 coding region resulting from the fusion rearrangement may lead to the 

haploinsufficiency of the gene. However, a TMPRSS2 knockout mouse with no apparent 

abnormal phenotype was recently reported (426).  Examination of the 13 genes within this 

region of chromosome 21 (ETS2, DSCR, BRWD1, HMGN1, C21orf13, SH3BGR, B3GALT5, 

PCP4, DSCAM, BACE2, FAM3, MX2, MX1) identified two candidate loci, HMGN1 and ETS2.  

Knock-out models of HMGN1 demonstrated that loss increased N-cadherin expression (427) 
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(which has been noted in high-grade CaP (428)) and alters the G2/M checkpoint (429).  

Additionally, underexpression of the ETS family member, ETS-2, has been associated with 

reduction of the antiapoptotic protein bcl-x(L) and growth regulatory factors Cyclin D1 and C-

myc in prostate cancer cell lines (430). Whilst recent transfection experiments with the 

TMPRSS2-ERG fusion gene alone have suggested that it confers malignant characteristics (186) 

whether this is valid in vivo is still a valid issue. 

Similar rearrangements involving ETS family members in the Ewings family of tumors 

and haematological malignancies have been shown to involve classic, complex or variant 

translocations.  Interstitial deletions have been described in leukemias (431) and congenital 

syndromes, and are thought to be due to defective homologous recombination (432), perhaps 

related to areas of microhomology. For every case of the ERG fusion transcripts, there is at least 

one area of up to 300bp on the intron following the transcribed TMPRSS2 exon that displays 

microhomology with up to 90% identity to multiple areas on the intron preceding the relevant 

ERG exon of the relevant transcript. These areas have recently been identified to be Alu repeats 

(169). 

3.3.3 Functional Implications 

The ETS-family of transcription factors encode nuclear transcription factors with an 

evolutionarily conserved ETS domain of 85 amino acids that mediate binding to purine-rich 

DNA residues. There are more than 400 target genes in the genome that are either positively or 

negatively regulated by them (178), so the consequences of ETS fusions could be diverse. To 

date (see section 1.6.3.1.1), the most relevant evidence suggests that overexpression of the ETS 

family of genes increases the invasiveness of prostate cancer cells and initiates a signaling 

program that leads to their dedifferentiation (186, 187), phenomena that fit with their occurrence 

at the HPIN-CaP transition point and be consistent with the “ETS conversion” process as a 
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means of epithelial to mesenchymal transition in prostatic epithelium. It also highlights the 

necessity for genomic instability to drive the process of carcinogenesis as an early change in the 

emergence of a neoplastic clone. 

3.3.4 Clinical Implications 

The clinical implications of the translocations remain unclear. In our small cohort, 

clinical characteristics were distributed unremarkably; tumor stages ranged from T2a-T3b and 

five tumors were Gleason 7, and 1 was Gleason 9. However, other cohorts provide inconsistent 

information (188, 190, 191, 433) although several larger studies are tending to suggest a poorer 

prognosis  especially in tumors with a duplication of the TMPRSS2-ERG  fusion (192, 193). In a 

recent autopsy study, all metastatic sites of disease demonstrated the TMPRSS2-ERG gene 

deletion (434) suggesting it may directly or indirectly promote the metastatic process and have 

an important prognostic role. The role the gene deletion plays in androgen refractory disease is 

also unclear, and is discussed further in Appendix 2. 
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4. TOPOGRAPHICAL ANALYSIS OF TELOMERE 

LENGTH AND CORRELATION WITH GENOMIC 

INSTABILITY IN WHOLE MOUNT 

PROSTATECTOMIES  

 

SUMMARY 

Many critical events in prostatic carcinogenesis appear to relate to the emergence of genomic 

instability. Characteristic abnormalities such as 8p loss, 8q gain, trisomy 7, PTEN 

microdeletions and TMPRSS2-ERG gene fusions appear to mediate mechanisms to increase 

neoplastic transformation. Evidence suggests that telomere dysfunction is a likely causative 

factor for some of these abnormalities on the basis of its prognostic importance and the break-

fusion-bridge cycle that can lead to manifestations of genomic instability. In this study, we 

correlate telomere length in various prostatic histologies with markers of genomic instability and 

immunohistochemical measures of proliferation. We find that telomere shortening is correlated 

with abnormalities on chromosome 8, but not with trisomy 7 or abnormalities of the PTEN 

locus. Additionally, there were associations with C-MYC aberrations in stroma with greater 

proximity to cancer and a correlation between telomere length in a number of prostatic 

histologies and the adjacent stroma, suggesting the importance of microenvironmental effects on 

telomere maintenance in the prostate. 

CONTRIBUTORS; 

Joshua, A.M., Yoshimoto, M., Marrano, P., Zielenska, M., Minkin, S., Evans, A., Van der 

Kwast, T., Squire, JA 
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4.1 Introduction 

As discussed in Chapter 2, telomere attrition appears to be an important prognostic factor 

in the progression of HPIN to CaP. The most plausible explanation for this is that telomere 

attrition causes the acquisition of genomic instability (see section 1.6.3) (see Figure 1.3). The 

forms of genomic instability that have been documented in prostatic carcinogenesis include both 

numerical  (trisomy 7 and gains of 8q) as well as structural instability  (TMPRSS2-ETS  (see 

section 3) and PTEN (see Appendix 1)). The contribution of telomere dysfunction to either form 

has remained unclear.  

The etiology of genomic instability remains unclear. Telomere shortening might occur 

due to factors discussed in section 1.6.3.2 such as hypoxia/ oxidative stress (205, 435, 436), cell 

replication (437) and defects in DNA repair (438, 439). Subsequent instability acts through 

intermediaries such as break-fusion-bridge cycles and anaphase bridges. However, it is difficult 

to demonstrate these intermediaries using prostate paraffin embedded material (given the slow 

doubling time of prostate cancer), although it is possible to evaluate them in prostatic cell lines 

(393).  

Evidence for the causes of structural instability is limited. Extrapolation from genetic 

instability syndromes (440) and other malignancies (441) suggest that defects in DNA repair, in 

particular double strand break repair may contribute, possibly in association with 

recombinogenic DNA elements such as Alu repeats or tracts of microhomology (442). These 

mechanisms may co-segregate with telomere attrition in a molecular model of prostatic 

carcinogenesis since common mechanisms such as defects in DNA double strand break repair 

may occur concurrently. 

As described in section 1.7.1, an oncogene induced senescence checkpoint (258) may act 

in the prostate to arrest pre-neoplastic cellular growth before the appearance of telomere crisis 
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(443). OIS might therefore act as an important tumour suppressor mechanism in a 

complementary fashion to that of early telomere shortening. Mouse models have suggested p53 

dependency of this checkpoint in a PTEN knockout phenotype (411), but its relevance and 

occurrence in vivo is unclear. Recently, Majumder et al., have suggested that this checkpoint is 

mediated by p27 in HPIN; however neither its relationship to telomere attrition nor its effect on 

the emergence of genomic instability have been clarified (298). 

To explore the aetiology and relationship of telomere attrition to the emergence of 

genomic instability, we planned a correlative study of; the causative factors of telomere attrition 

such as proliferation (measured by Ki67) and factors that may contribute to senescence and 

telomere attrition such as oxidative stress (measured by 8-Hydroxydeoxyguanosine) with 

telomere length and markers of instability (7CEP, 8p, 8CEP, 8q), microdeletions (PTEN) as well 

as expression of a senescence marker (p27KIP) in prostatic whole mounts. 

Our hypothesis was that Ki67 index and markers of oxidative stress would correlate with 

telomere attrition, which in turn would be correlated with markers of chromosomal instability in 

chromosomes 7 and 8. The inclusion of PTEN would act both as an important internal control 

and assist in the interpretation of p27KIP staining as AKT activation may contribute to tumour 

cell proliferation by phosphorylation and cytosolic retention of  p27KIP(444). 

In addition, by studying cell-to-cell variations within extensive regions of whole mount 

sections, these analyses represent a survey of the genomic architecture within the prostatic 

tissues to help understand the causes and consequences of the field effect in prostatic 

carcinogenesis (see section 1.4). To this end, we hypothesis further that HPIN further away from 

cancer is more likely to express high levels of p27KIP consistent with its role as a marker of  

prostatic cellular senescence (298). 
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4.2 Materials and Methods 

4.2.1 Tissue Accrual 

Patient samples used in this study were obtained prospectively as part of a collaborative 

research project with Dr John Trachtenberg (Department of Urology, UHN) and Dr Masoom 

Haider (Department of Radiology, UHN). The Research Ethics Board of the University Health 

Network, Toronto, Canada, approved this study. 

4.2.2 Pathology 

The prostatectomy samples were formalin fixed and paraffin embedded. Formalin was 

injected into the whole prostate to preserve tissue architecture before sectioning. Prostates were 

sectioned as whole mounts, and cut into blocks at approximately 3mm intervals. From the top of 

each block, 10 sections were cut, each section being approximately 5 microns in thickness. The 

top section was stained with hematoxylin and eosin to provide histological information. 

Subsequent sections were used for quantitative FISH, Chromosome 8 FISH and PTEN/ 

Chromosome 7 FISH, Ki67 and p27 staining respectively. Each prostate contained 8 blocks, 

which allowed examination of the most relevant part of the prostate gland. Their clinical and 

pathological characteristics are summarised in Table 4.1 
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Case Age Pathological 

Stage 

Pre-

op 

PSA 

Weight 

(grams)

BPH HPIN Cancer Gleason % of 

Prostate 

involved 

by 

Cancer 

1 59 T2c 2.93 72 +++ Bilateral 

++ 

Bilateral, 

predominantly 

left posterior. 

7 (3 + 

4) 

Tertiary 

5 

2 

2 63 T2c 10.99 50 ++ Bilateral 

minimal 

Bilateral, 

predominantly 

left posterior 

6 (3 + 

3) 

2.5 

3 49 T2c 4.18 48 ++ Bilateral 

+++ 

Bilateral, 

predominantly 

right lateral 

6 (3+3) 5 

Table 4.1 – Clinical and Histological characteristics of prostates analysed 

4.2.3 FISH 

QFISH was performed as outlined in section 2.2.4.  FISH for chromosome 8 (8p22 

(LPL)(Spectrum Orange), CEP 8 (8p11.1-q11.1)(Spectrum Aqua), 8q24.12-24.13 (C-

MYC)(Spectrum Green) were carried out with a multi-color probe (Vysis Provysion, Abbott 

Molecular, Downers Grove, IL, USA) as per manufacturers instructions. Similarly, FISH for 

PTEN (CEP 10 (10p11.1-q11.1)(Spectrum Green), PTEN (10q23)( Spectrum Orange)) and 

chromosome 7 (CEP 7 (7p11.1-q11.1)( Spectrum Aqua) were combined and hybridised as per 
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manufacturers instructions. All slides were counterstained with DAPI/antifade (Vectashield, 

Burlingame, CA, USA) and analysed. 

4.2.4 Image Capturing 

Following FISH, corresponding areas to those annotated on the H&E image were 

identified on the FISH slides using an epifluorescence microscope (AxioImager Z1, Carl Zeiss 

Microimaging, Thornwood, NY, USA) equipped with narrow band pass Cy3, FITC and DAPI 

filter sets, a 100W mercury lamp and 63X/1.4NA and 100X/1.4 NA oil immersion lenses. Filter 

Set 43HE (For  Cy3; Excitation 550/25, Emission 605/70), Filter Set 17 (For FITC; Excitation 

485/20, Emission 535/40) and Filter Set 01( For DAPI; Excitation 365, Emission 420) were 

used (Carl Zeiss, USA). Optimized exposure times were 200 ms (Cy3), 150 ms (FITC) and 5 ms 

(DAPI).Telomere imaging was undertaken using a 100X lens/1.4 NA and chromosomal imaging 

over the same glandular areas was carried out with the 63X lens/1.4 NA in order to maximise 

the number of cells assessable. A Zeiss AxioCam MRm was used for imaging. Sixteen-bit grey 

scale images were produced. In order to compensate for different focal depths for both 

quantitative FISH and numerical chromosome evaluation studies, images were z-stacked at 

0.5um intervals before being combined into 1 image in a maximum intensity projection 

(Axiovision version 4.6 (Carl Zeiss Microimaging, Thornwood, NY, USA)). Exposure times of 

the telomere and centromere signals were optimised to be within the linear range of fluorescence 

assessment. Once optimisation times were determined, they were kept constant for all further 

analyses.  

4.2.5 Image Assessment 

Quantitative assessment of the FISH signal intensity was performed as described in 

section 2.2.6. Subsequently, automated “macros” were written with the open source program, 
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ImageJ (405) to allow high-throughput quantitative analyses to be performed on a per nucleus 

basis, using predetermined thresholding algorithms to define relevant signal; Cy3 (telomeric) 

fluorescence that exceeded the average + 2.5SD of the fluorescence signal in the non-

overlapping nuclei and Cy5 (pan-centromeric) signal that exceeded the top 6.25% of the 

fluorescence signal in the non-overlapping nuclei were enumerated. These cut-offs differed as 

the centromeric signal is more diffuse given the larger number of centromeric repeats per 

chromosome compared to the telomere repeat sequences. The intensities of all pixels outlined 

within a predefined nuclear boundary were automatically summed, normalised on a per cell 

basis, and tabulated for analysis on a glandular basis. Since tissue sectioning can result in the 

truncation of nuclei, which will lead to loss of FISH signals in a subset of nuclei, it is important 

to rigorously optimize sample processing and scoring criteria (425). To avoid bias associated 

with truncation artefact; all samples were analysed independently, no analyses were planned that 

compared non-neoplastic to neoplastic cells (to minimize bias associated with differing nuclear 

size) and no dichotomous statistical analyses were undertaken, only correlative trends were 

analysed. 

In total, approximately 8000 cells of various histologies were analysed for telomere 

length, 8500 cells for chromosome 8 abnormalities and 9350 for PTEN abnormalities.  

4.2.6 Immunohistochemistry 

Annotated sections from each block were stained with Hematoxylin and Eosin sections 

and then scanned into the Aperio ScanScope system (Aperio Technologies, Vista, CA, USA) at 

20X magnification. Two pathologists (A.E., T.VdK) annotated the images for a variety of 

prostatic histologies. Other information, such as distance measurements within the prostates 

were derived from these sections. Ki67 staining was carried out with heat-retrieval with a 10 

mM Citrate buffer pH 6.0 followed by 1 hr incubation at 1 in 300 using the avidin-biotin 
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technique and staining with a commercial antibody (Ki67 clone SP6, Lab Vision, Freemont, 

CA, USA). P27 staining was also carried out with the above method, at a 1 in 300 concentration 

(P27KIP, clone 57, BD Biosciences, San Jose, CA). Both stained Ki67 and p27 images were 

scanned into the ScanScope system and quantified and standardised to an area of interest using 

the default Nuclear intensity quantification algorithm (Aperio Technologies, Vista, CA, USA) 

excluding the glandular lumens or other areas of irrelevant pathology.   

4.2.7 Statistics 

In order to examine the associations between telomere length and measures of genomic 

instability a number of indices of chromosomal instability were derived from the FISH data. For 

the chromosome 8 probes, two separate algorithms evaluated each probe locus. Initially, the 

percentage of cells within each gland that were abnormal (% of abnormalities) and the average 

number of signals in the nuclei were evaluated. These were combined into measures such as the 

percentage of total aberrations in a gland and the average signal count for a gland for all probes 

combined respectively. Monosomy was defined as a single signal for all 3 FISH probes and was 

recorded as a percentage of monosomic cells per gland evaluated. C-MYC gain was defined as 

diploid chromosome 8 centromere signals in combination with 3-4 C-MYC loci signals. C-

MYC amplification was defined as 5+ C-MYC loci signals with diploid chromosome 8 

centromere signals. Simple aneusomy was defined as 3-5 ploidy on the basis of C-MYC and 

CEP 8 loci whereas complicated aneusomy was defined as any other combination of genomic 

loci abnormalities at the CEP and C-MYC loci with greater than 3 signals. These measures were 

combined into a measure of total genomic aberrations. Variance was defined as the square root 

of the sum of the absolute differences from the diploid state for all 3 loci on the FISH probe 

divided by the number of cells -1. Similar methods were used for PTEN and chromosome 7 

analyses; All single probes were evaluated as above; PTEN simple aneusomy was defined as 3 
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or greater centromeric signals from chromosomes 7 and 10. PTEN deletion was defined as any 

loss of 1 or more PTEN loci in combination with 2 or more centromeric loci.  

All statistical assessments were carried out with the “R” software package (407).  

Because of limitations imposed by truncation artifacts, we did not attempt to obtain an absolute 

measure of chromosome instability in sections, but rather examined correlations between 

measures of instability and telomere length. All correlations were examined with normalised 

telomere lengths. Wilcoxon tests were used to examine for the difference between telomere 

lengths. Spearman correlation was used to determine the association of telomere length with 

measures of instability. Pearson correlation was used to determine the association between 

telomere length in prostatic epithelial histologies and adjacent stroma. As multiple comparisons 

were carried out on the same data set for associations between measures of chromosomal 

instability and telomere length, all these P values are hypothesis generating only and require 

further validation in additional data sets. P values are otherwise considered significant less then 

0.05. 

 

4.3 Results 

There are three aspects of telomere pathophysiology reflected in the analyses of these 

prostatectomies (see Figure 4.1) 

4.3.1 Relationship of prostatic pathology to telomere length  

As shown in Figure 4.2, we noted significant telomere shortening in all tumours in 

comparison to normal epithelium, consistent with previous findings. Two of our 3 cases also had 

telomere shortening in regions of BPH in comparison to normal epithelium (case 1 (p = 0.0003, 

95% CI -0.28 to -0.08) and case 2 (p= 0.001, 95% CI -0.44 to 0.09). None of our cases had 

telomere shortening in areas of cystic atrophy when compared to normal epithelium. The 
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telomere length of atrophic lesions might depend on the proximity of the cellular atrophy to the 

cancer (37), but such a relationship was not evident in the cases we analysed. 

 

4.3.2 Relationship of stromal telomere length with adjacent epithelium 

Given the findings of an association between telomere length in HPIN and the 

surrounding stroma in section 2.3.1.2, we explored whether a similar relationship existed in this 

cohort. There was a correlation between the telomere length in the stroma and that of the 

epithelial pathology to which it was adjacent for nearly all histologies (see Table 4.2) in 

particular for normal and atrophic epithelium. The relationships in cancer and HPIN were 

evident in 2 of 3 cases, likely limited by numerical power. 

4.3.3 Association of genomic instability with telomere length and 

prostatic histologies  

There was an association between genomic aberrations on chromosome 8 with telomere 

length whilst surprisingly, a consistent lack of any association across the PTEN locus. (see Table 

4.3 (all neoplastic pathologies including HPIN, Gleason 3,4,5) and Table 4.4 (HPIN only)). 

Intriguingly, there were no associations of abnormalities seen at the chromosome 7 centromere 

with telomere length for either cancer or HPIN. There were no associations of any marker of 

instability with telomere length in stroma or normal epithelium.  

To examine the effects of telomere attrition in stroma adjacent to cancer, we also assessed the 

relationship of the genomic abnormalities in the stroma with their proximity to cancer (see 

Figure 4.3). They show that with few exceptions, the probability of any aberration at the C-

MYC locus, including C-MYC gain or amplification was higher in the stroma close to cancer 

than further away (see Table 4.5). 
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Figure 4.1 An illustration of the methodology in this study. Prostate whole mounts were 
serially sectioned, with the top section being annotated electronically by a pathologist 
after slide scanning. Subsequently, exact glands on deeper sections were identified and 
imaged with telomere/ centromere quantitative FISH, chromosome 8 probes (illustrated 
in the top right hand corner), PTEN and chromosome 7 probes (illustrated in the bottom 
right hand corner), as well as immunohistochemistry for Ki67 and p27. 
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4.3.4 Relationship of Ki67 and P27 with telomere length and histologies 

Ki67 staining is illustrated in Figure 4.4. For all prostates there is a gradual increase in 

the computed Ki67 index as the histology becomes more malignant, with relatively similar 

scores in benign lesions.   

In order to establish whether there was an inverse relationship between Ki67 index and 

telomere length, scatter plots were generated to examine the relationship between proliferation 

and telomere attrition. There were no consistent correlations between telomere lengths in pre-

neoplastic or neoplastic histology and proliferation index. However, upon visual inspection, 

there were nearly no samples with high proliferation indices and long telomere lengths. 

P27 staining may assist in the interpretation of senescence phenomena, telomere length 

in HPIN and the response to PTEN deletion in our sections. However, we are yet to complete 

p27 staining on our sections, although reproducible staining on preliminary sections has been 

noted. 
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Figure 4.2 Comparison of prostatic histologies across cases analysed normalised to average stromal 
telomere values (for details see text) 



 86

 
 

 

 
Figure 4.3 Association of the percent aberration at the C-MYC locus in peripheral zone stroma 
against the distance to cancer in 3 cases analysed. Case 1 (top left), Case 2 (top right) and Case 
3 (bottom). For statistical tests, see text. 
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Figure 4.4 Normalised Ki67 Indices displayed by histology across the prostates analysed. 
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4.4 Discussion 

In this study, we examined approximately 25000 cells within 3 prostatectomy samples to 

understand the role of telomere attrition within various prostatic histologies and the emergence 

of chromosomal instability in prostatic carcinogenesis. We hypothesised that telomere attrition 

would increase the probability of chromosomal instability in neoplastic pathology, whilst a field 

effect of telomere attrition would be evident across stroma adjacent to these lesions. 

BPH hyperplastic nodules are composed primarily of stromal components and to a lesser 

degree, epithelial cells. Generally, stroma comprises approximately 60 percent of the volume, 

epithelium 15 percent, and glandular lumens 25 percent (445). The finding of telomere 

shortening (compared to normal) in BPH in 2 of our 3 cases is surprising given the benign 

nature of this lesion. In the third case, the relative lack of BPH meant that this pathology was 

sampled less than in the previous two cases (see Figure 4.2) perhaps accounting for the 

differences seen. There has only been limited analysis of telomere length in BPH in the 

literature; some trends to reduced telomere length in BPH compared to normal epithelium have 

been noted previously (446). Most recently, Heaphy et al., reported telomere shortening in BPH 

associated with a tumour is comparable to the tumour telomere lengths (447). However, a 

similar relationship with telomere length was not evident in our dataset although we did not 

sample BPH adjacent to cancer specifically.  

In one of our cases, the BPH telomere length was not significantly different to HPIN 

(case 2, p=0.223, 95% CI -0.7 to 0.2) however in all three cases BPH telomere length was 

significantly longer than in neoplastic epithelium. These findings might reflect the telomere 

shortening that occurs with cellular proliferation inherent to BPH, however there was no 

correlation with Ki67 index and telomere length in these samples. Therefore it is more likely 



95 

that this shortening is related to the microenvironment surrounding the BPH influencing 

telomere length. An alternative explanation is that the telomere length seen represents a 

reflection of the proliferative history of the lesion whilst the Ki67 index is only a snapshot of the 

lesions current behaviour. The well accepted lack of association of BPH with prostate 

carcinoma, even in the presence of telomere shortening might reflect the presence of an intact 

DNA damage checkpoint, related to p27 or 14-3-3sigma status (448-450), or the fact that BPH 

is primarily a stromal proliferation with relatively little increase in epithelial mass. Our findings 

support the previously reported hypothesis that one mechanism driving BPH in older men is the 

accumulation of senescent cells expressing IL-1alpha, which in turn increases FGF7 secretion 

and proliferation of non-senescent epithelial cells (451). Further markers of prostatic fibroblast 

senescence that could be examined to support this hypothesis are discussed in section 5.2.4.2. 

The remainder of our telomere length measurements were consistent with our previous 

findings, although case 2 demonstrated relatively longer telomere lengths in HPIN than would 

be anticipated. This case demonstrated only 2 foci of HPIN, and 1 of these foci (with the longer 

telomere length) was the “flat” variant of HPIN. Whether the different histological variants of 

HPIN have any relationship to their telomere length is unknown, but flat HPIN has been noted 

to persist after androgen ablation so may be genomically different to other forms (452-454). Of 

note, this patient did not have endocrine therapy before his prostatectomy. Therefore, it is 

possible that “flat” HPIN may represent either a “stem-cell variant” of HPIN or that this HPIN 

variant represents an alternative path to neoplasia distinct from telomere attrition and the 

ensuing molecular consequences. 

The relationship between telomere length in various histologies and the surrounding 

stroma was noted previously in section 2.3 for HPIN. A similar finding was evident in a number 

of other histologies within the gland. As discussed in section 2.4, microenvironmental changes 

affecting telomere length within the prostate (such as oxidative stress and hypoxia (436, 455)) 
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may contribute to these findings. Indeed, the prostate is known to be hypoxic (456, 457) and 

serum markers of oxidative stress are found more commonly in men with prostate cancer than 

age-matched controls (458).  

Genomic aberrations within cancer-associated stroma have not been reported commonly 

in prostate cancer but there is substantial evidence that cancer-associated fibroblasts are 

phenotypically different from normal prostatic fibroblasts. For example, Olumi  et al., evaluated 

explanted tumour growth derived from fully transformed prostate epithelial cells mixed with 

fibroblasts isolated from prostate stroma or normal prostatic stroma (339). They found that only 

prostate associated fibroblasts were able to support the tumorigenic growth of fully transformed 

prostate cells in vivo, indicating that non-transformed stromal cells derived from the tumour 

microenvironment have either lost the capacity to exert growth suppressive control over initiated 

epithelial cells and/or acquired new capabilities permissive for carcinogenesis. This concept is 

also supported by recent studies suggesting genomic and epigenomic abnormalities in cancer 

associated stroma (56, 157, 459). 

An important finding of this work is the correlation between telomere length and 

selected markers of genomic instability. For example, there were no associations with any 

markers of instability at the PTEN locus, suggesting that the mechanisms of microdeletion are 

distinct from those involving telomere attrition. This finding is in agreement with known 

intermediaries and end products of telomere dysfunction such as break-fusion-bridge cycles and 

multipolar mitoses, which are not known to include interstitial microdeletions (212). It also 

suggests that a common underlying process such as a defect in DNA repair (155) does not cause 

both telomere induced chromosomal instability and microdeletions. Indeed, whilst telomere 

shortening is a universal phenomenon in prostatic carcinogenesis, PTEN deletion is only found 

in up to 40% of localised disease suggesting that these phenomena are likely to be independent. 

An important caveat to this conclusion is that the commercial PTEN probe used spans 368 Kb 
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and thus may be relatively insensitive to microdeletions of the PTEN locus as may occur in the 

PC3 cell line and xenografts (460) . Whilst detailed analyses of the extent of PTEN deletion and 

thus the sensitivity of the commercial probe have not been reported, data from our laboratory 

(461) and others (324) suggests that small microdeletions do exist in vivo although most 

deletions are large enough to be detected, and are correlated with protein expression by 

immunohistochemistry (see section APP 1.3.1). 

The associations found with the other chromosomal loci, in particular the C-MYC region 

in both HPIN and cancer suggests that telomere dysfunction may underlie the frequent gain of 

this region in prostate cancer. Despite gain of the C-MYC locus being associated with telomere 

attrition, gain of centromere 7 was not. This may relate to the different mechanisms of 

chromosomal gain in neoplasia, with trisomy 7 being related to other mechanisms of instability 

such as centrosome aberrations (153) or trisomy 7 not being present in these samples. The 

variability seen in the associations of telomere length and these markers of instability is likely 

due to differences between cases with regards to pathogenesis, karyotype or sampling. 

Nevertheless, telomere generated instability is likely to play an important role in the generation 

of phenotypes of instability given the large number of cells analysed, the correlations in the 

changes seen with pre-neoplasia as well as neoplasia and the associations noted with markers of 

whole cell instability such as monosomy in our data set. 

These data parallel the conclusions of Gisselson and others (462) who investigated the 

nature of chromosomal instability across diverse tumour types. These studies suggest that one 

mechanism alone, such as telomere dysfunction, is insufficient to account for the complete set of 

genomic aberrations found across human tumours such as urothelial (463), renal (464), ovarian 

(465, 466), head and neck (467), osteosarcomas and pancreatic carcinomas(213).  

There remain methodological areas of improvement that improve the understanding of the 

mechanisms of telomere dysfunction in future studies. Full three-dimensional rendering of the 
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prostate could not be performed due to the large size of the H&E stained whole mount slides. If 

computationally possible in the future, it would clarify the nature of the field effect in three 

dimensions. Additionally, a number of antibody stains were attempted both alone and in 

conjunction with FISH during the preparation phases of this chapter. Despite numerous 

attempts, both 8-hydroxydeoxyguanosine (a marker of oxidative stress), gH2AX and P-ATM 

were unable to be optimised with standard immunohistochemical techniques. Indeed, there are 

very limited papers describing the use of these antibodies in prostate tissue, and non-specific 

staining has been noted in uterine tissue recently (468). Finally, these findings need to be 

validated in further samples, to ensure that none of the associations found were seconday to 

multiple comparison testing. 

 How these findings relate to the newly discovered TMPRSS2-ETS gene fusions and 

translocation is unclear from the samples analysed. However, one possibility is that telomere 

generated C-MYC amplification is a mutually exclusive phenomenon from the TMPRSS2-ERG 

fusions as these fusion genes have also been shown to activate C-MYC (187). Such a hypothesis 

is supported by CGH suggesting prostate cancers with C-MYC amplification are distinct from 

those with the TMPRSS2-ERG fusions (389). Therefore analysing C-MYC 

immunohistochemistry in these sections, now that a commercially available antibody has been 

validated (250), would be of great interest. 

This work consolidates the role of telomere attrition as a driving force for chromosomal 

instability in the development of prostatic carcinoma. The suggestion that certain genomic 

aberrations, such as those on chromosome 8, are more likely to be due to telomere attrition and 

its consequences than centrosome aberrations or other mechanisms remains to be validated. It 

also suggests that the genomic architecture of the telomeres within the gland is far more 

complex than previously anticipated, with the lack of association between proliferation and 

telomere length suggesting other microenvironmental influences on telomere length. 
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5.CONCLUSIONS AND FUTURE DIRECTIONS 
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5.1 Conclusions 

5.1.1 Introduction 

 
Classically, cancerous cells are characterised by six acquired capabilities; evading 

apoptosis, self-sufficiency in growth signals, insensitivity to anti-growth signals, tissue invasion 

and metastases, sustained angiogenesis and limitless replicative potential. Genomic instability 

represents “the means that enables evolving populations of premalignant cells to reach these six 

biological endpoints” (391).  

Traditional models of carcinogenesis have emphasised single genetic “hits” to key 

pathways in the emergence of carcinoma. However, these models have difficulty accounting for 

both the frequency of cancer in human populations and the emergence of the heterogeneity 

evident in so many tumour types. A revised model emphasising an early defect in mechanisms 

regulating genomic instability may more accurately reflect the in vivo situation as this would 

lead to higher than average rate of mutations and cell-to-cell heterogeneity that would accelerate 

tumorigenesis. To this end, this thesis has focussed on the role of genomic instability in the 

development of prostate cancer. Prostate cancer is a likely target for telomere dysregulation 

given the proliferative abnormalities characterizing early preneoplastic stages, the close link of 

CaP risk with aging and its characteristic cytogenetic profile of abnormalities indicating an 

instability phenotype. 

It remains to be proven whether the emergence of genomic instability within a 

preneoplastic population is a cause or consequence of neoplasia (469, 470) but suggestive 

evidence from congenital syndromes involving defects in DNA damage proteins (471) suggests 

that these genome maintenance systems contribute significantly to causality. Evidence that the 

prostate has defects in DNA damage/ repair, checkpoint and senescent pathways is of renewed 
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interest (157, 290, 298, 472); indeed these defects may be further exacerbated by environmental 

effects such as intra-prostatic hypoxia (156, 473) or a genetic predisposition to chromosomal 

instability (474). This concept has particular relevance to this work, as a prerequisite for the 

perpetuation of genomic instability within a tumour population is the ongoing abrogation of the 

DNA damage response and its consequences.  

5.1.2 Overview of Conclusions 

My work concentrated on the emergence of genomic instability secondary to telomere 

dysfunction as well as the microdeletions that characterise deletions such as those found in the 

PTEN and TMPRSS2-ERG loci. As discussed in Chapter 1, telomeres have an important role 

both as a tumour suppressor mechanism, when DNA damage pathways are intact and then as a 

generator of genomic instability as cells pass through telomere “crisis” and ultimately reactivate 

telomerase. Chapter 2 of this work demonstrated the prognostic importance of telomere 

shortening in the occurrence of prostate cancer from HPIN, which is hypothesised to act via the 

generation of genomic instability. This finding, evident both in the stroma and the HPIN 

epithelium suggested a field effect in the generation of prostatic carcinogenesis and was in 

agreement with findings suggesting the poor prognosis of short telomere length in prostate 

cancer itself (401, 413). The results also revealed aspects of telomere attrition such as the 64% 

reduction in telomere length compared to the surrounding stroma. This study continued the 

previous work from our laboratory in this area, connecting the work of Al-Maghrabi et al (215) 

who defined the extent of chromosomal instability and prognosis in HPIN to Vukovic et al, 

(216) who defined the extent of telomere shortening and chromosomal instability in HPIN (see 

Figure 1.3).  

Chapter 3 explored the phenomena of the TMPRSS2-ERG fusions to determine if this 

was a telomere related phenomena. At the time of publication, this issue was unresolved, but 
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crucial to understanding the emergence of prostate carcinoma, as it was originally not noted to 

be evident in HPIN. Our results validated the findings in the original paper (159) and found the 

presence of multiple variants of the fusion gene. However, the origin of crucial microdeletions 

such as TMPRSS2-ERG  (see chapter 3) and PTEN (see Appendix 1) are unknown. As discussed 

in section 3.3.2, we have suggested that an Alu repeat might mediate the TMPRSS2 deletion but 

this would not account for the PTEN deletion or the other more complex translocations 

characteristic of the ERG locus, which may be subsequent to as yet undefined nuclear 

microarchitecture (475), unstable genomic sequences (476, 477) or erroneous non-homologous 

end joining (155, 156). 

Chapter 2 suggested that further validation was required to understand the field effect in 

prostatic carcinogenesis in a whole mount model and relate the emergence of chromosomal 

instability to telomere shortening. Thus, chapter 4 (i) clarified further field effects, e.g. the 

apparent increase in copy number of the C-MYC locus in cancer associated stroma, (ii) provided 

an expansion of the initial finding of a relationship between prostatic stroma and HPIN to other 

types of prostatic epithelia, implying the existence of microenvironmental effects in prostatic 

cell homeostasis, (iii) demonstrated a correlation between telomere attrition and the emergence 

of markers of genomic instability. These correlations may also allow insights into which 

mechanisms of instability are responsible for which patterns of instability. For example, 

numerical aberrations of the arms of chromosome 8 appeared to be associated with telomere 

attrition, while those of chromosome 7 were not (section 4.3.3).  

5.1.3 Other modulators of genomic instability 

Other candidates with an established role in developing instability in prostate cancer 

include centrosome abnormalities and mitotic spindle defects (153). As organizers of 

microtubules, centrosomes play an important role in many microtubule-mediated processes, 
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such as establishing cell shape and cell polarity (478-481). Centrosomes also coordinate 

numerous intracellular activities in part by providing docking sites for regulatory molecules, 

including those that control cell cycle progression, spindle function, and cell cycle checkpoints 

(482-484). However, centrosome defects have only been detected in 28% of HPIN and their 

correlation with chromosomal instability is inconsistent (154). Overexpression of the Aurora 

kinases may have a role in the development of controsome related chromosomal instability (394, 

485) and are found in HPIN (485, 486) but their contribution to genomic instability has 

remained uninvestigated. They have recently been targeted in drug development in prostate 

cancer (486) with encouraging results.  

There are only limited reports of the role of mitotic spindle defects in prostatic 

carcinogenesis. Of interest is a recent report suggesting that the prostate membrane specific 

antigen (PMSA), an protein commonly found overexpressed in prostate cancers, associates with 

the anaphase-promoting complex, and when overexpressed induces aneuploidy (395). 

5.1.4 Relevance to Age dependency of Prostatic Neoplasia 

Another link between this work and prostate pathobiology is the age-dependency of this 

neoplasm. This may have relevance to both the epithelium itself and the prostatic stroma. Age 

dependent progressive CpG island methylation takes place in a subset of cells residing in normal 

tissues and has been found in prostatic tissue(487, 488). These changes may target cancer 

relevant pathways (489) that may predispose to further oncogenic change as discussed in section 

1.6.2.1.  

5.1.5 Relevance of Stromal-Epithelial Interactions 

Stromal-epithelial interactions are crucial to the emergence of prostatic carcinoma (see 

section 1.7.3). Previous studies have demonstrated that only prostatic carcinoma associated 
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fibroblasts were able to support tumourigenic growth of fully transformed epithelial cells in vivo 

(339) – indicating that non transformed stromal cells derived from the tumour 

microenvironment have either lost the capacity to exert suppressive control over initiated 

epithelial cells and/ or acquired new capabilities permissive for tumourigenesis. Nevertheless, 

an age-dependent process such as telomere attrition could induce stromal cells to facilitate this 

growth. Fibroblasts senescence after defined population doublings; a phenomenon seen both in 

vitro (490) and in vivo (491, 492). The senescent phenotype has been shown to lead to an 

increase in their production of cytokines, proteases and other matrix-degrading enzymes (493, 

494). This milieu produced by the fibroblasts has been hypothesised to support tumour growth 

(495, 496) with evidence from studies in both prostate and breast cancer that alteration of 

stromal gene expression supports tumour growth (497). The finding in chapter 4 of a correlation 

of telomere length between a variety of prostatic epithelia and stroma might suggest that these 

changes occur in parallel and either directly or indirectly affect telomere length. 

5.1.6 Potential for Clinical Impact 

With findings that relate both to the prognostic value of telomere assessment and its 

mechanism of promoting carcinogenesis, this work reinforces the argument for greater emphasis 

to be placed on chemo-preventative strategies for prostate cancer (498). Prostatic carcinogenesis 

likely has a latent period of 20 years before the development of HPIN and another 10 years 

before the emergence of overt carcinoma (499). Epidemiological studies suggest that patients 

with HGPIN and no detectable cancer progressed to a 40% incidence of cancer in 3 years and to 

80% incidence in 10 years (500). This provides a useful period of time to examine strategies of 

chemoprevention that have only begun to be explored (501).  

This work also suggests new avenues for drug discovery in the area focussing on 

genomic instability, in particular on the transition from HPIN to prostate cancer. Drugs targeting 



105 

components of the machinery that lead to genomic instability are only in the preliminary stages 

of development (502) although a yet to be reported Canadian phase 3 prostate chemoprevention 

trial utilising lycopene, vitamin E and soy extract may be evaluating agents that act partly 

through telomerase inhibition (503-505). Recent insights into the role of p27KIP as a barrier to 

prostatic neoplasia that occurs in HPIN suggests the potential utility of CDK inhibitors (298) 

whilst insights and approaches to reinforcing the bypassed DNA damage checkpoints that 

facilitate telomere dysfunction may be elucidated from the functional validation experiments 

described below. Finally, the mechanism that mediates the fusion of dysfunctional telomeres 

during crisis is unclear. Knowledge of this mechanism could suggest possible ways to minimize 

chromosome fusion and maximize apoptosis in response to dysfunctional telomeres. 

The work presented in Appendix 2 of a trial of cytarabine as a potential inhibitor of ETS 

related transformation is an attempt to alter the consequences of the effect of genomic instability 

on prostate carcinogenesis. As discussed in section APP 2.5, despite the absence of significant 

PSA responses, a notable finding of this trial is the re-induction of hormone sensitivity in a 

subset of patients. I hypothesize that this might be due to a differentiation effect of cytarabine on 

ETS positive tumours (506), disrupting the balance between ETS-related oncogenes (e.g. ERG, 

ETV1, ETV4) and tumour suppressor genes (PDEF, ESE-3) in a given tumour. This hypothesis 

awaits validation through FISH analysis of tumours, which is in progress. This study is also 

attempting to isolate TMPRSS2-ERG cDNA from patient blood samples. 

Drug trials focussing on pathways that may be relevant to the work presented in 

Appendix 1 have been carried out but have not been stratified by the presence or absence of  

PTEN deletions that would likely to influence response (507, 508). Similarly, retrospective 

studies of the value of PTEN or indeed TMPRSS2-ETS status in predicting the time to androgen 

independence have not been reported but remain pertinent to understanding the roles of these 

oncogenes in the natural history of prostate cancer. 
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5.1.7 Potential for Methodological Advances 

The advances in imaging of florescence signalling demonstrated by this work have 

contributed to the field. Based on the open source software package ImageJ (405), macros were 

developed that allowed for the high throughput assessment of telomere and centromere 

fluorescence. Further advances will concentrate on automated nuclear identification, which 

would accelerate the ability to carry out studies such as this. A unique aspect of the 

methodology presented in this work is the correlative nature of the assessments in chapter 4. The 

heterogeneity inherent in prostate cancer implies that bulk assessment of tumour biomarkers 

through tissue microarray or other evaluation techniques is unlikely to isolate populations of 

tumour cells that could reveal insights into carcinogenesis. The gland-by-gland assessment 

evaluated in chapter 4 through serial sections has been attempted infrequently (215) and full 

implementation awaits the more widespread use of techniques such as quantum dot technology 

to evaluate multiple biomarkers in the same section. Finally, the use of automated scanning and 

evaluation technologies as described in section 4.2 are promising pathological tools, in the 

evaluation of prostate pathology (509). The use of quantitation algorithms with this commercial 

package is new to the scientific literature (510) and needs further validation before diagnostic 

(as opposed to research) use. 

5.1.8 Summary and Model of Genomic Instability in Prostatic 

Carcinogenesis 

In conclusion, a model for the emergence of genomic instability in prostatic 

carcinogenesis is proposed that suggests that in the aging prostate there is a coordinate reduction 

of constitutional telomere length in foci of epithelium and adjacent stroma, secondary to a 

combination of (likely diet-induced) proliferative, genotoxic and oxidative stress (511, 512). 
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These early alterations may lead to epigenetic change such as the methylation of p16, a 

checkpoint protein that normally would arrest further proliferation (513). Ultimately, the 

ongoing selective pressure leads to early oncogene activation, resulting in oncogene-induced 

senescence in a proportion of proliferative foci. This senescence checkpoint is commonly 

associated with widespread DNA double strand breaks, some of which may facilitate the 

emergence of microdeletions such as PTEN and TMPRSS2-ETS, in particular in the presence of 

impaired recognition and repair of DNA damage (258). Certain foci probably escape this p27 

related checkpoint through altered up regulation of C-MYC (250, 514), altered cell cycle 

checkpoint profiles or p53/Rb defects (257, 515). It is likely that these same checkpoint defects 

facilitate critical telomere shortening as cellular proliferation continues. For example, C-MYC 

can directly or indirectly induce telomere shortening (516) and p53 defects are required in 

multiple models for cells to proceed through telomere crisis (517). Other mechanisms of 

genomic instability such as multi-polar mitoses may contribute to centrosome and mitotic 

spindle dysfunction. Ultimately, through mechanisms that remain unclear but may include C-

MYC activation (518), telomerase is reactivated and partially suppresses telomere-generated 

instability, stabilising the neoplastic clone and preventing mitotic catastrophe. Ongoing 

development of genomic evolution within the cancer is likely due to both the selective pressure 

of the environment and ongoing instability generated by multiple mechanisms. 

Understanding of the basis of both cancer initiation and progression is crucial in 

development of meaningful diagnostic, prognostic and predictive markers in cancer treatment. 

To this end the work presented here contributes to the understanding and evaluation of genomic 

instability. 
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5.2 Future Directions 

5.2.1 Introduction 

Whilst this work has clarified mechanisms surrounding the evolution of genomic 

instability in prostatic carcinogenesis, a greater appreciation of its ultimate clinical impact 

requires more research on the two barriers to the progression of prostatic preneoplasia; 

oncogene-induced senescence and telomere-induced senescence.  

5.2.2 Functional Validation of Telomere Mediated Instability 

The latter has been previously investigated in our lab, which has demonstrated the 

presence of the BFB cycle as a mechanism of chromosomal instability concordant with loss of 

telomeric sequence in prostate cancer cell lines. It remains unclear whether the BFB cycle 

originates directly from a phenomena related to telomere dysfunction, an alternate source of 

sister chromatid fusions or whether there are alternative sources of double stranded breaks such 

as those that may occur during oncogene induced DNA damage. If observed levels of 

chromosomal instability are a consequence of telomere dysfunction, upregulation of telomerase 

expression should stabilize the telomeric ends and decrease the levels of chromosomal 

instability. Suppression of telomerase expression in prostate cancer cell lines DU 145 and 

LNCaP has been shown previously to initiate a severe crisis-like process, chromosome 

rearrangement and apoptosis (519). Upregulation of telomerase across a panel of benign and 

malignant prostate cell lines could be achieved with cDNA transfection. Given the possibility 

that hTERT transfection may affect telomere protection primarily rather than telomere length in 

those cell lines with defective checkpoint pathways (219), these pathways will also have to be 

carefully quantified and to understand the effect of the transfection on telomere length and “t-
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stumps” (see section 1.6.3.3) telomere FISH for signal free ends and STELA analysis of 

telomere ends may have to be undertaken.  

Ultimately, the emergence of telomere dysfunction could be monitored through the 

enumeration of telomere-induced DNA damage foci (assessed by immunofluorescence 

colocalisation) and anaphase bridges with overall instability assessed by techniques such as 

SKY and FISH for multiple chromosomal loci.  

Subsequently, an expansion of this work could help address the issue of whether 

dysfunctional telomeres initiate genomic instability in the absence of mutations in checkpoint 

genes, or whether the main role of telomere dysfunction in ongoing chromosomal instability is 

after the loss of checkpoint proteins. To achieve this, we plan to examine the role of the DNA 

damage response in modulating or enhancing the emergence of genomic instability through 

siRNA knockout of critical DNA damage proteins (e.g. ATM, CHK2, p53 and p21) or 

pharmacological enhancers of p53 action (e.g. PRIMA-1 or Nutlin) in the above cell lines. 

Alterations in some of the genes associated with DNA repair pathways could perpetuate further 

karyotypic changes. For example, proteins such as NBS1 (520) and WRN (521) bind to 

telomeric protection proteins (e.g. TRF2) and can influence telomere loss. Additionally, defects 

in a large number of proteins involved in telomere maintenance also can promote chromosome 

fusion, including Ku, DNA-PKcs, the MRE11-RAD50-NBS1 complex and the WRN helicase. 

For example, Ku is localized to telomeres in humans and lack of Ku function leads to telomere-

telomere fusions in mammals (522). This protein forms a complex that is thought to process 

broken DNA ends in preparation for their repair. It would be of interest to functionally 

investigate the DNA damage defects that have been suggested to occur in normal prostatic 

epithelium (Wee-1) and in early carcinogenesis (14-3-3) to see if their knockout in normal 

prostatic epithelial cell lines predisposes to the emergence of instability (157, 523). To verify 

that these DNA damage response protein(s) co-localize specifically at the telomere, chromatin 
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immunoprecipitation (ChiP) and dot-blot hybridisation to telomeric DNA with appropriate 

antibodies would be carried out.  

5.2.3 Functional Validation of Oncogene Induced Senescence  

An understanding of this issue will require experimentation to assess whether the same 

checkpoint proteins necessary for oncogene-induced senescence bypass are also those necessary 

for telomere induced senescence bypass. To investigate this, a model of prostate oncogene 

induced senescence will need to be established. This is likely to occur with the overexpression 

of oncogenes such as AKT or C-MYC in a benign prostate epithelial cell line such as PrEC 

(240). Alternatively, siRNA knockdown of tumour suppressors such as PTEN may achieve the 

same effect (411, 524, 525). If there is difficulty creating these cell lines then models may have 

to be created that involve pre-existing p16 inactivation, a phenomenon that seems to occur in 

vivo and may facilitate early proliferation (526, 527). The cell lines will be monitored for 

proliferation indices, apoptotic indices and cell cycle analysis to determine the onset of 

senescence. This onset will be correlated with putative markers of prostatic senescence (528) 

such as HP1 (529), p27 (298) and IFI 16 (530) as well as general markers of senescence such as 

heterochromatin formation (531). Telomere length would also be monitored (both by qFISH and 

TRF analysis) to ensure that the senescent state induced is not secondary to telomere-induced 

senescence. Markers of DNA damage such as gamma-H2AX could also be monitored to 

determine if there is a DNA damage threshold that occurs secondary to the oncogene driven 

aberrant replication forks (532) that lead to senescence induction. After this has been 

established, the role of abrogators or enhancers of this senescent state could be explored. For 

example, as recently described, the TMPRSS2-ERG protein activates C-MYC and leads to 

prostatic dedifferentiation in vitro (187). C-MYC in turn, may repress p27 and abrogate the 

oncogene induced senescence checkpoint (514).  
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5.2.4 Human Tissue Validation 

5.2.4.1 Laser Capture Microdissection 

Ultimately, these results from cell line experiments described above should be validated 

in human tissue. For example, laser-capture microdissection (LCM) may reveal insights into the 

relationship of telomerase with TMPRRS2, which can activate C-MYC, that in turn can activate 

telomerase (533). LCM will also allow the exploration of a large number of genes related to the 

DNA damage response and repair on focussed microarrays to determine aberrations of these 

pathways and how they may relate to telomere biology. Microarray technology in this setting 

may require whole-genome amplification techniques given the small amounts of HPIN that may 

be able to be isolated, a technique with which this laboratory has considerable experince (534). 

Isolating a small number of overexpressed genes may also require the use of computational 

techniques in analysis such as COPA (based on an outlier analysis) that led to the discovery of 

the TMPRSS2-ERG fusion (535). 

5.2.4.2 Immunohistochemistry 

Paraffin embedded tissue might reveal further insights into telomere biology in prostatic 

carcinogenesis. For example, a recently validated C-MYC antibody (250) may allow 

simultaneous assessment of C-MYC status and p27 status. For example, while the research 

presented suggests a correlation between telomere shortening and genomic instability, this was 

by association only. The detection of intermediaries of telomere dysfunction such as anaphase 

or internuclear bridges would strengthen the case for the role of telomere dysfunction in the 

generation of instability. Given the relatively slow doubling time of prostate cancer compared to 

other neoplasms such as osteosarcoma where the BFB mechanism is more clearly established, 
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this will likely require further high throughput imaging techniques on DAPI stained sections to 

detect and quantify these phenomena. 

The integrity of the telomere is dependent on the six protective proteins, the “telosome” 

(536) or “shelterin” (537) whose altered expression can affect telomere length and telomerase 

function. These proteins have not been investigated in the setting of prostatic carcinogenesis. 

Telomere repeat binding factor 1 (TRF1), protection of telomeres 1 (POT1), and Tankyrase 1 

(TRF1-interacting ankyrin-related ADP ribose polymerase) have essential roles in telomere 

length regulation (11). TRF1 binds to TTAGGG double stranded repeats of telomeres and has 

been identified as a negative regulator (538, 539). Tankyrase 1 interacts with TRF1 and its 

overexpression releases TRF1 from the telomeres and induces telomere elongation (540). POT1 

is recruited to the 3 single-stranded portion of the telomeric DNA and it was found to employ 

telomerase for telomere elongation (541). Findings relating abnormal expression of these genes 

with telomerase, telomere length and even prognosis have been made in a number of cancers 

(542-548) and need to be clarified in prostate cancer. Such a study should be validated for the 

cell lines described above to validate their role. 

As discussed above, the age dependency of the neoplasm and its relationship to the 

stroma requires further investigation. The most reliable, but not universal, marker of cell 

senescence is β-galactosidase, which requires frozen tissue. Markers of senescence that may be 

more amenable to immunohistochemistry have been suggested in prostatic fibroblasts such as 

HGF, FGF7 and AREG (416). They remain to be fully investigated in prostatic cancer samples, 

but we hypothesise that these markers would be more intense surrounding foci of HPIN before 

the transition to cancer associated fibroblasts surrounding foci of carcinoma should the 

contribution of fibroblasts to prostatic carcinogenesis be via an age-related senescence 

phenomena. 
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5.2.5 Role of the Microenvironment 

The complexity found in regulation of telomere length within the prostate in this work 

suggests the importance of microenvironmental influences on telomere length. Primary amongst 

these is hypoxia or oxidative stress. Directly correlating the presence of hypoxia or a surrogate 

thereof (such as HIF) in prostatic tissue with telomere length appears feasible in paraffin 

embedded tissue (549) and might elucidate the cause of the regional variation found. Direct 

measures of partial pressures of oxygen with an eppendorf probe have also been reported (473) 

and could verify the immunohistochemical findings, although the final correlation with 

histology and would be approximate only. 

5.2.6 Clinical Optimisation of Findings 

Once these planned studies are undertaken, a greater understanding of modulators of 

instability in prostate carcinogenesis will be achieved. Ultimate validation of these changes is 

required to verify the proposed temporal sequence of events. To date, this evolution has been 

inferred from the proximity of HPIN to cancer in paraffin embedded specimens. An expanded 

cohort of men who have had HPIN on initial diagnosis and were subsequently followed with 

biopsies and blood samples would offer the opportunity to track the changes, or absence thereof, 

that predict for the ultimate appearance of prostate cancer. These experiments will have to be 

done in a prospective manner, with mandated time or event directed biopsies and with analysis 

of telomere length in all cores of the prostate biopsy. The blood samples would allow an 

assessment of both the consitutional telomere length in the individual, both also their baselines 

levels of oxidate stress (possibly by use of markers such as 8-hydroxydihydroguanosine) and 

prediposition to genomic instability (474, 550) – all of which might contribute to the emergence 

of an age related cancer such as in the prostate. The prostatic analyses may prove difficult to 

achieve with fluorescence based peptide nucleic acid probes and may require more clinically 
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adaptable techniques such as Chromogenic In situ hybridisation (CISH), which can be assessed 

under a light microscope. This technique has been used for telomere analysis (468) but has yet 

to be validated in prostatic tissue, although it has been used in other clinical settings such as 

HER-2 assessment, with comparable results to FISH (551, 552). Other markers that hold 

promise in this setting include AMACR (553) and TMPRSS2-ERG (554). Combinations of these 

biomarkers with integration into existing clinical models in this setting (555) may hold the 

potential for even greater accuracy. 

Finally, the knowledge from the functional experiments described above might enhance 

the introduction of anti-telomerase therapies for prostate cancer. There are a number of 

telomerase inhibitors that are in pre-clinical development (e.g. GRN163L, BRACO-19) that 

have shown activity in prostatic cell lines (556, 557) and xenograft models (558) as well as 

other neoplasms (559). These drugs ability to induce mitotic catastrophe or apoptosis may be 

enhanced by a more complete understanding of the DNA damage response consequent to 

telomere attrition. For example, it may be necessary to combine the telomerase inhibitor with 

chemotherapy (560) as the inhibition of telomerase alone may initially exacerbate chromosomal 

instability or lead to a prolonged latency before telomere attrition to a critical length occurs 

(561). Alternatively, if the protective role of hTERT is more important in telomere 

pathophysiology than telomere lengthening by telomerase, anti-hTERT therapeutics may have 

to be developed. 
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APPENDIX 1. THE ROLE OF PTEN AND TMPRSS2-ERG 

MICRODELETIONS IN PROSTATIC 

CARCINOGENESIS 

SUMMARY 

The identification of prognostic molecular biomarkers is recognized as critically important in 

the future clinical management of prostate cancer. Despite the clinical utility of Gleason score, 

pathological stage and serum PSA in assessing prognosis and guiding management, further 

molecular determinants are needed that more accurately address pathways that underlie 

tumorigenesis and progression of CaP. Two leading biomarker candidates are PTEN gene 

deletion and the TMPRSS2-ETS  gene aberrations, but their prevalence in prostatic neoplasia and 

prognostic importance remain unclear. In this appendix, we clarify the extent of PTEN gene 

deletion in 35 radical prostatectomy specimens and clarify both the extent and prognostic 

importance of the combination of the PTEN and TMPRSS2-ERG gene aberrations in a Brazilian 

tissue microarray (TMA) cohort of 125 samples. Our findings suggest that PTEN 

haploinsufficency is common and that in combination with TMPRSS2-ERG gene aberrations, 

both biomarkers offer the potential to define a subset of patients with a high risk of biochemical 

recurrence. 
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 AP1.1 Introduction 

As previously discussed, chromosomal deletions of 10q23 suggest that the PTEN  gene 

is strongly associated with the neoplastic evolution of CaP (18, 562) as it plays an important role 

in the modulation of the phosphatidylinositol-3-kinase (PI3K) pathway (see section 1.7.2.3). 

Previous studies have suggested that PTEN deletion is associated with tumour progression  

(327, 563, 564) and is predictive of a short time to biochemical recurrence of disease (330). 

The occurrence of PTEN deletion in CaP is relatively common, with reported 

frequencies of 30-62% (317, 565), underscoring the probable importance of this event in 

prostatic carcinogenesis.  However, at the time of this research, both the timing of the PTEN 

deletion and its relationship to other biomarkers in CaP progression were unclear. Furthermore 

there had been no previous large scale FISH study of PTEN deletion in CaP.  Of the various 

means of determining genomic deletion, FISH offers the advantage of being highly specific, 

quantitative, and the assay permits determination of gene copy number within individual cells in 

tissue sections.  Thus, the first part of this study was designed to assess the overall frequency of 

PTEN genomic deletion by FISH, and to determine whether such deletions were present in 

preneoplastic lesions.  

The discovery of recurrent translocations in ~ 40 to 60% of prostate carcinomas (18, 161, 176, 

190, 419, 566), involving members of the ETS transcription factor family (see section 3), has 

provided a promising new biomarker which helps to stratify men for treatment.  

Thus, the second major aim of this study was to clarify both the clinical and importance of the 

co-occurrence of the PTEN and TMPRSS2-ERG abnormalities. Given the evidence that 

additional oncogenic mutations aside from those involving the ERG family need to take place to 

lead to a neoplastic phenotype in both cell culture and mouse models of the fusion genes, PTEN 
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abnormalities are a leading candidate for this critical transition i.e. it is unclear whether the 

TMPRSS2-ERG rearrangements might be accompanied by PTEN genomic loss, or in contrast, 

whether these are mutually exclusive events.  

 

APP 1.2 Materials and Methods 

APP 1.2.1 PTEN cohort 

All specimens were obtained and handled according to the University Health Network Research 

Ethics guidelines.  Archival formalin-fixed, paraffin embedded tissues from 35 radical 

prostatectomy specimens were used in this study.  Nine of these specimens were evaluated using 

whole tissue sections obtained from the original paraffin blocks.  The remaining 26 cases were 

sampled using two or three tissue cores (3 mm diameter) distributed on four tissue microarray 

slides.  Haematoxylin and eosin (H&E) stained sections were reviewed by a pathologist (J-C.C. 

or A.J.E.) to determine the presence and extent of CaP, low-grade prostatic intra-epithelial 

neoplasia (LGPIN), HGPIN, benign glandular epithelium, and stroma in each tissue section or 

core.  The clinico-pathological (TNM) stage for each case was obtained from the surgical 

pathology reports and medical records.  The size of tumor was based on assessment of total 

surface area of gland examined histologically involved by carcinoma. 

APP 1.2.2 PTEN/ ETS cohort 

The collection of all tissue specimens, clinical and patient follow-up data were obtained after 

informed consent in accordance with the Hospital do Câncer Research Ethics guidelines (São 

Paulo, Brazil).  Archival formalin-fixed, paraffin embedded tissues were obtained from 125 

radical prostatectomies performed between 1997 and 2000 at the Hospital do Câncer, AC 

Camargo, São Paulo, Brazil.  For control purposes, ten non-neoplastic prostate tissue samples 
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were obtained from patients undergoing surgery solely for benign prostate hyperplasia.  The 

CaP cohort and control specimens were sampled using a 0.6-mm diameter tissue core distributed 

on a TMA slide.  Adjacent hematoxylin and eosin (H&E) stained section was reviewed by two 

pathologists to determine the presence and extent of morphologically representative areas of the 

original tumors in each tissue core.  Reassessment of Gleason grading in a contiguous H&E 

stained TMA section assured the presence of prostate adenocarcinoma and the fidelity of the 

intended TMA core.  The size of the tumor was based on assessment of total surface area of 

gland examined histologically involved by carcinoma.  Preoperative PSA levels were available 

for all patients. PSA failure was defined as PSA above 0.2 ng/ml after radical prostatectomy. 

APP 1.2.3 Fluorescence in situ hybridization 

 Break-apart FISH was employed in the analysis of the TMPRSS2-ERG gene 

rearrangement using bacterial artificial chromosome (BAC) DNA probes as previously 

described in section 3.2.3 (330).  Subsequently, the following bacterial artificial chromosome 

(BAC) clones were used for verification and diagnostic purposes.  BACs located at: (a) the 3’ 

ERG gene locus (RP11-476D17, 3’ERG sequence extending inward past exon 4), (b) the 5’ 

ERG gene locus (RP11-95I21, 5’ERG sequence extending inward into exon 10), (c) the 

TMPRSS2 locus (RP11-535H11), and (d) the telomeric BACs to the 5’ end of TMPRSS2 locus 

(RP11-35C4, RP11-891L10 and RP11-260O11, 325 kb downstream from the 5’ end of the 

TMPRSS2 gene) (See figure App1.1).   
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Figure App1.1 FISH probes used to detect the genomic alteration in CaP.  (a)  Location and 
names of the BAC probes spanning the genomic region of the ERG and TMPRSS2 loci at 
chromosome 21q22.2 and.  The linear order and approximate distances of the BAC clones are 
based on the Human March 2006 assembly of the UCSC Genome Browser.  (b) Genomic 
localization of the commercially-available locus-specific PTEN probe and alpha-satellite DNA 
sequences of chromosome 10 probe (Vysis Inc, Illinois, USA). 
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 In the first PTEN cohort, two observers (M.Y. and J-C.C) evaluated independently at 

least 100 non-overlapped, intact interphase nuclei in each area of interest, which was identified 

by DAPI-staining of nuclei with reference to the corresponding H&E stained tissue.  Deletion at 

the PTEN locus in each case was determined by statistical comparison of the number of 

fluorescent signals in each cell type.  Significant differences were determined using the Chi-

squared method (p<0.01).  Hemizygous deletions were identified in nuclei showing one red 

signal (PTEN locus) and 2 green signals (control locus) while homozygous deletions exhibited 

only the green control signals (567-569).  Homozygous deletion was deemed significant when 

present in >30% of cells (568) 

In the second cohort, the sequential dual-color FISH method was applied to the TMA to 

investigate the occurrence of PTEN genomic deletion in addition to TMPRSS2-ERG gene 

rearrangements in 82 of the125 patient cohort.  Dual-color FISH on paraffin-embedded TMA 

tissue was performed using commercially available DNA probes as previously described in 

section 4.2.3.  Five µm histologic TMA tissue sections were deparaffinized with a series of 

xylene washes prior to immersion in 100% ethanol.  Fluorescence in situ hybridization was 

carried out as described (330). 

APP 1.2.4 Immunohistochemistry 

 Immunohistochemical staining for total PTEN protein was carried out using heat-

induced antigen retrieval and the labeled streptavidin-biotin (LSAB) method (LSAB-kit, 

DakoCytomation, CA, USA).  Prior to antibody incubation, tissue sections were blocked in 3% 

skim milk (BD Biosciences Canada, Mississauga, ON, Canada) in 1x PBS for 1 hour at room 

temperature.  Sections were incubated with polyclonal rabbit anti-PTEN antibody (Zymed 

Laboratories, Inc., Burlington, ON, Canada) diluted 1:100 in buffer with background reducing 
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components (DakoCytomation, CA, USA) and washed according to manufacturer’s instructions.  

Negative control sections were treated identically but without primary antibody. Benign 

glandular epithelium served as an internal positive control. 

 Cytoplasmic and/or nuclear PTEN immunoreactivity was scored by 2 blinded 

independent observers (M.Y. and J-C.C.) according to the product of staining intensity (1-3) 

multiple by the proportion of immunoreactive cells in the areas of interest (1-4) (271).  The 

overall score range was from 1 to 12. Immunoreactivity scores were then dichotomized using a 

cutoff value of 6 (i.e. weak versus moderate to strong) and this overall score was compared with 

the FISH score using Welch t-test statistical method. 

APP 1.2.5 Data Analysis 

The TMPRSS2-ERG fusion was evaluated for each probe by spot visualization and enumeration 

in a range from 50 to 100 nonoverlapped, intact interphase nuclei per tumor tissue core using a 

Zeiss Imager.Z1 microscope equipped with a digital camera AxioCam MRm and AxioVision 

4.3 capturing software (Carl Zeiss Canada Ltd, Canada). The ERG rearrangement in tumor 

nuclei was detected by either the split of one of the colocalized 3' and 5' ERG signals in addition 

to a fused signal of the unaffected chromosome 21 or the hemizygous loss of 5' ERG (RP11-

95I21—green signal), whereas the homologue signal colocalized to the fused signal of the 

apparently unaffected loci at chromosome 21. The telomeric BACs to the 5' end of TMPRSS2 

locus signal colocalized with the signal of the 3' ERG BAC, confirming the presence of the 

typical 5' TMPRSS2-3' ERG rearrangements. When the BAC telomeric to the 5' end of 

TMPRSS2 (blue signal) was well separated from the 3' ERG BAC (red signal), the TMPRSS2-

ERG rearrangement was confirmed using the TMPRSS2 BAC (RP11-535H11—blue), 5' ERG 

(RP11-95I21—green) and 3' ERG BAC (RP11-476D17—red). Based on hybridization in 10 

control cores (data not shown) and the tumor cohort, the detection of TMPRSS2-ERG 
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rearrangement was defined the presence of the rearrangement in greater than 10% of cells when 

the distance between signals was >3 times the estimated signal diameter (425). 

PTEN copy number was evaluated for each probe by counting spots in a range from 50 to 100 

nonoverlapped, intact interphase nuclei per tumor tissue core. Based on hybridization in 10 

control cores (data not shown), hemizygous deletion of PTEN were defined as >20% (mean+3 

SD in non-neoplastic controls) of tumor nuclei containing one PTEN locus signal and by the 

presence of centromere 10 signals. Homozygous deletion of PTEN was exhibited by the 

simultaneous lack of the both PTEN locus signals and by the presence of control signals in 

greater than 30% of cells sampled (425, 567-569). 

APP 1.2.6 Statistical Analysis 

 FISH findings for the first PTEN FISH cohort were analyzed for associations using the 

Welch t-test. FISH findings for TMPRSS2-ERG fusion were correlated in a univariate and 

multivariate fashion with clinical and pathologic measures of disease aggressiveness.  A 

comprehensive description of the clinical parameters associated with the adenocarcinomas 

having the TMPRSS2-ERG fusion is summarized in Table App1.1.  
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TMPRSS2-ERG Clinicopathological parameters Number of 
cases Not fused (%) Fusion (%) 

P 

Preoperative PSA (ng/mL)* 
0.9-4.0 
4.0-10.0 
10.1-20.0 
20.1-84.0 

 
9 
58 
37 
15 

 
3 (33) 
31 (53) 
21 (57) 
7 (47) 

 
6 (67) 
27 (47) 
16 (43) 
8 (53) 

0.61 

Median tumor volume (%)* 
0-10.0 
10.1-20.0 
20.1-85.0 

 
35 
28 
49 

 
19 (54) 
14 (50) 
24 (49) 

 
16 (45) 
14 (50) 
25 (51) 

0.89 

Gleason score 
Gleason score 4-6 
Gleason score 7 
Gleason score 8-9 

 
74 
35 
13 

 
39 (53) 
18 (51) 
5 (38) 

 
35 (47) 
17 (49) 
8 (62) 

0.64 

Pathologic stage 
pT2a 
pT2b 
pT3a 
pT3b 
pT4 

 
10 
58 
39 
9 
6 

 
6 (60) 
30 (52) 
19 (49) 
4 (44) 
3 (50) 

 
4 (40) 
28 (48) 
20 (51) 
5 (56) 
3 (50) 

0.97 

Seminal vesicle invasion* 
Negative 
Positive 

 
108 
9 

 
54 (50) 
6 (67) 

 
54 (50) 
3 (33) 

0.34 

Perineural infiltration 
Negative 
Positive 

 
18 
104 

 
11 (61) 
51 (49) 

 
7 (39) 
53 (51) 

0.34 

Angiolymphatic invasion* 
Negative 
Positive 

 
89 
26 

 
43 (48.31) 
15 (58) 

 
46 (81) 
11 (19) 

0.4 

Capsular invasion* 
Negative 
Positive 

 
52 
69 

 
29 (56) 
33 (48) 

 
23 (44) 
36 (52) 

0.39 

Extraprostatic extension* 
Negative 
Positive 

 
92 
19 

 
46 (50) 
9 (47) 

 
50 (50) 
10 (53) 

0.84 

Lymphonodal invasion* 
Negative 
Positive 

 
108 
2 

 
53 (49) 
2 (100) 

 
55 (51) 
0 (0) 

0.15 

Biochemical recurrence 
Negative 
Positive 

 
62 
60 

 
37 (60) 
25 (42) 

 
25 (40) 
35 (58) 

0.05 

 
Table App1.1.  Clinicopathological parameters from 122 of the 125 prostatic adenocarcinoma 
patients.  The three atypical tumors with complex fusions were excluded from the analysis. * 
Values not available for all 122 cases. Median overall survival was 87.4 months (11.5 - 161.6). 
P value= Chi square analysis 
 

The frequency of TMPRSS2-ERG rearrangements was correlated with PTEN genomic 

deletions and to determinants of disease mortality and morbidity, such as PSA, and 
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extraprostatic extension, time to biochemical relapse, PSA doubling time, and the time to the 

development of metastases following definitive treatment.  Univariate and multivariate analyses 

for the risk of biochemical failure were studied by the cox proportional hazard model.  A 

significant correlation between two parameters was taken at the 95% confidence interval. For 

this exploratory analysis, P values <0.05 were considered significant, although it is recognised 

that multiple comparison testing occurred. The survival rate was estimated by applying the 

Kaplan-Meier method.  Endpoints were defined by the time from radical prostatectomy until the 

occurrence of metastasis or PSA determined biochemical recurrence, i.e. the date of first PSA 

increase above 0.2 ng/ml. (median follow-up time 87.4 months, range 11.5 to 161.6).  All 

calculations were performed using Stata 9.1 (StataCorp LP). 

 

APP 1.3 Results 

APP 1.3.1 PTEN  

 
In the first PTEN cohort, archival tissue from 35 patients who underwent radical prostatectomy 

was analyzed.  Using FISH, samples of benign glandular epithelium (n= 6) or LGPIN (n= 12) 

showed no PTEN deletion.  PTEN deletion was found in 3/13 (23%) of HGPIN and 24/35 (68%) 

of CaP (p<0.01).  Furthermore, of the 24 cases of CaP showing PTEN deletion, 2 were 

homozygous.  Representative images of FISH and immunohistochemistry are shown in Figures 

App1.2 and 1.3, respectively.  The frequency of PTEN gene deletion did not correlate 

significantly with patient age (range 45 to 75) (p= 0.37, Welch t-test), tumor size or stage (p= 

0.47, Fisher Exact test), Gleason score (range 6 to 8) (p= 0.72, Fisher Exact test) or pre-

operative PSA level (range 2.1 to 48) (p= 0.17, Welch t-test). 

 Concordance was observed between PTEN deletion and total PTEN protein expression 
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assessed by immunohistochemistry (p= 2.2x10-16, Welch t-test).  Informative 

immunohistochemical results were obtained from 33 of 35 CaP, 13 HGPIN, 10 LGPIN cases 

and 8 benign glands.  The pattern of immunoreactivity was predominantly cytoplasmic with 

occasional nuclear staining.  In general, moderate to strong PTEN staining was seen in cancer, 

HGPIN, LGPIN and benign cells not containing the PTEN deletion (Figure App1.4).  Of the 24 

CaP samples showing PTEN deletion, 100% (24/24) demonstrated variable weak cytoplasmatic 

and/or nuclear PTEN immunoreactivity. Overall, the immunostaining was weaker in tumor cells 

with homozygous PTEN deletions. 
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Figure App1.2.  Representative images of dual-color FISH using LSI PTEN/CEP 10 on 
paraffin-embedded tissue sections.  Haematoxylin and eosin stained section shows an 
area of CaP and adjacent PIN (A).  FISH image shows tumor cells with single red 
signals for 10q23/PTEN locus in most of the nuclei and paired green signals for CEP10 
indicating hemizygous deletion of 10q23/PTEN locus in CaP (B) and HGPIN cells (D).  
Two signals of each color in most of the nuclei indicate no deletion of PTEN in tumor 
cells from CaP (C). 
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Figure App1.3.  Immunohistochemical staining with anti-PTEN antibody of paraffin-
embedded tissue sections.  Strong immunoreactivity of PTEN protein in LGPIN (A) and 
cancer (B).  Weak immunoreactivity of PTEN protein in cancer (C) and in HGPIN (D) 
compared to LGPIN foci (A, C, and D). 
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Figure App1.4.  Relationship between immunohistochemical PTEN expression and PTEN 
deletion status.  Two distinct distributions are shown: weak PTEN immunoreactivity is observed 
in HGPIN and CaP showing the PTEN deletion.  Moderate or strong immunoreactivity is 
observed in benign prostate epithelium, LGPIN, HGPIN and CaP regions without the PTEN 
deletion.  The box plot shows the median, upper and lower quartiles and minimum and 
maximum values for IHC scores. 
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APP 1.3.2 TMPRSS2-ERG fusion 

 A total of 125 archival tissues with anonymous clinical annotation were analyzed for 

TMPRSS2-ERG rearrangements by interphase tri-color FISH. TMPRSS2-ERG rearrangement 

was found in 60 of 125 (48%) of prostatic adenocarcinomas samples.  There was evidence of 

TMPRSS2-ERG fusion with deletion of 5’ ERG probe in 43 of 125 (34%) cases.  As previously 

characterized (173), sequential FISH analysis using the BAC set telomeric to the 5’ end of 

TMPRSS2 (RP11-35C4, RP11-891L10 and RP11-260O11 - blue) identified a split of the typical 

co-localized 5’ end of TMPRSS2- 3’ ERG probe signals in 3 of these 43 samples.  This extreme 

nuclear separation is indicative of a more complex genomic alteration, involving an unknown 

chromosomal partner(s).  Confirmation of the TMPRSS2-ERG fusion in these 3 samples 

showing the atypical FISH pattern was obtained by the BAC set consisting of the 3’ ERG BAC 

(RP11-476D17), 5’ ERG (RP11-95I21) and the TMPRSS2 locus (RP11-535H11).  Interestingly, 

an extra copy of TMPRSS2-ERG fusion associated with deletion of 5’ ERG probe was observed 

in 7 of  the 43 samples showing TMPRSS2-ERG fusion with deletion of 5’ ERG (See Table 

App1.2).  There was evidence of FISH TMPRSS2-ERG fusion with no deletion of 5’ ERG probe 

in 17 of 125 (14%) cases.  Only 1 of the 17 cases showed the BAC set telomeric to the 5’ end of 

TMPRSS2 (RP11-35C4, RP11-891L10 and RP11-260O11 - blue) well separated from the 3’ 

ERG BAC (RP11-476D17-red) (See Table App1.2).  
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TMPRSS2-ERG status Number of cases (%) 

TMPRSS2-ERG fusion via translocation 17 (14%) 

TMPRSS2-ERG fusion via genomic deletion of 5’ ERG  43 (34%)* 

Other rearrangements  3 (2.4%) 

Not fused 62 (49.6%) 

Total 125 
Table App1.2.  Summary of the TMPRSS2-ERG fusion status by tri-color FISH 
* Duplication of TMPRSS2-ERG fusion was observed in 7 of the 43 samples showing 
TMPRSS2-ERG fusion via genomic deletion of the 5’ end of the ERG gene 
 

 

 In addition to the 60 TMPRSS2-ERG fused cases, 3 atypical cases had abnormal 

TMPRSS2-ERG FISH co-localization pattern.  The 3’ ERG RP11-476D17 (red signal) remained 

juxtaposed to the 5’ ERG RP11-95I21 (green signal), but failed to exhibit the expected co-

localization of the TMPRSS2 locus (RP11-535H11 - blue) with the ERG gene probes.  We were 

not able to detect FISH fusions between TMPRSS2 and ETV1 or ETV4 in any of these three 

cases with abnormal FISH TMPRSS2-ERG break-apart results.  Furthermore, extra copies of the 

TMPRSS2 locus (RP11-535H11 - blue) were observed in the atypical samples.  Such findings 

indicate that: (a) fusion events between TMPRSS2 and other genes are possible, and (b) 

TMPRSS2-ERG fusions may sometimes have concurrent complex genomic rearrangements 

within the ~2.9 Mb that separates these two genes.  However, the 3 atypical cases were excluded 

from the clinicopathological correlation analysis given that complex genomic rearrangement 

involving an unknown chromosomal partner(s) could not be elucidated. 

 Among the 60 rearranged TMPRSS2-ERG tumors detected, Gleason scores were 4-6 (35 

tumors), 7 (17 tumors) and 8-9 (8 tumors).  A median tumor volume of >20% of the prostate 

was found in 25/60, and biochemical recurrence based on PSA level was present in 35 of the 60 

the rearranged TMPRSS2-ERG tumors.  In addition, early biochemical recurrence was detected 
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in all 7 samples with an extra copy of TMPRSS2-ERG fusion associated with deletion of 5’ ERG 

probe. 

APP 1.3.3 Presence of TMPRSS2-ERG fusion and PTEN genomic 

deletion 

 After acquisition of FISH data, the cases were reviewed to search for potential 

associations between PTEN deletion (330), and TMPRSS2-ERG rearrangements.  Therefore, we 

examined the status of PTEN (deleted or not deleted) and presence of TMPRSS2-ERG fusion in 

82 of the 125 tumor samples to assess the utility of a possible association as a biomarker of 

prognosis.  PTEN deletion in addition to the presence of TMPRSS2-ERG rearrangement was 

observed in 23 of 82 (28%) prostatic adenocarcinomas.  PTEN deletion was also found in 14 

prostate adenocarcinoma samples showing absence of TMPRSS2-ERG rearrangement (14/82, 

17%).  There was evidence of no copy change of PTEN locus with TMPRSS2-ERG fusion in 21 

of 82 (26%) cases and no copy change of PTEN locus with absence of TMPRSS2-ERG fusion in 

24 of 82 (29%) cases. TMPRSS2-ERG fusion and PTEN deletion are summarized in Table 

App1.3, although no clear statistical relationship is evident. 

 

 TMPRSS2-ERG fusion No fusion 

PTEN deletion 23 (28%) 14 (17%) 

PTEN not deleted 21 (26%) 24 (29%) 
 

Table App1.3.  Distribution of the CaP samples showing TMPRSS2-ERG fusion and PTEN 
deletion in 82 prostatic adenocarcinomas. A comprehensive description of the 
clinicopathological parameters associated with 47 adenocarcinomas (23 cases showing both 
PTEN deletion and TMPRSS2-ERG fusion, and 24 cases in which neither rearrangement was 
present) is summarized in Table App 1.4.Representative images of TMPRSS2-ERG 
rearrangement and PTEN deletion are shown in Figure App 1.5. 
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 TMPRSS2-ERG fusion and 
PTEN deletion 

TMPRSS2-ERG not fused and 
PTEN not deleted 

Preoperative PSA (ng/mL) *   
0.9-4.0 1 0 
4.0-10.0 10 14 
10.1-20.0 6 7 
20.1-84.0 4 3 

Median tumor volume (%) *   
0-10.0 4 10 
10.1-20.0 5 6 
20.1-85.0 13 11 

Gleason score   
Gleason score 4-6 12 16 
Gleason score 7 7 7 
Gleason score 8-9 4 1 

Pathologic stage   
pT2a 1 1 
pT2b 12 11 
pT3a 6 9 
pT3b 3 1 
pT4 1 2 

Seminal vesicle invasion *   
Negative 18 22 
Positive 2 2 

Perineural infiltration   
Negative 2 5 
Positive 21 19 

Angiolymphatic invasion *   
Negative 17 17 
Positive 5 5 

Capsular invasion *   
Negative 8 9 
Positive 13 14 

Extraprostatic extension   
Negative 17 16 
Positive 6 8 

Lymphonodal invasion *   
Negative 21 20 
Positive 1 1 

Biochemical recurrence   
Negative 5 15 
Positive 18 9 

Table App1.4.  Clinicopathological parameters from 47 of the 82 prostatic adenocarcinoma 
patients analyzed for the differential status of PTEN (deleted or not deleted) and presence of 
TMPRSS2-ERG fusions*values not available for all 47 samples. Median overall survival was 
109 months (49.3-161.3) 
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Figure App1.5. Different patterns of genomic alterations detected by interphase FISH in CaP.  
Representative FISH images are shown for CaP tissue microarray applying TMPRSS2:ERG (left 
panel) and PTEN (right panel).  (a-c) A representative FISH image of TMPRSS2:ERG 
rearrangements (left panel) is displayed in a tissue core with accompanying FISH for the PTEN 
locus (right panel).  The left panel shows a representative pseudo-color image with the inverted-
DAPI counterstained nuclei as a grey tone overlay to facilitate interpretation.  The right panel 
shows a representative pseudo-color image with the DAPI counterstained nuclei.  The rectangles 
show an enlarged nucleus FISH image.  (a) Representative break-apart tri-color FISH strategy 
identifies the 5’ ERG BAC (RP11-95I21-green) well separated from the 3’ERG BAC (RP11-
476D17-red) (arrow).  The fused signal of the 3’ ERG (red) and TMPRSS2 gene locus (blue) 
that confirms the probes used detect TMPRSS2:ERG fusions (arrows).  The BAC probes 
hybridising to the unaffected TMPRSS2:ERG locus show the normal red-green (yellow) and 
blue co-localization pattern.  This extreme nuclear separation is indicative of TMPRSS2:ERG 
rearrangements via genomic translocation mechanisms.  Representative PTEN FISH image of 
homozygous deletion in CaP shows absence of red signal for 10q23/PTEN locus in most of the 
nuclei and retained green signals for CEP 10.  (b) The fused signal of the 3’ ERG (red) and 
TMPRSS2 gene locus (blue) that confirms the TMPRSS2:ERG fusion is arrowed. In addition, the 
hemizygous loss of 5’ ERG BAC (green) indicates an intervening genomic microdeletion of 
chromosome 21.  The BAC probes hybridizing to the unaffected TMPRSS:ERG locus show the 
normal tri-color (red, green and blue) co-localization pattern.  Representative PTEN FISH image 
of two signals of both red signals (10q23/PTEN locus) and green signals (CEP 10) in most of 
the nuclei indicating no deletion of PTEN in tumor cells. (c) Duplication of the fused signal of 
the 3’ ERG (red) and TMPRSS2 gene locus (blue) that confirms the TMPRSS2:ERG fusion is 
arrowed. In addition, the hemizygous loss of 5’ ERG BAC (green) indicates an intervening 
genomic microdeletion of chromosome 21.  The BAC probes hybridizing to the unaffected 
TMPRSS:ERG locus show the normal tri-color (red, green and blue) co-localization pattern.  
The PTEN FISH image shows tumor cells with single red signal for 10q23/PTEN locus in most 
of the nuclei and paired green signals for CEP 10 indicating hemizygous deletion of 
10q23/PTEN locus in CaP. 
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APP 1.3.4 Statistical analysis of clinical parameters and genomic 

alterations 

 Clinical parameters of aggressive disease such as extraprostatic extension (P=0.0002), 

seminal vesicle invasion (P=0.0023), margin status (P=0.0008), Gleason grade (P=0.0002)/score 

(P=0.001), median tumor volume (P=0.0024), preoperative PSA (P=0.001) as well as genetic 

factors such as PTEN deletion (P=0.009), concurrent TMPRSS2-ERG fusion and PTEN deletion 

(0.001) and perineural invasion (P=0.0304) were significantly associated with biochemical 

recurrence by univariate analysis with TMPRSS2-ERG approaching significance (P=0.052; 

Table App1.5). By multivariate analysis, relevant factors associated with biochemical failure 

included Gleason score (7 and 8–10, P=0.001 and P=0.015, respectively), concurrent TMPRSS2-

ERG fusion and PTEN deletion (0.036) and PTEN homozygous deletion (0.013). The PTEN 

findings reflect those previously reported for this cohort (Table App1.6) (330).  

Further analysis of the Kaplan-Meier estimated disease-free survival curves 

demonstrated association between TMPRSS2-ERG fusion and short time based to PSA 

recurrence (Figure App1.6a).  Duplication of the TMPRSS2-ERG fusion was associated with an 

earlier onset of biochemical recurrence (Figure App1.6b). Furthermore, the estimated disease-

free survival Kaplan-Meier curves demonstrated an association of concurrent PTEN deletion 

and TMPRSS2-ERG rearrangements with short time to PSA recurrence (Figure App1.6c). This 

analysis allowed for three broad groupings of differential patient outcome based on genetic 

characteristics; (1) a poor prognostic group characterized by both PTEN deletion and TMPRSS2-

ERG fusions; (2) an intermediate group with either PTEN deletion or TMPRSS2-ERG fusion and 

(3) a favorable prognostic group with neither event. 
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Variables Category BRFS* HR 95% CI 
    5 years P-value     
Perineural invasion Negative 77.04 0.0304 1.0 Reference 
  Positive 49.94   2.91 1.05–8.04 
Extraprostatic extension Negative 63.45 0.0002 1.0 Reference 
  Positive 26.78   3.10 1.67–5.76 
            
Margins Negative 62.99 0.0008 1.0 Reference 
  Positive 25.70   2.40 1.41–4.07 
Seminal vesicle invasion Negative 57.33 0.0023 1.0 Reference 
  Positive 20.00   3.28 1.46–7.36 
Neoadjuvant hormonotherapy Negative 59.49 0.0004 1.0 Reference 
  Positive 33.33   1.59 1.21–2.08 
Primary gleason grade 2–3 48.01 0.0002 1.0 Reference 
  4 15.43   1.48 1.74–6.95 
Gleason score 4–6 69.90 <0.001 1.0 Reference 
  7 32.58   3.14 1,79–5.49 
  8 19.94   3.42 1.63–7.16 
Median tumor volume 0–10.0 71.43 0.0024 1.0 Reference 
  10.1–20.0 62.95   1.10 0.46–2.60 
  20.1–85.0 39.63   2.67 1.35–5.30 
Preoperative PSA 0.9–4.0 77.78 <0.001 1.0 Reference 
  4.1–10.0 62.85   2.38 0.56–10.08 
  10.1–20.0 55.52   2.86 0.66–12.37 
  20.1–84.0 6.67   13.0

8 
2.93–58.26 

TMPRSS2-ERG fusion Negative 61.77 0.0523 1.0 Reference 
  Positive 45.72   1.99 1.21–3.27 
PTEN deletion Negative 57.04 0.0009 1.0 Reference 
  Hemizygous 50.00   1.53 0.82–2.85 
  Homozygous 0.0   5.93 2.12–16.84 
PTEN deletion and Negative 59.35 0.001 1.0 Reference 
TMPRSS2-ERG fusion Positive 30.43   2.49 1.43–4.35 

 
Table App 1.5. Univariate Cox proportional hazard analysis of biochemical failure risks (each variable 
predictor analyzed separately). BRFS – Biochemical Recurrence Free Survival 
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Variables Category HR P-value 95% CI 
Gleason score 4–6 1.0   Reference 
  7 3.07 <0.001 1.75–5.37 
  8–10 2.65 0.015 1.21–5.81 
          
PTEN status Negative 1.0   Reference 
  Hemizygous deletion 1.30 0.433 0.67–2.54 
  Homozygous deletion 4.43 0.013 1.36–14.40 
          
PTEN deletion and TMPRSS2-ERG fusion Negative 1.0   Reference 
  Positive 1.87 0.036 1.04–3.36 

Table App 1.6. Multivariate model to biochemical failure risks by Cox logistic regression analysis. 
 CI, confidence interval; HR, hazard ratio.
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Figure App 1.6 Kaplan–Meier curves illustrating biochemical recurrence-free survival 
among prostate cancer patients defined by the status of selected clinicopathological 
parameters, TMPRSS2:ERG rearrangements and PTEN copy number changes; (+) 
presence, (- ) absence. (a) PSA recurrence-free survival curve stratified by the 
TMPRSS2:ERG rearrangements (absence or presence of gene fusion) on 122 prostate 
cancer patients and (b) when duplicate TMPRSS2:ERG FISH fusion signals were present 
(red curve) the outcome was the least favorable. (c) PSA recurrence-free survival 
analysis stratified by TMPRSS2:ERG rearrangements and PTEN copy number changes in 
82 prostate cancer patients. 
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APP 1.4 Discussion 

The reported frequency of PTEN deletion in CaP varies widely, most likely as a result of 

differences in tissue preparation, stage of disease and the methodology used to detect molecular 

aberrations (Table App1.7). The heterogeneous nature of these studies has probably obscured 

the role of PTEN in human prostate cancer. Previous investigations have generally indicated a 

role of PTEN deletion in advanced disease, although more thorough studies have suggested 

higher rates of altered expression. Our findings, in both cohorts, along with studies using in vivo 

mouse models and cell lines (316, 318, 570), support the concept of PTEN deletion as a frequent 

and important event in prostatic carcinogenesis; they were facilitated by the ability of FISH to 

detect clonal deletions in a subset of tumor cells. In contrast, most previous studies employed 

loss of heterozygosity (LOH) analysis of either microdissected or bulk-extracted tissue and 

could not detect small populations of cells containing these clonal deletions. 

 In examining the first cohort, the occurrence of hemizygous deletions in a small 

proportion of pre-neoplastic HGPIN lesions, but with a marked increase in frequency of PTEN 

deletion in CaP, suggests that the acquisition of the deletion and concomitant loss of PTEN 

functional activity is an important early step in prostatic tumorigenesis. Conclusions drawn from 

studies in mice suggest that PTEN haploinsufficiency is pathogenic (411).  The relative 

deficiency of PTEN cellular protein levels is likely to produce a net activation of the AKT 

pathway and acquisition of a more malignant phenotype.  Consequences of AKT activation such 

as angiogenesis, and increased cell mobility and breakdown of cellular junctions (571) are also 

likely to occur.  Previous authors have demonstrated an association between decreased PTEN 

protein expression and a higher Gleason grade and advanced tumor stage (326, 327).  However, 

within our first study group there was no statistically significant relationship between PTEN 
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deletion status and clinicopathologic parameters.  This observation is likely a consequence of 

the small sample size and the relatively narrow range of Gleason scores of the samples (97% of 

samples were Gleason score 6 or 7) studied. 

The knowledge that early heterozygous deletion of PTEN is frequent in CaP is an 

important consideration for novel therapeutic trials where biological efficacy is influenced by 

the activity level of PTEN and its downstream targets.  Potential therapeutic opportunities for 

control of tumors in the context of PTEN pathways have been reviewed recently (411, 572). 

Additionally, preclinical studies have provided a rationale for combining AKT inhibition with 

other pathways (573), chemotherapy (574, 575) and hormonal therapy (576) although clinical 

studies to date with an AKT inhibitor (perifosine) showed limited clinical activity (508). 

 Our second cohort of patient samples evaluated PTEN and the TMPRSS2-ERG 

rearrangements for their contribution to prostate cancer prognosis in a large Brazilian TMA. 

Although limited by multiple comparison testing, Figure App 1.6C illustrates these two genomic 

biomarkers which appeared to segregate prostate cancer cases into three broad groupings based 

on biochemical recurrence as an endpoint: (1) 'poor genomic grade' characterized by both PTEN 

deletion and TMPRSS2-ERG fusions; (2) 'intermediate genomic grade' with either PTEN 

deletion or TMPRSS2-ERG fusion and (3) 'favorable genomic grade' in which neither 

rearrangement was present. However, the multi-variate analysis indicates that the hazard ratio 

imparted by a high Gleason score (5) remained greater than any other factor in the analysis, 

although as mentioned the tumours analysed had a relatively narrow range of Gleason scores for 

analysis, suggesting the need for further confirmatory studies. 

The proportion of prostatic adenocarcinoma samples with TMPRSS2-ERG 

rearrangement (48%) is in agreement with similar cohorts that included diverse stage and 

Gleason scores (190, 193) whereas subsets with earlier stage disease tend to have lower 

incidence (192, 193). This association of the gene rearrangement with more advanced disease 
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has been suggested previously (171, 193) and might explain the suggestion of poorer survival in 

patients with the fusion genes. The confirmation of the finding of poorest prognosis associated 

with the duplication of gene fusion via 5' ERG deletion (171) variant also likely highlight 

important aspects of the pathophysiology of prostate cancer. The ERG gene duplication 

associated with this variant is likely to contribute to an increased rate of biochemical recurrence 

seen in our and other cohorts (19, 186, 192). Collectively, our data indicate that the duplication 

of gene fusion via 5' ERG deletion is predictive of a shorter time to biochemical recurrence of 

disease. However, some authors have suggested that duplication of the fusion may be a 

manifestation of general polyploidy rather than a specific duplication event (577), which has 

likewise been associated with poor prognosis in CaP (578-580). 

As PTEN deletion and TMPRSS2-ERG abnormalities could be additive or mutually 

exclusive, we evaluated the prognostic information gained by TMPRSS2-ERG analysis alone 

and in combination with genomic PTEN deletions (see Figure App 1.6). The additive effect seen 

may relate to increased cellular motility, a phenotype that can be attributable to both ETS fusion 

(581) and PTEN deletion (582, 583). Thus together, activation of these pathways might facilitate 

epithelial–mesenchymal transition that is characteristic of malignant transformation (584). To 

further explore the potential for synergy between these genomic events, we used Oncomine 

(585) to interrogate two publicly available microarray studies of prostate cancer progression for 

differentially expressed genes between ETS overexpressing and nonoverexpressing prostate 

cancers (388, 586).The ETS overexpressing prostate cancers demonstrated dysregulation of 

genes particularly involved in the Wnt pathway. PTEN deletion and its sequel are also likely to 

affect the same pathways and synergize with the consequences of ETS-related overexpression. 

Akt activation is also known to inhibit GSK3β, (587) The combination of these two events 

would theoretically lead to extra translocation of β-catenin to the nucleus further assisting 
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cellular motility and epithelial to mesenchymal transition (588), a phenomena that could be 

explored further in our samples. Additionally, we found a theorectical up-regulation of the B-

RAF gene in ETS over expressing tumors, such that combined signalling through ERK is also 

likely to increase cellular migration phenomenon. 

Our findings suggests that the subgroup of prostate cancers with absence of both 

TMPRS2:ERG fusions and genomic PTEN alterations might have a favourable prognosis. 

Kaplan–Meier and multivariate analysis indicate that TMPRSS2-ERG fusion and PTEN loss 

together are a predictor of earlier biochemical recurrence of disease. The acquisition of the 

TMPRSS2-ERG fusion and concomitant PTEN deletion at an early phase in prostatic 

oncogenesis appear to be determinants of a more aggressive tumor phenotype. Further studies 

should validate this concept to allow better stratification of care in prostate cancer.



14
4 

Fi
rs

t A
ut

ho
r,

 

Y
ea

r 

So
ur

ce
 M

at
er

ia
l 

T
ec

hn
iq

ue
s 

Fi
nd

in
gs

  

(H
G

PI
N

) 

Fi
nd

in
gs

  

(C
aP

) 

C
on

cl
us

io
ns

 r
el

ev
an

t t
o 

th
is

 st
ud

y 

C
ai

rn
s e

t a
l. 

(5
89

)  

80
 R

P 
sp

ec
im

en
s 

(fr
oz

en
 ti

ss
ue

) 

LO
H

 a
na

ly
si

s, 

se
qu

en
ci

ng
, 

m
et

hy
la

tio
n-

sp
ec

ifi
c 

PC
R

 

FI
SH

 (1
 sa

m
pl

e)
 

N
ot

 d
on

e 
LO

H
 th

ro
ug

h 
PT

EN
: 2

3/
80

 (6
/2

3 

ex
hi

bi
te

d 
ho

m
oz

yg
ou

s d
el

et
io

n)
. 

O
f t

he
 2

3 
ca

se
s o

f C
aP

 w
ith

 L
O

H
: 

11
 w

er
e 

lo
ca

liz
ed

 a
nd

 1
2 

pe
lv

ic
 

no
de

s1  

M
ut

at
io

ns
: 4

/1
7 

M
et

hy
la

tio
n:

 0
/1

3 

PT
EN

 is
 th

e 
m

ai
n 

in
ac

tiv
at

io
n 

ta
rg

et
 o

f 1
0q

 

lo
ss

 in
 C

aP
 

Pe
sc

he
 e

t a
l. 

(5
90

) 

22
 C

aP
 sp

ec
im

en
s 

LO
H

 a
na

ly
si

s, 

se
qu

en
ci

ng
 

N
o 

FI
SH

 

N
ot

 d
on

e 
LO

H
 a

t 1
0q

22
-2

3:
 1

2/
22

 (5
5%

). 

O
f t

he
 1

2 
ca

se
s o

f C
aP

 w
ith

 L
O

H
, 

6 
sh

ow
ed

 L
O

H
 w

ith
in

 P
TE

N
. 

M
ut

at
io

n:
 1

/6
 

D
el

et
io

n 
of

 1
0q

22
-q

24
, 

in
cl

ud
in

g 
PT

EN
, a

pp
ea

rs
 

pr
om

in
en

t i
n 

C
aP

 

G
ra

y 
et

 a
l. 

(5
91

) 

37
 T

U
R

P 

sp
ec

im
en

s 

(m
ic

ro
di

ss
ec

tio
n)

 

M
ut

at
io

n 
an

al
ys

is,
 

no
rth

er
n 

bl
ot

tin
g,

 

Im
m

un
of

lu
or

es
ce

nc
e 

N
ot

 d
on

e 
A

lte
ra

tio
n 

or
 lo

ss
 o

f a
t l

ea
st

 o
ne

 

PT
EN

 c
op

y:
 2

6/
37

 (2
1 

co
nt

ai
ni

ng
 

al
le

le
 lo

ss
 o

nl
y,

 3
 w

ith
 a

lle
le

 lo
ss

 

Su
pp

or
tiv

e 
ev

id
en

ce
 th

at
 

PT
EN

 a
ct

s a
s a

 tu
m

ou
r 

su
pp

re
ss

or
 g

en
e 

in
 



14
5 

N
o 

FI
SH

 
an

d 
m

ut
at

io
n,

 2
 w

ith
 m

ut
at

io
n 

on
ly

) 

pr
os

ta
te

 

Fe
ilo

tte
r e

t a
l. 

(5
92

)  

51
 R

P 
an

d 
FF

PE
 

C
aP

 sp
ec

im
en

s 

(m
ic

ro
di

ss
ec

tio
n)

 

LO
H

 a
na

ly
si

s, 
 

SS
C

P,
 se

qu
en

ci
ng

 

N
o 

FI
SH

 

N
ot

 d
on

e 
LO

H
: 2

5/
51

 (4
9%

) 

M
ut

at
io

ns
: 1

/5
1 

PT
EN

 m
ap

s t
o 

re
gi

on
 o

f 

LO
H

 in
 C

aP
 

W
an

g 
et

 a
l. 

(5
93

) 

60
 R

P 
sp

ec
im

en
s 

co
nt

ai
ni

ng
 a

te
 le

as
t 

50
%

 o
f t

um
ou

r  

So
ut

he
rn

 b
lo

tti
ng

, 

LO
H

 a
na

ly
si

s, 

se
qu

en
ci

ng
, N

o 

FI
SH

 

N
ot

 d
on

e 
D

el
et

io
ns

: 1
0/

60
 

H
om

oz
yg

ou
s b

y 
So

ut
he

rn
: 8

/6
0 

PT
EN

 m
ut

at
io

ns
: 0

/1
0 

In
ac

tiv
at

io
n 

of
 P

TE
N

 

oc
cu

rs
 in

 1
0-

15
%

 o
f 

pr
im

ar
y 

st
ag

e 
B

 C
aP

 

Su
zu

ki
 e

t a
l. 

(5
94

) 

50
 m

et
as

ta
tic

 C
aP

 

sp
ec

im
en

s 
fro

m
 1

9 

pa
tie

nt
s 

SS
C

P,
 se

qu
en

ci
ng

, 

m
ic

ro
sa

te
lli

te
 

an
al

ys
is 

FI
SH

 (2
 sa

m
pl

es
) 

N
ot

 d
on

e 
D

el
et

io
ns

/p
oi

nt
 m

ut
at

io
ns

: a
t l

ea
st

 

1 
m

et
as

ta
tic

 s
ite

 in
 1

2/
19

 

H
om

oz
yg

ou
s d

el
et

io
ns

: 2
/1

9 

Po
in

t m
ut

at
io

ns
: 4

/1
9 

 

LO
H

: 1
0/

18
  

Lo
ss

 o
f t

he
 sa

m
e 

al
le

le
 w

as
 fo

un
d 

in
 a

ll 
m

et
as

ta
se

s 
in

 a
 g

iv
en

 p
at

ie
nt

 

PT
EN

 g
en

e 
al

te
ra

tio
ns

 

oc
cu

r f
re

qu
en

tly
 in

 le
th

al
 

C
aP

; s
ub

st
an

tia
l 

m
ut

at
io

na
l h

et
er

og
en

ei
ty

 

is 
fo

un
d 

am
on

g 
di

ff
er

en
t 

m
et

as
ta

tic
 s

ite
s w

ith
in

 

th
e 

sa
m

e 
pa

tie
nt

 



14
6 

in
 9

/1
0 

ca
se

s 

D
on

g 
et

 a
l. 

(5
95

) 

40
 R

P 
sa

m
pl

es
 

(m
ac

ro
di

ss
ec

tio
n:

 

at
 le

as
t 7

0%
 o

f 

tu
m

ou
r)

 

LO
H

 a
na

ly
si

s, 
PC

R
 

fo
r h

om
oz

yg
ou

s 

de
le

tio
n,

 se
qu

en
ci

ng
 

N
o 

FI
SH

 

N
ot

 d
on

e 
LO

H
 u

si
ng

 in
tra

ge
ni

c 
m

ar
ke

rs
: 

0/
40

 

M
ut

at
io

n:
 1

/4
0 

 

H
om

oz
yg

ou
s d

el
et

io
ns

: 0
/4

0 

PT
EN

 p
la

ys
 a

n 

in
si

gn
ifi

ca
nt

 ro
le

 in
 lo

w
 

st
ag

e 
C

aP
s 

O
rik

as
a 

et
 a

l. 

(5
96

) 

45
 R

P 
sp

ec
im

en
s:

 

18
 F

FP
E 

an
d 

27
 

fro
ze

n 

LO
H

 a
na

ly
si

s 

FI
SH

 (1
2 

sa
m

pl
es

) 

N
ot

 d
on

e 
LO

H
: 2

/1
8 

(1
1.

1%
) 

FI
SH

 s
in

gl
e 

al
le

le
 lo

ss
: 2

/1
2 

(1
6.

7%
) 

M
ut

at
io

ns
: 0

/2
7 

M
ut

at
io

n 
of

 P
TE

N
 d

oe
s 

no
t p

la
y 

a 
m

aj
or

 ro
le

 in
 

pr
os

ta
tic

 c
ar

ci
no

ge
ne

si
s 

in
 J

ap
an

 

M
cM

en
am

in
 

et
 a

l. 
(3

26
) 

10
9 

R
P 

an
d 

FF
PE

 

C
aP

 sp
ec

im
en

s 

 

IH
C

 

N
o 

FI
SH

 

PT
EN

 

ex
pr

es
sio

n 

Po
sit

iv
e:

 5
8/

58
 

PT
EN

 e
xp

re
ss

io
n 

Po
sit

iv
e:

 1
7/

10
9 

(1
6%

) 

M
ix

ed
: 7

0/
10

9 
(6

4%
) 

A
bs

en
ce

: 2
2/

10
9 

(2
0%

) 

A
bs

en
ce

 o
f s

ta
in

in
g 

co
rr

el
at

ed
 w

ith
 in

cr
ea

se
d 

st
ag

e,
 si

ze
 

M
ul

le
r e

t a
l. 

(5
97

) 

40
 C

aP
 sa

m
pl

es
2  

(m
ic

ro
di

ss
ec

tio
n)

 

LO
H

 a
nd

 m
ut

at
io

n 

an
al

ys
is 

N
o 

FI
SH

 

N
ot

 d
on

e 
LO

H
: 1

4/
40

 (3
5%

)  

M
ut

at
io

ns
: 8

/1
4 

(5
 c

od
in

g,
 3

 

in
tro

ni
c)

 

LO
H

 d
at

a 
on

 1
0q

 a
ffe

ct
s 

PT
EN

 re
gi

on
 



14
7 

D
on

g 
et

 a
l. 

(5
98

) 

32
 R

P 
an

d 
FF

PE
 

C
aP

s (
A

si
an

), 
6 

m
et

as
ta

se
s (

U
SA

) 

(m
ic

ro
di

ss
ec

tio
n)

 

SS
C

P,
 se

qu
en

ci
ng

 

N
o 

FI
SH

 

N
ot

 d
on

e 
PT

EN
 m

ut
at

io
ns

: 5
/3

2 
(1

6%
) o

f 

R
P 

an
d 

2/
6 

(3
3%

) o
f m

et
as

ta
se

s 

PT
EN

 m
ut

at
io

ns
 li

ke
ly

 

m
or

e 
co

m
m

on
 in

 h
ig

he
r 

gr
ad

e 
tu

m
ou

rs
 

H
al

vo
rs

en
 e

t 

al
. (

59
9)

 

10
4 

R
P 

sp
ec

im
en

s 
IH

C
 o

n 
tis

su
e 

m
ic

ro
ar

ra
y 

N
o 

FI
SH

 

N
ot

 d
on

e 
A

bs
en

ce
 o

f P
TE

N
 e

xp
re

ss
io

n:
 

28
/1

03
 (2

7%
) 

Lo
ss

 o
f P

TE
N

 / 
p2

7 

as
so

ci
at

ed
 w

ith
 a

dv
er

se
 

pa
th

ol
og

y,
 p

ro
lif

er
at

io
n 

an
d 

ris
k 

of
 re

cu
rr

en
ce

 

Li
eb

er
fa

rb
 e

t 

al
. (

60
0)

 

52
 R

P 
an

d 
FF

PE
 

C
aP

 sp
ec

im
en

s 

(m
ic

ro
di

ss
ec

tio
n)

 

SN
P 

an
al

ys
is 

N
o 

FI
SH

 

N
ot

 d
on

e 
LO

H
 o

f 1
0q

23
: 5

/5
2 

M
ic

ro
ar

ra
y 

ba
se

d 
LO

H
 

de
te

ct
io

n 
is 

fe
as

ib
le

 a
nd

 

ro
bu

st
 

K
ok

sa
l e

t a
l. 

(3
27

) 

15
 R

P 
sp

ec
im

en
s, 

18
 T

U
R

P 
fo

r 

m
al

ig
na

nt
 d

ise
as

e 

(m
ic

ro
di

ss
ec

tio
n)

 

W
es

te
rn

 b
lo

tti
ng

/ 

D
en

sit
om

et
ry

 

N
o 

FI
SH

 

N
ot

 d
on

e 
86

%
 re

du
ct

io
n 

in
 P

TE
N

 p
ro

te
in

 in
 

ad
va

nc
ed

 d
ise

as
e 

PT
EN

 st
at

us
 a

pp
ea

rs
 to

 

be
 u

se
fu

l a
s a

n 

in
de

pe
nd

en
t m

ar
ke

r t
o 

pr
ed

ic
t p

ro
gr

es
sio

n 

Fe
ni

c 
et

 a
l. 

58
 C

aP
 sp

ec
im

en
s 

IS
H

, R
T-

PC
R

, 
PT

EN
 

PT
EN

 e
xp

re
ss

io
n 

 
PT

EN
 p

ro
te

in
 a

nd
 



14
8 

(5
24

) 
(3

1 
R

P 
an

d 
27

 

TU
R

P)
 

26
 P

IN
 a

nd
 1

5 

m
et

as
ta

se
s 

W
es

te
rn

, I
H

C
 

N
o 

FI
SH

 

ex
pr

es
sio

n 

++
m

R
N

A
: 2

6/
26

 

(1
00

%
) 

++
IH

C
: 2

1/
26

 

(8
1%

) 

+I
H

C
: 3

/2
6 

(1
1.

5%
) 

-I
H

C
: 

2/
26

(7
.7

%
) 

++
m

R
N

A
: 4

0/
58

 (6
9%

) 

+m
R

N
A

: 1
6/

58
 (2

7.
6%

) 

-m
R

N
A

: 2
/5

8 
(3

.4
%

) 

++
IH

C
: 2

7/
58

 (4
6.

5%
) 

+I
H

C
: 2

4/
58

 (4
1.

3%
) 

-I
H

C
: 8

/5
8(

13
.8

%
) 

tu
m

ou
r p

ro
gr

es
sio

n 
- 

in
co

nc
lu

si
ve

 

V
er

ha
ge

n 
et

 

al
. (

32
4)

 

40
 lo

ca
lly

 

pr
og

re
ss

iv
e 

C
aP

 

(m
ac

ro
di

ss
ec

tio
n,

 

80
%

 tu
m

ou
r)

 

A
lle

lo
ty

pe
 a

na
ly

si
s, 

FI
SH

, a
rr

ay
-C

G
H

, 

PC
R

-S
SC

P,
 

Se
qu

en
ci

ng
, W

PR
 

an
al

ys
is 

N
ot

 d
on

e 
3/

40
 m

ut
at

io
ns

 b
y 

se
qu

en
ci

ng
; 

8/
37

 h
om

oz
yg

ou
s P

TE
N

 d
el

et
io

n 

by
 F

IS
H

; 7
/3

7 
lo

ss
 o

f o
ne

 P
TE

N
 

co
py

 b
y 

FI
SH

; 1
1/

19
 L

O
H

; 1
5/

38
 

ne
ga

tiv
e 

by
 IH

C
; 1

5/
38

 b
ia

lle
lic

 

de
le

tio
n,

 1
5/

38
 s

in
gl

e 
al

le
le

 lo
ss

 

by
 W

PR
 a

na
ly

si
s 

B
i-a

lle
lic

 d
el

et
io

n 
is 

a 

m
aj

or
 m

ec
ha

ni
sm

 o
f 

PT
EN

 in
ac

tiv
at

io
n 

in
 

lo
ca

lly
 p

ro
gr

es
si

ve
 C

aP
 



14
9 

Sc
hm

itz
  e

t 

al
. (

32
9)

 

B
io

ps
ie

s a
t f

irs
t 

di
ag

no
si

s (
St

ud
y 

I, 

11
2 

pa
tie

nt
s)

 a
nd

 

pa
tie

nt
s w

ith
 

co
nf

irm
ed

 

m
et

as
ta

sis
 (S

tu
dy

 

II
, 4

2 
pa

tie
nt

s)
 

IH
C

 
N

ot
 d

on
e 

In
 S

tu
dy

 I,
 lo

ss
 o

f P
TE

N
 in

 

26
/1

12
 p

at
ie

nt
s (

23
%

). 
In

 S
tu

dy
 

II
, 2

5/
42

 p
at

ie
nt

s (
59

%
) w

ith
 

ly
m

ph
 n

od
e 

m
et

as
ta

sis
 h

ad
 

co
m

pl
et

e 
lo

ss
 o

f P
TE

N
 

ex
pr

es
sio

n 
in

 b
ot

h 
tis

su
es

, o
f 

th
es

e 
13

 (5
2%

) e
xh

ib
ite

d 
lo

ss
 o

f 

PT
EN

 e
xp

re
ss

io
n 

at
 fi

rs
t 

di
ag

no
si

s. 

Pa
tie

nt
s w

ith
 a

 

lo
w

 G
le

as
on

 sc
or

e 
an

d 

ne
ga

tiv
e 

PT
EN

 

ex
pr

es
sio

n 
ar

e 
m

ig
ht

 

pr
og

re
ss

 to
 m

et
as

ta
tic

 

di
se

as
e.

 

Po
ur

m
an

d 
et

 

al
. (

60
1)

 

51
 fo

rm
al

in
-f

ix
ed

 

pa
ra

ffi
n-

em
be

dd
ed

 

sp
ec

im
en

s 

Ti
ss

ue
 

m
ic

ro
di

ss
ec

tio
n 

an
d 

po
ly

m
er

as
e 

ch
ai

n 

re
ac

tio
n/

si
ng

le
-

st
ra

nd
 c

on
fo

rm
at

io
n 

po
ly

m
or

ph
is

m
 

m
et

ho
ds

 

N
ot

 d
on

e 
6/

51
 c

as
es

 (1
1.

6%
) s

ho
w

ed
 

m
ut

at
io

n 
in

 P
TE

N
 in

vo
lv

ed
 e

xo
ns

 

1,
 2

, a
nd

 5
. 2

/5
1 

ha
d 

lo
ca

liz
ed

 a
nd

 

ot
he

rs
 h

ad
 a

dv
an

ce
d 

C
aP

. 

Pa
tie

nt
s w

ith
 p

ro
st

at
e 

ca
nc

er
 a

nd
 P

TE
N

 

m
ut

at
io

n 
ha

d 
gr

ea
te

r G
S,

 

po
or

er
 p

ro
gn

os
is,

 a
nd

 

hi
gh

er
 ra

te
 o

f m
et

as
ta

sis
. 

H
ow

ev
er

, t
hi

s 
m

ut
at

io
n 

ca
nn

ot
 p

re
di

ct
 th

e 



15
0 

pr
og

no
sis

 a
nd

 th
e 

G
S 

is 
a 

m
or

e 
pr

ec
ise

 fa
ct

or
. 

H
el

lw
in

ke
l  

et
 

al
. (

60
2)

 

20
 p

at
ie

nt
s w

ith
 

va
ry

in
g 

st
ag

es
 o

f 

pr
os

ta
te

 c
an

ce
r 

M
ic

ro
di

ss
ec

te
d 

tu
m

ou
r t

iss
ue

s 
vi

a 

qR
T-

PC
R

 

N
ot

 d
on

e 
Si

gn
ifi

ca
nt

 d
ow

nr
eg

ul
at

io
n 

of
 

PT
EN

 e
xp

re
ss

io
n 

in
 G

le
as

on
 5

-6
 

vs
 G

le
as

on
 7

-1
0 

D
ow

n-
re

gu
la

tio
n 

of
 th

e 

PI
K

3/
PK

B
 p

at
hw

ay
 

co
ul

d 
re

pr
es

en
t a

 m
ar

ke
r 

fo
r t

he
 fo

rm
at

io
n 

of
 

hi
gh

ly
 d

e-
di

ffe
re

nt
ia

te
d 

pr
os

ta
te

 c
an

ce
rs

 fr
om

 

lo
w

-g
ra

de
 tu

m
ou

r f
oc

i 

 T
ab

le
 A

pp
 1

.7
.  

Su
m

m
ar

y 
of

 th
e 

PT
EN

 a
na

ly
si

s 
lit

er
at

ur
e 

to
 d

at
e 

in
 p

ro
st

at
ic

 n
eo

pl
as

ia
 a

nd
 p

re
ne

op
la

si
a 

1 A
ut

ho
rs

 c
on

si
de

r r
es

ul
ts

 a
n 

un
de

re
st

im
at

e 
as

 d
id

 n
ot

 se
ar

ch
 fo

r p
ro

m
ot

er
, r

eg
ul

at
or

y 
re

gi
on

 m
ut

at
io

ns
, d

id
 n

ot
 se

qu
en

ce
 tu

m
or

s w
ith

ou
t l

os
s 

of
 h

et
er

oz
yg

os
ity

, l
ik

el
y 

m
iss

ed
 s

m
al

l h
om

oz
yg

ou
s d

el
et

io
ns

;  
2 ty

pe
 u

nc
le

ar
; C

aP
- p

ro
st

at
e 

ca
nc

er
;  

PI
N

- p
ro

st
at

ic
 in

tra
-e

pi
th

el
ia

l n
eo

pl
as

ia
;  

R
P-

 ra
di

ca
l p

ro
st

at
ec

to
m

y;
  T

U
R

P-
 tr

an
su

re
th

ra
l r

es
ec

tio
n 

of
 th

e 
pr

os
ta

te
;  

FF
PE

- f
or

m
al

de
hy

de
-f

ix
ed

 p
ar

af
fin

-e
m

be
dd

ed
;  

LO
H

- l
os

s o
f 

he
te

ro
zy

go
sit

y;
  +

+ 
m

od
er

at
e 

to
 st

ro
ng

 e
xp

re
ss

io
n;

  +
 lo

w
 e

xp
re

ss
io

n;
  -

 n
eg

at
iv

e 
ex

pr
es

sio
n;

 W
PR

- w
ild

-ty
pe

:p
se

ud
og

en
e 

ra
tio

 a
na

ly
si

s 
 



151 

APPENDIX 2. A PHASE 2 TRIAL OF CYTARABINE 

(ARA-C) IN METASTATIC HORMONE REFRACTORY 

PROSTATE CANCER 
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APP 2.1 Background 

APP 2.1.1 Prostate Cancer 

Prostate cancer is primarily treated by surgery (radical prostatectomy) or radiotherapy if 

diagnosed when still localised. Advanced prostate cancer, either that which has failed local 

therapy or is metastatic, requires systemic therapy, usually with anti-testosterone hormone 

medication or castration. However the median response to androgen deprivation therapy is 

approximately 18-24 months, and all men eventually progress to androgen independence (unless 

they die of other causes). Once the disease becomes hormone refractory and therapy is 

indicated, then the standard of care is chemotherapy (docetaxel) (603, 604) but there is no 

standard of care following tumour progression after chemotherapy and further treatment options 

are needed.  

APP 2.1.2 ETS Family Relationship to Prostatic Carcinogenesis 

As referred to throughout this thesis, the ETS transcription factors appear to demarcate an 

important juncture into from the preneoplastic HPIN lesion to overt prostatic carcinoma. The 

ETS family encodes nuclear transcription factors with an evolutionarily conserved ETS domain 

of 85 amino acids that mediates binding to purine-rich DNA residues; more than 400 target 

genes are either positively or negatively regulated by them. There are currently 27 ETS related 

transcription factors that have been characterised amongst them ERG, ETV1, ETV4 and FLI1. 

The concept of  “ETS conversion” (the overexpression of ETS transcription factors) as a 

mechanism of epithelial to mesenchymal transition, and thus malignant transformation, is well 

established and indeed, recent evidence appears to corroborate this mechanism in ETS 

overexpressing models (186). 
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APP 2.1.3 Ara-C (Cytarabine) 

Ara-C is an analog of deoxycytidine and has multiple effects on DNA synthesis. Ara-C 

undergoes phosphorylation to form arabinosylcytosine triphosphate (Ara-CTP), which 

competitively inhibits DNA polymerase - in opposition to the normal substrate deoxycytidine 5-

triphosphate (dCTP) (605). More importantly, Ara-C is incorporated into DNA, a feature that 

correlates closely with cytotoxicity (606); evidence suggests that this is the major cytotoxic 

lesion in Ara-C–treated cells. Other biochemical actions of Ara-C have been described, 

including inhibition of ribonucleotide reductase (607) and formation of Ara-CDP-choline, an 

analogue of cytidine 5- diphosphocholine (CDP-choline) that inhibits synthesis of membrane 

glycoproteins and glycolipids. Nevertheless, the molecular mechanisms of cell death after Ara-C 

exposure are unclear. For example, some investigators report that induction of pRb phosphatase 

activity by DNA-damaging drugs, including Ara-C, is at least one of the mechanisms 

responsible for p53-independent, Rb-mediated G1 arrest and apoptosis (608). The resulting 

hypo-phosphorylated pRb binds to and inactivates the E2F transcription factor, which inhibits 

the transcription of numerous genes involved in cell-cycle progression (609). 

APP 2.1.4 Relationship between Ara-C and the ETS family of 

transcription factors 

In recently published data (610), high-throughput drug screening (611) identified Ara-C as a 

drug that inhibits production of a characteristic 14-gene mRNA signature found in Ewings 

sarcoma cells with the characteristic EWS-FLI1 fusion, with effects analogous to transfection 

with FLI1 RNAi. This fusion gene is pathognomonic of the malignant phenotype in Ewings 

sarcoma (612-614). FLI1 is a member of the ETS family of transcription factors. FLI1, and the 

ETS family member most relevant to prostatic carcinogenesis (ERG), are known to interact 
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directly (615) and have identical effects on molecular pathways such as TGF-Beta that are of 

established importance in prostatic carcinogenesis. In addition, their overexpression in Ewings 

sarcoma results in a common phenotype suggesting overlapping transcript profiles.  

 

APP 2.2 Hypothesis and Aims 

The hypothesis of this study is that Ara-C (cytarabine) blocks the effect of ETS-related 

translocations in prostatic carcinogenesis and has unrecognised activity in prostate cancer. The 

specific aims are; 

1. To assess the PSA (Primary endpoint) and palliative response rate (Secondary endpoint) 

of Ara-C in men with HRPC (Hormone Refractory Prostate Cancer) who have received 

prior therapy with docetaxel.  

2. To assess the toxicity of Ara-C in men with HRPC. 

3. To assess the relationship between ETS translocations in prostate cancer and response to 

Ara-C. 

4. To assess the relationship between serum ETS fusion genes and PSA response. 

 

APP 2.3 Preliminary Studies 

In order to verify the presence of the 14-gene mRNA signature in prostate cancer we used the 

two largest publicly available expression microarray studies of prostate cancer that compare 

normal prostate tissue to localized cancer and metastatic disease through the Oncomine resource 

(49, 388, 585). This signature appears to be largely intact in localized and metastatic prostate 

cancer, (See Table App2.1) with the majority of genes showing a similar or related pattern of 

dysregulation in prostate cancer when compared to Ewings sarcoma. This suggests potential 

activity of Ara-C in treating this neoplasm. Additionally, we have been encouraged by xenograft 



155 

work suggesting that more advanced hormone refractory disease is associated with greater 

activation of non-ERG ETS family members, in particular FLI1, which is relevant to this 

proposal (165). 
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Table App2.1 - Direction of gene expression is indicated in each box. Grey Shading indicates 
concurrence between Ewings sarcoma expression data and that of prostate cancer. Where data 
available, a p value of 0.05 considered significant. N/A – Not analysed in dataset. E= 
Exponential. HIGH-Upregulated. LOW-Downregulated. NOCHANGE- No change by above 
significance criteria. N= Normal prostate L= Localised disease LND = Lymph Node Disease M 
= Metastatic Disease #=Data point missing in database 
 

 

Preliminary studies investigating in vitro sensitivity of prostate cancer cell lines to explore our 

hypothesis were carried out in Dr Jongstra’s laboratory. We used a SulphoRhodamine B (SRB) 

assay to determine the potency of Ara-C to inhibit growth of three prostate cancer cell lines, 

DU-145, PC3 and 22rv1 (Unfortunately, after these experiments were carried out, it became 

apparent that none of these cell lines are known to possess the ERG fusion gene). The method is 

suitable for routine and very large-scale applications (616) and was carried out in standard 

fashion in 96 well plates. The results of 3 independent experiments are shown in Figure 
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App2.1A. Ara-C inhibits growth of PC3 and 22Rv1 cells with IC50 values of ~ 400 nM and of 

DU-145 cells with an IC50 of  ~ 200 nM.  To provide a comparison with other widely used anti-

cancer agents the IC50s of doxorubicin and cisplatin were determined for growth inhibition of 

DU-145 cells (not shown). In agreement with published results we found IC50s for doxorubicin 

and cisplatin of 20 nM and 4 mM respectively. Mean plasma levels that can be achieved 

following an Ara-C dose of 2g/m2 decrease in a logarithmic fashion after infusion but remain 

above 1µM for the first 160 minutes post infusion (617). Thus levels of Ara-C that cause growth 

inhibition are likely to be achievable in vivo.  

To determine the efficacy of Ara-C on cell survival, a standard clonogenic assay was 

performed with colony formation evaluated in 6-well plates. Results were compared with those 

for doxorubicin and cisplatin. Cells were treated with 0.25 uM Ara-C, 20 nM doxorubicin and 4 

mM cisplatin.  These concentrations are close to the IC50s for growth inhibition as determined 

in SRB assays described above. Fig.App2.1B shows that Ara-C inhibits clonogenic cell growth 

by > 100-fold.  In contrast doxorubicin and cisplatin lowered the surviving fraction by only ~ 20 

– 30 %. These results identify Ara-C as a potent inhibitor of growth of prostate cancer cell lines 

and an inhibitor of cell survival at clinically achievable doses. 



158 

 
Figure App2.1. AraC Inhibits  growth and clonogenicity of  prostate cancer cell lines.A,  
growth inhibition of  DU-145, PC3 and 22Rv1 cells by AraC using a SRB based assay.  Cells 
were treated in 96-well plates for 72 hrs with  AraC and the results of the SRB assay was 
expressed as the OD570 as a % of the OD570 determined from untreated control wells.  The 50 
% growth inhibition is indicated with a thin horizontal line.   B,   clonogenic activity of Arac, 
doxorubicin and cisplatin on DU-145 cells.  Cells were plated in 6-well plates and treated with 
compound at a concentration corresponding to their respective IC50 values for growth inhibition 
on DU-145 cells as determined in SRB assays (results for doxorubicin and cisplatin not shown). 
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Finally, on review of the literature, there has been one man who has received Ara-C  for 

metastatic prostate cancer during the course of treatment for ALL (618). He received 3 cycles of 

hyper-CVAD for his leukemia and his serum PSA was recorded. Coinciding with the 

administration of Ara-C in the second cycle his PSA fell precipitously (Figure APP 2.2) and at 

autopsy no metastases could be detected. The dose of Ara-C in Hyper-CVAD is 3g/m2 bid for 4 

doses.  

Thus the rationale for this proposal includes: (i) An extension of microarray signature 

work from Ewings sarcoma that suggests activity of Ara-C in malignancies with expression 

abnormalities in the ETS family of transcription factors.  (ii) The existence of overlapping 

pathways of FLI1 and ERG overexpression in tumours (ii) Preliminary data that suggest potent 

activity of Ara-C in prostate cancer cell lines at concentrations likely to be achievable in vivo. 

(iii) A case report that indicates activity for high-dose Ara-C against HRPC in a patient who also 

had leukemia (iv) Xenograft studies suggesting the increased FLI1 expression in advanced HR 

CaP suggesting a more direct effect of Ara-C on inhibiting resulting transcriptional pathways (v) 

An unmet need for effective 2nd line chemotherapy for men with HRPC since only 1st line 

docetaxel has been shown to improve survival. 
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Figure App 2.2. Serum PSA levels from Gandhok et al., showing a fall in PSA coinciding with 
the administration of cytarabine with the second cycle of Hyper-CVAD for a patient suffering 
from both leukemia and hormone refractory prostate cancer 
 
 



161 

APP 2.4 Clinical trial Design and Methods 

APP 2.4.1 Overview 

Clinically, we are carrying out a phase 2 trial of Ara-C in men with metastatic hormone 

refractory prostate cancer (HRPC) who have progressed after first line therapy with docetaxel. 

The translational component of this work involves determination of the patients’ status as 

TMPRSS2-ETS  translocation carriers from analysis of their paraffin –embedded biopsies or 

radical proctatectomy sections and then the association between response and gene fusion status. 

The primary clinical endpoint of the study is PSA response (619) following Ara-C treatment. 

The secondary clinical endpoint is PSA progression free survival. The primary molecular 

endpoint is the association between the presence of FISH detected fusion transcripts and PSA 

response whilst the secondary endpoint is the relationship between levels of ETS transcripts in 

relation to PSA response. 

An a priori hypothesis is that responses are more likely to occur in men with ETS 

translocations, although our preliminary data suggest that Ara-C might be active against prostate 

cancer cells without ETS translocations. Current estimates are that such translocations are 

present in 70% of men with prostate cancer. A PSA response rate of 30% among men with ETS 

translocations (response rate of 20% overall) would be regarded as clinically relevant and 

sufficient to proceed to further investigation of this agent.  

Initial studies of high-dose Ara-C in leukemia examined dosing levels. No grade 3 or 4 

toxicity was noted in 2 patients receiving the 3g/m2 dose in the absence of any additional 

chemotherapy (620). Nevertheless, this dose is likely to be profoundly immunosuppressive in a 

population of elderly men, many of whom may have limited marrow reserve due to previous 

chemotherapy and bony metastases. Additionally, an important side-effect of high-dose Ara-C is 

cerebral toxicity characterized by obtundation, somnolence and headache. Risk factors for this 



162 

include the age of the patient, dose of Ara-C and renal function (620).Thus a starting dose of 

1g/m2 increasing to 1.5 g/m2 every 12 hours for 4 doses is likely to be better tolerated than the 

traditional leukemic doses, and would offer an adequate therapeutic window with adequate 

serum levels to assess the response of men to this regimen.  

In order to minimize the number of patients treated in the event that this regimen proves 

to be disappointing, a classical two stage Phase 2 “Fleming” design will be used.  Only extreme 

results indicating poor efficacy will result in early study termination.  If such extreme results are 

not observed, a maximum of 30 patients will be studied.  This regimen will be assumed to be 

inactive if the PSA-response rate is at most 5% and potentially active if it is at least 20%. 

Therefore, we set P0 = 0.05 and P1= 0.20. In stage I we will accrue 15 evaluable patients; if at 

least 1 evaluable patient has a PSA-response, we will proceed to stage II and accrue an 

additional 15 evaluable patients.  If 4 or more of the 30 evaluable patients have a PSA-response, 

the treatment will be deemed potentially active.  If 3 or less of the 30 evaluable patients have a 

PSA-response, the treatment will be deemed inactive and uninteresting for further study.  The 

true alpha using this design is 0.058 and the true beta is 0.135.  The probability of stopping after 

the first stage is 0.463 if the treatment is inactive (i.e. true PSA-response rate is 0.05). The trial 

plans to accrue about 2 patients per month, and is thus expected to complete accrual in 15-18 

months.  

APP 2.4.2 Response Criteria 

Criteria of PSA response will be as proposed by the recent Consensus group (619). Briefly, PSA 

progression free survival is defined as the time between randomization and the date of PSA 

progression or the date of death due to prostate cancer, whichever occurs first (with the caveat 

that early increases in PSA within the first 12 weeks are ignored if followed by subsequent 

decline). Patients are assessed by baseline CT of the abdomen and pelvis, and if measurable 
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disease is present, this is repeated after every 3rd cycle and on completion of study. Response is 

evaluated by RECIST criteria (621). The RECIST criteria are a simplified and conservative 

mechanism to extract of imaging data for wide application in clinical trials. They presume that 

linear measures are an adequate substitute for 2-D methods and registers four response 

categories; CR (complete response, disappearance of all target lesions), PR (partial response, 

30% decrease in the sum of the longest diameter of target lesions), PD (progressive disease, 

20% increase in the sum of the longest diameter of target lesions) and SD (stable disease, small 

changes that do not meet above criteria). 

APP 2.4.3 Translational Components  

The Squire laboratory has demonstrated the ability of tri-color fluorescence in-situ hybridization 

(FISH) to detect TMPRSS2-ERG translocations in clinically accessible archived prostate tissue. 

The generation and validation of PCR primers to detect the transcript in blood is in progress in 

limiting dilutions of VCaP cells. Other groups have reported the PCR-based detection of the 

transcript in urine suggesting the feasibility of this approach. Several approaches will be 

evaluated to increase the success of RT-PCR if needed. 

The primary molecular endpoint of this phase 2 study will be the association between the PSA 

response and the presence of a fusion transcript detected by FISH on the patient biopsy or 

prostatectomy sections as determined by chi-squared analysis. Further logistic regression 

analysis for associations between % PSA reduction and the presence of a fusion transcript will 

also be carried out. Comparison between groups with and without the fusion gene with their 

PSA response rate will also be carried out with a student t-test. Secondary endpoints will be a 

linear regression analyses to seek any association between the levels of the fusion transcript 

detected in the blood (Taqman ∆∆CT method) and PSA response, logistic regression to 

determine the association between response and presence of various levels of fusion transcripts 
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in the blood and an examination of any association between subsequent androgen response and 

the presence of the fusion genes. 

 

APP 2.5 Results 

To date, 6 patients have been enrolled, with a median age of 72 (range 53-74), median baseline 

PSA of 160 (range 85-2992), median Gleason score 8.5 (range 6-9), median performance status 

1 (range 0-2). All patients have completed 2-3 cycles of treatment and have been removed from 

the study. Reasons for removal from the study protocol include; Progressive disease (3), Grade 4 

neutropenia (1), Grade 3 thrombocytopenia (1), recurrent Grade 2 anaemia (1). Median time on 

study is 70 days (range 56-86 days).  

Generally, patients have demonstrated an increase in their PSA from baseline (median PSA rise 

210% from baseline). Given the absence of third-line prostate clinical trials, patients were 

generally treated with tertiary hormonal manipulations upon exit from the trial. Two patients 

achieved a PSA nadir after approximately 90 days of hormone treatment. These nadirs have 

been 0.16% and 14% of the baseline PSA at entry; two further patients have a falling PSA, but 

have not reached a nadir, with one currently at 63% of entry PSA and another at 124% of 

baseline PSA. Another patient has experienced grade 4 thrombocytopenia from either 

diethylstilboestrol or disease progression in the post trial period. 

FISH has not yet been carried out on the patient’s original tumour samples. Blood for mRNA 

analysis has been collected and stored, but not yet subjected to RT-PCR. 
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Figure App 2.3 PSA progression graph for patients participating in the study of cytarabine for 
hormone refractory metastatic prostate cancer. Chart represents % PSA change from baseline at 
entry and PSA followed on 1 line of anti-hormonal treatment post trial. Data ends at 
commencement of 2nd therapy (1 patient), last PSA measurement (4 patients) or transfer to 
palliative care (1 patient). Patients were commenced on anti-hormonal treatment they had not 
had previously including ketoconazole, nilutamide and DES. 
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APP 2.6 Discussion 

Whilst the primary therapy seems not to be active, the profound fall in the PSA with 

hormone treatment post cytarabine might suggest a reinduction of hormone sensitivity in these 

patients. Such a hypothesis is supported by laboratory data suggesting a differentiation effect of 

ETS family knockdown in prostate cell line models (186, 187). The ultimate effect of the ETS 

related fusion events might relate to the balance of ETS acting transcription factors in the cell. 

The role of the PDEF and ESE-3 and tumour suppressing ETS transcription factors may be 

relevant (see section 1.6.3.1.1). 

A small molecule that targets ERG, the most commonly dysregulated member of the 

ETS family might be the most efficacious course to target this fusion gene. However, there are a 

number of drawbacks to this approach; (1) ERG has been recently identified as essential for 

definitive hematopoiesis and the function of adult hematopoietic stem cells (622). (2) Whether 

the TMPRSS2-ERG protein is produced in advanced hormone-refractory metastatic disease 

given its androgen regulation is unclear and will await the validation of immunohistochemical 

approaches. (3) The approach would only target a subset of the tumours in which there is ETS 

dysregulation.  

Alternatively, there may be a reciprocal balance between pro- and anti-oncogenic ETS 

factors in the progression to carcinogenesis (506). Therefore, an approach to avoid the 

disadvantages above is to reduce one of the oncogenic ETS proteins in an effort to restore this 

balance. FLI1 is an ideal candidate for this given both the xenograft work suggesting it is 

upregulated in hormone refractory disease (165) and an existing mechanism to reduce its protein 

level using existing therapeutics (610). 
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In conclusion, although patients receiving cytarabine in this phase 2 protocol have 

demonstrated PSA progression, an encouraging trend to increased hormone responsiveness has 

been observed (50% of patients demonstrating PSAs below baseline) after protocol cessation 

that might reflect the effects of treatment. 

We will continue to enrol patients to this protocol as per the statistical design and will complete 

the translational component of the research. We will also evaluate the mechanism of the putative 

increased hormone responsiveness in in vitro and in vivo models. 
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