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Abstract 

In all-photonic networks, both transmission and switching is performed in the optical do­

main, without optoelectronic conversion for the data traversing the network. An accurate 

traffic model is critical in an agile all-photonic network (AAPN) which has the ability to 

dynamically allocate bandwidth to traffic flows as the demand varies. 

This thesis focuses on traffic modelling and analysis. A novel traffic model is proposed 

which can capture the traffic behaviours in all-photonic networks. The new model is based 

on a study of existing traffic modelling literature. It combines the time-varying Poisson 

model, gravit y model and fractional Gaussian noise. This model can be used for the short­

range traffic prediction. We examine Long-Range Dependence and test the time constancy 

of scaling parameters using the tools designed by Abry and Veitch, to analyze empirical 

and synthesized traffic traces. 
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Sommaire 

Dans les réseaux tout photoniques, les commutations et la transmission de données sont 

réalisées dans le domaine optique, et ce, sans conversion optoélectronique des données 

traversant le réseau. Cette particularité rend essentiel l'élaboration d'un modèle de trafic 

précis pour les réseaux agiles tout photoniques (RATP) en permettant d'allouer dynamique­

ment les bandes fréquentielles au trafic selon les variations de la demande. 

La contribution de cette thèse consiste en l'analyse et la modélisation du trafic. Un 

nouveau modèle de trafic est proposé, celui-ci permet la capture du comportement du 

trafic dans les réseaux tout photoniques. L'élaboration du nouveau modèle est basée sur les 

modèles de trafic déjà existant présent dans la littérature scientifique. Il combine le modèle 

à temps variant de Poisson, le modèle de gravité ainsi que le bruit gaussien fractionnel. Le 

modèle proposé peut être utilisé pour des prédictions de trafic sur courtes distances. Nous 

examinons les dépendances sur longues distances et testons la constance des paramètres 

d'échelles en utilisant les outils développés par Abry et Veitch, ceci afin de synthétiser et 

d'analyser empiriquement les tracés de trafic. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

In current optical networks1, the electronic processing in the switches is a bottleneck, III 

the sense that it restricts the switching capacity because the optoelectronic conversion is 

slow [1]. In an all-photonic (all-optical) network, the electronic switches are replaced by 

optical switches. There may still be electronic control, but the data traversing the photonic 

node do not experience optoelectronic conversion. Current designs of all-photonic networks 

permit routing and multiplexing based on wavelengths. However, the reconfiguration time 

of these networks, which can be as long as several seconds, restricts the incorporation of 

time-domain multiplexing [2]. The Agile All-Photonic Network (AAPN) will introduce both 

an all-photonic core and agility, which specifies the ability to perform dynamic bandwidth 

allocation as the am ou nt of traffic varies over time, at a time scale of micro- or milliseconds 

[3]. 
Currently, many core networks have a mesh topology because it is robust and can dis­

tribute traffic load over switches. Due to the lack of optical memory, all-photonic networks 

cannot afford the frequent resource contention at switches. In order to avoid the contention, 

the AAPN uses the overlaid star topology, as shown in Fig. 1.1. The edge nodes are con­

nected to several central photonic core nodes, which provides protection in case that sorne 

lOptical nctworks arc high-capacity tclccommunications networks based on optical technologies and 
componcnts that provide routing, grooming, and rcstoration at the wavclength levcl as well as wavclength­
based services. The examples of current optical networks are synchronous optical network (SONET) and 
wavclength division multiplexing (WDM). 



1 Introduction 

link or core node fails. 

lIiiijjI Edge nade 

g OptlcaVe/ectronlc Interface 

=- Fast photon/c core swltch 

Fig. 1.1 The overlaid star architecture of the AAPN network. 

2 

In the AAPN, control functionality is implemented primarily at the edge of the photonic 

core, which simplifies the scheduling of traffic ftows within the core. The edge nodes 

will perform aIl complicated control functionalities, e.g. traffic aggregation, time-domain 

division of a single wavelength, and sharing the bandwidth of a single wavelength between 

several information ftows. The edge nodes can execute these functionalities most efficiently 

if they have the most up-to-date information concerning the properties of the entire network, 

e.g. link loss rates, delay distributions and traffic demands. However, in a large scale 

network, the edge nodes are geographically distributed, potentially belong to different sub­

networks, and thus have only limited and delayed network state information. 

The distributed edge nodes cannot measure and observe the performance of the global 

network. In order to implement efficient control schemes, the edge nodes need to predict 

the future demands of the network based on the observable but incomplete and delayed 

measurements. The primary objective in this thesis is to propose a traffic modelling ap­

proach, which can capture the traffic characteristics in an all-photonic network, and identify 
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the methods to predict the traffic demands based on the proposed traffic model and avail­

able network measurements. If network control decisions can be made based on reliable 

estimation of the current and future network traffic demands, then more effective switch­

ing strategies, efficient scheduling and bandwidth allocation strategies, and better traffic 

control proto cols and dynamic routing algorithms can be designed. The methods of traf­

fic modelling and prediction will be based on techniques and models proposed in network 

tomography, network traffic modelling and statistical signal processing. 

1.2 Thesis Organization 

The remainder of this thesis is organized as follows. Chapter 2 reviews the recent literature 

in the fields of network tomography, network traffic modelling and traffic prediction. The 

chapter first provides a generalized formulation of the network tomography problem, and 

discusses link-Ievel and path-Ievel network performance parameter estimation. Then we 

survey network traffic models that have been presented in the literature. This chapter 

also covers sorne techniques in traffic prediction in both telephony and data networks. 

Chapter 3 proposes a new traffic modelling approach which can be used to capture the 

traffic behaviours in an AAPN. It describes the derivation of this model and presents sorne 

traffic examples generated by this mode!. Chapter 4 presents the comparison between 

the synthesized traffic traces generated by the proposed model and the empirical traffic 

traces measured in the actual network. We also test the long-range dependence and time 

constancy of scaling parameters of the synthesized traffic and actual traflic, using the tools 

proposed by Abry and Veitch [4]. Finally, Chapter 5 summarizes the conclusions of the 

thesis and presents the application of the proposed model in Agile All-Photonic Networks. 

Suggestions for future research directions are discussed. 
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Chapter 2 

Literature Review 

In this chapter, we explain the problem of network tomography, and present sorne solutions 

for link-Ievel and path-Ievel network parameter estimation. Then we review sorne traffic 

models appearing in literature, including both short-range dependent and long-range de­

pendent. This chapter also describes sorne methods in traffic prediction in both telephony 

and data networks, and identifies sorne prediction techniques such as Kalman filtering, 

extended Kalman filtering and sequential Monte Carlo methods. 

2.1 Network Tomography 

In a large-scale AAPN, distributed edge nodes cannot directly acquire complete network 

information to guide control functions such as dynamic routing, scheduling and bandwidth 

sharing. It is also impossible to take detailed measurements at all nodes in the network due 

to the financial cost, administrative burden and the delay induced by processing, storing and 

transmitting the data. Edge nodes can, however, estimate network performance parameters 

based on available traffic measurements at a subset of the nodes in a large scale AAPN. 

The estimation task is called "network tomography" [5], due to the similarity between such 

network inference problems and medical tomography. 

In general, network tomography problems can be divided into two groups [6,7]: link-Ievel 

parameter estimation based on path-Ievel traffic measurements, as described in [8-12], and 

path-Ievel traffic intensity estimation based on link-Ievel traffic measurements, as described 

in [5, 13-16]. 
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2.1.1 Link-level Parameter Estimation 

Link-level network tomography is the task of estimating the link-level network performance 

parameters (for example, loss rates and delay distributions) from path-level measurements, 

which typically consist of counts of packets or time delay between edge nodes. The measured 

path delay is the sum of the link delays in the path the traffic traverses, and includes the 

propagation delay and processingjqueuing delays in the routers along the path. 

Consider the network in Fig. 2.1. Packets are sent from one source to a number of 

destinations. By coordinating measurement scheme between the source and destinations, 

the path-level (end-to-end) behaviour can be measured. For instance, the source can mea­

sure the loss rates and transmission delay distribution by receiving the acknowledgment 

from the destinations after receiving packet successfully. In link-level network tomography, 

there are several key assumptions. The routing matrix is usually assumed to be known and 

constant during the measurement period. 

Source S1 

Destinations 

D1 D2 D3 D4 

o Node Link 

Fig. 2.1 Tree structured network topology. Paekets are sent from one source to a 
number of destinations. 

Multicast and uni cast are two common modes of communications in networks. Each 
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packet is sent to only one destination in unicast communication, but to a group of des­

tinations in multicast communication. Link-level network tomography have different ap­

proaches enabled by both multicast and unicast technologies. 

N etwork tomography based on multicast probing was one of the first approaches to 

the problem. The Multicast-based Inference of Network-internal Characteristics (MINCI) 

Project at the University of Massachusetts pioneered the use of multicast probing for net­

work tomography. Caceres et al. introduced a method to estimate link-level loss rates 

within a network through multicast end-to-end measurements [8]. The approach is based 

on the measurement and analysis of the loss behaviour of multicast probe traffic. A mul­

ticast packet is supposed to be received by a specified set of N nodes. If sorne of these 

N nodes failed to receive the data, then the loss can be localized to a subset of the links. 

Multicast traffic introduces correlation in the end-to-end losses, which can be measured 

by the end systems and be used to infer the loss behaviour of the links within the multi­

cast routing tree between the origin and destination. Upon adoption of a parametric loss 

model, maximum likelihood estimators can be designed for estimating link loss rates within 

a multicast tree. The authors of [8] showed that these estimates are strongly consistent 

and converge almost surely to the true loss rates. 

Multicast based network tomography is easy to implement, but since many networks 

do not support multicast, unicast based network tomography is more practical. However, 

unicast based tomography has the difficulty that although one can estimate end-to-end path 

loss rates and delay distributions from single unicast packet measurements, the mapping 

of these path-level parameters to the link-level parameters is not unique. To address this 

challenge, Coat es et al. proposed a new theory and tool for gauging internaI network loss 

characteristics solely from end-to-end measurements using unicast, back-to-back packet 

pairs [9]. The two packets in one packet pair are sent one after the other by the source 

possibly to different destinations, but sharing a common set of links in their paths. This 

method allows one to collect more information that can help to resolve the link-level loss 

rates and delay distributions. Coates et al. analyzed and compared sorne of the potential 

choices for conditional prior information models that can be used to resolve the link loss 

rates, and developed a factor graph framework capable of supporting efficient inference 

methods. Harfoush et al. independently developed a similar algorithm for link loss rate 

estimation [17]. 

1 http://gaia.cs.um8.5s.cdu/minc 
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Ouffield et al. also proposed a method that uses unicast probing to infer the internaI 

loss characteristics [18]. This method relies on sending a cluster of unicast packets (a packet 

"stripe") to a set of destinations to mimic the effect of a multicast packet. The methods 

of multicast inference can then be applied to infer the link loss and delay characteristics of 

the network. 

In [10], Coates et al. introduced a method for internaI delay estimation based on the 

end-to-end delay measurements from source to destination. They developed an Expectation 

Maximization algorithm [19] for maximum likelihood estimation in stationary networks, and 

a Sequential Monte Carlo procedure [20] for estimation in nonstationary cases. Lo Presti 

et al. presented a recursive algorithm for estimating internaI delay distributions by solving 

a set of convolution equations [21]. 

The above methods focus on estimation of network performance parameters, with the 

assumption that the network (routing) topology is known, but the routing matrix is not 

always available. In [12, 18, 22-25], the problem of topology identification is addressed. 

Ratnasamy and McCanne [22] presented schemes that allow a receiver to determine both 

the multicast tree structure and the bottle-neck bandwidth by analyzing correlations of 

loss patterns across the receiver set and by measuring how the network perturbs the fine­

grained timing structure of the packets sent from the source. Ouffield et al. [18] introduced 

an algorithm which combines different performance measures and reconstructs the multicast 

tree topology by adaptively choosing the one that ensures the best accuracy. Coat es et al. 

introduced a probing scheme which only requires measurement of delay difference [12]. 

They developed a Markov Chain Monte Carlo (MCMC) procedure to efficiently identify 

the topology with the highest likelihood of generating the measurements. 

2.1.2 Path-Ievel Parameter Estimation 

Path-Ievel parameter estimation is the task of estimating path-Ievel network parameters 

from measurements made on individuallinks. An example is the problem of estimating the 

amount of traffic between specified Origin-Oestination (00) pairs, based on measurements 

of the number of packets that pass through interior nodes in the network. 

In path-Ievel traffic intensity estimation, the relationship between Origin-Oestination [6] 

flows and link counts can be described by the following linear relationship: 
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Y=AX (2.1) 

where Y = (YI, ... , Ymf denotes the observed column vector of incomingjoutgoing byte 

counts measured on each router link interface during a given time interval. X = (Xl, ... , Xn)T 

denotes the unobserved vector of corresponding byte counts for aIl Origin Destination pairs 

during a give time interval in the network. One element of X corresponds to the number of 

bytes originating from a specified origin node to a specified destination node. One element 

of Y corresponds to aIl bytes sent from the origin node regardless of their destinations. 

A is the routing binary matrix with m rows representing the links of the network and n 

columns representing the 00 pairs. The entries of matrix A, ai/s, are "1" or "0" according 

to whether link i does or does not belong to the directed path of the 00 pair j. 

The problem of 00 (path-Ievel) network tomography was first investigated by Vardi [5]. 

The 00 traffic intensity is estimated from measurements of traffic on the links of a network. 

Vardi modeIled the traffic between 00 pairs as being generated from independent and 

identically distributed Poisson mode!. He discussed Maximum Likelihood Estimation and 

a related approximation, and analyzed numerical difficulties. He presented a method-of­

moments approach, which can be implemented using an EM algorithm, to estimate the 

Poisson parameters in two different types of network routing schemes: fixed (deterministic) 

and random (Markovian). 

Tebaldi et al. presented a Bayesian approach to path-Ievel network tomography in [13]. 

The goal is to compute the posterior conditional probability distribution p(XIY) of aIl 

00 demands given the link counts, using the Bayesian identity p(XIY) ex p(YIX)p(X). 

In [13], Tebaldi et al. modeIled the prior distribution p(X) for 00 demands using a Poisson 

distribution, independently over aIl 00 pairs. They then developed posterior distributions 

for inference on actual origin-destination counts and associated flow rates, using iterative 

MC MC simulation methods that combine Metropolis-Hastings steps within an overaIl Gibbs 

sampling framework. 

Cao et al. [14] estimated the time-varying traffic matrix based on link byte counts 

measured at the router interfaces and under a fixed routing scheme, i.e., there is only one 

route between an Origin-Destination pair. They modelled the unobserved 00 byte counts 

as an normal distribution and assumed that the 00 counts are independent and identically 
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distributed over successive measurement periods. 

(2.2) 

where c is a fixed power constant. This implies 

(2.3) 

where À = (À 1 , ... , Àn)T, and ~ = q;. diag(Ài, ... , À~). À> 0 is the vector of OD mean rates, 

and q; > 0 is the sc ale parameter. The authors assumed that the means and variances 

of the normal distribution are related through a power law, and proved the identifiability 

of the OD parameters from link data under this assumption. They performed maximum­

likelihood estimation the parameters via a combination of the Expectation Maximization 

(EM) algorithm and a second-order global optimization routine. Cao et al. proposed a 

scalable method that relies on a divide-and-conquer strategy [15]. Traillc matrix estimation 

for a large network is divided into a number of smaller sub-problems and then each of these 

sub-problems are solved independently. The computation al complexity of each sub-problem 

can be made independent of the size of the entire network, and the computation burden 

can be reduced without losing estimation accuracy. 

Liang et al. proposed a Maximum Pseudo Likelihood Estimation (MPLE) approach 

in [16]. Combined with MPLE, the divide-and-conquer strategies described in [14,15] can 

address large network problems, but the complexity for a network with n nodes is still rel­

atively high at O(n2
). The main idea is to decompose the original problem into a series of 

simpler sub-problems by selecting pairs of rows from the routing matrix A and to form the 

pseudo-likelihood funetion by multiplying the marginal likelihoods of sueh sub-problems. 

The pseudo-likelihood approaeh aehieves a good balance between the computational com­

plexity and the statistical eillciency of the parameter estimation. 

In [26], Zhang et al. introdueed a method, termed tomogravity, for eomputing the traille 

matrix from link data. The method consists of two basic steps: a gravit y modeling step 

and a tomographie estimation step. A general formulation of a gravit y model is given by 

the following equation: 

(2.4) 
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where X ij is the matrix element representing the force from i to j; IL; represents the 

repulsive factors that are associated with "leaving" from i; Aj represents the attractive 

factors that are associated with "going" to j; and fij is a friction factor from i to j. 

The resulting gravit y model simply states that the traffic exchanged between locations 

is proportional to the volumes entering and exiting at those locations. This model is 

appropriate only for high volume routers, for which the exchanged aggregated traffic is not 

sensitive to the detailed composition of the traffic. In the second step, the gravit y model 

solution is refined by using a least-square solution that minimizes the Euclidean distance 

to the gravit y model solution subject to the tomographic constraints. 

2.2 Trame Modelling 

As new communication services evolve and the needs of users change, modern communica­

tion networks like the AAPN are required to support diverse and emerging communication 

traffic such as data, voice, and video. In order to efficiently accommodate the traffic and 

maintain acceptable quality of service, effective congestion control schemes are important. 

Accurate traffic models, which can capture the statistical characteristics of actual traffic, are 

needed to determine which control techniques, such as congestion control and bandwidth 

allocation, should be used in AAPN. 

2.2.1 Voice in Telephony Networks 

Voice traffic in telephony networks is relatively easy to model with reasonable accuracy. 

The temporal dynamics of voice traffic are well-described by the distributions of the inter­

arrival times and durations of the calls. Poisson pro cesses are widely used to represent the 

statistical characteristics of voice traffic [27]. A Poisson process can be characterized as 

a renewal pro cess whose inter-arrival times of the calls are exponentially distributed with 

rate parameter À: P{An :S t} = 1 - exp(-Àt), where An is the length of the time interval 

separating the nth arrival from the previous one. It can also be described as a counting 

pro cess , satisfying P{N(t) = n} = exp(-Àt)(Àt)njn!, where N(t) = max{n: Tn:S t} is the 

number of (traffic) arrivals in the interval (0, tl. The number of arrivals in disjoint intervals 

is statistically independent. 
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2.2.2 Data Networks 

In [28], Paxson and Floyd showed that for wide-area traffic, Poisson pro cesses are valid only 

for modelling the arrivaI of user sessions (TELNET connections, FTP control connections). 

Other connection arrivaIs, such as SMTP (email) and NNTP (network news), do not display 

Poisson characteristics. An exponentially-distributed inter-arrivaIs model used to model 

packet arrivaIs generated by the user side of a TELNET connection seriously underestimates 

the burstiness of Tep traffic over a wide range of time scales. In a wide-area link, only one 

or two bursts may occur in an hour, but they will strongly dominate that hour's traffic. 

Paxson et al. suggested abandoning Poisson-based wide-area traffic for aIl but user session 

arrivaIs. 

Traffic models can be stationary or nonstationary. The stationary traffic models in data 

networks can be classified into two classes: short-range and long-range dependent. 

Let {Xt}, t = 0,1,2, ... be a wide-sense stationary stochastic process. The pro cess has a 

stationary mean Il = E[Xtl, a stationary variance 1/ = E[(Xt -11)2], and a stationary auto­

covariance function Ik = E[(Xt - Il)(Xt+k - Il)]· The autocorrelation of the process {Xt} 

at lag k is defined as Pk = 'kho. The pro cess {Xt} is short-range dependent if the auto­

correlation decays to zero exponentially, i.e. Lk Pk < 00. However, if the autocorrelation 

decays to zero at a slower rate than exponential so that it is not summable Lk Pk ----+ 00, 

the process {Xt} is long-range dependent. 

Short-range dependent models include Markov pro cesses and Regression models, e.g. 

Markov Modulated Poisson Process (MMPP) and TES models [29,30]. These traffic models 

have a correlation structure that is significant only for relatively smaIl lags. Long-range 

dependent traffic models, such as Fractional Autoregressive Integrated Moving Average (F­

ARIMA) [31] and Alternating Fractal Renewal Process (AFRP) [32,33], have significant 

correlations even for large lags. 

Short-Range Dependent Traffle Models 

The "packet train" traffic model is proposed by Jain et al. in [34]. A packet train is defined 

as a burst of packets between an OD pair as shown in Fig. 2.2. The inter-train gap is a user­

defined parameter, dependent on the frequency with which applications use the network. 

Each train consists of a number of packets going in either direction. The inter-packet gap 

is a system parameter and depends on the network hardware and software. This model 
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reftects the fact that mu ch of the communication inside a network involves many packets 

spaced closely in time, exchanged between the same source-destination pair. 

1 
·1 

Inter-Car 

Fig. 2.2 Packet train traffie mode!. A packet train is a burst of packets between 
an Origin-Destination pair. 

A Markov-Modulated Poisson Process (MMPP) [29] can be constructed by varying the 

arrival rate of a Poisson process according to an m-state Markov chain which is independent 

of the arrivaI process. Let M = {M(t)}~o be a continuous-time Markov process, with state 

space 1,2, ... m. The modulation mechanism is that in state k of M, arrivaIs occur according 

to a Poisson pro cess at rate Àk. As the state changes, so does the rate, as shown in Fig_ 

2.3. The MMPP parameters can be estimated from the empirical data, to quantize the 

arrivaI rate into a number of rates which corresponds to the number of states. Each rate 

corresponds to a state in the Markov chain. The transition rate from state i to state j, 

denoted by Qij, is estimated by quantizing the empirical data and by calculating the fraction 

of times that the state (rate) i switched to state (rate) j. MMPPs can model a mixture of 

voice and data traffic_ In this case, the arrivaIs of voice packets while in state k is assumed 

to be Poisson with rate Àk. Data packets are also Poisson with rate Àd. The resulting rate 

of state Sk will be Àd + Àk' 

Transform-Expand-Sample (TES) is a methodology for traffic modeling that aims to 

capture both the autocorrelation structure and the nature of the marginal distribution of 

empirical data [30]. TES models consist of two major processes: T ES+ and T ES-. T ES+ 
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0n-1 n 

Fig. 2.3 Markov Modulated Poisson Process, constructed by varying the arrivai 
rate of a Poisson pro cess according to an m-state Markov chain. 
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produces a sequence with positive correlation at lag 1, and T ES- pro duces a corresponding 

sequence with negative correlation. TES+(L, R) is characterized by two parameters, Land 

R. The recursive construction of TES processes is defined as follows: 

for n = 0, 
(2.5) 

for n > O. 

{
u+ 

U- = n 
n + 

1- Un' 

n even 
(2.6) 

n odd. 

where Vn is a sequence of independent identically distributed random variables, independent 

from Uo. The operator (-) is defined for any real x by (x) = x - lx J, where l·J is the floor 

operator. The resulting sequences U; and U;; are uniformly distributed in [0,1). The 

autocorrelation function of TES pro cesses decays exponentially. 
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Long-Range Dependent Traflie Models 

Recent empirical studies indicate that the traffic in broadband networks has properties 

such as long-range dependence (LRD) and heavy-tailed marginal distributions [35-37]. 
The traditional Poisson models have a correlation that decays exponentially. Willinger 

et al. [35] suggested that the autocorrelation of traffic volumes in modern data networks 

decays to zero at a slower rate than exponential. This slowly decaying correlation structure 

is indicative of LRD. Let {YkhEZ be a discrete-time second-order stationary process, with 

auto-covariance function ,(7) := coV(Yk+Tl Yk ). If L~-oo 1,(7)1 = 00, the corresponding 

stationary process is said to be LRD. The authors of [35] argued that LRD tends to be 

caused by user and application characteristics and has little to do with the network itself. 

Crovella et al. [36] presented empirical results indicating that a number of file size 

distributions in the Web exhibit heavy tails. A random variable Z has a heavy-tailed 

distribution if 

Pr{Z > x} rv ex-cr, x --t 00 

where 0 < a < 2 is called the tail index or shape parameter, and e is a positive constant. 

A distinguishing characteristic of these distributions is that they have infinite variance for 

o < a < 2. Park et al. [38] suggested that there is an intimate causal relationship between 

the presence of these heavy-tailed distributions in file sizes and the long-range dependent 

behaviour of network traffic . 

Corradi et al. analyzed the applicability of f-ARIMA pro cesses to traffic modelling [31]. 

An f-ARIMA(p, d, q) process, {Xt}, is defined, indirectly, by the relationship 

(2.7) 

where at is a white Gaussian noise series, <jJ(B) and 8(B) are two polynomial functions of 

degreep and q respectively, i.e. <jJ(B) = 1-<jJIB- ... -<jJpBP and 8(B) = 1-81B- ... -8qBQ. 

The parameters p and q are integers, whereas B indicates the backward-shift operator 

(Bxt = xt-d. \1d = (1 - B)d can be expressed using the binomial expansion 

where d can take values between 0 and 1/2 in order to generate LRD processes. f-
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ARIMA(p, d, q) models have three parameters p, d, and q that control the auto-correlation 

structure. The parameter d determines the LRD properties of the process, whereas p, q and 

the corresponding functions rp(B) and O(B) allow for more ftexible modelling of Short-Range 

Dependent (SRD) properties. Therefore, f-ARIMA models can capture both short-range 

and long-range dependence. 

Willinger et al. presented an on/off traffic model, based upon an alternating fractal 

renewal process (AFRP) [32,33]. In this model, a single source-destination active pair al­

ternates between two states, "ON" periods, during which packets arrive at regular intervals, 

and "OFF" periods, where there are periods with no packet arrivaIs. Traditionally, such 

models assume exponential distributions for their ON- and OFF-periods. However, it has 

been recognized that multiplexing a large number of sources with such distributions results 

in aggregate traffic that is inconsistent with actual traffic measurements. In [32,33] Will­

inger et al. proposed a model that abandoned the traditional exponential distributions for 

the ON- and OFF- periods of the sources in favour of infinite-variance distributions, such 

as the Pareto. The incorporation of these distributions gives rise to sources that display 

the "Noah effect", a term coined by Mandelbrot [39] to describe the tendency of persistent 

time-series to display abrupt and discrete changes. The superposition of many of these 

sources leads to aggregate traffic that displays self-similarity and long-range dependence, 

characteristics observed in many empirical observations of network traffic [35-37]. How­

ever, while the AFRP model provides insight into the essential self-similar characteristics 

of modern high-speed network traffic, its Gaussian aggregated result is inconsistent with 

real traffic data, which depart greatly from Gaussianity. Yang et al. proposed an extended 

AFRP (EAFRP) to overcome the limitations of AFRP model [40]. They treated the single­

user bit rate as a random variable with heavy-tailed characteristics. For both single-user 

and aggregated traffic, it results in impulsiveness and long-range dependence. 

In [41], Bonald and Roberts modelled elastic traffic in terms of ftows; a ftow is defined 

as the sequence of packets pertaining to one instance of sorne application. A ftow is simply 

characterized by an arrivaI time and a volume of data to be transmitted on a network 

path. The model in [41] assumes that ftows arrive according to a Poisson process with rate 

À. This is appropriate wh en there are a large number of sessions and the spacing of ftows 

within a session is large compared to the average inter-ftow interval. Bonald and Roberts 
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used Pareto distributions to fit the observed heavy tail of flow size 

b 
Pr[a > x] = (- t, 

x 
for x > b, 
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(2.9) 

where the random variable a denotes the flow size, a > 1 is a fixed parameter and b is the 

minimum flow size. 

Wavelet Representations 

Recent studies show that although network traffic has the complicated short- and long­

range temporal dependence, the corresponding wavelet coefficients are aH "short-range" 

dependent [42,43]. Wavelets are complete orthonormal bases which can be used to represent 

a signal as a function of time. The discrete wavelet transform is a multi-scale signal 

representation of the form 

Jo 
x(t) = L ukTJo/2rp(TJOt - k) + L L dj,kTj/2'lj;(Tjt - k), j,k E Z (2.10) 

k j=-oo k 

with Jo the coarsest scale and Uk and dj,k the scaling and wavelet coefficients, respectively. 

The scaling coefficients may be viewed as providing a coarse approximation of the signal, 

with the wavelet coefficients providing higher frequency "detail" information. 

The Haar scaling function rp and Haar wavelet function 'lj; are 

{ 

1 for 0 < t < 1, 
rp(t) = - -

o otherwise. 

o :-::; t :-::; 1/2, 

1/2::::;t:-::;1, 

otherwise. 

(2.11) 

(2.12) 

In the Haar transform, the scaling and wavelet coefficients can be recursively computed 
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using 

Uj,2k = r 1
/
2

(Uj+1,k + d j +1,k), 

Uj,2k+1 = 2-1
/

2
(Uj+l,k - dj+l,k). 
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(2.13) 

Fig. 2.4(a) shows the Haar scaling and wavelet functions, and Fig. 2.4(b) is the binary 

tree of scaling coefficients from coarse to fine scales. 

Cl>j.k(t) 
uj.k 

i'2 

0 k2·j (k+1 )2'J 

4-'J.k(t) 

i/2 

Uj+2.4k 
0 (k+1)21 

_i/2 

(a) (b) 

Fig. 2.4 Wavclet examples (a) Haar sealing funetion rPj,k(t) and wavclet function 
'l/Jj,dt). (b) Binary tree of sealing and wavclet coefficients. 

Crouse et al. presented a multiscale, multiplicative signal model for positive processes 

[43]. Let Aj,k be a random variable supported on the interval [-1,1] and define the wavelet 

coefficients recursively by 

Then the scaling coefficients can be recursively computed by 

U j ,2k = r 1
/

2 (1 + A j + 1,k)Uj +1,k, 

U j ,2k+l = r 1
/

2 (1 - A j +1,k)Uj +1,k. 

(2.14) 

(2.15 ) 
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When reaehing the finest seale j = Ji we obtain the desired pro cess X, given by 

k = 0, ... , 2Jo - J
! - 1. (2.16) 

Ma et al. showed that an independent wavelet model is suffieiently aeeurate, and they 

developed a time-seale shaping algorithm that extends the (Gaussian) wavelet models to 

non-Gaussian traffie [42]. The wavelet models have eomputational eomplexity O(N) in 

developing a model from a training sequence of length N, and O( M) in generating a 

synthetie traffie trace of length M. 

Veiteh et al. presented a general wavelet based framework for the on-line generation of 

time-series, partieularly fractal and certain multifraetal time series [44]. This framework, 

eoupled with a method interpreting time series as byte eounts, ean generate and transmit 

synthetie fractal and multifractal traffie at high rates with very low memory requirements. 

2.3 Traffie Prediction 

One of the key issues in measurement-based AAPN control is the prediction of the band­

width requirements in the next control time interval based on the observed traffie eharae­

teristies. Therefore, aeeurate traffie prediction ean be very advantageous. The goal is to 

foreeast future variations as preeisely as possible, based on the measured traffie history. 

2.3.1 Telephony Network Traffic Prediction 

Traffie prediction has a long history in telephony. A rieh variety of traffie models has 

been employed, including autoregressive models, ARIMA models and eeonometric mod­

els [45]. In order to more aeeurately prediet traffie demand, the terminaIs ean be divided 

into different classes, e.g., residential, business, coin. Then eaeh class of traffie is pre­

dieted individually and eombined to generate the total traffie prediction. When the traffie 

measurements are available, numerous foreeasting methods exist for predieting the future 

traffie matrix, e.g., Kruithof's method, the extension of Kruithof's method, weighted least 

squares and the Kalman predictor [46]. 

Kruithof's method foreeasts the traffie matrix using a linear predietor, based on the 

last known traffie matrix and foreeasts of the row and eolumn sum, and then deeomposes 

the sum of the row and eolumn aeeording to the gravit y model. The method only uses 
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the last known traffic matrix, and does not consider the information embedded in earlier 

traffic matrices. Wh en the growth of the point-to-point traffic varies substantiaIly, this is 

disad vantageous. 

2.3.2 Data Network Traffle Prediction 

In this thesis, we focus on traffic prediction for data networks. Compared with the relatively 

stable growth of telephone traffic, Internet traffic growth has been explosive. Even after 

the downturn in the telecom sector in 2000, Internet traffic continued to grow vigorously, 

approximately doubling each year [47]. Furthermore, Internet traffic is extremely heteroge­

neous [48], caused by the Internet's technical and administrative diversity, sustained growth, 

and immense variations over time in which applications are used and in what fashion. The 

heterogeneity is one factor that makes Internet traffic prediction immensely challenging. 

The problem of traffic prediction can be addressed at two levels: predicting source 

traffic, originating from a single host, or predicting aggregate traffic, combined from many 

subscriber terminaIs. 

Source Traffle Prediction 

Wh en predicting traffic at the source level, it is difficult to track the fine-grained behaviour 

of individual services or applications. It is more effective to classify traffic into a small 

number of basic categories each with sizable contribution to the aggregate traffic demand. 

In general, the four most important traffic types are (i) non-real-time large file transfer; 

(ii) real-time interaction such as video conference and remote manipulation; (iii) streaming 

services; (iv) transactions with very short messages. It is assumed that they constitute the 

traffic types supported in edge nodes of the future AAPN. 

Measurements in 2003 show that TCP is the dominant transfer mode, supporting http, 

ftp (web and file transfer), as weIl as other common applications [49]. Fraleigh et al. 

measured the traffic in the Sprint IP backbone. In aIl traffic traces they analyzed, above 

90% of the traffic is TCP. 

Aggregate Traffle Prediction 

Predicting traffic at the source level is not the focus of our work because the so-called edge 

nodes in AAPN are not data sources but are routers or switches within the Internet, hence 
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predicting aggregate traffic is more important. Aggregate traffic prediction is more reliable 

and flexible because traffic aggregation offers sorne protection from the variability induced 

by the traffic generated by individual services and applications. 

Define Y(t) as the random process that gives the number of bytes arriving at anode 

in the interval [0, t). The prediction goal is to estimate Y(t + T) from the measured traffic 

history Y(r)lr E (-00, tl, where T is the prediction interval. The result Y(t + T) is called 

the T-step predictor and is used for control purposes. 

Assuming a confident prediction requires that the normalized T-step prediction error 

err(T) == Y(tr(~:}tT) should not exceed a percentage E with a probability Pe, then the 

optimal prediction performance can be represented by the Maximum Prediction Interval 

(MPI) as 

(2.17) 

where Perr (T, E) = Pr[err( T) > E]. If the MPI provides enough time for measurement-based 

network control and prediction behaviours, then the arrivaI traffic is deemed predictable. 

One method for performing the prediction step is to use a linear predictor [50]. Let 

Z[n + 1] = Y((n + I)T) - Y(nT) = Y(t + T) - Y(t), n = 0,1, ... N - 1 with t = nT. The 

linear predictor that minimizes the variance of the prediction error Z[n + 1] - Z[n + 1] is 

given by 

yh(t + T) - Y(t), 

D:1Z[n] + D:2Z[n - 1] + ... + D:hZ[n - h + 1] (2.18) 

where h is the predictor length and 0: is a column vector with values D:i(1 ~ i ~ h) which 

are the mean squared linear regression coefficients. 

An alternative method is to model Y(t) as a continuous-time stochastic process Y(t) = 
X(t) + f.L, where f.L is the mean rate, and X(t) is a purely random pro cess with continuous 

integrated spectrum and zero me an [51]. 

2.3.3 Prediction Techniques 

This section gives a review of prediction techniques, which can be used to estimate the un­

observable system states from a vector of measurements. In order to make them applicable 

to traffic prediction, specifie traffic models can be developed to describe the relationship 



2 Literature Review 21 

between the unobservable system states and the vector of measurement. 

Kalman Filter 

This section provides a brief review of the Kalman filter, following the development in [52]. 

The Kalman filter is a linear, discrete-time, finite-dimensional system with a recursive 

structure [53]. It is the minimum mean-square estimator of the state of a linear dynamical 

system. 

The Kalman filter addresses the general problem of trying to estimate the state x( n) 

of a discrete-time controlled pro cess with measurement. The state x(n), assumed to be of 

dimension M, is unobservable. To estimate it, we use a set of observed data, denoted by 

the vector y(n), which is assumed to be of dimension N. Then the process equation is 

x(n + 1) = F(n + 1, n)x(n) + vI(n) (2.19) 

where F(n + 1, n) is assumed to be known and deterministic. In this equation, VI repre­

sents process noise with dimension M, modelled as a zero-mean, white noise process with 

correlation matrix defined by 

n=k 
(2.20) 

where QI(n) is assumed to be known and deterministic, and QI(n) 2 O. 

The measurement equation, which describes the relation between the state process x(n) 

and the observation vector y(n), is 

y(n) = C(n)x(n) + v2(n), (2.21 ) 

where C(n) is a known N-by-M measurement matrix. The N-by-l vector v2(n) represents 

measurement noise, modelled as a zero-mean, white-noise pro cess with correlation matrix 

as 

(2.22) 

where Q2(n) is assumed to be known and deterministic, and Q2(n) 2 o. 
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The initial state x(O) is assumed to have zero mean, covariance matrix TIo' and to be 

uncorrelated with both vI(n) and v2(n) for n ~ O. The noise vectors vI(n) and v2(n) are 

statistically independent E[VI (n )vf (k)] = 0 for all n and k. 

Define the innovation pro cess as 

a(n) = y(n) - y(nIYn-I)' n = 1,2, ... (2.23) 

where y(nIYn-d is the orthogonal projection of y(n) onto Yn-I. 

The Kalman filter equation is 

x(n + llYn) = F(n + 1, n)x(nIYn-d + G(n)a(n) (2.24) 

with the initial condition x(IIYo) = o. The Kalman gain at time n is defined as 

G(n) = F(n + 1, n)K(n, n - I)CH (n)[C(n)K(n, n - I)CH (n) + Q2(n)]-I. (2.25) 

K(n, n - 1) is calculated by the Riccati equation for the innovation pro cess 

K(n) = K(n, n - 1) - F(n, n + I)G(n)C(n)K(n, n - 1) (2.26) 

K(n + 1, n) = F(n + 1, n)K(n)FH (n + 1, n) + QI (n) (2.27) 

with initial condition K(I, 0) = E[(x(l) - E[x(I)])(x(l) - E[x(I)])H] = TIo. 
The relationship of (2.24) is the one-step ahead predictor. So the filtering technique 

incorporates a prediction framework. 

Extended Kalman Filter 

The Kalman filter addresses the estimation of astate vector in a linear model of a dynamical 

system. If the model is mildly nonlinear, a linearization procedure can be applied, and the 

result is referred to as the extended Kalman filter. We follow the development in [52]. 

The nonlinear state-space model has the form 

x(n + 1) = F(n,x(n)) + vI(n) (2.28) 
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y(n) = C(n, x(n)) + v2(n), (2.29) 

where, as in the linear model, VI (n) and V2 (n) are uncorrelated zero-mean white-noise pro­

cesses with correlation matrices QI (n) and Q2(n). F(n, x(n)) denotes a nonlinear transition 

matrix function that is possibly time varying. Similarly, C(n, x(n)) denotes a nonlinear 

measurement matrix that may be time varying. 

The basic idea of the extended Kalman filter is to linearize the state-space model at 

each time instant around the most recent state estimate. Once a linear model is obtained, 

the standard Kalman filter equations are applied. 

The extended Kalman filter equation becomes 

(2.30) 

x(n + llYn) = F(n, x(nIYn)) (2.31 ) 

with the initial condition x(1IYo) = o. The extended Kalman gain at time n is 

The innovation process is now 

a(n) = y(n) - C(n, x(nIYn-I))' (2.33) 

and the Riccati equation governing the evolution of K is 

K(n) = [1 - Gf(n)C(n)]K(n, n - 1) (2.34) 

K(n + 1, n) = F(n + 1, n)K(n)FH (n + 1, n) + QI (n) (2.35) 

with initial condition K(I, 0) = E[(x(l) - E[x(I)])(x(l) - E[x(I)])H] = 00. 

Sequential Monte Carlo Methods 

Sequential Monte Carlo (SMC) methods are based on Monte Carlo simulation, and provide 

a convenient and attractive approach for computing posterior distributions. These methods 
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have the great advantage of not being subject to any linearity or Gaussianity constraints 

on the model, and they also have appealing convergence properties. We now summarize 

the development in [20] as follows. 

The unobserved signal {Xt; t EN}, Xt E X is modelled as a Markov process of initial 

distribution p(xo) and transition equation p(XtIXt-l). The observations {Yt; t E N*}, Yt E 

Y, are assumed to be conditionally independent given the process {Xt; t E N} and of 

marginal distribution p(YtIXt). The aim is to estimate recursively in time the posterior 

distribution p(xo:tIYl:t), p(xtIYl:t), and the expectations 

(2.36) 

where XO:t = Xo, ... , Xt and Yl:t = Yl, ... , Yt· Examples of ft include the conditional mean, 

in which case ft(xo:d = Xo:t, and the conditional covariance of Xt in which case ft(xo:d = 

xtxi - Ep(XtIYt.) [xt]E;(xdyu) [Xt]. 
If we could sample directly from the posterior p(xo:tIYl:t) then a Monte Carlo Estimate 

of IUd would be ÎUt) = -ft L~l ft(xg~). However, it is usually impossible to sample 

efficiently from the posterior distribution p(xo:tIYl:t) at any time t, since p(xo:tIYl:t), in 

general, is multivariate, non-standard, and only known up to a proportionality constant. 

An alternative solution consists of using the importance sampling method. Define the 

importance sampling distribution as 7r(xo:tIYl:t), and the importance weight as w(xo:t) = 

p(XO:tIYl:tl The expectations in (2.36) can then be expressed as 
1I"(xo:tIYl:t) . 

IUt) = J ft(xo:t)w(xo:t)7r(xo:tIYl:t) dxo:t 
J w(xo:t)7r(xo:tIYl:t)dxo:t 

(2.37) 

If we generate N i.i.d. particles {x~~~, i = 1, ... , N} according to 7r(xo:tIYl:t), a possible 

Monte Carlo estimate of 1 Ud is 

(2.38) 
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where the normalized importance weights w?) are 

(2.39) 

The importance function 7r(xo:tlyu) must be designed so that it can be decomposed in 

the following manner: 

7r(xo:t-lIYl:t-l )7r(Xt IXO:t-l' Yu), 
t 

7r(xo) II 7r(xklxo:k-l' Yl:k). 
k=l 

The importance weights can then be evaluated recursively in time as 

(2.40) 

(2.41 ) 

An important particular case is when we adopt the prior distribution as importance 

distribution 
t 

7r(xo:tIYl:t) = p(xo:t) = p(xo) IIp(xklxk-l). (2.42) 
k=l 

Several closely related algorithms have appeared in a range of research fields, e.g., 

bootstrap filters, condensation, particle filters, Monte Carlo filters, interacting particle 

approximations and survival of the fittest. Here we only describe the bootstrap filter 

algorithm. Please refer to [20] for a more detailed description of other algorithms. 

Bootstrap Filter The key idea of the bootstrap filter is to eliminate the particles having 

low importance weights w~t) and to multiply particles having high importance weights [54]. 

This is achieved by introducing a selection (or resampling) step at selected time instants. 

The algorithm consists of the following steps: 

1. Initialization, t = 0 

• For i = 1, ... , N, sample xbi
) rv p(xo) and set t = 1. 

2. Importance sampling step 
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F . 1 N l - (i) (1 (i)) d - (i) ((i) - (i)) • or 2 = , ... , ,samp e x t "-' P Xt x t - 1 an set x o:t = x O:t-!' x t . 

• For i = 1, ... , N, evaluate the importance weights 

(2.43) 

• Normalize the importance weights. 

3. Selection step 

• Resample (with replacement) N particles (x6~~; i = 1, ... , N) from the set (i:6t i = 

1, ... , N) with probability of selection proportional to the normalized importance 

weight. 

• Set t +- t + 1 and go to step 2. 



27 

Chapter 3 

Traffie Models 

3.1 Introduction 

We propose a new traffic modelling approach for an all-photonic network architecture. 

Gravit y models have a long history in Origin-Destination (00) traffic modelling. They have 

been observed to be relatively accurate in representing the spatial distribution of the total 

incoming traffic [26]. The time-varying or Markov-Modulated Poisson Process (MMPP) 

has been used for a long time to approximate aggregate traffic arrivaI pro cesses [29]. 

In this chapter, we combine a gravit y model and a time-varying Poisson model to form 

a dynamic parametric traffic model for aggregate 00 traffic, as shown in Fig. 3.1. The 

dynamic model maintains state parameters that capture the underlying rates of traffic 

between origin-destination pairs. Each state parameter is determined by a Gravity-model 

decomposition of a shared rate component for the origin node, and its previous value. The 

observed traffic between origin-destination pair is governed by a Poisson distribution with 

the rate of state parameter, with sorne fractional Gaussian noise added. 

3.2 Time-Varying Poisson Process 

Poisson models are the oldest traffic models, dating back to the advent of telephony and 

renowned pioneering telephone engineer A. K. Erlang. As explained in Chapter 2, the 

identification of long-range dependence discredited Poisson based models for data networks 

traffic. However, due to the increase of the link speed and the number of hosts, the Poisson 

traffic model is becoming a better model for current network traffic for sub-second time 
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Fig. 3.1 Graphieal representation of the dynamie parametrie traffie mode!. 
The dynamie parametrie traffie mode! maintains state parameters that capture the 
underlying rates of traffie betwecn origin-destination pairs. Each state parameter is 
determincd by a Gravit y-mode! deeomposition of a shared rate eomponent for the 
origin node and its previous value. The observed traffie betwccn an origin-destination 
pair is governed by a Poisson distribution with the rate of statc parameter. 

scales [55-58]. 
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Our proposed model focuses on short-range traffic modelling and prediction. We aim to 

develop a traffic model that can be used for traffic prediction at a time sc ale appropriated 

for traffic control of an AAPN, which is determined by the round-trip time between the 

edge and core nodes (approximately 10 - 80ms). We model the rate of the total incoming 

traffic to an edge node, Ài(t), as follows: 

(3.1) 
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where Wi(t) rv N(O, al). At time interval t, the total traffic to flow into an edge node i with 

rate Ài(t) shall always be positive. This rate is renewed at each time interval by a normal 

distribution, with the mean of itself in the previous time interval À;(t - 1) and variance ar. 
The rate Ài(t) in part determines the Poisson rate of the traffic between individual 00 

pair Àij(t). We model the traffic between individual 00 pairs as the sum of a time-varying 

Poisson pro cess and fractional Gaussian noise. 

3.3 Gravit y Model 

Gravit y models, which drive their name from Newton's law of gravitation, are commonly 

used by social scientists to model the movement of people, goods or information between 

geographic areas [26]. In Newton's law of gravitation, the force is proportion al to the 

product of the masses of the two objects divided by the distance squared: 

F. = G
mlm2 

9 r 2 ' 
(3.2) 

where Fg is the gravitational force, ml and m2 are the masses of the two objects, r is the 

separation between the two objects, and G is the universal gravitational constant. Similarly, 

in gravit y models for geographic areas, the relative strength of the interaction between two 

geographic areas might be modelled as proportional to the product of the populations. A 

general formulation of gravit y model is given by the following equation: 

x _ R;. Aj 
ij - J .. ' 

lJ 
(3.3) 

where X ij is the matrix element representing the force from i to j; R; represents the 

repulsive factors that are associated with "leaving" from i; Aj represents the attractive 

factors that are associated with "going" to j; and fij is a friction factor from i to j. 

We are using the gravit y model to derive the decomposition factor to split the total 

incoming traffic to an edge node between individu al destinations. Denote mi as the size of 

the population which generates network traffic that flows into edge node i. In our approach, 

we first modify the general formulation of gravit y model as follows: 

m··m· 
X ij = 1 1 J, (3.4) 
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where Xij is the gmvitational force between two areas. The repulsive factor associated 

with "leaving" from edge node i is proportional to the size of the population mi, and the 

attractive factor associated with "going" to edge node j is proportional to mj' The more 

population there is in two geographic areas, the more network traffic there willlikely to be 

exchanged. The friction factor fij represents the locality information specific to different 

OD pairs. In today's data networks, geographic locality is generally not a major factor [26]. 

In all-photonic networks, it is probable that the majority of the traffic is data. So distance 

is no longer an important parameter in this scenario. In this thesis, we assume a common 

constant for the friction factors, which is set to be 1 without loss of generality. 

The gravitational force Xij gives the relation between each OD pair (i, j) individuaIly. In 

order to derive the decomposition vector which is used to split up the shared rate component 

among individual OD pairs, we need to get the fractional relation of the attractive force 

of each OD pair compared to the whole destination set. Then the gravitational force is 

normalized as follows: 
mi·mj 

Zij = , 
I:jmi' mj 

(3.5) 

where Zij is the decomposition factor between OD pair (i, j) compared to aIl destinations. 

3.4 Fractional Brownian Motion and Fractional Gaussian Noise 

Fractional Brownian motion (fBm) with self-similarity parameter (Hurst parameter) H is 

a stochastic process {Zt, t E (-oo,oo)} which has the following properties [59]: 

• Zt has stationary increments; 

• Zo = 0, and E[Zt] = 0 for aIl t; 

• E[Z;] = Itl2H for aIl t; 

• Zt has continuo us paths; 

• Zt is Gaussian. 

The Hurst parameter H determines the characteristics of the fBm. Zt is a long-range 

dependent process if H > 0.5, and a short-range dependent process if H < 0.5. In the 
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special case H = 1/2, Zt is the standard Brownian motion. The incremental sequence 

Zt - Zt-l is called fractional Gaussian noise. 

In [59], Norros models the aggregated connectionless traffic based on fractional Brownian 

motion: 

tE (-00,00), (3.6) 

where At is the aggregate traffic to time t, q is the mean arrivaI rate, p is the variance 

coefficient, and Zt is determined by a fractional Brownian motion with Hurst parameter 

H. The incremental sequence of a fractional Brownian motion is called fractional Gaussian 

noise. 

We use the fractional Gaussian noise (fGn) to capture bursts and variations in the 

traffic that occur over relatively short time-scales. Let Àij (t) be the mean rate of the 

traffic between 00 pair (i,j). The traffic between this 00 pair Yij(t) is modulated by the 

fractional Gaussian noise, as follows: 

(3.7) 

where Xij(t) rv Poisson(Àij(t)), Aij is the variance coefficient, and Mij is the mean rate 

of the traffic between pair (i,j). Zij(t) is generated by fractional Brownian motion with 

Hurst parameter Hij , and Zij(t) - Zij(t - 1) is the fractional Gaussian noise. 

3.5 Combined Model 

Combining the time-varying Poisson model and gravit y model, we can get our proposed 

traffic model by which the edge node can estimate the traffic matrix element for all des­

tinations. As shown in Fig. 3.2, the dynamic parametric traffic model maintains state 

parameters Àij(t) that capture the underlying rates (the traffic fluctuates around the un­

derlying rate) of traffic between 00 pairs (i, j) during time-slot t. Each state parameter is 

updated through the weighted summation of a Gravity-model decomposition of a shared 

rate component Ài(t), its previous value Àij(t - 1), and Gaussian innovation noise Vij(t). 

The observed traffic Yij(t) is then the sum of a draw from a Poisson distribution with rate 

parameter Àij(t) and fractional Gaussian noise. The total traffic to an edge no de i is the 
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Fig. 3.2 The key clements of the proposed dynamic parametric traffie mode!. 
The dynamic parametric traffic modcl maintains state parameters Àij(t) that capture 
the underlying rates of traffie between 00 pairs (i,j) during timc-slot t. Each state 
parameter is updated through the wcighted summation of a Gravity-modcl deeompo­
sition of a shared rate eomponent Ài(t), its previous value Àij(t - 1), and Gaussian 
innovation noise Vij(t). The observed traffic Yij(t) is then the sum of a draw from a 
Poisson distribution with rate parameter À;j(t) and fractional Gaussian noise (fGn). 
The total traffie to an edge node i is the sum of the observed Yij (t). 
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sum of the observed Yij(t). The traffie model is deseribed by the following equation set: 

,\(t) 

Àij (t) 

Xij(t) 

Yij (t) 

Yi(t) 

max{O, Ài(t - 1) + Wi(t)} 
mi·mj 

2:j mi' mj 

= max{O, aZijÀi(t) + (1 - a)Àij(t - 1) + Vij(t)} 

Poisson (Àij (t)) 

Xij(t) + J AijMij[Zij(t) - Zij(t - 1)] 

LYij(t) 
J 

(3.8) 
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where the initial conditions are Ài(O) = Ài' Àij(O) = ZijÀi(O) and Zij(O) = O. Ài(t) is the rate 

of ail the traffic flowing into edge node i during time-slot t, and Wi(t) rv N(O, an. Zij is the 

decomposition factor for the OD pair (i,j), which is derived from a gravit y model where 

mi is the size of the population in are a i, as explained in Section. 3.3. Àij(t) is the state 

parameter representing the rate of the traffic between OD pair (i, j), and Vij(t) rv N(O, -y't). 
Ài(t) is a determining factor of Àij(t), and parameter a E [0,1] defines the influence of Ài(t) 

and ÀiAt -1) on the value of Àij(t). Yij(t) is the traffic between individual OD pair (i,j) in 

time interval t, and it is determined by modulating the incremental sequence of fractional 

Brownian motion ZiAt) , with Hurst parameter Hij , onto the Poisson pro cess with rate 

Àij (t). Aij specifies the variance coefficient for 0 D pair, and Mij is the me an of the traffic 

between individual OD pair (i,j). The total incoming traffic to an edge node i is the sum 

of the traffic from the same origin node to ail destinations. 

3.6 Statistical Analysis 

The proposed traffic model is intended to capture the network traffic behaviour so that the 

expected increments of the traffic elements shail be zero. Suppose that the parameters at 

time slot t-1 are Ài(t-1), Àij (t-1), Yij(t-1), Yi(t-1). We assume that P{Ài(t-1)+Wi(t) > 

O} ~ 1, which will be the case if Ài(t - 1) »0'2. The expectation of the increment of Ài(t) 

is 

E[max{O, Ài(t - 1) + Wi(t)} - Ài(t - 1)] 

E[Ài(t - 1) + Wi(t) - Ài(t - 1)] 

E[Wi(t)] 

o (3.9) 

since Wi(t) rv N(O, an. We also assume P{aZijÀi(t)+(1-a)Àij(t-1)+Vij(t) > O} ~ 1, which 

will be the case if a> 0, 0 < Zij < 1, Ài(t) > 0 and aZijÀi(t) + (1- a)Àij(t - 1) »"'·it. From 

the initial condition Àij(O) = ZijÀi(O), we can get E[Àij(t)] = E[ZijÀi(t)]. The expectation 
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of the inerement of ),ij (t) is 

E[),ij(t) - ),ij(t - 1)] 

E[max{O, aZij),i(t) + (1 - a),ij(t - 1) + Vij(t)} - ),ij(t - 1)] 

E[aZij),i(t) + (1 - a),ij(t - 1) + Vij(t) - ),ij(t - 1)] 

E[aZij),i(t) - a),ij(t - 1)] 

= E[aZij),i(t - 1) - a),ij(t - 1)] 

o 
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(3.10) 

sinee Vij(t) '"" N(O, a~) is independent of ),ij(t - 1) and Ài(t - 1). The expeetation of the 

inerement of Xij(t) is 

E[E[Xij(t) - Xij(t - l)l),ij(t), ),ij(t - 1)]] 

E[),ij(t) - ),ij(t - 1)] 

o (3.11) 

as Xij(t) '"" Poissan(),ij(t)), and the expectation of ),ij(t) - ),ij(t - 1) is zero from (3.10). 

The expeetation of the inerement of Yi) (t) is 

E[Yij(t) - Yij(t - 1)] 

= E[Xij(t) + J AijMij(Zij(t) - Zij(t - 1)) - Xij(t - 1) 

+J AijMij (Zij (t - 1) - Zij(t - 2))] 

E[Xij(t) - Xij(t - 1) + J AijMij(Zij(t) - 2Zij (t - 1) + Zij(t - 2)) 

o (3.12) 
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since E[Zt] = 0 for aIl t, and (3.11). The expectation of the increment of the total incoming 

traffic to an edge node Yi (t) is 

E[Yi(t) - Yi(t - 1)] 

E[LYij(t) - LYij(t - 1)] 
j j 

j 

o 

3.7 Examples of Synthesized Traille 

(3.13) 

Network Setup Consider a network consisting of N = 9 edge nodes, with an arbitrary 

network topology. Suppose the population in each of the are as at the locations of edge 

nodes 1-3 (ml - m3) is 1,000,000, edge nodes 4-6 (m4 - m6) is 2,000,000, and edge nodes 

7-9 (m7 - mg) is 4,000,000. As discussed in Section 3.2, the time scale of the proposed 

model is set to lOms. The initial traffic, Yij(O), between origin node i and destination node 

j is set to 10-8 x mi x mj bytes per time unit. For instance, the traffic between origin 

node and destination node with population 2,000,000 and 1,000,000 respectively is 20,000 

bytes per time unit, i.e. 2Mbytesjs. 

Key Parameters The rate ofthe total traffic flowing into origin node i, Ài(t), is modelled 

as a standard Brownian motion as in (3.1), and the parameter affecting the behaviour of 

Ài(t) is the variance of Wi(t), i.e. or In all-photonic networks, the traffic from a large 

number of hosts is aggregated to an edge node. The variation of the traffic is expected to 

be relatively small compared to the mean of the total traffic to an edge node. Therefore, 

the variance of Wi(t) is set to be a; = 104
. Fig. 3.3 shows the behaviour of Ài(t). 

The total incoming traffic is decomposed between individual destinations as (3.8). Zij 

is a constant for a specifie OD pair and helps draw the traffic fraction back to the constant 

which is proportional to the population. The parameters affecting the behaviour of Àij (t) 

are the variance of Vij(t) (i.e. a;j), and the weight coefficient a. Fig. 3.4(a) shows the traffic 

flowing into origin no de 1 destined to an individual destination Ylj(t) with corresponding 

"dj , and a = 0.8. The first panel in Fig. 3.4( a) and 3.4(b) show the rate of the total 



3 Traffie Models 36 

5 \00 
2.005i'-x -'..:10'--------.--_---, __ --,--_----. __ ,---_----,-__ .---_---,-__ .--_---, 

1.975 

1.97 

1.965 

1.960'-------:-'1 OO-,-----2,-"OO-,-----3:-'-OO.,-----4:-'-OO,.-----5...LOO:----:-6...LOO,---7.Loo--aooL---900'------1-..JOOO 

Time Sioi (10ms) 

Fig. 3.3 The rnean rate of the total traffie Rowing into origin node l, 17r = 1 x 104. 

incoming traffic to edge node 1, À 1 (t). Due to the greater weight on the total incoming 

traffic to the origin edge node, the traffic mean for individual OD pair varies in a similar 

way to the À1(t). In Fig. 3.4(b), the variations for each OD pair is still the same as Fig. 

3.4(a), but a is reduced to be 0.1. The reduction of a makes Àij(t) determined more by 

itself in the previous time slot than the total mean to the origin edge node. The smaller a 

ind uces more variation in Àij (t). 

In this model, the À-component is used to capture the long-time scale variations and 

the fractional Gaussian noise is intended to capture bursts and variations in the traffic 

that occur over relatively short time-scales. Fig. 3.5 presents two realizations of fractional 

Gaussian noise with Hurst parameters. It shows that the fractional Gaussian noise with 

H = 0.3 presents more variations in short time-scales. In the case of H = 0.8, the fractional 

Gaussian noise fluctuates relatively slowly. Its value is likely to be positive when it is 

positive in the previous time unit. In the case of H = 0.3, the value of the fractional 

Gaussian noise at time slot t does not have as much effect on the value at t + 1. Fig. 3.6 
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shows the influence of the Hurst parameter, as the bigger Hurst parameter introduces more 

variation into the traffic. 

As described in Eqn. 3.7, besides the Hurst parameter Hij , the value of Aj is another 

way to change the peakedness of Yij (t) in short time-scales. Fig. 3.7 shows the effect of 

varying the parameters Aij. The bigger Aij , the more variation of the traffic. However, the 

nature of the variation introduced by varying the parameters Aj is different with that of 

the parameters Hij. In the case of bigger Hij as shown in Fig. 3.6, the traffic fluctuates 

more because the fractional Gaussian noise is more dependent on its previous value. The 

parameter Aij is a variance coefficient, which specifies the variation of the noise at each 

time slot independently, as shown in Fig. 3.7. 

Fig. 3.8 shows the traffic between individual aD pair which is generated by varying 

the parameters Hij ,' A ij , and "t't. We can use this model to generate both bursty (large 

variations) traffic (e.g. aD pair (1,9)) and non-bursty (small variations) traffic (e.g. aD 
pair (1,2)). The resultant total traffic to the origin node Yi(t) is the sum of the traffic 

Yij(t). The total traffic has the similar behaviour to the shared rate component Ài(t) but 

includes sorne noises introduced from each aD pair. 
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Chapter 4 

Data Analysis 

In this chapter, we analyze examples of empirical and synthesized traffic traces. We evaluate 

the Normalized Correlation Function (NCF) to measure the similarity between the time 

series quantized from the empirical and synthesized traffic traces. We also examine the 

long-range dependence and test the time constancy of scaling parameters of the traffic 

traces, using the tools developed by Abry and Veitch [4]. The tools generate an analysis 

framework for time series, including Long-Range Dependent (LRD) and Self-Similar (SS). 

They allow the estimation of key parameters based on the coefficients of a discrete wavelet 

decomposition. 

4.1 Empirical Traffic Traces 

The two empirical traffic traces we analyzed were recorded at Columbia University and are 

provided by Passive Measurement and Analysis (PMA) of NLANR 1. The first trace, which 

we label Columbial, includes the records between 12:28:37 and 12:30:07 on March 2, 2004. 

The second one, which we label Columbia2, was recorded between 21:35:51 and 21:37:21 

on June 15, 2004. The two traces consist of 1,508,779 and 1,408,137 records, respectively, 

logged in the period of about 90 seconds, which include aIl the packets that flow into this 

monitored router. The measured link capacity of this PMA site is OC3c, and the measured 

throughputs are 97.5Mbitjs and 91.3Mbitjs, respectively. Fig. 4.1(a) and Fig. 4.1(b) show 

the total traffic passing through the monitored link during the two recording sessions. In 

1 Data traces arc availablc at http:j jpma.nlanr.nctj j 
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the data traces provided by the NLANR project, IP addresses are encoded out of concern 

for the privacy and security of those who use the network. This encoding does not impact 

any statistical analysis. In the Columbial data trace, there are in total 8,464 source IP 

addresses and 9,848 destination IP addresses, and Columbia2 data trace consists in total 

5,041 source IP addresses and 5,061 destination addresses. 

4.2 Normalized Correlation Function Analysis 

We examine the correlation behaviour of the traces by generating the Normalized Corre­

lation Function (NCF), p(k), which measures the similarity between a series y(t), and a 

shifted version of itself, y(t + k): 

(k) = E[y(t)y(t + k)] 
p 2' a 

(4.1 ) 

where a 2 is the standard deviation. 

The Columbia data traces contain the records for all arriving packets with time stamp 

and packet size. We quantized the data traces to time series based on the time stamps, with 

the time interval Ims. We assume the quantized time series are stationary pro cesses (an 

assumption which will be tested in Section 4.5). The autocorrelation function is generated 

by 

A {L::ok
-

1 
y(n + m)y(n) m ~ 0, 

Ryy(k) = A 

Ryy( -m) m < 0, 
(4.2) 

where k = 1, ... , N - 1. It is then normalized so that the autocorrelation at zero lag is 1. 

Fig. 4.2(a) and Fig. 4.2(b) show the NCF calculated for Columbia data traces, which both 

decay to zero as lag increases. 

Fig. 4.3(a) and Fig. 4.3(b) present the NCF of an example of the synthesized traffic 

generated by the proposed model. In Fig. 4.3(a), the parameters are selected as al = 104 , 

"f& = 103
, a = 0.8, Aij = 1 and Hij = 0.3, which are intended to generate slowly varying 

traffic. The parameters for Fig. 4.3(b) are al = 104
, "f& = 103

, a = 0.8, Aij = 1 

and Hij = 0.8, which generate traffic that varies faster than in Fig.4.3(a). This was 

analyzed in Chapter 3.7. The Normalized Correlation functions behave similarly in these 

two synthesized traffic traces, and they both decay to zero as lag increases. 
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Fig. 4.1 Total incoming traffic measured at Columbia University. 
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4.3 Visual Interpretation of Empirical Trafflc Traces 

In this section, we decompose the Columbia traffic traces to several groups. We regard the 

monitored router in Columbia University as an edge no de in an Agile All-Photonic Network. 

The measured traffic is considered as the total incoming traffic to an edge node. The total 

traffic is then decomposed to different destination edge nodes, which is implemented by 

dividing the packets to different groups according to their destination IP addresses. Fig. 

4.4( a) and Fig. 4.4(b) shows the spatial distribution of the total incoming traffic between 

different destination groups. 

Fig. 4.4(a) and Fig. 4.4(b) show that sorne traffic traces are slowly time-varying, for 

example that destined to group 1 or 2 in Fig. 4.4(a), while sorne are bursty, like those 

destined to group 7 in Fig. 4.4(a). The burstiness occurs in the traffic scenario with a 

quite low mean, such as panel 5, 6 and 7 in Fig. 4.4(a) and panel 4, 6, 7 and 8 in Fig. 

4.4(b). In both traffic traces, the traffic volume in group1 is large relative to the others. 

We also noticed that most of the packets with a specific origin IP address have the same 

destination IP address. One explanation is that the time duration of the data traces is 

only around 90 seconds, during which there exists a dominant traffic flow for one hosto The 

dominant traffic flows contribute significantly to the overall traffic, and the packets in the 

flow have the same IP source address and the same IP destination address. 

4.4 Wavelet-based Estimation of Long-Range Dependence 

In this section, we estimate the parameters of long-range dependence and test the time 

constancy of scaling parameters the data traces, using a wavelet based estimator developed 

by Abry and Veitch2 . 

4.4.1 The Long-Range Dependence Phenomenon 

As discussed in Section 2.2.2, a common definition of long range dependence (LRD) [35] is 

the slow, power-Iaw like decrease at large lag of the autocovariance function of a stationary 

stochastic pro cess Xt given by r(k) "-' c,.lkl-(l-a), 0: E (0,1). It can also be defined as the 

2The codes to perform Long-range Dependence estimation and test the time constancy of scaling pa­
rameters arc available at http://www.cubinlab.ee.mu.oz.au/ ... darryl/secondordeLcode.html 
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Total traffic to different destination groups, aggregated by 1024 hosts. 
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power law divergence at the origin of its spectrum: 

Ivl ---+ 0, (4.3) 

where fx(v) satisfies, in the case of discrete time processes, rx(O) = a; = J~i~2 fx(v)dv, 

a; being the variance (or power) of Xt. This implies that the covariance r( k) decays so 

slowly, that 2::~-oo r(k) = 00. 0: is the most important parameter, as the constant 0: 

governs the characteristic scaling behaviour of a LRD process as weIl as statistics derived 

from it. Scaling behaviour with a property of scale invariance is characterized by the fact 

that the statistics are governed by scales with sorne invariant parameters within a scaling 

range. The property of LRD can be interpreted as a scale invariant characteristic, because 

its spectrum takes the form lvi-a: for a range of frequencies v close to O. 

A pro cess X = X(t), tE ?R is self-similar with Hurst parameter H > 0 if X(O) = 0 and 

X(ct), tE ?R and cH X(t), tE ?R have the same finite-dimensional distributions [32]. There 

is a close relationship between long-range dependence and self-similar processes. Indeed, 

the increments of any finite variance self-similar pro cess with stationary increments have 

long-range dependence, as long as 1/2 < H < 1, with H and 0: related through 

0: = 2H - 1. ( 4.4) 

4.4.2 Discrete Wavelet Transform 

The discrete wavelet transform (DWT) is a representation of a signal x using an orthonor­

mal basis consisting of a countably-infinite set of wavelets [42,43]. The coefficients of the 

discrete wavelet transform of a process x are denoted as 

(4.5) 

where the signal x is analyzed with a set of wavelet basis functions 

(4.6) 

The basis is constructed from the mother wavelet 'ljJo by the action of a time-shift 

operator 'ljJO,k(t) = 'ljJo(t-k) and a dilation (change ofscale) operator 'ljJj,o(t) = 2-j/2'ljJO(2-j t). 

The mother wavelet 'ljJo is chosen such that both its spread in time and frequency are 
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relatively limited. Wavelets that are often used in practice include the Haar wavelet and 

the Daubechies wavelet, indexed by a positive integer parameter N. The Haar wavelet 

7/Jo(t) equals 1 at 0 ~ t < 1/2, -1 at 1/2 ~ t < 1 and Ootherwise. The Daubechies wavelet 

with N = 1 is in fact the Haar wavelet, but the other Daubechies wavelets with N > 1 

have N vanishing moments: J tk7/Jo(t)dt == 0, k = 0,1,2, ... , N - 1. The more vanishing 

moments, the smoother the wavelet [60,61]. The smoothness of a wavelet can provide 

numerical stability and better reconstruction of the signals. The LRD property can thus 

be interpreted as a scale invariance characteristic which is efficiently analyzed by wavelets. 

Please refer to Section 2.2.2 for more details about wavelet representations. 

4.4.3 A Wavelet Based Joint Estimator of the Parameters of Long-Range 

Dependence 

A wavelet based estimator for the joint parameters (a, cf) is developed by Veitch and Abry 

in [4]. In this approach, several properties of the wavelet decomposition combine to reduce 

LRD in the time domain to short range dependence (SRD) in the wavelet representation. 

The key properties that give rise to this behaviour are the bandpass nature of the analyzing 

wavelets, the fact that the analyzing family of wavelets (and scaling functions) are generated 

from the change of scale operator which matches the power-Iaw form of LRD spectra, and 

the fact that the number of vanishing 'moments' of the wavelets can be controlled. 

The family of wavelet basis functions 7/Jj,k(t) = 2-j/27/Jo(2- jt - k), j = 1, ... , J, k E Z 

is constructed from the dilation (change of scale) operator: 7/Jj,o(t) = 2-j/27/Jo(2- jt). The 

scale invariance is captured exactly: 

(4.7) 

where 

(4.8) 

The relation in (4.7) can be rewritten as log2(E[d;'.)] = ja + log2(cf C), It strongly 

suggests a linear regression approach for estimating (a, cf), where clearly the slope of the 

regression would estimate a and the intercept would be related to cf' 
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E[d;,.l is estimated by an unbiased and efficient estimator 

(4.9) 

where nj is the number of coefficients at octave j available for analysis. By setting Yj = 

log2{t.Lj), we can define a linear regression EYj = bj + a. Define the quantities S = L 1/aJ, 

Sx = LjlaJ and Sxx = LPlaJ, where aJ = Var(Yj)· The unbiased estimator (b,â) of 

(b, a) is 

where 
(Sj - Sx)laJ (Sxx - Sxj)laJ 

Wj = S S _ S2 Vj = S S - S2 
xx x xx x 

The joint unbiased estimator (ô:,;;;o) is given by 

where 

is a bias correcting factor. 

Define the estimator ê of the integral C(o:, 'l/Jo) = J Ivl-Qlwo(v)J2dv as 

l
C(O, wo) ô:::; 0 

ê = C(ô:, wo) 0 < ô: < 1 

C(l, wo) ô: ~ 1 

The LRD estimator (ô:, êf ) is then given by 

ô: = b, 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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êj = 0C/ê . (4.16) 

4.4.4 Traffic Trace Analysis 

We apply the estimator is applied to Columbia data traces. We extract an aggregated rate 

process of arriving traffic, that is, a discrete time series corresponding to the number of 

bytes transmitted during contiguous constant length time intervals, here of length 1ms. 

Choice of sc ales The range of sc ales (jI, j2) over which a scaling phenomenon exists 

varies. For LRD, j2 is infinite, but jI, where the LRD "begins", must be chosen. Fig. 

4.5(a) shows a graph of Q(jI), the goodness of fit measure with 12 fixed, against jI. The 

goodness-of-fit measure in creas es rapidly from ji = 6 to 8, and then stabilizes. This can 

be used as the basis of selecting the optimal ji value. As seen in Fig. 4.5(a), ji can be 

selected as 10, which means the LRD "begins" at the time scale of 1ms x 210 = 1024ms 

in Columbia1 traffic trace. In Fig. 4.5(b), ji is selected as 8 and LRD "begins" at the 

time sc ale of 27 = 128ms. The goodness-of-fit measure choose an "optimal" ji value, which 

defines a non-decreasing zone beginning from jI, and finds the last time scale that an 

improvement of Q (larger than a specified value) is found, then adds one to it [4]. 

Logscale Diagram The (second order) Logscale Diagram (LD) consists in the graph of Yj 

against scale j, together with confidence intervals about the Yj, as shown in Fig. 4.7(a) and 

Fig. 4.7(b) for the two Columbia data traces, respectively. Scaling behaviour is detected 

through the region(s) of alignment observed in the log-log plot. An alignment region is 

a range of scales where the Yj faU on a straight line. Estimation of scaling parameters is 

effectively performed over the region(s). If the scaling parameter 0: is estimated to lie in 

(0,1), and the alignment region of scales is from sorne initial value ji up to the largest 

one in the data, then the scaling corresponds to a LRD. If 0: is greater than lover all 

or almost aIl of the sc ales in the data, then the scaling indicates self-similarity with the 

relevant Hurst parameter H = (0: - 1)/2. As shown in Fig. 4.7(a) and Fig. 4.7(b), the 

scaling exponent 0: is estimated to be 0.5783 and 0.52 respectively, and both lie in the 

region of (0,1). Alignment is observed over scales [jI,h] = [10,14] in Fig. 4.7(a) and 

[JI,h] = [8,13] in Fig. 4. 7(b). The scaling can be identified as LRD as the value is in 

the correct range, Il: E (0,1), and the alignment region includes the largest scales in the 

data. A goodness of fit statistic "Q" is determined to help with the choice of scaling range, 
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Logscale Diagram, N=3 [0
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which is Q = 0.72164 in Fig. 4. 7( a) and Q = 0.41728 in Fig. 4. 7(b). Q is the probability 

of observing the data given that the expectations of the variance estimates at each scale 

really do follow the defining linear form of linear regression. A value greater than say 0.05 

is acceptable. 

This tool is also used to analyze the synthesized traffic generated by the proposed model. 

Fig. 4.6(a), 4.6(b), 4.8(a) and 4.8(b) present the analysis for the synthesized traffic with 

parameters {o-; = 1 X 104 , "f~ = 1 X 103 , a = 0.8, Aij = 1, Hij = 0.3} and {o-; = 1 X 105 , 

"f~ = 1 x 104, a = 0.2, Aij = 100, Hij = 0.8}, respectively. As shown in Fig.4.8(a) 

and 4.8(b), the parameter 0: is greater than 1, which are 2.02 and 1.98, respectively, and 

measured over a range including the largest scales. It implies that the traffic is self-similar, 

which is consistent with the element of fractional Gaussian noise in our proposed model. 

The Hurst parameters are expressed as H = (0:-1)/2, which are 0.51 and 0.49 respectively. 

Long-range dependence is the characteristic which is visible in multi-second sc ales [58] while 

network traffic can be weIl represented by the Poisson model for sub-second time scales. 

Our proposed model focuses on short-range traffic modelling and prediction. This model 

attempts to capture the characteristics of network traffic at a time-scale which is the round­

trip time between the edge node and core node in AAPN, which is about 10 - 80ms. At 

this time scale, long-range dependence is not evident. 

4.5 Testing Time Constancy of Scaling Parameters 

The high variability inherent in scaling pro cesses is very easily confused with non-stationarity, 

both in a "judgement by eye" sense, and in the sense of poor robustness and performance 

of many standard statistical tools. Sometimes, the scaling behaviour present in a Logscale 

Diagram is in fact a kind of average of different phenomena taking place in individual data 

blocks. It is important to examine the constancy of scaling using Logscale Diagrams over 

data blocks [62]. 

4.5.1 Definition of the Test on Time Constancy of Scaling Parameters 

Let x denote the series to be analyzed of length n. The series is split into m adjacent non­

overlapping blocks, and wavelet-based estimates of the scaling parameters {&1, ... , &i, ... , &m}, 

are obtained from m adjacent blocks with length ni, over a common scale range lh,h]. 
{&1, ... , &i, ... , &m} can be considered as uncorrelated Gaussian variables with unknown 
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means and known, but possibly different variances. That is 

N( O:i, 0-;), 
2)1- 1(1 - 2- J ) 

58 

( 4.17) 

(4.18) 

To an excellent approximation, ni being the number of samples in the ith block, J = 

]2 - ]1 + 1 being the width of the scaling range. Testing whether the scaling parameter is 

constant or not therefore amounts to testing whether â i have identical means or not. We 

wish to test the null hypothesis Ho: the means are identical, against Hl: the means differ. 

A Uniformly Most Powerful Invariant (UMPI) test is defined by forming the statistic 

(4.19) 

whose distribution is a function only of the single parameter 

(4.20) 

Under Ho we have e = 0 and V is distributed as a Chi-squared variable with m - 1 

degrees of freedom with density fm-1. Under Hl, e > 0 and Vis distributed as a non central 

Chi-squared distribution with m - 1 degrees of freedom and non centrality parameter e, 
with density fm-l,o. 

Let (3 denote the chosen significance level of the test and define the critical region 

boundary C = C((3) via 
{+oo 

Je fm-1(x)dx == (3. 

The test reads: 

If V > C, Reject Ho (in critical region, conclusion, 0: is not constant), 

If V::; C, Accept Ho (conclusion, no evidence that 0: is not constant). 

(4.21 ) 

The power function of the test, that is the probability, as a function of the particular 

Hl as specified bye, of accepting Hl when it is true, reads: 

(+oo 
p(e) = Je fm-1,o(x)dx. (4.22) 
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4.5.2 Choosing the number of blocks m 

When applying the test to a set of data of length n, the number m and sizes {ni} of the 

blocks into which the data is split have to be selected. For simplicity the blocks are of 

equal size. For a given m, the common variance a~ of the estimates Iii is roughly inversely 

proportional to the length of the blocks. Hence a~ is roughly proportional to m. The choice 

of optimal m is subject to the trade-off: m has to be large enough to track variations in 

time of the scaling parameter, but also has to be as small as possible to avoid degrading 

the power of the test due to an increase in variance of the estimates. Therefore the optimal 

choice is for m to be such that the data be split into the largest possible blocks within 

which the scaling parameter is not varying. 

4.5.3 Measured traffic trace analysis 

We apply the test to the traffic traces of Columbia University. The traffic traces consist of 

lists of arriving time stamp and length of aIl packets recorded on a gateway of this university. 

We extracted an aggregated rate pro cess of arriving work, generating a discrete time series 

corresponding to the number of bytes transmitted during contiguous time intervals with 

length of 1ms. The time series are plotted in the top plot in Fig. 4.10 and Fig. 4.11. 

For the entire time series the Logscale Diagram has already been computed using 

Daubechies3 wavelets [60] in Fig. 4.7(a) and Fig. 4.7(b). The Logscale Diagrams ex­

hibit a good alignment over a range of sc ales [9,14] and [7,13] respectively, including the 

largest scale in the data, and yields an estimated slope (scaling exponent) li = 0.562 and 

0.437 in the range 0 < li < l. 
In order to investigate the time constancy of scaling in this series, we split the Columbia1 

traffic trace into m = 4 equally spaced blocks. Over each block the following quantities 

are examined: mean, variance, a, Cf, and the Logscale Diagram is computed individuaIly, 

as shown in Fig. 4.9(a) and Fig. 4.10. The m estimates, made in each case with [jl,h] = 
[9, 12], are performed as if they are mutually independent. For each statistic as shown in 

Fig. 4.10, at the far left of the plot the sample value and confidence interval is calculated 

over the entire series. For the confidence intervals on the mean estimates, theoretical 

asymptotic confidence intervals are displayed based both on IID assumptions and LRD 

assumptions. The result of the time constancy test of scaling parameter a, and the critical 

level corresponding to the data, is plotted over the graph. The critical level is 0.90 and 
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critical region is to the right of 7.815. The result indicates that the hypothesis of constant 

scaling is accepted, and the estimated scaling exponent li = 0.578. Similar testing is also 

he Id for the Columbia2 data trace. Fig. 4.9(b) and Fig. 4.11 show that the assumption of 

time constancy of scaling is accepted, and the estimated scaling exponent li = 0.437. The 

constant scaling reveals that the scaling behaviours exist in each data block, and it is not 

an effect by superposing individual data blocks. 

Fig. 4.12(a), 4.13, 4.12(b) and 4.14 show testing of the synthesized traffic traces gener­

ated by the proposed model and the parameters selection are presented in the figure. The 

synthesized traffic traces are splitted into m = 5 and m = 6, respectively. The m inde­

pendent estimates are made with the range of [7, Il]. The results show that assumption of 

the time constancy of the scaling exponent are both accepted, and the estimated scaling 

parameters are 2.02 and 1.98, respectively. 
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(1) The time series of bytes per time unit (lms); (2) Means over the blocks, the hor­
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gives the overall variance; (4) Scaling parameter of the subseries. The solid (dashed) 
horizontalline gives the overall (average) value. (5) The second scaling parameter of 
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the subserics. The solid (dashed) horizontalline gives the overall (average) value. 
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Fig. 4.12 Goodness of fit Q for each block, based on traffic traces generated by 
the proposed mode! with parameters 
(a) al = 1 x 104, '"dj = 1 x 103 , a = 0,8, A ij = 1, H ij = 0,3; and (b) al = 1 x 105 , 

Îlj = 1 x 104 , a = 0,2, A ij = 100, H ij = 0,8. 
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Fig. 4.13 Stationarity testing of traffic traces generated by the proposed rnodcl 
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Chapter 5 

Conclusions and Future Work 

This thesis has focussed on the traffic modelling and traffic analysis. We proposed a dy­

namic parametric traffic model which is intended to capture the traffic behavior in an 

all-photonic network in the time scale of 10 - 80ms. We implemented the Long-Rang De­

pendence and Stationarity testing tools to analyze the measured and synthesized traffic 

traces. This chapter will provide a summary of the thesis work. Additionally, directions 

for future work will be discussed. 

5.1 Thesis Summary 

In Chapter 1, we introduced the emergence of the all-photonic networks, and gave a brief 

description of the concept of an Agile All-Photonic Network (AAPN) [3]. This chapter 

presented the proposed overlaid star architecture of AAPNs and described how the control 

functionality is implemented. The motivation of traffic modelling and prediction in the 

context of AAPN control was explained. 

Chapter 2 presented a review on the recent literature in the fields of network tomog­

raphy, network traffic modelling, and traffic prediction. Section 2.1 first provided a gen­

eralized formulation of the network tomography problem, and the tasks of link-Ievel and 

path-Ievel network performance parameter estimation were discussed in more detail. In 

link-Ievel parameter estimation, different approaches exist applicable in both multicast and 

unicast networks. In path-Ievel parameter estimation, an important example is estimation 

of the traffic matrix between specified OD pairs, based on the measurements made on the 

links. Section 2.2 presented a survey on network traffic models that have been described 
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in the literature. It first introduced the classical Poisson model which accurately captures 

the statistical behavior of voice traffic in telephony networks and then explained the failure 

of Poisson based models in wide area data networks. Sorne examples of stationary traffic 

models were described, including both short-range dependent and long-range dependent 

models. This section also presented wavelet-representations for traffic, which can mitigate 

the complication induced by the short- and long-range dependent temporal dependence. 

Section 2.3 described sorne methods for traffic prediction in both telephony and data net­

works, and identified several prediction techniques, including Kalman filtering, extended 

Kalman filtering and sequential Monte Carlo methods. 

In Chapter 3, we proposed a new traffic modelling approach for all-photonic networks. 

The proposed dynamic parametric traffic model maintains state parameters that capture 

the underlying rates of the traffic between OD pairs (Section 3.2) and each state parameter 

is determined by a Gravity-model decomposition of a shared rate component for the origin 

node (Section 3.3), and its previous value. The observed traffic between origin-destination 

pair is determined by a Poisson pro cess with the rate of state parameter and added frac­

tional Gaussian noise, as described in Section 3.4. Section 3.5 described the combined 

model and Section 3.6 presented sorne basic statistical analysis for this model. Section 

3.7 presented sorne examples of the synthesized traffic generated by the proposed dynamic 

parametric traffic model and discussed the efIects of varying the parameters of this model. 

Chapter 4 presented data analysis on the empirical and synthesized traffic traces. The 

Normalized Correlation Function (NCF) was evaluated to measure the similarity between 

the time series quantized from the measured and synthesized traffic traces. Section 4.4 

described a wavelet-based estimator of Long-Range Dependence (LRD) [4]. The param­

eters of LRD were estimated for the traffic traces, and the time constancy of the scaling 

parameters was tested. 

5.2 Future Work: Application of the model in Agile 

All-Photonic Networks 

As described in Chapter 1, the AAPN is an agile self-configuring network [3], in which a 

number of core nodes are used to connect high capacity, fast switching edge nodes. The 

central controllers select paths through associated core nodes and reconfigure internaI paths 

in response to dynamic changes in traffic loads based on reconfiguration requests generated 
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by edge nodes. The edge nodes are geographically distributed. The AAPN project proposes 

an overlaid star topology. The overlaid star topology has the advantages that it is extremely 

efficient from the switching viewpoint, robust, and potentially very scalable. In the overlaid 

star network, the central controller is either combined or collocated with the core node. 

AAPNs are intended to support three different switching schemes. The first type is that 

an entire wavelength is dedicated to the connection between two edge nodes, which fits the 

scenarios where the traffic between the two relatively large edge nodes is persistent with a 

substantial volume. The wavelengths are reallocated periodically on the order of hundreds 

of seconds, by measuring whether the wavelength is used efficiently. The second sc he me 

is time slot reservation, in which each wavelength is divided into frames consisting of a 

fixed number of time slots. The time slots in the frames are allocated to the connections 

between edge nodes and the allocation is adjusted as the traffic demand varies on the order 

of seconds, which is appropriate for the connections with slowly-varying demand. The last 

scheme is optical burst switching, in which sorne of the wavelengths are dedicated for the 

unanticipated bursts in traffic demand. 

In the scenario of time slot reservation, the time slots can be either requested by the 

edge nodes or directly allocated by the central controller. In the first case, the edge nodes 

send the time slot requests to the central controller and get the feedback for time slot 

allocation, which introduces a reservation delay. In order to mitigate the effects of the 

delay, the edge nodes have to send requests weIl in advance of traffic arrivaI. Therefore, 

short-range prediction of origin-destination traffic demands is helpful, allowing the edge 

nodes to request and relinquish the time slots based on a predicted upper bounds on traffic 

demands. The central controller allocates time slots to each origin-destination pair based 

on the requests sent from the edge nodes. In the second case, the central controller allocates 

the time slots to individual origin-destination pairs by predicting the traffic demands itself 

based on the information it gathers. 

If during the time interval of one frame 6t, the actual traffic volume flowing into an 

origin edge node to sorne destination edge node is more than the capacity of the time slots 

allocated to this origin-destination pair, sorne of the traffic will be stored in the buffer at 

the origin no de and may be sent out in the next frame. Denote by uij(k) the traffic flowing 

into origin edge no de i and destined to edge node j during the last time interval k - 1. It 

is assumed that the traffic flowing into the origin node during time interval k - 1 will be 

processed and transmitted in the next time interval k. Denote by qij(k) the queue length 
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of 0 D pair (i, j) measured in origin node i at the beginning of time interval k (this is the 

traffic left from the last time interval k - 1). Denote the capacity of one time slot as C, 

and K ij (k) as the number of time slots allocated to the connection between origin node i 

and destination node j at time interval k. dij(k) is the traffic fiowing into the AAPN core 

network from origin node i destined to edge node j during the time interval k. Then the 

observation equations can be described as follows 

%(k) uij(k - 1) + %(k - 1) - dij(k - 1) (5.1) 

dij(k) 
{ u,;(k) + q,;(k), Kij(k)Cij > uij(k) + %(k), 

(5.2) 
Kij(k)C, otherwise. 

The task of traffic demands prediction can be implemented either in edge nodes or in 

the central controller. In the first approach, the edge nodes can get the direct information 

of the traffic arrivaIs by measuring Uij (k), which assures the prediction can be relatively 

more accurate. The central controller just reacts to the requests from the edge nodes, and 

it is necessary to design a scheme to give fair access to resources for all origin-destination 

pairs. The distributed calculation of prediction in each edge node reduces the computation 

burden of the central controller. On the other hand, the edge nodes have to send a signalling 

message to the central controller for the predicted upper bounds which will increase the 

signalling fiow between edge nodes and central controller. Moreover, the central controller 

only gets limited information such as the decision made on the predicted traffic demands, 

which makes it harder for the central controller to design a fair resource allocation scheme. 

In the second approach, the central controller itself predicts the traffic demands by 

meauring the traffic fiow between individual origin-destination pairs. The central controller 

can get the information of the occupancy of the time slots in two ways. In the first method, 

the origin node i sends an electrical header to the central controller to announce the exact 

number of bytes from the origin node i to the destination node j during a time interval 

of one frame sent, associated with the optical data frame. The central controller can 

thus get the direct information of traffic fiowing into the AAPN core network, but with 

the compensation of signaling consumption. In the second method, there is no electrical 

header information associated with the optical data frame. The central controller does 

not know the exact number of bytes for each origin-destination pair. Sorne slots may not 

be completely filled. By measuring the power of the optical pulses, the central controller 
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can estimate the usage percentage of each time slot, and hence the number of bytes for 

each origin-destination pair. This way reduces the signaling consumption dramatically, but 

the estimation of the occupancy of sorne set of time slots induces errors. In the second 

approach that the central controller predicts the traffic demands, the central controller can 

get the information of the traffic load between aIl origin-destination pairs so that it can 

allocate the resources fairly and improve the overall network performance. However, the 

values that the central controller estimates are not the traffic arrivaIs to the edge nodes, 

and the central controller has to estimate the traffic flowing into edge node Uij (k) from 

the measured traffic flowing into the AAPN core network, dij(k). They are related by a 

complicated non-linear form, as shown in (5.1) and (5.2). 

In any of the cases, the goal is to estimate the traffic arrivaIs to the origin edge nodes 

destined to individual destination nodes Ûij (t + T), where T is the length of the control 

period (prediction interval). In future work, a more detailed comparison will be performed 

to decide whether the traffic prediction shall be performed by edge nodes or by the central 

controller. Sequential Monte-Carlo methods or extended Kalman filtering can be used, 

which are described in Chapter 2.3, to track the key state parameters of our proposed 

model and predict the upper bounds on the traffic demands. A fair resource allocation 

scheme can then be designed based on the predicted upper bounds. 
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