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ABSTRACT

PARTICLES AND BLACK HOLES: TIME-DOMAIN INTEGRATION

OF THE EQUATIONS OF BLACK-HOLE PERTURBATION THEORY

Karl Martel Advisor:
University of Guelph, 2003 Professor Eric Poisson

Binary systems consisting of a solar mass compact object orbiting a supermassive
black hole are a promising source of gravitational waves for space-based laser inter-
ferometers. Because of the small mass ratio involved, the system is amenable to a
treatment using black hole perturbation theory. We present a covariant and gauge
invariant formalism for the metric perturbations of a Schwarzschild black hole that
accounts for the radiation emitted by a small orbiting object. The perturbations are
simply described in terms of the Zerilli-Moncrief and Regge-Wheeler functions, and

these obey simple inhomogeneous one-dimensional wave equations.

The partial differential equations governing the evolution of these two functions are
integrated numerically in the time domain using a corrected Lousto-Price algorithm.
In this manner we obtain the gravitational waveforms associated with the motion of
the small compact object, which is assumed to follow a geodesic of the Schwarzschild
spacetime. We present a method for obtaining, from the gravitational waveforms, the

fluxes of energy and angular momentum at infinity and through the event horizon.

Astrophysical black holes, such as the ones residing at the centre of many galax-

ies, are likely to be rapidly rotating. To deal with these situations, we present a



time-domain method of integration of the Teukolsky equation governing the evolu-
tion of the curvature perturbations of the Kerr black hole. We show that our method
is both stable and quadratically convergent, and that it reproduces known predic-
tions of the Teukolsky equation. We also comment on the difficulty of incorporating

orbiting particles in the method.
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Chapter 1

Introduction and overview

1.1 Black holes in the universe

The theory of general relativity predicts the existence of black holes, objects so mas-
sive that even light cannot escape their gravity. Direct observation of these objects
would be a great confirmation of the general theory of relativity in a regime that has
never been tested before: strong gravitational fields. Because black holes are dark,
conventional astronomy that detects electromagnetically active sources is not able to
detect black holes directly.

The best, albeit indirect, evidence of the existence of black holes comes from
measurements of the proper motion and radial velocities of luminous objects near
the galactic core of many galaxies. These measurements point to the presence of
very massive objects at the center of most galaxies at low redshifts [1, 2, 3, 4], the
Milky Way being the best example: it harbours a dense compact object of mass 3.6 x
10°M [5, 6, 3, 4]. (The evidence at high redshift (z 2 6) is more circumstantial [7, 8].)
Determining whether these objects truly are black holes or some more exotic objects

requires direct observation of their physical properties.



Isolated black holes are described by three parameters: their mass, their angu-
lar momentum and their charge [9]. Classically, these black holes do not radiate,
but as a result of interaction with matter fields, astrophysical black holes can emit
gravitational waves. The waves emitted by the black hole in such situations contain
clear signatures that allows it to be identified as a black hole. For instance, distorted
black holes should radiate at quasi-normal frequencies, and measuring these modes
would provide a direct means of identifying black holes [10]. So where conventional
astronomy fails, gravitational-wave astronomy offers a chance of success: black holes
will be identified by their unique gravitational waves.

At the centre of a galaxy, the black hole may interact with much lighter compact
objects such as neutron stars and/or solar mass black holes. They migrate toward the
galactic centre by dynamical friction, and the heavy black hole is soon surrounded
by a rich cluster of compact objects [11]. The motion of these compact objects
is then dominated by the gravity of the central black hole. The resulting binary
sysfems are promising sources of gravitational waves. Binary systems consisting of
a small compact object orbiting a much heavier central black holes are amenable to
a treatment using black hole perturbation theory: they are the focus of the work
presented here.

The remainder of this chapter is organized in three main sections. In Sec. 1.2
we present the connection between gravitational-wave detectors and binary systems.
Specifically, in Sec. 1.2.1 we discuss the laser interferometers under construction and
in Sec. 1.2.2 we discuss circular binary systems in the quadrupole approximation.
In Sec. 1.3 we discuss the scope of this thesis and in Sec. 1.4 we provide a detailed

overview of the content of each chapter .



1.2 Compact binary systems

1.2.1 Laser interferometers

Much effort has been devoted in recent years to the construction of laser interferom-
eters sufficiently sensitive to measure the small changes induced in the length of the
arms by the passage of a gravitational wave.

Laser interferometers can be divided in two categories. Earth-based detectors,
such as the Laser Interferometer Gravitational-wave Observatory (LIGO), will be
sensitive to frequencies in the the range 10 Hz < fqw < 10* Hz, while space-based
detectors, such as the Laser Interferometer Space Antenna (LISA), will be monitor-
ing gravitational waves with frequencies lying between 10™* Hz and 107! Hz. The
interferometers should be sensitive to strains, AL/L, of the order of 10722 to 1072,
(See [12, 13] and references therein.)

Recently there has been a significant change of tone in discussing the prospects of
detecting gravitational waves. The first phase of the earth-based Laser Interferometer
Gravitational-wave Observatory has been completed and the LIGO collaboration has
started performing scientific runs [14]. While the sensitivity of the detectors is not
good enough yet for detection of gravitational-wave signals, the data have been used
to improve upper limits on the number of neutron stars binary mergers (of masses
ranging from 1 to 3Mg): they found an upper limit of 170 mergers/yr per Milky Way
equivalent galaxy with 90% confidence [14].

The ultimate goal is direct detection of gravitational-wave signals, but these upper-
limit results constitute a huge first step in this direction. The advanced LIGO and

LISA are both expected to be completed by 2012 and both interferometers will be



sensitive enough to hopefully make detection of gravitational waves a common oc-
currence. A conservative estimate yields detection of gravitational waves from one

extreme mass ratio binary system per year at one gigaparsec [15)].

1.2.2 Quadrupole approximation for circular orbits

The interferometers should be able to detect a large variety of gravitational wave
sources. This includes, for example, pulsars, supernovae and compact binary sys-
tems [12]. Compact binary systems are promising sources of gravitational waves
because they strongly emit gravitational waves as the companions spiral toward each
other. In their lifetime, they span the broad frequency range to which the laser inter-
ferometers are sensitive, and, by following the “chirp” signals over the whole frequency
range, high signal-to-noise ratios can be achieved. In order to successfully detect the
gravitational waves and extract information about the binary systems (mass, angular
momentum, distance, position), it is necessary to have a good theoretical understand-
ing of the radiation they emit, so that the phase of the signal can be closeiy matched
by theoretical gravitational waveforms.

To illustrate the importance of this point, we consider a binary system consisting of
two companions in circular orbit around each other. In a weak-field and slow-motion
approximation, the binary system emits quadrupolar radiation whose frequency fow

is twice the orbital frequency:

6.4 x 1072 [105M,
few = 72 < 7 ) Hz,

where M is the total mass of the binary, p = (¢*/G)(r,/M), and r, is the radius of
the orbit. For binary systems composed of 10 M compact objects in orbit at the

last stable circular orbit (p = 6), we get few & 200 Hz. For a small compact object



in orbit around a 10% M, black hole at p ~ 6, we have instead fow =~ 4 x 107° Hz.
The first type of binary is then a good candidate for observation by LIGO, while
the second type is in the appropriate frequency range for detection by LISA. The
total mass determines the range of frequencies into which binary systems dominantly
radiate. We shall consider extreme mass ratio binary systems, treat them using black
hole perturbation theory, and the wofk presented in this thesis is most relevant for
LISA.

As a result of the emission of gravitational waves, the system loses orbital energy
and the two companions slowly spiral down toward each other. The rate at which the
total enérgy Eyin, = —pc®/(2p) changes is given, in the quadrupole approximation,
by [16]

%Ebm = “%% (g) (%)2])_57
where p is the reduced mass of the system. It is then an easy task to approximate
the time spent in the frequency band of the detector as well as the number of wave

cycles emitted in that time:

bs dEyn/dp
T = dt = dp ———
/ /p P QB /dt’

Pf dEy,/d
Ncycle - 27T/dt fGW = 4/ dp Q(p)ﬁ (11)

Do
where Q(p) = 2(c*/G)M~'p~%/2, and p, and p; is the dimensionless radius of the
orbit when the binary enters and exits the frequency band of the interferometer,

respectively. For an extreme mass ratio binary, we have roughly that p, ~ 20 and

2
T ~ 108 M Me S
106M® ,U, ’
M p
Neyete =~ 107 . .
vel <106M@> <M©> (1-2)

5

ps ~ 6, which yields




For compact binaries composed of two solar mass objects, the observation time is of
the order of a few minutes, during which the binary goes through a few thousands of
orbits. Similarly, for a small compact object orbiting a supermassive black hole, we
get that the binary evolves over a time scale of years, and that during this period the
small object orbits the black hole a few hundred thousand times. This suggests that
the theoretical gravitational waveforms will need to be of excellent quality in order
to detect the waves emitted by the binary, as well as extract information about the
companions. Detection and information extraction will use the method of matched
filtering, in which the detector’s output is cross-correlated with theoretical waveforms
in order to build a high signal-to-noise ratio. The method relies on the fact that the
theoretical waveform will keep phase with the astrophysical signal, and this can only
be achieved with an accurate theoretical model.

In this thesis we present tools for the accurate calculation of gravitational waves
emitted by compact binary systems in the extreme mass ratio limit. Our tools rely
on black hole perturbation theory and do not rely on weak-field, or slow-motion

assumptions.

1.3 Scope

The LISA mission will be sensitive to gravitational waves emitted by a solar mass
compact object orbiting a supermassive black hole. Because of the number of orbits
and the length of time over which LISA will follow the gravitational wave signal from
these binary systems, there is a need to develop a thorough understanding of the
radiation process, from which we shall then be able to develop accurate gravitational

waveforms. This is a very complicated problem, because the correct treatment will



have to incorporate radiation reaction effects on the motion of the compact object. In
a slow-motion and weak-field approximation this a tractable problem, but the general
relativistic treatment is much more complicated.

For the values of p considered, the weak-field and slow-motion approximations are
not adequate, and a relativistic treatment is necessary. Part of the material covered
in this dissertation is aimed at providing efficient means of numerically computing
gravitational waveforms associated with the motion of a small compact object around
a supermassive black hole. But we shall neglect radiation reaction effects and assume
that the small object is in geodesic motion.

For most of this work we concentrate on gravitational waves produced by a small
particle orbiting a Schwarzschild black hole. An important reason for this restriction is
that the perturbations are then described by simple, one-dimensional, wave equations
for which accurate numerical time domain methods can be devised. Gravitational
waveforms for arbitrary geodesic motion of the point particle will be produced, and
these are used to obtain the energy and angular momentum fluxes carried by the
waves at infinity and through the event horizon.

The advantages of time domain methods are twofold. First, LISA will be detecting
gravitational waves from highly eccentric motion of the compact object. For this type
of motion, gravitational waves are predominantly emitted in bursts at periastron:
time domain methods are very good at capturing this type of behaviour. Second,
radiation reaction schemes are not fully developed yet, but prescriptions will be most
easily implemented in the time domain. It is beyond the scope of this thesis to
implement such radiation reaction schemes, but it is hoped that our time domain
methods can be easily extended to incorporate this important effect.

Astrophysical black holes are likely to be rotating [17], and in later chapters of the



dissertation we will consider the perturbations of a Kerr black hole, whose evolution is
governed by the Teukolsky equation [18]. We shall discuss the time domain integration
of the homogeneous Teukolsky equation, but we shall not incorporate a source term

associated with an orbiting compact object.

1.4 Overview

We now provide a detailed outline of the content of the work presented in this dis-
sertation.

In Chapter 2, we present a covariant and gauge-invariant formalism for the metric
perturbations of a Schwarzschild black hole. In the formalism, information about the
gravitational-wave content of the spacetime is encoded in two scalar functions: the
Zerilli-Moncrief and the Regge-Wheeler functions {19, 20, 21, 22]. We derive sim-
ple inhomogeneous wave equations that govern the evolution of these two functions.
The formalism allows for the possibility that the perturbations are produced by an
arbitrary stress-energy tensor.

In order to solve the perturbation equations, specific coordinates need to be intro-
duced. We work in Schwarzschild coordinates and we begin Chapter 3 by expressing
the perturbation equations of Chapter 2 in these coordinates. We also establish the
relation between the two gravitational-wave polarizations and the Zerilli-Moncrief
and Regge-Wheeler functions, both in the radiation zone and near the event horizon.
These relations are then used to establish the connection between the Zerilli-Moncrief
and the Regge-Wheeler functions, and the rate at which gravitational-waves carry en-
ergy and angular momentum to infinity and through the event horizon.

In Chapter 4 and Chapter 5, we numerically solve the equations presented in



Chapter 3. This allows us to obtain gravitational waveforms associated with arbitrary
geodesic motion of a particle around a Schwarzschild black hole. In the work presented
in these chapters, we include a study of the effects of the choice of initial data on
the evolution of the metric perturbation during the radial infall of the point particle.
This type of study is useful in determining in which situation gravitational waves
contained in the initial data strongly contaminate gravitational waves emitted by
a binary system consisting of a small object and a much heavier black hole. We
also obtain gravitational waveforms associated with circular, eccentric and parabolic
motion of a point particle around a Schwarzschild black hole. These waveforms are
then used to calculate the energy and angular momentum radiated by the system,
both at infinity and through the event horizon. We show that the contribution of
black hole absorption to the total energy and angular momentum radiated can be as
large as 5% when the orbital separation between the small object and the black hole
is less than 5GM/c%.

The long term goal is to obtain waveforms from a particle orbiting a rotating
black hole. This requires the numerical integration of the inhomogeneous Teukolsky
equation. In Chapter 6, we develop an independent numerical method for the time do-
" main integration of the homogeneous Teukolsky equation. We show that the method
is stable and quadratically convergent. It also reproduces well-known physical predic-
tions of the Teukolsky equation, such as angular profiles for a = 0, and quasi-normal
modes for various values of the angular momentum of a Kerr black hole. We do not
treat the inhomogeneous Teukolsky equation in this dissertation, but near the end of
Chapter 6, we comment on the possibility of incorporating a singular source term in
the time domain.

In chapter 7, we offer some concluding remarks, summarize our findings and offer



some possible directions for extending the work presented in this dissertation.
Throughout the dissertation we adhere to the Misner, Thorne and Wheeler con-
ventions for the metric signature and the definition of the Riemann tensor [23]. We

also use geometrical units in which G and c are set to one.
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Chapter 2

Perturbations of a Schwarzschild
black hole: covariant formulation

of the equations

The prospect of detecting gravitational waves has motivated many groups to attempt
solving numerically the Einstein field equations [24, 25, 26, 27, 28, 29, 30, 31, 32, 33].
The problem is difficult and, so far, progress has been slow. Perturbation theory
cannot provide clues as to the nature of the instabilities associated with the full
Einstein field equations [25, 31, 34], but, in the limit where both approaches agree,
it can provide a useful benchmark against which to test solutions of full numerical
relativity.

In this chapter, we derive the differential equations obeyed by the metric perturba-
tions. The equations describing the metric perturbation of a Schwarzschild black hole
have been derived a number of times, but in most cases the derivation concentrated on

vacuum perturbations [19, 22, 35], or relied on a spectral decomposition of the metric
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perturbation [20, 21]. Here we derive covariant Zerilli-Moncrief and Regge-Wheeler
equations, including source terms from an arbitrary stress-energy tensor. The source
term for the perturbation has been derived in the past in Schwarzschild coordinates
and assuming a harmonic time dependence for the perturbations [20]. U.H. Gerlach
and U.K. Sengupta [36, 37| considered the more general case of the perturbations
of a general spherically symmetric spacetime, but they were unable to provide de-
coupled equations for the perturbations. By introducing the Zerilli-Moncrief and
Regge-Wheeler functions, the perturbation equations can be decoupled covariantly.
These functions were first introduced in Schwarzschild coordinates [20, 22, 19], and
later covariantly for vacuum perturbations [35]. Our derivation can be considered
an extension of the work found in [35] for perturbations produced by an arbitrary
perturbing stress-energy tensor.

To derive the perturbation equations we follow the approach of U.H.‘Gerlach and
U.K. Sengupta for a general spherically symmetric spacetime [36, 37]: the spacetime
is split into a spherically symmetric subspace and a two-dimensional Lorentzian man-
ifold. The sphérical symmetry of the Schwarzschild spacetime can be used to simplify
the expressions, while avoiding the explicit use of coordinates in the two-dimensional
Lorentzian space. In section Sec. 2.1.1, we introduce the notation used in this chapter.
Sec. 2.1.2 contains the line-element used in deriving the perturbation equations, while
the Christoffel symbols, the Ricci tensor and scalar are listed in Sec. 2.1.4. These can
be used to derive simple geometric relations useful in simplifying the appearance of
the perturbation equations of a Schwarzschild black hole. Sec. 2.2 contains material
that pertains to the derivation of the perturbation equations themselves. The equa-
tions are derived in the Regge-Wheeler gauge, which is introduced in Sec. 2.3.1. In

this section, the connection between the Regge-Wheeler gauge and gauge invariant
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quantities is also established. The angular dependence of the metric perturbations is
then separated using tensorial spherical harmonics: the resulting equations are pre-
sented in Sec. 2.3.2 and Sec. 2.3.3. Sec. 2.4 presents the (contracted) Bianchi identities
for the Schwarzschild spacetime. These provide a sufficient number of relations be-
tween the perturbation equations to insure that the resulting system of equations
is not overdetermined. The final result is a set of two-dimensional covariant partial
differential equations for gauge invariant quantities, including the source term from
an arbitrary perturbing stress-energy tensor.

After having formulated the perturbation equations for the Schwarzschild space-
time, we show that they can be decoupled by introducing the Zerilli-Moncrief |20,
22, 38|, and the Regge-Wheeler [19] scalar functions. In Sec. 2.5, we provide covari-
ant definitions of these functions, which, in Schwarzschild coordinates reduce to the
usual expressions. In Sec. 2.5.1 and Sec. 2.5.2, we give a covariant derivation of the
inhomogeneous master equations governing the eyolution of the Zerilli-Moncrief and
Regge-Wheeler functions, respectively. This is one of the main results of this chapter

and, to the best of our knowledge, this has never appeared before in the literature.

2.1 Notation and basic geometrical relations

2.1.1 Notation

Every point of a spherically symmetric spacetime belongs to a sphere of area 47r?,
where 7 is a positive function of the two coordinates that designate the sphere; we refer
to this two-dimensional space as the spherical space, and denote its coordinates by
64 = (0, ¢). These spheres are orthogonal to a Lorentzian two dimensional space; its

coordinates are denoted by z® = (z° x!'). Throughout this chapter we adhere to the
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following convention: lower-case roman indices are reserved for coordinates spanning
the Lorentzian space, while capital roman indices are used to denote coordinates
on the two-spheres. As usual, Greek indices denote the coordinates of the four-
dimensional spacetime. Finally, symmetrization with respect to a group of indices is

denoted by parenthesis:
1

Ty = 9 (Luw + Ton)

where T, is an arbitrary tensor. Generalization of this relation to tensors of higher

ranks is obvious.

2.1.2 The line-element

In all generality, the line-element of the Schwarzschild spacetime can be written as [23]:
ds? = gu dz® dz® + r*Qup d6* dO®, (2.1)

where gop = gap(2°) is the metric of the two-dimensional Lorentzian space, r = r(z?)
is an areal radius of a two-sphere at constant %, and Q4p = 2 AB(HC) is the metric

on the unit two-sphere; we use Q45 d04 dOF = d6? + sin? 6 d¢°.

2.1.3 Covariant derivatives

Covariant derivatives can be defined with respect to any of g,., gu, and Qap:
Guvig = 07 Gab:c = 0; and QAB[C =0. (22)

These three relations uniquely define “; 7, “: 7 and “ | ”. Because the covariant
derivative of {245 involves no factors of r, it commutes with the covariant derivative of

gap- This is a useful property that is exploited in deriving the perturbation equations.
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2.1.4 Basic Geometrical relations and covariant derivatives

The metric of Eq. (2.1) can be used to calculate the Christoffel symbols as well as the
Ricci tensor and scalar. For completeness, we list the results found in the doctoral
dissertation of E. Poisson [39]. Quantities defined with respect to g,, are identified
with the superscript “4”, while quantities defined with respect to gq or Q245 are free

of superscripts.

Christoffel symbols

The calculation of the Christoftel symbols, 41”;[3, is straightforward and yields

4d1a

Pbc = gm
41a 1 ac a

g = 59 9aBe =TT Qap,

1 T

Ty = §9ACQBC,a = jaf%l,

A A
4FBC = FBC> (2-3)

‘T¢, = 0, and 'I'j) = 0. The only non-vanishing components of I'4, are I}, =
—sinf cosf, and Fg’¢ = —cot#, and an explicit expression for I'}, can be calculated

once g, 18 specified.

Ricci tensor and Riccel scalar

The Ricci tensor is [39]:

1 2
4]zab = _Rgab — —T:ab,
2 T
4RAB = (1 ——ri]r—r’“r,a) QAB’ (24)
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where R is the Ricci scalar of gq, and 0ir = g®r.q5. The four-dimensional Ricci scalar

( 3 ) ( )
7-2 D aj:

The fact that the Schwarzschild spacetime is Ricci flat can now be used to derive
covariant relations for rr ,, R and r.4. The scalar rr, can be evaluated explicitly
in a specific coordinates system. We do it in Schwarzschild coordinates, for which the

metric of the Lorentzian space is
gapdztda® = — fdt® + = dr?, (2.6)
where f =1—2M/r, and M is the mass of the black hole. In these coordinates,
mr,=¢" = f, (2.7)

where the last equality holds in any coordinate system.

Next, setting *Rap = 0 in Eq. (2.4), and using Eq. (2.7) yields

. 2M
r=g (2.8)
while setting *R = 0, combined with Eq. (2.7) and Eq. (2.8), reveals that
AM

Finally, this expression for R can be inserted into Eq. (2.4) for ‘R, to yield an

expression for r.g:

M
T:ab = ﬁgab- (210)

These relations for r%r,, 7.4 and R will be used in simplifying the equations

describing the covariant metric perturbations of a Schwarzschild black hole.
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Riemann tensor of the Lorentzian and spherical submanifolds

The full spacetime is the product of a two-sphere and a two-dimensional Lorentzian

manifold. Their respective Riemann tensors are

1
Rabcd - §R (gacgbd - gadgbc) 5 (211)
Rapep = Quacf8p — QapQpe. (2.12)

We stress that these curvature tensors are not associated with g,,. They purely
describe the curvature of the Lorentzian manifold and of the two-sphere, without
considering that they belong to a higher dimensional space. The Riemann tensor of
Jap is used below, while that of Q45 is used in Appendix A: they appear whenever

two covariant derivatives belonging to the same submanifold are commuted.

2.2 Metric Perturbations of a Schwarzschild black

hole

We now derive the field equations obeyed by the metric perturbations. First, we
write down the covariant perturbation of the Einstein tensor, produced by a small ar-
bitrary perturbing stress-energy tensor T),,. This step requires no assumption about
the spacetime. The angular dependence is then removed from the metric pertur-
bations by using tensorial spherical harmonic functions. Finally, we introduce the
Regge-Wheeler gauge to perform the calculations and derive the covariant and gauge

invariant perturbation equations.
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2.2.1 Variation of the Einstein tensor

We are interested in deriving the equations governing the perturbations of a Schwarzschild
black hole of mass M. Later on we will assume that the perturbations arise from the
motion of a point-particle of mass y < M traveling on a geodesic of a Schwarzschild

black hole. The perturbing stress-energy tensor is then given by

Ty = ,u/dT (—9) 72 wyu,8* (z* - 2%(1)), (2.13)
where 7 is the proper time along the particle’s geodesic 2, u” = dz”/dr is the four-
velocity, tangent to the geodesic, and g = det(g,,). For the moment, we place no
restriction on T),,.

The background spacetime satisfies Einstein’s field equations G, = 0. The intro-
duction of a small stress-energy tensor generates perturbations of the spacetime. To
obtain a formalism describing covariantly the metric perturbations of a Schwarzschild

black hole, we write the perturbed metric as

gzy = Guv + h/,tl/) (2.14)

where g, is the background metric of Eq. (2.1), and h,, is a small perturbation.
To linear order in the perturbation, the inverse metric is g? #* = g** — h*", where
indices on h*” are raised and lowered with the background metric. Perturbations of

the Einstein field equations are then described by
0G, = 81T, (2.15)
where
1 "
0G = O0R, — 59w dR,3. (2.16)

The next step is to get an expression for § R, in terms of the perturbation tensor

huy and its derivatives. The calculation is most conveniently performed in a locally
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inertial system of coordinates. In such coordinates, R,, = I‘fw 8= e where

uB v

Fﬁy is the affine connection and = indicates that the equality is valid only in these

coordinates. Variation of this expression yields the Palatini identity [40]

- B B8
5Rl“/ — 5].—‘”’/ ,ﬂ — 6FIJ‘B v
— 8 B
6R,, = 0%, 6T, (2.17)

To go from the first line to the second line, we used the fact that in these coordinates
covariant derivatives are identical to partial derivatives. The last equality is a ten-
sorial equality and holds in all coordinates. Calculation of the variation of the affine

connection is again most conveniently accomplished in this coordinates system:

L1,
Ty = 307 O+ b= )
1
0T = 59" (o + huayy = hywia) (2.18)

where, again, the last equality is a tensorial equality and must hold in any coordinate

_system. Substituting Eq. (2.17) and Eq. (2.18) into Eq. (2.16) for 6G,, yields

B

1 1
0Gu = _§Dhuu + hguy ® = §h B

1

- Eg,w (ha,B o Dhﬂg) . (2.19)

2.3 Covariant and gauge invariant perturbation equa-
tions

At this stage, no advantage was taken of the spherical symmetry, and Eq. (2.19) could
be applied to any vacuum spacetime. The task at hand is to evaluate Eq. (2.15) with

the aid of the spherically symmetric metric of Eq. (2.1).
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To do this, we first express the metric perturbations as multipole expansions.
This is accomplished by using tensorial spherical harmonics, which are introduced in
Appendix A, Sec. A.1, Sec. A.2, and Sec. A.3. Such a decomposition introduces two
types of perturbations: even and odd parity modes. This is a reflection of the fact
that tensorial spherical harmonics come with these two parities. This is discussed
in more detail in Appendix A. The advantage of this separation is the following:
spherical symmetry prevents different parity modes from mixing, and the perturbation
equations can be derived for each parity separately. This is done in Sec. 2.3.2 and
Sec. 2.3.3, for even and odd parity modes, respectively. In arriving at the perturbation

equations, we use, for even parity modes, the expansion

hab(xc790) = pab(mc) Ylm(00)7
haa(a€,09) = qu(z€) Z51(6°),

hap(z%,0°) = r?|K(z°) UR(6%) + G(3°) Vim(69)], (2.20)
while for odd parity modes, we use

haa(z%,0°) = he(z€) X5™(6°),

hAB(JZ‘c,OC) = hg(l‘c) Wﬁ{g(&c), (221)

where pay, Ga, K, G, he, and hy are understood to have indices [ and m, and summation

over [ and m is implicit.

2.3.1 Regge-Wheeler gauge

To obtain the perturbation equations, we use the gauge freedom inherent to the theory
to eliminate four (three even parity modes and one odd parity mode) components of

the metric perturbations. The gauge fixed expansions are then inserted back into
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Eq. (2.15) to obtain a set of ten coupled partial differential equations. Although the
equations are derived in a specific gauge, the Regge-Wheeler gauge, it is possible,
as we explain below, to reinstate gauge invariance of the perturbation equations
a posteriori. This is possible by virtue of the fact that in a vacuum background
spacetime the perturbed Einstein tensor is gauge invariant.

Under an infinitesimal coordinate transformation, z# — x* 4+ &, the perturbation

field hy, transforms as

Mo = Py = 28 () (2.22)

where “n” labels the field obtained after the infinitesimal transformation, and “o” is

assigned to the field before the transformation.

The most general vector £ can be decomposed into even and odd parity vectors.
The even parity component is given by £ dz# = a,(zb)Y'™dz® + r2f (z%)ZmdgA,
while the odd parity part is £V dz# = r2y(x®) Xmde4. Since 4™ contains three
arbitrary functions, it can be used to fix three of the metric perturbations. On the
other hand, f,(fdd) contains a single freely specifiable function, and éﬁly one of the
odd parity metric perturbations can be gauged away. With the help of Eq. (2.3), it is
trivial to calculate the transformation laws for both even and odd parity modes. Then,
multiplying by the appropriate tensorial spherical harmonic function and integrating
over the sphere yields the transformation laws for each multipole moment of the

metric perturbations. Even parity modes transform as

Pab = Pab — 20a), (2.23)
@ = G5 —aa—1Bg, (2.24)
K" = K°— Q;aa + (1 +1)8, (2.25)
G" = G°-2p, (2.26)
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while odd parity modes transform according to
hy = ho =1y, (2.27)
R = Ry —2r?y. (2.28)
Gauge invariant quantities for even and odd parity modes are obtained by forming
linear combinations of the transformation equations given above. The combinations
must be chosen to eliminate the functions «a,, 8 and « from the right hand side of
Egs. (2.23)-(2.28). For even parity modes, there are four independent gauge invariant
quantities (denoted by a “~7”):

Pab = DPab — 2rU(a:b)

- 1 a
K = K+l(l;r )G—Z%va, (2.29)

where v, = q, — %T‘QG’a. For odd parity modes, there are two gauge invariant quanti-
ties:

- 1
ha=ha —

r
ho o — —=hs. 2.3
9" T 2 ( O)

We note that any linear combination of gauge invariant quantities is itself gauge
invariant. This property is used in Sec. 2.5 to provide decoupled covariant equations
for the metric perturbations of the Schwarzschild spacetime.

A specific choice of gauge is known in the literature as the Regge-Wheeler gauge.
It was introduced by T. Regge and J.A. Wheeler for the purpose of studying the
stability of the Schwarzschild black hole [19]. In this gauge, the functions «,, § and
v appearing in Eqgs. (2.23)-(2.28) are chosen such that ¢, = 0, G = 0 and hy = 0.
In this gauge, Pap = Pap, K = K, and iLa = h,. The power of this gauge resides in
the following observation: gauge invariance can be recovered in any result obtained
in the Regge-Wheeler gauge simply by substituting the gauge invariant quantities of

Eq. (2.29) and Eq. (2.30) in place of the Regge-Wheeler quantities.
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2.3.2 Perturbation equations for even parity modes

The variation of the Einstein tensor (Eq. (2.16)), calculated in the Regge-Wheeler
gauge, can be found in Appendix B. In that Appendix, the covariant derivatives of
the perturbation tensor are calculated for the Schwarzswchild spacetime. We also use
Eq. (2.7), Eq. (2.9) and Eq. (2.10) to simplify the appearance of these equations.
There are seven coupled differential equations describing the even parity pertur-
bation modes. Three can be obtained by calculating [ dQ 6G,, Y*'™, two more from
[dQ 6Goa Z, and the last two from [ dQ 6Gap UAE*, and [ dQ 6Gap Vi2P*. The
quantities 0G g, 0G,a, and 0G 45 are found, with the replacements mentioned above,
in Eq. (B.13), Eq. (B.14), and Eq. (B.15), respectively. The angular integrals are
evaluated with the use of Eq. (A.3), Eq. (A.6), and Eq. (A.9). Explicitly, the even

parity perturbation equations are

1 1 1

Qav = Dlabye — _égabﬁal:cd - §I3€c:ab 3 (OPab — g P°,)
o+ —z—r,c (P (ay — 9asPy) — %C (Pabie — GabPc) + %ﬁab
- :—QQabT’CT’dﬁcd - i‘,’lzgab {l(l +1)+ g] P
— K+ g0k — ;T(,ak,b) + ggabr’cff,c — %gabk : (2.31)
Qo = Pop— ot Z;i—aﬁbb - K., (2.32)
@ = O P Pt e g 4 et 1 R, (239
Q= -, (2.34)
where the source terms are defined as
QY = 8r / dQ Tyt
Q° = l(lljﬂl)ﬂ/m 7oA glms

Q = 8’ / aQ TP Uy
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(1 - 2)!

Q' = 3w (+2)!

rt / dQ TAB ylmx (2.35)

This complete the derivation of the covariant and gauge invariant even perturbation
equations of a Schwarzschild black hole. The expressions above agree with those
found in [36, 37|, once their expressions are specialized to the vacuum perturbations

of a Schwarzschild black hole.

2.3.3 Perturbation equations for odd parity modes

Again, the various quanti.ties needed to evaluate Eq. (2.15) are given in Appendix B
and are specialized a Schwarzschild spacetimé by using Eq. (2.7), Eq. (2.9) and
Eq. (2.10).

There are three odd parity perturbation equations; of these three equations, two

are obtained from [dQ 6G,4 X/ir, and the third one from [dQ §Gap V/AB*. The
expressions needed for 6G,4 and dG 4p can be found in Eq. (B.14) and Eq. (B.15),
respectively, and the angular integrals are evaluated by making use of Eq. (A.6) and

Eq. (A.9).

Explicitly, the odd parity perturbation equations are

_x ~ 2 ~ ~
P, = —0Oh,+ hb:ab + - (r’bhb:a — r’ahb:b)
1 2M\ - 2 .
+ T'_2 <l(l + 1) - T) ha - ;57"(17" hb y (236)
P = h°,. (2.37)

where the source terms are

a 16w 2 aA Imx
Pt = ———l(l+1r/dQT xim
(l_ 2)‘ 4 AB Imx
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This completes the derivation of the covariant and gauge invariant odd parity pertur-
bation equations of a Schwarzschild black hole. Our expressions agree with expression
found in [36, 37], once their expressions are specialized to the vacuum perturbations
of a Schwarzschild black hole.

The expressions governing the perturbations of the Schwarzschild spacetime, de-
rived in the previous section and ivn this section can, in principle, be expanded using a
specific coordinate system and then solved as a set of coupled partial differential equa-
tions. However, we show below that these equations can be decoupled by introducing

the Zerilli-Moncrief and Regge-Wheeler scalar functions.

2.4 Bianchi identities

It seems at first glance that the system of equations above is overdetermined, since we
now have ten coupled perturbation equations and only six gauge invariant quantities.
However, this is not the case, for the well known reason that the contracted Bianchi
identities provide an additional four relations among the perturbation eql'l‘ations. The
number of independent equations is thus reduced to six.

From the definition of the source terms, Eq. (2.35), and Eq. (2.38), the perturbing

stress-energy tensor can be expanded as

Tab — 87rQab(:L’C)Ylm(9C),

T4 = Q)2 (0%) + P Xih(69)],
T4 = D [PQ VAR (09) + @ IVAT(09) + PEOWA(E9)] . (239)

We stress that the indices on the tensorial spherical harmonics are raised with 242 and

not with the full-metric g*%; this explains the factors of r 2 appearing in Eq. (2.39).
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We recall that Q*, Q¢, P?, and P possess indices [ and m, and that summation over
these is understood.

With the help of the Christoffel symbols given by Eq. (2.3), we get
aQ ab 2 ab aA a AB
Tl.Lu = T.b—f——T’bT +T|A—T’F’ QABT s
k) . T

i

4
T, = T% + -r 7+ T} (2.40)
T

We can now use Eq. (A.11) and Eq. (A.12) to simplify T“AIA, and Egs. (A.13)-(A.15)
to simplify TALTB.

There are three even parity and one odd parity Bianchi identities. Even identities
are obtained by evaluating [ dQ T®, Y™ = 0 and [dQ T4%, Z§™ = 0, while the

odd parity identity comes from [ d§ TA“;N Xl = 0. Explicitly, we have

2 1 ., I+1 .,
Qab;b + —Qab’r,b — I Qb . ( - )Q — 0’
T T 2r
0 2 “ [—D{{+2
Q,:a_f__,r’aQ . ( )(2 )Qﬁ+Qb _ O,
T 2r
2 - 2
pe g 2p pep LZDER2) (2.41)
T T

The remaining six perturbation equations are independent and determine uniquely

the six gauge invariant quantities.

2.5 Decoupled master equations

We are interested in studying gravitational waves propagating in the spacetime of a
Schwarzschild black hole. We therefore neglect the non-radiative [ = 0 and | = 1
modes, which require a special treatment [20, 21, 41, 42], and concentrate on modes
with [ > 2. We shall provide decoupled equations for even and odd parity modes in

terms of the Zerilli-Moncrief and Regge-Wheeler functions, respectively.
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2.5.1 Zerilli-Moncrief function for even parity perturbations

The even parity metric perturbations of the Schwarzschild black hole can be decoupled
by introducing the scalar field

r ~ 1 b~ ~
_ L(apbs 2.4
Yzm A+1[K+A<T T"Pap — TT K,a>], (2.42)

where A = (I +2)(l — 1)/2, A = X + 3M/r, and the normalization is chosen to
agree, in Schwarzschild coordinates, with the usual definition of the Zerilli-Moncrief
function [22, 38].

The steps involved in decoupling the even parity equations are most transparent

with the use of the traceless tensor

~ 1

kab = ﬁab_ §gabﬁ7 (243)

and the scalar field

v = 1ty — K ,, (2.44)

where p = p°%,. From Eq. (2.34), p is completely determined with the specification of
(", and the transformation eliminates a degree of freedom that is already determined:;
the use of kgp is purely for convenience, as kqp and Pap are equal up to a source term.
Replacing pg, in favor of kg in Eq. (2.31) yields

1 T~ A+1-

~ ~ 1.~ 2 ~ z
. .C cd = € d —_—
Qab = k (a:b)e — §gabk ed §Dkab + ;T (kc(a:b) B gabk c:d) - r kab:c + 72 kab

1 . .2 . 3 .1 N
- ﬁgabryc'r’dkcd - Kzab + gabDK - ;T(,aK,b) + ;gabr’cK,c - 'ﬁgab/\K

1 1 . 1
- a~ — A Ya 7~(;_—a, )\ 2~- 245
TPy 5 Ja P = 5 50 b(A+2)p (2.45)

The remaining two even parity perturbation equations can be used to express, in

terms of K, those derivatives of kg, that cannot be expressed in terms of v. We have

- ~ 1
’f"ak‘ba:b = T’aK,a + 7"aQa + -2—7"‘1]5’(1 - %ﬁ:
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- - 2 1. 1 . 1 aM\ _
kab:a,b = OK — Qb — —rQe+ 0P — =T Do — — ()\ -1+ —)p. (2.46)
T 2 r r r

The first of these equality follows from rearranging Eq. (2.32), while the second rela-
tion is provided by Eq. (2.33).

Using the last three equations, it is possible to construct three differential equa-
tions involving only K and v. The first equation is easily obtained by taking the trace
of Eq. (2.45):

- 2. 2
S, = OK - 2K - 2o, (2.47)

r2 r2

where we used the first of Eq. (2.46) and defined
2r° @ 1 AM\ _
S = QY Qut —Pat — (A + ——-)p. (2.48)
: T r T r

To obtain the second equation, we need

7.C 1. - 1 r.cd R -
K (abye — §Dkab - ‘2‘gabk wd = —Q“kab = r—kab’ (2.49)

which holds for an arbitrary symmetric and traceless tensor on a two-dimensional

manifold [36, 37]. We also will make use of

~ ~ 2M ~
T7aT’bT7ckab:c = (T’ar’bkab),c T2 7"ar’bkab
T

2M - 3M .
= ru,— —v+ rrr P Ko + <1 - —-—)r’“K,a, (2.50)
T

’ r
Substituting Eq. (2.49) in Eq. (2.45) eliminates all second-order derivatives of kg

from Q. The term containing (1K is then eliminated by forming

,Ll )b ~ ~ ~
JQ = Qi = -1 (T’"‘kab;c — V'K:ab> - lg </\ + 2) ko
r T
3f arr Me o o o f .
Y. 3aKa_ __K— AP e = A 2 . 2. 1
* r e T o P 2r2( +2)p (2:51)

The only term left involving a second derivative is the term proportional to K.g.

From Eq. (2.50), we see that it is removed by eliminating ke in favor of v. Eq. (2.51)
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is then

1 1 2M A )\
Sy = ——1ru,— = (/\ +2 - —)U — =K, f (2.52)
T r2 T r r
where we have defined the source term
Sp = [Q%— Qurr’+ % —2L()\ + 2)p. (2.53)

Deriving the third and final equation requires more effort. It is obtained by

forming the quantity

. 1 .
— ikab — __/r-;arr-)b[lk-ab

2 2 . .
@b a b ,a,.,b c c
;7' r Qab + Q a,br = —-rr (k abec k a:cb) r r

M - 2 -
- “‘<1 - 7) K T3 ()\ +2f) ke + ;T’ar’bK:ab
2f . - .7 2 4M 2)
+ ~—DK+T’“(DK>,¢1——2<)\+1——> ro K, + f
r T r3
2M
— —(/\+1+—T——>7"’“ﬁa f(/\+2) (2.54)

We simplify this expression by making use of the following relations:

L .- M,
(k abe k a:cb) = -R dbckda + Rdabck d ~ —ﬁ"kab
r (i]f(),a = gbc,,_,a (R:bac + Rdbcaf(ad)

. e 2M -
= gbc (T,aK:ab):c - T'abK:ab - TT’GK,(L
r

= 0 (r’“f(,a) - %E}K
0 (r'r’“f(,a) = 7] (r"’f(,a) + 2r0r P K + %r’“f(,a,
P ke = ¢ (r’“r’bl}abw):d — (reert 4 poyte) Eabee

= O (r""r’bfcab) — [(r acpb ity bc)kab];c — T—Qr’“l;:ba:b |

= [ (r’“r’bicab) + t—Mr’“r’bl;ab - il;—

L AM S VA
= Ov+ —v+ro (rKa) + 20 Ky + —5 K
-

aM (1. f.
_ 7 <T’ Qa + 57" Do — ;p) s (255)
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where the first equality follows from commuting covariant derivatives, and using
Eq. (2.11), with R given in Eq. (2.9); the second and third equalities are estab-
lished by direct computation; the last relation can be obtained by substituting the
definition of v, Eq. (2.44), into its third line, as well as using the first of Eq. (2.46) and

the third identity of Eq. (2.55). Simplification of Eq. (2.54) is now straightforward

and yields
1.
Sy = ——Dv+—3[)\+2<1——)]v
T r
1 aM\ . ~ 6M ~ OMNf -~
+ —-{1—-— |OK + ’“Ka+—fK, (2.56)
T T r3 ’ rd
where the source term is
2 ..
Sy = 2Qurrt+ Q- 1@ - g, L
1 MY oM
+ = <)\ +14 —) 7B 4 — I (2/\ +3 - ——) p. (2.57)
T r T

To decouple the equations, we can eliminate K or v in Eq. (2.47), Eq. (2.52), and

Eq. (2.56) in favor of ¢ = r(K + A~'v).-We eliminate v:

6M 2A
3IM 6M? A+1, -

Sy = ——-—7‘:‘1¢a_ <()\+1) —/\—|- >’¢+ :; AK
AL 2 6MY\ 2 M M?

Sy = —ﬁmw+r—3(>\+7>r w’“+r_4{A(A+1)+7(4’\"3)+18_r2]7’/’
1 M\.. 2 3M 3M?\ -

+ —()\+1——>DK——§<)\()\+1)+—()\+1)+ 5 >K (2.58)

s T T T r

It is now easy to see that (1K is eliminated by combining S3 and S;, and that S,
can then be used to eliminate the remaining term proportional to K. An equation
for the Zerilli-Moncrief function, defined in Eq. (2.42), is obtained by substituting

Y = (A4 1)zm — 7 fD/(2A). The covariant inhomogeneous Zerilli-Moncrief equation

30



is

I:Ij — VZM(T):| ’QZJZM(IC) = SZM(ZEC), (259)
where Dzm = gab¥ishs,
2 M
Vam 222 [ A+ 1+ M + 18M A+ —11, (2.60)
r2A2 r r2 r
and the source term is
r? 1 M 2 6M
e — A+ —1 S
Sum ()\+1)Al:53 <A+1 T)S1+TA< + r) 2]
1 rf
+/\+1[D—V } (2/\ )
r? 6M f
. “ .0 ﬂ . a b el ,a.,.,b e
- AT Qa Q ()\+1) |: (Q a),br + T2AQabT T+ TQ
M 21M?
+iA (/\(/\ 0+ 37(2/\ a4 > Q" ] (2.61)
T

Setting Szy = 0, we recover the covariant Zerilli-Moncrief equation found in [35].

Once the Zerilli-Moncrief function is found (by solving Eq. (2.59)), the metric
perturbations can be recovered by inverting the second of Eq. (2.58) for K, pis
known from Eq. (2.34), and v is solved for by inverting the definition of the Zerilli-
Moncrief function. The remaining component is obtained from, for example, one of
the components of Eq. (2.31).

In Schwarzschild coordinates, Eq. (2.59) is the Zerilli-Moncrief equation found
in the literature [22, 38]. Relations between the Zerilli-Moncrief function as defined
here and the definition adopted by various authors can be found in the paper by
C.O. Lousto and R.H. Price [38]. The new result presented here is a covariant deriva-
tion of the inhomogeneous decoupled Zerilli-Moncrief equation. In doing so, we co-
variantly defined the Zerilli-Moncrief function, as well as calculated the complete

covariant source term for arbitrary even perturbations.
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2.5.2 Regge-Wheeler function for odd parity perturbations

Odd parity perturbations are decoupled by introducing the scalar field
Yrw = —17 1%, (2.62)

The negative sign is purely conventional and inserted so that, in Schwarzschild coor-
dinates, our definition agrees with that of T. Regge and J.A. Wheeler [19)].

To decouple the equations, we first note that A% _, from Eq. (2.37), is proportional
t0 a source term. Contracting Eq. (2.36) with r~'r% and using Eq. (2.7) to eliminate

ror , leads to

ap, 2 al 9
' + —éP = L <_Dha + —T’bhb:a + hb:ab)
T T T T
1 oM -
= <2 (B 1)) . (2.63)

The task is completed once we have expressions for 7~ 'r*h,, 7*h° ., and 7 77 Ry
in terms of Yrw.
First, we calculate b’ ;:

T’akb:ab = r* (h’b:ba - Rbcabﬁc)
2M

= 7"a;?’b:ba + ‘;g—r’aila
2M

= T’aRa — —2wa, (264)
T

where R¢ , is defined in Eq. (2.11) and Eq. (2.9). Secondly, for r~1rorPh,, we get

~1,.a,.,b7, b(,.~1,.a} r oy T a7
rrtrthey, = 1 (r r’“ha>:b— raph’ + —5=1%h,
T r
1 3M
= —r"Prw — = <1 - —> Yrw, (2.65)
T r

where we used Eq. (2.7) and Eq. (2.10) to go from the first to the second line. Finally,

for r~179%h, we obtain

7.:ab _ ’I"aT’b

; hab + 2

7,—1T,a|‘_‘|ha = gbc (Tglr’aila:b):c -

ha:b
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:ab T”a’f"b

y et T

= gbc (r—lr7aha):bc - (T_Ir:abh'a - T_2T’br’aha):b - ha:b

= 1, . = b ~
= g* (r‘lr’“ha>;bc + — (rOr — 1% 4) (r_lr’aha) + s (T_lr’“ha) )

r2
wab S ab
+ T—Qraahb - T h’a - T_h/a:b
r r r
- 2 4M 2M
= —[¢Yrw — ;TawRW,a - r_s'l/)RW - —T3—P. (2.66)

Inserting these three results back into Eq. (2.63) yields

0= Vi ) ) = S0, (267
where OYrw = Jap¥itey»
Vaw = ;15 [l(l +1) - Q‘:—q : (2.68)
and
Shw = % (1 - iiﬁ) P+ ’"7 (P, — P,). (2.69)

Setting Sgw = 0, we recover the expression for the covariant Regge-Wheeler eguation
found in [35].

Once the solution to the Regge-Wheeler function is known, the vector field h, can
be reconstructed by solving —r~'r%h, = 9rw and Eq. (2.37), a first-order differential
equation.

In Schwarzschild coordinates, Eq. (2.67) governing the evolution of ¥rw reduces
to the famous Regge-Wheeler equation [19]. Here, we provided a covariant definition
for the Regge-Wheeler function as well as a covariant derivation of the equation it

satisfies, including a complete covariant expression for the source term.
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Chapter 3

Perturbations of a Schwarzschild

black hole in Schwarzschild

coordinates

In the previous chapter, we have developed a completely covariant and gauge invariant
description of the perturbations of a Schwarzschild black hole. The perturbations are
completely specified by two scalar functions from which the metric perturbations
can be feconstructed. In this dissertation, we shall study the perturbations of the
Schwarzschild black hole in Schwarzschild coordinates, and, for convenience, we list
the equations in those coordinates in Sec. 3.1, while the Zerilli-Moncrief and Regge-
Wheeler equations, including the source terms, are given in Sec. 3.2.

The remaining step is to extract physical information from the perturbations.
The master wave equations obeyed by the scalar functions are wave equations that
describe the propagation of gravitational waves in the Schwarzschild background.

We are interested in extracting the waveforms, as well as the energy and angular
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momentum carried by the radiation.

The Regge-Wheeler gauge is not an asymptotically flat gauge, and is therefore not
well suited to describe the radiation and calculate the fluxes. Because the radiative
part of the perturbation tensor is the one that carries energy and angular momentum,
a natural choice of gauge for the purpose of calculating fluxes is a radiation gauge.
Physically, the fields are required to be outgoing at null-infinity and ingoing at the
event horizon, and we need to express the perturbation tensor in an outgoing (ingoing)
radiation gauge to describe the radiation and calculate the fluxes at null-infinity (the
event horizon).

Starting from the perturbation tensor in the Regge-Wheeler gauge, we provide
an explicit prescription to reconstruct the components of py, and h, as well as K
from the Zerilli-Moncrief and Regge-Wheeler functions. This is done in Sec. 3.3.1.
This is a necessary step: the gauge transformation equations can be solved only
when all components of the metric perturbation are known in the initial gauge (the
Regge—Wheeler gauge in this case). In Sec. 3.3.2, we provide approximate solutions
to the gauge transformation equations and obtain the perturbation tensor in both
outgoing and ingoing radiation gauges. In that section, we also make a connection
between the Zerilli-Moncrief and Regge-Wheeler functions and the two gravitational-
wave polarizations. Finally, in Sec. 3.3.3, we present a derivation of the fluxes of
energy and angular momentum, in terms of the Zerilli-Moncrief and Regge-Wheeler

functions.

35



3.1 Metric Perturbations in Schwarzschild coordi-

nates

With the use of the metric of Eq. (2.6), it is quite easy to give the metric pertur-
bation equations in Schwarzschild coordinates. Below, we express the perturbation
equations in terms of components of the perturbation tensor. These equations are
used throughout the dissertation and we find it convenient to group them here. We
let py = fHy, pir = Hy, and p,, = f~'H,, where f = 1 — 2M/r, in terms of which

the even parity perturbation equations read

N l(;;fl) (ﬁﬁf()’ (3.1)
@ - (gk-tm+ 5N E) - T (2
O = gk g k=L A i L (k- )

Ly o9
o — %%(KJJ@)—%E—%E, (3.4)
o - f%(go_K)_%gl_“fM 7, T;QMfJQ, (3.5)

2

Q@ = _%%@*H?)Jrfa?(K H) 8t8 7 27;;\4%&

3 r—:QM%ﬁO+r;2M 0 (2K H2> l+1 (H()_HQ) (3.6)
Q' = Hy— H, (3.7)

For odd parity modes, we express the vector field h, in terms of its components

(izo, 711), and the odd parity perturbation equations read

P . - 20 [z(z+1) 4M]~
h07

Pt = ——hy— — - =
fo = Giar T m f

g (3.8)

r2 r3
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0% - 0 - 20 - (l—l)(l+2)

Pro= gahi- garhet Tghot I, (39)
10-  .9- M-

_ 1o M 1

P oMo+ fgr it Ty b (3.10)

The source terms for these equations are given in Chapter 2 by Eq. (2.35) and

Eq. (2.38).

3.2 Master equations in Schwarzschild coordinates

In terms of the components introduced in the previous section (ﬁt = ho, hy = ha,
pu = fHo, Py = Hy, and p,, = f~'H;), and the metric of Eq. (2.6), we find that the

Zerilli-Moncrief and the Regge-Wheeler functions are expressed as
Q,bZM - ——I——[K—"i <Ij12—7"—-a—k):|,
Yrw = —=ha, (3.11)

where A = (I +2)({ —1)/2, and A = A+ 3M/r.
In Schwarzschild coordinates, the action of the operator ] on a scalar field x is

given by

) NG
— _ =
x = [(%2 am}x'

The Zerilli-Moncrief and Regge-Wheeler master equations, given by Eq. (2.59) and

Eq. (2.67), respectively, become

[_g—ﬁ + 68*2 - fVZM(T)] Yam(r,t) = Szm(r, t), (3.12)
{_5—; * aaz ALY )] Yrw (r,) = Sew (1 ), (3.13)

where Vz and Vaw are given by Eq. (2.60) and Eq. (2.68), respectively, and

ﬁ{ 2f(f2 Qtt _er) +T(A_f)er+rf2Qb

SZM
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S of . f

- A= 1)+ (40 = ) M7 + 15M?] Q“} + Q- QL(31Y)
Sew = L [2(1 - ﬂ)P —2ps P’"], (3.15)
r|r r or _

are the source terms calculated from Eq. (2.61) and Eq. (2.69), respectively.
These are used explicitly in Chapter 4 and in Chapter 5 to obtain gravitational
waveforms as well as the energy and angular momentum fluxes for arbitrary motion

of a point-particle around a Schwarzschild black hole.

3.3 Fluxes of energy and angular momentum

We have derived the inhomogeneous decoupled equations governing the evolution of
even and odd parity perturbations of a Schwarzschild black hole and expressed them
in Schwarzschild coordinates. We showed that once the source term is specified, the
Zerilli-Moncrief and Regge-Wheeler functions can be found by solving Eq. (3.12) and
Eq. (3.13). In this section, it is assumed that the Zerilli-Moncrief and Regge-Wheeler
functions are known everywhere in the spaceﬁme.

We are then interested in obtaining expressions for the fluxes of energy and an-
gular momentum in terms of these two scalar functions. More precisely, we want to
relate the fluxes of energy and angular momentum escaping to infinity and flowing
through the event horizon to the Zerilli-Moncrief and Regge-Wheeler functions. This
requires the introduction of a stress-energy tensor for gravitational-waves; we use the
definition given by Isaacson, which can be defined in any region of spacetime where
the gravitational wavelength is small compared with the radius of curvature [43].

The relations are easier to establish by first isolating the radiative part of h,,. We

now turn to this problem.
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3.3.1 Reconstructing the metric perturbations

in Schwarzschild coordinates

The radiative part of the perturbation tensor can be isolated by calculating its com-
ponents in a radiation gauge. We start from the perturbation tensor in the Regge-
Wheeler gauge, and solve the gauge transformation equations given in Eq. (2.23) and
Eq. (2.27) to obtain hy, in a radiation gauge.

In Sec. 2.5.1 and Sec. 2.5.2, we provided some information about reconstruct-
ing the metric perturbations from the Zerilli-Moncrief and Regge-Wheeler functions.
The information missing from these two sections is found from Eq. (3.2) and from
Eq. (3.10). The Q" equation provides an equation for H,, while P is a differential
equation for hg. In Schwarzschild coordinates, we are able to give explicit formulae
for reconstructing the metric perturbations in the Regge-Wheeler gauge.

For even perturbations, once ¢zy is found, K can be obtained from Eq. (2.58),
H, is obtained by inverting the definition of the Zerilli-Moncrief function given by
Eq. (3.11);: H, from QY and, ﬁhally, H, is obtained from the trace condition,

Eq. (3.7). The inversion is straightforward and yields

- 2 £2
K = f‘a—i/JZM + A(r)zm — ()\T—+fl)xQu,
f{2 = /}|:)\+1¢ZM_ } —f—?“%f(
H, = gt[ Yom + B(r )¢ZM} r 1 [Qtr 7;{;@“]
Hy, = H,+ Q" (3.16)

where A(r) = [AA+ 1) + 3M/r(A+2M/r)]/(rA) and B(r) = [A(1 — 3M/r) —
3M2/r?)/(rfA).

For odd parity perturbations, h; is directly proportional to gw and can easily
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be obtained. Reconstructing the second component entails solving Eq. (2.37). The

result for both components is

o = —f/_; dt’[b%(m/)Rw(t',r)) +P] +C(r),

hi = —rf "Yrw, (3.17)

where C(r) is an integration constant: it represents a static perturbation that can be
freely specified; we take C(r) = 0.

The equations above can be used to construct the gauge invariant metric perturba-
tions. Unfortunately, this is not sufficient to solve the gauge transformation equations;
we need explicit expressions for all the metric components. This is the justification

behind the choice for the Regge-Wheeler gauge. In this gauge, the only non-vanishing

GRW RwW _ 0

components of the perturbation tensor are the ones listed above. ( =0, g,
and hi™ = 0.) Eq. (3.16) and Eq. (3.17) then contain all the information needed.

In the next section, we start from the Regge-Wheeler gauge (and drop the tilde én
K, Py and iza), and obtain the perturbation tensor in outgoing and ingoing radiation

gauges. These gauges are a natural choice, since the appropriate ingoing-wave and

outgoing-wave boundary conditions for the radiation field are built into them.

3.3.2 From gauge to gauge to gauge

We need to solve Egs. (2.23)-(2.28) to obtain the metric perturbations in radiation
gauges (RG). In Schwarzschild coordinates, the even parity transformation equations

are

) M
e = = 2o %)

. 2M
pye = HFW—(%*‘%—?JC lat>7
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pRG = fIHRW 2(04 + —i\—g—f_lar),
¢ = — (at + 7"26) )

¢ = — <aT + 7”25') )
KRG _ R (3}(1 o 1)5),

GRY = —28. (3.18)

An overdot indicates time differentiation, while a prime indicates differentiation with

respect to r. The odd transformation equations are

MO = W,
th = h{{W - T2ryla
REG = _or?y. (3.19)

We use a, = (ay, ) in Eq. (2.23), the superscript RG refers to components in a
radiation gauge, and RW refers to the Regge-Wheeler gauge.

The radiation gauges are easily defined by first introducing a complex null-tetrad
¥, n¥, and m*. The vectors [# and n” are null-vectors, and are tangent to outgoing
and ingoing radial light rays, respectively; the vector m* is a complex null-vector

(with complex conjugate m*) on the two-sphere. They satisfy the relations:
I#l, =0 =nkn,, mtm, = 0 = m*m,, lFn, = -1 =-m"m,.  (3.20)
From these, we can write the completeness relation
G = 2[=ln) + )

for the spacetime metric tensor, and

Qap = 2mamp)
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and for the metric of the unit-two sphere, where m* = r (964 /0z*) m*. In Schwarzschild

coordinates, these vectors are

o[

1
I, =(-1,f71,0,0), n, = —§(f, 1,0,0), m, = —(0,0,1,2sin6). (3.21)

Outgoing radiation gauge

, the perturbation tensor satisfies [44]

In an outgoing radiation gauge hg/RG

ORG_ p, v _
hy,nfn” =0,

hngn"m” = 0 = hngn“m”,

hOFCnk Y = 0 = AOFSmPmY. (3.22)

The first two conditions indicate the Q¢ is transverse to outgoing null rays, while
the last condition indicates that it is traceless. Eqgs. (3.22) involve five conditions, one
too many for the specification of a gauge. But this system is not overdetermined: once
four of these equations are enforced, the fifth is found to be satisfied automatically
in the radiation zone.

Substitution of Eq. (3.18) and Eq. (3.19) into Eq. (3.22) leads to a set of differential

equations for the gauge functions. To leading-order in r~!, they are
2(d — o) — & + o) = HMW + HIWV —2HMW,
0y — O + T2(B - ﬁ,) = 07

2(6y —ay) = 0,

2
“ap, = —KBW (3.23)
r
for even parity modes, and
(v =) = Y —hyY, (3.24)
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for odd parity modes; an overdot and a prime denote a derivative with respect to ¢
and r, respectively. Because we are assuming that the metric perturbations in the
Regge-Wheeler gauges are known functions, they act as source terms for the gauge

transformation. From Eq. (3.16), we find that in the radiation zone
K™ o —gpou, HIW = HW ~ —HMW 1,

while Eq. (3.17) yields

ho ~ ‘“hl ~ Twa.

The gauge transformation equations can be simplified further, since, in the radiation

zone, & &~ —&' 4+ O(r~!) for any field £ that behaves as an outgoing wave. This follows

from the outgoing character of the radiation field in this region of spacetime.
Solving Eq. (3.23) and Eq. (3.24) for o4, o, f and v is then quite easy. For even

modes, the last of Eq. (3.23) provides a solution for «,.:

r A
Qp = 'Z—KRW = ———2~1/}ZM

The remainiﬁg two even parity gaugé functions are found from the second and the

third of Eq. (3.23). The later yields oy = —a,, while the former becomes

B =0, = = —Pu/(2r).

We did not use the first of Eq. (3.23), but it is straightforward to verify that, in the
radiation zone, it is consistent with the solution above. For odd modes, the solution
is even shorter. We use the approximate form of A&W and AW in Eq. (3.24) and

obtain

Y= 1/ dt,wa(tl).

T J -

These functions now completely specify the transformation from the Regge-Wheeler

gauge to the outgoing radiation gauge. Going back to Eq. (3.18) and Eq. (3.19), we
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construct the perturbation tensor in the outgoing radiation gauge:

paC o~ O,
g~ O,
KORG ~ 0(7‘_2),

1
GORG = Y, (3.25)
for even modes, and

heRe o~ 0,

t
RORG = _or / dt"Yrw ('), (3.26)

[eo}

for odd modes.

The radiative part of the perturbation tensor is entirely contained in hQ&C:
t
980 = X (wiptovip -2 [ aruigwis) (3.27)
—0

im

In terms of the two gravitational-wave polarizations

hy =hg“/r*  and  hy, = kg %/ (r?sinb),
we have
1 (l + 2)' Im t im Im
hy — thy = 5;,/(1_ 2 ( m (1) 22/_00 drpm (1)) LY™9,6),  (3.28)
where we introduce the spherical harmonic of spin-weight s = —2 [45]:

mo- = 1 (l+2)' m mo= =
Vie mA mP = s\ =2 Y™, ) = — Wi mt mP,

and m* is given at the end of the previous section.
This completely specifies the relation between the Zerilli-Moncrief and the Regge-

Wheeler functions, and the radiative part of the gravitational field in the far zone.
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The Zerilli-Moncrief and the Regge-Wheeler functions can be calculated for any type
of perturbing stress-energy tensor and in any coordinate system through Eq. (2.59)
and Eq. (2.67). Once these functions are known, the gravitational waveforms are

given by Eq. (3.28) above.

Ingoing radiation gauge

The ingoing radiation gauge can be constructed by interchanging (* and n* in Eq. (3.22).

In this gauge, the perturbation tensor A% satisfies [44]

IRGuw
b, Y =0,
hECHmY = 0 = hfCIrm,
AEOREY = 0 = hiomtm. (3.29)
The first two conditions indicate the h,fffG is transverse to ingoing null-rays, while

the last condition indicates that it is traceless. We seek to impose this condition near
the event horizon, where f — 0. The same comment about vthe number of gauge
conditions that was made about the outgoing radiation gauge can be made here:
only four gauge conditions need to be imposed, and the fifth condition is satisfied
automatically near the event horizon.

The calculation shadows the steps of the previous section with two minor changes:
First, the component «, is divergent at thebevent horizon, we remove this divergence
by making the substitution o, — f~la, in Eq. (3.18). Second, the field at the event
horizon is ingoing and the appropriate relation between time and radial derivatives
is £ = 06/0r* + O(f), where r* = 7+ 2M log(r/2M — 1) is the usual tortoise coordi-

nate. With these changes, substitution of Eq. (3.18) and Eq. (3.19) into the ingoing
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radiation gauge conditions yields

1
Ay + éy) — = (v +a,) = 2f (HPY + HIY),

& — Gy = 0,

8M25+at+ar = 0,

1

o= = K™, (3.30)

for the gauge transformations of even parity modes, and
r*y=r(hg + fhY), (3.31)

for those of odd parity modes. The metric perturbations in the Regge-Wheeler
gauge act as a source for the gauge transformation equations. From Eq. (3.16), and
Eq. (3.17), we get the asymptotic form of the metric perturbations near the event
horizon:

- A+1 _ . 1-
K™~ Yo+ Sy mo, Y = HE™ = HYY = 7 (2MwZM - inM) :

for even parity modes, and
he' = [RY = —2M gy,

for odd parity ones.

The solution to the gauge transformation proceeds as follow. For even parity
modes, the second and third equations yield o, = «; and 4M 25 = —ay. These
can be substituted into the first and the time derivative of the fourth of Eq. (3.30).
Combining this with the asymptotic form of the even metric perturbations provides

a system of two equations for a;:

. 1 . 1.

Yy —‘m% = Mz — Z¢ZM7 (3-32)
) A+ 1 - A+1 .
oy + 537 ar = Mg + 5 YzM.- (3.33)
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Eliminating the time derivative by subtraction, we find oy = M Yzm. For odd parity
modes, integration of Eq. (3.31), combined with the asymptotic form of A" and
W, yields v = —1/(2M) [ dt' rw (¥').

These functions now completely specify the transformation from the Regge-Wheeler
gauge to the ingoing radiation gauge. Going back to Eq. (3.18) and Eq. (3.19), we

construct the perturbation tensor in this gauge:
HIR ~ H{R 117~ O),
g f¢ ~ O(f), and IRG L O(1),

1
GIRG = _meM (334)

for even parity modes, and

WFE ~ O(f),  and hIFC ~ O(1),

RIRG — 4M / dt’ Yrw (t'), (3.35)

for odd parity modes.

It appears as though most of the metric components are of the same order as
G'EY and hiRC, but we show in the next section that only G'®¢ and hL%C contribute
to the fluxes of energy and angular momentum through the event horizon. We shall

therefore refer to

Wi =2M ) [wg&vgg +2 / dt’wé{'vzv(t’)Wﬂ;]. (3.36)
Im

as the radiative part of the metric perturbation. In analogy with the far zone def-
initions, the two gravitational-wave polarizations are h, = hlR¢/4M? and h, =

hgHG /(4M?sin6). They are given by

hy +thy = ﬁ;,/gﬁfg:( ) -2 | dt'wﬁwv) Y0,6),  (337)
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in terms of the spherical harmonic of spin-weight s = 2 [45]:

m 1 [(l+2)!

Y9, ¢) = Wi mA mPB.

3.3.3 Fluxes of energy and angular momentum

There is an ambiguity in defining a stress-energy tensor for gravitational waves. The
problem is of course rooted in the equivalence principle, which forbids the formulation

of a local energy density for the gravitational field.

TGW

u > can be constructed

The stress-energy tensor of the gravitational waves,
by examining the second-order terms in h,, that were neglected in developing the

perturbation equations, starting from Eq. (2.15). Starting from these, Isaacson was

able to find a gauge invariant stress-energy tensor for gravitational waves [43]:

1
GW __
L (h*® hapy) (3.38)

where (...) denotes an average over a region of spacetinie large compared with the
wavelength of the radiation. Typically, Tlff,w can be defined when the wavelength of
the radiation, A, is small compared to a typical radius of curvature R. By definition,
A € R in the radiation zone and the stress-energy tensor for gravitational waves can
be defined there. There is a second region where the condition A < R is satisfied:
A stationary observer near r = 2M sees R ~ 2M, but the radiation is strongly
blueshifted and A — 0; that this is the case is clear from the divergence in Eq. (3.63)
below.

Our calculation of the fluxes uses the Killing vectors of the Schwarzschild metric
w€* = 0% and (»)&* = 0%. They satisfy (s = 0 = (9)&(ayp)- The existence

of these vectors is associated with conserved quantities in the spacetime, which we
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exploit by constructing the vectors
¢ =T e and ¥ =T% (5,

which encode the information about the flow of energy (¢#) and angular momentum
(7#) associated with T"”. By construction, both vectors are divergence-free: t* , =

0=j",. (This is easily established from Killing’s equation and energy conservation

We consider a four-dimensional volume V' with boundary dV. Integrating the

divergence of ¢, and j, over V and using Gauss theorem provides us with

/ dvit , = }{ t"d¥, =0,
v 1%
/ Vi, = j'{ JAdS, = 0, (3.39)
v v
where d¥,, is an oriented surface element on V. The first equality states that the flow
of energy through a closed three-surface vanishes, while the second is the equivalent

statement for the flow of angular momentum. The fluxes of energy and angular

momentum across a surface r = const. denoted X are then inferred to be

AE = /E tHdS,, (3.40)
AL = L j*dS,, (3.41)

where
dx, = nulo|? dt do de, (3.42)

o is the determinant of the induced metric on X, and 7, is normal to surfaces r =

const. We have

_ T o e=1/2¢r
= G = (343
O = Guv = Ty, (3.44)
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where € = %1 is chosen so that dX, is outward directed with respect to V: for e =1,
d¥, points toward increasing r, while for ¢ = —1, it points toward decreasing r. In
usual Schwarzschild coordinates, the determinant is |o|/2 = /fr?sin 6.

The expressions for the energy and angular momentum flow through any surface

r = const. are therefore

AE = —er2f/dQ dt Ty, or % = -—er2f/dQ Tir,
2 dL 2
AL = er*f [ dQdt T,y, or il [ | dQT,,. (3.45)

Below, we evaluate these expressions for the energy and angular momentum radiated
per unit time by using Eq. (3.27) and Eq. (3.36) for the perturbation tensor expressed

in the outgoing and ingoing gauges.

Radiation zone fluxes

We start by obtaining the components of TﬂGUW that are needed for the purpose of
calculating the fluxes, i.e. TSW, and oW,
The calculations are simplified if we first express the metric perturbation tensor

in terms of its tetrad components. Using the tetrad of Eq. (3.21) with Eq. (3.22) for

the outgoing radiation gauge conditions, we express hfffG as
ORG
b

= hll nuny + 2 (hlmn(um,,) + hlmn(#m,,))
+ hmmmumy + hmmm,ﬂﬁy, (346)
where, for example, h,, = h,,v*v"” for any vector v* belonging to the tetrad. With

the help of the asymptotic form of the perturbation tensor, Eq. (3.25) and Eq. (3.26),

the tetrad components are easily evaluated. They are

tr

h” ~ htOtRG 4 zhORG + hrOTRG ~ O(T"Q),
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by N \2/_ [hORG 4 hORG _|_ g(hORG n hORG)] ~ O(r2),
B = hORG mAmB,
Fomm = : —has” m'm”, (3.47)

A

where the vector m# was introduced previously, and hE¢ is given by Eq. (3.27).

The covariant derivative of hORG is of the form

thR,g = Napu T PaBu; (3.48)
where
Nopu = hupnang + 2him unaMp) + 2hum unamg)

+ hmm,ﬂmamﬁ + hmm7“mamﬂ7
Papn = hu[nangly + 2him[nemp b + 2him[n@ms) i,

+  hpm[Mampl + ham[mamglp. (3.49)

From Eq. (3.38), the stress-energy tensor then becomes

TGW aff | *

! * of o aff
= T 0+ P 9|+ e (350)

where an asterisk stands for complex conjugation. This seems like a rather compli-
cated expression, but its evaluation is easy.
The term involving the square of 744, can be simplified, without approximation,

by using the orthogonality of the tetrad vectors. From Eq. (3.20), we have
naﬁun;/)’u = hmm,uh:nm v hmm Hh:nm v* (351)

The remaining terms in the stress-energy tensor involve covariant derivatives of
the tetrad vectors: terms of the form 7p are proportional to a tetrad vector con-

tracted with the covariant derivative of a second derivative; terms of the form pp are
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proportional to the contraction of the covariant derivatives of two tetrad vectors. A

short calculation reveals that

2
mngs = —\/T—Zf sin 0, (3.52)
Mm*Mege = —1c0s0,
2M
m® sNagr \{1;2 1sin 6, (3.53)

and their complex conjugates are the only non-vanishing components of interest: for
the ¢, 7 and ¢ components of interest, every other contraction of covariant derivatives
of tetrad vectors vanish identically. (Note that n%mg.e = —m*nae and m®mg,, =

—M%*Myq,,.) Keeping only terms proportional to these combinations, we find that

4

2(hmm,rhfmmana;¢ + hmm,Th;(mmana;¢
naﬁﬂpZBV = +hmm e DM Mazp + R r My M* M),  for p=r and v = ¢,
0, ‘ fory=tand v=r,
\ .
.
o 2him N %Moy + 2Mum iy, n® Meyg,  for p=r and v = ¢,
Y upaﬁu =
0, - for y=tand v =,
\

(3.54)

while p™ 025, and p®, )5, are easily obtained by substituting A7 in place of hap.

Taking a derivative of a tetrad component cannot reduce its order in 7—!. Close
inspection of Eq. (3.54), with the aid of Eq. (3.52), then reveals that the r¢ compo-
- nent of p* p%s is O(r~°), while the r¢ component of % p¥, contains terms that
are O(r~2) and cannot be neglected. Collecting the results and inserting them in

Eq. (3.50), we get

1 . i
Tth = M—W(hmm,thmm,r + hmﬁl,thmm,r) tec.c.
1 . . .
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1

64w
N Miﬂ(hmm’rh:_nm + hmm,rhfnm) cos 8 + c.c.
1. o
= _M—W(hmmh:ﬁm:¢ + hmmhmm,qﬁ)

Ty (P Porm, g+ Pt o, )

_I_

These expressions for the stress-energy tensor can now be used to calculate the
fluxes in the radiation zone. Setting ¢ = 1 and f = 1, and inserting Eq. (3.55) into

the first of Eq. (3.45) yields, for the energy flux,

b r’ 1 ¥ i [ % 1 ;i *AB
- = dQ (A + Pamhbl ) = o dQ hagh
1 . *
= 397 ZZ/C‘Q [IzbZMIQ VimyAB +4WRW|2W2’1’§WV$P]
Im U'm/'
1 L2
T 64r 2 Ez —2)! [W’ZMF * 4|¢RW’2]’ (3.57)

Im
where in the first line we used QA“QBPh, phty, = r2(hpmhim + Pmmbim), which
follows from the completeness relation for 4 g; the second line follows from Eq. (3.27),
and the third line follows from evaluating the remaining angular integral with the aid
of Eq. (A.9).

The angular momentum flux calculation follows similar steps as the calculation of

the energy flux. Inserting Eq. (3.56) into the second of Eq. (3.45), we get

dL r? . ;
- Q2 mmh*‘ 7 mmh*

—z(hmmh:;m + hmmhfnm) cosf| + c.c. (3.58)
Since Ay, o< Y™ the term contained in the second line is proportional to | 3 Y™|2 cos 6.

This term is odd in 6 with respect to 7/2 and yields zero contribution to the angular

momentum flux upon integration between 0 < # < 7. The remaining component is
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simplified by noting that A, ¢ = 1mhy,. The angular momentum flux is then

dL ? : ;
E = —‘g%;r‘ df} (hmmh:nm,qs + hﬁlﬁlh’:nm,d) + C.C.)
2 . .
= Zgr:l:;_ /dQ (hmmh:“nm + hﬁlﬁlh:nm) + C.C.)
= 624% dY (BBRY , + c.c.)
m ; * Imy/*AB
= Yy / dQ [mwm ViRV
Im Um!

t
+41prw / dt'wﬁw(t’)W,ﬁ’nBWl’fﬁfl + c.c.

I+2)! .
- lggﬂ Z E[ J_r 2;! [1/)21\/1 Vzm + 4Prw /
Im ' o

t

dt'@bﬁw(t')] +c.c., (3.59)

where, again, we used QA¢OPPh 1 pht, = r2(hmmhis,m, +c.c.) to go from the second to
the third line, the fourth line follows from Eq. (3.45), and the last equality is obtained

by evaluating the angular integral with the help of Eq. (A.9).

Black hole absorption

The calculation of the black hole absorption is similar to the calculation of the far-
zone fluxes. The expansion parameter in this case is f, and from Eq. (3.45), we see
that the ¢tr and r¢ components of T"" need to be calculated to O(f"), i.e. we need
to isolate the divergent part of T’f,W at the event horizon. We therefore neglect terms
of order O(1).

The material developed in the previous sections can be used here simply by re-
placing I* <+ n#. In an ingoing radiation gauge, the non-trivial tetrad components of

the perturbation tensor are

1 .
han = Z (WS = 2fhiFC 4 FRIR) o~ O(),

V2
SM

Q

IRG _ ¢pIRG Y (pIRG _ 4pIRGY| .
P hig'® = FhIFS + — (i = FRIE9)| ~ O(f),
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2hIRG = AmB

4M

Pm = 4M2h{4’g0m mP. (3.60)

With the replacement n” <> [”, the steps we follow are almost exactly the same as
for the far-zone calculations. The stress-energy tensor is written as in Eq. (3.50), with
Nepyu and pag, changed to reflect the exchange of tetrad vectors. It is not difficult to
show that the non-vanishing components of the contracted derivatives of the tetrad

vectors are now

2
mlye = - sin 6,
mmey.y = —icosb,
2M
mCylayr = \[ ——tf "' sinf), (3.61)

and keeping only terms proportional to these contracted derivatives in 745, and p.g.,

we get,
{
(h'mm rh mala ) + hmm,rh;mmala;qﬁ
naﬁuPZﬁu = Y e P Mg + R e By M Masy),  for =7 and v = 4,
0, fory=tand v=r,
\
{
p”‘ﬂ ” ) thmh;‘hmlc‘;rmwﬁ -+ 2hnmh;ml0‘;rmo‘;¢, for p =7 and v = ¢,
uafy
0, fory=tand v =r,

(3.62)

and p*,nig, and p*, oL, are easily obtained by substituting h} 5 in place of hyp.
In the vicinity of the event horizon, we use 8/0r ~ f~19/0t, so that terms con-

taining an 7 derivative of a tetrad component gain a power of f~!. Inspection of

the 7¢ component of p p? 5, reveals that it is O(1) and can be neglected, while the

r¢ component of n® upaﬂy contains terms that are O(f~') and cannot be neglected.
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Collecting the results, we find that the divergent part of T,3" and T,3" is

1
647
-1 . . .
- E(hmmhfnm+hmmh:nm) (3.63)
1
aw  _ * .
Ty = @(hmm,rhmm@Jrhmm” )

? * *
@(hmm,rhmm + PPy ) cOS 0 + c.c.

f_l 7 *

- 647 (hmmh:hm,zb + hmm mm,¢)

of 1
64m

,I;)?W = (hMM,th:hm,r + h’mﬁ‘t,th;knm,r) +c.c.

(M B + hmh,,) cos 0 + c.c. (3.64)

Note that this is exactly of the same form (apart from a factor of f~!) as that obtained
for TGW and TS in the far zone.

To calculate the fluxes, we insert these expressions for the stress-energy tensor
into Eq. (3.45), where we set ¢ = —1. The divergence in the stress-energy tensor is
canceled by the factor of f appearing in the expressions for the fluxes. The remaining
calculations are identical with those of the far-zone, with hlZ“ given by Eq. (3.36).

The energy flux is

Cfi—f B 6417r > 8 i— 2;: [WZMIQ + 4|1/)Rw|2], (3.65)

Im
while the angular momentum flux is

t

dL  wm (+2)!. .
- = 128ﬂ%(l_2)![¢2M Yzm + 4Prw /_oo

dt'wﬁw(t')} +c.c. . (3.66)

In summary, we have provided a description of the metric perturbation tensor,
huu, in terms of its radiative components at infinity and near the event horizon.
The radiative part of the stress-energy tensor can be written in terms of the Zerilli-

Moncrief and Regge-Wheeler functions. We have also developed expressions for the

fluxes of energy and angular momentum at infinity and at the event horizon, in terms
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of these two functions. We have shown that when written in terms of the Zerilli-
Moncrief and Regge-Wheeler functions, the expressions for the fluxes through the
event horizon are identical with the expressions found in the far-zone. The only

difference is in the location at which the scalar functions are evaluated.
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Chapter 4

Initial-value problem in General
Relativity:

A study using perturbation theory

4.1 Introduction

Detection of black hole collisions and successful extraction of the black-hole param-
eters require a detailed theoretical understanding of the gravitational waves emitted
during the collision. The lack of solutions to the dynamical two-body problem in four-
dimensional general relativity renewed interest in simulating black-hole collisions by
numerically integrating the full non-linear Einstein field equations [24, 25, 26, 27,
28, 29, 30, 31, 32, 33]. The challenge is enormous. Recent progresses in the field of
numerical relativity are reviewed in [46].

From a numerical point of view, long-term simulations of black-hole collisions are

limited by the available memory [29] and instabilities associated with the numerical
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implementation of the full non-linear equations [25, 31, 34]. Because of these diffi-
culties, numerical relativity is not yet at the stage where it can simulate black-hole
collisions for a very long time [32]. Most simulations are started at a late stage of the
collision, when the two black holes are separated by a distance of just a few black-
hole masses. As a result of these small initial separations, the gravitational waves
contained on the initial hypersurface cannot escape from the system before the two
black holes become strongly interacting. This situation implies that non-trivial ini-
tial values must be provided for the gravitational field in order to start the numerical
evolution. In this chapter, we will see that the initial gravitational-wave content plays
an important role in the modeling of the gravitational waveforms.

The initial-value problem consists of finding an initial three-metric v;;, and an
initial extrinsic curvature K;;, that encode all of the physical information about the
system. The solution should contain information about the state of motion of the
black holes, and information about the gravitational-wave content of the initial three-
surface. The initial gravitational-wave content is important because it contains infor-
mation about the motion of the black holes prior to the beginning of the numerical
evolution: in the past of the initial hypersurface, the two black holes emitted gravi-
tational waves that must be accounted for in the initial data.

For the case of colliding black holes, various methods have been developed to
find initial data that satisfy the Hamiltonian and momentum constraints of general
relativity, e.g. the apparent-horizon method [47], conformal-imaging method [48],
and puncture method [49]. The starting point of these methods is a maximally

embedded initial spacelike slice (K,

7

= 0). On this slice, the geometry is described
by a conformally-flat initial metric, v;; = ¥*%;;, and a rescaled traceless extrinsic

curvature K;; = W™2K,;, where 7,;; is the metric of three-dimensional flat space, ¥
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the conformal factor, and Kj; the traceless conformal extrinsic curvature. With these
choices, the momentum constraints in vacuum can be recast in terms of quantities
defined in the conformal space: V’K;; = 0, where V¢ is the flat-space covariant
derivative. Bowen and York obtained solutions to this equation in terms of a vector
field V? that contains information about the spins and linear momenta of the holes [50,
51]. The solution is expressed as K¥ = VVJ 4 VIV — 2/359VkV, and explicit
forms for V* can be found in [52]. The three techniques mentioned above rely on
the Bowen-York solutions to construct K;;, but because of the different choices of
topology for the initial hypersurface, the K;;’s they obtain are different. Since these
differences in initial topology are mostly hidden behind the event horizons of the black
holes, they cannot significantly influence the resulting dynamics. To reflect this, we
will generically refer to a K;; based on the Bowen-York solutions as a “longitudinal
extrinsic curvature”.

Thus, solutions to the initial-value problem can be generated, but the real problem
is to construct physically suitable solutions. This is a difficult problem because of the
non-linearities inherent to the theory. It is very hard in practice to identify which
components of y;; and K;; are to be constrained, and which are to be associated with
dynamical and gauge degrees of freedom. It is now widely dccepted that choosing
a conformally-flat -;; and a longitudinal K;; are unlikely to yield physically relevant
initial data sets.

For example, the metric of a binary system is known not to be conformally-
flat at the second post-Newtonian order, making the conformally-flat decomposition
inadequate [52]. As well, any astrophysical black hole is likely to be rotating and, in
this case, the assumption of conformal flatness yields poor initial data. The reason for

this is well known: Garat and Price [53] have shown that there is no spatial slicing
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of the Kerr solution that is both axisymmetric and conformally flat, and reduces
smoothly to the Schwarzschild solution in the no-rotation limit. Nevertheless, the
techniques mentioned above can provide solutions to the initial-value problem that
represent a rotating black hole, but they cannot correspond to a stationary Kerr black
hole; there must be some gravitational radiation on the initial slice.

Even in the case of a perturbed Schwarzschild black hole, where conformally-
flat slices can be constructed, the solutions obtained with a longitudinal extrinsic
curvature are not necessarily adequate. C.O. Lousto and R.H. Price [54] have shown
that for the head-on collision of two nonrotating black holes in which one of the holes is
much less massive than the other, conformally-flat ;; and longitudinal K;; data (CFL
data) do not reproduce the numerical results [54]. In their analysis, they imposed
the CFL data at a time £, and evolved it forward in time. They then looked at the‘
conditions at a later time #;, and found that the extrinsic curvature extracted from
the numerical data agreed poorly with the extrinsic curvature obtained at ¢ = ¢; from
CFL data. Instead, they found that the extrinsic curvature was better répresented by
postulating a convective time derivative [55], which essentially means that the time
derivative of the metric is proportional to the four-velocity of the small black hole.

The various problematic issues associated with the initial-value problem can be
better understood by having recourse to approximate methods [56, 57]. For large
initial separations and slow-motion processes, post-Newtonian theory is useful, espe-
cially when the post-Newtonian metric of two point masses is matched, in a buffer
region, with the metric of two distorted Schwarzschild black holes [58]. For small
mass ratios, black-hole perturbation theory can be very useful [59, 60, 61, 62], since

in this case there is no restriction on the velocity of the small body.
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In this chapter, we use the formalism of perturbation theory, developed in Chap-
ter 2 and specialized to Schwarzschild coordinates in Chapter 3, to study the initial-
value problem for binary systems consisting of a small compact object of mass u
orbiting a Schwarzschild black hole of much larger mass M. With these assumptions,
the perturbing stress-energy tensor can be taken to be that of a point particle and
is then given by Eq. (2.13). With this specific stress-energy tensor, the integrals
appearing in the source terms of Eq. (2.31) to Eq. (2.37) can be evaluated explic-
itly by integrating over the four-dimensional é-function. Working in Schwarzschild

coordinates we obtain

o 8wl , .
QY = ol 73/1 (t) 6(r — rp(1)),
a 16w wul
A, B

@ = sru U o — 1y (0),
(=2t yutu®

t — 39
@ = Mgy kT Vas

o 16w utut
[-2) utu® .
P = 167r§l m 2;! wr? " W (t) 6(r — rp(t)), (4.1)

where Y™ (t) = Y'™*(0,(t), ¢,(t)) (equivalent definitions holding for the other spher-
ical harmonics), 6,(t), ¢p(t) and rp(t) are the time dependent coordinates of the point
particle, u® is the four-velocity of the particle with v = E /f, and E is the conserved
energy of the point particle divided by u. On the initial hypersurface, we set ¢t = 0
and define 7,(0) = r, to be the initial position of the point particle.

Only four of the equations associated with the source terms above are constraint
equations. Of these four equations, three are constraint equations for even parity

modes, and the remaining equation constrains odd parity modes. In Sec. 4.2.1 and
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Sec. 4.2.2, we will see that the constraint equations are given by the P’ equation for
odd parity modes, and by the Q%, Q' and Q! for even parity modes.

This chapter is organized as follow. In Sec. 4.2.1 and Sec. 4.2.2, we construct
solutions to the constraint equations of both parities by postulating relations between
certain components of the metric perturbations. These relations are not preserved by
evolution, but are sufficient to provide an adequate initial-value formulation of the
perturbed constraint equations. In Sec. 4.3, we specialize our initial-value formulation
to the case of a radial infall of the point particle into the central black hole. In
Sec. 4.3.2 and Sec. 4.3.3, we discuss the effects of the choice of initial data on the
gravitational waveforms and on their frequency content. In Sec. 4.3.4, we discuss
the influence of the initial data on the energy radiated to infinity. In Sec. 4.3.5, we

summarize our findings in the case of radial infall of the point particle.

4.2 Initial-value problem in perturbation theory

4.2.1 Solutions to the odd parity constraint equation

There is a single odd parity constraint equation, which in Schwarzschild coordinates
is given by Eq. (3.8). This equation involves ho and ;Ll only, but a second relation,
involving ;7,0 and El, can be obtained from one of the two evolution equations, namely
Eq. (3.10) for P.

The difficulty associated with choosing physical initial data for odd parity pertur-
bations then resides in the fact that both gauge invariant functions must satisfy the
constraint equation, but there is still freedom left in specifying the gravitational-wave

content of the initial hypersurface. We solve Eq. (3.10) and Eq. (3.8) for hy and ;Ll
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in terms of hy and hg. The solutions to the P and P! equations are then

- 1 [ ho
h, = —/ dr'[——Pr'},
R WA e
1 T 0% - 1
h1 = d’f’l 7’,2 [—ho

7'2 oM 87”2

-7 <z(z +1) - fiﬁ)yko - Pt(r’)]. (4.2)

Once a choice is made for kg and its time derivative, the initial gravitational-wave
content is fixed and Ay and its time derivative can be obtained from Eq. (4.2). For
example, they are easily constructed with ko = 0 and ;zo = 0in Eq. (4.2). In Sec. 4.3
we will study in detail the effects of the choice of initial data on the gravitational
waveforms for the case of radial infall. In this situation, odd modes are not excited
by the particle, and we shall not need to develop the solutions to the odd parity

constraint equation any further.

4.2.2 Solutions for even parity constraint equations

The even parity perturbations modes must satisfy three constraint equations: they
are given by Eq. (3.1), Eq. (3.2), and Eq. (3.4). The Q" equation does not involve
any time derivative of the metric perturbations; it is the perturbed Hamiltonian con-
straint. The remaining constraint equations involve at most a single time derivative;
they are the momentum constraints.

We have seen in Sec. 3.3.3 that the Zerilli-Moncrief function contains all the (even
parity) information about gravitational waves at infinity and in the vicinity of the
event horizon. In particular, this function can be used to determine the rate at which
gravitational waves carry energy and angular momentum to infinity and through the
event horizon. It was shown in Sec. 3.2 that in Schwarzschild coordinates the Zerilli-
Moncrief function can be constructed from Hs and K only. For these reasons, we now

concentrate on constructing initial data for H, and K, and their time derivatives. (It
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is clear from Eq. (3.2) for Q¥ that H;(0,r) is completely determined once K (0,7)
and ﬁg(O, r) are known.)
Eq. (3.1) for Q% involves only K and Hy. Defining J = —(8/0r)(r2fQ") +1(1+

1)fQ'/2, we obtain a second equation involving only K and H,:

0 = 3r—5MJ: 10

J = T2f|:*-8?K—TEK+;‘B—;H2
W+1) 2 =N 1 (2 =
o (et )+ o (- )| 4.3

The structure of this equation is the same as that of Eq. (3.1) with K and H, replaced
by their time derivatives. However, it cannot be obtained by taking a simple time
derivative of the first of Eq. (3.1), as can easily be seen from the Bianchi identities
developed in Chap. 2, Eq. (2.41).

From Eq. (4.1) above, we see that on the initial hypersurface every source term is
proportional to §(r — r,). Solutions to the constraint equations are then constructed
from homogeneous solutions to Eq. (3.1) and Eq. (4.3) matched at r,, where the

source term is singular. For later purposes, the singular source terms are written as

rf Q(rt=0) = p(ro)d(r — o),

J(r,t=0) = j(re)d(r —r,)+ 5 (rs)d' (r —ro), (4.4)
where §'(r — r,) = (d/dr)é(r — r,) and

p(ro) = 8muBY"™(0),

j(TO) = 8muf, |: - 31? <1 - ¥> Ylm*(o) + uAqum*(O) ’

7(ro) = Smufou"Y™(0), (4.5)

where f, = 1—2M/r, and the harmonic functions are evaluated at 6,(0) and ¢,(0).

The source term for J easily follows from Eq. (4.3). We note that J is proportional
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to the four-velocity of the particle, but this is not quite equivalent to the convective
initial data used in [55]. This would require Eq. (4.3) to follow from Eq. (3.1) by
simple time differentiation.

As was the case for odd modes, there is freedom in choosing appropriate initial
conditions for the even modes, i.e. the initial gravitational-wave content of the ini-
tial hypersurface can be freely specified. In principle, we could let H, and ﬁ 9 be
freely specifiable functions and obtain K and its time derivative from Eq. (3.1) and
Eq. (4.3). Instead, we postulate a relationship between K and H, and between their

time derivatives:

H, = 4K, (4.6)

where o and & are constants. The notation ¢ is not meant to represent the time
derivative of «. Instead it is used to remind us that & defines the relationship between
Iil 5 and f( .

The motivation for postulating these relations is based on two much-studied
conformally-flat solutions to the initial-value problem: the Misner solution [63, 64]
(which is generalized by the conformal-imaging method to situations where the ini-
tial hypersurface is not a moment of time-symmetry) and the Brill-Lindquist solu-
tion [65, 66] (which is generalized by the puncture method). They represent the
spatial metric of two black holes momentarily at rest, and about to undergo a head-
on collision. Because the initial hypersurface is a moment of time symmetry, K;; =0
and the initial-value problem reduces to finding v;; (or the conformal factor). These
solutions and their generalizations were used as initial data for the study of the head-

on collision of two equal-mass black holes in full numerical relativity [26., 27, 30, 61].
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Demanding that the initial three-metric be conformally flat is equivalent to the re-
quirement that, in the Regge-Wheeler gauge, H, = K, and H; = 0. In this gauge

and with these relations, the line-element is
d5%izo = (14 Kin(r)Yim(0, 9)) (f7dr? + r2d2%)
M\
- (1 + Ky (1) Yim (8, qs)) (1 + ;) (d7? + 7°dQ?) (4.7)
T

where 7 = r(1 + 1/f)?/4 is the isotropic radius. On the other hand, at a moment of
time symmetry H, = K = 0 and H, = 0.

The ansatz of Eq. (4.6) generalizes the time-symmetric and conformally-flat so-
lutions in three ways. First, we promote the relation Hy =K toa gauge invariant
statement!. Secondly, we generalize the conformally-flat statement to H, = oK.
Finally, we postulate ﬁg = o'zlL( , which is trivially satisfied at a moment of time-
symmetry.

Making the choice H, = K turns Eq. (3.1) into a hypergeometric equation for K.
The more general relation H, = oK also turns this equation into a hypergeometric
equation, for which we aré able to find solutions that generalize the conformally-flat
solutions. As well, postulating the second of Eq. (4.6) turns Eq. (4.3) into another
hypergeometric equation and we can also generate solutions. Our solutions are pa-
rameterized by « and ¢, and the procedure outlined above produces a two-parameter
family of initial-data sets.

Because both Eq. (3.1) and Eq. (4.3) are of the same form, we develop the solution
for R' Solutions for K can be obtained from the solution for I‘N( by substituting p(r,)

- for j(r,), « for &, as well as j'(r,) = 0. Postulating the ansatz of Eq. (4.6) at the

1Because Hy and K are used to construct the gauge-invariant Zerilli-Moncrief function, the
difference between the two statements is inconsequential for the purpose of extracting information
about gravitational waves in the far-zone. It does however affect Eq. (4.7) which holds only in
the Regge-Wheeler gauge. By extension, we will refer to initial-data obtained with H, = K as
conformally-flat.
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initial moment ¢t = 0, Eq. (4.3) becomes (z = r/2M)

5

z(1—z)d7k+(§_d_(3_d)z>%f;_<(1_a)_z(z;1)

u+®>k:1@&

On either side of the particle’s initial position, 7 # 7, and J = 0, and this is the
homogeneous hypergeometric equation. For r < r, we must choose a solution that is
regular at » = 2M, but that is allowed to diverge at » — co. We denote this solution
by I;(<(r). For r > r, we must choose a solution that is regular at » — oo, but that
may diverge at 7 = 2M. This solution is denoted by K > (7). In terms of these, the

solution for K (r,0) takes the form?
K(r,0) = C(r) K (1)O(ro — 1) + Cs (1) K (1)O(r — 1), (4.9)
where
- r \—b 2M
K<(7") = (m) F(b,b—c+1,1—a+b,7>,
~ T\ ¢ 2M
Ka(r) = <§E) F(ma—c+L1—b+m—7), (4.10)

F(,;;) is the hypergeometric function,

a1 12
a = 1—§+§[d2+2(1+d)l(l+1)] ,
a 1 172
b :1—5—§Phau+mm+n},
=
¢ = %—a, (4.11)

and C(r,) and Cs(r,) are constants ensuring that K and (9/8r)K have the correct
discontinuity at r = r,.
Evaluating the first and second r-derivative of Eq. (4.9) and inserting the result

into Eq. (4.8), it is easy to show that the two constants C.(r,) and C5(r,) are given

2[n principle, we are free to add any multiple of K- (r) and K > (r) to our particular solutions.
This represents a different choice of initial three-geometry [54] and embedding (if the solutions are
regular at r = 2M), and we do not consider this possibility here.
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T 2y = a )3
Ot = ro(g2) T (ot + 45 )
f,"o 2——C'Y L a b
Cs(r,) = 15 <2M) ['(r,) (qK<(7"O) +q'EK<) : (4.12)
where we have defined
1 : jI(TO)
= — Uro)————~1,
q 5o (e — 20) [](T0)+(2MC (a+b+ )T)TO(TO—QM)
' j,(TO)
= — L VY 4.13
1 To(ro — 2M)’ (4.13)
and also
ey = ot (MY R Lk ik 2k
(To) = T g > i< T A g s )

2M
= {aF(a+1,a—c+1;1—b+a; >F<b,
TO

2M
— bF(a,a—c—f—l;l—b-{—a; )F(
TO

)
)]

(4.1

The second equality in Eq. (4.14) follows from Eq. (15.2.3) of [67] together with
Eq. (4.10) to evaluate (8/8r)f.~(<(7“0) and (6/87’)I'~(>(r0). We re-emphasize that the
solution for K can then be obtained by substituting p(r,) and « in place of j(r,) and
& and setting j'(r,) = 0 in Eq. (4.13).

In order for the perturbed metric to be real (as opposed to complex), the solutions
to Eq. (4.8) must be real functions. Thus, & must be such that the parameters a and
b, as listed in Eqgs. (4.11), are real. It is easy to verify that the quantity appearing

under the square root will be positive if & > &4, or & < &_, where

dp = =11+ 1) £ /(I +2)(1+ DIl - 1). (4.15)

It can be verified that ¢ varies between —1.10102 (when [ = 2) and —1 (for [ — 00).

On the other hand, ¢&_ monotonically decreases from —10.8990 (when [ = 2) as [
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increases. Hence, the metric functions will be real for all values of [ if & is restricted
by & > —1. The same relation must also be satisfied by «.

The initial value of the Zerilli-Moncrief function can now be obtained by inserting
K(r) and Hy(r) = aK(r) in Eq. (3.11). Similarly, initial data for ¢z can be obtained

by substituting f((r) and ﬁg(r)' = df((r) into the time derivative of Eq. (3.11).

4.3 A worked example: Radial infall of a point-

particle into a Schwarzschild black hole

We now consider the radial infall along the z-axis of a particle of mass u, starting
from rest at a radius r,, into a Schwarzschild black hole. The perturbations and the
initial data associated with this type of motion can be analyzed using the formal-
ism developed in the previous sections. Because of the azimuthal symmetry of the
problem, only even-parity perturbations with m = 0 are excited and we can ignore
odd-parity perturbations.

The evolution of the Zerilli-Moncrief function is given by Eq. (3.12), and, for radial

infall, the source term given by Eq. (3.14) reduces to

2 0 0 T rr
Sam(r, 1) m{ﬁf[]&a@tt — 5. ] + r(A — f)Q
- /{—i [/\()\ —1)r* + (4X— 9)Mr + 15M2] Q“}, (4.16)

and we use the fact that, for radial infall, the four-velocity is u” = [E/f, —(F? -
f)/2,0,0]. We assume, without loss of generality, that the motion proceeds along the

negative z direction, so that 6, = 0 on the world line. Evaluating Eq. (4.16) with the
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aid of Eqgs. (4.1), we obtain®
Som(r,t) = G(r)d(r —rp(t)) + F(r)8' (r — rp(t)), (4.17)

where

VRI+D/Em) p fFTA+1D)r—3M 6 M E?
Gr) = —16x Y ELID/UET) p 7 A+ Dr ,

1(z+1) EA r2f Ar2f

Fr) = \/ (21 + 1) /(4n) uf3 (4.18)

1(z+1) EA’

and we have used Y0(0) = /(2] + 1)/(4~), appropriate for motion along the z-axis.
The functions G(r) and F(r) are needed for the numerical algorithm presented in
Appendix C. (There we consider the more general case where they depend on time.
For radial infall, the source term depends on time only through §(r — r,(¢)) and
§'(r — rp(t)).) For the radial infall of a particle starting from rest, rp(t) is given

implicitly by

1r r T r r T
Y K P S . PN
{~sam\any ﬁ i) ssin [
1+ 7% — 22 —9oF
1 oM Ty
+ —In -3 )}(419)
2 Tp Tp T P 2 2M 4M
4k 1+W—25+2E~/ﬁ~/1—z

o
To 2M ™ To (
where, as before, r, = r,(0) is the initial position of the particle, and E=,1- 2M/r,.

The integration of Eq. (3.12) requires the specification of initial data for the Zerilli-
Moncrief function: both gy (r,¢t = 0) and (9/0t)zm(r,t = 0) must be known. In
the next section, we specialize the solutions to the initial-value problem discussed
previously to the case of radial in.fall.

In Sec. 4.3.2 we present the results of the numerical integration of Eq. (3.12) with

the source term of Eq. (4.17). We recall that a numerical method was presented by

3The source term given here agrees with the source term given in [38, 54] if we substitute
“(1=2M/[rp()d' (r —rp(t)) —2M [r26(r — 7, (t))” for “(1—2M/r)8'(r —rp(t))” in our source term.
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C.O. Lousto and R.H. Price [54] and we employ it here with a slight modification.
The method and our modification are presented in Appendix C. The integration was
performed over the region of spacetime bounded by the spacelike hypersurface ¢ = 0
(the moment of time symmetry), a null hypersurface approximating the event horizon
[located at u =T — r3(T'), where T is given by Eq. (4.19) with r,(T)/2M = 1.0001]
4 and a null hypersurface approximating future null-infinity [located at v/2M = (t+
7*)/2M = 1500]. The Zerilli-Moncrief function is extracted from the numerical data
on this last hypersurface, i.e. ¥zu(r,t) is evaluated at v/2M ~ 1500 and expressed
as a function of u =t — r*. The results presented in Sec. 4.3.2 were obtained with a
stepsize of A = 0.01.

The relation between the Zerilli-Moncrief function and the gravitational-wave lu-
minosity was given in Chap. 3, Eq. (3.28)°. Because in this section the gravitational
waveforms are numerically extracted on a null surface approximating J %, the flux
formula presented in Eq. (3.57) cannot be employed directly. Fortunately, in the
far-zone the simple substitution d/dt — d/du is sufficient to produce the correct flux

formula. For the reminder of this chapter, we calculate the energy flux using

d . 1 (+2[/0d 2
Wl T G (-2) (8_u¢ZM> ' (4.20)

In Sec. 4.3.3 we calculate the power spectrum. It is obtained by first evaluating the

Fourier transform of vz (u),

Yom(w) = /_ ” dwe™ 4y (1), (4.21)

e ¢)

where w is the frequency. We cvaluate this with the help of a fast Fourier transform

algorithm [68]. From Eq. (4.20) and Parseval’s theorem, we find that the power

“This choice is made to ensure that the particle’s contribution to the radiation is (almost) zero
at the end of the numerical integration. This means that the value of u associated with the event
horizon in our numerical grid changes every time we change 7,.

®Because of the symmetry of the problem, hy = 1/2/(1 + 2)(I + D)I(l — D)ypzm(u) _2Y'°(8, ) /7,
while A, in this orientation, is zero.
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spectrum is

1 (1+2) 2

64r2 (1 — 2)"

2 }J)zm(w) (4.22)

d

—F

dw ™"
The total energy radiated in each multipole moment is calculated by performing a

Romberg integration over all frequencies. The results are presented in Sec. 4.3.4.

4.3.1 Initial Data

In this section, we specialize the solutions to the initial-value problem, developed
previously, to the case of the radial infall of a point-particle, starting from rest, into a
Schwarzschild black hole. This is the equivalent, in perturbation theory, to the Brill-
Lindquist and Misner solutions. We will concentrate on Brill-Lindquist type initial
data. (Unlike the Misner solution, our initial data sets are not taken to be inversion
symmetric with respect to the throat of the black hole.) The Brill-Lindquist solution
can be expanded in powers of u/M to yield an approximate solution to the initial-
value problem appropriate for perturbation theory; in the Regge-Wheeler gauge, it is
given by H; = 0 and

S dn ]2+ 1) L
Hy=K=2 ‘ =
2 M+ M2m,) (1 + M/27) Firt’

(4.23)

where again 7 is the isotropic radius, and 7. () is the smaller (greater) of 7 and 7,.
This solution was first examined by C.O. Lousto and R.H. Price [38]. We shall now
generalize it by allowing o to be different from 1.

Since the initial hypersurface is a moment of time-symmetry, we have that ﬁ 9 =
0= K. Substituting Y%*(0) = /(20 + 1)/47 and E = /1 — 2M/r, into Eq. (4.12)
(where a must also be used in place of &), we find that the solution for K can be

written as

f((T’ 0) = C(To)R<(T<)K>(7'>)a (4.24)
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where 7 (rs) is the smaller (greater) of r and r,, K. and K- are given by Eq. (4.8)
(without the overdots), and

21+1ﬁ( To )1—a I(r,)

= 4 i
Clro) ™ Tar M \2m E

: (4.25)

where I'(r,) is given by Eq. (4.14).

The conformally-flat soiution can now easily be recovered as a special case of
the initial-data sets presented above. For a conformally-flat initial three-geometry
(o = 1), the parameters appearing in the hypergeometric functions given by Eq. (4.11)

take the values a =1+ 1, b = —[, and ¢ = 3/2, and Eq. (4.10) becomes

K(r) = (5%4—)%(—1,—1—1/2;—21;2M/r)

- ) ()

- (2;4) 1—|—]1\4/2F’ (4.26)

. P\ —(+1)
Ro(r) = <§M> F(+1,041/2;2(+ 1);2M/r)

= () (i)

EUAR. 4.27
T 1+ M/27 (4.27)

where we have used Eq. (15.1.13) of [67]. With these results, it is a trivial matter to

20+1

20+1)

show that

N 8 2M 7
Relrfstrs) = (1+ M/2r,) (1 + M/27) 73

(4.28)
With the conformally-flat values of a, b, and ¢, I'(r,) given by Eq. (4.14) becomes
L(r,) = [(l F1)F (42,04 1/220+ 1); 2M/r,) F (=1, —1 — 1/2; —21;2M /r,)

_ -1
HF (=141, -1 —1/2; —20:2M/r,) F (1 + 1,14 1/2;2(1 + 1); 2M/ro)]

E -1
= 51 [F(*l, —1—1/2;=20:2M /1) F(1+ 1,1 +1/2;2(1 4+ 1); 2M/7~(,)}

E
CA+Y (4.29)
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Figure 4.1: Initial values of 9zu(r,0) for [ = 2; the particle is initially located at
ro/2M = 40 (left) and 7,/2M = 2 (right). In both cases 1zm(r,0) is peaked and
discontinuous at the particle’s location, r = r,. Decreasing (increasing) the value of
« increases (decreases) the amplitude and width of the initial pulse. These properties
can be associated with the amount of gravitational radiation present on the initial
hypersurface. For fixed «, the amplitude of the peak decreases with decreasing r,,.

where the second equality follows from the second identity of Eq. (15.1.13) of [67]
applied to F'(I +2,;;) and F(l+1,;;), and the third equality from the first 'identity
of Eq. (15.1.13) of [67] applied to both hypergeometric functions. Substituting this

results into Eq. (4.25) yields

Adr

C(r,) = STTI (4.30)
Finally, inserting Eq. (4.28) and Eq. (4.30) into Eq. (4.24) gives
~ dr /(20 + 1 2
R(r) =2 WAC R N (4.31)

(1+ M/27,)(1 4 M/2F) 7L

which, in the Regge-Wheeler gauge, is indeed the conformally-flat solution of Eq. (4.23).
Figure 4.1 displays the Zerilli-Moncrief function )z (7, 0) for the cases r,/2M =

40 and r,/2M = 2, for selected values of . The figure shows that 9y (r, 0) is peaked

at the particle’s location, and its amplitude and width change with the value of «; the
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function is discontinuous at 7 = 7, because of the discontinuity in the term 0K /0r
appearing in Eq. (3.11). We see that the amplitude of the peak increases with de-
creasing values of o, and this effect is more pronounced as r, decreases. Intuitively,
we associate a smaller (larger) amplitude with a smaller (larger) amount of gravita-
tional radiation initially present in the spacetime. Thus, to initial data with a small

(large) value of a we associate a large (small) amount of initial radiation.

4.3.2 Radial infall of the point particle: Gravitational wave-
forms

The radiation arriving at the null boundary of our domain of integration contains
radiation from the initial data, radiation emitted by the particle as it falls toward
the black hole, and radiation corresponding to the black hole’s response to the per-
turbation. Because the particle is at rest at ¢ = 0, it initially produces very little
radiation. The early part of the waveform is therefore dominated by radiation con-
tained in the initial data. As time proceeds, the radiation produced by the particle
becomes noticeable, and the dynamics associated with the perturbation of the event
horizon starts to play a role. The radiative process can therefore be separated into
three stages. The first stage is associated with the initial data, the second with the
infalling particle, and the third with the event-horizon dynamics. We now describe
these stages in detail.

The initial data is time-symmetric, and it therefore consists of two radiation pulses:
one pulse is outgoing, and the other is incoming. The outgoing pulse proceeds to in-
finity, with some backscattering [which is small, unless the pulse originates in the
strong-field region of the spacetime (r* < 0)]. On the other hand, the ingoing pulse

moves toward the black hole and is backscattered by the potential barrier at r* & 0.
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Figure 4.2: The | = 2, 3, and 4 modes of the Zerilli-Moncrief function for infall
from r,/2M = 40, for « = —0.3, 0, 1, 2, and 5. For each multipole moment, the
early-time behaviour is dominated by the initial data contribution (u/2M < 350),
while the late-time behaviour is dominated by radiation emitted by the particle in
the strong-field region (350 < u/2M < 400) and by quasi-normal ringing of the black
hole (u/2M > 400). The early-time portion of the waveforms (first stage) depends
strongly on the parameter «, which labels the choice of initial data. In contrast, the
late-time portion (second and third stages) is completely insensitive to the choice of
initial data.

The reflected pulse then proceeds to infinity, where it arrives delayed with respect
to the original outgoing pulse. This is the first stage of the radiative process, and it
is directly associated with the initial data. The second stage is associated with the
motion of the particle. As the particle accelerates toward the black hole, it produces
radiation which propagates to infinity. This happens either by direct propagation

or by backscattering from the potential barrier. The third and final stage of the
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radiative process is the response of the black hole to the perturbation. As the par-
ticle approaches the black hole, it tidally deforms the event horizon, which becomes
dynamical. The radiation produced in this process interacts strongly with the poten-
tial barrier outside the black hole, and the result, after transmission to infinity, is a
pattern of damped oscillations. This response of the black hole to the perturbation
created by the particle is known as quasi-normal ringing [69].

As long as 1, > 2M, the different stages of the radiative process can be clearly
distinguished (initial-data pulses, acceleration radiation, and quasi-normal ringing).
But when 7, is comparable to 2M, the three epochs become confused, and this gives
rise to interfering waveforms. For this reason, varying the initial separation between
the particle and the black hole can have an importaht effect on the gravitational
waveforms.

Let us describe more fully the first stage of the radiative process. For infall
from a large distance (r, > 2M), the outgoing pulse travels directly to future null-
infinity with very little backscattering, since the pulse originates in a region where
the potential of Eq. (2.60) is weak. This is shown in the waveform as a single pulse of
radiation at early times (u &~ —r}). The ingoing pulse, on the other hand, proceeds
toward the black hole, where it is almost. entirely backscattered by the potential
barrier. The reflected pulse then proceeds to infinity and this gives rise to a second
pulse of radiation at u ~ r}. Varying a changes the amount of gravitational radiation
initially present at ¢ = 0, and the amplitude of the two pulses depends on «. This can
be seen in Fig. 4.2, where the [ = 2, 3, and 4 modes of the Zerilli-Moncrief function
are displayed for infall from r,/2M = 40, for several values of «. For [ = 2, the two
pulses have a minimum amplitude when « = 1, and the amplitudes vary smoothly

with a.
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At later times, once the pulses have made their way to infinity, the radiative
process becomes dominated by the particle’s contribution; this is the second stage.
At this time, the particle has entered the strong-field region of the spacetime, its
acceleration is large, and it radiates strongly. This stage lasts for a short time, because
the particlé quickly falls into the black hole. The burst of radiation from the particle
is then quickly replaced by the third stage, quasi-normal ringing. When r, > 2M,
the acceleration radiation and the quasi-normal ringing stages are insensitive to the

choice of initial data. This is illustrated in Fig. 4.2.
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Figure 4.3: The [ = 2, 3, and 4 modes of the Zerilli-Moncrief function for infall from

ro/2M =5, for a = 0, 1, and 2. The waveform changes smoothly as « is varied away

from 1, but the change is more dramatic when « is decreased. The three stages of

the radiative process now overlap and become confused. However, we still witness an
early-time sensitivity, and a late-time insensitivity, to the choice of initial data.

The situation changes when r, is chosen within the strong-field region of the
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spacetime. The outgoing pulse from the initial data still proceeds directly to infinity
with little backscattering, creating a pulse at u ~ —r} (see Fig. 4.3). However, the
ingoing pulse is no longer entirely backscattered by the potential barrier; part of the
pulse is now transmitted to the black hole. The backscattered portion of the ingoing
pulse proceeds to infinity where it generates a second pulse at u ~ 7}, while the
transmitted pulse reaches the event horizon. As a result, the event horizon becomes
distorted, and starts radiating into quasi-normal modes; the second pulse is therefore
immediately followed by an epoch of quasi-normal ringing excited by the transmitted
pulse. The amplitude of the quasi-normal ringing depends on the strength of the
excitation, and is therefore highly sensitive to the choice of initial data. This early
epoch of quasi-normal ringing cannot be seen for infall from large r,, because in that
case the initial data contains mostly low-frequency gravitational radiation that is
almost totally reflected by the potential barrier surrounding the black hole [70].

For intermediate values of 7, (4 < r,/2M < 10), the particle starts in the strong-
_ field region of the spacetime, and its large acceleration causes it to radiate strongly
almost_ immediately. The second stage, which for infall from large r, was dominated
by acceleration radiation, is now the sum of acceleration radiation and quasi-normal
ringing excited by the initial ingoing pulse, as was discussed above. This can be seen
especially clearly for the [ = 3 and 4 modes of the Zerilli-Moncrief function displayed
in Fig. 4.3, for infall from 7,/2M = 5. The superposition can be seen in the interval
5 < u/2M < 20; it is small for & = 1, but large for & # 1. The third stage of
the radiative process is the quasi-normal ringing of the black hole, excited by the
particle as it reaches the event horizon. This phase of quasi-normal ringing is to be
distinguished from the earlier phase associated with the transmitted pulse; this new

phase is insensitive to the choice of initial data.
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Figure 4.4: The [ = 2 and 3 modes of the Zerilli-Moncrief function for a particle falling
from r,/2M = 2.1, for & = 0, 1, and 2. At intermediate times, the waveform is a
superposition of the backscattered ingoing pulse from the initial data, and acceleration
radiation from the particle. The choice of initial data has an influence at late times;
it affects the amplitude and the phase of the quasi-normal ringing.

As 7, is decreased further (1.3 < r,/2M < 4), the waveforms become increasingly
confused. In this range of initial separations, the particle radiates strongly immedi-
ately, and the reflected pulse of ingoing radiation does not reach infinity before the
radiation from the particle becomes significant. The interference between these two
contributions to the waveform is fairly small, because the particle radiates for a short
time before passing through the event horizon. Figure 4.4 displays the [ = 2 and 3
modes of the Zerilli-Moncrief function for infall from r,/2M = 2.1 for & = 0, 1, and 2.
The interference between the backscattered ingoing pulse and the radiation emitted
by the particle is apparent, especially for [ = 2 and @ = 0. A new phenomenon is
observed for these values of 7,: the stage of pure quasi-normal ringing is now affected
by the choice of initial data. The event horizon is distorted both by the transmit-
ted ingoing pulse and the particle, and these factors act at roughly the same time.
Different choices of initial data will therefore affect differently the amplitude and the

phase of the quasi-normal ringing. This is displayed in Fig. 4.4.
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Figure 4.5: The | = 2 and 3 modes of the Zerilli-Moncrief function for a particle
falling from r,/2M = 1.1, for & = 0, 1, and 2. For this very small initial separation,
the particle is quickly absorbed by the black hole and cannot radiate much. The
initial value of 1z (r,t) determines how strongly the event horizon is distorted, and
it therefore has a major impact on the quasi-normal ringing phase of the radiation.

These effects disappear when r, is moved past the potential barrier (1 < r,/2M <
1.3). In such cases, most of the outgoing pulse in the initial data is reflected by the
potential barrier, and does not register at infinity. Instead, the pulses in the initial
data and the radiation from the particle work together to distort the event horizon.
For these very small r,, the quasi-normal ringing is the only featufe that remains
in the waveforms. The amplitude and the phase of the quasi-normal ringing are
very sensitive to the choice of initial data, because the information about the initial
distortion of the event horizon is entirely encoded in the initial data (see Fig. 4.5 for
the case r,/2M = 1.1). The contribution from the particle is minimal because it is

almost immediately absorbed by the black hole.

4.3.3 Power Spectra

The power spectra, as calculated from Eq. (4.22) with a fast Fourier transform algo-

rithm, tell a similar story. For a given choice of I, «, and r,, the total power spectrum
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Figure 4.6: Power spectra for the [ = 2, 3, and 4 modes of the Zerilli-Moncrief function
for r,/2M = 40, and o = 0, 1, and 2. Varying « changes the shape of the spectra
at low frequencies, but the effect disappears at high frequencies. The low-frequency
oscillations are more important for o = 0, compared with o = 1 and 2, and o = 2
produces more oscillations than a.= 1. The low-frequency. part of the spectrum is
due mostly to the low-frequency gravitational waves contained in the initial data.

is the sum of initial-data, particle, and quasi-normal ringing contributions, but it
includes interference between these contributions.

The interference is important when the pulses associated with the initial data, the
acceleration radiation, and the quasi-normal ringing contain overlapping frequencies.
Typical frequencies are w, ~ fo_ ! for the initial-data radiation, w, ~ Ty ! for the accel-
eration radiation, and wgy ~ M ™' for the quasi-normal ringing. As was mentioned
in Sec. 4.3.2, the particle emits mostly in the strong-field region of the spacetime

(wp ~ M) and consequently, the interference between acceleration radiation and
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quasi-normal ringing is always present, while interference with the initial-data con-
tribution is important only when r, is not much larger than 2M. In other words,
interference effects involving the initial-data pulses are important when the parti-
cle is released in the strong-field region. This picture is somewhat simplistic, but
it serves as a useful guide to determine when interference effects become important.
Our numerical results are consistent with this picture.

For large initial separations (r,/2M > 1), we expect the energy spectrum to be
the direct sum of the powers in the initial-data and particle contributions, and in
the quasi-normal ringing, without much interference. This is confirmed in Fig. 4.6,
where the spectra for the | = 2, 3, and 4 modes of the Zerilli-Moncrief function
for r,/2M = 40, and @ = 0, 1, 2, are presented. At low frequencies, the initial
data manifests itself as a strong pulse which dominates the spectrum. At higher
frequencies, acceleration radiation and quasi-normal ringing dominate the spectrum;
this part of the spectrum is easy to recognize, as it does not change when « is varied.
As we move away from conformal flatness (a = 1), the influence of the initial data
spreads into higher frequencies. This can be seen as oscillations in the spectrum (cf.
the cases @ = 0 and 2 in Fig. 4.6). These oscillations are also present for o = 1,
but increasing or decreasing the value of « increases their amplitude and the extent
by which they spill into higher frequencies. In general, a choice of initial data with
a < 1, instead of a > 1, produces larger oscillations, and the effect extends to higher
frequencies. (The oscillations are the smallest when o = 1.)

We have seen in the previous section that for intermediate values of r, (4 <
To/2M < 10), the. choice of initial data affects the shape of the waveforms up to times
where acceleration radiation starts to dominate the radiative process. For these initial

separations, interference effects are important. This is confirmed by our numerical
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Figure 4.7: Power spectra for the [ = 2, 3, and 4 modes of the Zerilli-Moncrief function
for infall from r,/2M =5, and @ = 0, 1, and 2. Interference between the initial-data
pulses, the acceleration radiation, and the quasi-normal ringing plays a crucial role
in determining the shape of the spectra. For @ = 0 and [ = 2, the spectrum has
two maxima at 2Mw = 0.4065 and 2Mw = 0.6455, frequencies at which the spectra
for a = 1 and 2 have a local minimum. Similarly, the maximum at 2Mw = 0.5364
for o = 1 and 2 is replaced by a minimum when « = 0. This is indicative of strong
interference effects. The labels “x10” and “x100” indicate the amount by which the
amplitude of these two spectra were multiplied to be presented in the same figure.

simulations of infall from r,/2M = 5. The spectra, for this value of r,, are displayed
in Fig. 4.7 for [ = 2, 3, and 4, and a =0, 1, and 2. For [ = 2, initial data with o > 1
tend to amplify the features apparent for o = 1 (see the case o = 2 in Fig. 4.7), while
decreasing the value of a changes the location of the maxima; local minima appear
in the spectrum where maxima were seen for o = 1 (see a = 0 in Fig. 4.7). For [ =3

and 4 and o > 1 (o < 1), we observe a similar amplification (attenuation) of the

features present for a = 1, but the effect is much weaker than for [ = 2.
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Figure 4.8: Power spectra for the [ = 2 and 3 modes of the Zerilli-Moncrief function
for infall from r,/2M = 2.1, and @ = 0, 1, and 2. For [ = 2, we also display o = 0.35,
to show the smooth transition between the single-maximum and two-maxima regimes
described in the text. For such a small separation, acceleration radiation is small,
and the interference effects are not very pronounced. They still, however, play an
important role in determining the shape of the spectra. The spectrum for [ = 2
and a = 0 has a shape that indicates strong interference effects between initial-data,
particle, and quasi-normal ringing contributions: the single maximum at 2Mw =
0.6553, seen for & = 1 and 2, is replaced by two maxima at 2Mw = 0.4915 and
2Mw = 0.8697. '

As r, is taken closer to the potential barrier (1.3 < r,/2M < 4), the interference
becomes less important. In Sec. 4.3.2, we showed that for 7, close to the potential bar-
rier, the particle does not radiate strongly before passing through the event horizon,
and the interference is small because of the small amount of acceleration radiation.
In Fig. 4.8 we present the spectra for infall from r,/2M = 2.1, o = 0, 1, and 2,
and [ = 2, and 3. Although interference effects are not as important as for infall
from r,/2M = 5, they still play a role in determining the shape of the spectrum,
as can be seen for the case @ = 0. In this case, the spectrum has two maxima and
a single minimum; this minimum occurs close to the fundamental quasi-normal fre-
quency, which suggests a strong destructive interference between initial-data-excited
and particle-excited quasi-normal ringing. This is different from the cases « = 1 and

2, for which the spectra contain a single peak, indicating that most of the energy is
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Figure 4.9: Power spectra for the [ = 2 and 3 modes of the Zerilli-Moncrief function for
infall from r,/2M = 1.1, and a = 0, 1, and 2. For r, well inside the potential barrier,
acceleration radiation is negligible since the particle is absorbed by the black hole
immediately. The initial data distorts the event horizon, which becomes dynamical
and starts radiating at its quasi-normal frequencies. The amplitude of the quasi-
normal ringing is determined by the strength of the tidal distortion exerted on the
event horizon by the initial data. For the cases displayed, the lowest amplitude is
obtained for o = 1, while the highest is obtained for a = 0.

radiated into quasi-normal modes.

Interference effects, such as the ones shown in Fig. 4.8, have been observed pre-
viously by C.O. Lousto [71], but in a different context. Instead of evolving the per-
turbed Misner solution, appropriate for a head-on collision in perturbation theory,
- C.O. Lousto chose to use the full Misner solution [63, 64] as initial data for the
Zerilli-Moncrief function. He then evolved these initial data using Eq. (3.12). In this
case, the interference is due to the non-linear nature of the initial data he evolved.

Finally, when r, is chosen well inside the potential barrier (1 < r,/2M < 1.3),
the interference effects mentioned previously disappear. For small r,, the magnitude
of the tidal distortion applied to the event horizon is affected only by the choice of
initial data. Since the radiation is then dominated by quasi-normal ringing created
by the initial tidal distortion of the black hole, the spectra contain a single peak, and

its position is independent of c. The choice of initial data affects only the amplitude
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of the quasi-normal ringing, and this is reflected in the amplitude of the spectra at
the fundamental quasi-normal frequency. For infall from r,/2M = 1.1, displayed in
Fig. 4.9 for I = 2 and 3, and @ = 0, 1, and 2, the lowest amplitude occurs for o = 1,

while the highest occurs for o = 0.

4.3.4 Total Energy Radiated
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Figure 4.10: The total energy radiated in the [ = 2 mode as a function of « for a
particle falling in from r,/2M = 40. Outside of the range 0 < a < 7.5, the total
energy radiated exceeds the DRPP result. The energy is minimized for a = 1.

In this subsection we calculate the total energy radiated as a function of « for
infall from r,/2M = 40, and as a function of r, for six selected values of a. We also
tabulate the total energy radiated (the sum of the { = 2, 3 and 4 modes) for selected
values of 7, and «. The radiated energy was calculated using two different methods:
direct numerical integration of Eq. (4.20), and numerical integration of Eq. (4.22). In
this way, the accuracy of the algorithms used could be tested. The results were found
to agree to better than 1%. For comparison, we include in our figures the energy
radiated by a particle falling ffom infinity, as calculated by Davis, Ruffini, Press, and

Price (DRPP) [72]. The DRPP result for the energy radiated in the [ = 2 mode is
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Figure 4.11: The total energy radiated by the [ = 2 mode as a function of r,. Dis-
played are six curves corresponding to the values o = 0, 0.55, 0.9, 1, 1.1, and 2. For
these small values of r,, @ = 1 no longer minimizes the energy radiated. Instead, the
value of « that minimizes the energy changes with r,. This reflects the interference
between the initial data, the particle, and the quasi-normal ringing contributions to
the radiation. We were unable to find a single value of o that minimizes the energy
for all values of 7, in the interval 1 < r,/2M < 5.

We have seen that for large initial separations, the different contributions to the
gravitational radiation do not interfere. The energy emitted in each multipole is then
the direct sum of the energy contained in the initial-data pulses, the energy emitted
in the acceleration radiation, and the energy radiated in the quasi-normal modes.
In Sec. 4.3.2 we showed that all choices of initial data result in two pulses at early
times: the outgoing pulse and the backscattered ingoing pulse. These pulses have the
smallest amplitude when o = 1. Hence, for large initial separations, the waveforms
obtained with o = 1 are the ones that carry the least amount of energy to infinity.

The total energy radiated in the [ = 2 mode is shown in Fig. 4.10 as a function
of a, for r,/2M = 40. We see that the energy is minimized for o = 1, and that it

exceeds the DRPP result if « is outside the interval 0 < o < 7.5. For such a large

value of the initial radius, we confirm the general belief that the radiated energy is
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Table 4.1: Total energy radiated (in units of 2M/u?) for the [ = 2, 3, and 4 modes,
and a = 0.75, 0.8, 0.85, 0.9, and 1.0. The sum of the first three multipole moments
is denoted by E. For infall from short and intermediate distances, the minimum in E
is achieved for a < 1.

ro/2M 1 a=0.75 a=0.8 a=0.85 a=0.9 a=1.0

10,0 2 1.467e-2 1.464e-2 1.463e-2 1.464e-2  1.469e-2
3 1.96le-3 1.876e-3  1.820e-3  1.789e-3  1.790e-3

4 4.835e-4 3.778e-4  3.04be-4  2.595e-4  2.406e-4

- E 1.711e-2 1.690e-2 1.675e-2 1.669e-2 1.672e-2

5.0 2 1.305e-2  1.309e-2  1.316e-2  1.326e-2  1.353e-2
3 1.725e¢-3  1.610e-3  1.546e-3  1.529e-3  1.606e-3

4  5.600e-4 3.883e-4 2.76le-4  2.156e-4  2.249e-4

E 1.534e-2 1.509e-2 1.498e-2 1.500e-2 1.536e-2

3.0 2 1.221e-2  1.246e-2 1.274e-2  1.305e-2  1.374e-2
3  1.359e-3 1.307e-3 1.323e-3  1.398e-3  1.693e-3

4 5.285e-4  3.298e-4 2.147e-4 1.721e-4  2.68le-4

E 1.410e-2 1.410e-2 1.428e-2 1.462e-2 1.570e-2

2.1 2 1.238e-2  1.310e-2  1.383e-2  1.457e-2  1.608e-2
3  1.270e-3  1.325e-3  1.446e-3 1.625e-3  2.120e-3

4  4.134e-4  2.515e-4 1.757e-4 1.748e-4  3.598e-4

E 1.406e-2 1.468e-2 1.545e-2 1.637e-2 1.856e-2

1.1 2 9.158e-4  9.068e-4  9.066e-4  9.144e-4  1.099e-3
3  2.017e-4 1.892e-4  1.854e-4  1.894e-4  2.250e-4

4 2.286e-4  5.415e-5  4.654e-5  4.529e-5  5.966e-5

E 1.346e-3 1.150e-3 1.139e-3 1.149e-3 1.384e-3

minimized if the initial hypersurface is conformally flat [73, 74].

In Fig. 4.11 we plot the total energy radiated in the | = 2 mode as a function
of r, for selected values of «. In the range 1 < r,/2M < 5, thé energy is no longer
minimized by the choice & = 1. Instead, we find that in the interval 2.7 < r,/2M <5,
the energy is minimized when o = 0.55, while in the interval 1 < r,/2M < 2.7, the
minimum is achieved when o = 0.35. (These values are approximate, as we found it
difficult in practice to locate the true minimum in the energy for a given r, and [.)

We also find that for a given r,, no value of o minimizes the energy radiated for all
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modes. For example, for infall from r,/2M = 5 there is a minimum in the energy
for the [ = 3 and 4 modes when « = 0.9, but this value of o does not minimize the
energy in the [ = 2 mode (see Table 4.1).

Although we are unable to find a single value of a that minimizes the energy
radiated for all [ and over the whole interval 1 < r,/2M < 5, we see that in the cases
considered, the total energy radiated is never minimized by choosing initial data with
a > 1. Instead, for infall from a small r,, it is minimized by a choice of o < 1.
This is due to strong interference effectsﬁ for initial data with o < 1 when r, in the
strong-field region of the spacetime; this interference was discussed in Secs. 4.3.2 and
4.3.3.

In Table 4.1 we display the total energy radiated in the [ = 2, 3, and 4 modes
of the Zerilli-Moncrief function, for selected values of @ and r,. In general, the
features presented previously for the case [ = 2 are also present for higher multipole
moments: the total energy radiated in a given multipole is not minimized by the
conformally-flat choice of initial data (@ = 1), but by some o < 1. We find that
in some cases, the interference effects become so important that the energy radiated
increases with the multipole order [, e.g. Fs < E3 < Ej. This increase in energy with
increasing [ contradicts our slow-motion expectation, according to which the energy
radiated should decrease with increasing multipole order. A typical example of this
phenomenon is displayed in Table 4.1 for r,/2M = 1.1 and a = 0.75: here we find

Ey > Fs.

4.3.5 Summary

In this section, we studied the effects of the choice of initial data on the gravitational

waveforms at infinity. This was done using a one-parameter family of time-symmetric
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initial data, a special case of the two-parameter family of initial data sets developed
in Sec. 4.2.2.

We showed that for large initial separations, three stages can be clearly identified
in the radiative process: initial-data-produced pulses, particle-produced acceleration
radiation, and black-hole-produced quasi-normal ringing. For smaller separations,
the three stages become confused and interference takes place.

For large initial separations we confirmed the general belief that a conformally-
flat initial three-geometry minimizes the radiated energy. But we showed that for
ro/2M < 10, the initial configuration that minimizes the energy is not the conformally-
flat choice. Instead, the configuration that minimizes the gravitational-wave content
has o < 1.

Most importantly, our numerical simulations show to what extent the gravitational
waveforms are influenced by the choice of initial data. As long as the particle falls
toward the black hole from a distance r,/2M > 10, the part of the waveform that
is associated with acceleration radiation and quasi-normal ringing is insensitive to
the choice of initial data. In these cases, waveforms obtained with conformally-flat
initial data are an accurate representation of the true radiative process in the region
of interest, because the unphysical radiation coming from the initial data propagates
to null-infinity before the physical radiation becomes important. For r,/2M < 10,
however, the two contributions interfere, and uncertainties associated with the choice

of initial data hopelessly contaminate the waveforms.
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Chapter 5

Gravitational waveforms from a
point particle orbiting a

Schwarzschild black hole

5.1 Introduction

Tightly bound binary systems consisting of a compact object of a few solar masses and
a supermassive black hole of 10% — 10° M, are very promising sources of gravitational
waves for space-based detectors such as LISA [75, 76]. There is now strong evidence
that most galaxies harbour a 10°—10° M, supermassive black hole in their centre {77],
and that they are likely surrounded by a large population of solar-mass compact
objects that reside in the galactic cusp [11].

The motion of objects in the galactic cusp is governed by the gravity of the
supermassive black hole, but they are also constantly scattered due to the presence

of multiple compact objects. For a given compact object, this process occurs until it
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settles on a highly eccentric orbit that is tightly bound to the central black hole. On
such an orbit, the object, as it approaches the periastron, is very close to the black
hole and it emits a significant amount of gravitational waves. Capture occurs for
those orbits that are sufficiently eccentric and have a small periastron (on the order
of M) [78]. In these cases, orbital evolution is driven by emission of gravitational
waves, and the binary strongly radiates gravitational radiation, until the final plunge
of the compact object into _the central black hole.

The question is then to determine the rate at which solar-mass compact objects
are captured by the central black hole and how quickly the orbits decay by emission of
gravitational waves. Because capture occurs when the time to evolve due to emission
of gravitational waves is much smaller than the time to evolve due to diffusion and
scattering, determination of the type of orbits for which capture occurs and estimate
of capture rates are sensitive to the strength of gravitational wave emission. Cur-
rent estimates of orbital parameters for which capture occurs and associated capture
rates are based on the quadrupole approximation for the emission of gravitational
waves [79]. Although this is well justified for large periastron, it is not a good ap-
proximation for highly eccentric orbits with small periastron, those of interest for
gravitational waves astronomy.

In this chapter, we consider a situation in which the compact object has already
been captured by a spherically symmetric central black hole, and calculate the correct,
general relativistic, rates at which the system loses energy and angular momentum
to gravitational waves. We consider three types of orbits: circular, eccentric and
parabolic orbits. These calculations will then be used to refine capture rates estimate,
but this will be left for future work.

At this level of approximation, the internal dynamics of the small compact object
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are irrelevant. We treat it as a point-particle and base our calculations on first-order
perturbations of a Schwarzschild black hole, as presented in Chapter 2 and Chapter 3.
The gravitational waveforms produced by the orbital motion are obtained by solv-
ing the even parity Zerilli-Moncrief [20, 22] and the odd parity Regge-Wheeler [19]
equations; they are given, in Schwarzschild coordinates, by Eq. (3.12) and Eq. (3.13),
respectively.

Instead of Fourier decomposing Eq. (3.12) and Eq. (3.13) and then solving in the
frequency domain, we choose to integrate them in the time domain using the Lousto-
Price algorithm presented in Appendix C. This method is advantageous compared to
Fourier decomposition because of the need, in the case of highly eccentric orbits, to
sum over a very large number of frequencies in order to obtain accurate results [80,
81]. As an added bonus, the time-domain method provides the Zerilli-Moncrief and
Regge-Wheeler functions everywhere in the spacetime. For each multipole moment,
information about the fluxes of energy and angular momentum at infinity and through
the event horizon is obtained by a single numerical integration.

Astrophysical black holes are very likely to be rapidly rotating and the assumption
of spherical symmetry for the central black hole is unrealistic. However, removing
this assumption would require us to solve the inhomogeneous Teukolsky equation.
The homogeneous case is presented in Chapter 6.

The chapter is organized as follows. In Sec. 5.2, we describe the orbital parametriza-
tion of bound and marginally-bound geodesics of the Schwarzschild spacetime. In
Sec. 5.3.1, we provide the source terms of Eq. (3.12) and Eq. (3.13) for this type of
motion. In Sec. 5.3.2, we explain our calculation of the total fluxes and provide a dis-

cussion of numerical issues that limit the accuracy with which they can be determined.

In Sec. 5.3.3, Sec. 5.3.4, and Sec. 5.3.5, we present our results for the gravitational
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waveforms and fluxes for circular, eccentric, and parabolic orbits, respectively. In

Sec. 5.4 we summarize our findings.

5.2 Orbital parametrization

Following C. Cutler et al. [80], we introduce p, such that pM is the semi-latus rectum,
and e, the eccentricity, as orbital parameters. They are defined so that the periastron
and apastron are at pM/(1 + e) and pM/(1 — e), respectively. In terms of these

parameters, the energy and angular momentum per unit mass of a point particle are

o (p=2-2e)(p—2+2e)
p(p — 3 — €2) ’
[:2 _ M2p2

p—3—e?

(5.1)

For e = 0 the periastron and apastron coincide, and the orbit is circular. In the
interval 0 < e < 1, the motion occurs between two turning points, while for e = 1,
the apastron is pushed back to infinity and the motion is parabolicl. In all cases,
stable orbits exist only if p > 6 + 2e.

The position of the particle at time ¢ is given by the coordinates (r,(t), v, (t), 0, =
7/2). Inspired by the solution to the two-body problem in Newtonian mechanics, the

radial position of the particle is expressed as

pM

r(x) = 1+ecosy’

(5.2)
where x is a parameter along the orbit. This is well behaved at the turning points

(x = 0, 7), which facilitates the numerical integration of the geodesic equations for

the time and angular coordinates. In terms of , these are [80]

d
—t = Mp’
dx b

(p—2—2€)"(p— 2+ 2)'/
(p—2—2ecosx)(1+ecosx)?(p— 6 — 2ecos x)/?’

(5.3)

'In analogy with Newtonian mechanics, we use the term “parabolic” for marginally bound orbits:

they have e = 1 (F = 1), but the trajectories traced out are not parabolae, except in the limit p > 1.
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Figure 5.1: In the left panel, we display the trajectories in the z,-y, plane for a
geodesic with e = 1, and p = 8.001. For this choice of parameters, the particle orbits
the black hole approximately four times before leaving the central region. In the
right panel, we display a e = 0.9 and p = 7.8001 geodesic. When the particle reaches
the periastron, it orbits the black hole on a quasi-circular orbit for approximately six
cycles. In both cases, the exact number of cycles is given by Eq. (5.5).

d p1/2

el = . 5.4
dx(pp (p — 6 — 2e cos x)/2 (5.4)

The first of these equation can be numerically inverted to yield x(¢); knowledge of
rp(x) and @p(x) is then equivalent to rp(t) and ¢,(2).

The geodesic equations, Eq. (5.3) and Eq. (5.4), are integrated using the Burlisch-
Stoer method [68], and we choose the initial conditions as follows. The gravitational
waveforms are extracted as a function of time at a location 7}, .. We take the initial
moment ¢ = —t, < 0 to be one at which the particle is at periastron (y = 0,
rp(—to) = Mp/(1 +e), and p,(—t,) = 0). We set t, equal to the light travel time
between the periastron and the observation point. Thus, radiation emitted at the
initial moment will reach the observer at ¢t ~ 0.

This parametrization of the geodesic is suitable for bound and unbound orbits

of the Schwarzschild spacetime; for e < 1, the parameter y can take any real value,

whereas for e > 1, it is confined to —7/e < x < m/e. In this chapter, we consider
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circular orbits, selected cases of eccentric orbits, and parabolic orbits (e = 1), but
the code is capable of producing gravitational waveforms for any value of e. For any
p and e, the particle orbits the central black hole a number N = Ay, /(27) of times

before moving out of the central region. Integrating Eq. (5.4) over one radial period

2 4
N = = Pk ° ), (5.5)
T\ p—6+2e p—6+2e

where K(m) = foﬂﬂ dz(1 — msin? )72 is the complete elliptic integral of the first

yields [80]

kind. To visualize the trajectories, we introduce z,(t) = r,(t)/(2M) cos(pp(t)) and
yp(t) = 7rp(t)/(2M) sin(pp(t)). In Fig. 5.1, we display trajectories in the z,-y, plane
for p = 7.8001 and e = 0.9 (left), and p = 8.001 and e = 1 (right). In both cases, the
number of times the particle orbits the central black hole is large. This is because p
is close to the critical value 6 4 2e at which NV diverges. In these cases, gravitational-
wave emission is dominated by the quasi-circular portion of the orbit near periastron.
The total energy emitted is then well approximated by E=N Eircutars WheI‘_(:’, N is
the (divergent) number of orbits, and E i cue- 1S the energy emitted by a particle at

rp = Mp/(1 + e); a similar approximation holds for L.

5.3 Waveforms, energy and angular momentum ra-
diated

To numerically evolve Eq. (3.12) and Eq. (3.13) initial conditions must be provided
for the gravitational perturbations. The manner in which the initial configuration
of the gravitational field influences the subsequent evolution has been studied in

Chapter 4, where we gave a detailed discussion of the effects for radial geodesics.
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For bound geodesics, the motion is quasi-periodic and waiting a sufficiently long time
eliminates the contribution from the initial conditions, which simply propagates away.
For marginally-bound geodesics, we choose the initial position of the particle to be
very far from the periastron. Far away from the black hole, the velocity of the particle
is small and it takes much longer for the particle to reach periastron than for the
initial gravitational-wave content to escape from the system. At the point where the
‘emission of radiation is strongest, there is no trace left of the initial configuration of
the gravitational perturbations. This allows us to completely avoid problems related
to the choice of initial data for both bound and marginally-bound geodesics. We
choose zero initial conditions for the gravitational perturbations, acknowledging that
this is inconsistent (creating the particle from nothing violates energy-momentum
conservation), but recognizing that artifacts of this choice disappear in time. Fluxes

may then be computed reliably after waiting a sufficiently long time.

5.3.1 Source term for bound and marginally-bound geodesic

motion

The Zerilli-Moncrief and Regge-Wheeler functions are obtained by numerically in-
tegrating Eq. (3.12) and Eq. (3.13) with the source terms given by Eq. (3.14) and
Eq. (3.15), respectively. These equations can be used and combined with the geodesic
equations, given by Eq. (5.2), Eq. (5.4) and Eq. (5.3), to calculate explicit expressions
for the functions G(¢,7) and F(t,r) appearing in Eq. (C.2); they are needed in the

Lousto-Price algorithm of Appendix C. For even parity modes, we get

G(r,t) = aY*(t)+b Zy(t) +c Uy, (t) +d V(1)

st f2V? .

Firnt) = sogr g V0, (5.6)
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where V2 = f (1 + P/ﬂ),

8t f2 (6M - A 3M L2 ™
= — - _—— _— )\ _—
a H”AQ{ E [A+1 + < +3 )]}

r r r2 r
and
T or2 72 r3 _ OV T2 £2
= 16_7r£~f_ u’, c= sm i——f——, d= —327r(l 2)L—~f—
A+ 1ET2A A+ 1 E r3A (I+2) E r3

Finally, for odd parity modes the source terms are

G(r,t) = f—F (1—§£~{>a+ﬁ},

3 |r
3
F(r,t) = —a{—S, (5.7)
where
(=21 8t L l
- m — — r *tn t .
16W(l+2)!EWW t), g )\+1Eu X5 (t)

Note that G(r,t) and F(r,t) contain scalar, vectorial and tensorial harmonic func-
tions evaluated at the angular position of the particle ¢,(¢). For example, for even
modes, some terms in G and F are proportional to Y™(r/2,¢,(t)). Because the
orbital motion takes place in the equatorial plane, each spherical harmonic function
is evaluated at 6, = /2. A useful consequence of this is that the source term for the
Zerilli-Moncrief function vanishes when [ 4+ m is odd, while the source term for the
Regge-Wheeler function vanishes when [ 4+ m is even. This is used below to simplify
the calculation of the fluxes.

These source terms are used to obtain the gravitational waveforms as well as the
energy and angular momentum radiated by a particle in bound and marginally-bound

geodesics of a Schwarzschild spacetime.
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5.3.2 Accurate determination of the fluxes: numerical issues

The relations between the Zerilli-Moncrief and the Regge-Wheeler functions and the
radiative portion of the metric perturbation at infinity and near the event horizon were
presented in Chapter 3. These relations directly establish the connection between the
Zerilli-Moncrief and Regge-Wheeler functions and the two gravitational-wave polar—
izations. The relations are given by Eq. (3.28) for the gravitational waves escaping
to infinity, and by Eq. (3.37) for the gravitational waves near the event horizon.
The rates at which energy and angular momentum are carried to infinity by grav-
itational waves are given by Eq. (3.57) for Eﬁ% and by Eq. (3.59) for L;’,‘;l, while the
rates at which they are carried through the event horizon are given by Eq. (3.65) for
Eh and Eq. (3.66) for L® . As noted in Sec. 3.3.3, the difference in the expressions
for the fluxes at infinity and near the event horizon is in the radial position at which

the Zerilli-Moncrief and Regge-Wheeler functions are extracted. The fluxes at infin-

ity are calculated using the Zerilli-Moncrief and Regge-Wheeler functions extracted

*

*bes Where 1

at r* =r *bs 15 large and positive, while for the horizon fluxes, they are
extracted at r* = r,, where r¥ is large and negative. Once E;>®™ and Lo are

known, the total fluxes are obtained by summing over all modes:

: 00 !

B SUERS ERU i) it (58)
=2 m=1
0o l

Losh = ML and L =23 Lo | (5.9)
1=2 m=1

there is no m = 0 contribution to the angular momentum flux, and the factor of
2 in front of o™ and L™ comes from folding the m < 0 contributions over to
m > 0. We justify folding these terms in the following way. By construction, the
vectorial and tensorial spherical harmonics obey SY~™ = (—)™S"* where S is any

spherical harmonic function. (This relation holds for scalar spherical harmonics, and
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since vectorial and tensorial spherical harmonics are obtained by the action of real
operators on Y'™, it also applies to these functions.) An important consequence of
this relation is that for real metric perturbations, the multipole moments must satisfy
Mb=™ = (=)™ M where M'™ is any one of the metric components introduced in
Sec. 3.1: Hy, Hy, Hy, qo, q1, K, G, hg, hy and hy. It is then easily established that
My ™ = ML =™ Ah—™ and this is what appears in the expressions for the fluxes.

In a slow-motion, weak-field approximation the quadrupole moment dominates
(I = 2 and m = 2) and the total energy and angular momentum radiated over one

orbital period are [16]

64w p? 73 37 -

EQ(p, 6) = ?MM_ <1 + 2—4‘62 + %64> D 7/2, (510)
64m 7

LQ(p, 6) = —5“‘/1,2 <1 + g@Q) p_Q. (511)

The average energy and angular momentum radiated per unit time, defined by per-

forming an orbital average, are

(Bo) = 32 (_&)2(_1—_62)32 <1+Z§ez+i264>,

5 \M P 24 ' 96
: o 32p2(1-e?)? 7,

For the binaries considered here, the slow-motion and weak-field approximations break
down, and the fluxes must be computed using Eq. (5.8) and Eq. (5.9). Numerically
we cannot perform the infinite sums, and we truncate them at a finite value [.,.
Below, we discuss the overall accuracy of the time-domain computation and explain
the criteria used to choose [ ..

In order to calculate the fluxes to a relative accuracy € (we use ¢ = 0.01), we
need to consider three sources of error: discretization of Eq. (3.12) and Eq. (3.13),
effects of the finite size of our computational grid, as well as truncation of the sums

in Eqgs. (5.8) and (5.9).

102



Firstly, discretization of Eq. (3.12) and Eq. (3.13) introduces numerical truncation
errors. This is discussed in Appendix C, where we show that the algorithm converges
quadratically with the stepsize. Throughout this work we generated gravitational
waveforms by setting At = 0.1(2M) in the numerical algorithm; this proved sufficient
to determine the fluxes at infinity to the desired 1% accuracy. However, for a given
stepsize the fluxes through the event horizon are never determined as accurately as
the fluxes at infinity. The gravitational waves flowing through the event horizon are
weaker than the ones escaping to infinity, and, because of this difference in scales,
horizon fluxes are determined with an accuracy < 5%. But we will see below that
horizon fluxes never amount to more than a few percents of the total fluxes. The
lower accuracy with which black hole absorption is determined is then sufficient for
our goal of 1% overall accuracy.

Secondly, the expressions for the fluxes given by Eq. (3.57), Eq. (3.59), Eq. (3.65)
and Eq. (3.66) hold only asymptotically (r* — =oo). Numerically we are forced
to extract the waveforms at finite r* values, and this introduces finite-size effects in

our results. Numerical efficiency requires a small computational grid, but accuracy

*

*bs and at a large

requires the waveforms to be extracted at a large and positive r
and negative 7. The flux formulae developed in Sec. 3.3.3 are based on the stress-
energy tensor for gravitational waves, as constructed by Isaacson [43]. The validity
of the construction depends on \/R < 1 being satisfied, where X is a wavelength
of the radiation and R a typical radius of curvature. To calculate the fluxes far
from the black hole, we extract the waveforms in an approximate radiation zone
defined by A/rons < 1, where A7! ~ ‘(M/Rg)l/z and R, is a typical orbital radius.
The radiation zone is then defined by (R,/reps)(R,/M)Y? < 1. For relativistic

motion R, ~ M and by imposing R,/res < €, we make an error of order € in
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approximating the radiation zone. This is somewhat different from the criterion
for the validity of Isaacson’s stress-energy temsor. Since R™' ~ (M/r3,.)!/%, we
have that A\/R ~ (R,/Tops)*/? ~ €32, and the use of the stress-energy tensor is
justified. In practice we also imposed r} > 750(2M). At the horizon, the situation
is somewhat different. The typical radius of curvature is R ~ 2M, but the radiation is
blueshifted so that \ ~ feh(Ri/M)l/2 — 0, where fo, = 1 —2M /7. The requirement,
A/R < 1 then translates to fon(R,/(2M))*? < e. We used Rj}/|r5| < e, as well as
rh < —750(2M), which amply satisfies the above requirement. This yielded good
results, but a better, more efficient choice would have been ro, = 2M[1+(2M/ R,)* %¢].
With these choices of 7}, and r},, we are making an error of at most order € in
determining the fluxes at infinity and through the event horizon.

Finally, the last source of error limiting the accuracy of the determination of the

fluxes arises from truncating the sums in Eqgs. (5.8) and (5.9) at a finite value lax.

The error is made small enough for our requirements by demanding that

B Ly
€= max(@, M) < 1% (5.13)
Eoo L

be satisfied. Typically, Eq. (5.13) is satisfied with l,,4, given by (p/(1 + e))_(l’"“_z) <
¢, which is known to hold for circular orbits [82]. Note that because Eﬁ:’ax and L;’::ax
are included in the sum, the error comes from neglecting terms starting at { = [y, +1.
In effect, the relative error made from neglecting these terms is much smaller than
1%. In the sequel, we will return with empirical estimates of our numerical errors;

these will confirm the preceding qualitative discussion.
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Figure 5.2: The dominant radiation modes for the Zerilli-Moncrief (left, | = 2 and
m = 2) and Regge-Wheeler (right, [ = 2 and m = 1) functions for a particle orbiting
the black hole at r, = 12M. At early times, the waveforms are dominated by the

initial data content. We calculate the energy and angular momentum fluxes after a
time t/(2M) = 350.0

5.3.3 Circular orbits

For circular orbits, e = 0 and the radius of the orbit is 7, = pM. In Fig. 5.2 we
display typical gravitational waveforms emitted by a particle traveling on a circular
orbit. Both waveforms have the same pattern: The field oscillates with an angular
frequency given by mS), where Q@ = M ~'p~3/2 is the orbital angular velocity and m is
the multipole index. The left panel contains the dominant quadrupolar mode (I = 2
and m = 2), while the right panel contains the dominant odd parity mode (I = 2 and
m=1).

The code outputs Egr and Lgg directly, but it proves convenient to express the
fluxes in terms of cg and ¢y: coeflicients that remain close to 1 for all values of p. The

total fluxes are calculated using Eqgs. (5.8) and (5.9) and we express the numerically

obtained results in the form

EZa(p) = cr Eq(p,0),
L3r(p) = cr Lo(p,0), (5.14)
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Figure 5.3: In the left panel, we display cg(FD), as well as cg(T'D) and c(TD),
as functions of p. Both cg and ¢y slowly approach 1 from below for large p. For
small values of p, the coefficients approach 1.15 as p approaches 6. In the right panel,
we display the residuals Rg and Ry as defined in the text. Using the time-domain
method, the fluxes are calculated accurately to 0.7% for p = 6.0001, and to 0.2% for
large values of p.

where FEq(p,0) and Lg(p,0) are given by Eq. (5.12) above with e = 0. For circular
orbits, we should find E = QL and therefore, cg = cy.

Circular orbits have been studied extensively and we use t_hem to quantitatively
test the accuracy of the time-domain method. We perform a comparison of our results
with the time-domain code (TD) with results obtained in the frequency domain (FD)
by E. Poisson [83, 84]. In the left panel of Fig. 5.3 we display cg(TD), ¢ (T D),
and cgp(FD). In the right panel, we display the residuals, Rg = 100|cg(TD) —
cg(FD)|/ce(FD) and Ry, = 100|c(TD) —cE(F‘D)]/cE(FD). In the interval 6 < p <
50, the time-domain code reproduces the frequency domain calculations to 0.7% or
better, with the best agreement occurring for large values of p.

In Table 5.1 we perform a mode by mode comparison between the two methods
for p = 7.9456 and p = 46.062. For p = 7.9456, the fluxes from each multipole
moment calculated with the time-domain code agree to 1% or better with the fluxes

calculated in the frequency domain. A similar agreement is found for p = 46.062,
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Table 5.1: Energy and angular momentum fluxes for circular orbits, calculated using
a time domain (TD) code, are compared with fluxes calculated by E. Poisson using a
frequency domain (FD) approach [83, 84]. Here we choose p = 7.9456 and p = 46.062.
The energy fluxes are in units of (M/p)?, and the angular momentum fluxes are in
units of M/p®. They are calculated at r¥ = 1500M and 7%, = 5200M for p = 7.9456
and p = 46.062, respectively.

m E* (FD) FE* (TD) rel. diff. L*® (FD) L* (TD) rel. diff.
p = 7.9456

1 8.1633e-07 8.1623e-07 < 0.1% 1.8283e-05 1.8270e-05  0.1%
2 1.7063e-04 1.7051e-04 < 0.1% 3.8215¢-03 3.8164e-03  0.1%
1 2.1731e-09 2.1741e-09 < 0.1% 4.8670e-08 4.8684e-08 < 0.1%
2 2.5199¢-07 2.5164e-07  0.1%  5.6439¢-06 5.6262¢-06  0.3%
3 2.5471e-05 2.5432e-05  0.1%  5.7048¢-04 5.6878¢-04  0.3%
1 8.3956¢-13 8.3507e-13  0.2%  1.8803e-11 1.8692¢-11  0.6%
2 2.5091e-09 2.4986e-09  0.4%  5.6195e-08 5.5926e-08  0.5%
3 5.7751e-08 5.7464e-08  0.5%  1.2934e-06 1.2933e¢-06 < 0.1%
4 4.7256e-06 4.7080e-06  0.4%  1.0584e-04 1.0518¢-04  0.6%
1 1.2594e-15 1.2544e-15  0.4%  2.8206e-14 2.8090e-14  0.4%
2 2.7896e-12 2.7587e-12  1.1%  6.2479%-11 6.1679%-11  1.3%
3 1.0933¢-09 1.0830e-09  1.0%  2.4486e-08 2.4227e-08  1.1%
4 1.2324e-08 1.2193e-08  1.1%  2.7603e-07 2.7114e-07  1.8%
5 9.4563¢-07 9.3835¢-07  0.8%  2.1179e-05 2.0933e-05  1.2%
Total 2.0317e-04 2.0273e-04  0.2%  4.5446e-03 4.5399¢-03  0.1%
» = 46.062

1 1.8490e-11 1.8713e-11  1.2%  5.7804e-09 5.8497¢-09  1.2%
2 2.8650e-08 2.8728e¢-08  0.3%  8.9566e-06 8.9809¢-06  0.3%
1 7.5485e-14 7.7275e-14  2.4%  2.3598¢-11 2.4158¢-11  2.4%
2 1.0926e-12 1.0990e-12  0.6%  3.4157e-10 3.4359¢-10  0.6%
3 8.0640e-10 8.0835¢-10  0.2%  2.5210e-07 2.5270e-07  0.2%
1 9.9792e-19 1.0390e-18  4.1%  3.1191e-16 3.2480e-16  4.1%
2 1.6018¢-14 1.6171e-14  1.0%  5.0075e-12 5.0555¢-12  1.0%
3 4.6603e-14 4.6799e-14  0.4%  1.4569e-11 1.463le-11  0.4%
4 2.7937e-11 2.7997e-11  0.2%  8.7339¢-09 8.7525¢-09  0.2%
Total 2.9505e-04 2.9584e-08  0.3%  9.2239¢-06 9.2486e-06  0.3%
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Figure 5.4: We display the energy and angular momentum fluxes through the event
horizon normalized by the fluxes in the radiation zone. Even for highly relativistic
motion, the horizon fluxes contribute less than 0.4% of the total fluxes. For circu-
lar orbits, the theoretical prediction is that E¢h/E® = Leh/[*®  Numerically, this
relation is only approximate, but nevertheless the two curves are indistinguishable.
The right panel displays these ratios normalized by (r,/M)™4, the weak-field and
slow-motion approximation.

with the exception of the [ = 3 and m = 1, and [ = 4 and m = 1 modes, for which
the relative difference is 2.4% and 4.1%, respectively. This results from the huge
difference in amplitude between these modes and the domingnt mode. Although the
stepsize used throughout this work is sufficient to obtain an overall relative accuracy
of 1%, it is not small enough to determine individual, small-amplitude modes to better
than 2 ~ 5%. Although these modes could be resolved properly by using a smaller
stepsize, it is not necessary for our goal of 1% overall accuracy; the contributions
from these modes to the total fluxes are six and ten orders of magnitude smaller than
the leading-order contributions, respectively. As such, they do not affect the overall
accuracy of the computation, and for p = 7.9456 and p = 46.062 thc total fluxes
calculated with the time-domain method agree with the frequency domain results to

within 0.2% and 0.3%, respectively.
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Black hole absorption was calculated in a weak-field and slow-motion approxima-
tion for a particle in circular orbit by E. Poisson and M. Sasaki [85], and K. Alvi [58],
who showed that it gives rise to a v® correction to the quadrupole formula: Eeh / EQ =
v® = L /L, where v = p~ /2 = (M/r,)'/? is the orbital velocity. The time-domain
method allows black hole absorption to be calculated for arbitrary geodesics. In par-
ticular, for circular orbits our results show that even when v ~ 0.4 and the particle
travels in a region of strong gravitational ﬁeld, the amount of energy and angular mo-
mentum absorbed by the black hole is always a small correction to the total fluxes.
For highly relativistic motion, this never grows large enough to contribute more than
0.4% of the total fluxes (see left panel of Fig. 5.4). For the purpose of calculating
total fluxes with an overall accuracy of 1%, black hole absorption can safely be ig-
nored. The right panel displays the ratio of horizon fluxes to the fluxes at infinity,
normalized by (M/r,)*, the weak-field and slow-motion approximation. As expected
for circular motion, the normalized ratio for energy and angular momentum are equal
to each other, and they approach 1 for large p.

We estimate the accuracy with which black hole absorption can be determined
using the time-domain method to be 5%. This estimate is based on the following
argument. For small amplitude modes, the accuracy with which their contribution
to the total fluxes can be determined is limited by errors originating from the dis-
cretization of Eq. (3.12) and Eq. (3.13) and the finite stepsize used in the numerical
evolution. Based on the accuracy of the [ = 4 and m = 1 mode for p = 46.062 in

% for modes whose contribution is ten orders

Table 5.1, the error is seen to be < 5
of magnitude smaller than the dominant mode. For the range of p values considered

in this paper, black hole absorption is at most seven orders of magnitude smaller

than the dominant contribution. (This is evaluated using the (M/r,)* relation at
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Figure 5.5: The Zerilli-Moncrief (left, | = 2,m = 2) and Regge-Wheeler (right,
[ =2,m = 1) functions for p = 12 and e = 0.2. As in the case of circular orbits, early
times are dominated by the initial data content. '

rp = 50M, the value at which black hole absorption is least significant.) It is then
safe to assume that fluxes through the event horizon are determined with an accuracy
< 5%. (For values of p close to 6 + 2e, black hole absorption is more important and

therefore more accurately determined.)

5.3.4 Eccentric orbits

For eccentric orbits, 0 < e < 1, and the radial motion is bounded by the periastron
Tplmin = PM/(1 + e) and the apastron 7p|m. = pM/(1 — €). In Fig. 5.5 and Fig 5.6
we display waveforms for two cases: p = 12 and e = 0.2, as well as p = 7.801 and
e =0.9.

This type of orbital motion generates gravitational waveforms that are different
in nature and in frequency content from circular orbits. Rather than being emit-
ted uniformly along the orbit, the radiation is now emitted preferably at periastron.
As the eccentricity increases the radiation is emitted in short bursts occurring near

periastron. In these situations a time-domain approach is far more efficient than a
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Figure 5.6: The Zerilli-Moncrief (left, [ = 2,m = 2) and Regge-Wheeler (right,
I = 2,m = 1) functions for p = 7.801 and e = 0.9. As in the case of circular orbits,
early times are dominated by the initial data content. The radiation occurs in short
bursts when the particle approaches the periastron. This is typical of the zoom-whirl
behaviour studied in [81].

. frequency-domain approach. The reason is that in order to correctly calculate the
waveforms in the frequency domain, a large number of individual frequencies (har-
monics of the radial and azimuthal frequencies) are required, and summing over them
can be hugely expensive. By contrast, a time-domain method handles all frequencies
simultaneously.

The fluxes are calculated over a number of wave cycles according to

) 1 (7.
<E> = —/ E dt, (5.15)
T Jq

where T is a few radial periods; a similar expression holds for < L >. To obtain a
quantitative idea of the relative accuracy of the time-domain method for eccentric
orbits, we compute the fluxes for two points in the p-e plane and compare our calcu-
lations with Cutler et al. [80]: i) p = 7.50478 and e = 0.188917, and ii) p = 8.75455
and e = 0.764124. The results are displayed in Table 5.2. For small eccentricities, e.g.
case (i), the agreement is similar to the agreement achieved for circular orbits. For

large eccentricities, e.g. case (ii), the agreement is ~ 2%. Because eccentric orbits
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Table 5.2: Comparison of averaged fluxes for eccentric orbits with Cutler et al. for
two points in the p-e plane [80]. The two cases presented are: i) p = 7.50478 and
e = 0.188917, and ii) p = 8.75455 and e = 0.764124.

case Cutler et al. time domain rel. diff.

i) p=750478 < E > 3.1680e-04 3.1770e-04  0.3%
e=0.188917 <L > 5.9656e-03  59329-03  0.5%
i) p=2875455 < E> 21008e-04  2.1484e-04  2.3%
e=0.764124 < L> 2.7503¢-03  2.7932¢-03 1.6%
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for e
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07 L ' 1 L L n 1 " L

Figure 5.7: Coeflicients cg and ¢;, for the total energy and angular momentum radi-
ated as functions of p for e = 0.5 eccentric orbits. Near the last stable orbit (p = 7),
cg approaches 1.24, while ¢;, approaches 1.26.

of the Schwarzschild spacetime are characterized by two incommensurate frequencies,
the gravitational waveforms are quasi-periodic. By working in the frequency domain,
Cutler et al. were able to formally average their fluxes over an infinite time. It is not,
of course, possible to perform such an average in the time domain. Rather, for high
eccentricities, the fluxes are averaged over a limited number of radial cycles (~ 3).
This difference in averaging the fluxes is the most likely source of disagreement be—
tween time-domain and frequency-domain calculations for case (ii). For case (i), this
is not as much of an issue, since the radial period is short enough to allow the time

average to be performed over 10 cycles or more.
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Finally, we calculate the total energy and angular momentum emitted during one
radial period as functions of p for e = 0.5. We express the total energy and angular

momentum radiated to infinity, as calculated from the time domain code, as

Ecr(pe) = celEq(p,e) + (N —1)Eq(p/(1+¢),0)],

Lar(pe) = cilLq(p.e) + (N —1)Lo(p/(1+¢€),0)], (5.16)

where we use Eqr = P(p,e) < E >, P(p,e) is the radial period of the orbit obtained
by integrating Eq. (5.3) over 0 < x < 2%, < E > is given by Eq. (5.15), N = N(p) is
given by Eq. (5.5) with e = 0.5, EQ(p, e) and LQ(p, e) are given by Eq. (5.12), and cg
and ¢, are parameters that stay close to 1 for all values of p. In Fig. 5.7 we display
cg and ¢y, as functions of p for e = 0.5. The coefficient cg is close to 0.9 for large p
and approaches 1.24 for p near 7. Similarly, the coefficient c;, stays close to 0.95 for
large p and approaches 1.26 for p near 7. The formulae above for the total énergy and
angular momentum radiated by a particle in an eccentric orbit are justified by the fact
that they have the correct limiting behaviour both for p large and for p — 6+ 2e. For
large p, the total energy and angular momentum radiated by a particle on an eccentric
orbit are well approximated by the quadrupole formulae given by Eq. (5.10). In this
limit, N — 1 and Eq. (5.16) produces the correct approximate energy and angular
momentum radiated. When p — 6 + 2e, the particle orbits the black hole for a
number N — 1 of quasi-circular orbits whose radius is equal to the periastron radius
rp = Mp/(1+e¢). In this limit N is large and the second term of Eq. (5.16) dominates
the energy and angular momentum radiated. This term corresponds to the energy
and angular momentum radiated during N — 1 such quasi-circular orbits

The frequency of the radiation emitted by the orbiting particle increases as the
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Figure 5.8: Black hole absorption for a particle in an e = 0.5 eccentric orbit. The
absorption of both energy and angular momentum is negligible until the particle
reaches p =~ 7.3, at which point it amounts to approximately 1 ~ 2% of the total
fluxes; these are eccentric orbits whose periastron is smaller than 4.9M. The right
panel displays the same ratio normalized by (M/7p|min)*- ‘

periastron of the orbit becomes smaller. Since for a given eccentricity e, the perias-
tron is proportional to p, the frequency of the radiation increases with decreasing p.
Because the potential barrier around the Schwarzschild black hole is less opaque to
high-frequency gravitational waves [86], we expect an increase in black hole absorp-
tion with a decrease in p. This is confirmed numerically for e = 0.5 and displayed in
Fig. 5.8. For p < 7.3 (1, & 4.9M), the absorption of energy and angular momentum
by the black hole amounts to more than 1% of the total fluxes, while for p 2 7.3 it
contributes less than 1% and can be ignored when determining the total fluxes. In
the right panel of the figure, we display black hole absorption for e = 0.5, normalized
by (M/rplmin)*, where 7p|min = Mp/(1 + €) is the periastron distance. This is the
correction expected from black hole absorption for a particle on a circular orbit at
7p|min- We use this normalization here because black hole absorption for generic orbits
has not been calculated analytically. For large p, black hole absorption for e = 0.5

does not seem to converge toward the slow-motion and weak-field approximation for
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Figure 5.9: Displayed are E®"/E*® and L® /L™ as functions of eccentricity along the
curve p = 6.001 + 2e. Because of the decrease in periastron distance with increasing
e, black hole absorption increases with e. A good approximation to these curves is

given by E"/E>® = L8 /L>°(1 + 14€?) (E®"/E™) |e=o.
circular orbits. The normalized energy stays above 1, while the normalized angular
momentum curve stays below 1. But because the relation dE = Q2dL used in deriving
black hole absorption for circular orbits does not hold in general, there is no reason to
believe that (M/r,|min)* should hold for generic orbits. Determining the differences
in black hole absorption due to a finite eccentricity in a weak-field and slow-motion
approximation would require a more detailed analysis than ours, since it is in this
regime that our determination of black hole absorption is the least accurate.

For radiation emitted by a particle whose orbital parameters are p = 6 + 2e and
0 < e < 1, the argument relating black hole absorption to the orbital separation
suggests that black hole absorption should be an increasing function of e along the
line p = 6+2e (7| min is a decreasing function of e along this line). It then comes as no
surprise that numerical results displayed in Fig. 5.9 support this assertion (we used
p = 6.001 + 2¢). Along this line, the radiation is emitted principally at periastron,
where the orbit is quasi-circular. The relation dF = QdL, where 2 = (M/r,,|min)1/2

is the angular velocity of a particle on a circular orbit at rp|mi,, holds approximately
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Figure 5.10: Displayed are vz (left, [ = 2,m = 2) and tpw (right, [ =2,m = 1) as
functions of time for e = 1 and p = 40. As in the case of circular orbits, early times
are dominated by the initial data content. Total energy and angular momentum are
calculated between —300 < ¢/2M < 300.

and we find E®/E>® ~ L /L.

5.3.5 Parabolic orbits

Particles on a parabolic trajectory have e = 1 (equivalently E = 1), and p specifies
the value of the periastron: 7,|min = Mp/2 with p > 8. For large values of p, the
particle does not spend much time around 7, |min, the position where the radiation is
maximum; the waveforms have a simple structure around ¢ = 0, time at which the
radiation emitted at 7,|min reaches an observer at 7% .. This is displayed for even and
odd modes in Fig. 5.10. In contrast, when p approaches its minimum value (pyin 2 8),
the particle circles the black hole for a number N of cycles. Because N diverges at
p = 8, we get the zoom-whirl behaviour displayed in Fig. 5.1 [81]. The quasi-circular
nature of the motion when r, approaches 7,|mi, results in a number of oscillations in
the waveforms; these occur near ¢t = 0 for the observer at r, ., and are displayed in
Fig. 5.11 for p = 8.001.

In similarity with eccentric orbits, we express the numerically calculated energy
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functions of time for e = 1 and p = 8.001. Early times, where the choice of initial data
dominates, are not displayed in order to make the ¢ = 0 region clearly visible. The
energy and angular momentum fluxes are integrated between —300 < ¢t/2M < 300
to obtain the total energy and angular momentum radiated.
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Figure 5.12: Coefficients cg and c¢; for the total energy and angular momentum
radiated as functions of p for parabolic orbits. Near p = 8, ¢ approaches 1.81 while
cr, approaches 1.84.
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and angular momentum radiated as

Ecr(p,1) = cplEq(p,1) + (N —1)Eq(p/2,0)],

Ler(p,1) = crllo(p,1) + (N —1)La(p/2,0)], (5.17)

where N = N(p) is given by Eq. (5.5) with e = 1, Eg(p,1) and LQ(p, 1) are given
by Eq. (5.12), and ¢g and cj are again parameters that stay close to 1 for all p.
For parabolic orbits, the total energy and angular momentum are computed using
Eqgs. (5.8) and (5.9) as

T .

-T

T .

-T
for T large (we used T' = 300(2M)). In Fig. 5.12, we display cg and ¢, for parabolic
orbits. These quantities are close to 1 for large p, but increase above 1 as p approaches
8. Near this value of p, cg reaches 1.81. We find a similar behaviour for ¢;: near
p 2 8 it reaches 1.84. As for eccentric orbits, we find that for large p the energy and
angular momentum approach the values given by the quadrupole approximation, but
for p close to 6 + 2e they are close to the values obtained for N — 1 circular orbits of
radius 7p|min = Mp/(1 +e).

The argument given previously for eccentric orbits holds true for parabolic orbits:
when p 2 8 black hole absorption is more important than for circular or eccentric
orbits (see Fig. 5.9). Our numerical results show that for p > 10, E®" and L®® account
for less than 1% of the total energy and angular momentum radiated, while for p < 10
they can contribute as much as 5% of the total amounts (see Fig. 5.13). Hence, for
p < 10, black hole absorption contributes a few percents of the total energy and

angular momentum radiated and needs to be included in an accurate computation.

118



el ko]
8 > 8 >
sy 0.1 o X e
TG g g8 1 (e ol B T2
E u’j g uj (olemin)
=
5 - 5 7
Dow o oot Do M
o g
] 9]
E O g o
g 8 g8 0
hE: IR
m 0.001 | )
— Q —~ O
B o 5 0
& 7t
=i~} ==
CI] G
g o 00001 g A
=2 o M
d Q %0 st
< Eei
B o B o
8 5 g5
1 1e-05 | & 3t
[ = ¢
o) =)
o B o0, 0
e VI
? a0 b L 25
2 8 2 16 20 24 28 32 3% 40 44 48 A 8 a2 46 50
1 o
] P I P
[:4 =

Figure 5.13: Black hole absorption for a particle following a parabolic geodesic. The
absorption of both energy and angular momentum is negligible until the particle
reaches p &~ 10 or 7p|min = 5M. The right panel displays the same ratio normalized by
(M /7p|min)*, where 7p|min is the radius at periastron. Again, this factor is meaningful
only for circular orbits, and is used only to illustrate the behaviour of black hole
absorption as a function of p.

Black hole absorption is not determined as accurately as the energy and angular
momentum radiated to infinity, but the error we make in evaluating it is never large
enough to spoil our goal of ~ 1% overall accuracy.

For completeness, in Table 5.3 we display Egry” and L™ the total energy and
angular momentum radiated to infinity and through the event horizon, as returned by
the time-domain code, for a wide range of p values. Based on the accuracy obtained
for circular and eccentric orbits, we estimate that the total energy and angular mo-
mentum lost to gravitational waves are calculated to a relative accuracy of 1 ~ 2%.
The actual accuracy is likely to be close to the accuracy achieved for circular orbits.
The reason for this is quite simple. For parabolic orbits, there is no issue of per-
forming a time-average, since the particle passes through periastron only once and

we calculate the total energy for that motion.
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Table 5.3: Total energy and angular momentum radiated by a particle orbiting a
Schwarzschild black hole in a parabolic orbit. As usual, Egy and LZy denote the
energy and angular momentum radiated to infinity, while ESy, and L&, are the en-
ergy and angular momentum absorbed by the black hole. The black hole absorption
contributes less than 1% when p 2 10: for parabolic orbits with periastron smaller
than 5M, black hole absorption contributes a significant amount to the total energy
and angular momentum radiated.

p_Egr Egk L&r Lgy
8.00001 3.6703E400 1.8876E-01 3.0133E+01 1.5208E+00
8.001 2.2809E+00 1.1260E-01 1.9088E+401 9.1166E-01
8.201 7.1130E-01  2.6586E-02 6.6010E+4-00 2.2142E-01
8.401 5.1740E-01  1.6534E-02 5.0433E+4-00 1.4244E-01
8.601 4.0970E-01 1.1376E-02 4.1665E+00 1.0148E-01
8.801 3.3767E-01  8.1988E-03 3.5706E+00 7.5175E-02
9.0 2.8419E-01 6.0880E-03 3.1196E+00 5.7026E-02
9.2 2.4409E-01  4.6044E-03 2.7756E+00 4.3891E-02
9.4 2.1228E-01  3.5352E-03 2.4973E+00 3.4211E-02
9.6 1.8644E-01  2.7473E-03 2.2665E+00 2.6951E-02
9.8 1.6506E-01  2.1565E-03 2.0718E+00 2.1428E-02
10.0 1.4712E-01 1.7072E-03 1.9048E+00 1.7176E-02
11.0 8.8979E-02  5.8626E-04 1.3320E+400 6.2819E-03
12.0 5.8467E-02  2.2778E-04 9.9827E-01  2.6152E-03
13.0 4.0567E-02  9.7321E-05 7.8158E-01  1.2036E-03
14.0 -2.9303E-02  4.4999E-05 6.3136E-01  6.0123E-04
15.0 2.1774E-02  2.2273E-05 5.2088E-01  3.2171E-04
16.0 1.6636E-02 1.1675E-05 4.3867E-01  1.8241E-04
17.0 1.2978E-02  6.4484E-06 3.7499E-01  1.0869E-04
18.0 1.0303E-02  3.7241E-06 3.2454E-01  6.7569E-05
19.0 8.3029E-03  2.2354E-06 2.8383E-01  4.3565E-05
20.0 6.7794E-03  1.3882E-06 2.5047E-01  2.8990E-05
22.0 4.6735E-03  5.8355E-07 1.9949E-01  1.3895E-05
24.0 3.3426E-03  2.6965E-07 1.6280E-01  7.2550E-06
26.0 2.4638E-03  1.3447E-07 1.3549E-01  4.0539E-06
28.0 1.8620E-03  7.1373E-08 1.1459E-01  2.3931E-06
30.0 1.4374E-03  3.9949E-08 9.8213E-02  1.4781E-06
34.0 9.0223E-04 1.4201E-08 7.4534E-02  6.2832E-07
38.0 5.9799E-04  5.7886E-09 5.8484E-02  2.9873E-07
42.0 4.1455E-04  2.6163E-09 4.7168E-02  1.5469E-07
46.0 2.9763E-04 1.2887E-09 3.8849E-02  8.5683E-08
50.0 2.1993E-04 6.8343E-10 3.2550E-02  5.0118E-08
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5.4 Summary

The time-domain method can produce waveforms and compute the associated fluxes
of energy and angular momentum to a relative accuracy of a few percents. For circular
orbits, the method is extremely reliable and produces fluxes with an overall accuracy
of 1% or better over the whole range of p values explored. For eccentric orbits, the
comparison with Cutler et al. [80] is spoiled by the difficulty of performing a time
average of the fluxes over a sufficiently long time. Because the disagreement arises
from the differences in time averaging, the time-domain method is still capable of
producing accurate waveforms for highly eccentric motion. We stress here that the
limitation is in the computation of the time-averaged fluxes, not in obtaining the
waveforms. On the other hand, for geodesics with small eccentricities there is no such
limitation and the time-domain results are in better agreement with those calculated
by Cutler et al. [80]. In all cases, the time-domain method is capable of determining
the fluxes accurately to 1 ~ 2%. Similar accuracy is obtained for the total energy
and angular momentum radiated by a particle traveling on a parabolic orbit.

We also computed the absorption of energy and angular momentum by the black
hole. For circular orbits with p > 6, this contribution can always be neglected,
but not for orbits whose periastron is smaller than 5M. For such orbits, black hole
absorption contributes more than 1% of the total fluxes and cannot be ignored. We
showed that for e = 0.5 it can constitute a correction as large as 2% to the total

fluxes; for parabolic orbits the contribution increases to 5%.
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Chapter 6

Integration of the Teukolsky

equation in the time domain

6.1 Introduction

In previous chapters, we studied the perturbations of a Schwarzschild black hole
and the gravitational waves produced by an orbiting particle. We now turn to the
perturbations of a Kerr black hole.

Our study is limited to vacuum perturbations, but it constitutes a solid first step
in constructing a numerical code that incorporates a source term contributed by a
particle. This change is motivated by the fact that most astrophysical black holes are
likely to be rotating [17], and that rotation affects the generation and the propagation
of gravitational waves. Generation of gravitational radiation is affected because the
motion of a particle around a Kerr black hole is different from its motion around a
Schwarzschild black hole. Among other effects is the dragging of inertial frames that
affects the particle: prograde and retrograde orbits differ in frequency. Propagation

of gravitational radiation is affected mainly because of the difference in scattering

122



potentials between a Kerr and a Schwarzschild black hole. The most remarkable
incarnation of these differences is the occurrence of super-radiant scattering (86, 87],
which is for radiation the equivalent of the Penrose process for particles.

There is now a vast body of literature on the perturbations of a Kerr black hole,
starting back with the work of S.A. Teukolsky. He first derived the master equation
governing the curvature perturbations of a Kerr spacetime [18, 88, 89]. Since then, the
Teukolsky equation has been integrated in a number of ways to study gravitational
perturbations either in vacuum [87, 90, 91, 92, 93] or in the presence of a perturbing
point particle. Most studies involving a point particle have been performed in the
frequency domain [81, 94, 95, 96, 97, 98], but recently time domain methods have
been suggested as a possible cost efficient alternative [99, 100].

There is currently a single numerical code available to integrate the inhomogeneous
Teukolsky equation. It would be desirable to have access to at least another indepen-
dent code. In cases where results from frequency domain methods are not available or
inaccurate, this would provide a poWerful way of cross-checking the numerical results.
This chapter provides the first step in constructing a second numerical code capable
of integrating the inhomogeneous equation: we develop a numerical method to accu-
rately integrate the homogeneous Teukolsky equation. The method can be extended
to include a source term contributed by an orbiting particle, but this is beyond the
scope of this dissertation and will not be pursued here. We will restrict ourselves to
comments on the possible ways the particle could be incorporated in the algorithm.

The chapter is divided as follows. We work in Boyer-Lindquist coordinates, and
present the Teukolsky equation in Sec. 6.2. This section also lists some properties of
the Teukolsky equation that are important in constructing our numerical method. In

Sec. 6.3 we present all the details pertaining to the numerical algorithm. In Sec. 6.3.1
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we present the time domain method for the integration of the Teukolsky equation. In
many cases, direct discretization of the Teukolsky equation produced evolution algo-
rithms that were unstable. Stability was achieved by the introduction of dissipative
terms in the equation; this is explained in Sec. 6.3.1. In Sec. 6.3.2 we discuss the
boundary conditions imposed on the Teukolsky function at the edges of the numeri-
cal grid, while Sec. 6.3.3 presents a convergence test of the numerical method. The
remainder of the chapter contains two physical tests of the numerical code. First
we show that in the absence of rotation the method reproduces the correct angular
behaviour; this is done in Sec. 6.4.1. Then, in Sec. 6.4.2, we show that the method
produces the correct quasi-normal modes of Schwarzschild and Kerr black holes. Fi-
nally, in Sec. 6.5 we discuss the extension of the method to include a point-particle

as a source for the radiation field.

6.2 Perturbations of a Kerr black hole

The equation describiﬁg the gravitational perturbations of a Kerr black hole was first
derived by S.A. Teukolsky [18] by studying the curvature perturbations of a Kerr black
hole using the Newman-Penrose formalism. He also showed that the same equation
governs the evolution of integer spin-fields, with the spin |s| < 2 of the field entering as
a parameter. In the Newman-Penrose formalism, every tensorial quantity is expressed
in terms of their projections along a null tetrad. The Teukolsky equation was derived

with the use of the Kinnersley tetrad, which, in Boyer-Lindquist coordinates, is given

by

(7"2 +a?, A0, a) ,

(r2 +a?, —A,0, a) ,
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2
mt = gp(msinﬁ,(),l,zcscﬁ), (6.1)

where q is the angular momentum per unit mass of the black hole, A = r>—2Mr+a?,
Y =r2+a%cos?@, and p = 1/(r —1acos ). The horizon of the black hole is located at
r=r, = M++v/M? — a2, the largest root of A = 0. In the absence of rotation, a = 0,
A =7%f ¥ = r? and the tetrad vectors reduce to those introduced in Sec. 3.3.2.

For gravitational perturbations,

U, = — uuaﬁl“m”lamﬂ,

2

o = p i, = — Waﬁn“fn”namﬂ, (6.2)

are the two complex tetrad components of the Weyl tensor C),,45 encoding informa-
tion about gravitational radiation at infinity (_2t) and at the horizon (31). Both
quantities vanish in thé background Kerr spacetime and they are gauge invariant
to first-order in the perturbation. They satisfy the Teukolsky equation, which, in

Boyer-Lindquist coordinates, is

(r? + a?)? 0? s 0 (15410 dMar 02
[ A a*sin’ )| syt — AT G AT S )+ =K g Y

. [alr = M)  cosd M(r? — a?)
28{ A T sin? 0] a¢ [ A

sY — —r—mcosﬁ}asw

0 a? 0? 9 9
—csc 955 (sm@ sv,/;) [Z — csc 0] By Y+ (sPcot®d —s) 0 = Sr,(6.3)

where St is the source of the perturbation, and ;1 is the Teukolsky function. For
s = 0 the Teukolsky equation governs the evolution of a scalar field, for s = +1 it is
associated with electromagnetic fields, and for s = +2 it is the gravitational governs
the evolution of gravitational perturbations.

A remarkable feature of the Teukolsky equation is that it is completely separable

in the frequency domain. Solutions to the Teukolsky equation can then be found by
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solving second-order ordinary differential equations. In the time domain, however,
the equation is not separable. The dependence of ;1) on ¢ can be separated, but the
# and r variables stay coupled. We express the Teukolsky function as

W= 203 ey (6, (6.4)

r
m=—00

where the factor of A™°/r is introduced to account for the behaviour of outgoing
modes in the radiation zone and of ingoing modes near the horizon. Indeed a simple

éxpansion in inverse powers of r shows that the solution of Eq. (6.3) for large r is [87]

lim g ~ r@HD), (6.5)

T—00

Similarly, radiation at the horizon is physically required to be purely ingoing. Ex-

panding Eq. (6.3) in powers of A, we get that

lim i ~ A" (6.6)

roTy
By removing A™%/r, we get that ¢, is O(1) in both limits for any s. This property
is convenient for the development of a numerical method to integrate the Teukolsky
equation for arbitrary spin values. Also, we note here that the coordinate ¢ diverges
as the horizon is approached along ingoing null rays:

0

a
n zr” T A
which is singular at A = 0. When solving the Teukolsky equation, we use the tortoise
coordinate 7* = [(r? + a*)/A dr and any coordinate singularity at the horizon is
pushed back to r* — —oc.

In a frequency domain approach, separation of variables goes one step further and

we would decompose i, as

sUm :/ dw e ™ R(w,r) s0(aw, ), (6.7)

o.e}
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where ;R(w,r) and ;0(aw, ) are functions satisfying second-order ordinary differen-
tial equations. The disadvantage of this approach is that, contrary to what happens
in spherical symmetry, both (R(w, ) and ;©(aw,d) depend on w. To construct the
Teukolsky function from Eq. (6.7), both the radial and angular functions need to
be obtained by solving a second-order ordinary differential equation. Difficulties are
encountered when the parameter aw is large and when a large number of frequencies
are required. For example, a particle in highly eccentric motion inclined with respect
to the equatorial plane of the black hole generates radiation that contains three fun-
damental frequencies (radial, azimuthal and polar), as well as multiple harmonics of
each individual frequency. An accurate reconstruction of s, is difficult in those
cases. Instead of pursuing this approach, we stop at Eq. (6.4) and numerically solve
the resulting two-dimensional partial differential equation.

Inserting Eq. (6.4) into Eq. (6.3), we find that i, satisfies

o2 ) 02 o, G -
8t2 doa—dlw—dQ%f—ﬂ' d3w—ﬂ'd4é§—d5 swm = ST’ (68)

where the factors of 7 in front of ds and d4 are introduced for later convenience,

rAStH 2
mo —wme
ST -—-————(TZ T a2)2 /0 d¢5 € ST, (69)
and
A 2 .2 -
c = (1 — ma sin (0)) ,
do = —cd— 25 (20— 3M) + a2(r + M)] + — 2% (oM A cos(6))
0 = Tt a)? ro(r a‘(r Tt a7 mr + sAcos(6)) ¢,
d1 = C,
c a’A
dy = -2 —2s(r— M
2 r2 + a? { r(r? + a?) s(r )} ’
4 = s A

72 (12 + a?)’
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c A

dy = oy cot(8),
ds = —m{ - m’a® + A(m :ifl;:(oes)(ﬁ))z - A[s (1 — g) - %(Mr — a2)] }
(r — M)

+ 2si1cma (6.10)

(r2 + a?)?
In Sec. 6.3.2 we will need the behaviour of i, near the rotation axis. This can

be determined by expanding Eq. (6.8) in powers of sinf. It is then found that [101]
Um = sin™E(0) | qo(t, 7) + g2(t, 7) sin®(0) + O (sin*(9)) |, (6.11)

where the upper (lower) sign applies to the field near # = 0 (§ = 7) and the exact
dependence of the coefficients ¢y and ¢2 on ¢t and r is not needed. Note that unless

|m| = |s|, st¥m vanishes on the axis.

Initial data for v, and its time derivative

In developing the numerical method, we will assume that S7* # 0, but that it is a
slovﬂy varying function of ¢, 7 and 6. This condition is obviously not satisfied by a
singular source term such as produced by a point particle. And although we shall
develop a general method, in all applications presented in this chapter we shall set

7 = 0. We shall thus be looking at the evolution of a pulse of gravitational waves
starting from a prescribed initial profile.

The Teukolsky equation is second-order in time and a unique solution is selected
by specifying initial data for sUm and 0 s1,,, /Ot at t = 0. These initial conditions are
completely arbitrary and we choose the initial configuration to be that of a Gaussian
pulse that is outgoing when a = 0, i.e initially (0/0v) ¢, = 0 (v =t +r*). For all
choices of black hole rotational parameter, we also choose the initial perturbation to

be proportional to a spin-weighted spherical harmonic. For a > 0, there is nothing
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special about this choice, but when a = 0 these harmonic functions are eigenfunctions
of the Teukolsky equation and are a natural choice. Our initial data therefore consists
of

(r*—r*)Z
WUm(r,0) = e 27 Y"™(6,0),

0 g O
Eswm(r ,0) - 87"* sT/Jm(T 70)7 (612)

where 7} is the centre of the Gaussian pulse, o its width, and Y™ are the spin-
weighted spherical harmonics. In our numerical simulations, we used s = —2 and

[ = 2 for which the ,Y'™ are
_QYQO(H, 0) = CO Sin2 0,
oY?(0,0) = C;sinf(1+cosh),

1 1
_QYQQ(H, 0) = C <% + 3 cos @ + i cos? 0) , (6.13)

where the C,’s are normalization factors.

6.3 Numerical method

6.3.1 Modified Lax-Wendroff method

We now present the numerical method we developed to numerically integrate the
Teukolsky equation for arbitrary values of the spin s.

The integration of a partial differential equation is simplified by introducing aux-
iliary fields whose purpose is to transform the original equation into a system of
coupled first-order (in time) partial differential equations. To this end we introduce

A= ¢, and B = (9/0t) sy, in terms of which the Teukolsky equation reads

0
—A = B
ot ’
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Op — 4B+d 8—2A+d 2A+da—2A+d—a—A+dA+Sm (6.14)
ot~ — 0 92 2 Oz 3 Oy2 Yoy 5 T AT

where ¢ is scaled by 2M and is a dimensionless variable, x = r*/2M, y = 8/, and
the dimensionless coefficients dy are obtained by setting M = 1/2 in Eq. (6.10).

The numerical grid covers a finite region of two-dimensional space given by 0 < y <
1 and zgy < z < xg, where gy approximates the event horizon, and xs approximates

spatial infinity. The three dimensions are discretized as

y; = ((—1DAy, 1<j5<N,

t, = nAt 0<n<N, (6.15)

where Az, Ay, and At are the discretization stepsizes, IV, N, and N, are the number
of points in each dimension. We use the shorthand notation A}; = A(t,, z;,y;) and
B}, = B(ty,, i, y;) for the fields at each grid point.

In the region of spacetime covered by the numerical grid, we solve Eq. (6.14) for
A7; and BJ'; by approximating partial derivatives with centered differences. This type
of approximation cannot provide evolution equations for field points located on the
edges of the grid, i.e. A};, BY;, A% ;, By, j, Al1, Bl A?,Ny, and B{fNy. Instead, we
use the information given in Sec. 6.2 to impose appropriate boundary conditions on
the boundary fields. This is discussed in detail in Sec. 6.3.2, and for the moment we
assume that A and B are known on the edges of the grid at all times. The numerical
algorithm has to provide evolution equations for interior points only, and starting
from A?,j and Bio,j, the algorithm provides both fields at all times ¢,, up to ty,, the
final time.

The numerical method proceeds in two steps. First we obtain A and B at an

intermediate time step 2,112 from their values at time ¢,. Second, the fields at time
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Figure 6.1: Depicted are the numerical cells used in solving Eq. (6.14). The first step
is similar to a Lax step (left). The second step is a standard leapfrog step (right).

tnt1 are obtained from their values at times ¢, and f,,1/2. These are the two basic
building blocks of our numerical method. The two grid cells associated with these

steps are depicted in Fig. 6.1. The first step is similar to the first step of a standard

n+1/2

i+1/2,5+1/2 and

Lax-Wendroff method (see for example [68]), but instead of evaluating A

n+1/2 . nt
Bz’+1/2,j+1/27 we determine A, ;

Y2 and BZ jﬂ/ 2, Nevertheless, because of the similarity,
we refer to this step as a modified Lax step. The second step is a standard leapfrog
step [68], just as in the original Lax-Wendroff method. We refer to our algorithm as
a whole as a modified Lax-Wendroff method. To the knowledge of the author this
modified version of the Lax-Wendroff method is presented here for the first time.

We now proceed with the discretization and introduce the finite-difference opera-

tors, 0y, 62, &, and 63 . These operators are defined by their action on an arbitrary

field C:
n 1 13 i3
5$CZ,] = _—QA:C ’L+1,] —_ C’i*l,j 3
1
2, . n n n
%UG = A { ity — 205+ Ci“l,j:| ) (6.16)

and similar definitions hold for d, and 6. From these definitions and an elementary
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application of Taylor expansion, it is easily established that substituting the discrete
operators in place of the continuous partial derivatives produces an error proportional

to the stepsize squared, i.e.

9 Cltmaiyy) = 6,07+ O(AT?),

ox
02 .
ﬁC(tn,xi,yj) = 5§Ci7j+0(Ax2), (6.17)

with similar expressions holding for §, and (55. This property is important because it
determines the overall convergence rate of the numerical method.
To evolve the fields A and B forward in time, we need to approximate the time

derivative appearing in Eq. (6.14). For the modified Lax step, we use

0 2 | n
and for the leapfrog step, we use
0 n+1/2 1 n-+1 n 3

Based on the leapfrog method for the wave equation in flat spacetime, we also use
BZ;“U? = 1/2(B} " + B';) + O(At?) in the evolution equation for B while taking the
leapfrog step [102].

Algebraically solving the discretized version of Eq. (6.14) for the field at t,11/2

yields, for the modified Lax step,

AT = A7+ ABY + O(AP),
n At n At ‘ )
Bi,;l/Q = (1 + —Q**d0> Bi,j + ? |:d15§ + dyd, + d3é§ + d4éy + ds AZ]

At
+ 7si,jJrc)(Atz), (6.20)

and all the d;’s are evaluated at the central grid point (z;,y;). Once the fields A

and B have been determined everywhere on the slice ¢ = t,,1/2, we can use the
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approximations developed for the leapfrog step and obtain the field at time ¢,,,.
Using the discretization discussed, and solving for A"*! and B™*! yields, for the

leapfrog step,

AMt = AN 4 BTV 4 O(A, AtAx?, AtAy?),

At -1 At
n+1 n—1

+ At(dléi + dyb, + d36§ + dady + ds) Anti/2

2y

+ AtSZ;rl/Q} + O(A AtAZ? ) AtAy?). (6.21)

Once the A™*' and B"*! have been computed, the fields at tny1/2 are discarded,
and the procedure repeated to obtain the fields at ¢, .2, and so on. Examining the
modified Lax-Wendroff method, we see that after the leapfrog step the fields at ¢,
are inaccurate to order At®. Because A7}' and B}f' are directly proportional to
A?; and B}, respectively, field values at #,,; inherit the error of their parent at
t,. The total error after the leapfrog step is then given by the sum of the errors
from the parent field values and the truncation error. The total error then grows
linearly with the number of steps taken. (We are assuming a fixed ratio between Ax
and At, as well as between Ay and At.) After N; steps, the error for the modified
Lax-Wendroff method is N;A#* ~ A#?, and the method is second-order convergent.

A similar argument shows that using only a modified Lax step would result in an

algorithm with linear convergence.

Numerical viscosity and stability of the algorithm

From our discussion so far, it may seem as though solving partial differential equa-

tions is quite simple, but such is not the case. The discretized version of a partial
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differential equation is only equivalent to the partial differential equation in the con-
tinuum limit. The discretized equation generally admits a larger class of solutions
than the original equation. A consequence of this is the existence of exponentially
growing solutions that are not solutions of the original equation, i.e. the discrete
equation allows unstable modes to develop.

In the event where the coefficients of the partial differential equation are con-
stant, a global stability analysis can provide conditions for the stability of the nu-
merical method. Typically, this results in the stepsizes having to satisfy the Courant
condition [68], i.e. information on the numerical grid should propagate faster than
the physical speed of propagation. On the other hand, when the coefficients are not
constant, a stability analysis is difficult to perform and does not provide informa-
tion about global stability. It proves faster to numerically implement a candidate
algorithm and look for growing modes.

The modified Lax-Wendroff method as it is presented in the last section, leads
to the appearance of unstable modes. In general, reducing the time stepsizé slowed
thé appearance of these modes, but this would not eliminate them completely®. The
instabilities were eliminated by the addition of a small dissipative term in Eq. (6.14),

i.e. we solved

o, _ ) 0
9p _ { }+DA2—82B (6.22)
5 = {... x 52 0 .

rather than the original equations, where {...} stands for the right-hand side of
Eq. (6.14), and D is a diffusion coefficient. In principle, we could use two different

diffusion coefficients for A and B, but, in practice, having a single diffusion coefficient

!Any method becomes stable if the ratios Az/At and Ay/At are small enough. However, this is
not a practical way to avoid exponentially growing modes.
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yields good results. We chose the dissipative term to be proportional to Az?. This is of
the same order as the truncation error made in approximating the partial derivatives,

and it ensures that in the continuum limit, we recover the original Teukolsky equation.

-2¥2

Rel ,y2) with D=02 —

Wy}

Re(

Figure 6.2: Teukolsky function obtained after evolving a pulse with z, = 10, 0 = 1,
s = —2, and m = 2 for a time ¢ = 150(2M). The rotation parameter of the black
hole is @ = 0.99M, and we used At = 0.025, Az = 0.1 and Ay = 0.05. The top
left panel displays a spatial slice at y = 0.5 of the gravitational waveform at the
final evolution time. In this case, the appearance of exponentially growing modes
clearly points out the numerical instability of the algorithm. Addition of dissipation
eliminates these instabilities. In the top right panel, we show waveforms as functions
of time extracted at x = 60 and y = 0.5 for the same initial data. The solid line has
D = 0, while the dashed curve has D = 0.2. Both waveforms are in good agreement,
although the dissipative term has a small effect on the amplitude and the phase of
the waveform. Around ¢ = 200(2M ), unstable modes in the waveforms for D = 0 are
clearly apparent. Bottom figure: with diffusion, the evolution proceeds for long times
(t < 1800(2M)) without developing instabilities. (We used At = 0.05, Az = 0.2 and
Ay = 0.1 to reduce the computational time.)

In Fig. 6.2, we show the effect of adding a dissipative term to the discretized

Teukolsky equation. We performed a simulation with D = 0 and D = 0.2, with
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initial data given by z, = 10, 0 = 1, s = —2, and m = 2 in Eq. (6.12). The
simulation was performed for a black hole with ¢ = 0.99M. Without dissipation,
unstable modes develop and dominate the numerical solution. The addition of a
dissipative term stabilizes the algorithm, which can then be run for arbitrary long
times. On the other hand, dissipation affects the amplitude and the phase of the
waveforms and D must be chosen as small as possible. We found that D = 0.2 is
large enough to eliminate unstable modes, while still producing waveforms accurate
in amplitude and in phase compared with the waveforms obtained in the absence of
diffusion. This is seen in the right panel of Fig. 6.2.

In practice, we find that the addition of dissipation stabilizes the numerical algo-
rithm when Ay > 2At¢ and Az > 4At. The most efficient choice of stepsizes is then
given by Az = 2Ay = 4A¢. With this choice of ratios for the stepsizes, the evolution
can proceed for arbitrarily long times. In the bottom panel of Fig. 6.2, we show the
real part of the s = —2 Teukolsky function for ¢ = 0.99M as a function of time
extracted at z = 60 and y = 0.5. The evolution is stable for the entire simulation

(t < 1800(2M)).

6.3.2 Boundary conditions

The modified Lax-Wendroff method does not provide evolution equations for the
boundary points. In principle, the boundaries at + = zgy and zg can be pushed
far enough that reflections from the boundaries cannot travel back into the region of
interest (for example the region where the waveforms are extracted) by the time the
simulation is stopped. This is a very costly way to reduce the impact of reflections.
Instead, we use the information about the asymptotic behaviour of the Teukolsky

function that was presented in Sec. (6.2). These approximate solutions can be used
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to provide boundary conditions for A and B at the edges of the numerical grid, and
this can be used to complete the method of integration.

In Eq. (6.4) we removed a factor of A™*/r from 1 to ensure that outgoing ra-
diation modes at infinity and ingoing radiation modes at the horizon are both O(1).
(To get this behaviour was the primary motivation for removing this factor.) For
the boundary at x5, we have the approximate relation A = A(u, §), which implies

0A/dv = 0, or equivalently, 0A/0t = —0A/Ox. This is implemented as
AL = AR, —2Ax BRFL L+ O(AZ%). (6.23)

Similarly, near the horizon we have the approximate relation A = A(v,6) and 9A/0u =

0, which lead to
APHY = AR —2Az BT+ O(ATY). (6.24)

Both boundary conditions can be imposed using information about A and B on a
single time slice. Inspection of the modified Lax-Wendroff method reveals that values
of B on the boundaries are never used in the evolution scheme of Eq. (6.20) and
Eq. (6.21). We do not provide boundary values for B at zs and zgy, because they
do not propagate forward in time and are irrelevant.

Next, we obtain appropriate boundary conditions on the rotation axis. The
behaviour of A is given in Eq. (6.11). Taking a time derivative of this equation
yields a similar expansion for B (with ¢o and ¢, replaced by their time deriva-
tives). The boundary conditions for both functions arc then trivial if |m| # |s],
since Azl“ =0 = Aﬁvi and Blf' = 0 = Bl"]f,yl are exact boundary conditions.
For |m| = |s|, A and B have non-zero values on the rotation axis. For m = s, the

field and its time derivative vanish at yy, = 1, but not at y; = 0. In this case, the
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boundary conditions are imposed as

— sin2 (7‘['y3) Azgl + Sin2 (7Ty2) Azgl

At + O(Ay?Y),
bl sin?(my,) — sin®(7ys) (897)
.2 ntl | o2 n+l
—sin®(mys) B + sin®(7ys) B;
Byt ) B + W T BT o), (62)
’ sin®(7mys) — sin®(7ys)
which represents a linear extrapolation from information at y» and y3. For m = —s the

field vanishes at y, = 0, but not at yy, = 1. In this case, the boundary conditions are
obtained from the formula above with the replacement j =1 = Ny, j =2 — N, — 2,
and j =3 — N, — 3. Again the correct boundary conditions on the rotation axis are
imposed using information on a single time slice.

In practice, we also need boundary conditions on A and B at t,,1/2. Because the
boundary conditions presented above rely on information on a single time slice, we
can simply substitute n + 1/2 in place of n + 1 everywhere in Eq. (6.23), Eq. (6.24)
and Eq. (6.25).

The boundary conditions are based on approximate asymptotic solutions of the
Teukolsky equation. Because of the finite size of the grid, and because of the approx-
imations involved, a certain amount of radiation is bound to be reflected from the
edges of the numerical grid. The boundary conditions do not completely eliminate

such reflections, but they strongly reduce their amplitude.

6.3.3 Convergence of the algorithm

We now discuss the convergence rate of our numerical method. Determining the
convergence rate is done by fixing the ratios Az/At and Ay/At, and then comparing
the results of simulations with different At. A more detailed discussion of this method
is contained in Appendix C for the one-dimensional wave equation in a Schwarzschild

spacetime.
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Figure 6.3: Convergence test of the numerical algorithm for the integration of the
Teukolsky function with a = 0.5M. We show the difference between simulations
with stepsizes At = 0.05 (A4;), At = 0.025 (Ay), and At = 0.0125 (A4). The ratios
of Az and Ay to At are fixed for all three simulations. The two curves shown are
d0A; = A1 — Ay, and 6 A, = 4(Ay — Ay). The fact that the two curves are close to each
other in the interval displayed signals quadratic convergence. Left panel: Convergence
test for the real part of the Teukolsky function. Right panel: convergence test for the
imaginary part of the Teukolsky function.

In constructing the numerical algorithm, we neglected truncation errors of order
At3. As was previously discussed, the errors add up linearly so that after IV; steps, the
error at each grid point is O(At?). Examining the boundary conditions of Eq. (6.23)
and Eq. (6.24), we see that both ingoing- and outgoing-wave boundary conditions
generate an error term of order O(A#3), but these terms also accumulate linearly.
The accumulated error from the boundary conditions, after N; steps, is O(A#?), the
same as the error from the evolution algorithm. Finally, the boundary conditions on
the rotation axis are either exact or are given by Eq. (6.25). In the later case, the error
is of order sin*(my) ~ Ay* ~ At*. This is much smaller than other contributions and
can be ignored. After N, steps, the largest error is O(A#?) and the method, including
the boundary conditions, should converge quadratically.

According to the discussion of Appendix C, we can establish the convergence rate

of the method by comparing three different simulations with stepsizes differing by
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factors of 2. In Eq. (6.12), we set . = 10, 0 =1, =2, m =2 and s = —2. We also
choose the angular momentum of the black hole to be a = 0.5M and the waveforms
are extracted at x = 60 and y = 0.5.

For the first simulation, the stepsizes are At = 0.05, Az = 0.2 and Ay = 0.1,
the second simulation has At = 0.025, Az = 0.1 and Ag) = 0.05, and the third has
At = 0.0125, Az = 0.05 and Ay = 0.025. The first simulation is denoted by A,
the second by A, and the third by A4. In Fig. 6.3, we display 4; = A; — Ay and
dA; = 4(Ag — Ay), where the factor of 4 accounts for the factor of two between the
stepsizes. The two curves directly measure the truncation error of the algorithm as a
function of time. They are approximately equal to each other over the time interval
(t < 125(2M)) and we conclude that the algorithm is converging quadratically. Note
that although we started with real initial data, because a # 0 the imaginary part of

the Teukolsky function grows during the evolution.

6.4 Physical tests. of the numerical method

The results of the previous section show that the algorithm converges quadratically.
The purpose of this section is to demonstrate that the method and its implementation
reproduce well-known physical predictions of the Teukolsky equation. We show below
that in the absence of rotation the numerical code reproduces the expected angular

behaviour and that it outputs the correct quasi-normal modes of a Kerr black hole.

6.4.1 Angular profile of the solutions in the norotation limit

In the absence of rotation, the Teukolsky function describes the curvature perturba-

tions of a Schwarzschild black hole. The equation can be completely separated in
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the time domain and the angular profile of the radiation is given by spin-weighted
spherical harmonics. Since these are eigenfunctions of the Teukolsky equation when
a = 0, the initial angular profile should be preserved during the evolution. We shall

verify this in this subsection.

T
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Figure 6.4: Left panel: angular profile obtained from numerical evolution of an m = 0,
s = —2 Gaussian pulse centered at z. = 10 with o = 1. The field is extracted at
z = 60 after a time t = 75(2M). Also shown is the result of a least square fit for the
amplitude of an m = 0 spin-weighted spherical harmonic. Right panel: residual of
the amplitude fit. The curves differ by an amount 4 to 5 orders of magnitude smaller
than the amplitude of the field at x = 60.

To perform this test, we chose initial data sets with [ = 2 and s = —2. Our
simulations are performed for m = 0, m = 1 and m = 2 and the waveforms are
extracted at z = 60 after an evolution time of ¢ = 75(2M). Simulations are performed
with At = 0.025, Az = 0.1 and Ay = 0.05.

The angular profile of the numerically extracted A should be identical to the initial

angular profile. We compare the numerical results with a profile of the form
Az =60,0) = A; _,Y>™(0),

where A; is an amplitude determined by a least-square fit. We perform the fit and

calculate the residual for m = 0, m = 1 and m = 2. Results are presented in
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Figure 6.5: Left panel: angular profile obtained from numerical evolution of an m = 1,
s = —2 Gaussian pulse centered at x, = 10 with ¢ = 1. The field is extracted at
x = 60 after a time ¢ = 75(2M). Also shown is the result of a least square fit for the
amplitude of an m = 1 spin-weighted spherical harmonic. Right panel: residual of
the amplitude fit. The curves differ by an amount 4 to 5 orders of magnitude smaller
than the amplitude of the field at x = 60.

Fig. (6.4), Fig. (6.5) and Fig. (6.6), respectively. In all three cases, the residuals
represent an error of ~ 1072, and angular profiles are therefore well preserved under
evolution. This also shows that good angular resolution for [ = 2 and m = 0, 1, and
2 is obtained with IV, = 21, a fairly small number of points. For higher multipole

moments, a finer grid is needed.

6.4.2 Quasi-normal modes of the Schwarzschild and Kerr

black holes

The second test focuses on black-hole quasi-normal ringing [69]. As a response to per-
turbations, black holes radiate at very specific frequencies and each mode is damped
at a specific rate. The appearance of these modes in numerical simulations was seen

and discussed in Chapter 4, Sec. 4.3.
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Figure 6.6: Left panel: angular profile obtained from numerical evolution of an m = 2,
s = —2 Gaussian pulse centered at z. = 10 with ¢ = 1. The field is extracted at
x = 60 after a time ¢ = 75(2M). Also shown is the result of a least square fit for the
amplitude of an m = 2 spin-weighted spherical harmonic. Right panel: residual of
the amplitude fit. The curves differ by an amount 3 to 4 orders of magnitude smaller
than the amplitude of the field at x = 60.

Methods to calculate the quasi-normal frequencies are based on a Fourier decom-
position of the Teukolsky function: i, is decomposed as in Eq. (6.7). The radial
function ;R(w,r*) is required to satisfy ingoing-wave boundary conditions at the
horizon and outgoing-wave boundary conditions at infinity. Frequencies for which
sR(w, *) satisfies both conditions simultaneously are the quasi-normal frequencies of
the black hole. Black hole quasi-normal frequencies have been calculated by numerous
authors [69, 103, 104, 105, 106}, to cite just a few.

After complete separation of the variables, the potential for ;R(w,r*) depends
on s, [, m and a, and as a result the quasi-normal frequencies also depend on these
parameters. For a given set of parameters, there is an infinite discrete set of complex
frequencies for which ;R(w,r*) satisfies both conditions. Each frequency is labeled
with an index n. In the time domain we cannot excite just a single frequency, and the

regime of quasi-normal ringing will involve a superposition of modes with different
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Table 6.1: Dominant (least damped) quasi-normal frequencies for the gravitational
perturbations of a Kerr black hole, as calculated by E. Leaver [69]. Since the potential
in spherical symmetry does not depend on m the quasi-normal frequencies for [ = 2,
m =0 and [ =2, m =1 are identical.

a/M QM(.UQ 2M’}’Q

[=2 00 07474 0.178
m=0 09 08240 0.157
=2 0.0 07474 0.178
m=1 09 10326 0.140

index n. For this reason, time domain methods cannot be used to calculate all quasi-
normal frequencies. On the other hand, the late stage of quasi-normal ringing is
dominated by the fundamental frequency (the one that is the least damped) and
the measured frequency of the time domain waveform should be very close to this
fundamental frequency.

The comparison is done as follow. We perform a numerical evolution of the Teukol-
sky function and extract A(t) at y = 0.5 and z = 60. We assume our waveforms
are oscillating at the fundamental quasi-normal mode frequency, as calculated by
E. Leaver [69]. We call this frequency wg and its associated damping exponent ~yq.
These are displayed in Table 6.1 for a = 0 and a = 0.9M, [ =2 and m =0, 1. The
value for m = 2 is not given in a table by the author of [69]. Instead it is part of
a figure which makes an exact comparison with our results difficult. We therefore

exclude it from the discussion below. Next, we assume
Alt) = Ape_l(wQ_WQ)(t—tp)7 (6.26)

where A, and ¢, are two fitting parameters.
In Fig. 6.7, we display the real part of the s = —2 Teukolsky function for m = 0

and m = 1 modes, for a = 0 and 0.9M. Because of the logarithmic scale, the points
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Figure 6.7: Displayed are the based 10 logarithms of the real part of the s = —2
Teukolsky function for ¢ = 0 and a = 0.9M. The left panel contains the m = 0
modes, while the right panel contains the m = 1 modes. The frequency increases
with increasing a, while the damping exponent decreases, as expected [69]. The
last portion of the gravitational waveforms are dominated by boundary effects, and
information about the physical signal is lost. For this reason, we restrict our fit to
the region 100(2M) <t < 170(2M).

where the Teukolsky function goes to zero appear as sudden dips toward large negative
values. These are typical results obtained after a run of the code for any value of
m and a < M; we used At = 0.0125, Ay = 0.025 and Az = 0.125. For the cases
displayed, the initial data is given by Eq. (6.12) with z, = 10 and o = 1, and the
waveform is extracted as a function of time at z = 60 and y = 0.5. The epoch of
quasi-normal ringing occurs between ¢/(2M) ~ 80 and t/(2M) ~ 200. For the fits,
we restrict this to 100 < ¢/(2M) < 170.

In Fig. 6.8, we display typical examples of the agreement between our numerical
results and the theoretical values for the quasi-normal modes. We display the cases
a=0,m=0and a = 09M, m = 1. In all cases, we found good agreement
between the fitted waveforms and our numerical results. In the figure, the solid line
is our numerical results, the long-dashed line is the fitted waveforms (for the most

part it lays on top of the numerical results) and the dashed curve with a much lower
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Figure 6.8: The solid line is the numerical result from the Teukolsky code, while the
long-dashed line is a fit for the amplitude and the phase in Eq. (6.26). The numerical
result and the fit are for the most part indistinguishable. The short-dashed curve is
the residual of the fit. For m = 0 and ¢ = 0 (left), as well as m =1 and a = 0.9M
(right) the residual is at least 1 to 2 orders of magnitude smaller than the amplitude
- of the waveforms themselves. We recall that the field and the residual are plotted on
a logarithmic scale.

amplitude is the absolute value of the residual plotted on a logarithmic scale. The
residual is always at least 1 to 2 orders of magnitude smaller than the amplitude of
the waveform.

We conclude that our method for integrating the Teukolsky equation in the time
domain is stable, quadratically convergent, and that it correctly reproduces the angu-
lar profile and the quasi-normal frequencies of the radiation. Our method’s reliability

is therefore established.

6.5 Comments on the source term of a smeared
particle

In developing our numerical method for the integration of the Teukolsky equation

in the time domain, we allowed for the possibility of including a non-singular source
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term to the equation. It is beyond the scope of this dissertation to proceed further in
this direction, but we take the opportunity to comment on the possibility of modeling
a point particle in terms of a non-singular source.

Finite-difference methods such as the one developed above for the integration of
the vacuum Teukolsky equation are adequate to deal with fields that are at most
discontinuous in some region of spacetime covered by the numerical grid. The struc-
ture of the Zerilli-Moncrief and Regge-Wheeler equations near the position of the
particle is a crucial ingredient in constructing the Lousto-Price algorithm presented
in Appendix C: here the field was discontinuous and the method was able to handle
this type of singular behaviour. But in two spatial dimensions, the Teukolsky func-
tion is no longer simply discontinuous at the position of the particle. Instead, it is
logarithmically divergent and finite-difference methods cannot be employed.

This behaviour of the field is unavoidable as long as we insist on working in the
time domain with the source term of a point particle. Instead of abandoning time
domain methods, we choose to smear the point particle and eliminate the singular
behaviour of the source term in this way. The Teukolsky function will then be smooth
and slowly varying everywhere in the region of spacetime covered by the numerical
grid. The suggestion is then to use, for example, a narrow Gaussian function (and its
derivative) to approximate a d-function (and its derivative).

There are multiple reasons to be cautious about such a substitution. After all,
the problem we are now solving is equivalent, to the original problem only in the limit
where the width of the Gaussian function goes to zero. Since we are no longer solving
the original problem, it would be desirable to have a method to judge the quality of
the approximation. For circular orbits in the equatorial plane of a Kerr black hole,

results for energy fluxes can be compared with frequency domain fluxes calculated

147



in [94]. For general orbits, the comparison is more difficult because spectral methods
are difficult to implement efficiently and accurately.

For the Schwarzschild spacetime, the Lousto-Price algorithm provides a mean
of obtaining quantitative information about the accuracy of the smeared particle
approach: fluxes obtained without approximating the J-functions can be compared
with fluxes calculated with a smeared particle. We therefore integrate the Zerilli-
Moncrief and the Regge-Wheeler equations using a standard Lax-Wendroff method
(see for example [68]) with a non-singular source term for a particle in circular orbit.
The source term is given by Eq. (5.6) and Eq. (5.7) with e = 0, and the J-function

and its derivative are approximated as

5 ) |
r —r = € 20 5
' P 2no
_ 7,,* _ ,r* ('r*—'r*)2
§'(r* =) = ( ) R (6.27)

=——"¢
V2mo3

where a prime denotes a derivative with respect to r*, and r; is the radius of the
circular orbit. In the limit ¢ — 0, we recover the d-function and its radial derivative.

The parameter controlling the smearing of the point particle is o, its “width”.
The width of the particle is limited by the spatial stepsize Az = Ar*/(2M) of the
numerical grid. We found that the best results are obtained when o = Az. For a
smaller width, the particle “falls” between grid points, and the source term is not
sufficiently sampled. The width can be made larger than Az, but this produces a
more diffuse particle and less accurate results.

In Table 6.2 we display the fluxes obtained from the Lousto-Price algorithm and
the smeared-particle approach for selected values of m and two choices of orbital radius
7p. For these simulations, we used ¢ = Az = 0.8 in the Lax-Wendroff algorithm. The

results displayed here are typical of the accuracy achieved with other stepsizes (see
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Table 6.2: Comparison of the fluxes for circular orbits in Schwarzschild from a smeared
particle approach (SPA) with results obtained with the Lousto-Price algorithm (LP).

In both cases, energy fluxes were calculated for an observer located at %, = 750(2M)
and Az = 0.8.
/M 1 m LP SPA % error
70456 2 1 8.16e—07 1.22e—06 50%
2 2 17le—04 1.55¢—04 4%
3 3 254e—05 2.3le—05 10%.
150 2 1 1.6le—08 245¢—08 50%
2 2 72le—06 7.49% — 06 1%
3 3 5.8%—07 647¢—07 10%

Fig. 6.9).

The interesting observation here is that for even parity perturbations, we get good
quantitative agreement between the smeared particle approach and the Lousto-Price
algorithm, whereas for odd parity modes we get only an order of magnitude agreement.
We note that the poor accuracy achieved for odd modes is similar to the accuracy
of the calculations performed in [99, 100]. The authors of these papers also present
results for the time domain integration of the inhomogeneous Teukolsky equation
using a smeared particle approach. They find that for both circular gnd eccentric
orbits, this type of approach yields an accuracy of the order of, at best, 20%. For
example, for an r, = 12M circular orbit in the equatorial plane of a rotating Kerr
black hole (a/M = 0.9), they find, for the m = 2 mode, an agreement of 40% with
frequency domain calculation presented in [94].

In Fig. 6.9 we present the variation with the width o, in the accuracy of the
determination of the energy flux for an | = 2 and m = 2 even parity mode and an
[ = 2 and m = 2 odd parity mode for a circular orbit of radius r, = 15M. In these
cases, we extracted the energy flux at a location 7*/(2M) = 50 from the Lousto-Price

algorithm as well as for the smeared particle approach. We present the variation
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Figure 6.9: We display the variation in the energy flux from the [ = 2, m = 2 (left)
and | = 2, m = 1 (right) modes for a particle in a circular orbit at r, = 15M for
various widths of the particle in a smeared particle approach. As the width of the
particle is made smaller the [ = 2 and m = 1 energy flux decreases, but it seems
unlikely that the result from the Lousto-Price algorithm, E = 4.53 x 1078(u/M)?,
can be reproduced to better than 50% in this type of approximation. It is also clear
from the left panel where the energy flux for even modes is displayed that the SPA
for the [ = 2 and m = modes gives results that are closer to the flux from the Lousto-
Price algorithm, but that do not converge for small Az toward the correct value of
9.48 x 107%(u/M)2.

obtained by reducing Az from 0.8 to 0.1, while keeping 0 = Az, as well as the
variation in the energy flux obtained with Az = 0.1 and o varying from 0.8 to 0.1.
For the [ = 2 and m = 2 mode, we find that the agreement between results from
a smeared-particle approach and from the Lousto-Price algorithm is of the order of
4 ~ 6%, but that reducing the width of the particle does not improve the agreement
between the two results. For the [ = 2 and m = 1, we find that the energy flux
decreases as the width is made smaller, but it seems unlikely that taking smaller
stepsizes will yield the correct Lousto-Price result. It seems that a smeared particle
approach can do no better than an accuracy of 4 ~ 6% for even parity perturbations
and 50% for odd parity perturbations of the Schwarzschild black hole.

Although the agreement between the two calculations improves when the width
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of the Gaussian is made smaller, it seems that to get an agreement of a few percents
we would need to use a prohibitively small stepsize Az (if this approach converges at
all). The fact that neither even nor odd parity modes results for a smeared-particle
approach converge toward the Lousto-Price results is surprising and we do not yet
understand the reason behind this result. But this simple demonstration suggests
that direct substitution of Gaussian functions for J-functions will not yield results
sufficiently accurate for the purpose of producing gravitational waveforms. It might

be necessary to use more elaborate prescriptions.
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Chapter 7

Conclusion

7.1 Summary

In this dissertation, we studied the gravitational perturbations of Schwarzschild and
Kerr black holes.

For the perturbations of a SchWarzschild black hole, we used a numerical method
developed by C.O. Lousto and R.H. Price [54] to integrate the perturbation equations
in the time domain. The method accounts for a point particle without approximating
the singular source term. Using this method we were able to produce gravitational
waveforms for arbitrary geodesic motion and to obtain the fluxes of energy and angular
momentum carried to infinity and through the event horizon by the gravitational
waves.

We also developed a method for the numerical integration, in the time domain,
of the vacuum perturbations of a Kerr black hole. Singular source terms are more
difficult to incorporate in such a scheme: this was not presented in this dissertation.

Let us briefly summarize the work contained in each chapter.

In Chapter 2, we presented a gauge invariant and covariant formalism for the
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metric perturbations of a Schwarzschild black hole. In this formalism, information
about the gravitational waves is encoded in two gauge-invariant scalar functions: the
Zerilli-Moncrief and the Regge-Wheeler functions. The equations are derived allowing
for the possibility that the perturbations are produced by an arbitrary stress-energy
tensor. Such a formulation may be used to implement radiation reaction schemes or
for the purpose of comparing with results obtained in numerical relativity in various
coordinate systems, such as horizon penetrating coordinates.

In Chapter 3, we specialized the covariant black-hole perturbation equations to
Schwarzschild coordinates. In this coordinate system, and in the Regge-Wheeler
gauge, it is possible to completely reconstruct the metric perturbations from a knowl-
edge of the Zerilli-Moncrief and Regge-Wheeler functions. We also provided a relation
between the fluxes of energy and angular momentum at infinity and through the event
horizon and the two gauge invariant scalar functions. The relations derived for the
horizon fluxes are presented for the first time in this dissertation.

In Chapter 4 and Chapter 5, we used the formalism presented in previous chapters
to obtain the gravitational waveforms associated with arbitrary geodesic motion of a
particle around a Schwarzschild black hole. This was done in the time domain using
a numerical method first developed by C.O. Lousto and R.H. Price, and corrected
here to produce second-order convergence. The work presented in these chapters
included a study of the effects of the choice of initial data on the evolution of the
metric perturbations during the radial infall of the point particle. For close initial
separations, contributions to the radiation field from the initial data content, the
motion of the particle, and black hole ringing become strongly entangled. We also
obtained the gravitational waveforms associated with circular, eccentric and parabolic

orbital motion. Using the waveforms produced with the Lousto-Price algorithm, we
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were able to evaluate the contribution of black hole absorption to the total fluxes
of energy and angular momentum. For the cases considered, black hole absorption
contributes more than 1% of the total fluxes when the periastron distance is smaller
than 5M. Work presented in Chapter 4 can be found in [107], while work presented
in Chapter 5 has been accepted for publication in Physical Review D.

In Chapter 6, we developed an independent numerical method for the time do-
main integration of the homogeneous Teukolsky equation. The method is stable and
quadratically convergent. It also reproduces well-known physical predictions of the
Teukolsky equation, such as angular profiles for a = 0, and quasi-normal modes for

various values of the angular momentum of the Kerr black hole.

7.2 Future Directions

For the purpose of devéloping éccurate representations of gravitational waveforms
emitted by a small object orbiting a supermassive black hole, time domain methods
have a definite advantage over spectral methods: they can easily account —fzor' the
sharp features that are present in the waveforms for highly eccentric motion. Another
significant advantage is that the motion of the particle is affected by the emission of
gravitational waves and this process is naturally described in the time domain. It
should be straightforward to incorporate this effect in time domain methods, once a
prescription is given to describe the motion.

The long term goal is to.produce gravitational waveforms from a compact object in
orbit around a rotating black hole, including radiatioﬁ reaction effects on the motion
of the small object. Although this effect is small, its accumulation over ~ 10° orbits

will significantly affect the gravitational waves it emits. This leads to two extensions
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of the work presented in this dissertation.

For the perturbations of the Schwarzschild black hole, we have a fast and accurate
method to calculate the gravitational waveforms for geodesic motion. The method
also permits the computation of the energy and angular momentum fluxes both at
infinity and through the event horizon. This information is sufficient to determine
the change in orbital energy and angular momentum of the particle. It will then be
possible to map trajectories in the p and e plane, and subsequently use these maps
to produce corrected waveforms [98, 95, 96, 97].

This type of method assumes that the orbit is slowly changing due to the emission
of gravitational waves. For an adiabatic change, knowledge of the averaged fluxes of
energy and angular momentum carried by the radiation may be sufficient to obtain the
corrected motion. This should be the case for circular or mildly eccentric orbits. For
highly eccentric orbits, where gravitational radiation is primarily emitted in bursts
near periastron, using averaged fluxes to correct the motion may not be appropriate.
We expect the motion to be rapidly affected by the emission of gravitational waves at
periastron, and averaging the effect over a complete orbit may not be accurate. For
these orbits, the motion needs to be corrected by a local self-force. In any event, once
the corrected motion of the particle is known, it should be an easy task to adapt the
code we used here to produce gravitational waveforms associated with this motion.

For the purpose of producing astrophysically relevant waveforms, we need to be
able to numerically integrate the inhomogeneous Teukolsky equation in the time do-
main. Currently, the best time-domain methods produce gravitational waveforms
from which fluxes of energy and angular momentum can be calculated with an ac-
curacy of at best 20% [99, 100]. There is a long way to go to obtain acceptable

accuracy.
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Current methods are based on smearing the singular source term of the Teukolsky
equation. Our limited experience with a smeared particle suggests that the simple
replacement of d-functions (and their derivatives) by narrow Gaussian pulses (and
their derivatives) is not reliable. Smearing the source term for a particle in circular
orbit around a Schwarzschild black hole shows that we get good agreement for even
parity modes, but that for odd parity modes we get only an order-of-magnitude
agreement. It may prove useful to try and understand the mechanism that gives rise
to such different accuracies for different parity modes. This could prove useful in
developing adequate approximations for the source term of the Teukolsky equation.

Another option is to completely abandon the idea of a point-particle and deal
with an extended object right from the beginning. This is a much more complicated
problem. The internal dynamics of the object would have to be described. This
introduces many additional degrees of freedom that we would prefer to ignore.

At this stage, we are still far from having an accurate numerical method for the
time domain integration of the inhomogeneous Teukolsky equation, even when the
compact object is in geodesic motion around a Kerr black hole. 1t is a little premature
to think about implementing radiation reaction schemes in Kerr, as was done in the
frequency domain in [95, 96] for circular inclined orbits. To extend the time-domain

methods to treat inclined eccentric orbits is the long term goal.
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Appendix A

Tensorial spherical harmonics

We summarize some properties of the scalar, vectorial, and tensorial spherical har-
monics used in this dissertation. The labels scalar, vectorial, and tensorial, here refer
to the transformation properties of fields under a coordinate transformation of the
spherical two-spaces 84 — 04 . Each type of spherical harmonic function, introduced
below, forms a complete set and can be used to express any symmetric tensor field of
rank 2 or less as a multipole expansion [19, 108, 109].

The harmonic functions come in two types: even and odd parity harmonics'. For

a function Y, even parity modes are those which transform as ™ (7 — 6,7 + ¢)

(=)!x'™(8, ¢), while odd parity modes are those that transform as x(m — 6,7 + ¢) =
(—=)*1x!™(8, ). The spherical symmetry of teh background spacetime prevents these
modes from mixing.

In Sec. A.1, we introduce the usual spherical harmonics, in Sec. A.2 the vectorial
spherical harmonics, and in Sec. A.3 the rank-2 tensorial spherical harmonics. Finally

in Sec. A.4, we give some basic properties satisfied by tensorial spherical harmonics

'"We follow here the terminology used by Regge-Wheeler [19]. The even (odd) parity modes are
the electric (magnetic) parity modes of Zerilli [20].
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and their derivatives.

We recall that indices are raised and lowered with €245, the metric of the unit

two-sphere.

A.1 Scalar spherical harmonics

A scalar function S(64) can be decomposed according to

S(Y = Zslelm(HA), where slm=/dQS g
Im

(A1)

and the Y'™’s are the usual spherical harmonics. They satisfy the eigenvalue equation

VYT 1+ 1)Y'™ =0,
and are orthonormal

/ dQ Vi Y = G100

A.2 Vectorial spherical harmonics

Vectorial spherical harmonics of even and odd parity are defined as

Za=Y and Xa=e,"VF,

where £48

is the Levi-Civita tensor (g4 = sin#). They are orthogonal
/ dQ X5 zgx, = 0,
but, by convention, not normalized

/ dQ 75zt = 11+ )0 b

I'm/

/dQ XXt = 1+ Doy mm
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An arbitrary vector V4(6%) can be decomposed according to

Va(0®) = Y [omZ5(0%) + i X5 (6%)] (A7)

lm

where

1
I(1+1)

Utm =

1
/dQ Va Z& and @y, = m/dQ Va XM

A.3 Rank-2 tensorial spherical harmonics

The perturbation tensor hsp is a symmetric rank-2 tensor. Therefore, to obtain a
multipole expansion of this tensor, it is sufficient to introduce three symmetric rank-2

tensorial spherical harmonics. In this thesis, we use

Usp = QY™
1+1)

Vap = Y|AB QapY™
Was = X(iip): (A.8)
The tensorial spherical harmonics are orthogonal
/ dQ Ve Witk =0, ViR uUfBr =0, wip UlB =
but not normalized
/ dQ Uy Unl? = 260 8mm
A ;%&z B
/ dQ Wis Wi — %EZL;(S ' Bim (A.9)

The orthogonality between UAB, and VAP or WAP holds point-wise, since by con-

struction, VA8 and W2 are traceless tensors.
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A symmetric tensor Typ(0) is decomposed according to

Tap(0%) = > [KimU§(6°) + GimViB(6°) + HmWiR(09)],  (A.10)

im

where

1 (1 —2)!
K = = | dQ Tup UAB* m = /dQT ABx
I 2/ aB Ui Gy (+2) 4B Vin,

and

_ (1_2)| ABx*
Him = (l+2)!/d§2 Typ WP,

A.4 Basic identities

Since the tensorial harmonics are obtained from each other by differentiation, it is
possible to derive some basic relations satisfied by the spherical harmonic functions.
We list relations for derivatives of the harmonic functions up to second-order deriva-
tives, the highest order appearing in the variation of the Einstein tensor. In deriving
the relations below, we use the Riemann tensor of the unit two-sphere, introduced in

Eq. (2.12). Tt appears every time we commute covariant derivatives [23].

A.4.1 Derivatives of Zf4m and X f4m

From the definitions of the vectorial spherical harmonics it is easy to show that

Im __ 7lm .
ZA|B—ZB|A and

Oz, = —ll+1)Y™,
QBCZgTCA = —l(l+1)z]",
QBCZZ?BC - QBCZ%?AC

= QFF (ZgTCA - RDBCAZle)
= [1-1(+1)]Z. (A.11)
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The first result follows from the eigenvalue equation, Eq. (A.2), the third follows from
commuting covariant derivatives, and the last is obtained with the use of Eq. (2.12)
and Eq. (A.2).

A similar exercise for X4™ reveals that

QABXA|B =0 = QBCXB|CA>
QBCXAIBC = 0% DZD[BC

= [1—-1(+Dx5
QBCXBmc = QBchDYﬁzSnAC— BCY]grch
BC( \BCA ~ RBACYIZSH)

= Xx'm (A.12)

The first line follows from symmetry arguments and € 4p;c = 0, the third line follows

from Eq. (A.11), and the fifth line follows from 5ABYIZ’;3 =0 and Eq. (2.12).

A.4.2 Derivatives of Uf%, VI% and Wi

From the eigenvalue equation, and the definition of Z4* (Eq. (A.4)), it follows that

QBCU Boia — QBCU e — 2zf4m,
QPUSEcp = —I(l+1)Uas,
QCDU CD|AB — QCDU CA|BD — QQCDU AC|DB

= 2Vim (1 + 1)U

(A.13)

The first line follows from the definition of Z* while the last line follows from the

definition of Vi
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For V'™ and WY% the derivatives are only needed in evaluating the Bianchi

identities in Sec. 2.4. This involves evaluating first-order derivatives.

needed are listed below. For V% we get

QBCVBC]A =0,

I(l+1
QBCVAB[C — QBC (}/IBAC_'_ ( )QBA}/| )
W(+1) .
= QBCZB|AC (T)Z,lax
W+
= [1— 5 ]zg

where in going from the third to the fourth line, Eq. (A.11) was used.

Finally, for W% we get

QBCWBCIA — O,
QBCWAB|C - QBCXA|B)C

= QQBC (XA|BC' + XB|A(‘)

_ {1—“”1)])(

2

where in going from the fourth to the fifth line, Eq. (A.12) was used.
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Appendix B

Variation of the Einstein tensor:

the multipole expansion

We list the first and second-order covariant derivatives of the perturbation field A,

[19%4) (139}

given the metric of Eq. (2.1) in Chapter 2. The three covariant derivatives ",

;
and “|” are defined with respect to gag, gap, and Qp, respectively (see Sec. 2.1). We
stress that capital roman indices are raised and lowered with €245 or its inverse, so
that no factors of r are introduced. In this context the covariant derivatives of g,
and Q4p commute freely.

The covariant derivatives are calculated in Sec. B.1. The multipole expansion
for the metric perturbations, in the Regge-Wheeler gauge, are then used to obtain a
multipole expansion for the covariant derivatives. This is done in Sec. B.2, where, for
the metric perturbations, we use Eq. (2.20) and Eq. (2.21), specialized to the Regge-

Wheeler gauge. Finally, in Sec. B.3, we compute the perturbation of the Einstein

tensor.
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B.1 Covariant derivatives of the perturbation ten-

sor of a general spherically symmetric space-

time

First-order covariant derivatives are not needed explicitly to calculate the perturba-

tion equations, but we do use them to compute the second-order derivatives given

below. They are easily calculated with the help of the Christoffel symbols found in

Eq. (2.3). They are

hab;c
hab; a
haA;b
haA;B
hAB;a

hAB;C

— hab:c ’
= hapja — ;T(,ahb)A ,
T’b
= haA:b - ——haA 3
r
= Lo e
= haalB — 7hAB + 7r7"hap$aB
- hAB:a - ;r,ahAB 3

= hAB|C’ + 2TT’GQC(AhB)a . (Bl)

Second-order covariant derivatives require more work but are easily calculated

from the first-order derivatives. Taking one more derivative, Eq. (B.1) yields

o Lor hg:

hab;cd -
hab;cA -
hab;Ac -

hab;AB -

hab:cd )

r 4 2

Papeia — Tc (hab|A - ;T(,ahb)A> - ;T(,ahb)A:c ,
2

ha.b;cA - ;T:c(ahb)A )

4 2
hapjaB — ;T(,ahb)(AlB) + r_zr,ar,bhAB

2
rr°Qap <hab:c - ;T(,ahb)c> ; (B.?)
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o For hga:

2 2 hoa
haA;bc - haA:bc - ;haA:(b'r,c) — | Tibe — ;T,br,c r ’

2 T 3
hoapp = haswB — ;T,bhaA|B - —T— (hAB:b - ;T,bhAB>

+ TT’CQAB (hac:b - %hac) )

T.a c
heagy = haapn — 'TbhAB +1rQaBTebha ©
2 b Ta
hoasBc = haalBc — ;T,ahA(B|C) +rr (QBchaA:b - 7QABhbc)
4
+ rrt <2hab|(BQC)A - ;T(,ahb)(AQB)C> ; (B.3)
o For hup:
4 6
haBay = haBas— ;hAB:(aT,b) + T—ZT,aT,bhAB - ;T:abhAB ;
3 T a
hapoc = hapajc — ;r,ahAB|C + 21 Q4 (hB)b:a — 2hgyp r ) ,
hapica = hapac -+ 2rrsaSQcahs)
hapecp = hapjep +2rr° (QC(AhB)a[D + QD(AhB)a|C)

— 2r°r, (Qpahpyc + Qephas)

+ 2T2T’aT’bhabQD(AQB)C +1rr*Qcophapia. (B4)

We recall that parentheses around a group of indices is used to denote symmetrization

with respect to this group of indices.

B.2 Multipole expansion of covariant derivatives

We now use the multipole expansion, Eq. (2.20) and Eq. (2.21), to express the covari-
ant derivatives as multipole expansions. We work here in the Regge-Wheeler gauge
and the only non-vanishing multipole moments for the expansion of h,, are pgs, K,

and h,.
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The multipole expansion of the first-order covariant derivatives are:

hab;c = DPabc Ylm:
2
Pabia = Dab Z,lclm - ;r(,ahb)XZ” ,
T
haas = (hus = ~2ha) X5,

haA;B = ha X.»l‘lrlnB + TT’b (pab — gabK) UAB s

h'AB;a - TQK,aU,qu% P
hAB;C’ = ’I’QKUZTEIC + QT’T’ahaX(lTXQB)C . (B5)

Substituting the multipole expansions into Eq. (B.2), Eq. (B.3), and Eq. (B.4),

yields, for the second-order covariant derivatives,

e For hg:

im
h'ab;cd = pab:ch )

Te
hab;cA - (pab:c - ?pab) Z,lclm
2 2
- ; (T(,ahb):c - ;T,cr(,ahb)) X,lqm
r m
hab;Ac — (pab:c - T,Cpab) Z,l4 )

2 2
- ; (T(,ahb):c + T:c(ahb) - ;T,cr(,ah’b)) X,l4m 3

. ] (1 +1
hab;AB = <7'747 Pab:c — 2r T(,aPb)e — ( 9 )pab + ZT,ar,bK) UZ%
4
+ pabvfl{g - ;T(,ahb)WXg > » (B6)
e For h,a:
2 2 h
haA;bc = ha:bc - _ha:(br,c) - (T:bc - _T,br,c) —ajl Xilm )
r T T
hoaps = (T7Dach — 7T pPac — TT oK p + 747, K) USH

5 .\
+ (hmb — ;r,bha> X
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haA;Bb - (Tfrycpac:b + TT:cbPa ‘- T,Cr,bpac - Tr,aK,b + T,ar,bK - TT:abK) U,lq,,%
2
+ h'a:b - ;T,bha XAlB ’
h’llA;BC = 27'T"bpabQA(BZlC) 27'7' KUA(B|C + h XAIBC
+ (T"I"bha:b — 2T’b7"(’ahb)) QBcXLm — T’aT’bthABXlCm

— 2T’bT(7ahb)QACXle ; (B7)

e For hABI

hagaw = T KalUjy
2 Ta b 2 Im
hasac = 1 (K- . LUK Ul + 200" (e = =rahs ) Qo X5
h'AB;Ca = (27"7”bhb:a — 47"’a7"’bh,b + QT'T:abhb) Qc(AXgT)L
+ (Ko = 22K ) Uy
hagep = 11K QopUlh + 2% (pgy — ganK) QD(AUB)C

+ PPKUipep + 2rm°he (e XBip + QouXe) - (B.8)

It isnow a simﬁle task to compute the Iﬁultipole expansion of the various quantities

appearing in Eq. (2.15). For the wave operator, we get

.2 4
Ohey = OPab + =7 Dab:e — 7T’ T(,aPb)c
r r?
” 1(1+1 4
_ ( : )pab + ﬁr,ar,bK> Ylm 7

2
Ohgsa = ;r’b(pab—gabK)ZT

he
Dhe + (1 —rOr — rb—l(l+1))r

< 4 —T, rbhb>X ,
Ohap = <7~QEK +2rr° K , + o ab (Pap — g K) — 11 + 1)K> Uﬁ{%
4 s
- SrthaWE (B.9)

where we used QP X = [1 — (I + 1)] X]* found in Eq. (A.12), and QPCUYY, ., =
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Z' to simplify the appearance of Ohg4 and QCPU Apiep = —l(l+ LU to simplify
that of Ohap; both relations can be found in Eq. (A.13).
Similarly for h%,,,

aab T (p c:ab + 2K, ab) Ylm

2
han = <pbba _ ﬁpbb + 2K, r,aK) VA

{l+1
Rouap = < + )paa +2rr* K, — (I + 1)K> Ui,
+ (p% +2K) ViR (B.10)
where, in deriving h%,,,, we used QBcylm BClA = = 27", and for h%.ap, we used

QPUGY ap = 2VAE — 1L+ UL (see Eq. (A.13)).

To expand the perturbation equations, we also need hq(,;,) “:
2 1 2 2
hatap) © = [Pcm;b)c + o (Pc(a:b) - ;T(,bpwc) — Tl + GTarp K yrm

1 2 4
]’Loz(a;A) o — 5 |:pba;b -+ ;'r’bpab -+ K’a - ;T',GK] qum
1 2

h 6
+ (1 —rOr —r rb) =2 _ —r,ar’bhb] qum ,
72

2
« = l(l + 1) tm
haap)® = |11 p e T TT:abD” b oty (pab 9o K) — | rOr + 5 KUy
2
+ KVi5+ (h + —r’“ha> Wik (B.11)
r

and, finally, for h,pi* —1he:

o

e a ~ a 2
haﬂ b _ Dh'aa = |:p b:ab —[Ip a + ;T,a (2pba:b - pbb:a)
2 {l+1 2
+ ;T:abpab + (—772““)10“@ + ﬁr’ar’b (Pab — g K)
- 6 2 - I(I+1
- 20K — —rK, — — <r[]r — —( ;_ )) K] y'im, (B.12)
T T

It is clear from the presence of Y'™ only, that this term contributes only to even

parity modes.
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B.3 Covariant perturbations of the Einstein tensor

for a Schwarzschild spacetime

Combining the previous results, we can calculate G, found in Eq. (2.19):

1, 1, 1. ..
5Gab = [pc(a:b)c - igabp d:cd - §p cab T § (Dpab - gapr c)
2 7 dl+1
-+ —Te (pc(a:b) - gabPCd;d) - (pab:c - gabpdd:c) + (—2_)‘pab
T T 2r
1 (2 2 L Il+1) .
— ZGab (_QTCpocd + —T.cdP d + (—_Q_)p c) - K:ab + gabDK
2 T T T
2 3 1 2 . (l+1
— —T(,aK,b) + —gabr’cK’c — —Gab (——2(7‘[]1“ + r’Cr’C) s ( - )) K] ylm (,813)
r T 2 r r
Li, b Ta b Im
5G11A = 5 pa:b_pb:a+7pb_K,a ZA
1 ~ b 2 R/ b
+ 5 - Dha +h b T ; (7’ hb:a - ’/',ah, :b)
2 (l+1 2
- Zrght+ ( t )ha - —Qr,awbhb> Xt (B.14)
T T T
_ 1 2{ =0 ab 2 boa e b l(l + 1) a 2 ,a d im
6GAB — 'ér (Dp a P ap— ;T Ppa Tp ba 92 Pot ;7‘ K,a + 0K UAB
1
- ipaavfl{g + ha:aWilnlg - (B15)

As discussed in Sec. 2.3.1, gauge invariance can now be restored in the equations by
substituting pey — Pap, K — K, hy = hg, where the gauge invariant functions are
defined in Eq. (2.29) and Eq. (2.30).

This completes the derivation of the perturbation of the Einstein tensor for a
vacuum spherically symmetric background spacetime. These are used, combined
with expressions for m%r,, r., and R appropriate to the Schwarzschild spacetime,
to give the complete covariant and gauge invariant equations describing the metric

perturbations of a Schwarzschild black hole.
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Appendix C

Numerical integration of the
one-dimensional wave equation:
the corrected Lousto-Price

algorithm

We describe the method used to numerically integrate the Zerilli-Moncrief and Regge-
Wheeler equations, in Schwarzschild coordinates, given by Eq. (2.59) and Eq. (2.67).
The method we use is based on an algorithm first developed by C.O. Lousto and
R.H. Price [54]. Below, we retrace the steps involved in the derivation of their nu-
merical algorithm. The essence of the derivation is unaltered, but we carefully keep
track of the discretization errors and provide a quadratically convergent version of
their algorithm (instead of linearly convergent). This general method is employed in
Chapter 4 and Chapter 5.

In Sec. C.2, we present a convergence test of the algorithm. Numerical results
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show that the algorithm is indeed converging quadratically with the stepsize. For the
purpose of the demonstration, we display a convergence test of the solutions for the
case of the radial infall of a point particle, starting from rest at a radius r,, into a

Schwarzschild black hole. This case was studied in detail in Sec. 4.3.

C.1 Numerical algorithm

We present a numerical algorithm to integrate

ok 0?

—sat g V(r)| ¥(r,t) = S(r,t), (C.1)

where V (r) is a smooth potential, and the singular source term S(r,t) is of the form
S(r,t) = G(r,t)8(r — 1p(t)) + F(r, 1) (r — 1y(2)), (C2)

where a prime denotes an r-derivative, r* is the tortoise coordinate, 7,(¢) denotes the
radial position of the particle as a function of time, and G(r,t) and F(r,t) are known
functions of r and ¢ once the motion of the particle is specified.

The numerical domain is a staggered grid in r* and t, with a stepsize A =
Ar*/AM = At/2M, over the region of spacetime bounded from below by the spacelike
hypersurface ¢ = ¢, (time at which the numerical integration begins). The numerical
grid is divided into cells of area 4A?. (Instead of using the physical area 2A?, we found
it convenient, following C.O. Lousto and R.H. Price [54], to define A = [ du dv = 4A?,
where u =t — r* and v = ¢ + r*.) The cells can be separated into two groups. The
first group corresponds to cells in which r # r,(t) everywhere; these cells are never
traversed by the particle. The second group is such that » = r,(¢) somewhere within
the cell; these cells are traversed by the particle. The two types of cells are displayed
in Fig. C.1; in the diagram, the particle enters the cell on the right of r; and leaves

on the left, but other entry and exit points are possible.
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(r;‘ s tb+ 2A) (r: s tb+ 2A)

E * _ *
(rb A,tb+ A) (rb A,tb+ A) (rb+A,tb+ A)

(r;‘+ A, tb+ A)
(R*, T

(R Ty)

== 5. Particle’s
worldline

X ES
(rb,tb) (rb,tb)

Figure C.1: The left cell is never crossed by the particle’s trajectory. In such a cell
the evolution of ¥(r,t) is unaffected by the source term in Eq. (C.1), and Eq. (C.3)
is used to evolve (¢, r) forward in time. The right cell is traversed by the particle’s
world line. The areas shown in the cell are used in the numerical algorithm that
incorporates the effect of the source term in Eq. (C.1). The wave function is evolved
according to Eq. (C.7). The labels (R}, T}) and (R}, T}) refer to the points (r*,¢) at
which the particle enters and leaves the cell, respectively.

The evolution of 1)(r*,t) across cells belonging to the first group is not affected
by the source term. For these cells, we use a standard scheme, accurate to O(A?),

for the homogeneous wave equation in the presence of a potential:

2
B(ri b +28) = (i) Mﬁ+A@+A)P—éL4

A2
" w@—An+Aﬂr~5wy (©3)
where (7}, %) designates the bottom corner of the cell (see Fig. C.1), and Vj, = V (r}).
The evolution of 1(r, t) across cells belonging to the second group is affected by the
singular source term. To obtain the evolution of 1 across these cells, we closely follow
C.O. Lousto and R.H. Price [54], carefully keeping terms up to order A3. Integrating

Eq. (C.1) over a grid cell, term by term, we get:

0?
//dA ( ot ) b o= [ b+ 20) + (1)
—?,D(TZ — A, tb -+ A) — 7,[)(7’; -+ A, tb + A)] ,(04)
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/ / JAVIYD = Vil Aib(rt — Aty + A)
+Aotp(ry, ty) + Asth(ry, by + 24)

+Agb(rE + Aty + A)| + O(AY), (C.5)

where dA = du dv, and the A;’s are areas dividing the cell into four non-equal parts
(as shown in Fig. C.1). Integration of the source term over the cell eliminates the

d-function in Eq. (C.2) and the term involving the radial derivative of the J-function

r:rp(t):l

(147 (T3)) 7, (C.6)

is evaluated by integrating by parts. The result is

//MSZQL%tGWWﬂ_g(P%ﬂ)

1 —2M/ry(2) 1—2M/r
F(TP(Tb)>Tb)
(1= 2M/r,(T;))
F(T;D(Tt)th)
(1 —=2M/ry(13))?

+ [LF (D))

+

where 75 = u"/ E (u" is the radial component of the four-velocity and E the conserved
energy per unit mass), 7} is the time at which the particle enters the cell, and T; the
time at which it leaves the cell. In the previous expression, the upper (lower) sign for
the first boundary term (a function of 7;) applies when the particle enters the cell on
the right (left) of r;. Similarly, the upper (lower) sign for the second boundary term
(a function of T;) applies when the particle leaves the cell on the right (left) of r;.

Substituting the previous results in Eq. (C.1) and solving for 9 (r;,t, + 2A), we

obtain
* * ‘/b
Bt 28) = —pog)|1+ 2 - 40
+(ry + Aty + A) [1 — %(Al + Ag)]

+¢(7‘Z - A, tb -+ A) [1 — K?(Azl + A3):l

<1 - —A3> // dA S(r,1). (C.7)
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Notice that we have kept the factor of (1 — V,A3/4) in front of the source term. This
factor does not appear in the scheme devised by C.O. Lousto and R.H. Price[54],
but is required to obtain quadratic convergence: the boundary terms appearing in
Eq. (C.6) are O(1) in A and V,As3/4 represents a correction of order O(A?) to their
contribution, which cannot be neglected when quadratic convergence is required.

The previous equations cannot be used to evolve 1 from the initial time ¢ = £, to
the next time ¢t = ¢, + A. To get ¢¥(r},t, + A) we need ¥(r; — A, 1t,), Y(ry + A1),
and ¥(rf,t, — A). By construction, ¥(r;,t, — A) is not known, but we can use the
simple relation (1}, to — A) = ¥(rf, to+ A) — 289 (r*, t,) + O(A3). Because we use a
Taylor expansion to obtain this relation, it is valid so long as r;(t) # r; everywhere in
the éell; we chose r; — A <75 (t,) < r; which guarantees that this relation is satisfied
if ™ < 0 on the initial hypersurface. For circular orbits, 7, is time independent so
that choosing it in the way described above is adequate. For bound orbits, we choose
the particle to be initially moving toward the black hole so that the condition u, <0
is satisfied. To obtain waveforms for which the particle is initially moving away from
the black hole, r; — A < r,(t,) < r} should be replaced with r; < r(t,) < rj + A
with v" > 0.

In order to numerically integrate Eq. (C.1), initial data for both (r*,¢,) and

Y (r*,t,) must be provided as input. This issue is discussed in Chapter 4.

C.2 Convergence of the numerical code

We now describe the convergence properties of this numerical algorithm. The method

described in Sec. C.1 is designed to be second-order convergent, i.e. the numerical
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solution converges toward the exact solution quadratically. This means that, every-
thing else being fixed, the field at a given spacetime point is a function of A described

by
Y (A) = pa + A%p, (C.8)

where 1y is the numerical field obtained with a stepsize A throughout the grid, ¥4
is the exact solution, and p is an error term independent of A. Note that error terms
of order O(A?) are neglected in this equation.

The convergence of our numerical code can be tested by defining
SY(D) = v (24) — Yn(A) = 34%p, (C.9)

and evaluating d% for various values of A. This function is proportional to the error
made in discfetizing Eq. (C.1) and it satisfies §9)(nA) = n?d¢(A). This later property
is important as we use it to determine the convergence rate of our code.

- The convergence of the method is a property of the method itself, and not of the
system under study. To establish the convergence of the algorithm it is sufficient to
show that it is converging quadratically for one specific system. We therefore test the
convergence of the method in the instance where the point particle falls radially from
rest toward a Schwarzschild black hole. This case was studied in Sec. 4.3, where a
one-parameter family of time-symmetric initial data was introduced.

We construct §¢ from ¢ calculated with A = 0.005, 0.01, 0.02, and 0.04 on the
null line v/2M = 500, i.e. at each grid point on this ingoing null line we calculate
91(0.005), d4(0.01), and J1(0.02). In this way, we construct 6¢)(A) as a function of

retarded time u. Note that for u < —r*

», we are testing the vacuum finite-difference

algorithm, whereas for v > —r} we are testing the convergence properties of the

method when cells are crossed by the particle’s world line.
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Figure C.2: Convergence properties of the numerical method. We display §1(0.02),
401(0.01), and 164(0.005), for r,/2M = 2.1, @« = 1, and [ = 2. The agreement
between the curves indicates that the numerical code is converging quadratically
toward the exact solution. This is representative of the convergence in other cases.

From the definition of 4, it is obvious that they should satisfy §¢(0.02) =
461(0.01) = 166(0.005) at every grid point if Eq. (C.8) holds and the cénvergence is
quadratic. In Fig. C.2, we display 6¢(0.02), 45¢(0.01), and 1651(0.005), for the case
To/2M = 2.1, a =1, and | = 2. The fact that the three curves are close together sig-
nals quadratic convergence, with 46¢(0.01) and 1661(0.005) being the closest. This
is expected since as A is decreased, the approximation made in Eq. (C.8) becomes
more accurate, and we get a better coincidence of the curves. The convergence rate

observed in this figure is typical of the convergence obtained in our implementation

of the modified C.O. Lousto and R.H. Price algorithm.
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