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Many numerical solvers aimed at the solution of high speed chemically reacting flows
employ methods that solve directly for both the change in thermal and mass diffusivity
due to turbulence through the solution of a turbulent Prandtl and turbulent Schmidt number
directly. In many cases, the solution of the turbulent Schmidt number requires a method of
modelling the effects of species massfraction fluctuations on the source terms representing
the chemical reactions occurring. One approach that has seen reasonable success is the use
of Probability Density Functions (PDFs) to evaluate the time averaged values of fluctuating
massfraction terms appearing in the governing equations. Both assumed forms for these
PDFs as well as PDFs where their evolution itself is part of the solution procedure have
been implemented. The assumed forms have generally been regarded as being the best
combination of accuracy and computational efficiency. Indeed, the use of a multivariate β
PDF for the species massfraction fluctuations reduces to an algebraic expression avoiding
the need to numerically integrate the PDF (as is required when using a Gaussian PDF).
This report details the implementation of assumed, jointly un-correlated PDFs for both
temperature and species massfraction fluctuations. It shows that provided one is already
using a variable Prandtl and/or variable Schmidt number numerical solver, no additional
conservation equations are required (the use of a temperature PDF requires the variable
Prandtl number solver, the use of a composition PDF requires the variable Schmidt number
solver).
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This report describes the use of Probability Density Functions (PDFs) in the calculation of
turbulent, chemically reacting flowfields. The requirement for the modelling of chemical
source terms is reviewed through the development of the Favre averaged species conser-
vation equation. The relationship between a time averaged and expected, or mean, value
(which can be found using a PDF) is then presented. This is followed by the derivation of
the chemical source term to highlight the manner in which PDFs can be used to solve for
this term while considering fluctuations in species massfractions.

The use of marginal, or jointly un-correlated, PDFs is presented using a clipped, Gaussian
PDF for the fluctuations in temperature and a multivariate β PDF for species massfraction
fluctuations. It is shown how the use of the multivariate β PDF reduces to the solution of
a set of algebraic equations eliminating the need to numerically integrate the PDF. This
algebraic expression requires the solution of the time averaged species massfraction and
the sum of the species massfraction variance, where the variance is assumed known (this is
often solved for as part of a variable Schmidt number numerical solver).

The report also contains a brief review of relevant papers utilizing the methods described
in this work and concludes with some recommendations for future work.
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1 Introduction
The determination of fluctuating components within a turbulent flowfield has long been
an area of significant computational research given the ease with which laminar values, or
time averaged values, can be calculated using reasonably efficient Navier-Stokes solvers.
This has led to a wide variety of turbulence models whose aim is to accurately model the
effects of fluctuations in the velocity field on the apparent viscosity within the flowfield.
However, velocity is not the only variable to fluctuate due to turbulence and thus numerous
researchers have led efforts into the direct modelling of other fluctuating flowfield variables.

Work done by Nagano and Kim [1] introduces a two equation turbulent thermal field model.
Sommer, So, and Lai [2], So and Sommer [3], and Sommer, So, and Zhang [4],[5] build
on this work by modifying the turbulent thermal field equations to include the effects of
viscosity and compressibility while modifying the near wall treatment to obtain behaviour
consistent with the physics of the flow. This results in a numerical method that is able to
calculate the turbulent Prandtl number directly without a need to set it a priori, allowing a
more accurate simulation of flows in which this number can vary significantly within the
flowfield (like rocket plumes or scramjet combustors).

For multi-species flows turbulence can increase the apparent mass diffusivity (just as it does
for both viscosity and thermal diffusivity) which has led to the development of variable
Schmidt number numerical solvers. Brinkman et al. [6] consider non-reacting flows and
propose that the turbulent Schmidt number can be calculated directly from the solution
of an equation governing the sum of the square of the fluctuations in the species mass
fractions and another governing the rate of this quantities’ dissipation. This approach is
further expanded by Brinkman et al. [7] [8] and Calhoon et al. [9] where the consideration
of reacting flows is included (while also replacing the thermal variance equation with one
for the internal energy variance). In each of these cases these variable Schmidt number
models are coupled to a two equation k−ω turbulence model. It is interesting to note that
in these works even though chemical reactions are considered, the need to model chemical
reaction source terms is avoided through the use of two conservation equations, one for the
mixture fraction variance and another for the rate of its dissipation.

Although not as common as the two equation k−ω turbulence model, there has also been
development of a variable Schmidt number model with the k−ζ turbulence model (Robin-
son and Hassan [10]). This model has been found to work well when using both a variable
turbulent Prandtl and Schmidt number approach (Xiao et al. [11][12][13]).

In general, when solving for chemically reacting flows the use of a species massfraction
conservation equation leads to the need to model the average of a chemical source term.
Terms involving the products of species massfraction fluctuations and the chemical source
term appear in other equations as well and thus require additional modelling. A popular
approach in handling these terms has been through the use of probability density functions,
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or PDFs. Two popular approaches for this method have been to use either an assumed
form for the PDF, or to calculate the evolution of the PDF as part of the solution. The
evolution approach is based of the work of Pope [14], [15] where the evolution of a joint
velocity/composition PDF is solved using a Monte Carlo approach. The advantage of this
method is that the effects of convection, reaction, body forces, and the mean pressure gra-
dient appear directly in the equations and thus do not require modelling. However, due to
the large dimensionality of the joint PDF this method is computationally expensive and
thus many researchers have focused on using an assumed form for the PDF based on the
work of Girimaji [16], [17] called the multivariate β PDF.

When comparing the two methods both have been found to produce similar results for the
mean flow variables, however, the evolution PDF methods require a significant increase in
computational requirements (Calhoon and Kenzakowski [18], Baurle et al. [19] [20] [21]).
In all these cases the temperature fluctuations are modelled using an assumed Gaussian
distribution (or assumed β function for Calhoon and Kenzakowski) while the massfraction
fluctuations are modelled using the assumed multivariate β PDF of Girimaji. The assumed
multivariate β PDF approach has difficulty calculating higher order terms due to its as-
sumption of statistical independence between the temperature and the composition. It is
also fairly dissipative in the presence of combustion (Keistler et al. [22]) making it less
accurate downstream of ignition, but reasonably accurate preceding ignition. It has been
shown to be fairly insensitive to the choice of turbulence model in terms of its effect on
the calculation of the turbulent mass diffusivity and requires no additional variables to be
solved. The requirement of no additional unknown terms other than those already present in
most variable Schmidt number solvers makes the assumed multivariate β PDF an attractive
choice for many computational codes. Due to the temperature/composition de-coupling it
is also possible to treat the fluctuations in temperature and composition differently.

Narayan and Girimaji [23] use an assumed form multivariate β PDF to model massfraction
fluctuations while avoiding a PDF for temperature through the use of a series expansion for
the reaction rates based on the mean temperature. Alternatively, Gaffney et al. [24] ignore
the effect of massfraction fluctuations and model temperature fluctuations as following ei-
ther an assumed Gaussian or assumed β PDF. They show that temperature fluctuations can
have a significant impact on the calculation of reaction rates, while the use of a Gaussian
PDF can be sensitive to the clipping limits used (since the exact Gaussian PDF has limits
of ±∞). In addition, Gaffney et al. [25] have studied series expansion for the fluctuations
in composition with assumed PDFs for temperature resulting in a method that does not
require any numerical integration. Tested on a high speed turbulent reacting hydrogen/air
mixing layer (two dimensional) they show that species fluctuations can also have a notice-
able effect on the chemical reaction rates.

The multivariate β distribution of Girimaji for the species massfraction PDF has also been
tested with various assumed temperature PDFs by Gerlinger [26]. The shape of the assumed
temperature PDF (Gaussian, triangular, rectangular) is found to have little effect on the re-
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sults of a supersonic diffusion flame. However, the choice of variance equation from which
the temperature fluctuations are extracted shows that a semi-empirical equation achieves
the best results (where transport equations for the variance of sensible energy, energy, and
temperature are compared).
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2 Turbulent, Reacting Flow
For a system in which the fluid composition can change due to chemical reactions, it is
often convenient to model a conservation equation for each of the possible species,

∂
∂ t

(ρYm)+
∂

∂x j
(
ρu jYm

)− ∂
∂x j

(
ρDm

∂Ym
∂x j

)
− ω̇m = 0 (1)

where Ym is the massfraction of species m,

Ym = ρm/ρ (2)

Although accurate for laminar flows, Eq. 1 does not account for the fact that under turbu-
lent conditions each of the variables may fluctuate at a given point and thus under these
circumstances an average over time can be taken,

∂
∂ t

(ρYm)+
∂

∂x j
(
ρu jYm

)− ∂
∂x j

(
ρDm

∂Ym
∂x j

)
− ω̇m = 0 (3)

where the averaging process indicated by the overline is often referred to as the Reynolds
average. For a given variable φ ,

φ =
1
T

∫ t=T

t=0
φdt (4)

It is also possible to define a density weighted average (often referred to as a Favre average)
as,

φ̃ =
1

ρT

∫ t=T

t=0
ρφdt =

ρφ
ρ

(5)

where it is possible to relate several Reynolds and Favre averaged quantities through,

ρφ̃ = ρφ (6)

and

ρφ1φ2 = ρφ̃1φ̃2+ρφ ′′
1 φ ′′
2 (7)
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Therefore, if one assumes a variable can be represented by its Favre averaged value and a
fluctuation about this value, then using species massfraction as an example,

Ym = Ỹm+Y ′′
m

and Eq. 3 can be expressed as,

∂
∂ t

(
ρỸm

)
+

∂
∂x j

(
ρ ũ jỸm

)
+

∂
∂x j

(
ρD̃m

∂Ỹm
∂x j

−ρu′′jY ′′
m

)
− ω̇m = 0 (8)

In obtaining this expression it has been assumed that the dominant effect of turbulence
on the mass transfer process is from the large scale movement of turbulent eddies (thus
allowing one to assume the effects of u′′j to be much greater than those due to D′′

m). In
this form the solution becomes one of finding the time averaged values of quantities such
as velocity, species massfraction, and density. However, this inclusion of turbulence now
involves the solution of an additional term involving the fluctuating components of both
velocity and massfraction, as well as a time averaged value of the species production ω̇m.

Most numerical models employ the assumption of a turbulent diffusivity, (νm)T = ρ(Dm)T ,
which is used to approximate the fluctuating terms through,

−ρu′′jY ′′
m = ρ(Dm)T

∂Ỹm
∂x j

(9)

allowing the species conservation equation to take the form,

∂
∂ t

(
ρỸm

)
+

∂
∂x j

(
ρ ũ jỸm

)
+

∂
∂x j

[
ρ(D̃m+(Dm)T )

∂Ỹm
∂x j

]
− ω̇m = 0 (10)

The calculation of the turbulent diffusivity is often based off of a knowledge of the turbulent
co-efficient of viscosity μT . This term accounts for the apparent increase in viscous effects
due to the fluctuations in velocity and is used to model the Reynolds stresses which appear
in the momentum equations after performing a similar averaging process, i.e.,

ρu′′j u′′i ≈−μT
∂ ũi
∂x j

(11)

There are numerous approaches to calculating a value for μT , many of which involve solv-
ing an additional one or two conservation equations for various turbulent quantities. Once
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found, if one sets a turbulent Schmidt number a priori then this leads directly to a value for
(Dm)T as,

(Dm)T =
μT

ρScT
(12)

Although this approach can produce satisfactory results, it is dependent on a knowledge of
the correct turbulent Schmidt number to set for the particular flowfield under consideration
(and thus must often be tailored for a given simulation). However, it is also possible to
directly calculate the turbulent diffusivity in a manner similar to that done for the turbu-
lent co-efficient of viscosity through the solution of additional conservation equations. In
either case, the sole remaining task for the solution of Eq. 10 is some means of finding the
averaged value of the species production terms.

2.1 Expected Value
In the previous section the assumption of a time average is used to postulate the existence
of a value that, given a large enough time, will be consistently measured for a given set
of circumstances (i.e., initial conditions). This implies that despite the random nature of
turbulence, the averaged values solved for would not vary significantly between successive
repetitions of the same experiment. The variability across successive experiments (each
conducted over a given time period) is evaluated by the ensemble average,

〈φ〉N =
1
N∑

N
φN (13)

where the number of successive repetitions of the experiment is N. As the number of rep-
etitions increases, the value of the ensemble average tends towards the mean, 〈φ〉, or the
expected value, which is formally defined as,

E(φ) = 〈φ〉=
∫ ∞

−∞
ψPφ (ψ)dψ (14)

In Eq. 14 Pφ(ψ) is called the probability density function and it represents the probability
that the variable φ will have a value equal to ψ , where ψ represents all the values possible
for the variable φ (i.e., all the realizations of φ ). In the case of a Gaussian random variable
(also known as a normally distributed random variable), the probability density function
(hereafter referred to as the PDF) has a bell shape defined by,

Pφ (ψ) =
1√
2πσ

e−
1
2

(
ψ−〈φ〉

σ

)2
(15)

6 DRDC Valcartier 2014-XXXX



where σ2 is the standard deviation. Depending of the values of the mean and the standard
deviation the resulting curve can be shifted, sharpened/flattened, or both (see Fig. 1)
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Figure 1: Gaussian probability distribution function

If the exact same PDF applies across multiple experiments (i.e., not simply the shape of
the PDF but also the mean and standard deviation) then the experiments are said to be
statistically stationary (they have the same probability law) and thus from the definitions in
Eq. 13 and 14,

〈φ〉N =
1
N
[〈φ〉1+ 〈φ〉2+ · · ·+ 〈φ〉N]

〈φ〉N =
1
N

[∫ ∞

−∞
ψPφ1(ψ)dψ +

∫ ∞

−∞
ψPφ2(ψ)dψ + · · ·+

∫ ∞

−∞
ψPφN (ψ)dψ

]
but since Pφ1(ψ) = Pφ2(ψ) = PφN(ψ) this becomes,

〈φ〉N =
1
N

[
N

∫ ∞

−∞
ψPφ (ψ)dψ

]
= 〈φ〉 (16)

for all values of N, including N = 1. Thus for statistically stationary flows the ensemble av-
erage is exactly equal to the mathematical expectation even for a single set of experimental
results.

If one postulates that as the time interval over which an average is taken increases (larger
T ), the difference between values obtained (as defined by Eqs. 4 or 5) will become smaller
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between successive repetitions of a given experiment, then the time averaged value (φ̃ )
approaches the ensemble average (〈φ〉N). If the flow is further assumed statistically sta-
tionary then by virtue of Eq. 16 this means that the time averaged value of a given variable
approaches the mathematical expectation, or mean, of that variable,

φ̃ = 〈φ〉 (17)

This result provides an interesting approach to finding the time averaged value of any vari-
able (including the time average of a fluctuating variable) through the use of PDFs. Before
examining this approach in detail, it is convenient to define the nth central moment (or the
nth moment about the mean) as the expectation,

E ([ψ −〈φ〉]n) =
∫ ∞

−∞
[ψ −〈φ〉]n Pφ (ψ)dψ (18)

where since the mean lies at the centre of the PDF the first central moment is equal to zero.
However, the 2nd central moment (also referred to as the variance) is directly related to the
standard deviation, σ2φ , as the expectation of the square of obtaining a value away from the
mean,

var(φ) = σ2φ = E
(
[ψ −〈φ〉]2

)
=

∫ ∞

−∞
[ψ −〈φ〉]2Pφ (ψ)dψ (19)

This provides a link between fluctuations about a mean value and the PDF. For any variable
composed of a time averaged and fluctuating component, when statistical stationary flow
is assumed one can write,

φ = φ̃ +φ ′′ = 〈φ〉+φ ′′ ⇒ φ ′′ = φ −〈φ〉

The expected value of this fluctuating quantity squared can thus be expressed as,

E
(
φ ′′φ ′′)= E (

[φ −〈φ〉]2
)

(20)

where comparing the righthand side of Eq. 20 to Eq. 19 shows that the standard deviation
is directly related to fluctuating component of the variable under consideration,

E
(
φ ′′φ ′′)= 〈φ ′′φ ′′〉= σ2φ (21)
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2.2 Chemical Source Term
The solution to Eq. 10 requires a value for ω̇m, the time averaged rate of production or
consumption of species m per unit time ([(kg/(m3/s)]). For laminar flows this rate can be
calculated from a knowledge of the forward and backwards reaction rate of a given chem-
ical reaction along with the stoichiometric mol numbers of a given species within that
reaction as follows. Using the dissociation of hydrogen through a collision with another
molecule (B) as an example,

2H+B⇀↽ H2+B (22)

one can define

νrm : νreactantH = 2 νreactantH2 = 0 νreactantB = 1 (23)

and
ν pm : νproductH = 0 νproductH2 = 2 νproductB = 1

For a molecule that does not undergo a change in quantity through the reaction the differ-
ence between ν pm− νrm will always be zero while for one which increases in the forwards
direction this difference will yield a positive value (and thus a negative value is obtained for
a molecule that decreases in the forwards direction). Therefore, if one assumes an overall
reaction rate K such that a positive value indicates the forward direction (from left to right
in Eq. 22) then the chemical source term can be expressed as,

ω̇m = Mm(ν pm−νrm)K (24)

provided the overall reaction rateK has units of (m3s)−1. This rate is found as the difference
between the rate at which the given reaction proceeds in the forwards and backwards. The
forward reaction rate can be calculated using a modified Arrhenius equation,

k f = ATne−Ea/ℜT (25)

and the backwards reaction rate is related to k f through the equilibrium constant based on
concentrations,

Kc =
k f
kb

(26)

It should be noted here that by definition the equilibrium constant based on concentrations
is defined as,
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Kc(T ) =

(
ρY1
M1

)ν p1
(

ρY2
M2

)ν p2 · · ·
(

ρYm
Mm

)ν pm

(
ρY1
M1

)νr1
(

ρY2
M2

)νr2 · · ·
(

ρYm
Mm

)νrm
=

Πm
(

ρYm
Mm

)ν pm

Πm
(

ρYm
Mm

)νrm

Kc(T ) = Πm
(

ρYm
Mm

)ν pm−νrm
(27)

where from Eq. 27 it can be seen that the equilibrium constant will have units of concen-
tration (kmols/m3) raised to the power of ∑ν pm−∑νrm. This requires that the various terms
appearing in Eq. 25 (activation energy Ea (per kmol), the exponent n, and the constant A)
which vary depending on the particular molecular reaction being considered (ℜ is simply
the universal gas constant) be such that they yield a rate (i.e. change per unit time) divided
by concentration raised to the power of the sum of the reactant mol numbers, ∑mνrm. From
Eq. 26 this will yield a backwards reaction rate with units of per unit time and per unit
concentration raised to the power of the sum of the product mol numbers (∑ν pm). Under
these circumstances, the overall reaction rate can then be calculated on a simple per unit
time basis by a multiplication of the forward rate by the sum of the reactant concentrations
(each raised to their stoichiometric mol numbers, see Eq. 23) minus the backwards reaction
rate multiplied by the product concentrations (raised to their stoichiometric mol numbers).

K = k f

[(
ρYH
MH

)νrH (ρYH2
MH2

)νrH2
(

ρYB
MB

)νrB
]
− kb

[(
ρYH
MH

)ν pH (ρYH2
MH2

)ν pH2
(

ρYB
MB

)ν pB
]

K = k fρ
(νrH+νrH2+νrB)

[(
YH
MH

)νrH ( YH2
MH2

)νrH2
(
YB
MB

)νrB
]

−kbρ(ν pH+ν pH2+ν pB)
[(

YH
MH

)ν pH ( YH2
MH2

)ν pH2
(
YB
MB

)ν pB
]

Defining the variables

ζ r = ∑
m

νrm and ζ p = ∑
m

ν pm (28)

allows one to re-express the chemical source term in Eq. 24 as,

ω̇m = Mm(ν pm−νrm)

[
k fρζ rΠm

(
Ym
Mm

)νrm
− kbρζ pΠm

(
Ym
Mm

)ν pm
]
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In the case where there is more than one reaction that involves the species m, the above
expression is modified slightly (where the number of possible reactions ranges from 1 to
j),

ω̇m = Mm∑
j

{
(ν pm, j−νrm, j)

[
k f jρ

ζ rjΠm
(
Ym
Mm

)νrm, j
− kb jρζ pj Πm

(
Ym
Mm

)ν pm, j
]}

(29)

as now the stoichiometric mol numbers of species as products and reactants depends on the
particular reaction j and thus,

ζ rj = ∑
m

νrm, j and ζ pj = ∑
m

ν pm, j (30)

while the definitions of k f and kb are the same as those in Eqs. 25 and 26 (only now specific
to reaction j).

With Eq. 29 one is now in a position to take the time average of the chemical source term,
where since the molecular weights and the stoichiometric mol numbers are constant results
in the following,

ω̇m=Mm∑
j

{
(ν pm, j−νrm, j)

[
k f jρ

ζ rjΠm
(
Mm

−νrm, jYm
νrm, j

)
− kb jρζ pj Πm

(
Mm

−ν pm, jYm
ν pm, j

)]}

In this form the challenge becomes how to properly evaluate the average reaction rates
(both forward and backward) along with the fluctuations in species massfraction. For ex-
ample, including turbulent fluctuations in temperature the forward reaction rate (Eq. 25)
yields,

k f j = A(T̃ +T ′′)
n
e

−Ea
ℜ(T̃+T ′′) (31)

where even if T ′′/T̃ is assumed < 1 thus allowing (T̃ +T ′′) to be expanded in a series still
requires numerous terms to be carried through the calculations to be accurate. Similarly,
when including turbulent fluctuations in species massfraction one obtains the terms,

Πm(Ỹm+Y ′′
m)

νrm, j
= (Ỹ1+Y ′′

1 )
νr1, j(Ỹ2+Y ′′

2 )
νr2, j · · ·(Ỹm+Y ′′

m)
νrm, j

which results in a large number of fluctuating massfraction products that would require
modelling.
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Therefore, in order to avoid these difficulties one can replace the average value for k f ,kb,
and Ym directly with their mean values if one assumes statistically stationary flow (Eq. 17),

ω̇m=Mm∑
j

{
(ν pm, j−νrm, j)

[
〈k f j〉ρζ rjΠm

(
Mm

−νrm, j
)
〈ΠmYmνrm, j〉−〈kb j〉ρζ pj Πm

(
Mm

−ν pm, j
)
〈ΠmYmν pm, j〉

]}
(32)

It should be noted that in obtaining Eq. 32 it has been assumed that the density and the
massfractions are jointly independent (see Gaffney et al. [27]).

2.3 Joint PDFs
When using PDFs to find the mean value of a variable, if the variable is found to depend
on more than a single independent quantity then a joint PDF is required. However, this
then requires that to evaluate the joint PDF one must be capable of integrating over all the
independent quantities. For the case of the chemical source term, the rate at which a given
species is produced or consumed depends on both the temperature of the mixture as well
as the massfractions of the various species that exist at a given time. This means that a joint
PDF of both temperature and composition is required,

P(T ,Y1,...,Ym)(T,Y1, . . . ,Ym) (33)

As with a single variable PDF, when the integration of the joint PDF is taken over the
limits of negative and positive infinity the results is still unity (i.e., considering the entire
spectrum of possible values for a given variable, the probability is certain),

∫ ∞

−∞
· · ·

∫ ∞

−∞
P(T ,Y1,...,Ym)(T,Y1, . . . ,Ym)dTdY1 · · ·dYm = 1 (34)

However, if one assumes that the species massfractions are jointly independent of the tem-
perature then the joint PDF can be expressed as a multiplication of two separate PDFs,

P(T ,Y1,...,Ym)(T,Y1, . . . ,Ym) = PT (T )PY1,...,Ym)(Y1, . . . ,Ym) (35)

each of which can be evaluated independently.
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2.4 Assumed Temperature PDF
Although the assumption that the temperature and species massfractions are uncorrelated
(jointly independent) does not reflect the physics of turbulent combustion, it has been ap-
plied successfully to mixing flows and thus extended to flows involving combustion as well.
When this is done, the temperature can be assumed to have a randomly distributed profile
and thus follow a Gaussian PDF,

PT (T ) =
1√
2πσT

e−
1
2

(
T−〈T〉

σT

)2
(36)

For statistically stationary flows one can replace 〈T 〉 with T̃ while from Eq. 21 the standard
deviation of the PDF can be replaced with the average of the square of the fluctuations in
temperature,

PT (T ) =
1√

2πT ′′T ′′
e−

(T−T̃)2
2T ′′T ′′ (37)

Although the Favre averaged temperature is likely a known variable through the standard
solution of the Favre averaged energy equation, the fluctuating temperature is generally
not a variable in the solution vector. However, several authors have developed methods to
avoid the reliance on a pre-determined value for the turbulent Prandtl number allowing the
direct calculation of the turbulent eddy thermal conductivity (κT ) from a set of equations
similar to those used for solving for the turbulent eddy viscosity (μT ). These methods, often
referred to as variable Prandtl number models, generally solve for a variance equation (i.e.,
the expectation of the square of a fluctuating value) and its dissipation. For use in evaluating
the turbulent eddy thermal conductivity the variance of either temperature (Nagano and
Kim [1]), specific enthalpy (Xiao et al. [28],[13]), or specific energy (Brinckman et al. [7])
have been modelled. In cases where the temperature variance is not modelled directly it can
be recovered by neglecting the effect of turbulent fluctuations on the specific heat allowing
one to write,

T ′′T ′′ =
(

∑
m
CpmYm

)
h′′h′′ or T ′′T ′′ =

(
∑
m
CvmYm

)
e′′e′′ (38)

Therefore, most variable Prandtl number approaches will already include sufficient infor-
mation to completely define the temperature PDF in Eq. 37 and thus the mean value of a
given reaction rate (either forward or backward) can be found through,

〈k f j〉=
∫ ∞

0
k f jPT (T )dT (39)
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Several items should be noted when using Eq. 39. The first is that the limits on the integra-
tion no longer extend below zero. Physically this is justified in that the temperature cannot
fall below this value, however, a truly Gaussian PDF requires that whatever value is being
considered has no limits so that the requirement in Eq. 34 is respected,

∫ ∞

−∞
PT (T )dT = 1 (40)

Furthermore, when numerically integrating Eq. 37 finite limits on both ends must be ap-
plied leading to a further clipping of the Gaussian PDF. These limits should be set so as to
obtain, as close as possible, the result in Eq. 40 over the range,

∫ Tmax

Tmin
PT (T )dT ≈ 1 (41)

while also respecting the fact that over this range the forward reaction rate must be cal-
culated according to the model constants in Eq. 25 which are valid within a finite range
(generally between ∼ 300 and ∼ 3000 K depending on the model chosen). Thus the final
result for the mean reaction rate can be expressed as,

〈k f j〉=
∫ Tmax

Tmin

k f j(T )√
2πT ′′T ′′

e−
(T−T̃ )2
2T ′′T ′′ dT (42)

Of course, if the variance is zero then the Gaussian PDF approaches the behaviour of a
delta function centred at the mean which can cause difficulties for numerical integration.
However, as the variance approaches zero this means that the turbulent fluctuations are
approaching zero and thus the flow can be treated as laminar, in which case the reaction
rate calculated directly from Eq. 25 can be used with T̃ = T .

2.5 Assumed Massfraction PDF
To determine the mean value of the massfraction terms in Eq. 32 using a PDF approach
one can write

〈ΠmYmνm, j〉=
∫ ∞

−∞
· · ·

∫ ∞

−∞
(ΠmYmνm, j)P(Y1,Y2,...,Ym)(Y1,Y2, . . . ,Ym)dY1,dY2, · · · ,dYm (43)

for either the products or the reactants. As the massfractions are raised to the power of the
stoichiometric mol numbers of products and reactants Eq. 43 represents moments of the
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massfraction PDF. Since the massfraction PDF depends jointly on all the massfractions,
i.e., the massfractions cannot be treated as mutually independent,

P(Y1,Y2,...,Ym)(Y1,Y2, . . . ,Ym) 
= PY1(Y1)PY2(Y2) · · ·PYm(Ym) (44)

this makes the numerical integration of even an assumed Gaussian PDF difficult. Therefore,
Girimaji [16] proposed the use of a multivariate β distribution defined as,

P(Y1,Y2,...,Ym)(Y1,Y2, . . . ,Ym)=
Γ(β1+β2+ . . .+βm)
Γ(β1)Γ(β2) · · ·Γ(βm)

{
Y β1−1
1 Y β2−1

2 · · ·Y βm−1
m δ (1− [Y1−Y2− . . .−Ym])

}
(45)

where δ is the Dirac delta function and the variable β = f (Ỹm,Y ′′
mY ′′
m) and is defined as,

βm = Ỹm
{
1−∑Ỹ 2m
∑Y ′′

mY ′′
m

−1
}

(46)

As with the assumed temperature PDF, this assumed massfraction PDF requires a knowl-
edge of both the average massfraction value and a value for its variance. Most numerical
models that consider more than a single composition fluid will have a species conservation
equation similar to Eq. 10 and so Ỹm will be known. The sum of the square of the fluctu-
ations in the species massfractions (sometimes referred to as the turbulent scalar energy)
is not typically a value that is solved for. However, development of variable Schmidt num-
ber codes (see Baurle et al. [19]) often solve for this value (and the rate of its dissipation)
as a consequence of avoiding the pre-specification of a turbulent Schmidt number to deter-
mine the turbulent mass diffusivity (Dm)T . In general the form of the massfraction variance
equation can be expressed as,

∂
∂ t (ρσY )+ ∂

∂x j (ρũ jσY ) =
∂

∂x j

(
ρ [Dm+CY1(Dm)T ]∂σY

∂x j

)

+2∑m
(

ρ(Dm)T
(

∂Ỹm
∂x j

)2−ρεY +Y ′′
mω̇m

) (47)

where

σY = ∑
m
Y ′′
mY ′′
m (48)

Along with the solution of Eq. 47, most variable Schmidt number models solve for a similar
equation for the dissipation rate of σY , or εY , to close the set of equations.
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With both the averaged value of massfraction and its variance solved for, βm is completely
determined and so returning to Eq. 43 and substituting the multivariate β PDF in Eq. 45
for P(Y1,Y2,...,Ym)(Y1,Y2, . . . ,Ym) yields

〈
Y1ν1, jY2ν2, j · · ·Ymνm, j〉= Γ(β1+β2+...+βm)

Γ(β1)Γ(β2)···Γ(βm)

∫ ∞
−∞ · · ·∫ ∞

−∞ (Y1ν1, jY2ν2, j · · ·Ymνm, j)
(
Y β1−1
1 Y β2−1

2 · · ·Y βm−1
m

)
δ (1− [Y1−Y2− . . .−Ym])dY1,dY2, . . . ,dYm

〈
Y1ν1, jY2ν2, j · · ·Ymνm, j〉= Γ(β1+β2+...+βm)

Γ(β1)Γ(β2)···Γ(βm)∫ ∞
−∞ · · ·∫ ∞

−∞ (Y1α1Y2α2 · · ·Ymαm)δ (1− [Y1−Y2− . . .−Ym])dY1,dY2, . . . ,dYm
(49)

where

αm = νm, j+βm−1= θm−1 (50)

Examining only the integral, if one performs the integration with respect to Ym first,

∫ ∞

−∞
· · ·

∫ ∞

−∞
Y1α1 · · ·Yαm−1

m−1

{∫ ∞

−∞
Ymαmδ (1− [Y1− . . .−Ym−1]−Ym)dYm

}
dY1, . . . ,dYm−1

Noting that the only time the Dirac delta function is non zero is when its argument is zero
one can define,

Y ∗
m = 1− (Y1+ · · ·+Ym−1)

while noting that δ (−x) = δ (x) (i.e., the delta function is an even function) and that by
virtue of its sifting property one can write,

∫ ∞

−∞
g(y)δ (y− c) = g(c) (51)

then letting g(y) = g(Ym) = Yαm
m and δ (y− c) = δ (Ym−Y ∗

m) one obtains,

∫ ∞

−∞
Ymαmδ (1− [Y1− . . .−Ym−1]−Ym)dYm = (Y ∗

m)
αm = (1−Y1−·· ·−Ym−1)αm

and thus one is left with
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∫ ∞

−∞
· · ·

∫ ∞

−∞
Y1α1 · · ·Yαm−1

m−1 (1−Y1−·· ·−Ym−1)αmdY1, . . . ,dYm−1 (52)

If one defines,

Y ∗∗
m = 1−Y1−Y2−·· ·−Ym−2

then the integral with respect to Ym−1 can be written,

∫ ∞

−∞
· · ·

∫ ∞

−∞
Y1α1 · · ·Yαm−2

m−2

{∫ ∞

−∞
Yαm−1
m−1 (Y ∗∗

m −Ym−1)αmdYm−1
}

︸ ︷︷ ︸dY1, . . . ,dYm−2 (53)

︷ ︸︸ ︷∫ ∞

−∞
Yαm−1
m−1

(
Y ∗∗
m
Y ∗∗
m

)αm
(Y ∗∗
m −Ym−1)αmdYm−1 = (Y ∗∗

m )αm
∫ ∞

−∞
Yαm−1
m−1 (1− Ym−1

Y ∗∗
m

)αmdYm−1

Noting that the sum off all the massfractions must equal unity allows one to rephrase the
above integral by observing that,

Y1+Y2+ · · ·+Ym−2+Ym−1+Ym = 1

Ym−1+Ym = 1− (Y1+Y2+ · · ·+Ym−2)

and thus one can change the variable of integration using the relations,

x=
Ym−1
Y ∗∗
m

=
Ym−1

1−Y1−Y2−·· ·−Ym−2 =
Ym−1

Ym−1+Ym
(54)

and

dYm−1 = Y ∗∗
m dx (55)

When there is no species Ym−1 then x = 0 while in the case where the entire mixture is
simply species Ym−1 then it must be that Ym = 0 and thus x = 1. Therefore, using the new

DRDC Valcartier 2014-XXXX 17



variable of integration in Eq. 54 and applying the new limits yields for the integration with
respect to Ym−1,

(Y ∗∗
m )αm

∫ 1

0
{xY ∗∗

m }αm−1 (1− x)αm {Y ∗∗
m dx}= (Y ∗∗

m )1+αm+αm−1
∫ 1

0
xαm−1(1− x)αmdx

and so the integral with respect to Ym−1 can be written,

∫ ∞

−∞
Yαm−1
m−1 (Y ∗∗

m −Ym−1)αmdYm−1 = (Y ∗∗
m )1+θm−1+θm−1−1

∫ 1

0
xθm−1−1(1− x)θm−1dx (56)

At this point one of the first advantages of using the assumed PDF form as presented in
Eq. 45 presents itself in that the remaining integral is by definition the beta function which
itself can be expressed as a function of several gamma functions,

∫ 1

0
xt1−1(1− x)t2−1dx= Γ(t1)Γ(t2)

Γ(t1+ t2)
(57)

Combining the results of Eqs. 57 and 56 allows the integral portion of Eq. 49 to be ex-
pressed as (while also using the relation in Eq. 50),

∫ ∞
−∞ · · ·∫ ∞

−∞ (Y1α1Y2α2 · · ·Ymαm)δ (1− [Y1−Y2− . . .−Ym])dY1,dY2, . . . ,dYm =

Γ(θm)Γ(θm−1)
Γ(θm+θm−1)

∫ ∞

−∞
· · ·

∫ ∞

−∞

(
Y1θ1−1 · · ·Y θm−2−1

m−2
)
(1−Y1−Y2−·· ·−Ym−2)θm+θm−1−1 dY1, . . . ,dYm−2︸ ︷︷ ︸

(58)

The integral in the above expression has a form similar to that in Eq. 52 except that the
outer two integrations have been performed. If one defines,

γm = θm+θm−1 (59)

and
Y ∗∗∗
m = 1−Y1−Y2−·· ·Ym−3

then Eq. 58 can be expressed as,

Γ(θm)Γ(θm−1)
Γ(θm+θm−1)

∫ ∞

−∞
· · ·

∫ ∞

−∞

(
Y1θ1−1 · · ·Y θm−2−1

m−2
)
(Y ∗∗∗
m −Ym−2)γm−1 dY1, . . . ,dYm−2
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and thus the integration with respect to Ym−2 can be isolated,

Γ(θm)Γ(θm−1)
Γ(θm+θm−1)

∫ ∞

−∞

(
Y1θ1−1 · · ·Y θm−3−1

m−3
){∫ ∞

−∞
Y θm−2−1
m−2 (Y ∗∗∗

m −Ym−2)γm−1 dYm−2
}
dY1, . . . ,dYm−3
(60)

and evaluated in a similar manner to that in Eq. 53,

∫ ∞

−∞
Y θm−2−1
m−2

(
Y ∗∗∗
m
Y ∗∗∗
m

)γm−1
(Y ∗∗∗
m −Ym−2)γm−1dYm−2

(Y ∗∗∗
m )γm−1

∫ ∞

−∞
Y θm−2−1
m−2

(
1− Ym−2

Y ∗∗∗
m

)γm−1
dYm−2

Noting that

Y1+Y2+ · · ·Ym−3+Ym−2+Ym−1+Ym = 1=Y ∗∗∗
m +Ym−2+Ym−1+Ym

thus

1−Y ∗∗∗
m = Ym−2+Ym−1+Ym

allowing one to again change the variable of integration by defining,

x=
Ym−2
Y ∗∗∗
m

=
Ym−2

Ym−2+Ym−1+Ym
and dYm−2 = Y ∗∗∗

m dx

where as before when there is no species Ym−2 then x= 0 while if the entire mixture is pure
Ym−2 then all remaining massfractions must be zero and thus x = 1. With this change the
integral becomes,

(Y ∗∗∗
m )γm−1

∫ 1

0
{Y ∗∗∗
m x}θm−2−1 (1− x)γm−1{Y ∗∗∗

m dx}

(Y ∗∗∗
m )γm−1+θm−2−1+1

∫ 1

0
xθm−2−1 (1− x)γm−1 dx= (Y ∗∗∗

m )(γm+θm−2−1)Γ(θm−2)Γ(γm)
Γ(θm−2+ γm)

DRDC Valcartier 2014-XXXX 19



where the definition of the beta function in Eq. 57 has been applied. Replacing the holders
γm and Y ∗∗∗

m yields for the integral with respect to Ym−2,

∫ ∞

−∞
Y θm−2−1
m−2 (Y ∗∗∗

m −Ym−2)γm−1 dYm−2=(1−Y1−Y2−·· ·Ym−3)(θm−2+θm−1+θm−1)Γ(θm−2)Γ(θm+θm−1)
Γ(θm−2+θm−1+θm)

(61)

When this results is substituted back into Eq. 60 the result becomes,

Γ(θm)Γ(θm−1)
Γ(θm+θm−1)

Γ(θm−2)Γ(θm+θm−1)
Γ(θm−2+θm−1+θm)

∫ ∞
−∞ · · ·∫ ∞

−∞

(
Y1θ1−1 · · ·Y θm−3−1

m−3 )(1−Y1−Y2−·· ·Ym−3
)(θm−2+θm−1+θm−1)

dY1, . . . ,dYm−3
(62)

Cancelling like terms it can now be noted that the integrals in Eq. 58 and 62 have the
identical form but for the reduction in the variables of integration by one. Therefore, the
process outlined between Eqs. 60 and Eq. 62 can be repeated until all the integrations have
been performed yielding the final result for the integral in Eq. 49 (replacing the holder θm),

∫ ∞
−∞ · · ·∫ ∞

−∞ (Y1ν1, jY2ν2, j · · ·Ymνm, j)
(
Y β1−1
1 Y β2−1

2 · · ·Y βm−1
m

)
δ (1− [Y1−Y2− . . .−Ym])dY1,dY2, . . . ,dYm

=
Γ(ν1, j+β1)Γ(ν2, j+β2)···Γ(νm, j+βm)

Γ(β1+β2+···+βm+ν1, j+ν2, j+···+νm, j)
(63)

With this integral evaluated, the mean value of the massfraction terms appearing in Eq. 32
can be re-expressed by combining Eq. 63 with Eq. 49 to obtain the final result,

〈ΠmYmνm, j〉= Γ(β1+β2+ . . .+βm)
Γ(β1)Γ(β2) · · ·Γ(βm)

Γ(ν1, j+β1)Γ(ν2, j+β2) · · ·Γ(νm, j+βm)
Γ(β1+β2+ · · ·+βm+ν1, j+ν2, j+ · · ·+νm, j)

(64)

It is at this point that the second benefit of using the assumed form of the PDF in Eq. 45
becomes apparent. Since the gamma function Γ(β ) itself has the definition,

Γ(t) =
∫ 1

0
xt−1e−xdx (65)
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one can make use of the fact that for positive integer values an equivalent definition of this
function is,

Γ(t) = (t−1)!= (1)(2) · · ·(t−1) (66)

and thus one can write,

Γ(t+1) = (1)(2) · · ·([t+1]−2)([t+1]−1) = (1)(2) · · ·(t−1)t = t [(t−1)!]
leading to the identity,

Γ(t+1) = tΓ(t) (67)

Repeated use of this identity allows the gamma functions in Eq. 64 to be continually re-
duced since νm, j is an integer value,

Γ(βm+νm, j) = (βm+νm, j−1)Γ(βm+νm, j−1)︸ ︷︷ ︸
= (βm+νm, j−1)

︷ ︸︸ ︷
(βm+νm, j−2)Γ(βm+νm, j−2)︸ ︷︷ ︸

= (βm+νm, j−1)(βm+νm, j−2)
︷ ︸︸ ︷
(βm+νm, j−3)Γ(βm+νm, j−3)

Therefore,

Γ(βm+νm, j) = Γ(βm)Π
i=νm, j
i=1 (βm+νm, j− i) (68)

Similarly,

Γ(∑
m

βm+∑
m

νm, j) = Γ(∑
m

βm)Π
k=∑m νm, j
k=1 (∑

m
βm+∑

m
νm, j− k) (69)

Therefore, as these two terms appear as a ratio in Eq. 64 one can write,

〈ΠmYmνm, j〉=

Γ(∑mβm)
{

Γ(β1)Π
i=ν1, j
i=1 (β1+ν1, j− i)

}{
Γ(β2)Π

i=ν2, j
i=1 (β2+ν2, j− i)

}
· · ·

{
Γ(βm)Π

i=νm, j
i=1 (βm+νm, j− i)

}
Γ(β1)Γ(β2) · · ·Γ(βm)Γ(∑mβm)Π

k=∑m νm, j
k=1 (∑mβm+∑mνm, j− k)
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where after cancelling all the like terms reduces to the simple algebraic expression,

〈ΠmYmνm, j〉=

{
Πi=ν1, j
i=1 (β1+ν1, j− i)

}{
Πi=ν2, j
i=1 (β2+ν2, j− i)

}
· · ·

{
Πi=νm, j
i=1 (βm+νm, j− i)

}
Πk=∑m νm, j
k=1 (∑mβm+∑mνm, j− k)

(70)
where this expression applies equally to both the product and reactant terms. It is inter-
esting to note that the solution for the mean value of the terms when using the assumed
multivariate β PDF form in Eq. 45 does not actually require the solution to the PDF di-
rectly. This is in contrast to that for the temperature, where although assuming a seemingly
more intuitive Gaussian PDF, its solution requires integration as shown in Eq. 42. To use
Eq. 70 all that is required is the mean value of the species massfraction and its variance
(Eq. 48), both of which can be found from conservation equations likely to already exist in
a variable Schmidt number solver.

As a final consideration it should be noted that in the species massfraction variance equation
(Eq. 47) the term Y ′′

mω̇m appears. Re-expressing the species massfraction as the sum of its
Favre average and fluctuating components,

∑
m
Ymω̇m = ∑

m
(Ỹm+Y ′′

m)ω̇m = ∑
m

(
Ỹmω̇m+Y ′′

mω̇m
)

this can be re-arranged to yield,

∑
m
Y ′′
mω̇m = ∑

m
Ỹmω̇m︸ ︷︷ ︸
A

−∑
m
Ymω̇m︸ ︷︷ ︸
B

(71)

Term A simply requires the mean value for the chemical source term which has already
been found through the procedure outlined. For the second term (B) using the expression
for the chemical source term in Eq. 32 one can write,

Ymω̇m = Yξ ω̇ξ =

Mξ ∑
j

{
(ν pξ , j−νrξ , j)

[
〈k f j〉ρζ rjΠm

(
Mm

−νrm, j
)
〈Yξ ΠmYmνrm, j〉−〈kb j〉ρζ pj Πm

(
Mm

−ν pm, j
)
〈Yξ ΠmYmν pm, j〉

]}
(72)

where again the time averaged massfraction terms have been replaced with the expected,
or mean values. Using the same assumed form for the massfraction PDF, the means ap-
pearing in Eq. 72 are simply moments of this PDF and thus can be computed in the same
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fashion as done for the means appearing in Eq. 32. In this case the moment being sought
is,

〈Yξ ΠmYmνm, j〉=
∫ ∞

−∞
· · ·

∫ ∞

−∞

(
Yξ ΠmYmνm, j

)
P(Y1,Y2,...,Ym)(Y1,Y2, . . . ,Ym)dY1,dY2, · · · ,dYm

(73)
where after substituting the assumed form for the PDF in Eq. 45 yields,

〈
YξY1ν1, jY2ν2, j · · ·Ymνm, j〉= Γ(β1+β2+...+βm)

Γ(β1)Γ(β2)···Γ(βm)∫ ∞
−∞ · · ·∫ ∞

−∞
(
YξY1α1Y2α2 · · ·Ymαm

)
δ (1− [Y1−Y2− . . .−Ym])dY1,dY2, . . . ,dYm

(74)

where αm has the same definition as in Eq. 50. Performing the same steps as outlined from
Eq. 49 for all the variables of integration except for dYξ will yield the same result as shown
in Eq. 62 leaving for the final integration step,

Γ(θ1)Γ(θ2) · · ·Γ(θm−1)
Γ(θ1+θ2+ · · ·+θm−1)

∫ ∞

−∞

(
YmYmθm−1

)
(1−Ym)(θ1+θ2+···+θm−1−1)dYm

Defining

ξm = θ1+θ2+ · · ·+θm−1 and x= Ym and thus dx= dYm (75)

allows the integral to be rephrased as,

Γ(θ1)Γ(θ2) · · ·Γ(θm−1)
Γ(θ1+θ2+ · · ·+θm−1)

∫ 1

0
xθm(1− x)(ξm−1)dx

where as before, if the mixture has no Ym then x= 0 while for a mixture of pure Ym, x= 1.
Using the result for the beta function (Eq. 57) where in this case t1−1= θm allows one to
replace the integral to obtain,

Γ(θ1)Γ(θ2) · · ·Γ(θm−1)
Γ(θ1+θ2+ · · ·+θm−1)

Γ(θm+1)Γ(ξm)
Γ(θm+1+ξm)

Noting that Γ(ξm) = Γ(θ1+θ2+ · · ·+θm−1) these terms cancel leaving,

Γ(θ1)Γ(θ2) · · ·Γ(θm−1)Γ(θm+1)
Γ(θm+1+ξm)

(76)
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From the identity expressed in Eq. 67 one can write

Γ(θm+1) = θmΓ(θm)

and
Γ(ξm+θm+1) = Γ(θ1+θ2+ · · ·+θm−1+θm+1)

= (θ1+θ2+ · · ·+θm−1+θm)Γ(θ1+θ2+ · · ·+θm−1+θm)

which allows Eq. 76 to be written,

θm {Γ(θ1)Γ(θ2) · · ·Γ(θm−1)Γ(θm)}
(θ1+θ2+ · · ·+θm)Γ(θ1+θ2+ · · ·+θm)

(77)

This has the exact same form as the result expressed in Eq. 63 but for the additional pre-
multiplying term,

θm
(θ1+θ2+ · · ·+θm−1+θm)

=
(νm, j+βm)

(β1+β2+ · · ·+βm+ν1, j+ν2, j+ · · ·+νm, j)
(78)

and thus application of the results expressed by Eqs. 68 and 69 will yield a final result
almost identical to that found in Eq. 70,

〈Yξ ΠmYmνm, j〉=
{

(νm, j+βm)
(∑mβm+∑mνm, j)

}
{

Πi=ν1, j
i=1 (β1+ν1, j− i)

}{
Πi=ν2, j
i=1 (β2+ν2, j− i)

}
· · ·

{
Πi=νm, j
i=1 (βm+νm, j− i)

}
Πk=∑m νm, j
k=1 (∑mβm+∑mνm, j− k)

(79)

where again this applies equally to the product and reactant terms appearing in Eq. 72. As
with Eq. 70 the solution to the assumed multivariate β PDF is not required to evaluate the
mean as expressed in Eq. 79. As before, if one can calculate β = f (Ỹm,σy) (Eq. 46) then
along with the stoichiometric mol numbers of the reactant and product species involved
in a given reaction j, one need only solve an algebraic expression to obtain the time aver-
aged chemical source terms appearing in the species continuity (Eq. 10) and massfraction
variance (Eq. 47) equations.
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3 Recommendations
Due to its resulting computational simplicity, the use of an assumed multivariate β PDF has
been used in a wide variety of flowfields outside the original scope of its original proposed
use for turbulent mixing. By assuming statistical independence between the temperature
and the massfraction fluctuations, the assumed massfraction PDF matches the behaviour
of the real PDF in regions where turbulent mixing alone occurs. It can be shown that the
behaviour of this assumed PDF in the limit approaches that of a standardized Gaussian
PDF (which matches observed results from Direct Numerical Simulations for two scalar
mixing over all stages of the mixing process). However the highly dissipative nature of
the term Y ′′

mω̇m found in the conservation equation for the dissipation of the sum of the
massfraction variance causes discrepancies between the model and experiment for regions
where chemical reactions are occurring (mean flow properties are reasonably consistent
with experiment). This has led recent researchers to simply model these terms to improve
comparison with experiment (Keistler, Hassan, and Xiao [29],[30], Keistler and Hassan
[31]).

Evolution PDFs, although capable of potentially overcoming some of the issues with the
assumed PDF approach by incorporating more variables within a single joint PDF, still
require computational resources that make their use prohibitive. However, their strong the-
oretical basis make them an attractive alternative and thus it is recommended a comprehen-
sive review of evolution PDF methods and their recent application to high speed reacting
flows be conducted. Within this review, alternatives to the assumed multivariate β PDF
should be examined in an effort to establish if progress has been made to reduce the dissi-
pative effect of certain terms that appear within the variance dissipation equation.
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List of Acronyms and Symbols
Acronyms

PDF Probability Density Function
DRDC Defence Research and Development Canada

Greek Symbols

δ Dirac delta function
εY Dissipation of massfraction variance
Γ Gamma function
κ Laminar thermal conductivity
μ Laminar co-efficient of viscosity
νm Species mass diffusivity, stoichiometric mole number
ρ Density
σ Standard deviation
σY Sum of mass fraction variances
ω Specific dissipation of k
ω̇m Rate of production or consumption of species m
ζ Enstrophy

Roman Symbols

Cp Specific heat at constant pressure
Cv Specific heat at constant volume
Dm Species mass diffusion co-efficient
e Specific energy
E Expectation
Ea Activation energy
h Specific enthalpy
k Specific turbulent kinetic energy
kb Backward reaction rate
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k f Forward reaction rate
K Reaction rate
Kc Equilibrium constant based on concentrations
Mm Species molecular weight
N Number of experiments
Pφ Probability density function of φ
R Universal gas constant
Sc Schmidt number
t Time
T Temperature, time
u velocity
Y Mass fraction

Subscripts

m Species
T Turbulent

Superscripts

′′ Favre fluctuating component
p Product
r Reactant
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