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ABSTRACT  
 

SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV 

nuclear-reactor concepts.  Main objectives of the development are to increase thermal efficiency 

of a Nuclear Power Plant (NPP) and to decrease capital and operational costs.  The first objective 

can be achieved by introducing nuclear steam reheat inside a reactor and utilizing regenerative 

feedwater heaters.  The second objective can be achieved by designing a steam cycle that closely 

matches that of the mature supercritical fossil-fuelled power plants.  The feasibility of these 

objectives is discussed.  As a part of this discussion, heat-transfer calculations have been 

performed and analyzed for SuperCritical-Water (SCW) and SuperHeated-Steam (SHS) channels 

of the proposed reactor concept.  In the calculations a uniform and three non-uniform Axial Heat 

Flux Profiles (AHFPs) were considered for six different fuels (UO2, ThO2, MOX, UC2, UC, and 

UN) and at average and maximum channel power.  Bulk-fluid, sheath, and fuel centerline 

temperatures as well as the Heat Transfer Coefficient (HTC) profiles were obtained along the 

fuel-channel length.  The HTC values are within a range of 4.7 – 20 kW/m2⋅K and 9.7 – 10 

kW/m2⋅K for the SCW and SHS channels respectively.  The main conclusion is that while all the 

mentioned fuels may be used for the SHS channel, only UC2, UC, or UN are suitable for a SCW 

channel, because their fuel centerline temperatures are at least 1000°C below melting point, 

while that of UO2, ThO2, and MOX may reach melting point. 
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DEFINITIONS 
 
Below are the definitions of special terms and expressions used in the thesis and related to 

Supercritical Water-cooled nuclear Reactors (SCWRs). 

 

Critical point (also called a critical state) is a point in which the distinction between the liquid 

and gas (or vapour) phases disappears, i.e., both phases have the same temperature, pressure and 

density.  The critical point is, therefore, characterized by these phase state which have unique 

values for each pure substance. 

Deteriorated Heat Transfer is characterized with lower values of the wall heat transfer 

coefficient compared to those at the normal heat transfer; and hence has higher values of wall 

temperature within some part of a test section or within the entire test section. 

Improved Heat Transfer is characterized with higher values of the wall heat transfer coefficient 

compared to those at the normal heat transfer; and hence lower values of wall temperature within 

some part of a test section or within the entire test section. 

Normal Heat Transfer can be characterized in general with wall heat transfer coefficients 

similar to those of subcritical convective heat transfer far from the critical or pseudocritical 

regions.  Only normal heat transfer regime was considered in the thesis. 

Pseudocritical point is a point at a pressure above the critical pressure and at a temperature 

above the critical temperature that corresponds to the maximum value of the specific heat for this 

particular pressure. 

Supercritical fluid is a fluid at pressures and temperatures that are higher than the critical 

pressure and critical temperature. 

Superheated steam is a steam at pressures below the critical pressure, but at temperatures above 

the critical temperature. 
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NOMENCLATURE 
 
cp specific heat, J/kg⋅K 

D diameter, m 

h specific enthalpy, J/kg 

htc heat-transfer coefficient, W/m2⋅K 

k thermal conductivity, W/m⋅K 

kinf  reactor multiplication constant for infinite lattice 

Kir neutron flux irregularity coefficient 

m  mass-flow rate, kg/s 

P pressure, MPa 

Q  power or heat-transfer rate, W 

R radius, m 

s specific entropy, J/kg K 

T temperature, °C 

x steam content 

 

Greek letters 
 

α thermal diffusivity, m2/s 

Δ difference 

π steam-superheating-zone to boiling-zone power ratio 

µ dynamic viscosity, Pa⋅s 

 

Non-dimensional Numbers 

 

Nu Nusselt number hyhtc D
k
⋅ 

 
 

 

Pr  Average Prandtl number w b

w b

h h
k T T
µ −
⋅ − 
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Pr Prandtl number pc
k

µ ⋅ 
 
 

 

Re Reynolds number 4

hy

m
Dµπ


 

Subscripts 

 

b bulk-fluid 

cr critical 

e electrical 

hy hydraulic 

in inlet 

main refers to main or primary steam directed to turbine 

out outlet 

reheat refers to secondary or superheated steam directed to turbine 

th thermal 

w wall 

wt weight 

 

Abbreviations and Acronyms 
 

AECL Atomic Energy of Canada Limited 

AHFP Axial Heat Flux Profile 

BNPP  Beloyarsk Nuclear Power Plant 

BONUS BOiling NUclear Superheater 

BORAX BOiling Reactor Experiment 

BW  Boling-Water (channel) 

BWR Boiling Water Reactor 

CANDU CANada Deuterium Uranium (reactor) 

CANFLEX CANada FLEXible (fueling) 

CCP  Pump of Reactor Control System Cooling 

CEP Condenser-Extraction Pump 
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CND Condenser 

CR-SCP Channelized Reactor with water at SuperCritical Pressure 

ESADE Superheat Advance Demonstration Experiment 

FEP   Feeding Electric Pump 

FWP Feedwater Pump 

HHV Higher-Heating Value 

HP  High Pressure 

HTC  Heat Transfer Coefficient 

HTP Heat-Transport Pump 

HTR Heater 

HWR Heavy Water Reactor 

HX Heat eXchanger 

ID Inside Diameter 

IP Intermediate Pressure (turbine) 

KP-SKD Channel Reactor of Supercritical Pressure (in Russian abbreviations) 

LHV Lower-Heating Value 

LP  Low Pressure 

LUEC Levelized-Unit-Energy Cost 

LWR Light Water Reactors 

Max.  Maximum 

MCP  Main Circulation Pump 

Min.  Minimum 

MIT  Massachusetts Institute of Technology 

MSR Moisture Separator and Reheater 

NIKIET Russian abbreviation of RDIPE 

NRC National Resources Canada 

NSERC Natural Sciences and Engineering Research Council 

NPP  Nuclear Power Plant 

OD  Outside Diameter 

O&M  Operating and Maintaining 

PCh  Pressure Channel 
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PCP  Pump of Protective System Cooling 

PT Pressure Tube (reactor) 

PV Pressure Vessel (reactor) 

PWR Pressurized Water Reactor 

RB Reactor Building 

RBMK Russian Acronym for Channelized Reactor of High-Power 

RDIPE Research and Development Institute of Power Engineering (Moscow, Russia) 

RFP Reactor Feedwater Pump 

SADE Superheat Advance Demonstration Experiment 

SC SuperCritical 

SCW Supercritical Water 

SCWR Supercritical Water Reactor 

SG Steam Generator 

SGHWR Steam Generating Heavy Water Reactor 

SHS  SuperHeated Steam (channel)  

SS  Stainless Steel 

T  Turbine 

USAEC United States Atomic Energy Commission 

Z Zirconium 



 
 

 23 

CHAPTER 1 

INTRODUCTION 
 

One of the six Generation-IV nuclear reactor concepts1

                                                 
1 The other five Generation IV systems are: gas-cooled fast reactor, very-high-temperature reactor, lead-cooled 

fast reactor, molten salt reactor, and sodium-cooled fast reactor. 

 is a SuperCritical Water-cooled nuclear 

Reactor (SCWR), which is currently under development worldwide.  An SCWR is a reactor that 

uses water at SuperCritical (SC) pressure as its coolant and generates SC “steam” at the reactor 

outlet.  The main objectives for developing and utilizing SCWRs are: 1) To increase the thermal 

efficiency of Nuclear Power Plants (NPPs) from the current range of 33 – 35% to approximately 

45 – 50% (based on gross-plant efficiency); 2) To decrease the capital and Operating and 

Maintaining (O&M) costs and, in doing so, decrease the unit-energy cost; and 3) Possibility for 

co-generation, including hydrogen generation (Naterer et al. 2009; Naidin et al. 2009b,c; Mokry 

et al. 2008). 

 

The SCWR concepts (Pioro and Duffey 2007) follow two main types: (a) A large reactor 

Pressure Vessel (PV), analogous to conventional Light Water Reactors (LWRs); or (b) a 

channelized reactor in which individual Pressure Tubes (PTs) or Pressure Channels (PChs) carry 

high pressure, analogous to conventional Heavy Water Reactors (HWRs). 

 

Within these two main classes (PV and PT) (Pioro and Duffey 2007), PT reactors are more 

flexible with respect to flow, flux and density changes than the PV reactors.  A design whose 

basic element is a channel has an inherent advantage of greater safety than large vessel structures 

at supercritical pressures.  In particular, the separation between moderator and coolant in a PT 

SCWR allows for significant enhancement in safety.  Particularly, the moderator will serve as a 

back-up heat sink at normal and accident conditions and will reject heat through moderator-

cooling system (Chow and Khartabil 2008).  This design requires no operator action and has the 

potential to eliminate practically the possibility of core damage. 
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There is a number of countries participating in the development of SCWRs of different designs.  

AECL and NIKIET (Duffey et al. 2008; Pioro and Duffey 2007) are currently developing 

concepts of PT SCWRs (for details, see Table 1.1). 

 

Table 1.1. Major parameters of SCW-CANDU® and Channel Reactor with SuperCritical 
Pressure water (CR-SCP) (Pioro and Duffey 2007). 

Parameters Reactors 
SCW CANDU* CR-SCP 

Developer AECL NIKIET 
Country Canada Russia 
Reactor Type PT 
Reactor Spectrum Thermal 
Coolant Light water 
Moderator Heavy water 
Thermal Power, MWth 2540 1960 
Electric Power, MWe 1220 850 
Thermal Efficiency, % 48 42 
Pressure, MPa 25 25 
Inlet Temperature, °C 350 270 
Outlet Temperature, °C 625 545 
Flowrate, kg/s 1320 922 
Number of Fuel Channels 300 653 
Number of Fuel Elements in Bundle 43 18 
Length of Bundle String, m 6 – 
Maximum Cladding Temperature, °C 850 700 
* The data shown are for the no-reheat option. 

 

SCWRs are considered as a conventional way for the ultimate development of water-cooled 

reactors, which are the vast majority of power nuclear reactors operating worldwide.  This 

statement is based on the known history of the thermal power industry, which made a 

“revolutionary” step forward from the level of subcritical pressures (10 – 20 MPa) to the level of 

supercritical pressures (23.5 – 35 MPa) more than fifty years ago with the same major objective 

as that of SCWRs − to increase thermal efficiency of coal -fired thermal power plants by 10 – 

15%. 
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(a) 

 

(b) 

Figure 1.1. T-s diagram of no-reheat (a) and single-reheat (b) cycles (Pioro et al. 2010). 
 

It is well-known that the thermal efficiency of the cycle can be increased by 2 – 4% with the 

implementation of steam reheat (T-s diagrams of no-reheat and single-reheat cycles are presented 

in Fig. 1.1).  For that reason, currently, majority of the SC turbines are designed with a steam-

reheat option.  Furthermore, reheating steam reduces the amount of moisture in the last stages of 

the turbine.  The increase in efficiency of the cycle with steam-reheat as compared to that of the 
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cycle with no-reheat is achieved due to extra heat added during steam-reheat stage (Pioro et al. 

2010). 

 

Therefore, it is important to summarize both the 50-year experience of the coal-fired thermal 

power industry and experience of implementing nuclear steam reheat at several experimental 

Boiling Water Reactors (BWRs) worldwide and utilize it in the context of developing SCWRs 

concepts with steam-reheat option.  The general idea behind using this experience is to develop 

SCWRs, which are capable to operate successfully and efficiently with the proven SC 

technology, specifically the SC turbines from the thermal power industry. 

 

Therefore, the main objectives of the thesis are: 

 

1.  To make a comprehensive literature review of operating experience of BWRs with 

nuclear steam reheat.  No one has performed such a review before. 

2. To develop a detailed thermal layout of a NPP with nuclear steam reheat at parameters 

that would be close to those in the proposed SCWR concept. 

3. To perform and compare heat-transfer calculations of SHS and SCW channels with 

different fuels and at different power conditions. 

4. Analyze the calculations and decide which fuel is suitable for the SHS and SCW 

conditions. 

 

Chapter 2 of the thesis presents the literature review of operating experience of BWRs with 

nuclear steam.  Review of supercritical thermal power plants is presented in Chapter 3.  Chapter 

4 is devoted to general consideration of thermal layouts for SCW NPPs.  The developed detailed 

thermal layouts of SCW NPP with nuclear steam reheat are also presented in Chapter 4.  Review 

of heat-transfer correlations for SCW and SHS conditions as well as the results of heat-transfer 

calculations are presented in Chapter 5.  Conclusions are summarized in Chapter 6.  Some ideas 

on future work are presented in Chapter 7. 
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CHAPTER 2 

BOILING-WATER REACTORS WITH STEAM REHEAT 
 

Major advancements in implementation of steam reheat inside the reactor core were made in the 

USA and Russia in 1960s – 1970s.  No signs of any significant activity in this field in other 

countries were found.  Three experimental reactors in the USA and two power reactors in Russia 

were developed, in which nuclear steam reheat was successfully implemented.  It was realized 

that the next advancement in nuclear-reactor technology and improvement in thermal efficiency 

could be achieved by utilizing both coolant at supercritical parameters and subcritical 

superheated steam.  However, at that time there were no reliable materials that could withstand 

high-temperature and high-pressure environment along with high neutron irradiation.  Since the 

1980’s, the advancements in metallurgical technology has improved the reliability of materials to 

be used in supercritical-water environment, and recently the idea of SCWR was revived as as the 

ultimate development path for water cooling (Pioro and Duffey 2007).  Further increase in 

thermal efficiency will be achieved by implementing nuclear steam reheat.  Therefore, it is 

important to summarize known experience in nuclear steam reheat that was implemented in 

several BWRs. 

 

2.1. USA Experience in Nuclear Steam Reheat 
 

An active program for the development and demonstration of BWRs with nuclear steam reheat 

was implemented and directed by the United States Atomic Energy Commission (USAEC).  Two 

general types of the reactors were demonstrated:  

 

1. Reactors in which steam was generated and reheated in the same core (integral reheating 

design); and 

2. Reactors which only used reheated steam that was supplied from another source (separate 

reheating design); 
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Under the USAEC program, the following reactors were constructed: Boiling Reactor 

Experiment V (BORAX–V, started operation in December of 1962), BOiling NUclear 

Superheater (BONUS, started operation in December of 1964), and Pathfinder (started operation 

in July of 1966).  Main parameters of these reactors are listed in Tables 2.1 and 2.2 (Novick et al. 

1965). 

 

At the design stage of these reactors a certain number of problems arising with the 

implementation of steam reheat were realized and addressed.  Among them were: 

 

1. Fuel-element sheath performance and corrosion resistance at high temperatures; 

2. Corrosion, erosion, and deposits on fuel-element surfaces due to ineffective steam 

separation prior to the reheating-zone inlet; 

3. Maintenance of the desired power split in the evaporating and reheating zones during 

extended reactor operation; 

4. Fission products carry-over in direct-cycle systems; And 

5. Reactivity changes as a result of inadvertent flooding of the reheating zone. 

 

In search of the solutions to these problems USAEC also instituted a number of programs to 

determine long-term integrity and behavior of the fuel-element sheath.  Since May of 1959, the 

Superheat Advance Demonstration Experiment (SADE) and the subsequent Expanded SADE 

(ESADE) loops had been utilized to irradiate a total of 21 fuel elements in the Vallecitos BWR.  

Saturated steam at about 6.9 MPa from the Vallecitos BWR was supplied to the fuel-element 

section where it was superheated to temperatures of 418 – 480°C.  The results of those 

irradiation tests combined with out-of-core corrosion tests led to the following conclusions 

(Novick et al. 1965):  

 

1. Commercial 18-8 stainless steel (18-8 SS) was not satisfactory for fuel-sheath material in 

the SHS environment it was subjected to in the SADE and ESADE experiments; 

2. Materials with higher nickel-alloy content, such as Inconel and Incoloy, appeared to 

perform satisfactorily as a sheath material in the SHS environment; And 

3. Strain cycling coupled with environmental chemistry were significant in the failure rate 
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of sheath materials for reactors with steam reheat. 

 

Additional information on design of these reactors constructed under the USAEC program can 

be found in USAEC reports 1959, 1961, and 1962 and in Ross (1961). 

 

The major conclusion, which is based on the USA experience with nuclear steam reheat, is that 

the nuclear steam reheat is possible, and higher thermal efficiencies can be achieved, but this 

feature requires more complicated reactor-core design and better materials. 

 
Table 2.1. Main general parameters of BWR NPPs with integral reheat design (Novick et 
al. 1965). 
Parameters BORAX–V BONUS Pathfinder 

Evaporating 
zone 

Reheating 
zone 

Evaporating 
zone 

Reheating 
zone 

Evaporating 
zone 

Reheating 
zone 

Structural 
material 
(core) 

A1(X8001) SS Zr–2 SS-248 Zr–2 SS 

Fuel type Rod Plate Rod Rod Rod Annular 
Fuel 
material 

UO2 
UO2– SS 
cermet 

UO2 UO2 UO2 
UO2–SS 
cermet 

Fuel 
enrichment, 
% 

4.95 93 2.4 3.25 2.2 93 

Sheath 
material 

SS-304 SS-304L Zr–2 Inconel Zr–2 SS-316L 

Control rod 
shape 

Cruciform 
and "T" 

Cruciform 
and "T" 

Cruciform Slab Cruciform 
Round 

rod 
Control rod 
material 

Boral Boral 
1.0%wt

10B in 
SS 

1.0% wt
10B 

in SS 
2% wt

10B in 
SS 

2% wt
10B 

in SS 
Average 
power 
density, 
MWth/m3 

42.5 40.5 33.6 11.5 45.2 46.5 
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Table 2.2. Main thermal parameters of BWR NPPs with integral reheat design (Novick et 
al. 1965). 

Parameters BORAX–V BONUS Pathfinder 

Electric power, MWe (gross) 3.5 17.5 66 

Electric power, MWe (net) 3.5 16.5 62.5 

Thermal power, MWth 20 50 200 

Reheat loop to evaporating loop power ratio 0.21 0.35 0.22 

Gross cycle thermal efficiency, % – 35 33 

Net cycle thermal efficiency, % – 33 31 

NPP steam cycle Direct Direct Direct 

Reheating-zone location Central or Peripheral Peripheral Central 

Nominal operating pressure, MPa 4.1 6.7 4.1 

 

2.2. Russian Experience in Nuclear Steam Reheat 

 
This section presents a unique compilation of materials that overviews all major aspects of 

operating experience of the first in the world industrial NPP with implemented nuclear steam 

reheat. 

2.2.1. General information 
 

Reactors with nuclear steam reheat were also developed in the former Soviet Union.  Beloyarsk 

Nuclear Power Plant (BNPP) was the first NPP in the world where nuclear steam reheat was 

implemented.  Two reactors (100 MWe and 200 MWe) were installed with identical steam 

parameters at the turbine inlet (Pin = 8.8 MPa and Tin = 500 – 510°C).  The first reactor (Unit 1) 

was put into operation on April 26, 1964, and the second reactor (Unit 2) − on December 29, 

1967.  Both reactors have similar dimensions and design.  However, the flow diagram and the 

core arrangement were significantly simplified in Unit 2, compared to that of Unit 1.  Color 

schematics and simplified layouts of the BNPP Units 1 and 2 are shown in Figures 2.1 and 2.2. 
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(a) 

 

(b) 

Figure 2.1. BNPP Unit 1 (a) and Unit 2 (b) general schematics of thermodynamic cycle 
(Yurmanov et al. 2009a): 

 

 – Reheated steam;  – Saturated steam; 

 – Water-steam mixture;  – Water. 
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(a) 

 

 

 
 

(b) 

Figure 2.2. Simplified layout of BNPP Unit 1 (a) and Unit 2 (b) (Petrosyants 1969): 
1 – circulation pump; 2 – reactor; 3 – Boiling Water (BW) channels; 4 – SHS channels; 5 – 
steam separator; 6 – Steam Generator (SG); 7 – economizer; 8 – bubbler; and 9 – Feed 
Water Pump (FWP). 
 

 



 
 

 33 

Operation of BNPP has proved the feasibility of steam-reheat implementation on an industrial 

scale.  Major results of the BNPP operation are listed below (Petrosyants 1969): 

 

1. Reactor start-up from the cold state was realized without external heat sources.  The 

reactor heat-up was carried out at 10% power until the water temperature in the 

separators reached 285 – 300°C at 8.8 MPa.  Levels in the separators were formed during 

heat-up.  Transition from water to steam cooling in the SHS channels did not cause 

significant reactivity changes. 

2. The radial neutron flux flattening achieved was one of the best among operating reactors.  

The radial neutron flux irregularity coefficient, Kir, for both units was 1.28 – 1.30, while 

the design values were: Kir = 1.46 for Unit 1 and Kir = 1.24 for Unit 2. 

3. Radioactivity in the turbine and technological equipment of the plant is an important 

indicator for NPP.  Radiation rates at the high-pressure cylinders were not higher than 10 

µR/s and not higher than 8 µR/s at the low-pressure cylinders.  Such low dose rates were 

attained by implementation of rod-fuel elements that eliminated the possibility of fission-

fragment activity transported via the coolant loop.  BNPP operation experience showed 

that radiation levels near Unit 1 equipment were significantly lower than that of other 

operating reactors, and releases of radioactive products into the atmosphere were 5 – 10 

times lower than allowed by codes. 

2.2.2. Cycle development  
 

Reliability, simple design, and efficiency are the main criteria when choosing the flow diagram 

for both the fossil and nuclear power plants.  Special requirements for impermeability and water 

regime are specified for NPPs.  Additionally, the reasonable development of temperature regimes 

for fuel channels allows safe power increase for the given reactor size. 

 

Several layouts of thermodynamic cycles for a NPP with a uranium-graphite reactor were 

considered for the BNPP.  In the considered layouts (Figure 2.3) the coolant was either boiling 

water or superheated steam.  Feasibility of the NPP designs was also taken into account 

(Dollezhal et al. 1958a). 
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Layout (a).  A steam separator, steam generator (consisting of preheating, boiling and steam-

superheating sections), and two circulation pumps are included in the primary coolant loop.  

Water and very high-pressure steam are the primary coolants.  High- and intermediate-pressure 

steam is generated in the secondary loop and directed to the turbine. 

 

Layout (b).  Direct-cycle layout.  Steam from a reactor flows directly to a turbine.  The turbine 

does not require an intermediate-steam reheat. 

 

Layout (c).  Steam from a reactor flows directly to a turbine.  In contrast to Layout (b), the 

turbine requires the intermediate-steam reheat.  The reactor has three types of operating fuel 

channels: 1) water preheating, 2) evaporating-boiling, and 3) steam-superheating. 

 

Layout (d).  Direct-cycle layout.  The evaporation and reheat are achieved inside a reactor.  The 

turbine does not require the intermediate-steam reheat. 

 

Layout (e).  Direct-cycle layout.  One or two intermediate-steam reheats are required. 

 

Layout (f).  Water circulates in the closed loop consisting of a reactor, steam separator, 

preheater, and circulation pump.  Partial evaporation is achieved in the first group of channels.  

Steam exiting the steam separator is directed to the boiling section of the steam generator and 

condenses there.  Condensate from the boiler is mixed with water from the separator.  The cooled 

water is fed to a preheater and then directed to circulation pumps.  The generated steam on the 

secondary side is superheated in the second group of channels and then directed to the turbine.  
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(e) 

 

 

 

 

 

 

 

 

 

 

 

 

(f) 

 

 

Figure 2.3. Possible layouts of NPPs with steam reheat (Dollezhal et al. 1958a): 1 – reactor; 
2 – steam separator; 3 – SG; 4 – Main Circulation Pump (MCP); 5 – circulation pump; 6 – 
turbine with electrical generator; 7 – FWP; and 8 – intermediate-steam reheater. 
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Layouts (b–e) were not recommended due to unpredictable water-chemistry regimes at various 

locations throughout the thermodynamic cycle.  Layout (a) with the secondary-steam reheat 

required high pressures and temperatures in the primary loop.  Circulation pumps with different 

parameters (power and pressure) were used to feed common header upstream of the channels of 

the primary group.  In this respect, Layout (a) was considerably more complex and expensive 

than Layout (f).  Activation of SHS which could occur in Layout (f) wasn't considered to be 

posing any significant complications to the turbine operation, and hence remained a viable option 

(Dollezhal et al, 1958a). 

 

From the considerations above, Layout (f) was chosen to be developed at the BNPP Unit 1.  

Surface-corrosion products in the secondary loop and salts in condenser coolant were trapped in 

the steam generator and removed from it during purging.  Additionally, modern separators 

provided steam of high quality, which resulted in very low salt deposits in the turbine. 

 

2.2.3. Beloyarsk NPP reactor design  
 

The reactor was placed in a cylindrical concrete cavity, where the 3-m thick wall served as a part 

of the biological shield.  A cooled ferro-concrete base of the reactor with six base jacks was 

implemented on the bottom of the cavity.  The bottom bedplate attached to the bottom supporting 

ring was held by jacks.  Cooling coils were placed on the bottom of the bedplate to provide its 

cooling. 

 

The cylindrical graphite stack (3 m in diameter, 4.5 m in height) of the reactor was installed on 

the bottom bedplate.  The stack was made of columns, assembled of hexagonal blocks (0.12 m 

width across corners) in the center and of sectors in the periphery.  The central part of the stack 

was penetrated by vertical operating channels (long graphite cylinders containing inner thin steel 

tubes with fuel elements).  The reactor core (7.2-m diameter and 6-m height) was surrounded 

with a 0.8-m thick graphite reflector.  An additional 1-m thick graphite layer and an approx 0.5-

m cast iron layer over the upper reflector formed the principal part of the biological shield.  A 

0.6-m thick graphite layer serving as the lower neutron shield was located below the lower 
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reflector. 

 

The graphite stack (9.6-m overall diameter and 9.0-m height) was enclosed in a gas-tight 

cylindrical carbon-steel shell filled with nitrogen to prevent graphite deterioration.  The outer 

graphite blocks were penetrated by steel uprights with horizontal lateral braces in several places 

along their height.  The entire stack rested on the bottom bedplate.  The graphite stack was 

covered on the top with a plate carrying standpipes with openings for the insertion of operating 

channels.  The piping for feeding the coolant to the fuel bundles and for removing the coolant 

water from control rods was located between the standpipes.  The piping of the operating 

channels and protective coating failure-detection system was also located between the 

standpipes.  The plate rested on supports installed on the tank of the side water shield.  The plate 

was connected with the graphite stack shell by means of a compensator, which allowed both for 

vertical elongations of the shell and horizontal elongations of the plate, which occurred during 

heating (Emelyanov et al. 1982). 

 

The reactor had 1134 operating channels as shown in Figure 2.4 and contained 998 fuel 

channels, 6 automatic control rods, 78 channels for reactivity compensating rods, 16 shut-down 

rods, and 36 channels for ionization chambers and counters.  The fuel channels were represented 

with 730 Boiling Water (BW) channels, also known as evaporating channels, and 268 

SuperHeated Steam (SHSs) channels .  

 

The main parameters of the BNPP reactors are listed in Table 2.3. 
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Table 2.3. Main parameters of BNPP reactors (Aleshchenkov et al. 1964; Dollezhal et al. 
1969, 1971). 

Parameters BNPP Unit 1  
(730 BWs & 268 SHSs) 

BNPP Unit 2  
(732 BWs & 266 SHSs) 

Electrical power, MWe 100 200 

Number of K-100-90-type turbines 1 2 

Inlet-steam pressure, MPa 8.5 7.3 

Inlet-steam temperature, ºC 500 501 

Gross thermal efficiency, % 36.5 36.6 

Total metal content (top & bottom plates, 

vessel, biological shielding tank, etc.), t 

1800 1800 

Weight of separator drums, t 94 156 

Weight of circulation loop, t 110 110 

Weight of graphite stacking, t 810 810 

Uranium load, t  67 50 

Specific load, MWth/t 4.3 11.2 

Uranium enrichment, % 1.8 3.0 

Specific electrical-energy production, 

MWe⋅days/t 

4000 10000 

Square lattice pitch, mm 200 200 

Core dimensions, m: Diameter 

Height 

7.2 

6 

7.2 

6 

 

 



 
 

 41 

 
Figure 2.4. BNPP Unit 1 channels layout (Saltanov et al. 2010, this figure is based on the 

paper by Dollezhal et al. 1958b). 
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2.2.4. Physical parameters of Beloyarsk NPP reactors 
 

General operating data of the BNPP Units 1 and 2 are listed in Table 2.4.  

 

Table 2.4. General operating data of BNPP (Dollezhal et al. 1974b). 

 

Unit Parameters Year of operation 

I 

1967 1968 1969 1970 1971 1972 1973 

Utilization factor of 

installed power, % 
49.5 61.6 75.4 81.3 83.3 69.0 73.4 

Utilization factor of 

calendar time, % 
65 69.5 79.3 83.7 83.0 75.3 83.2 

Outlet steam P, MPa 7.5 7.9 8.2 8.6 8.6 7.8 7.8 

Outlet steam T, °C 439 486 497 511 505 505 498 

Gross efficiency, % 32.9 34.2 36.0 36.3 36.2 36.6 36.1 

Net efficiency, % 29.1 30.5 32.0 32.6 32.7 33.1 32.8 

Electric power for 

internal needs, % 
11.5 10.8 9.5 8.1 7.6 7.6 7.6 

II 

Utilization factor of 

installed power, % 
49.5 43.6 68.5 69.0 69.3 73.8 70.6 

Utilization factor of 

calendar time, % 
65 79.7 88.8 82.5 84.1 90.9 86.2 

Outlet steam P, MPa 7.5 6.4 6.8 7.5 6.9 7.2 7.1 

Outlet steam T, °C 439 475 502 511 501 497 502 

Gross efficiency, % 32.9 34.4 35.6 37.4 37.2 36.8 36.0 

Net efficiency, % 29.1 31.6 32.9 34.2 34.2 33.6 32.6 

Electric power for 

internal needs, % 
11.5 8.1 6.9 7.0 7.2 7.4 7.7 
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Flattening of the power distribution was achieved at the BNPP with physical profiling: 

appropriate distribution of control rods and fuel channels of different uranium enrichment (for 

fresh load) and profiling of burn-up fuel along the reactor radius.  The reactor load consisted of 

SHS channels of 2% and 3% uranium enrichments (SHS-2 and SHS-3 respectively) and BW 

channels.  The BW channels were located in rings in alternate locations with SHS-2 as shown in 

Figure 2.4.  SHS-3 were located along the circumference and had lower pressure losses in the 

steam circuit (Dollezhal et al. 1964). 

 

Neutronics calculations were made to choose optimal distribution of channels to achieve required 

power shape.  Most of the calculations for the core-reactor physics were performed in the 2-

group approximation.  In accordance with the fuel-channels distribution the core was represented 

by four cylindrical regions with the radii: R1 = 175 cm (234 fuel channels), R2 = 268 cm (324 

fuel channels), R3 = 316 cm (220 fuel channels), and R4 = 358 cm (220 fuel channels).  The 

previous calculations and operating experience of large uranium-graphite reactors with relatively 

small neutron leakage showed that a simplified schematic could be used when neutron 

distribution in the reactor is determined by the multiplication characteristics of the reactor 

regions.  The multiplications constants obtained for the 4 regions (kinf,1 = 1.013, kinf,2 = 1.021, 

kinf,3 = 1.043, and kinf,4 = 1.045) allowed flattening of the neutron distribution along the reactor 

radius with Kir = 1.20 – 1.25.  The increase in the multiplication constants values to the periphery 

of the reactor was attained by placing fuel channels with 3% uranium enrichment.  Refueling 

schemes and, therefore, fuel burn-up at different regions were chosen such as to allow designed 

power flattening in the end of the campaign, with corresponding values of kinf,i.  Control rods 

insertion in the core maintained kinf,i values in the necessary limits during normal operation 

(Vikulov et al. 1971).  

 

One of the requirements to be met when implementing nuclear steam reheat is to maintain a 

constant specified power ratio (π) of the steam-superheating zone to the boiling zone during the 

operating period.  The SHS channel temperature up to 520°C at the BNPP was obtained by 

setting π = 0.41 at the optimum parameters of the thermodynamic cycle.  The number of SHS 

channels was chosen to provide a π-value of 0.41 at the partial refueling scheme where the Kir ≈ 

1.25.  The steady-state regime was characterized with small fluctuations of approximately 1% in 
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the π-value between the refuelings.  Circular arrangement of SHS channels (Unit 1) had an 

advantage of small π-sensitivity to the changes in radial neutron flux distributions, while for 

central arrangement of SHS channels (Unit 2) π values were more sensitive (see Table 2.5). 

 

Table 2.5. Steam-superheating-zone power to boiling-zone power ratio (π) dependence on 
neutron flux Keff for BNPP Unit 2 (Vikulov et al. 1971). 

π 0.408 0.429 0.452 0.494 

Keff 1.20 1.36 1.53 1.78 

 

However, preference was given to the central arrangement of SHS channels, because this 

allowed attaining a higher π-value (around 12% higher) with the same number of SHS channels.  

Additionally, central arrangement of SHS channels provided better multiplication characteristics 

than BW channels.  SHS channels were placed in the central region to increase average fuel 

burn-up by 10%.  It should be noted, that during the initial operation period the burn-up rates 

were different for BW and SHS channels of fresh load, which led to an unbalance of power 

between superheating and boiling zones.  Figure 2.5 shows the calculated dependence of π-

values and power variations for different types of fuel channels on the power generated by the 

reactor (Vikulov et al. 1971). 

 

Calculations were performed assuming Kir ≈ 1.25.  A fast decrease in the superheating-zone 

power relative to that of the boiling zone in the initial period was accounted for by a lower power 

change in SHS channels due to slightly higher fuel conversion in the low enriched SHS-2.  

Practically achieved values of Kir were approximately 1.4 for Unit 1 and 1.3 for Unit 2.  Neutron 

balance in the core of the critical reactor in the beginning of the operation period is shown in 

Figure 2.6. 

 

One of the features of the uranium-graphite reactors cooled with water is the possibility of 

reactivity change with water-content change in the reactor.  Substitution of boiling water with 

steam in the operating channels leads to the rapid change of coolant average density.  Failure of a 

fuel-element sheath is another possibility of water-content change that was considered while 

designing the BNPP reactors.  The chosen core lattice with respect to reactivity change turned 
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out to be weakly dependent on water-content changes.  It was explained by the compensation of 

effects of increased resonance neutrons captured by increased water content and an increase at 

the same time of non-productive neutrons absorption (Dollezhal et al. 1964).  Normalized 

thermal-neutrons distribution along the operating channel cell was studied experimentally for the 

reactor lattice as shown in Figure 2.7.  The normalized thermal-neutrons distributions along the 

reactor radius and height for both units are shown in Figures 2.8 and 2.9.  The gradients indicate 

a significant disturbance in the normalized thermal-neutron flux near the outer edge of the 

reactor likely where the steam-reheat channels end affecting the power distribution.  The results 

indicate a more stable distribution for the BNPP Unit 2. 

 

Figure 2.5. Channel power ratios and steam-superheating-zone to boiling-zone power ratio 
(π) dependence on burnup produced by BNPP Unit 2 during the first operating period 
(Vikulov et al. 1971): SHS-3 – superheated steam channel with 3% uranium enrichment 
and SHS-2 – superheated steam channel with 2% uranium enrichment. 
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Figure 2.6. Neutron balance in a critical reactor (Dollezhal et al. 1958a). 
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Figure 2.7. Normalized thermal-neutrons-density distribution along cell of the operating 
channel (Dollezhal et al. 1958b):1 – experimental curve and 2 – design curve. 

 
(a) 

 
(b) 

Figure 2.8. Normalized thermal-neutrons-density distribution along radius (a) and 
height (b) of the BNPP Unit 1 (Dollezhal et al. 1958a): 1 – beginning of the operating 
period and 2 – end of the operating period. 
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(a) 

 
(b) 

Figure 2.9. Normalized-thermal-neutron density distribution along radius (a) and height 
(b) of the BNPP Unit 2 (Dollezhal et al. 1964): 1 – beginning of the operating period and 
2 – end of the operating period. 
 

Distribution deformation near the end of operating period was explained by non-uniform fuel 

burn-up.  The results proved the possibility of elementary diffusion-theory application for 

determining neutron distributions and showed the impact of the arrangement of the superheated-

steam channels on power distribution. 

 

2.2.5. Boiling-water channels 
 

Fault-free operation of BW channels was achieved with reliable crisis-free cooling of bundles 

and avoiding interchannel and subchannel pulsations of the coolant-flow rate.  The appropriate 

experiments were performed during design of the BNPP.  As the result of increased power, the 

inner diameter of the fuel element was increased from 8.2 mm for Unit 1 to 10.8 mm for Unit 2.  

Note that an annular-fuel design is used and increasing the inner diameter results in thinner fuel 

and lower-centerline temperatures.  Coolant is on the inside of the annular fuel and graphite is on 

the outside of the fuel as shown in Figure 2.11. 

Experiments were performed at different pressures and equal heat flux, steam content and 

coolant mass fluxes and showed that wall temperature increases at the boiling crisis was higher 
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when coolant pressure was lowered.  At the same time, with the lowered coolant pressure the 

critical steam content increased.  The experiments on hydrodynamic stability showed that mass-

flux pulsations within the region of high steam content did not introduce danger for the BNPP 

reactors, because nominal pressure in the evaporating loop was 8.8 MPa and steam content at the 

channels outlet was not higher than 35%.  Wall-temperature oscillations were in the phase with 

the subchannel flow-rate pulsations.  With the increased pressure both the amplitude of 

temperature oscillations and coolant flow rate decreased.  The same effect occurred at the 

decreased heat flux and increased flow rate per channel.  Wall-temperature oscillations were 

within the range of 65°C at 1000 kg/h flow rate and 30°C at 1500 kg/h flow rate at constant 

pressure of 4.9 MPa and 0.2 MW power (Dollezhal et al. 1964). 

 

Fuel elements of larger inner diameter used at Unit 2 compared to that of Unit 1 allowed to lower 

heat flux and hydraulic resistance.  With the equal outer diameter (20 mm), fuel elements inner 

diameter of the BWs at Unit 1 were 9.4×0.6 mm while that of Unit 2 − 12×0.6 mm.  Diameter of 

the central tube for feeding the coolant was also increased.  There were no other differences in 

the BWs construction used at BNPP Units 1 and 2.  Uranium-molybdenum alloy with 

magnesium filler was used as fuel in the BWs.  Parameters of the BWs are listed in Table 2.6. 

 

Table 2.6. Parameters of BNPP boiling-water channels (Dollezhal et al. 1964). 
Parameters BNPP Unit 1 BNPP Unit 2 

Channel power, kW 405 620 
Flow rate per channel, t/h 2.400 4.2 
Steam content at channel outlet, % 33.6 30.7 
Pin, MPa 15.2 15.2 
Pout, MPa 14.7 14.2 
Tin, °C 300 303 
Tout, °C 335 338 
Max. heat flux, MW/m2 0.58 0.72 
Circulation rate, m/s 3.5 3.6 
Max. T, °C: inner wall 

fuel 
355 
400 

365 
415 
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2.2.6. Superheated-steam channels 
 

At the BNPP, SHS channels were operated at higher temperatures compared to those in the BW 

channels and, therefore, limited the choice of fuel composite and materials.  The development of 

fuel elements for SHS channels underwent several stages.  Preliminary tests on the 

manufacturing technology and performance of fuel elements of various designs were made.  As 

the result, a tubular fuel element with a stainless-steel sheath and a uranium-dioxide fuel 

composite was chosen for further development (Samoylov et al. 1976).  Fuel elements in the 

initial modification had a tubular design formed by two coaxial stainless-steel sheaths (9.4×0.6 

mm and 20×0.3 mm, respectively).  Thus, SHS channels with such fuel elements did not differ 

significantly from BW channels (Figure 2.10), consisting of 6 fuel elements arranged in a 

graphite collar with a central steam feeding tube.  Steam entered the central tube and was 

superheated while passing along the fuel bundles. 

 

 

Figure 2.10. Principal design scheme of 
boiling-water and superheated-steam 
channels (Emelyanov et al. 1972b):  
1 – head of boiling-water channel; 

2 – head of superheated-steam channel; 

3 – three downward-flow strings; 

4 – six upward-flow strings; 

5 – fuel bundle strings; 

6 – three upward-flow strings; 

7 – downward-flow strings; 

8 – compensators; 

9 – welded joints of tubes; 

10 – tail. 
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Later, a U-shape desgin was developed.  The central tube (9.4×0.6 mm) was replaced with an 

absorbing soft-control rod (12×0.6 mm).  The decreased width of the active material decreased 

non-productive neutron absorption and allowed some power flattening.  The steam was reheated 

first passing downward along three fuel bundles and then passing upwards along another three 

fuel bundles.  Such construction reduced temperature conditions for SHS channels and allowed 

usage of simpler and cheaper materials.  Also, reactor-graphite-stack temperature was lowered 

by 100°C at a channel power of 0.36 MW.  This was achieved with the transfer of heat released 

in the graphite stack to the downward flow fuel elements that operated at intermediate 

temperatures (Dollezhal et al. 1964). 

 

Efforts for further improvement of heat and physical parameters were made.  They led to another 

modification of channels and fuel elements.  One upward flowing fuel element was eliminated, 

inner fuel-element sheath was increased to the size of 16×0.7 mm, and outer-sheath size was 

increased to 23×0.3 mm.  Physical and thermal parameters improved sharply after such a 

modification due to decreased matrix material in the fuel elements and increased flow cross-

section.  6-elements channels were gradually replaced by 5-elements channels during refueling 

of the operating reactor.  The reduction of one of the elements increases the steam velocity in the 

upward flowing fuel elements (Samoylov et al. 1976).  Stainless steel was used as the outer-

sheath material.  Uranium-dioxide dispersed in matrix alloy was used as fuel elements in SHS 

channels.  Improvements in the performance of various BNPP parameters are listed in Table 2.7. 

 

Table 2.7. Average parameters of BNPP Unit 1 before and after installation of 
superheated-steam channels (Dollezhal et al. 1969). 

Parameters Before SHSs installation After SHSs installation 
Electrical power, MWe 60–70 100–105 
Steam Pin, MPa 5.9–6.3 7.8–8.3 
Steam Tin, ºC 395–405 490–505 
Exhaust steam P, kPa 9–11 3.4–4.0 
Mass flowrate of water in 1st loop, 
kg/h 

1400 2300–2400 

P in separators, MPa 9.3–9.8 11.8–12.7 
Gross thermal efficiency, % 29–32 35–36 
Electrical power for internal needs, % 10–12 7–9 
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Cross sections of the U-shaped SHS channels are shown in Figure 2.11.  SHS-channels 

parameters are listed in Table 2.8. 

 

Table 2.8. Design parameters and operating conditions of superheated-steam channels 
(Dollezhal et al. 1964). 

Parameters BNPP Unit 1 BNPP Unit 2  

(U-shaped channel with 6 fuel elements) 

Downward-flow 

fuel elements 

Upward-flow fuel 

elements 

Max channel power, kW 368 767 

Min channel power, kW 202 548 

Steam mass-flow rate 

through max. power 

channel, kg/h 

1900 3600 

Steam mass flow rate 

through channel operating 

at minimal power, kg/h 

1040 2570 

Steam Pin/ Pout, MPa  10.8/9.81  12.9/12.3 12.2/10.8 

Steam Tin/ Tout, °C 316/510 328/399 397/508 

Max heat flux, MW/m2  0.56 0.95 0.79 

Max steam velocity, m/s 57 76 112 

Max T, °C: cladding 

fuel composite 

graphite 

530 

550 

725 

426 

482 

735 

531 

565 

735 
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(a, initial variant) 

 
(b, modernized variant) 

 

Figure 2.11. Cross section of BNPP superheated-steam reheat channel with 6 (a) and 5 (b) 
elements (dimensions in mm) (Dollezhal et al. 1974a). 

 

Basic parameters of the BW and SHS channels of the BNPP are listed in Table 2.9.  

 
Table 2.9. Basic parameters of fuel channels (Dollezhal et al. 1971; Emelyanov et al. 1972b). 

Parameters BNPP Unit 1 BNPP Unit 2 

BW SHS BW SHS 

Dimensions of fuel elements 

inner sheath, mm 
9.4×0.6 12×0.6 12×0.6 12×0.6 

Dimensions of fuel elements 

outer sheath, mm 
20×0.2 20×0.3 20×0.2 20×0.3 

Number of fuel elements in 

channel, mm 
6 6 6 6 

Dimensions of central tube of 

channel, mm 
18×1 – 20×1 – 

Max channel power, kW 408 326 623 729 

Main parameters of channels 

(Pin/Tin, MPa/°C) 
13.2/300 10.8/315 14.2/300 12.7/335 

Main parameters of channels 

(Pout/Tout, MPa/°C) 
12.7/330 9.3/510 13.7/335 10.8/510 

Weight of channel, kg 200 200 200 200 
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2.2.7. Mechanical strength of channels used in Beloyarsk NPP  

 
The problem of providing necessary strength for the  fuel channels was one of the problems to be 

resolved during designing BNPP reactors.  Tubular compensators were used for compensation of 

thermal expansion of both downward-flow and upward-flow fuel bundles strings.  Internal 

pressure stress and temperature stress were determined and analyzed for steady-state and 

transient conditions.  Equivalent membrane stresses (defined from strength theory) caused by 

internal pressure were limited by 1/1.65 of yield stress.  Local tensions exceeded yield stress in 

the individual zones where the fuel element tubes were connected to the heads and tails.  Heads 

are detailed components with inlet and outlet hollows to allow coolant at different temperatures 

pass it (Emelyanov et al. 1972a).  The temperature drop between the inlet and outlet of the heads 

was not significant for BW channels (30°C) and quite significant for SHS channels (up to 

260°C).  Under steady state conditions, significant temperature stresses could have been caused 

in the shell (∅34×1 mm), which connected head outlet connection to the channel cap.  However, 

calculations showed that maximum stresses were only 12.5 kg/mm2 in the shell and, therefore 

unlikely to exceed stress limits of the material.  Maximum stress values during start-up and 

emergency shutdown of the BNPP reactors are listed in Table 2.10. 

 

Table 2.10. Maximum stress in superheated-steam-channel head during transitional mode 
(Emelyanov et al. 1972a). 

Mode Element 

Temperature 

change interval, 

ºC 

Stress, MPa  

Heat up 
Transition chamber 260–510 1.96 

Shell ∅34×1 mm 260–510 1.37 

Emergency shutdown 
Transition chamber 510–415 1.18 

Shell ∅34×1 mm 510–415 1.18 

 

Additional tests on corrosion resistance of the stainless steel in contact with the water–steam 

mixture with oxygen and chlorine ions were performed (Emelyanov et al. 1972a).  First, 
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compensators were put under displacement cyclic load at the highest working values (785 

N/mm2).  Then the number of cycles was 6000.  The cyclic load simulated the most damaged 

state of the compensators materials that would be in the end of channels operation period.  Then 

water–steam mixture at P = 14.2 MPa and T = 340°C was passed through the channels 

compensators which were placed in an electrical furnace. 

 

After holding the compensator for 144 h in the furnace, pressure in the compensators was 

decreased to 9.8 MPa, and temperature was decreased to 100±5°C.  Simultaneously, water with 

0.06 mg/l chlorides content was injected into the electrical furnace.  Moisture was condensed at 

95°C and evaporated at 105°C throughout the test.  The moisture condensation-evaporation cycle 

was repeated 30 – 40 times during a 24-h period.  The pressure was increased up to 14.2 MPa 

and temperature was increased up to 340 °C and the compensators were being held for another 

144 h.  Then the condensation-evaporation cycle was repeated and so on.  Compensators were 

examined destructively after 144 – 1100 h under abovementioned conditions.  The fracture 

pattern was identical for each case where a net of cracks was formed on the outer surface and 

cracks further developed into holes.  More information on corrosion-mechanical and cyclic 

strength of the channel constructional elements may be found in the paper by Emelyanov et al. 

(1972a). 

 

2.2.8. Hydrodynamic stability of the Beloyarsk NPP channels during reactors start-up  
 

During start-up and nominal operating conditions it is necessary to provide reliable cooling of 

fuel bundles (crisis-free heat exchange and hydrodynamic stability).  Experiments on set-up 

simulating Units 1 and 2 were performed for determining safe operating conditions for coolant 

flow rate with no pulsations during the start-up. 

 

Both SHS and BW channels of the BNPP were filled with water in the initial state.  During 

reactor start-up, the water in the SHS channels was to be discharged and transfer to cooling by 

steam was to be performed.  Additionally, the units were preheated and started without external 

heat sources. 
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The coolant flow rate stability in the BW channels was studied for wide ranges of pressures, flow 

rates and powers (Smolin et al. 1965).  Special attention was paid to determination of the 

pressure, flow rate, steam content and power.  Different combinations of these parameters 

created conditions leading to pulsations.  When occurred, flow rate pulsations took place when 

coolant reached saturation temperature at the outlet of the BWs.  Pulsations were in the form of 

coolant flow rate periodical oscillations in peripheral tubes.  Oscillations were phase-shifted in 

different tubes while the total flow rate was constant. 

 

Two pulsation regions were determined as the result of the experiments: small steam content 

region (x = 0 – 15 %, 3 – 6 oscillations per min.) and high steam content region (x = 25 – 80%, 

15 – 20 oscillations per min.).  Flow rate pulsations in tubes were accompanied by wall tube 

temperature oscillations along its length with the frequency being equal to that of flow rate 

oscillations.  Wall temperature oscillations in the top cross-sections of the heating zone within 

the small steam content region occurred with a shift to the smaller values in the surface or 

volumetric boiling zones and to both the smaller and higher values in the economizer zone. Wall 

temperature oscillations in the top cross-sections of the heating zone within the high steam 

content shifted only to the higher values causing boiling crisis (Smolin et al. 1965). 

 

The curves distinguishing stability zones (above the curves) from pulsation zones (below the 

curves) for the BW and SHS channels of the BNPP Unit 2 are shown in Figure 2.12. 
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(a) 

 
(b) 

 

Figure 2.12. Ranges of hydrodynamic stability in BW (a) and SHS (b) channels of BNPP 
Unit 2 at different channel power (regions of channels stable operation are above curves, 
solid symbols) (Smolin et al. 1965): 1 – 50 kW; 2 – 100 kW; 3 – 200 kW; 4 – 300 kW; 5 – 
400 kW; and 6 – 800 kW. 
 

As seen in Figure 2.12 the range of stable operation of channels broadens with the increase in 

pressure or increase in flow rate.  The stable operation range contracts with the increase in 

power.  The operating conditions that provide stable flow rate and reliable cooling of the BW 

and SHS channels at the start-up and nominal operating conditions were chosen based on the 

performed research.  The method of replacing water coolant by steam coolant in SHS channels 

using accumulated heat was accepted for experimental testing of start-up conditions on Unit 1.  

The method of gradual replacement of water in the SHS channels first by a water-steam mixture 

and then by steam was accepted for experimental tests of start-up regime on Unit 2 (Smolin et al. 

1965).  The experimentally obtained data are presented in Figures 2.13 – 2.15.  

 

Both methods were elaborately tested and proved to provide reliable cooling of the BW and SHS 

channels during the start-up.  They were adapted for the development of the BNPP start-up 

conditions. 
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(a) 

 
(b) 

Figure 2.13. Temperature variations at BNPP Unit 1 SHS channels at transitional regime 
(Smolin et al. 1965): (a) – coolant inlet (Tin) and outlet temperatures (Tout) and (b) –sheath 
temperature. 
 

 
(a) 

 
(b) 

Figure 2.14. Variations of pressure drop (a) and sheath temperature (b) at BNPP Unit 2 
during high-power start-up (Smolin et al. 1965). 
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Figure 2.15. Sheath temperature variations during start-up with decreasing pressure at 
BNPP Unit 2 SHS channels (Smolin et al. 1965). 
 

2.2.9. Start-up of Beloyarsk NPP reactors 
 

The start-up testing of the Unit 1 and Unit 2 reactors of the BNPP are described in this section.  

During the Unit 1 start-up, both loops were filled with deaerated water, water circulation was 

established, air was removed, and the pressure was raised up to 10 MPa and 3 MPa in the 

primary and secondary loops, respectively (Aleshchenkov et al. 1971). 

 

Equipment was heated up at 10 – 14% of reactor power.  Average heat-up rate was kept at 

30°C/h as measured at the separators.  This value was chosen based on experience of drum 

boilers operation, though reactor equipment allowed significantly higher heat-up rate.  No heat 

removal was provided during the heat-up to the 160°C coolant temperature at the reactor outlet.  

The water level was formed at 160°C in the bubbler and the excess heat started being released to 

the turbine condenser.  When water temperature at the outlet of the SHS channels reached 230°C 

the heat-up was terminated.  Total heat-up time was about 9 h. 

 

At the next step, water was purged from SHS channels.  The transient processes took place in the 

second loop while constant pressure and boiling-free cooling of BWs were provided in the 
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primary loop.  Reactor power was rapidly reduced to ~2% of its nominal level and feedwater 

flow rate was reduced to provide water level in the SGs to purge SHS channels.  Water-steam 

mixture from evaporators and steam from the steam loop were directed to the bubbler and then to 

the deaerator and the turbine condenser. 

 

The purging of SHS channels started after the level in the SGs had been formed.  The purging 

regime was monitored by the pressure drop between the reactor inlet and outlet steam headers 

and the coolant temperature at the outlet of each SHS channel.  Additional steam discharge by 

increased pressure drop rate was achieved and thus the purging was accelerated by opening gate 

valves in front of the bubbler for 1 – 2 min.  The pressure drop rate was chosen based upon the 

allowed temperature condition and was set to ~0.15 MPa/min.  Overall time for the level 

formation in the evaporators was ~8 – 10 min, the time of purging ~6 – 10 min. The gate valves 

in front of bubblers were closed and reactor power was increased after the purging had finished. 

Thus, the pressure and the temperature in SHS channels were increase.  After 2 hours the SHS 

channels purging had been finished and the reactor achieved a stable operation at 10% power 

level.  The heating of steam pipes and the turbine was initiated and the turbine connection to the 

power line was prepared.  Further power increase was made once the turbine had been connected 

to the power line. 

 

The first loop was transferred to the boiling flow regime and the separators levels were formed at 

35% reactor power and ~6 MPa pressure.  During the transient to the boiling regime, the 

operating conditions of the MCPs were continuously monitored.  Water temperature was 

maintained 5 − 6 °C below the boiling margin for intake pipes of the main circulation pumps.  

Level formation in the separators was accompanied by smooth pressure change.  It took about 3 

h for the water to reach controlled level in the separators, the time being dependent only on the 

separator bleed lines throughput. 

 

The specific features of a single-circuit flow diagram made the sequence of the BNPP Unit 2 

start-up operations somewhat different.  SHS channels purging and transition to boiling regime 

in the BW channels took place simultaneously.  Filling of the circuits and equipment heat-up 

were the same as in Unit 1.  The terminal heat-up parameters were higher (P ≈ 9.3 MPa and T ≈ 
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290°C).  Two main circulation pumps were used to drive coolant circulation in the evaporating 

loop.  After heat-up the reactor power was reduced to 2 – 3% of nominal level.  SHS channels 

purging, and transition to boiling regime in the BW channels took place after the heat-up.  The 

feedwater flow rate was considerably reduced, water was purged out of the separators, and the 

flow rate to the bubblers was increased to form levels in the separators.  As a result, the water in 

the fuel channels and separators boiled causing the purging of water and water-steam mixture 

from SHS channels.  The monitoring of the purging process was the same as at the Unit 1.  After 

SHS channels purging had been completed, the reactor power was increased and steam flow into 

the bubbler was reduced at the reheated steam temperature rise rate of about 1°C/min with the 

pressure drop between the steam headers at least ~50 – 60 kPa.  The automatic level control 

system was put into operation as soon as the water in the separators reached the rated level.  The 

subsequent reactor power increase, turbine preparation, and connection of the turbine to the 

power line were the same as for Unit 1 (Aleshchenkov et al. 1971).  Changes of the main 

parameters during Unit 2 start-up are shown in Figure 2.16. 

 

 
Figure 2.16. Variations of main parameters during start-up of BNPP Unit 2 (Aleshchenkov 
et al. 1971): 1 – turbine power; 2 – reactor power; 3 – steam pressure; 4 – coolant (water or 

steam) temperature at SHS channel outlet; and 5 – feedwater temperature. 



 
 

 62 

2.2.10. Pumps 
 

All pumps at the BNPP were high-speed type (3000 rpm).  Serial high-power feeding pumps 

were used.  Other pumps were special canned type, in which the motor spindle and pump spindle 

were revolved in a pumped medium and were separated from the motor stator by a thin hermetic 

nichrome plate.  Bearing pairs of the pumps were lubricated and cooled by pumped water.  The 

revolving details of bearings were made of advanced hard alloys and bearing bushes were made 

of special plastics.  Some minor failures were observed in operation of MCP (Emelyanov et al. 

1972b).  Those were due to cracks in nichrome jacket, to malfunctioning of fan of the stator front 

parts, to pilot-valve distribution system imperfections, and to failures of the fasteners in the 

pump interior.  Modernizations of some individual elements of the MCP and reconstruction of 

independent pump cooling loops improved optimal on-stream time between maintenance and 

repairing (16,000 h).  As a result, the failure probability of the MCP was reduced to minimum.  

Operating experience of the MCP showed that serial pumps could be used instead of specially 

designed canned pumps under no fragment activity in the loops conditions that were achieved at 

BNPP.  Basic characteristics of the pumps used at BNPP are listed in the Table 2.11. 

 

Table 2.11. Basic characteristics of BNPP pumps (Emelyanov et al. 1972b). 
Pump name Unit No. of 

pumps 
Drive 

Power, 
kW 

Pressure, 
MPa 

Disharge, 
m3/h 

Pumped medium 
T, °C 

MCP 1 
1 
2 

3 
1 
4 

520 
520 
750 

0.98 
0.98 
1.53 

650* 
650* 
650* 

310 
310 
310 

Feeding 
electric pump 
(FEP) 

1 
2 

3 
4 

2000 
4000 

15.45 
17.60 

270 
500 

160 
160 

Pump for 
reactor control 
system cooling  

1 
2 

2 
2 

55 
65 

0.59 
0.68 

100 
125 

60 
60 

Pump for 
protecting 
system cooling 
(PCP) 

1 
2 

2 
2 

19.5 
19.5 

0.64 
0.64 

12 
12 

60 
60 

* – Discharge is expressed in t/h. 
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2.2.11. Water regime 

 
The experiments on effectiveness of water and steam radiolysis suppression by hydrogen in BW 

and SHS channels respectively were performed after 16 months of Unit 1 operation.  Water and 

steam samples were taken at the drum-separator, MCPs, inlet and outlet of SHS channels.  

Ammonia dosing was terminated before the test for determination of the required amount of 

hydrogen that was necessary to suppress water and steam radiolysis that was partially caused by 

ammonia decomposition (Yurmanov et al. 2009b).  Hydrogen concentration in saturated steam at 

the separator was found to be 45 – 88 nml/kg and  in circulation water at the main circulation 

pump was found to be 2.75 – 12.8 nml/kg.  Despite some hydrogen excess, oxygen concentration 

decreased from 2.28 mg/dm3 to 0.1 mg/dm3. Dissolved oxygen concentration in the circulating 

water at the main circulation pump did not exceed 0.01 – 0.03 mg/dm3.  At the next stage of 

experiments, steam radiolysis in SHS channels and the possibility of suppressing it by hydrogen 

concentration levels were studied.  Hydrogen concentration was set to 1.2 – 6.2 nml/kg in steam 

and 1.2 – 1.8 nml/kg in circulating water.  Oxygen concentration was below 0.15 mg/kg in steam 

and about 0.02 mg/dm3 in the circulating water.  The obtained results demonstrated effective 

suppression of water radiolysis.   

 

Additional research was carried out at 60% reactor power.  The results showed that the oxygen 

concentration was decreased to 0.03 mg/kg at the SHS channels outlet only at 45 nml/kg 

hydrogen concentration.  The water-steam mixture at the turbine ejector consisted of hydrogen 

(62 – 65%) and oxygen (8 – 10%) at a hydrogen concentration of 40 – 45 nml/kg.  The water-

steam mixture was needed to be diluted with air to a non-explosive state, i.e. hydrogen volume 

fraction was to be decreased below 2 – 3% (Shitzman 1983). 

 

The equipment for Unit 2 was made from the following constructional materials: stainless steel 

(5500 m2, 900 m2 of which were used for the core); carbon steel (5600 m2); brass and 

cupronickel (14,000 m2); stellite (4.8 m2).  The studies showed that radiolytic gases production 

rate was approximately 5 times lower than that of a BWR of the same power.  Water radiolysis at 
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the BW channels of the BNPP Unit 1 was suppressed by ammonia dosing.  This kept radiolityc 

oxygen content in water at several hundredths of a milligram per liter.  Ammonia dosing wasn't 

used at Unit 2 due to the danger of corrosion of the condenser tubes and low-pressure heaters.  

Radiolytic fixation of oxygen in the steam that was bled to high-pressure heaters was achieved 

by hydrazine hydrate dosing. The operation norms and the actual quality of coolant at the BNPP 

Unit 2 are listed in the Tables 2.12 and 2.13. Additional information on water flow regime may 

be found in paper by Konovalova et al. (1971). 

 

Table 2.12. Standards of water and steam quality for BNPP Unit 2 during operation 
(Konovalova et al. 1971).  

Parameters Feed 

water 

Reactor 

circulating 

water 

Reactor 

bleed 

water 

Saturated 

and reheated 

steam 

Turbine 

condensate 

Water hardness (μg-

equiv/kg) 
≤3 ≤15 – – 3 

Alkalinity (using mixed 

indication, excluding 

ammonia), (μg-equiv 

/kg) 

– – ≤50 – – 

Sodium, μg/kg – – – – ≤10 

SiO2-
3, μg/kg ≤30 – ≤1000 ≤20 – 

Chlorides, μg/kg – ≤30* – – – 

Iron oxides, μg/kg – ≤60 – – – 

Copper content, μg/kg ≤5 – – – ≤5 

Total corrosion products, 

μg/kg 
– – ≤500 – ≤5 

Oxygen content, μg/kg 10 – – – 30 

Oils content, μg/kg 300 – – – – 

pH – ≥8.0 – – – 

* During accident an increase of chlorides up to 150 μg/kg in reactor circulating water is 

tolerated during 20 h per 1000 h of reactor operation. 



 
 

 65 

Table 2.13. Actual parameters of BNPP Unit 2 coolant quality during period of normal 
operation (Konovalova et al. 1971). 

Parameters Feed 

water 

Reactor 

circulating 

water 

Reactor 

bleed 

water 

Saturated / 

Reheated steam 

Turbine 

condensate 

Water hardness, μg-eq./kg <3 <3 3–6 – / – 3 

SiO2-
3, μg/kg – – 100–300 5–15 / 5–15 – 

Chlorides, μg/kg 25 25 25 – / – – 

Iron oxides, μg/kg 20–60 20–60 30–60 20–30 / 20 –30 0 

Copper, μg/kg – – 7–30 0.4 / – 0.8 

Specific activity, Ci/l – – 10–5 – / 10–7 – 

Oxygen, μg/kg 10–15 30 30 (5–6)·103 /  

(5–6)·103 

40–50 

Ammonia, mg/kg 1–25 0.6–1.4 0.6–1.4 0.8–2 / 0.8–2 1–2 

pH 9.2–9.5 8–9 9–9.5 9–9.5 / 9–9.5 9–9.5 

 

Comparison of data in Tables 5.12 and 5.13 shows that all indicators of coolant quality were in 

the range set by the water regime regulations during normal operating period. 

 

In August 1972 (after 4.5 years of operation) neutral no-correction water was implemented at 

Unit 2 (Dollezhal 1974b).  Operation in the new conditions revealed the following advantages 

over the ammonia treated state: 

 

1. The cease of feedwater ammonia treatment led to the zero nitrate content in the reactor 

circulation water.  This allowed an increase of the pH from 4.8 to the neutral level at the 

300°C operating temperature. 

2. Balance of the corrosion products content in the circulation water and chemical flushing 

of the BW channels showed that the rate of metallic oxide deposits formation on the fuel-

bundles surfaces in the evaporating zone of the reactor was three times lower using no-

correction water. 

3. The Co-60 deposition rate outside the core was 7 – 10 times lower using no-correction 
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water. 

4. Condensate purification experience using no-correction water allowed an increasing filter 

service cycle by 6 times. 

 

2.2.12. Radiation conditions 

 
Radiation conditions on the premises of the BNPP and at its immediate environs was found to be 

satisfactory.  Radioactive emissions to the atmosphere were 5 – 10 times lower than allowed by 

codes.  The turbines have not the radiation shielding, and maximum intensity was 1.0 – 1.5 and 

2.0 – 5.0 µR/s at the high-pressure cylinder and 0.3 – 2.0 and 1.0 – 4.0 µR/s at the low-pressure 

cylinder for BNPP Unit 1 and 2 respectively.  These values of intensities at the turbine were 

several times lower than those at other direct-cycle reactors.  For example, the radiation intensity 

was about 100 µR/s at the turbines of SGHWR reactor in Winfrith (Dollezhal et al. 1969).   

 

Steam activity at the turbine inlet was mainly caused by N-16 and its values were 2.5⋅10−3 and 

9⋅10−3 Ci/kg for the BNPP Units 1 and 2 respectively.  Coolant activity of the long-lived 

corrosion products was relatively acceptable: 10−8 Ci/kg at the evaporating loop and 10−9
 Ci/kg at 

the reheat loop.  Specific activities of the deposits on the water feeding tubes of the evaporating 

loop are presented in Table 2.14. 

 

Radiation rates were 0.05 – 0.1 µR/s in the rooms where personnel worked constantly, and 0.3 – 

12 µR/s in rooms occupied part-time.  The dose rates during the reactor shut-down in the rooms 

not used by personnel and near the evaporating loop of Unit 1 were measured to be 25 – 200 

µR/s, and were measured to be 15 – 20 µR/s near the steam superheating zone.  The dose rates at 

those components were decreased by flushing and deactivation of the individual components of 

the equipment and deactivation of loops.  Personnel were mainly exposed during maintenance 

work by the deposits of corrosion radioactive products on the surfaces of piping and equipment.  

The major data on radiation levels at the BNPP Units 1 and 2 are listed in Tables 2.15 – 2.17 and 

shown in Figures 2.17 – 2.22. Additional information on radioactive deposits build-up may be 

found in papers by Aleksandrova et al. (1968) and Veselkin et al. (1968). 
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Table 2.14. Activity of precipitations on tubing (water-supply channels) of evaporating loop 
of BNPP Unit 1 (Dollezhal et al. 1969). 
Operational time, 

effective days 

Specific activity, disintegrations/min·cm2 

Co-60, ×105 Mn-54, ×105 Co-58, ×105 Cr-51, ×105 

80 1.7 0.38 0.32 2.7 

120 2.2 0.56 0.39 3.1 

160 3.6 1.2 0.420 6.1 

300 6.2 1.5 0.65 5.0 

460 9.0 1.6 0.68 4.1 

780 16 1.6 0.62 5.2 

 

 

Table 2.15. BNPP Unit 2 coolant activity, nCi/kg (Veselkin et al. 1971). 

 

Table 2.16. Deposits activity on surfaces of BNPP Unit 1 primary loop (Veselkin et al. 
1968). 

Isotope Activity, Сi Distribution along loop sections, % 

Water Steam-water Steam 

Co-60 14 30 68 1.9 

Mn-54 3.2 44 54 1.8 

Co-58 2.3 21 77 1.8 

Cr-51 11 65 30 4.6 

 

 

Sampling point Co-60 Zn-65 Mn-54 Cr-51 

Separator bleed water 100–300 400–800 4–30 30–300 

Separator saturated steam 5–15 10-30 0.3–5 9–20 

Direct steam 2–20 1–10 0.1–5 2–50 

Steam condensate 0.3–5 0.4–3 0.2–1.5 0.5–6 
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Table 2.17. Deposits activity on the surfaces of the BNPP Unit 1 second loop (Veselkin et al. 1968). 
Isotope Activity, 

mСi 

Distribution along loop sections, % 

Steam and 

LP water 

HP 

water 

Evaporators 

(water) 

Saturated 

steam 

Reheated  

steam 

Turbine LP 

heater 

(steam) 

HP 

heater 

(steam) 
Stationary 

parts 

Blades 

Co-60 29 8.0 20 25 3.8 34 6.3 0.1 0.08 2.7 

Mn-54 26 4.5 8.3 41 7.2 33 3.3 0.06 0.04 2.6 

Cr-51 140 5.1 2.8 5.4 0.7 17 65 1.0 0.06 3.0 

Sb-124 45 4.0 2.8 12 0.4 43 29 0.5 0.1 3.2 

Co-58 5 24 34 34 8 – – – – – 
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Figure 2.17. Dependence of dose date near boiling loop equipment of BNPP Unit 1 
on its operation time (Dollezhal et al. 1969). 

 
Figure 2.18. Activity dependence on operating time at BNPP Unit 1 boiling loop 
piping (Veselkin et al. 1971).  
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Figure 2.19. Specific activity of Co-60 deposits on turbine blades of BNPP Unit 1 
(Veselkin et al. 1971): 1 – after 160 operating days and 2 – after 460 operating days. 

 
Figure 2.20. Relative change of dose rate (at shut-downs) near boiling loop 
equipment depending on operating time of unit (Veselkin et al. 1971). 
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Figure 2.21. Cr-51 () and Zr-65 () activity distribution on BNPP Unit 2 turbine 
#2 blades after 294 effective days of operation (Veselkin et al. 1971). 

 
Figure 2.22. Relative dose rate variations near steam condensing and feeding loops 
of BNPP Unit 2 at start-up and shut-down regimes (Veselkin et al. 1971):  – 
equipment is filled with water from evaporating loop;  – equipment is not filled 
with water from boiling loop. 
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2.2.13. Section-unit reactor with steam-reheat 

 
The BNPP became the first in the world industrial NPP with a uranium-graphite power 

reactor.  Examination of the main characteristics of the BNPP reactors (for example, see 

Table 2.8) shows that that performance of such type of reactors could be improved.  

BNPP used slightly enriched uranium and the calculations showed that increasing 

enrichment to 5% would increase fuel burn-up 4 − 10 times (up to 40,000 MW⋅days/t). 

 

All channel reactors were constructed with traditional cylindrical shape of core.  

Therefore, power increase in such a reactor could be attained by increasing the number of 

working channels in the core and a proportional increase in diameter size.  However, 

increase in power per reactor would then be limited by the maximum size of the reactor 

upper plate that could be built and withstand a high load.  A way out of this situation was 

found in section-unit design of the channel reactor with a rectangular core.  Such a shape 

would allow separating not only the core, but also reactor as a whole, into equal geometry 

sections.  Then the reactor of a specified capacity can be constructed of the required 

number of sections.  Each section would stay the same for reactors of different power 

outputs, and, consequently, core width and maximum size of the upper metalwork would 

stay the same too.  Therefore, the power of a section-unit reactor power would not be 

limited by the size of the upper plate (Emelyanov et al. 1982). 

 

Section-unit type reactors with coolant at supercritical fluid conditions (see Figure 2.23) 

was developed at NIKIET as an improvement to the existing RBMK (Russian acronym 

for Channelized Reactor of High-Power).   
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Figure 2.23. Schematic of NIKIET SCW NPP (Aleshchenkov et al. 1971): 1 – 
reactor; 4 – preheating channel; 5 – first SHS; 6 – second SHS; 11 – Condensate 
Extraction Pump (CEP); 14 – deaerator; 15 – turbo-generator; 17 – condenser; 18 – 
condenser purifier; 19 – mixer; 20 – start-up separator; 21 – intermediate steam 
reheater; 22 – low-pressure regenerative preheater; 23 – high-pressure regenerative 
preheater; 24 – feed turbo-pump; and 25 – booster pump. 
 

Rod fuel bundles were inserted into Zirconium SHS (SHS-Z) channels (see Table 2.18, 

Figure 2.24.) on the core level. UO2 fuel elements with steel sheath were designed.  Fuel 

bundles were covered by a sheath to hold SHS-Z channel wall below 360°C (Grigoryants 

et al. 1979).  Therefore, saturated steam entering the channel was split into two streams.  

About 25% of the steam flowed through the annular gap cooling the SHS-Z channel wall.  

Both streams mixed at the core exit.  Steam mixture was at about 455°C.  Tests with 

SHS-Z channels were performed in BNPP Unit 1 to check design decisions.  SHS-Z 

channels were tested in 23 – 24 start-ups – shutdowns, including 11 emergency 

shutdowns of the reactor when the steam temperature change rate was 20 – 40°C/min 

during the first 3 minutes of an automatic control system operation, and 5°C/min after 

that.  SHS-Z channel wall temperature reached 400 – 700°C and that of the fuel bundles 

sheath reached 650 – 740°C during start-up operation at a steam pressure of 2.45 – 4.9 

MPa.  Channels were operated about 140 h at high temperature conditions.  Studies 

showed that fuel element seal failures were mainly due to short-duration overheating 

(Mikhan et al. 1988). 
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Table 2.18. Parameters of zirconium steam-reheat channels tested in BNPP (Mikhan 
et al. 1988). 

Parameter SHS-Z 

Max channel power, kW 660 

Steam mass flow rate, kg/h 3400 

Number of fuel elements per assembly 6x2 

Max. heat flux from fuel element, kW/m2 7840 

Fuel element maximum linear power, 

W/cm 

246 

Steam P/T, MPa/ºC: Channel inlet 

Fuel-bundle inlet 

Fuel-bundle outlet 

Channel outlet 

9.8/310 

9.1/340 

8.5/545 

7.8/510 

Tmax (design), ºC: Fuel 

Cladding 

Fuel bundle sheath 

Zirconium channel 

wall 

1620 

635 

530 

350 

Uranium enrichment 10 

Average channel burn-up rate, MW⋅day/kg 30 
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Figure 2.24. Principal scheme of SHS-Z 
(Mikhan et al. 1988): 

1 – suspension rod;  

2 – thermal screen;  

3,4  – outer and inner tubes of bearing 

body;  

5 – inner tube reducer;  

6 – upper reducer of outer tube;  

7 – fuel bundle;  

8 – graphite sleeves;  

9 – thermal screen and inner tube seal;  

10  – lower reducer of outer tube; and 

11 – reactor. 

 

Additional information on SHS-Z-channel tests in BNPP Unit 1 may be found in the 

papers by Grigoryants et al. (1979) and by Mikhan et al. (1988). 
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2.3. Summary of Nuclear Steam-Reheat Experience 
 

The operating experience of the reactors with nuclear steam reheat worldwide provides 

vital information on physical and engineering challenges associated with implementation 

of steam reheat in conceptual SCWRs.  Three experimental reactors were designed and 

tested in the 1960s – 1970s  in the USA.  In the former Soviet Union, nuclear steam 

reheat was implemented at two units at the Beloyarsk NPP.  Operating experience of the 

units showed a possibility of reliable and safe industrial application of nuclear steam 

reheat right up to outlet temperatures of 510 − 540°C after over a decade of operation.  

Thermal efficiency of the Beloyarsk NPP units was increased by 5% as the result of 

implementing nuclear steam-reheat.  The introduction of nuclear steam reheat was 

economically justified in cases where the steam was superheated up to 500°C and higher 

with the use of stainless-steel-sheath fuel elements. 

 

The experiments and operating experience obtained to date also indicate that further 

improvements in SHS channel design and in reactor design are possible. 
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CHAPTER 3 

REVIEW OF SUPERCRITICAL THERMAL POWER PLANTS 
 

The development work on supercritical Steam Generators (SGs) and turbines started in 

the USA in the early 1950s (Lee and Haller 1974).  The first supercritical SG was put into 

operation at the Philo Plant of American Electric Power in 1957.  The capacity of this 

unit was 120 MW with “steam” parameters of 31 MPa and 620/566/538ºC 

(main/reheat/reheat) (Retzlaff and Ruegger 1996).  In the early sixties, another plant was 

built with ultra-supercritical parameters (pressure of 30 MPa, temperatures (primary and 

reheat) of 650ºC) (Smith 1999).  The supercritical units built in the USA had thermal 

capacities from 400 to 1380 MWth.  Often the subcritical units for 1000 MW and higher 

were replaced with supercritical SGs in the USA (Ornatskiy et al. 1980).  Major 

parameters of selected US supercritical turbines are listed in Table 3.1. 

 

The implementation of supercritical power-plant “steam” generators in Russia (the 

former USSR) started with units having 300 MWth.  The first industrial SG operating at 

supercritical conditions in the former USSR was manufactured in 1961 for a coal-fired 

power plant (Ornatskiy et al. 1980).  The next stage in further development of 

supercritical “steam” generators involved an increase in their thermal capacity to 500 

MW and 800 MW.  In 1966, the first 1000-MW ultra-supercritical plant started its 

operation in Kashira with a primary “steam” pressure of 30.6 MPa, and primary and 

reheat temperatures of 650 and 565ºC, respectively (Smith 1999).  In modern designs of 

supercritical units, the thermal capacity was upgraded to 1200 MWth.  Major parameters 

of selected Russian SC turbines are listed in Tables 3.1 and 3.2.  A detailed schematics of 

a thermal layout of a modern Russian SC thermal power plant is presented in Figures 3.1 

and 3.2 (power plant efficiencies 43.6%, turbine power 660 MWe, inlet pressure 28 MPa, 

main/reheat temperatures  600–620°C).  More than 200 supercritical units were 

manufactured and put into operation in Russia over the last 25 years (Smith 1999). 
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Table 3.1. Major parameters of selected USA SC turbines (Ornatskiy et al. 1980). 

 
Parameters of Paradise 

Power Plant 

Parameters of Emos and 

Gevin Power Plants 

Steam Capacity, t/h (ton 

metric per hour) 
3630 4438 

Primary Pressure, MPa 24.2 27.3 

Primary Temperature, °C 537 543 

Secondary Steam Capacity, 

t/h 
2430 3612 

Secondary Pressure, MPa 3.65 4.7 

Secondary Temperature, °C 537 538 

Feedwater Temperature, °C 288 291 

Turbine Thermal 

Efficiency, % 
89 93 
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Table 3.2. Major parameters of selected Russian SC turbines (Ornatskiy et al. 1980).  
Power, MWe Parameters 

300 

Steam Capacity, t/h 950 – 1000 

Primary Pressure, MPa 25 

Primary Temperature, °C 545 – 585 

Secondary Pressure, MPa 3.5 – 3.9 

Feedwater Temperature, °C 260 – 265 

Turbine Thermal Efficiency, % 88 – 93 

500 

Steam Capacity, t/h 1650 

Primary Pressure, MPa 25 

Primary Temperature, °C 545 

Secondary Pressure, MPa 3.95 

Secondary Temperature, °C 545 

Feedwater Temperature, °C 277 

Thermal Efficiency, % 92 

800 

Steam Capacity, t/h 2650 

Primary Pressure, MPa 25 

Primary Temperature, °C 545 

Secondary Pressure, MPa 3.44 

Secondary Temperature, °C 545 

Feedwater Temperature, °C 275 

Turbine Thermal Efficiency, % 92 – 95 
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Table 3.3. Parameters of largest Russian SC turbines (Grigoryev and Zorin, 1982). 
Parameters K-1200-240 K-800-240 K-800-240* 

Power, MWe (max power) 1200 (1380) 800 (850) 800 (835) 

Main Steam 

Pressure, MPa 23.5 23.5 23.5 

Temperature, °C 540 540 560 

Max Flow Rate Through HP Turbine, t/h 3950 2650 2500 

Reheat Steam 

Pressure, MPa 3.5 3.2 3.4 

Temperature, °C 540 540 565 

No. of Steam Extractions 9 8 8 

Outlet Pressure, kPa 3.6 3.4 2.9 

Cooling Water 

Temperature, °C 12 12 12 

Flow Rate, m3/h 108,000 73,000 85,000 

Feedwater Temperature, °C 274 274 270 

Turbine Layout 

No. of Cylinders 5 5 6 

No. of HP Cylinders 1 1 - 

No. of IP Cylinders 2 2 - 

No. of LP Cylinders 2 2 - 

Turbine Mass and Dimensions 

Total Mass, t 1900 1300 1600 

Total Length, m 48 40 40 

Total Length with Electrical Generator, m 72 60 46 

Average Diameter of HP Turbine, m 3.0 2.5 2.5 

Turbine Specific Performance 

Specific Heat Rate, kJ/kW·h 7660 7720 7590 

*Double-shaft turbine. 
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Figure 3.1. Single-reheat-cycle 660-MWe Tom-Usinsk thermal power plant (Russia) thermal 
layout (Kruglikov et al. 2009): Cyl – Cylinder; H – Heat exchanger (feedwater heater); CP – 
Circulation Pump; TDr – Turbine Drive; Cond P – Condensate Pump; GCHP – Gas Cooler of 
High Pressure; and GCLP – Gas Cooler of Low Pressure.  7.1 MPa reheat pressure. 
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Figure 3.2. Single-reheat-cycle 660-MWe Tom-Usinsk thermal power plant (Russia) thermal 
layout (Kruglikov et al. 2009): Cyl – Cylinder; H – Heat exchanger (feedwater heater); CP – 
Circulation Pump; TDr – Turbine Drive; Cond P – Condensate Pump; GCHP – Gas Cooler of 
High Pressure; and GCLP – Gas Cooler of Low Pressure.  4.6 MPa reheat pressure. 
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In Japan, the first supercritical “steam” generator (600 MW) was commissioned in 1967 

at the Anegasaki plant (Oka and Koshizuka 2002; Tsao and Gorzegno 1981).  Nowadays, 

many power plants are equipped with supercritical SGs and turbines.  Hitachi operating 

supercritical pressure “steam” turbines have the following average parameters: output – 

350 (1 unit), 450 (2 units), 500 (3 units), 600 (11 units), 700 (4 units) and 1000 MW (4 

units), pressure about 24.1 MPa (one unit 24.5 MPa), temperature (main/reheat) – 

538/566ºC (the latest units 600/600ºC).  Major parameters of selected Hitachi turbines are 

listed in Table 3.4. 

 

Table 3.4. Major parameters of selected Hitachi SC turbines (Pioro and Duffey 
2007). 

First Year 

of Operation 

Power Rating 

MWe 

Pressure 

MPa(g) 

Tmain/Treheat 

°C 

2011 495 24.1 566/566 

2010 
809 25.4 579/579 
790 26.8 600/600 

2009 

1000 25.0 600/620 
1000 25.5 566/566 
677 25.5 566/566 
600 24.1 600/620 

2008 

1000 24.9 600/600 

887 24.1 566/593 

887 24.1 566/593 

677 25.5 566/566 

2007 
1000 24.9 600/600 

870 25.3 566/593 

2006 
600 24.1 566/566 

600 24.1 566/566 

2005 495 24.1 566/566 

2004 700 24.1 538/566 
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First Year 

of Operation 

Power Rating 

MWe 

Pressure 

MPa(g) 

Tmain/Treheat 

°C 

2003 1000 24.5 600/600 

2002 700 25.0 600/600 

1998 1000 24.5 600/600 

1994 1000 24.1 538/566 

1992 700 24.1 538/566 

1991 600 24.1 538/566 

1989 
1000 24.1 538/566 

700 24.1 538/566 

1985 600 24.1 538/566 

1984 600 24.1 538/538 

1983 

700 24.1 538/538 

600 24.1 538/566 

600 24.1 538/566 

350 24.1 538/566 

1981 500 24.1 538/538 

1979 600 24.1 538/566 

1977 

1000 24.1 538/566 

600 24.1 538/566 

600 24.1 538/552/566* 

1975 450 24.1 538/566 

1974 
500 24.1 538/566 

500 24.1 538/538 

1973 
600 24.1 538/552/566* 

450 24.1 538/566 

1972 600 24.1 538/566 

1971 600 24.1 538/566 

*Double-reheat-cycle turbines. 
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The SC “steam”-turbine technology is experiencing continuous improvements.  For 

example, Project Thermie-700 in Europe is developing a fossil-fueled “steam” generator-

turbine unit for “steam” parameters of 35 MPa and 700°C with a target net-plant 

efficiency of 50 ~ 55%.  It should be noted that this efficiency is expressed on a Lower-

Heating Value (LHV), which, based on typical coal moisture contents is approximately 

equivalent to 47% – 52% on a HHV basis.  The targeting implementation start date for 

the Thermie-700 is the early 2010s.  
 

As one can see from the Tables 3.1 to 3.4, that 25 MPa and 600°C are common SC 

“steam” parameters in state-of-the-art fossil-fueled power plants (see Figure 3.1) and a 

few plants even operate at pressures as high as 35 MPa and at temperatures as high as 

650°C.  The capacity of SC turbines ranges from 300 MWe to 1200 MWe.  The gross 

overall steam-cycle efficiency of SC fossil-fueled power plants typically ranges between 

47% and 54% (i.e., net plant efficiencies between 38% and 43% on a Higher Heating 

Value (HHV) basis).  With the current SC-turbine technology and the ongoing 

development, it is expected that the technologies required for the SCWR’s steam 

parameters will be well proven when the Generation-IV SCWRs are market-ready. 

 

The steam-cycle configuration of a SC cycle is very similar to a subcritical cycle in a 

modern fossil-fueled power plant.  Steam is usually reheated once in a boiler after passing 

through the High-Pressure (HP) turbine, in order to achieve a higher efficiency.  The 

regenerative feedwater-heating system consists of Low-Pressure (LP) and High-Pressure 

(HP) feedwater heaters (closed type) and a deaerator (mixing type).  Usually, SC-“steam” 

cycles involve 8 to 10 stages of feedwater heating, while subcritical steam cycles 

typically involve 8 to 9 stages of feedwater heating. 

 

While the modern SC turbines share many common merits, they also vary in many 

aspects, depending on the manufacturer preference.  These differences can include 

turbine type (impulse or reaction), shaft combination (tandem or cross compound), 

cylinder arrangement, parameter choices (feedwater temperature, reheat pressure), etc.  

Individual manufacturers take different approaches in these areas based on their design 
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experiences.  Some features (e.g., unit capacity, feedwater temperature, etc.) are flexible 

within certain ranges if required by customers. 

 

Therefore, our analysis of SC-turbine data can be summarized as follows: 

 

• Only very few double-reheat-cycle turbines were manufactured so far.  The 

market demand for double-reheat turbines disappeared due to economic reasons 

after the first few units were built.  The vast majority of the modern and upcoming 

SC turbines are single-reheat-cycle turbines. 

• Major “steam” inlet parameters of these turbines are: the main or primary SC 

“steam” – P = 24 – 25 MPa and T = 540 –600°C; and the reheat or secondary 

subcritical-pressure steam – P = 3 – 7 MPa and T = 540 – 620°C. 

• Usually, the main “steam” and reheat-steam temperatures are the same or very 

close in value (for example, 566/566°C; 600/600°C; 600/620°C). 

 
These conclusions coincide with those made by Naidin et al. (2009a) and Pioro and 

Duffey (2007). 
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CHAPTER 4 

THERMAL LAYOUTS FOR SCWRS: GENERAL CONSIDERATION 
 

The SCWR concepts (Pioro and Duffey 2007) follow two main types: (a) A large reactor 

Pressure Vessel (PV), analogous to conventional Light Water Reactors (LWRs); or (b) a 

channelized reactor in which individual Pressure Tubes (PTs) or Pressure Channels 

(PChs) (see Figures 4.1 and 4.2) carry high pressure, analogous to conventional Heavy 

Water Reactors (HWRs). 

 

A schematic of a typical channel is shown in Figure 4.3 with the SCWR fuel channel 

parameters listed in Table 4.1.  A schematic of a typical PT type reactor core layout is 

shown in Figure 4.4. 

 

Based on the review in the previous chapter on SC turbines it follows that for a SCWR to 

be matched with the modern SC turbines, the SCWR has to be operating on a single-

reheat cycle with the following major parameters: (a) the SC water pressure of 25 MPa 

and temperature of 600 − 625ºC at the reactor outlet and (b) the secondary subcritical -

pressure steam – P = 3 – 5 MPa and T = 600 – 650°C at the reactor outlet.  However, due 

to special safety requirements for nuclear reactors all possible options in terms of SC-

water thermodynamic cycles have to be considered. 

 

The following 3 cycles can be distinguished from the point of view of using different 

substance as a working fluid and as a coolant: 

 

1. Direct cycle; 

2. Indirect cycle; and 

3. Dual cycle. 
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The last two cycles were actually introduced based on safety concerns.  These cycles 

have less thermal efficiency compared to that of the direct cycle, but have increased 

safety in terms of an extra barrier between the reactor primary coolant, which may 

contain a certain level of radioactivity, and “clean” NPP equipment such as the turbine, 

feedwater heaters, circulation pumps, etc.  In addition, the primary coolant may contain 

“unwanted” substances, which will deposit on turbine blades and other equipment 

(Duffey 2008). 

 

A preliminary investigation of SCW NPP reheat options by Naidin et al. (2009a) revealed 

the following: 

 

1. The no-reheat cycle offers a simplified SCW NPP layout, contributing to lower 

capital costs.  However, the efficiency of this cycle is the lowest of all the 

considered configurations. 

2. The single-reheat cycle has the advantage of higher thermal efficiency (compared   

to that of the no-reheat cycle) and reduced development costs due to a wide 

variety of single-reheat SC turbines manufactured by companies worldwide.  The 

major disadvantage is an increased design complexity associated with the 

introduction of SHS channels to the reactor core. 

3. While the double-reheat cycle has the highest thermal efficiency, it was deemed 

that the complicated nuclear-steam reheat configuration would significantly 

increase the design and construction costs of such a facility. 

 

As such, configurations based on the no-reheat and single-reheat cycles were chosen for 

the analysis in the thesis. 
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Figure 4.1. Schematic of US pressurized-vessel SCW nuclear reactor (courtesy of 

Professor J. Buongiorno (MIT)). 
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Figure 4.2. General scheme of pressure-channel SCW CANDU reactor (courtesy of 
Dr. R. Duffey (AECL)): IP – intermediate-pressure turbine and LP – low-pressure 

turbine. 
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(a) 

 
(b) 

Figure 4.3. 3-D View of CANDU fuel channels: (a) CANDU-6 reactor (gas insulated) 
(shown for reference purposes) and (b) SCW CANDU reactor (AECL-design , 
ceramic insulated) (Saltanov et al. 2010, figure is based on the paper by Chow and 
Khartabil 2008)). 
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Table 4.1. Selected parameters of proposed SCWR fuel channels (Naidin et al. 
2009a). 

Parameters Unit Description / Value 
Max. cladding temperature (design 
value) 

°C 850 

Max. fuel centerline temperature 
(industry accepted limit) 

°C 1850 

Heated fuel-channel length m 5.772 

Number of bundles / fuel channel – 12 

Number of fuel rods per bundle – 43 

Bundle type (Leung 2008) – CANFLEX 
Variant-

18 
Variant-

20 

Number of heated fuel rods – 43 42 42 

Number of unheated fuel rods – – 1 1 

Diameter of heated fuel rods (# of rods) mm 
11.5 (35) & 

13.5 (8) 
11.5 11.5 

Diameter of unheated fuel rod mm – 18 20 

Hydraulic-equivalent diameter of fuel 
channel 

mm 7.52 7.98 7.83 

Heated-equivalent diameter of fuel 
channel 

mm 9.04 9.98 9.83 

Heated area of fuel channel m2 9.26 8.76 8.76 

Flow area of fuel channel mm2 3625 3788 3729 

Pressure tube inner diameter mm 103.45 

Average parameters of fuel channels in single-reheat (A) and no-reheat (C) cycles 
Heat flux in SCW channel (A&B2

kW/m2 
 

cycles) 
918 970 970 

Heat flux in SHS channel (A&C cycle) kW/m2 594 628 628 

Mass flux in SCW channel (A&B cycles) kg/m2s 1206 1154 1172 

Mass flux in SHS channel (A&C cycle) kg/m2s 2759 2640 2682 

 

                                                 
2 The layouts and discussion of different cycles (A, B, and C) are presented further in the text in 

sections 4.1 – 4.4. 
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Figure 4.4. Possible channel layout of 1200-MWe PT SCWR: OD – outside diameter 

and ID – inside diameter (Saltanov et al. 2010). 
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4.1. Single-Reheat Cycle  

 
The proposed cycle layout for a SCW NPP with a single-reheat option is shown in Figure 

4.5 (Cycle A).  This cycle has the direct single-reheat regenerative configuration.  As 

such, the SC “steam” exiting the reactor is expanded through a single-flow HP turbine.   

 

 
 

Figure 4.5. Direct single-steam-reheat Cycle A for SCW NPP based on Hitachi 
turbines (Naidin et al. 2009a). 

 

As shown in Figure 4.4 (Cycle A), the steam is sent back to the reheater (SHS channels 

inside the reactor), where the temperature is raised to superheated conditions.  

Furthermore, the subcritical-pressure SHS is expanded in the IP turbine and transferred, 

through a cross-over pipe, to the LP turbines.  Since the volume of the steam at the 

exhaust of the IP turbine is quite high, two LP turbines are being utilized.  In Figure 4.4, 

the turbine-generator arrangement is a cross-compound: the HP and IP turbines are 
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located on the same shaft, while the LP turbines are located on a separate shaft (Naidin et 

al. 2009a). 

4.2. Single-Reheat Cycle with MSR 
 

Cycle B, shown in Figure 4.6, follows a slightly different arrangement.  Actually, the 

Moisture Separator and Reheater (MSR) is used for a single-steam reheat instead of the 

reactor steam reheat.  As such, the steam expanded in the HP turbine is sent to the IP 

turbine where it expands to saturated conditions (approximately 0.98 steam quality).  

Furthermore, the steam is passed through a MSR unit that contains one stage of moisture 

separation and two stages of reheat.  From here, superheated steam exiting the MSR unit 

is sent to the inlet of the LP turbines where it is expanded to saturated conditions. 

 

The steam is exhausted from the turbine to the condenser, suffering exhaust losses, which 

depend on the exhaust area and the steam velocity.  The saturated steam undergoes a 

phase change and is condensed at a constant pressure and temperature by a cooling 

medium inside the condenser.  The CEP is taking its suction from the condenser outlet.  It 

pumps the condensate from the hotwell through a series of LP feedwater HeaTeRs (LP 

HTR 1 to 5 for Cycle A, LP HTR 1 to 4 for Cycle B) to the deaerator.  The feedwater 

temperature differentials across the LP heaters are assumed to be approximately the 

same.  The LP heaters are tube-in-shell, closed type heat exchangers.  On the steam side, 

they contain condensing and subcooling zones (Naidin et al. 2009a).  

 

The deaerator is an open-type feedwater heater, where the feedwater, extraction steam 

and drains of the HP heaters come into a direct contact.  The feedwater is heated (at 

constant pressure) to the saturation temperature, and leaves the deaerator as saturated 

liquid.  The Reactor Feedwater Pump (RFP) takes its suction from the deaerator and 

raises the feedwater pressure to the required value at the reactor inlet.  
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Figure 4.6. Single-reheat Cycle B with MSR for SCW NPP (Naidin et al. 2009a). 
 

The feedwater is passed through 4 HP HTRs (6 to 9) in the case of Cycle B.  The HP 

heaters are tube-in-shell, closed-type heat exchangers with de-superheating, condensing 

and subcooling zones. 

 

4.3. No-Reheat Cycle 

 
The single-reheat cycle introduces nuclear SHS channels, thus increasing the complexity 

of the reactor core design.  Although preliminary results show that the thermal efficiency 

of the no-reheat cycle is approximately 2% lower than that of the single-reheat cycle, the 

less complex reactor-core configuration (all channels are cooled with SCW) might prove 

to be a major factor when selecting the most suitable design.  In conclusion, it is worth 
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analyzing the possibility of a no-reheat SCW NPP Cycle C (see Figure 4.7) such as the 

one proposed in this section (Naidin et al. 2009a).  

 

 
 

Figure 4.7. No-reheat Cycle C for SCW NPP (Naidin et al. 2009a). 
 

The proposed no-reheat SCW NPP cycle consists of five LP HTRs, one deaerator, three 

HP HTRs and one topping de-superheater.  The cycle has a direct, no-reheat, regenerative 

configuration.  As such, the SC “steam” exiting the reactor is expanded through a double-

flow HP turbine to superheated conditions.  Since the volume of the steam at the exhaust 

of the HP turbine is quite high, two IP/LP turbines are being utilized.  Furthermore, the 

steam is exhausted from the IP/LP turbine to the condenser.  The saturated steam 

undergoes a phase change and is condensed at constant pressure and temperature by a 

cooling medium inside a condenser.  

 

The CEP is taking its suction from the condenser hotwell.  It pumps the condensate 

through a series of five LP HTRs (1 to 5) to the deaerator.  The feedwater is heated at 
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constant pressure, and leaves the deaerator as saturated liquid.  A RFP takes its suction 

from the deaerator and raises the feedwater pressure to the required value at the reactor 

inlet (25 MPa). Furthermore, the feedwater is passed through three HP HTRs (7 to 9) and 

a topping de-superheater (HP HTR 10).  

 

4.4. Indirect Cycle 
 

SCWR NPP indirect single-reheat-cycle arrangement is shown in Figure 4.8 (Naidin et al. 

2009a).  The SC “steam” from the reactor at a pressure of 25 MPa and temperature of 

625oC transfers the heat through a heat exchanger to the secondary loop.  The SC “steam” 

from the secondary loop is expanded inside a single-flow HP turbine from the 

supercritical pressure of 25 MPa and temperature 550oC (Point 3) to an intermediate 

pressure of 4.9 MPa and temperature of 300oC (Point 4).  The subcritical steam from HP 

turbine is sent to the second heat exchanger, where SC “steam” from the reactor at a 

pressure of 25 MPa and temperature of 625oC raises the steam temperature in the 

secondary loop to superheated conditions through the heat exchanger.  Then the 

superheated steam at a subcritical pressure of 4.5 MPa and temperature of 550oC (Point 

5) is expanded in the IP turbine and transferred through a cross-over pipe and expanded 

in the LP turbine to a pressure of 6.77 kPa and temperature of 38.4oC (Point 6). 
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Figure 4.8. Indirect single-reheat cycle for SCW NPP (Naidin et al. 2009a). 

 

Thermal efficiencies of all cycles are presented in Table 4.2  Selected parameters of the 

proposed Cycles A and C are presented in Table 4.3 

 
Table 4.2. Thermal efficiency of SCW NPP cycles (Naidin et al. 2009a). 

Cycle Thermal Efficiency (%) 

A 52 

B 52 

C 51 
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Table 4.3. Selected parameters of proposed SCW cycles (Naidin et al. 2009a). 
Parameters Unit Description/Value Description/Value 

Cycle type – Single-Reheat (A) No-Reheat (C) 

Reactor spectrum – Thermal 

Fuel – UO2 (ThO2) 

Cladding material – Inconel or Stainless steel 

Reactor coolant – H2O 

Moderator – D2O 

Thermal Power Output MWth 2300 2340 

Electrical Power Output MWe 1200 1200 

Thermal Efficiency % 52 51 

SCW Pin MPa 25.8 25.8 

SCW Pout (estimated) MPa 25 25 

Inlet temperature of coolant (SCW) °C 350 350 

Outlet temperature of coolant (SCW) °C 625 625 

SHS Pin/Pout MPa 6.1/5.7 – 

SHS Tin/Tout °C 400/625 – 

Power thermal, SCW channels  MWth 1870 2340 

Power thermal, SHS channels MWth 430 – 

Power thermal per SCW channel3 MWth  8.5 8.5 

Power thermal per SHS channel MWth 5.5 – 

Number of fuel channels (total)  – 300 270 

Number of SCW channels – 220 270 

Number of SHS channels – 80 – 

Total flow rate of SCW kg/s 960 1190 

Total flow rate of SHS kg/s 780 – 

Flow rate / SCW channel kg/s 4.37 4.37 

Flow rate / SHS channel kg/s 10 – 

                                                 
3 Presented in the table are average values of power per channel.  In modeling heat-transfer along the 

SCW and SHS channels apart from the average, maximum channel power (+15%) was considered to 
account for neutron flux variations across core and due to uncertainty. 
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Concluding abovementioned results, the single-reheat cycle with heat regeneration and 

the corresponding arrangement appears to be the most advantageous as a basis for an 

SCW NPP.   

 

4.5. Developed Detailed Thermal Layouts for NPPs Cooled with SCW 
 

Unfortunately, schematics in Figures 4.5 – 4.8 are too general and have parameters only 

of the few elements of the cycles.  Thus, a complete thermodynamic layout of a SCW 

NPP cannot be calculated based on these schematics.  Therefore, the objective was to 

make a complete calculation of a SCW NPP thermodynamic layout.  Figures 4.8 and 4.9 

show recalculated schematics of a modern SC thermal power plant in Tom-Usinsk 

(Russia), based on the Figures 3.1 and 3.2.  The layouts in Figures 4.8 and 4.9 are unique, 

because they contain full information on steam extraction from different stages of turbine 

and on the rest of the components of the layout.  The characteristics of these layouts 

match the discussed above concept of the SCWR.  Two variants are presented – for 600 

MWe output (two turbines should be used) and for 1200 MWe output.  

 

Recalculation was made based on mass flow and heat balance.  Pressure drop along line 

was recalculated in proportion to the square of the ratio of the recalculated mass-flow rate 

to the reference mass-flow rate.  This is valid assuming that differences in densities at the 

recalculated and reference temperatures are negligible.  Rebalancing feedwater heaters 

and condenser required iterative search, since for these elements both mass and energy 

were to be conserved.  Coolant at the deaerator and condenser outlets was assumed to be 

at saturated state. 

 

It is important to mention, that heat-transfer calculations presented in the next section 

were made based on the parameters of generic SCW/SHS channels corresponding to the 

original AECL scheme, presented in Fig. 4.5.  However, the detailed schematics 

presented below were developed after the heat-transfer calculations had been performed.  

Therefore, there is slight difference between the schematics in terms of inlet temperature 

to the SCW and SHS channels. 
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Figure 4.8. Thermal layout of 600-MWe single-reheat-cycle: Cyl – Cylinder; D – Deaerator; H – Heat exchanger 
(feedwater heater); FP - Feedwater pump; CP – Condenser Pump; and TDr – Turbine Drive; 



 
 

 102 

 
Figure 4.9. Thermal layout of 1200-MWe single-reheat-cycle: Cyl – Cylinder; D – Deaerator; H – Heat 
exchanger (feedwater heater); FP - Feedwater pump; CP – Condenser Pump; and TDr – Turbine Drive;  
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To conclude this chapter, the following advantages of the single-reheat cycle in 

application to SCW NPPs should be emphasized: 

 

1. High thermal efficiency (45 – 50%), which is the current level for SC thermal 

power plants and close to the maximum thermal efficiency achieved in the power 

industry at combined-cycle power plants (up to 55%); 

2. High reliability through proven state-of-the-art SC turbine technology;  

3. Potential for co-generation of hydrogen; and 

4. Reduced development costs based upon the wide variety of available SC turbines 

manufactured by companies worldwide. 

 

However, the implementation of a single-reheat-cycle in SCW NPPs will require 

designing of the SHS channels and significant changes to the reactor-core design due to 

addition of these channels. 
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CHAPTER 5 

HEAT-TRANSFER CALCULATIONS FOR GENERIC 

SUPERCTICIAL-WATER AND SUPERHEATED-STEAM 

CHANNELS 
 

5.1. Overview of Relevant Correlations 
 

At the current design stage of a generic SCW/SHS it is necessary to model coolant 

temperature distribution along the channel at steady-state at expected heat flux conditions 

and inlet coolant parameters.  As the most basic approach, it is the bulk-fluid (or average 

in the cross-section) temperature is analyzed based on the heat-balance method.  The next 

step is to determine temperatures of the sheath of the fuel element, as well as fuel 

centerline temperature.  There are no exact analytical methods of prediction for 

temperature change across the coolant flowing in turbulent regime, and experimentally 

obtained heat-transfer correlations are used.  Generally in such heat-transfer correlations, 

Nusselt number is correlated against the product of Reynolds number and Prandtl 

number, each raised to a certain power (so called Dittus-Boelter type).  There are several 

heat-transfer correlations for the forced convection of a coolant in the supercritical and 

superheated-steam state.  Below, the most recognized are discussed according to Pioro 

and Duffey (2007). 

 

5.1.1. Correlations appropriate for SHS conditions 
 

Due to the difficulty in dealing with the steep property variations, especially in turbulent 

flows and at high heat fluxes, satisfactory analytical methods have not yet been 

developed.  Therefore, empirical generalized HTC correlations based on experimental 

data are used for HTC calculations for forced convective turbulent flows. 
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McAdams (1942) proposed to use the Dittus and Boelter (1930) equation in the following 

form for forced convective heat transfer in turbulent flows and subcritical pressures (this 

statement is based on the recent study by Winterton (1998)): 

 

 
0.8 nC=b b bNu Re Pr , (5.1) 

 

where C = 0.0243 and n = 0.4 for heating (Tw > Tb), and C = 0.0265 and n = 0.3 for 

cooling (Tw < Tb).  This equation has been confirmed experimentally for the range of 

conditions: 0.7 ≤ Pr ≤ 160; Reb ≥ 10,000. 

 

For flows characterized with large property variations the following equation (Sieder and 

Tate 1936) is recommended: 
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where all properties are evaluated at Tb except µw, which is evaluated at Tw.  This 

equation has been confirmed experimentally for the range of conditions: 0.7 ≤ Pr ≤ 

16,700 and Reb  ≥ 10,000. 

 

For superheated steam, a correlation was developed by Hadaller and Banerjee (1969): 
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where all properties are evaluated at the film temperature:  
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Gnielinski (1976) modified and improved a correlation developed by Petukhov and 

Kirillov (1958) for supercritical CO2: 
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where friction factor ξ can be determined from an appropriate relation, such as Petukhov 

equation: 

 

 2

1
(0.790ln 1.64)

ξ =
−bRe

 (5.6) 

 

Gnielinski correlation (5.5) is valid for .0.5 ≤ Pr ≤ 2000 and 3⋅103 < Reb< 5∙106. 

 

5.1.2. Correlations appropriate for SCW conditions  

 
Krasnoshchekov and Protopopov (1959, 1960) proposed (later, together with Petukhov 

(Petukhov et al. 1961)) the following correlation for forced convective heat transfer in 

water and carbon dioxide at supercritical pressures: 
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where according to Petukhov and Kirillov (1958): 
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and  2
10

1
(1.82 log 1.64)

ξ =
−bRe

. (5.9) 

 

In effect, the Pr and cp were averaged over the ranges to account for the thermophysical 

properties variations.  The majority of their data (85%) were generalized using Equation 

(5.7) and showed discrepancies within ±15%.  Equation (5.7) is valid within the 

following ranges: 

2·104 Z Reb < 8.6·105, 0.85 < bPr  < 65; 0.90 <
w

b

µ
µ

< 3.60, 1.00 <
w

b

k
k

< 6.00, 

 and 0.07 < 
,

p

p b

c
c

 < 4.50. 

 

Bishop et al. (1964) conducted experiments with supercritical water flowing upward 

inside tubes and annuli within the following range of flow and operating parameters: 

pressure 22.8 – 27.6 MPa, bulk-fluid temperature 282 – 527ºC, mass flux 651 – 3662 

kg/m2s and heat flux 0.31 – 3.46 MW/m2.  Their data for heat transfer in tubes were 

generalized using the following correlation, with a fit of ±15%: 

 

 

0.43
0.660.90 0069 1 2.4w

b x

D.
x

ρ
ρ

   = +   
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xx xNu Re Pr  (5.10) 

 

where x is the axial location along the heated length. 

  

Swenson et al. (1965) investigated local forced-convection Heat Transfer Coefficients 

(HTCs) in supercritical water flowing inside smooth tubes.  They found that, due to rapid 

changes in thermophysical properties of supercritical water near the pseudocritical point, 
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conventional correlations did not work well.  They recommended the following 

correlation: 

 

 

0.231
0.6130.9230 00459 w
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ρ
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ww wNu Re Pr  (5.11) 

 

Equation (5.11) was obtained within the following range: P = 22.8 – 41.4 MPa, G = 542 

– 2150 kg/m2s, Tw = 93 – 649ºC, and Tb = 75 – 576ºC; and re-produced the data to within 

±15%.  Also, this correlation predicted the data of carbon dioxide with good accuracy. 

 

However, Swenson et al. assumed that thermal conductivity was a smoothly decreasing 

function of temperature near the critical and the pseudocritical points.  According to their 

experimental data, the HTC in the pseudocritical region is strongly affected by heat flux.  

At low heat fluxes, the HTC had a sharp maximum near the pseudocritical temperature.  

At high heat fluxes, the HTC was much lower and did not have a sharp peak. 

 

Krasnoshchekov et al. (1967) modified their original correlation for forced-convective 

heat transfer in water and carbon dioxide at supercritical pressures (see Equation (5.7)) to 

the following form: 
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where Nu0 is defined in Equation (5.8).  Exponent n is 0.4 at 1≤
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.  Equation (5.12) is accurate within ±20% and is valid within the following 

range: 
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8·104 < Reb < 5·105, 0.85 < Pr  < 65, 0.09 < 
b

w

ρ
ρ

 <1.0, 0.02 < 
,

p
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c
c

 < 49.0, 
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T

 (q'' is in W/m2) and 15≥
D
x .   

 

Later, Krasnoshchekov et al. (1971) added to Equation (5.11) a correction factor for the 

tube entrance region in the form of  
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Also, this correction factor can be used for a heated tube with abrupt inlet within 

152 ≤≤
D
x . 

 

Jackson and Fewster (1975) modified the correlation of Krasnoshchekov et al. to employ 

a Dittus-Boelter type form for Nu0.  Finally, they obtained a correlation similar to that of 

Bishop et al. (1964) without the effect of geometric parameters and with different values 

of constant and exponents: 
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Hence, it can be expected that Jackson and Fewster correlation will follow closely a trend 

predicted by Bishop et al. correlation (Equation (5.10)). 

 

Dyadyakin and Popov (1977) performed experiments with a tight 7-rod bundle with 

helical fins cooled with supercritical water and they correlated their data for the local 

HTCs as: 
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where x is the axial location along the heated length in meters, and Dhy is the hydraulic-

equivalent diameter  in meters.  This correlation fits the data (504 points) to within ±20%.  

The maximum deviation of the experimental data from the correlating curve corresponds 

to points with small temperature differences between the wall temperature and bulk 

temperature.  Sixteen experimental points had deviations from the correlation within 

±30%. 

 

The latest SCW correlation developed by Mokry et al. (2009a) was obtained by analyzing 

a large set of experimental data obtained in Russia: 
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This correlation is valid within P = 22.8 – 29.4 MPa, q'' = 70 – 1250 kW/m2, G = 200 – 

1500 kg/m2s and Dhy = 3 – 38 mm.  The experimental dataset was obtained for 

supercritical water flowing upward in a 4-m-long vertical bare tube.  The data was 

collected at pressures of about 24 MPa for several combinations of wall and bulk-fluid 

temperatures that were below, at, or above the pseudocritical temperature.  The values for 

mass flux ranged from 200 – 1500 kg/m2s, for heat flux up to 1250 kW/m2 and inlet 

temperatures from 320 to 350°C.  Mokry et al. (2009a) correlation has demonstrated a 

good fit for HTC values (±25%) and for wall temperatures (±15) for the analyzed dataset.  

A comparison done by Mokry et al. (2009b) showed that the Dittus-Boelter correlation 

significantly overestimates experimental HTC values within the pseudocritical range.  

The Bishop et al. and Jackson correlations tended also to deviate substantially from the 

experimental data within the pseudocritical range.  The Swenson et al. (1965) correlation 

provided a better fit for the experimental data than the previous three correlations within 

some flow conditions, but did not follow up closely the experimental data within others.  
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Also, HTC and wall temperature values calculated with the FLUENT CFD code (Pioro et 

al. 2010, Vanyukova et al. 2009) might deviate significantly from the experimental data, 

for example, the k-ε model (wall function).  However, the k-ε model (low-Re numbers) 

showed better fit within some flow conditions.   

 

In a recent research on creating look-up tables for trans-critical heat transfer, Zahlan et al. 

(2010) analyzed a big number of correlations against a large set of date.  They showed 

that the best agreement with the date in the supercritical water and superheated steam 

region had the correlation developed by Mokry et al. (2009) (see Tables 5.1 and 5.2). 

 
Table 5.1. Overall weighted average and RMS errors within three supercritical sub-
regions (Zahlan et al. 2010). 

Correlation 

Supercritical Region Region 

Liquid-Like Gas-Like Critical or 
Pseudocritical 

Errors, % 

Average RMS Average RMS Average RMS 
Bishop et al. (1965) 6.3 24.2 5.2 18.4 20.9 28.9 
Swenson et al. (1965) 1.5 25.2 -15.9 20.4 5.1 23.0 
Krasnochekov et al. 
(1967) 

15.2 33.7 -33.6 35.8 25.2 61.6 

Watts-Chou (1982) 4.0 25.0 -9.7 20.8 5.5 24.0 
Chou (1982), Deter 5.5 23.1 5.7 22.2 16.5 28.4 
Griem (1996) 1.7 23.2 4.1 22.8 2.7 31.1 
Jackson (2002) 13.5 30.1 11.5 28.7 22.0 40.6 
Mokry et al. (2009) -3.9 21.3 -8.5 16.5 -2.3 17.0 
Kuang et al. (2008) -6.6 23.7 2.9 19.2 -9.0 24.1 
Cheng et al. (2009) 1.3 25.6 2.9 28.8 14.9 90.6 
Hadaller-Banerjee 
(1969) 

7.6 30.5 10.7 20.5 - - 

Sieder-Tate (1936) 20.8 37.3 93.2 133.6 - - 
Dittus-Boelter (1930) 32.5 46.7 87.7 131.0 - - 
Gnielinski (1976) 42.5 57.6 106.3 153.3 - - 
In bold – the minimum values. 
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Table 5.2. Overall average and RMS error within subcritical region (Zahlan et al. 
2010). 

Correlation 

Subcritical liquid Superheated steam 

Error, % 

Average RMS Average RMS 

Sieder and Tate (1936) 27.6 37.4 83.8 137.8 

Gnielinski (1976) -4.3 18.3 80.3 130.2 

Hadaller and Banerjee (1969) 27.3 35.9 19.1 34.4 

Dittus-Boelter (1930) 10.4 22.5 75.3 127.3 

Mokry et al. (2009) -1.1 19.2 -4.8 19.6 

In bold – the minimum values. 

 

Therefore, Mokry et al. correlation was used to calculate temperature profiles along SCW 

and SHS channels.  In the case of UO2, usage of heat-transfer coefficient at average value 

may underestimate fuel centerline temperature by about 100°C.  Therefore, the minimum 

value of heat-transfer coefficient was used (1.2 times lower than average) in order to have 

conservative results. 

5.2. Generic Design of SCWR and Pressure Channels 
 

It is envisaged that a generic SCWR will consist of 220 SCW channels and 80 SHS 

channels (Pioro and Duffey 2007).  SHS channels are placed in the periphery of the core.  

SCW at a temperature of about 350ºC will enter the core and heated there up to 

temperature of about 625ºC.  The HP turbine inlet pressure will be about 25 MPa.  After 

expansion to the SHS state (P ≈ 6.1MPa, T ≈ 350 – 400ºC) it will be sent back to the 

reactor and superheated there to a temperature of about 625ºC and then sent to the IP 

section of the turbine.  The detailed parameters of the single-reheat cycle for a generic 

SCWR are listed in Table 4.3.  The cross section view of the generic SCWR is presented 

in Figure 4.4.  Peiman et al. (2010) analyzed heat losses from such a configuration.  Total 

heat loss for the 300 channels is predicted to be around 32.7 MW (about 1.4% of the 

reactor thermal power). 
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Table 5.3. Total Heat Losses per Fuel Channel and for 300 Fuel Channels (Peiman 
et al. 2010). 
Fuel Channel Ceramic-Insulated 

Heat Loss/ SCW Channels, kW 105.2 

Heat Loss/ SRH Channels, kW 112.3 

# of SCW Channels 220 

# of SRH Channels 80 

Total Heat Loss (300 Channels), MW 32.7 

 

Ceramic insulation was proposed for the fuel channel, while in conventional CANDU 

channels CO2 is used as an insulator.  The generic SCW channel consists of a liner tube, 

ceramic insulator, and PT.  Inconel-718 is a potential candidate, which can be used as the 

material of choice for the PT.  The minimum required thickness of PT at SCW conditions 

is approximately 7.6 mm.  The main purpose of the liner tube, which is a perforated tube, 

is to protect the ceramic insulator during re-fuelling and operation with fuel bundles 

inside.  The ceramic insulator, which is 70% porous and made of Yttria-Stabilized 

Zirconia (YSZ), should provide good thermal insulation (Peiman et al. 2010).  

 

As mentioned above, water at the supercritical state will be used in the generic SCWR.  

All thermophysical parameters experience significant change near the pseudocritical 

point.  Variations of some thermophysical properties of water along the SCW channel are 

plotted in the Figures 5.1 and 5.2 (values of the properties were calculated using NIST 

(2007) software). 

 

The values of volumetric expansivity, Prandtl number, and specific heat experience 8 – 

10 fold increase in the vicinity of the pseudocritical point.  The values of viscosity, 

thermal conductivity and density drop 4 – 5 times in the vicinity of the pseudocritical 

point.  For comparison, the graphs for the same properties are plotted along SHS channel 

in the same scale. 
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(a) 

(b) 

Figure 5.1. Variation of density, viscosity, and volumetric expansivity of water along 
SCW (a) and SHS (b) channels. 
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(a) 

(b) 

Figure 5.2. Variation of thermal conductivity, Prandtl number, and specific heat of 
water along SCW (a) and SHS (b) channels. 
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5.3. Heat-Transfer-Calculations Algorithm 
 

Heat-transfer calculations were made for a channel with Variant-20 bundles.  The model 

consists of two parts: (a) calculation of the hydraulic-equivalent diameter, Dhy, for the 

given geometry of the channel, and (b) calculation of bulk-fluid, fuel-element sheath, and 

fuel centerline temperatures along the cannel.  In the model, steady-state operating 

conditions are assumed and one-dimensional heat transfer along heated length of the 

channel is evaluated. 

 

In the part (a), the values of PT inner diameter, DPT,i, outer diameter of the fuel-element 

sheath, DSH,o, outer diameter of the central unheated control rod, DUH, and number of fuel 

elements, NSH, are the input parameters.  Then area blocked by fuel elements, flow area, 

wetted perimeter, and Dhy are calculated (Equations 5.17 – 5.20): 

 

 
 
Ablock =

π
4

NSH DSH ,o
2 + DUH

2( ) (5.17) 

 2
,4fl PT i blockA D Aπ

= −  (5.18) 

 , ,( )wet PT i SH SH o UHp D N D Dπ= + +  (5.19) 

 
2 2 2

, ,

, ,

4 ( )fl PT i SH SH o UH
hy

wet PT i SH SH o UH

A D N D D
D

p D N D D
− +

= =
+ +

 (5.20) 

 

The calculated value of Dhy is equal to 7.83 mm for Variant-20 bundle. 

 

In the part (b), first of all, the linear flux shape was set up.  Four Axial Heat-Flux Profiles 

were considered: uniform, cosine-like, upstream-skewed, and downstream-skewed.  The 

truncated cosine and upstream-skewed profiles were taken as proposed in the paper by 

Leung (2008).  Downstream-skewed profile was obtained by symmetrical reflection of 

upstream-skewed profile with respect to longitudinal center of the channel.  This idea was 

proposed by Allison et al. (2009).  The AHFPs are plotted in Figure 5.3.  These flux 

profiles were chosen based on the following ideas.  Uniform profile is the easiest one to 
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be reproduced in the experimental set-up, therefore, calculated values could be verified 

by experimental.  Moreover, if the even burn up is to be achieved in the reactor, then the 

flux shape is to be flattened, being close uniform profile.  Cosine profile corresponds to 

theoretical solution to flux shape along finite cylindrical fuel element.  Cosine-like profile 

of linear power density q′ used at heat transfer calculations was taken from paper by 

Leung (2008), and is described as sum of two sinuses: 

 

 ( ) ( )' 1.511 sin 0.533 0.04431 0.08373 sin 1.589 0.1137q x x= ⋅ ⋅ + + ⋅ ⋅ +  (5.21) 

 

Since it is virtually impossible to hold the same flux shape in all channels during all 

times, there are numerous other shapes.  The one that covers all possible flux shapes is 

represented by downstream-skewed profile. Upstream-skewed profile is relevant to either 

the four-bundle-shift or two-bundle-shift refueling scheme in CANDU (Leung 2008). 

 

 
Figure 5.3. Various AHFPs used for heat-transfer calculations (based on Leung 

2008). 
 

After this the inlet values of temperature and inlet and outlet value of pressure are input.  

Linear pressure drop along the channel was assumed.  Then iterative loop for calculation 
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of temperatures distribution was implemented.  Channel length was sliced into 

elementary pieces, each 1 mm long.  For piece i, value of specific enthalpy hi was 

retrieved from NIST4

'
' 1

1 1 1

1 1 1 2 1 1

( , ); ( ) ;

( , ) ( , ) andsoon,

i
i i i i i i i i

i i i i i i

qh f T P m h h q h h
m

T f h P h f T P

+
+ + +

+ + + + + +

= − = ⇒ = +

= ⇒ =





, specific enthalpy at the end of the piece, hi+1 was calculated from 

the heat balance on the piece, and Ti+1 was retrieved from NIST: 

 

 

 

where q’ is linear power density. 

 

Knowing bulk-fluid temperature allows calculating wall temperature.  In the model, Tw 

was calculated from Mokry et al. correlation (see Equation (5.16)), where dimensionless 

groups were calculated from their definitions as follows: 

 

 4; ;

p

hy w b

hy w b

c

htc D h hm
k D k T T

µ
µ π

⋅ −
= = = ⋅

⋅ −
bb bNu Re Pr





 (5.22) 

 

Mokry et al. correlation requires iteration be made to calculate Tw.  Therefore, for the first 

piece of channel initial guess of Tw was made, HTC was calculated from Mokry et al. 

correlation, and corrected value of Tw,1 was calculated from Newton's cooling law: 

 

( )
'

'
, ,1 ,1

,
sh od sh w b w b

sh od sh

qq htc D N T T T T
htc D N

π
π

= ⋅ − ⇒ = +
⋅

 

 

After that the value of Tw,1 is compared to Tw.  If the absolute value of the difference 

between these values was higher than 0.1K, the value of Tw,1 was assigned to Tw. and 

another iteration was performed, starting from redetermination of heat-transfer coefficient 

                                                 
4 This is a Fortran-based program which calculates various thermophysical parameters for different 

substances in gaseous and liquid phase, based on the given inputs.  NIST may be called from different 
programs (Matlab, Excel, etc.) to calculate unknown parameter based on the two known. 
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from Mokry et al. correlation.  Therefore, the iterations for the piece I were stopped after 

difference of wall temperatures Tw and Tw,1 became less than 0.1 K.  For all the next 

pieces the initial guess of wall temperature was equal to: Tw,i+1 = Tb,i+1 + (Tw,i – Tb,i).  This 

approach saved about 35,000 iterations for the channel.  HTC profiles along SCW and 

SHS channels are plotted in Figures 5.4 and 5.5. 

 

 
(a) 

 
(b) 

Figure 5.4. HTC profiles along SCW (a) and SHS (b) channels at average channel 
power. 
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(a) 

 
(b) 

Figure 5.5. HTC profiles along SCW (a) and SHS (b) channels at maximum channel 
power. 
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After determining wall temperature, inner sheath temperature, Tsh,id, was determined from 

Fourier's law, assuming that the sheath material is Inconel-718: 

 

'
, ,'

,
,,

,

2 ln
2

ln

sh id w sh od
sh sh sh id w

sh sh sh idsh od

sh id

T T Dqq k N T T
k N DD

D

π
π

 −
= ⇒ = +       

 

, 

 

where Dsh,o is outer diameter of sheath and Dsh,i is inner diameter of sheath, the latter 

being equal to the fuel pellet diameter.  Therefore, we assumed perfect contact between 

sheath and pellet.  To substantiate this assumption, we refer to a paper by Chan et al. 

(1999), where heat-transfer coefficient between pellet and sheath is evaluated to be 

65kW/m2K at CANDU-6 channels operating conditions.  It means that in case of SHS 

channel, at maximum power the maximum temperature drop between fuel pellet and 

sheath will be about 25ºC, which only slightly affects fuel centerline temperature.  At 

SCW channel conditions, additionally sheath will be pressed to pellet at much higher 

pressure (about 25MPa.  Thermal conductivity of sheath, ksh, depends on temperature, 

according to Sweet et al. (1987), as: 

 

 2 6 211.45 1.156 10 7.72 10shk T T− −= + ⋅ + ⋅ , (5.22) 

 

where T is measured in ºC. 

 

Fuel centerline temperature was calculated by calculating by dividing fuel pellet radius 

into 10,000 elements and calculating temperature increase across each successive ring 

towards the center.  Solution to radial steady-state temperature distribution in a 

cylindrical configuration with uniform internal heat generation rate was used.   

 

If volumetric heat generation rate is equal to '''q ., then at inner surface of a cylindrical 

layer of radius r and elementary thickness Δr temperature would be: 
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 2 2'''( ) ( ) ( ( ) )
4 f

qT r r T r r r r
k

−∆ = + − −∆ , (5.23) 

where kf is thermal conductivity of fuel. 

 

The model was programmed in MATLAB (2007) software.  Flowchart of the program is 

included in Appendix A.  The program was tested against a reference case of CANDU-6 

fuel channel operating conditions (coolant specific heat is constant and equal to 5.5 

kJ/kg⋅K, P = 10 MPa, Tin = 260ºC, m = 28 kg/s, ksh = 14W/m⋅K, kf = 2.4. W/m⋅K, average 

power equal to 5.5 MW).  Test results are in Appendix B.  The main conclusion from test 

un is that maximum relative error is of the order 10-5 and there are single cases when 

values of temperatures differ in the second decimal place.  It shows convincingly that the 

programmed model is reliable and should produce reasonable results when use to 

calculate temperature profiles at the channel conditions of interest. 

 

Different fuels where considered as the alternative to UO2 due to its possible 

inadmissibly high temperature in a SCW channel5

Table 5.2. Selected properties of fuels (at 0.1 MPa, 1000°C) (Kirillov et al. 2007). 

.  Main thermal properties are 

presented in Table 5.4, and thermal conductivities of fuels considered are plotted in 

Figure 5.6. 

 

Fuel Molecular mass, amu Melting point,°C ρ, kg/m3 cр, J/kg⋅K k, W/m⋅K 
UO2 270 2850 10,630 320 3.10 
ThO2 264 3500 9,960 263 2.61 
MOX 271 2750 10,767 324 2.88 
UC2 262 2550 13,000 240 15.7 
UN 252 2850 13,987 250 22.9 
UC 250 2365 13,010 260 28.8 
 

                                                 
5 One of the reasons why search for an alternative to UO2 to be used in the current CANDU-6 is not a 

question of principle is because the outlet temperature reached by coolant is 310°C, which is 15°C below 
the inlet temperature of the SCWR.  The other reason is that UO2 has negative temperature reactivity 
coefficient. 
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Figure 5.6. Thermal conductivities of nuclear fuels. 
 

As it is seen from Figure 5.6, the fuels maybe distinguished into two groups according to 

their thermal conductivity k behaviour with temperature: for UO2, ThO2, and MOX, k is 

decreasing with temperature increase up to about 1650°C, while for UC2, UC, and UN k 

is continuously increasing with the temperature. 

 

5.4. Results of Heat-Transfer Calculations 
 

Figures 5.7 – 5.30 represent bulk-fluid, fuel-element sheath, and fuel centerline 

temperature distributions along SCW and SHS channels at different AHFPs for UO2, 

ThO2, and UC.  The graphs and numerical values for the rest three fuels are in the 

Appendix C.  The graphs are arranged as follows: first temperature profiles along SCW 

and SHS channels are compared at average power, then – at maximum channel power. 
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For the uniform AHFP, there is an increase in HTC at about 1.5 m from the SCW channel 

inlet.  Therefore, fuel centerline temperature decrease in that region and reaches the value 

that it had at the inlet only at a distance of about 3 m from the channel.  In the case of 

SHS channel, the value of HTC stays almost constant, and one can observe almost linear 

increase in fuel centerline temperature. 

 

In the case of the cosine-like AHFP, HTC drops sharply at a distance of 1 m from SCW 

channel inlet, and an accelerated increase in fuel centerline temperature is observes.  

Closer to the channel outlet HTC value recovers slightly and fuel temperature along with 

the decreased heat flux smoothly decreases.  Along the SHS channel, HTC stays almost 

constant, and fuel temperature reaches maximum value at approximately channels center. 

 

In the case of the upstream-skewed AHFP, maximum channel power is reached close to 

the channel inlet (for fuels with low thermal conductivity) and close to the channel outlet 

(for fuels with high thermal conductivity), and HTC value sharply drops at about 0.5 m 

from the inlet.  Fuel temperature, therefore, increases to peak value at about 1.5 m from 

the inlet, then gradually drops due to improved heat transfer along next 3 meters and 

rapidly decreases along the last meter of the channel outlet.  Similar behaviour is 

observed for the SHS channel. 

 

In the case of the downstream-skewed AHFP, the fuel centerline temperature behaves in 

the opposite manner as compared to the upstream-skewed AHFP along SCW channel.  

Namely, though HTC drops at the inlet, fuel temperature reaches about 70% of peak 

value along the first meter of the channel and then gradually reaches its peak value.  At 

the channel inlet, due to rapid drop in heat flux, fuel centerline temperature rapidly 

decreases to the values close of that of the coolant.  Similar behaviour is observed for the 

SHS channel. 

 

Numerical values of fuel centerline temperatures at 12 points for the fuels are presented 

in Appendix D at all AHFPs. 
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(a) 

 
(b) 

Figure 5.7. Temperature profiles at average power and uniform AHFP. 
(a) – SCW and (b) – SHS channels.  Fuel: UO2. 



 
 

 126 

 
(a) 

 
(b) 

Figure 5.8. Temperature profiles at maximum power and uniform AHFP. 
(a) – SCW and (b) – SHS channels.  Fuel: UO2. 
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(a) 

 
(b) 

Figure 5.9. Temperature profiles at average power and uniform AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: ThO2. 
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(a) 

 
(b) 

Figure 5.10. Temperature profiles at maximum power and uniform AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: ThO2. 
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(a) 

 
(b) 

Figure 5.11. Temperature profiles at average power and uniform AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UC. 
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(a) 

 
(b) 

Figure 5.12. Temperature profiles at maximum power and uniform AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UC. 
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(a) 

 
(b) 

Figure 5.13. Temperature profiles at average power and cosine-like AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UO2. 
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(a) 

 
(b) 

Figure 5.14. Temperature profiles at maximum power and cosine-like AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UO2. 
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(a) 

 
(b) 

Figure 5.15. Temperature profiles at average power and cosine-like AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: ThO2. 
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(a) 

 
(b) 

Figure 5.16. Temperature profiles at maximum power and cosine-like AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: ThO2. 
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(a) 

 
(b) 

Figure 5.17. Temperature profiles at average power and cosine-like AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UC. 
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(a) 

 
(b) 

Figure 5.18. Temperature profiles at maximum power and cosine-like AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UC. 
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(a) 

 
(b) 

Figure 5.19. Temperature profiles at average power and upstream-skewed AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UO2. 
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(a) 

 
(b) 

Figure 5.20. Temperature profiles at maximum power and upstream-skewed AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UO2. 
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(a) 

 
(b) 

Figure 5.21. Temperature profiles at average power and upstream-skewed AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: ThO2. 
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(a) 

 
(b) 

Figure 5.22. Temperature profiles at maximum power and upstream-skewed AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: ThO2. 
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(a) 

 
(b) 

Figure 5.23. Temperature profiles at average power and upstream-skewed AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UC. 
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(a) 

 
(b) 

Figure 5.24. Temperature profiles at maximum power and upstream-skewed AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UC. 
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(a) 

 
(b) 

Figure 5.25. Temperature profiles at average power and downstream-skewed 
AHFP.  (a) – SCW and (b) – SHS channels. Fuel: UO2. 
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(a) 

 
(b) 

Figure 5.26. Temperature profiles at maximum power and downstream-skewed 
AHFP. (a) – SCW and (b) – SHS channels. Fuel: UO2. 
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(a) 

 

 
(b) 

Figure 5.27. Temperature profiles at average power and downstream-skewed 
AHFP. (a) – SCW and (b) – SHS channels. Fuel: ThO2. 
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(a) 

 
(b) 

Figure 5.28. Temperature profiles at maximum power and downstream-skewed 
AHFP. (a) – SCW and (b) – SHS channels. Fuel: ThO2. 
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(a) 

 

 
(b) 

Figure 5.29. Temperature profiles at average power and downstream-skewed 
AHFP. (a) – SCW and (b) – SHS channels. Fuel: UC. 
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(a) 

 
(b) 

Figure 5.30. Temperature profiles at maximum power and downstream-skewed 
AHFP. (a) – SCW and (b) – SHS channels. Fuel: UC. 
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Thus, it may be seen from the Figures 5.7 to 5.30, that there is an accelerated rise in the 

temperatures closer to the inlet of the channel for the upstream-skewed AHFP, near the 

middle of the channel at cosine AHFP, and closer to the outlet of the channel for the 

downstream-skewed AHFP.  In all cases the highest temperature is reached at uniform 

and downstream-skewed AHFP, the least stressed temperature conditions are achieved 

for the upstream-skewed AHFP. 

 

Calculations showed that centerline temperature would exceed design limit for UO2, 

ThO2, and MOX (at maximum channel power) fuels when used in a SCW channel. 

Centerline temperature stays 600°C below the limit for fuels with significantly higher 

thermal conductivity than that of UO2, namely, UC2, UC, UN.  For a SHS channel 

conditions, centerline temperatures of all fuels stay below the design limit.  For UC and 

UN centerline temperature stays even below the design limit for sheath material at 

average channel power.  Along SHS channel, maximum centerline temperature is reached 

by ThO2. The peak values of fuel centerline temperatures at different AHFPs in SCW and 

SHS channel are presented in Tables 5.3 and 5.4 respectively. 

 

Table 5.3. Peak values of fuel centerline temperatures (°C) in SCW channel at 
maximum power. 
AHFP/Fuel UO2 ThO2 MOX UC2 UN UC 

Uniform 2525 2457 2128 1280 1190 1157 

Cosine-like 2946 2843 2650 1314 1183 1137 

Upstream-skewed 2712 2692 2251 1203 1100 1068 

Downstream-skewed 3012 2916 2714 1337 1215 1173 

Temperature values in red are those exceeding the industry accepted limit for UO2 of 
1850°C 
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Table 5.4. Peak values of fuel centerline temperatures (°C) in SHS channel at 
maximum power. 
AHFP/Fuel UO2 ThO2 MOX UC2 UN UC 

Uniform 1650 1672 1325 974 909 894 

Cosine-like 2026 2020 1562 1020 928 905 

Upstream-skewed 1875 1895 1411 957 884 867 

Downstream-skewed 2089 2078 1590 1027 941 918 

Temperature values in red are those exceeding the industry accepted limit for UO2 of 
1850°C 
 

It may noted from the table, that for the fuels with low thermal conductivities (UO2, 

MOX, ThO2), temperature drops by approximately 700 – 800°C at SHS conditions 

compared to SCW conditions, while for the fuels with higher thermal conductivities 

(UC2, UC, UN) this drop is less and as about 250 – 300°C.  

 

Also, the highest temperature is reached at downstream-skewed AHFP for all fuels. 

 

As it may be seen from the tables, neither UO2 nor ThO2 may be used as fuel in SHS 

channels and MOX is also not a safe option.  Therefore, an alternative fuel with higher 

thermal conductivity and appropriate swelling, corrosion-resistance, and mechanical 

strength should be considered to be used as fuel in SCW and SHS channels. 
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CHAPTER 6 

CONCLUSIONS 
 

Steam-reheat options were considered for a generic SCWR.  The operating experience of 

several BWRs with nuclear steam reheat was reviewed.  This unique experience provides 

vital information on physical and engineering challenges associated with implementation 

of steam reheat in conceptual SCWRs.  Three experimental reactors were designed and 

tested in the 1960s – 1970s in the USA.  In the former Soviet Union, nuclear steam reheat 

was implemented at two units at the Beloyarsk NPP.  Operating experience of the units 

showed a possibility of reliable and safe industrial application of nuclear steam reheat 

right up to outlet temperatures of 510 − 540°C after over a decade of operation.  Thermal 

efficiency of the Beloyarsk NPP units was increased by 5% as the result of implementing 

nuclear steam reheat.  The introduction of nuclear steam reheat was economically 

justified in cases where the steam was superheated up to 500°C and higher with the use 

of stainless-steel-sheath fuel elements.  The comprehensive review of the operating 

experience of the Beloyarsk NPP (first industrial BWR with steam reheat) was made as a 

unique compilation of various literature sources published during 1958 – 2009. 

 

The experiments and operating experience obtained to date also indicate that further 

improvements in SHS channel design and in reactor design are possible. 

 

Complete and detailed thermodynamic layouts for a single-reheat SCW NPP (600-MWe 

and 1200-MWe output) were developed. 

 

Heat-transfer calculations were performed for SCW and SHS channels.  Four different 

AHFPs and six different fuels were considered.  Calculations were performed at average 

and maximum channel powers.  The highest temperature is reached at the downstream-

skewed AHFP for all fuels.  Also, inner sheath temperature exceeds design limit of 

750°C at maximum power along SCW channel. 
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UO2, ThO2 cannot be used and MOX is an unsafe at SHS conditions at maximum channel 

power, while UC2, UN, and UC are more safe options.  At SCW conditions both at 

average and maximum channel power and downstream-skewed AHFP, UO2 might start 

to melt.  Alternative fuels with higher thermal conductivity should be considered as a a 

potential option in SCW channels.  Such an alternative fuel may be UC, which maximum 

temperature was calculated to be 1173°C.  UC2 and UN have slightly higher temperatures 

than that of UC, but still below the industry accepted limit and, therefore, as well may be 

used in SCW channels.  However, the final choice of fuel must be also based on the 

assessment of other properties (gas release, cracking, swelling, and compatibility with 

SCW). 

 

These together with the existing SC turbine technology, developed steam cycles, make 

steam-reheat implementation for a generic SCWR, one of the Generation-IV reactor 

concepts, a very promising and feasible option. 
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CHAPTER 7 

FUTURE WORK 

 
Future work on this topic may be devoted to the development of more complex heat-

transfer models (based on a detailed three-dimensional problem of mass, momentum, and 

energy transfer inside the fuel channel).  This would require investigation of approaches 

to model turbulence, complex geometry, writing and verification of a numerical 

algorithm, and, therefore, would require a significant effort.  Also neutronics code may 

be developed to determine actual power shape along the channel.  Another aspect of the 

thesis that may be further enhanced is the optimization of the developed thermodynamics 

layouts and calculation of temperature profiles along channels of such optimized layouts.  

Finally, fuels that are mentioned in the thesis should be assessed based on gas release, 

cracking, swelling, compatibility with SCW, etc. 



 
 

 154 

REFERENCES 
 

Aleksandrova, V.N., Veselkin, A.P., Levich, A.A., Lyutov, M.A., Sklyarov, V.P., 

Khandamirov, Yu. E., Shchapov, G.A., 1968. Research of the Long-Lived Isotopes 

Radiation in the Coolant of the Kurchatov’s Beloyarsk Nuclear Power Plant, (In Russian) 

Atomic Energy, 24 (3), pp. 222–226. 

 

Aleshchenkov, P.I., Zvereva, G.A., Kireev, G.A., Knyazeva, G.D., Kononov, V.I., 

Lunina, L.I., Mityaev, Yu.I., Nevskii, V.P., and Polyakov, V.K., 1971. Start-up and 

Operation of Channel-Type Uranium-Graphite Reactor with Tubular Fuel Elements and 

Nuclear Steam Reheating, Atomic Energy (Атомная Энергия, стр. 137–144), 30 (2), pp. 

163–170. 

 

Aleshchenkov, P.I., Mityaev, Yu.I., Knyazeva, G.D., Lunina, L.I., Zhirnov, A.D., and 

Shuvalov, V.M., 1964. The Kurchatov’s Beloyarsk Nuclear Power Plant, (In Russian) 

Atomic Energy, 16 (6), pp. 489–496. 

 

Allison, L., Villamere, B., Grande, L., Mikhael, S., Rodriguez-Prado, A. and Pioro, I., 

2009. Thermal Design Options for SCWR Fuel Channel with Uranium Carbide and 

Uranium Di- Carbide Ceramic Fuels, Proc. ICONE-17, Brussels, Belgium, July 12-16, 

Paper #75975, 10 pages. 

 

Baturov, B.B., Zvereva, G.A., Mityaev, Yu.I., and Mikhan, V.I., 1978. Nuclear Reheating 

of Steam, Results and Prospects at the Present Stage, Atomic Energy (Атомная Энергия, 

стр. 126–131), 44 (2), pp. 131–137. 

 

Bishop, A.A., Sandberg, R.O. and Tong, L.S., 1964. Forced convection heat transfer to 

water at near-critical temperatures and super-critical pressures, Report WCAP-2056, 

Westinghouse Electric Corporation, Atomic Power Division, Pittsburgh, PA, USA, 

December, 85 pages. 



 
 

 155 

Chan, P.K., Alavi, P., Chassie, G.G., Lau, J.H., Purdy, P.L., Rattan, D., Sejnoha, R., 

Tayal, M., Wong, B., and Xu, Z., 1999. An Update on the Design Verification of the 

CANFLEX Fuel Bundle, Proc. Of International conference on CANDU fuel, Niagara 

Falls, Ontario, Canada, September 26-30, pp. 114–123. 

 

Chow, C.K., and Khartabil, H.F., 2008. Conceptual Fuel Channel Designs for CANDU – 

SCWR. Nuclear Engineering and Technology, Vol. 40, No. 1, pp. 1−8. 

 

Dittus, F.W. and Boelter, L.M.K., 1930. Heat Transfer in Automobile Radiators of the 

Tubular Type, University of California, Berkeley, Publications in Engineering, Vol. 2, 

No. 13, pp. 443-461 (or Int. Communications in Heat and Mass Transfer, 1985, Vol. 12, 

pp. 3-22). 

 

Dollezhal, N.A. and Emelyanov, I. Ya., 1976. Experience of High-Power Reactor 

Development in the USSR, (In Russian), Atomic Energy, 40 (2), pp. 117–125. 

 

Dollezhal, N.A., Aleshchenkov, P.I., Baturov, B.B., Mityaev, Yu.I., 1974a. Some Results 

and Prospects of Nuclear Steam Reheat in Channel Reactors (Based on Operation 

Experience of the I.V. Kurchatov Nuclear Power Station at Belyi Yar), Proceedings of 

the Conference on NPP Operation Experience and Further Development of Nuclear 

Power Engineering, Dedicated to the 20th Anniversary of Nuclear Power Engineering, 

Obninsk, June 25–27, Vol. I, pp. 149–170. 

 

Dollezhal, N.A., Malyshev, V.M., Shirokov, S.V., Emel’yanov, I.Ya., Saraev, Yu.P., 

Aleshchenkov, P.I., Mityaev, Yu.I., and Snitko, E.I., 1974b. Some Results of Operation 

of the I.V. Kurchatov Nuclear Power Station at Belyi Yar, Atomic Energy (Атомная 

Энергия, cтр. 432–438), 36 (6), pp. 556–564. 

 

Dollezhal, N.A., Aleshchenkov, P.I., Bulankov, Yu.V., and Knyazeva, G.D., 1971. 

Construction of Uranium-Graphite Channel-Type Reactors with Tubular Fuel Elements 



 
 

 156 

and Nuclear-Reheated Steam, Atomic Energy (Атомная Энергия, стp. 149–155), 30 (2), 

pp. 177–182. 

 

Dollezhal, I.Ya., Aleshchenkov, P.I., Evdokimov, Yu.V., Emel’yanov, I.Ya., Ivanov, 

B.G., Kochetkov, L.A., Minashin, M.E., Mityaev, Yu.I., Nevskiy, V.P., Shasharin, G.A., 

Sharapov, V.N., and Orlov, K.K., 1969. BNPP Operating Experience, (In Russian), 

Atomic Energy, 27 (5), pp. 379–386. 

 

Dollezhal, N.A., Emel'yanov, I.Ya., Aleshchenkov, P.I., Zhirnov, A.D., Zvereva, G.A., 

Morgunov, N.G., Mityaev, Yu.I., Knyazeva, G.D., Kryukov, K.A., Smolin, V.N., Lunina, 

L.I., Kononov, V.I., and Petrov, V.A., 1964. Development of Power Reactors of BNPP-

Type with Nuclear Steam Reheat, (In Russian), Atomic Energy, (11), pp. 335–344 

(Report No. 309, 3rd International Conference on Peaceful Uses of Nuclear Energy, 

Geneva, 1964). 

 

Dollezhal, N.A., Krasin, A.K., Aleshchenkov, P.I., Galanin, A.N., Grigoryants, A.N., 

Emel’anov, I.Ya., Kugushev, N.M., Minashin, M.E., Mityaev, Yu.I., Florinsky, B.V., and 

Sharapov, B.N., 1958a. Uranium-Graphite Reactor with Reheated High Pressure Steam, 

Proceedings of the 2nd International Conference on the Peaceful Uses of Atomic Energy, 

United Nations, Vol. 8, Session G-7, P/2139, pp. 398–414. 

 

Dollezhal, N.A., Krasin, A.K., Aleshchenkov, P.I., Galanin, A.N., Grigoryants, A.N., 

Emel’anov, I.Ya., Kugushev, N.M., Minashin, M.E., Mityaev, Yu.I., Florinsky, B.V., and 

Sharapov, B.N., 1958b. Uranium-Graphite Reactor with Reheated High Pressure Steam, 

(in Russian), Atomic Energy, 5 (3), pp. 223–244. 

 

Duffey, R.B., Pioro, I. Zhou, T., Zirn, U., Kuran, S., Khartabil, H. and Naidin, M., 2008. 

Supercritical Water-Cooled Nuclear Reactors (SCWRs): Current and Future Concepts – 

Steam-Cycle Options, Proceedings of the 16th International Conference on Nuclear 

Engineering (ICONE-16), Orlando, Florida, USA, May 11–15, Paper #48869, 9 pages. 

 



 
 

 157 

Dyadyakin, B.V. and Popov, A.S., 1977. Heat transfer and thermal resistance of tight 

seven-rod bundle, cooled with water flow at supercritical pressures, (In Russian), 

Transactions of VTI (Труды ВТИ), No. 11, pp. 244–253. 

 

Emelyanov, I.Ya., Shatskaya, O.A., Rivkin, E.Yu., and Nikolenko, N.Ya., 1972a. 

Strength Examination of BNPP Reactors’ Fuel Channels Constructive Elements, (In 

Russian). Atomic Energy, 33 (3), pp. 729–733. 

 

Emelyanov, I.Ya., Shasharin, G.A., Kyreev, G.A., Klemin, A.I., Polyakov, E.F., 

Strigulin, M.M., Shiverskiy, E.A., 1972b. Assessment of the Pumps Reliability of the 

Beloyarsk NPP from Operation Data, (In Russian). Atomic Energy, 33 (3), pp. 729–733. 

 

Emelyanov, I.Ya. , Mikhan, V.I., Solonin, V.I., Demeshev, R.S., Rekshnya, N.F., 1982. 

Nuclear Reactor Design, (In Russian). Energoizdat Publishing House, Moscow, Russia, 

400 pages. 

 

Gnielinski, V., 1976. Int. Chem. Eng., 16,. 

 

Grigoryev, V.A. and Zorin, V.M., Editors, 1982. Thermal and Nuclear Power Plants, (In 

Russian), Energoatomizdat Publ. House, Moscow, Russia, p. 326. 

 

Grigoryants, A.N., Baturov, B.B., Malyshev, V.M., Shirokov, S.V., and Mikhan, V.I., 

1979. Tests on Zirconium SRCh in the First Unit at the Kurchatov Beloyarsk Nuclear 

Power Station, Atomic Energy (Атомная Энергия, стр. 55–56), 46 (1), pp. 58–60. 
 

Hadaller, G. and Banerjee, S., 1969. Heat Transfer to Superheated Steam in Round 

Tubes, WDI-147. 

 

Jackson, J.D. and Fewster, J., 1975. Forced convection data for supercritical pressure 

fluids, HTFS 21540. 

 



 
 

 158 

Konovalova, O.T., Kosheleva, T.I., Gerasimov, V.V., Zhuravlev, L.S., and Shchapov, 

G.A., 1971. Water-Chemical Mode at the NPP with Channel Reactor and Nuclear Steam 

Reheat, (In Russian), Atomic Energy, 30 (2), pp. 155–158. 

 

Krasnoshchekov, E.A. and Protopopov, V.S., 1959. Heat transfer at supercritical region 

in flow of carbon dioxide and water in tubes, (In Russian), Thermal Engineering 

(Теплоэнергетика, стр. 26–30), No. 12, pp. 26–30. 

 

Krasnoshchekov, E.A. and Protopopov, V.S., 1960. About heat transfer in flow of carbon 

dioxide and water at supercritical region of state parameters, (In Russian), Thermal 

Engineering (Теплоэнергетика, стр. 94), No. 10, p. 94. 

 

Krasnoshchekov, E.A., Protopopov, V.S., Van, F. and Kuraeva, I.V., 1967. Experimental 

investigation of heat transfer for carbon dioxide in the supercritical region, Proceedings 

of the 2nd All-Soviet Union Conference on Heat and Mass Transfer, Minsk, Belarus’, 

May, 1964, Published as Rand Report R-451-PR, Edited by C. Gazley, Jr., J.P. Hartnett 

and E.R.C. Ecker, Vol. 1, pp. 26–35. 

 

Kruglikov, P.A., Smolkin, Yu.V. and Sokolov, K.V., 2009. Development of Engineering 

Solutions for Thermal Scheme of Power Unit of Thermal Power Plant with Supercritical 

Parameters of Steam, (In Russian), Proc. of Int. Workshop "Supercritical Water and 

Steam in Nuclear Power Engineering: Problems and Solutions”, Moscow, Russia, 

October 22–23, 6 pages. 

 

Lee, R.A. and Haller, K.H., 1974. Supercritical water heat transfer developments and 

applications, Proceedings of the 5th International Heat Transfer Conference, Tokyo, 

Japan, September 3–7, Vol. IV, Paper No. B7.7, pp. 335–339. 

 



 
 

 159 

Leung, L.K., 2008. Effect of CANDU Bundle-Geometry Variation on Dryout Power. 

Proceedings of the 16th International Conference on Nuclear Engineering (pp. 1- 8). 

Orlando, Florida: ICONE-16. Paper #48827. 

 

MATLAB version 7.4, R2007a, computer software, The MathWorks, Inc., Natick, 

Massachusetts, USA. 

 

McAdams, W.H., 1942. Heat Transmission, 2nd edition, McGraw-Hill, New York, NY, 

USA, 459 pages. 

 

Mikhan, V.I., Glazkov, O.M., Zvereva, G.A., Mihaylov, V.I., Stobetskaya, G.N., 

Mityaev, Yu.I., Yarmolenko, O.A., Kozhevnikov, Yu.N., Evdokimov, Yu.V., 

Sheynkman, A.G., Zakharov, V.G., Postnikov, V.N., Gladkov, N.G., and Saraev, O.M., 

1988. Reactor Testing of Zirconium Steam-Reheat Channels with Rod Fuel Elements in 

Reactors of the First Stage of BNPP, (In Russian), BNPP Operating Experience: 

Information Materials (in 4 volumes), USSR Academy of Sciences, Ural Branch. 4.3. 

Fuel Assemblies and Constructional Materials. Heat Transfer Equipment of the Nuclear 

Power Units, 207 pages. 

 

Mokry, S., Gospodinov, Ye., Pioro, I. and Kirillov, P., 2009a. Supercritical Water Heat-

Transfer Correlation for Vertical Bare Tubes, Proceedings of the 17th International 

Conference on Nuclear Engineering (ICONE-17), Brussels, Belgium, July 12-16, 

Paper#76010, 8 pages. 

 

Mokry, S., Farah, A., King, K., Gupta, S., Pioro, I. and Kirillov, P., 2009b. Development 

of a Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes, Proc. Int. 

Conf. “Nuclear Energy for New Europe”, Bled, Slovenia, Sep. 14-17, Paper #210, 14 

pages. 

 



 
 

 160 

Mokry, S., Naidin, M., Baig, F., Gospodinov, Ye., Zirn, U., Bakan, K., Pioro, I. and 

Naterer, G., 2008. Conceptual Thermal-Design Options for Pressure-Channel SCWRs, 

Proceedings of the 16th International Conference on Nuclear Engineering (ICONE-16), 

Orlando, FL, USA, May 11–15, Paper #48313. 

 

Naidin, M., Mokry, S., Pioro, I., Duffey, R., and Zirn, U., 2009a. SCW NPPs: Layouts 

and Thermodynamic Cycles, International Conference “Nuclear Energy for New 

Europe”, Bled, Slovenia, Sep. 14-17, Paper #704, 12 pages. 

 

Naidin, M., Mokry, S., Baig, F., Gospodinov, Ye., Zirn, U., Pioro, I. and Naterer, G., 

2009b. Thermal-Design Options for Pressure-Channel SCWRs with Co-Generation of 

Hydrogen, J. of Engineering for Gas Turbines and Power, Vol. 131, January, 8 pages. 

 

Naidin, M., Mokry, S., Monichan, R., Chophla, K., Pioro, I., Naterer, G. and Gabriel, K. 

2009c. Thermodynamic Analysis of SCW NPP Cycles with Thermo-Chemical Co-

Generation of Hydrogen, Proceedings of the International Conference on Hydrogen 

Production-2009 (ICH2P-09), University of Ontario Institute of Technology, Oshawa, 

Ontario, Canada, Paper No. ICH2P-GP163, 14 pages. 

 

Naterer, G., Suppiah, S., Lewis, M., Pioro, I. et al., 2009. Recent Canadian Advances in 

Nuclear-Based Hydrogen Production and the Thermochemical Cu-Cl Cycle, Int. J. of 

Hydrogen Energy (IJHE), Vol. 34, pp. 2901-2917. 

 

NIST Reference Fluid Thermodynamic and Transport Properties―REFPROP, 2007. 

NIST Standard Reference Database 23 (on CD: Executable with Source plus 

Supplemental Fluids in ZIP File), Version 8.0, E.W. Lemmon, M.O. McLinden and M.L. 

Huber, National Institute of 

 

Novick, M., Rice, R.E., Graham, C.B., Imhoff, D.H., and West, J.M., 1965. 

Developments in Nuclear Reheat, Proceedings of the 3rd International Conference on 

Peaceful Uses of Nuclear Energy, Geneva 1964, Vol. 6, pp. 225–233. 



 
 

 161 

 

Oka, Yo. and Koshizuka, S., 2002. Status and prospects of high temperature 

(supercritical-pressure) light water cooled reactor research and development, Proceedings 

of the 13th Pacific Basin Nuclear Conference, Shenzhen City, China, October 21–25. 

Ornatskiy, A.P., Dashkiev, Yu.G. and Perkov, V.G., 1980. Supercritical Steam 

Generators, (In Russian), Vyshcha Shkola Publ. House, Kiev, Ukraine, 287 pages. 

 

Peiman, W., Gabriel, K., and Pioro, I., 2010. Heat-loss Calculations For Pressure-channel 

SCWRS, Proc. 2nd Canada-China Joint Workshop on Supercritical Water-Cooled 

Reactors (CCSC-2010), Toronto, Ontario, Canada: Canadian Nuclear Society, April 25-

28 

 

Petrosyants, A.M., 1969. Power Reactors for Nuclear Power Plants (from the First in the 

World to the 2-GW Electrical Power NPP) , (In Russian). Atomic Energy, 27 (4), pp. 

263–274. 

 

Petukhov, B.S. and Kirillov, 1958. About heat transfer at turbulent fluid flow in tubes, (In 

Russian), Thermal Engineering (Теплоэнергетика, стр. 63–68), (4), pp. 63–68. 

 

Pioro, I., Mokry, S., Peiman, W., Grande, L. and Saltanov, Eu., 2010. Supercritical 

Water-Cooled Nuclear Reactors: NPP Layouts and Thermal Design Options of Pressure 

Channels, Proceedings of the 17th Pacific Basin Nuclear Conference (PBNC-2010), 

Cancun, Mexico, October 24-30, 31 pages. 

 

Pioro, I.L. and Duffey, R.B., 2007. Heat Transfer and Hydraulic Resistance at 

Supercritical Pressures in Power Engineering Applications, ASME Press, New York, 

NY, USA, 334 pages. 

 



 
 

 162 

Retzlaff, K.M. and Ruegger, W.A., 1996. Steam turbines for ultrasupercritical power 

plants, GER-3945A, General Electric Company, Schenectady, NY, USA, 13 pages. 

 

Ross, W.B., 1961. Pathfinder Atomic Power Plant, Superheater Temperature Evaluation 

Routine, An IBM-704 Computer Program. United States Atomic Energy Commission, 

Office of Technical Information, Oak Ridge, TN, 49 pages. 

 

Saltanov, Eu., Peiman, W., Farah, A., King, K., Naidin, M. and Pioro, I., 2010. Steam-

Reheat Options for Pressure-Tube SCWRs, Proceedings of the 18th International 

Conference On Nuclear Engineering (ICONE-18), Xi'an, China, May 17-21, Paper 

29972, 12 pages. 

 

Samoilov, A.G., Pozdnyakova, A.V., and Volkov, V.S., 1976. Steam-Reheating Fuel 

Elements of the Reactors in the I.V. Kurchatov Beloyarsk Nuclear Power Station, Atomic 

Energy (Атомная Энергия, стр. 371-377), 40 (5), pp. 451–457. 

 

Shitzman, M.E., 1983. Neutral-Oxygen Water Regime at Supercritical-Pressure Power 

Units, (in Russian), Energoatomizdat Publishing House, Moscow, Russia. 

Sieder, E.N. and Tate, G.E., 1936, Ind. Eng. Chem., 28 (1429).  

 

Smith, D., 1999. Ultra-supercritical CHP: Getting more competitive, Modern Power 

Systems, January, pp. 21–32. 

 

Smolin, V.N., Polyakov, V.K., Esikov, V.I., and Shuyinov, Yu.N., 1965. Test Stand 

Study of the Start-up Modes of the Kurchatov’s Beloyarsk Nuclear Power Plant, (In 

Russian). Atomic Energy, 19 (3), pp. 261–269. 

 



 
 

 163 

Swenson, H.S., Carver, J.R. and Kakarala, C.R., 1965. Heat transfer to supercritical water 

in smooth-bore tubes, Journal of Heat Transfer, Transactions of the ASME, Series C, 87 

(4), pp. 477–484. 

 

Tsao, D. and Gorzegno, W.P., 1981. Variable-pressure once-through steam 

generators―experience and development, Proceedings of the American Power 

Conference, Vol. 43, pp. 287–293. 

USAEC Report ACNP-5910, 1959. Allis-Chalmers Manufacturing Co., Pathfinder 

Atomic Power Plant, Final Safeguards Report, May. 

 

USAEC Report (MaANL-6302), 1961. Design and Hazards Summary Report—Boiling 

Reactor Experiment V (Borax-V), Argonne National Laboratory. 

 

USAEC Report PRWRA-GNEC 5, 1962. General Nuclear Engineering Corp., BONUS, 

Final Hazards Summary Report, February. 

 

Vanyukova, G.V., Kuznetsov, Yu.N., Loninov, A.Ya., Papandin, M.V., Smirnov, V.P. 

and Pioro, I.L., 2009. Application of CFD-Code to Calculations of Heat Transfer in a 

Fuel Bundle of SCW Pressure-Channel Reactor, Proc. 4th Int. Symp. on Supercritical 

Water-Cooled Reactors, Heidelberg, Germany, March 8-11, Paper No. 28, 9 pages. 

 

Veselkin, A.P., Beskrestnov, N.V., Sklyarov, V.P., Khandamirov, Yu.E., and Yashnikov, 

A.I., 1971. Radiation Safety Aspects in Designing and Operating Channel-Type Power 

Reactors, (In Russian), Atomic Energy, 30 (2), pp. 144–149. 

 

Veselkin, A.P., Lyutov, M.A., Khandamirov, Yu.E., 1968. Radioactive Deposits on the 

Surfaces of the Kurchatov's Beloyarsk Nuclear Power Plant, (In Russian), Atomic 

Energy, 24 (3), pp. 219–222. 

 



 
 

 164 

Vikulov, V.K., Mityaev, Yu.I., Shuvalov, V.M. , 1971. Some Issues on Beloyarsk NPP 

Reactor Physics, (In Russian), Atomic Energy, 30 (2), pp. 132–137. 

Winterton, R.H.S., 1998. Where did the Dittus and Boelter equation come from? 

International Journal of Heat and Mass Transfer, 41 (4–5), pp. 809–810. 

Yurmanov, V.A., Belous, V. N., Vasina, V. N., and Yurmanov, E.V., 2009a. Chemistry 

and Corrosion Issues in Supercritical Water Reactors, Proceedings of the IAEA 

International Conference on Opportunities and Challenges for Water Cooled Reactors in 

the 21st Century, Vienna, Austria, October 26−30.  

 

Yurmanov, V.A., Vasina, V. N., Yurmanov, E.V and Belous, V. N., 2009b. Water 

Regime Features and Corrosion Protection Issues in NPP with Reactors at Supercritical 

Parameters", (In Russian), Proceedings of the IAEA International Conference on 

Opportunities and Challenges for Water Cooled Reactors in the 21st Century, Vienna, 

Austria, October 26−30. 

 

Zahlan, H., Groeneveld, D. and Tavoularis, S., 2010. Look-Up Table for Trans-Critical 

Heat Transfer, Proc. 2nd Canada-China Joint Workshop on Supercritical Water-Cooled 

Reactors (CCSC-2010), Toronto, Ontario, Canada: Canadian Nuclear Society, April 25-

28 



 
 

 165 

APPENDIX A 

FLOWCHART OF THE MATLAB PROGRAM FOR HEAT-

TRANSFER CALCULATIONS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

START 

READ: 
- geometry of the bundle; 
- channel inlet parameters for the coolant; 
- power shape; 

i = 1 

Call NIST to get hi = f(Tbf,i, Pi) 
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i i
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
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Call NIST to get 
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Calculate Pr, Re, Nu, and htc from Mokry et al. correlation 
 

Update Tw,i+1 through Newton’s cooling law: 
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EXPORT TO ASCII FILE: 
- heat-transfer coefficient; 
- bulk-fluid temperature profile; 
- inner sheath temperature profile; 
- fuel centerline temperature profile 

END 
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APPENDIX B 

TEST RUN OF MATLAB PROGRAM AND COMPARISON WITH 

ANALYTICAL RESULTS 
 
 

Figure B.1 shows temperature profiles for a reference case of CANDU-6 channel average 

operating conditions (coolant cp = 5.5 kJ/kg⋅K, k = 0.573 W/m⋅K, µ = 9.27⋅10-5 Pa⋅s, P = 

10 MPa, Tin = 260ºC, m = 28 kg/s,  ksh = 14W/m⋅K, kf = 2.4. W/m⋅K, average power 

equal to 5.5 MW, variant-20 bundle).  Table B.1 shows comparison of analytical values 

and those calculated by the program written in Matlab (the values calculated in the 

program are highlighted with blue color). 

 

 
Figure B.1. Temperature profiles along channel in the reference case. 
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Table B.1. Comparison of analytical and calculated with Matlab values of temperatures. 
 

x, m Tbf,°C Tbf,°C Error Tsh,°C Tsh,°C Error Tfuel,°C Tfuel,°C Error 

0 260 260 1.78E−07 264 264 1.15E−06 344 344 1.53E−06 

0.481 260 260 3.78E−05 280 280 1.27E−06 633 633 2.29E−06 

0.962 260 260 8.44E−06 295 295 9.96E−07 903 903 2.48E−06 

1.443 262 262 1.17E−05 310 310 1.14E−06 1137 1137 2.58E−06 

1.924 265 265 1.41E−05 323 323 1.16E−06 1317 1317 2.64E−06 

2.405 269 269 1.53E−05 333 333 8.32E−07 1433 1433 2.63E−06 

2.886 273 273 1.57E−05 339 339 9.84E−07 1475 1475 2.60E−06 

3.367 277 277 1.50E−05 341 341 9.83E−07 1442 1442 2.59E−06 

3.848 282 282 1.33E−05 340 340 8.17E−07 1335 1335 2.61E−06 

4.329 286 286 1.07E−05 335 335 8.30E−07 1161 1161 2.46E−06 

4.810 290 290 7.50E−06 326 326 9.68E−07 933 933 2.42E−06 

5.291 293 293 3.88E−06 314 314 8.88E−07 667 667 2.21E−06 

5.772 296 296 1.08E−07 300 300 1.08E−07 380 380 1.60E−06 

 

As one can, maximum relative error is of the order 10−5 and there are single cases when values of temperatures differ in the second 

decimal place.  It shows convincingly that the programmed model is reliable and should produce reasonable results when use to 

calculate temperature profiles at the channel conditions of interest.  
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APPENDIX C 

TEMPERATURE PROFILES ALONG SUPERCRITICAL-WATER 

AND SUPERHEATED-STEAM CHANNELS WITH MOX, UC2, AND 

UN FUELS 
 

 
(a) 

 
(b) 

Figure C.1. Temperature profiles at average power and uniform AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: MOX. 
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(a) 

 
(b) 

Figure C.2. Temperature profiles at maximum power and uniform AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: MOX. 
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(a) 

 
(b) 

Figure C.3. Temperature profiles at average power and uniform AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UC2. 
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(a) 

 
(b) 

Figure C.4. Temperature profiles at maximum power and uniform AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UC2. 
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(a) 

 
(b) 

Figure C.5. Temperature profiles at average power and uniform AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UN. 
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(a) 

 
(b) 

Figure C.6. Temperature profiles at maximum power and uniform AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UN. 
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(a) 

 
(b) 

Figure C.7. Temperature profiles at average power and cosine AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: MOX. 
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(a) 

 
(b) 

Figure C.8. Temperature profiles at maximum power and cosine AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: MOX. 
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(a) 

 
(b) 

Figure C.9. Temperature profiles at average power and cosine AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UC2. 
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(a) 

 
(b) 

Figure C.10. Temperature profiles at maximum power and cosine AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UC2. 
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(a) 

 
(b) 

Figure C.11. Temperature profiles at average power and cosine AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UN. 
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(a) 

 
(b) 

Figure C.12. Temperature profiles at maximum power and cosine AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UN. 
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(a) 

 
(b) 

Figure C.13. Temperature profiles at average power and upstream-skewed AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: MOX. 
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(a) 

 
(b) 

Figure C.14. Temperature profiles at maximum power and upstream-skewed 
AHFP. (a) – SCW and (b) – SHS channels. Fuel: MOX. 
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(a) 

 
(b) 

Figure C.15. Temperature profiles at average power and upstream-skewed AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UC2. 
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(a) 

 
(b) 

Figure C.16. Temperature profiles at maximum power and upstream-skewed 
AHFP. (a) – SCW and (b) – SHS channels. Fuel: UC2. 
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(a) 

 
(b) 

Figure C.17. Temperature profiles at average power and upstream-skewed AHFP. 
(a) – SCW and (b) – SHS channels. Fuel: UN. 



 
 

 186 

 
(a) 

 
(b) 

Figure C.18. Temperature profiles at maximum power and upstream-skewed 
AHFP. (a) – SCW and (b) – SHS channels. Fuel: UN. 
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(a) 

 
(b) 

Figure C.19. Temperature profiles at average power and downstream-skewed 
AHFP. (a) – SCW and (b) – SHS channels. Fuel: MOX. 
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(a) 

 
(b) 

Figure C.20. Temperature profiles at maximum power and downstream-skewed 
AHFP. (a) – SCW and (b) – SHS channels. Fuel: MOX. 
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(a) 

 
(b) 

Figure C.21. Temperature profiles at average power and downstream-skewed 
AHFP. (a) – SCW and (b) – SHS channels. Fuel: UC2. 
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(a) 

 
(b) 

Figure C.22. Temperature profiles at maximum power and downstream-skewed 
AHFP. (a) – SCW and (b) – SHS channels. Fuel: UC2. 

 



 
 

 191 

 
(a) 

 
(b) 

Figure C.23. Temperature profiles at average power and downstream-skewed 
AHFP. (a) – SCW and (b) – SHS channels. Fuel: UN. 
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(a) 

 
(b) 

Figure C.24. Temperature profiles at maximum power and downstream-skewed 
AHFP. (a) – SCW and (b) – SHS channels. Fuel: UN. 
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APPENDIX D 

NUMERICAL VALUES OF TEMPERATURES AT 12 POINTS 

ALONG THE CHANNEL AT AVERAGE POWER 
 
Table D.1. Values of bulk-fluid, wall, inner-sheath and UO2 fuel centerline 
temperatures at 12 points of SCW channel at average power. 

Axial position, m AHFP q′ per 
pin, W/m 

Tbf,°C Tw,°C Tsh,id,°C Tf,°C 

0 
Uniform 35063 350 564 596 1625 

Downstr.-sk. 1797 350 354 356 386 

0.481 
Uniform 35063 370 577 610 1647 

Downstr.-sk. 16160 385 661 404 725 

0.962 
Uniform 35063 382 562 595 1620 

Downstr.-sk. 28185 369 480 509 1226 

1.443 
Uniform 35063 386 528 562 1557 

Downstr.-sk. 35698 380 583 616 1699 

1.924 
Uniform 35063 389 523 557 1547 

Downstr.-sk. 39574 386 587 623 1863 

2.405 
Uniform 35063 393 543 576 1585 

Downstr.-sk. 41770 389 594 634 1963 

2.886 
Uniform 35063 403 574 607 1641 

Downstr.-sk. 43927 396 644 683 2131 

3.367 
Uniform 35063 420 613 644 1710 

Downstr.-sk. 46515 413 719 756 2334 

3.848 
Uniform 35063 445 657 687 1785 

Downstr.-sk. 48411 446 796 832 2497 

4.329 
Uniform 35063 479 704 733 1863 

Downstr.-sk. 47249 496 843 878 2516 

4.810 
Uniform 35063 521 753 781 1941 

Downstr.-sk. 39985 555 834 863 2258 

5.291 
Uniform 35063 571 804 830 2018 

Downstr.-sk. 24226 605 757 776 1530 

5.772 
Uniform 1997 625 857 882 2092 

Downstr.-sk. 0 625 625 625 625 
Temperature values in red are those exceeding the industry accepted limit for UO2 of 
1850°C 
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Table D.2. Values of bulk-fluid, wall, inner-sheath and UO2 fuel centerline 
temperatures at 12 points of SHS channel at average power. 

Axial position, m AHFP q′ per 
pin, W/m 

Tbf,°C Tw,°C Tsh,id,°C Tf,°C 

0 
Uniform 22688 400 477 500 1031 

Downstr.-sk. 1163 400 404 405 425 

0.481 
Uniform 22688 481 497 518 1059 

Downstr.-sk. 10456 404 434 450 657 

0.962 
Uniform 22688 437 515 537 1088 

Downstr.-sk. 18237 416 478 497 908 

1.443 
Uniform 22688 456 534 556 1117 

Downstr.-sk. 23099 434 514 537 1109 

1.924 
Uniform 22688 475 553 574 1147 

Downstr.-sk. 25607 454 544 569 1242 

2.405 
Uniform 22688 494 572 593 1177 

Downstr.-sk. 27028 477 572 597 1339 

2.886 
Uniform 22688 514 591 612 1207 

Downstr.-sk. 28423 501 601 627 1441 

3.367 
Uniform 22688 534 611 631 1237 

Downstr.-sk. 30098 527 632 659 1559 

3.848 
Uniform 22688 554 630 650 1266 

Downstr.-sk. 31325 554 663 690 1661 

4.329 
Uniform 22688 573 650 669 1296 

Downstr.-sk. 30573 582 687 713 1670 

4.810 
Uniform 22688 594 669 688 1326 

Downstr.-sk. 25873 608 695 716 1496 

5.291 
Uniform 22688 614 689 708 1356 

Downstr.-sk. 15676 627 678 691 1107 

5.772 
Uniform 22688 634 708 727 1389 

Downstr.-sk. 0 634 634 634 634 
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APPENDIX E 

PUBLISHED PAPERS, CONFERENCES ATTENDED AND 

AWARDS 
 
In total: papers in refereed proceedings of international/national 

conferences/symposiums – 7; major technical reports – 1;  

 
Papers in refereed proceedings of international/national conferences/symposiums 

 

1. Pioro, I., Mokry, S., Peiman, W., Grande, L. and Saltanov, Eu., 2010. Supercritical 

Water-Cooled Nuclear Reactors: NPP Layouts and Thermal Design Options of 

Pressure Channels, Proceedings of the 17th Pacific Basin Nuclear Conference 

(PBNC-2010), Cancun, Mexico, October 24-30, 31 pages. 

2. Saltanov, Eu., Peiman, W., Farah, A., King, K., Naidin, M. and Pioro, I., 2010. 

Steam-Reheat Options for Pressure-Tube SCWRs, Proceedings of the 18th 

International Conference On Nuclear Engineering (ICONE-18), Xi'an, China, May 

17-21, Paper 29972, 12 pages. 

3. Peiman, W., Saltanov, Eu., Gabriel, K. and Pioro, I., 2010. Heat-Loss Calculations 

in a SCWR Fuel-Channel, Proceedings of the 18th International Conference On 

Nuclear Engineering (ICONE-18), Xi'an, China, May 17-21, Paper 30069, 9 pages. 

4. Pioro, I., Naidin, M., Mokry, S., Saltanov, Eu., Peiman, W., King, K., Farah, A. and 

Thind, H., 2010. General Layouts of Supercritical-Water NPPs, Proceedings of the 

18th International Conference On Nuclear Engineering (ICONE-18), Xi'an, China, 

May 17-21, Paper 29993, 9 pages. 

5. Saltanov, E., King, K., Farah, A., and Pioro, I., 2010. Nuclear Steam-Reheat 

Options: Russian Experience, Proceedings of The 2nd Canada-China Joint 

Workshop on Supercritical Water-Cooled Reactors (CCSC-2010) Toronto, Ontario, 

Canada, April 25-28, 2010, Paper 72, 8 pages. 

6. Saltanov, E., King, K., Farah, A., and Pioro, I., 2010. Nuclear Steam-Reheat 

Options: World Experience, Proceedings of the 31st Canadian Nuclear Society 
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(CNS) and 34th Student Conference of the CNS and CNA, Montreal, Canada, May 

24-27, 9 pages. 

7. Saltanov, E., Monichan, R., Tchernyavskaya, E. and Pioro, I., 2009. Steam-Reheat 

Option for SCWRs, Proceedings of the 17th International Conference On Nuclear 

Engineering (ICONE-17), Brussels, Belgium, July 12-16, Paper 76061, 10 pages. 

 

Major technical reports 
 
1. Pioro, I., Saltanov, Eu., Naidin, M., King, K., Farah, A., Peiman, W., Mokry, S., 

Grande, L., Thind, H., Samuel, J. and Harvel, G., 2010. Steam-Reheat Option in 

SCWRs and Experimental BWRs, Report for NSERC/NRCan/AECL Generation 

IV Energy Technologies Program (NNAPJ) entitled “Alternative Fuel-Channel 

Design for SCWR” with Atomic Energy of Canada Ltd., Version 1, UOIT, 

Oshawa, ON, Canada, March, 128 pages. 

 

Conferences attended with paper presentation: 
 
1. 17th International Conference On Nuclear Engineering (ICONE-17), Brussels, 

Belgium, July 12-16, 2009. 

2. 2nd Canada-China Joint Workshop on Supercritical Water-Cooled Reactors (CCSC-

2010) Toronto, Ontario, Canada, April 25-28 

3. 18th International Conference On Nuclear Engineering (ICONE-18), Xi'an, China, 

May 17-21, 2010. 

4. 31st Canadian Nuclear Society (CNS) and 34th Student Conference of the CNS and 

CNA, Montreal, Canada, May 24-27. 

 

Awards and honors: 
 
1. Winner in the ICONE-18 (International Conference On Nuclear Engineering) 

Student Best Poster Competition for the paper/poster "Steam-Reheat Options for 

Pressure-Tube SCWRs";  

2. Winner in the ICONE-18 North America Student Best Poster Competition for the 

paper/poster "Heat-Loss Calculations in a SCWR Fuel-Channel”. 


