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ABSTRACT 

The financial viability of the Canadian oil sands industry is due in large 

part to the successful operation of upgrading facilities and the delayed coking 

unit which converts petroleum residuum into lighter liquid and gas products. 

Since the development of this technology in the 1940's, a major source of 

unit failure has been drum shell cracking. There are very few studies in the open 

literature investigating the root cause, the mitigation of this failure mechanism 

and remaining life prediction. 

In this work, the focus is on the thermo mechanical loading and its impact. 

Reconciliation with the available field data suggests that the field data is 

problematic, leading to an underreporting of the damage. 

By the use of closed form expressions and non-linear, temperature 

dependant numerical modeling, understanding of the failure mode is improved 

and alternate approaches are possible to evaluate structure performance. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Delayed coking is a processing technology used in oil refining and oil sands 

upgrading facilities to convert petroleum residuum into lighter liquid and gas 

product streams. The remnant material is a solid concentrated carbon material 

referred to as petroleum coke. The processing unit is commonly referred to as a 

Delayed Coker Unit [DCU]. [1] 

Coke drums are large diameter, thin walled pressure vessels used in the 

Delayed Coker Unit where the coking separation step takes place. These 

vessels are manufactured with dimensions of 30 feet [9000 mm] diameter and 90 

feet [28000 mm] of straight side height. The vessels operate at a pressure of 35 

to 55 psig [240 to 380 kPag] and 900 °F [482 °C]. The drums are installed as 

paired units. Figure 1.1 shows three drum pairs located in a typical installation. 

Figure 1.1 Photograph of Coke Drums in Process Unit [2] 
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The materials of construction for coke drums are low alloy carbon steel base 

plate with a high alloy internal cladding layer. The base plate materials vary 

depending on specific operating conditions and user discretion and include 

carbon steel and C - Vz Mo, VA Cr - Vz Mo, and 214 Cr - 1 Mo low alloy steels. 

Table 1.1 lists the range of materials used in the fabrication of these vessels with 

their chemical compositions. Clad plate materials are grades of 12 Cr or 13 Cr 

SS, either 405 or 41 OS stainless steel. The vessels are constructed using the 

rules of ASME VIII Division 1 Rules for Construction of Pressure Vessels [3] in 

Canada and the United States of America. There are similar Codes in other 

jurisdictions. The application of this specific Code to the design of this equipment 

provides a design-by-rules approach resulting in a vessel shell thickness based 

primarily on pressure considerations. Consideration of other loadings is typically 

not fully accounted for by practitioners of this Code, although the Code does 

require consideration of all influencing loads for final design. 

Table 1.1 Chemical Compositions for Materials of Construction in [%] [4] 

Material 

SA 240 TP 405 
SA240 TP410S 

SA516 70 
SA 204 C 

SA387 12 
SA 387 11 
SA 387 22 
SA 387 21 

C 

.08 

.08 

.28 

.26 

.1 

.1 

.1 

.1 

Mn 

1.0 
1.0 

1.0 
.98 

.5 

.5 

.5 

.5 

Mo 

_ 

" 

_ 
V2 

V2 

Vz 
1 
1 

p 

.04 

.04 

.035 

.035 

.035 

.035 

.035 

.035 

S 

.03 

.03 

.035 

.035 

.035 

.035 

.035 

.035 

Si 

1.00 
1.00 

.45 

.29 

.3 

.6 
.50 
.50 

Notes to Table 1.1 

1. Nominal compositions are given; see reference for composition limits. 
2. Other trace and alloying elements may be present as provided for by Code 
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Since operating loads are not usually fully defined by User organizations, 

actual service loads are not accounted for and would also be beyond the design 

capability of the simplified Division 1 Code approach. 

These vessels can exhibit early and repeated failure. A DCU unit processes 

upwards of 30,000 barrels of oil per day and it is becoming routine to process 

100,000 barrels per day; therefore, equipment failure can cause economic losses 

in the hundreds of thousands to millions of dollars in lost revenue and repair 

costs. 

Eight failure modes have been cited in the literature by means of surveys 

conducted over a 50 year time frame starting in 1958 [5] [6] [7]. 

deformation of shell 

growth of shell 

irregular local warping of shell 

cracking of skirt attachment weld 

distortion of bottom manhole-neck flange 

weld cracking between bottom cone and manhole neck 

nozzle attachment cracking 

dishing of bottom cover 

The most common and serious failure mode cited in the 1958 survey 

indicated deformation and growth of the shell. This bulging is typically 

accompanied by cracking in the circumferential and longitudinal weld seams 

required to fabricate the relatively long length and large diameter shell of the 

vessel, although cracking is also reported in non-bulged areas. Figure 1.2 is a 

projected image from a laser scan of the drum shell cylindrical surface showing 

bulged [red coloured] and indented [blue coloured] areas. The bottom cone and 

top head are not included as these components are not susceptible to failure. 
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Figure 1.2 Laser Scan Image of Bulged Coke Drum Shell [8] 

The continuous horizontal and discontinuous vertical lines in the illustration 

represent shell weld seams. The horizontal seams are numbered from 1 to 8 

along the right hand side of the image. Bulging is thought to occur mainly in a 

circumferential direction and is exhibited by the extended red coloured patch in 

the lower left of the image along weld seam 1 between azimuth angle 200° and 

320°. 
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