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Abstract 

Natural compounds have been largely excluded from characterization via high-throughput 

profiling strategies due to their limited abundance. Herein, I describe the modification of high-

throughput yeast chemical genomic (CG) interaction profiling to permit identifying the modes of 

action of natural compounds. The previous assay proceeded by evaluating the genome-wide 

yeast deletion collection for drug-hypersensitivity in a volume of 0.7mL. Compound 

consumption was minimized with the adapted approach by reducing the assay volume 70% 

through simplifying the complexity of the yeast deletion pool screened. By recreating each yeast 

mutant in a drug-hypersensitive background, I created a novel resource that increases compound 

efficiency and further diminishes compound use. Evaluating a series of characterized compounds 

analyzed previously by the traditional CG approach validated the adaptations incorporated did 

not negatively affect the quality of data yielded.  Ultimately, this modified strategy will be used 

to screen thousands of natural compounds contained within the RIKEN NPDepo library. 
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 INTRODUCTION 1.0

1.1 Chemical genetics 

Modern DNA sequencing technology has accelerated the completion of genome sequences from 

many organisms of interest, ranging from species of pathogenic yeast (Jones et al., 2004; 

Nierman et al., 2005) to the humans they infect (Venter et al., 2001; Lander et al., 2001). These 

projects have yielded thousands of predicted genes whose products require functional 

characterization to better understand the complex molecular biology of each organism. A desire 

to complete this task efficiently underscores the importance of developing and implementing 

large-scale functional genomic methodologies.    

Comprehending the biological role of a gene’s product normally requires a means to alter its 

function. Traditionally, this has been accomplished via classical genetics, whereby an activating 

or inactivating genetic mutation is used to alter the expression of a gene product of interest. 

While this strategy has been successfully exploited in genetically tractable model organisms such 

as yeast, flies and worms, its use can be problematic in more complex mammalian cells and 

biological systems less amenable to genetic manipulation (Stockwell, 2000). An increasingly 

appealing alternative is to directly alter the function of a gene’s product using target-specific 

small molecules with an approach coined chemical genetics (Mayer, 2003; Figure 1). In contrast 

to permanently modifying gene function with a genetic mutation, chemical inhibitors act 

transiently, largely because their physiological effects are often reversed rapidly due to 

metabolism and cellular detoxification (Spring et al., 2005). This affords increased temporal and 

spatial control over the targeted molecule and enables resulting phenotypes to be analyzed 

independent of indirect compensatory effects that can result from permanent genetic mutations 

(Zheng & Chan, 2002). The conditional nature of chemical perturbations also permits studying 

genes that are essential or function during specific stages of development, avoiding 

complications which can be encountered when creating and studying conditional-essential alleles 

with genetic-based approaches (Shogren-Knaak et al., 2001). In addition to expanding genes 

accessible for analysis, severing the reliance on a genetic mutation to probe protein function 

makes the chemical genetics approach systems independent, especially when the chemical agents 

used possess cross-cell or species activity.  Finally, unlike genetic mutations, chemicals can be 

used to perturb one function of a multifunctional enzyme to permit better understanding the 
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Figure 1. Chemical genetics: an example 

Inhibition of a specific gene product using either a genetic or chemical means can have common 
phenotypic consequences to permit understanding gene function. For example, the essential yeast 
gene DFR1 encodes dihydrofolate reductase, an enzyme integral to the biosynthesis of 
tetrahydrofolic acid. The function of DFR1 can be altered genetically by, for example, creating a 
conditional essential allele (at left), or through the use of a chemical agent that targets the DFR1 
gene product (at right) (Huang et al., 1992). One such chemical agent is the drug methotrexate 
(MET), which is a high affinity Dfr1p antagonist through competitive inhibition at the enzyme 
active site. Inhibition of DFR1 by either means causes cell inviability, which results from an 
auxotrophy for a series of nucleic and amino acids that require the Dfr1p product (tetrahydrofolic 
acid) as a cofactor in their biosynthesis. Alteration of DFR1 function by either a genetic or 
chemical means therefore ultimately inhibits DNA, RNA thymidylate and protein synthesis.  
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multiple biological roles of different gene products (Kawasumi & Nghiem, 2007). This 

advantage is evidenced in the study of protein kinases; the phosphotransferase activity of a 

kinase can be perturbed and thus investigated independent of its protein scaffold activity using 

kinase inhibitors (Knight & Shokat, 2007). 

 

1.2 Applying chemical genetics genome-wide to probe biological 
function and identify novel drug leads 

The use of chemical ligands to probe gene product function on a genome-wide scale constitutes a 

chemical genomics (CG) analysis. Results obtained from this strategy can be used to gain 

important biological insights, or identify compounds that may provide potential pharmaceutical 

leads. Regarding the former, CG analyses can enable understanding the biological role of gene 

products in the context of a cellular environment to gain insights into diverse cellular processes. 

For instance, the well-known fungicide benomyl has been used extensively as a chemical-based 

microtubule-perturbing agent in cell-cycle research to tease apart the highly regulated 

microtubule network (Li & Murray, 1991; Sterns et al., 1990). In another important example, the 

neurotransmitter dopamine was discovered and its role in mediating chemical transmission 

within the nervous system was identified using the chemical agents reserpine and 

chlorpromazine as probes of neurobiology (LeDoux, 2002). Furthermore, there are also instances 

where CGs can exploit chemical ligands lacking direct protein targets to indirectly probe 

biological process by forcing the cell to respond to an environmental stressor. Such is the case 

for DNA damaging agents like methyl methanesulfonate (MMS), which have been used to 

characterize components of the cellular pathways responsible for responding to and repairing 

DNA damage (e.g. Jelinsky &  Samson, 1999; Gasch et al., 2001; Workman et al., 2006; Rooney 

et al., 2009).  

The potential to identify novel therapeutic agents is an equally important motivation for 

performing chemical genomic analyses. A recent study of FDA approved drugs revealed that 

only ~400 of the many thousands of predicted proteins encoded by the human genome are 

currently targeted by chemical intervention (Yildirim et al., 2007). However, given that the 

Online Mendelian Inheritance of Man database currently reports on more than 3,300 disease-

related genes, it is presumed that a much larger number of human proteins will be of therapeutic 
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significance. Identifying modulators of these ‘untapped’ molecules that may serve as potential 

targets could facilitate the development of treatments for the many human diseases that currently 

lack drug therapies. In addition, there is also a need to expand upon the repertoire of available 

antibacterial and antifungal compounds to contest the continued emergence of multi-drug 

resistance microbial pathogens. A CGs approach has the potential to identify chemical agents 

serving these therapeutic purposes by rapidly screening large compound libraries to identify 

those that induce a desired physiological response through targeting a disease causing or 

pathogen specific molecule or pathway. Because this analysis is performed genome-wide, the 

interrelationships that often occur between a single compound and many gene products can be 

identified simultaneously and used to identify all potential biological targets. This information is 

beneficial to eliminate chemicals early on that possess undesirable secondary targets and thus 

may exhibit unfavorable side effects if used as a drug therapy. However, knowledge of additional 

drug targets could also be used to prioritize compounds whose combined targets may enhance a 

desirable effect based on known biological interactions. The development of multi-targeted 

therapies is an emerging field that shows great promise for treating multi-genic diseases such as 

cancer, and combating drug resistant pathogens (Zimmermann et al., 2007; Sams-Dodd, 2005; 

Onyewu & J Heitman, 2007).  

 

1.3 Using cell-based compound profiling assays in modern drug 
discovery  

Identifying compounds that modulate the function of validated targets using a target-oriented 

approach has been a major avenue employed by the pharmaceutical industry for developing 

novel drug therapies (Schreiber, 2000). Some of the characteristics relied on when selecting a 

validated target with which to focus these research efforts include the essentiality of a target, 

general knowledge of a targets biological role(s), whether the target has been implicated in a 

specific disease, and the potential ‘druggability’ of the target, as reviewed in Hopkins & Groom, 

2002.  However, one prevailing disadvantage of this focused approach is a bias towards only 

identifying modulators of well-characterized molecules and biological pathways. Additionally, 

these assays are typically performed in vitro and little knowledge is therefore known initially 

about whether potential lead compounds will exhibit bioactivity in a more complex cellular 
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environment. Given these downsides, a heavy reliance on the target-oriented strategy has been 

used as one component of a multifactorial explanation for an observed flat-line in the number of 

registered new chemical entities over the past few decades, despite a continued financial influx 

into the pharmaceutical industry (Higgins & Graham, 2009). As a consequence, there has been 

renewed interest in developing and implementing unbiased cell-based compound screening 

strategies, such as chemical genomics assays. These approaches are advantageous because 

compound leads identified are known to possess cell permeability, and were characterized in a 

cellular environment that favors native confirmation and association with other molecules and 

cofactors. Additionally, while cell-based assays require detailed follow-up experiments to 

validate drug-target predictions, they provide a means to rapidly screen large compound libraries 

to identify chemicals affecting the function of various gene products based on first-pass target 

predictions. One disadvantage of most cell-based strategies is direct screening in mammalian 

systems is currently inaccessible. However, well-studied model organisms have provided an 

ideal test bed for developing these technologies and identifying modulators of gene products that 

are human or pathogen conserved.  

 

1.4 Budding yeast is a premier model organism in which to study 
bioactive compounds  

The budding yeast Saccharomyces cerevisiae is positioned as an ideal model organism for 

analyzing bioactive compounds with a CGs approach based on several attributes. This unicellular 

organism possesses a compact genome that consists of ~6000 genes encoded in 12,000 kilobases 

of DNA sequence, organized among 16 chromosomes (Goffeau et al., 1996). Many S. cerevisiae 

genes are biologically conserved in humans; it has been shown that about half of yeast proteins 

share at least part of their primary amino-acid sequence with one known or predicted human 

protein (~2,700 at a BLAST E-value < 10-10; Hughes, 2002). Importantly, among the conserved 

genes are several which have been implicated in human diseases (Botstein et al., 1997; Tu et al., 

2006).  For instance, this includes the yeast genes MSH2 and MLH1 whose human counterparts 

have been linked to inherited nonpolyposis colon cancers (Strand et al., 1993), and the yeast 

DNA helicase SGS1, which shares high sequence identity to the human gene connected to 

Werner’s syndrome (Sinclair et al., 1997). Moreover, a number of drugs that target human 
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proteins also possess activity in yeast through interacting with the corresponding yeast 

orthologues; several well known examples are reviewed in Cardenas et al., 1999. Specifically, it 

was demonstrated recently that out of a subset of 1318 known human drug targets, S. cerevisiae 

possesses orthologues for around 30% (Gunnarsson et al., 2008). Budding yeast therefore 

provides a simple eukaryotic model to study potential human drug targets and identify lead 

compounds that modulate their function. S. cerevisiae also serves is an ideal system for studying 

antifungal compounds because it shares many genes with Candida albicans and Aspergillus 

fumigatus (Jones et al., 2004; Hu et al., 2007), two of the most common opportunistic pathogenic 

fungi. As such, several of the most commonly used antifungal compounds were originally 

characterized in S. cerevisiae, including Caspofungin, one of the most-recently developed 

(Douglas et al., 1994; Douglas et al., 1997). Given continued increases in fungal infections 

worldwide and the emergence of new pathogenic fungi (Richardson, 2005), S. cerevisiae 

provides a safe, non-pathogenic test bed for studying fungal-specific targets to identify novel 

antifungal compounds.  

From a technical standpoint, S. cerevisiae possesses many desirable characteristics that facilitate 

CG analyses. As the first eukaryotic organism sequenced, S. cerevisiae has been the focus of 

extensive molecular biology research that has lead to the annotation of ~75% of all predicted 

yeast ORFs. This feature can aid in interpreting the results of CG studies, as it is likely the native 

biological function of many predicted drug targets will be known. Importantly, this information 

is also easily accessible due to the creation of comprehensive online resources, such as the 

Saccharomyces Genome Database (SGD) (Dwight et al., 2004). In addition to rapid and 

inexpensive culturing, S. cerevisiae can be easily manipulated in either a haploid or diploid state, 

permitting genes to be added, deleted or tagged through homologous recombination (Goffeau et 

al., 1996). This genetic manipulability has enabled the creation of many valuable S. cerevisiae 

genomic tools, including a genome-wide deletion collection constructed by an international 

consortium of laboratories. This mutant set consists of over 20,000 strains created in diploid 

heterozygous or diploid/haploid homozygous backgrounds and covers 96.6% of all predicted 

ORFs (Giaever et al., 2002). Each deletion mutant is tagged with two unique 20mer nucleotide 

sequences flanked by priming sequences common to all strains (Figure 2). These ‘molecular 

barcodes’ allow the fitness of all deletion mutants to be rapidly assessed in parallel in response to  
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Figure 2. Strategy used for constructing mutants in the S. cerevisiae deletion collection.  

Each yeast ORF was replaced start codon to stop codon with a deletion cassette consisting of the 
kanamycin resistance marker (kanMX) and two unique 20mer nucleotide barcodes (uptag and 
downtag) flanked by primer sites common to all deletion strains (indicated by half arrows). 45 bp 
of sequence, homologous to regions up- and down-stream of the targeted gene, were 
incorporated onto each deletion cassette to facilitate gene deletion via homologous 
recombination.  

 

 

 

 

 

 

 

 

 



8 

 

a variety of environmental conditions (e.g. Giaever et al., 2002; Giaever et al. 2004; Lee et al., 

2005; Hillenmeyer et al., 2008; Ericson et al., 2008). This feature enabled the development of 

several yeast high-throughput CG assays, which aim to infer a compounds MOA or molecular 

target(s) by identifying the yeast strains that exhibit altered sensitivity to compounds of interest 

(reviewed in Hoon et al., 2008; Chan et al., 2009; Smith et al., 2010; Ho et al., 2011). The 

remainder of this thesis will focus on one such strategy, known as S. cerevisiae CG interaction 

profiling. 

 

1.5 Characterizing bioactive compounds using S. cerevisiae 
chemical genomic interaction profiling  

Chemical genomic interaction profiling seeks to understand a compounds MOA by screening the 

non-essential yeast deletion collection for drug-hypersensitivity to identify drug-gene 

interactions (Parsons et al., 2006). Within biological circuits there is genetic redundancy that 

functions to buffer organisms from both genetic and environmental perturbations – a feature 

emphasized by the observation that only ~20% of S. cerevisiae ORFs are essential for haploid 

viability in rich media (Giaever et al., 2002). Applying a bioactive compound to yeast cells 

harboring a gene deletion may overcome this genetic redundancy and establish drug-induced 

conditional essentially if the compound’s target interacts with the deleted gene product. By 

profiling these chemical genetic interactions genome-wide, a compressive interaction index or 

profile can be established to provide important clues regarding the mechanism of drug action. As 

described in subsequent paragraphs, testable MOA hypotheses can be formulated from these 

genome-wide profiles by comparison to an interaction knowledgebase.  

To facilitate the high-throughput characterization of large compound libraries, all ~5000 non-

essential deletion mutants are pooled and CG interactions are evaluated in a highly parallel 

manner. This is achieved by first competitively growing the mutant pool in the presence of a 

drug at a sub-lethal concentration. A series of experimental steps are then employed to quantify 

the relative abundance of each strain’s molecular barcode as a proxy for strain fitness or drug 

sensitivity (Figure 3A). This approach often identifies hundreds strains sensitive to each drug 

screened and this data is compiled to construct genome-wide CG interaction profiles. Although 

this pipeline cannot directly identify a drug’s target based on its absence from the strain  



9 

 

 
Figure 3. Saccharomyces cerevisiae CG interaction profiling.  
 
A) CG profiling in S. cerevisiae proceeds by growing a pool of all yeast deletion mutants in the 
presence of a drug at a sublethal concentration (e.g. IC80). Strains deleted for genes required to 
respond to the applied drug will exhibit increased sensitivity and become depleted from the pool. 
To quantify the relative abundance of all strains, genomic DNA is extracted, the strain-specific 
barcodes are PCR amplified by primers targeting the common priming sites, and barcode 
abundance is measured by hybridizing to a custom DNA microarray or more recently, through 
next generation sequencing. Data compiled from this experiment is used to construct CG 
interaction profiles that summarize the drug-sensitivity of all deletion strains examined. Figure 
adapted from Smith et al. (2010). B) Two-dimensional hierarchical clustering of individual CG 
interaction profiles will group drugs with common MOAs or drugs targeting related pathways. 
For instance, the grouping of papuamide B next to alamethecin among a clustergram of 82 total 
CG interaction profiles provided evidence that these drugs functioned through a common MOA: 
disruption of the cell membrane. Figure B created using CG data from Parsons et al. (2006).  
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collection, the drug-gene interactions can identify gene products that belong to the targeted 

pathway, buffer the targeted pathway and are important for cellular function when the targeted 

pathway is compromised, or products that are involved in general drug metabolism, transport or 

stress response (Ho et al., 2011). This information is particularly useful to understand the 

biological function of compounds that lack direct protein targets and function through forcing the 

cell to respond to a drug-induced environmental stress, such as increased cellular permeability or 

DNA damage. For example, while many existing chemotherapeutic agents lack a direct protein 

target and function generally through eliciting DNA damage, the CG interactions identified by 

screening these compounds are often highly informative and enriched for members of the DNA 

repair pathway (Birrell et al., 2001; Chang et al., 2002; Lee et al., 2005; Workman et al., 2006; 

Yu et al., 2008). CG interaction profiles can be further analyzed to infer a compounds MOA 

using a guilt-by-association rationale. Compounds that function through related MOAs and 

exhibit comparable biological activity often yield similar CG interaction profiles (Parsons et al., 

2004; Lee et al., 2005; Brown et al., 2006; Parsons et al., 2006). Consequently, global clustering 

of CG interaction profiles will group drugs based on common MOAs or targets (Figure 3B). 

This comparison is highly informative when the profiles of well-characterized drugs that 

function through known and diverse MOAs are included. For instance, a systematic comparison 

of CG interaction profiles produced by 82 compounds revealed the previously novel natural 

product papuamide B grouped closet to alamethichin, an antibiotic that binds to lipids and 

disrupts the cell membrane (Parsons et al., 2006). This similarity suggested papuamide B 

functioned through a related MOA, which was later corroborated using a series of requisite 

follow-up experiments to identify the phospholipid phosphotidylcholine as the target. While the 

guilt-by-association analysis of CG interaction profiles requires detailed biochemical follow-up 

experiments to validate MOA or target predictions, it is a rapid and relatively straightforward 

method to generate a testable hypothesis. The follow-up experiments required to explore these 

hypotheses depend on the predictions formulated, but could include creating and analyzing the 

sensitivity of specific deletion mutants to drugs known to function through a related MOA, or 

using function-specific assays to test whether the compound alters the predicted biological 

process. Regardless, the identification and analysis of CG interaction profiles provides a 

powerful means for gaining insight into the MOA of novel bioactive compounds. 
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1.6 Integrating chemical genomic and genetic interaction data to 
facilitate drug-target prediction  

Integrating CG data with the growing genetic interaction knowledgebase provides an alternative 

analysis strategy for identifying the pathways and molecules targeted by bioactive compounds. 

As defined by the multiplicative model, a genetic interaction occurs when the fitness of a double 

mutant deviates from the expected multiplicative effect of the two single mutants (Mani et al., 

2008). Specifically, a synthetic lethal interaction results when two nonessential genes that 

impinge upon a common essential function are deleted in a single strain (Tong et al., 2004). 

Chemical genetic interactions can mimic this phenomenon when a drug targets the product of 

one gene participating in a synthetic lethal interaction pair (Figure 4A). Consequently, the 

deletion strains that exhibit sensitivity to a given drug possess mutations in genes that should 

participate in synthetic lethal interactions with the gene(s) encoding the drugs target(s) (Parsons 

et al., 2004). The CG interaction profile of a bioactive compound should therefore resemble the 

synthetic lethal interaction profile produced by its targeted molecule or molecules belonging to 

the targeted cellular process (Figure 4B). Parsons et al., (2004) first established the validity of 

this concept by showing the CG interaction profiles of several compounds were highly similar to 

the genetic interaction profiles of genes belonging to biological processes they were known to 

target. These similarities could be visualized based on profile grouping using a two-dimensional 

hierarchical clustering analysis. In a more recent example, the anti-fungal activity of the 

previously uncharacterized compound, named Erodoxin in the study, was linked to inhibition of 

the ERO1 gene product based on a hypothesis formed initially using a comparison of interaction 

data across experiments (Figure 4C; Costanzo et al., 2010). While this comparison strategy also 

requires follow-up experiments to validate drug target predictions, it provides a powerful method 

to rapidly interpret CG interaction profiles that are often complex, owing to the hundreds of 

strains commonly sensitive to a given compound. One present limitation of this approach is not 

all yeast genes have been screened for digenic interactions and a full genome-wide comparison is 

not yet possible. However, a significant proportion of interactions that compressively cover all 

biological processes have been analyzed (Costanzo et al., 2010) and it is expected that data for 

remaining interactions will be compiled in the near future. 
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Figure 4. Gaining insight into a compounds biological target using a global comparison of 
CG and synthetic lethal interaction data. 

A) Chemical genetic interactions mimic synthetic lethal interactions. In a chemical genetic 
interaction, a strain deleted for gene x is hypersensitive to a sublethal concentration of drug (at 
left). In the corresponding synthetic lethal interaction, a strain deleted for both the drug target 
and gene x is inviable (at right). Gene deletions that exhibit chemical genetic interactions should 
therefore exhibit synthetic lethality with the gene encoding the drug’s target. B) The CG 
interaction profile of a compound should resemble the synthetic lethal interaction profile 
produced by the targeted molecule or molecules participating in the targeted pathway. For 
example, the CG interaction profile of compound X resembles the synthetic lethal interaction 
profile of Gene B, suggesting the product of Gene B is the putative target. Figures A) and B) 
were adapted from Parsons et al. (2004). C) The overlap of genes exhibiting synthetic lethality to 
ERO1 with the strains exhibiting sensitivity to the previously uncharacterized compound 
Erodoxin was one component of evidence used to form the hypothesis that erodoxin targeted the 
ERO1 gene product. Adapted from Costanzo et al. (2010). 
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1.7 The role of multidrug resistance in S. cerevisiae chemical 
genomic interaction profiling   

Multidrug resistance is the generalized lack of sensitivity to a broad spectrum of functionally and 

structurally unrelated compounds. The overexpression of membrane transporters dedicated to 

ATP-dependent drug efflux is a major contributor to this phenotype (Chang, 2003). In yeast, 

there exists an extensive pleiotropic drug resistance (PDR) network, consisting of many ABC 

transporters and several transcription factors that regulate transporter expression (reviewed in 

Bauer et al., 1999; Jungwirth & Kuchler, 2006; Kuchler & Schuller 2007). This natural drug 

resistance machinery can be problematic for S. cerevisiae CG interaction profiling, as it de-

sensitizes the cell to the compounds exogenously applied for characterization and increases the 

concentration required to induce a physiological response. The cell’s PDR response can also 

complicate CG interaction profiles generated from this analysis, as many strains deleted for drug-

resistance machinery can be identified as drug-sensitive even though they are not directly related 

to the MOA of the compound screened (Parsons et al., 2004; Hillenmeyer et al., 2008). The 

components of the yeast PDR network are not essential for cell viability and they can therefore 

be deleted to diminish drug-resistance and increase sensitivity to a variety of compounds 

(Kolaczkowski et al., 1998; Michalkova-papajova et al., 2000; Rogers et al., 2001). Recently, 

this strategy was employed to construct a drug-hypersensitive overexpression library in the 

fission yeast Schizosaccharomyces pombe (Arita et al., 2011). As a result of deleting two S. 

pombe drug resistance genes, each strain had increased chemical sensitivity and drugs could be 

analyzed at lower concentrations to conserve resources. While a similar drug-sensitized strain 

collection has yet to be completed in budding yeast, it is expected that deleting PDR genes would 

be an ideal avenue to achieve this goal and overcome the current complications associated with 

multi-drug resistance in CG interaction profiling.  

1.8 Analyzing synthetic versus natural product compound 
libraries 

Given the theoretical scope of organic small molecule chemical space (1 x 1060 – 1 x 10200;  Tan, 

2005), there are an immense number of potential compounds that could be screened with S. 

cerevisiae CG interaction profiling. The selection of which chemicals are investigated has a large 

impact on the quality of biological insights gained from the data and potential drug-leads 
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identified. As such, extensive analysis has been performed to identify the biochemical and 

biophysical characteristics that relate to important drug-like features, such as solubility, cell 

permeability, bioavailability and toxicity (Lipinski, 2000; Lipinski et al., 2001; Kerns & Di, 

2009; Mishra et al. 2009). An extension of this analysis is the comparison of compounds from 

synthetic or natural origins, which has initiated an on-going debate into which class of 

compounds has greater biological merits and should be the focus of pharmaceutical profiling 

efforts. The following paragraphs briefly summarize the main features of both compound classes 

and highlights why natural products are an ideal compound source to study with yeast CG 

analyses.  

1.8.1 Synthetic compounds  

Since the inception of combinatorial chemistry in the 1990s, synthetically produced compounds 

have been central to many drug-based functional genomic analyses, particularly within the 

pharmaceutical industry (Koehn & Carter 2005; Li & Vederas, 2009). This has resulted partly 

because these compounds are inherently compatible with high-throughput drug–characterization 

approaches. Specifically, synthetic compounds are pure, possess a known molecular structure 

and can be obtained relatively inexpensively, often as components of large, commercial synthetic 

compound libraries. Furthermore, the compounds contained within these synthetic-based 

libraries often adhere to the drug-like physical properties described by Lipinski’s ‘Rule of Five’ 

to increase the potential of identifying ideal therapeutic agents. These characteristics include that 

compounds should possess low liphophilicity, have fewer than 5 hydrogen bond donors and 

fewer than 10 hydrogen bond acceptors, and possess a molecular mass of less then 500 Daltons 

(Lipinski et al., 2001). One prevailing disadvantage of focusing exclusively on analyzing 

synthetic compounds is the lack of structural diversity that can currently be achieved by 

synthesis techniques, despite advances in combinatorial chemistry (Dolle et al., 2005). This 

limited diversity has been used as another component of the multifactorial answer used to 

explain the flat-lining number of registered new chemical entities over the past decade, as 

mentioned in section 1.3 (Rouhi & Washington, 2003; Lam, 2007). Therefore in recent years, 

there has been some renewed interest in reverting research efforts back to the characterization of 

natural-based compound, as was prior to the synthetic compound era (Galm & Shen, 2007).  
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1.8.2 Natural products  

Natural products (NP) are selected for precise biological functions in nature and are therefore a 

rich source of specific small molecule inhibitors. These compounds are typically derived from 

terrestrial micro-organisms (e.g. the penicillin antibiotics from Penicillium fungi), plants (e.g. the 

pain-killer morphine from Papaver somniferum) and more recently, marine organisms (e.g. the 

breast cancer drug Halaven from Halichondria okadai).  Throughout history, NPs have been the 

basis of a significant proportion of therapeutic agents; ~80% of all drugs prior to 1990 were 

either natural products or natural product inspired analogs (Li & Vederas, 2009). In particular, 

they have been predominantly influential in the fields of cancer treatment, immunosuppression 

and antibacterial therapies (Newman & Cragg, 2007). In addition to inspiring this large 

percentage of marketed drugs, within the last three decades over 50% of all new registered 

chemical entities possessed a natural origin (Newman & Cragg, 2007). The biological value of 

NPs, as evidenced by these statistics, can be attributed to their intrinsic cell permeability, their 

inherently specific yet varied biological targets and their immense chemical diversity. Compared 

to synthetic compounds, NPs populate a larger proportion of chemical space, which overlaps 

with the structural diversity observed among existing successful therapeutic agents (Feher & 

Schmidt, 2003). In spite of these characteristics and their overwhelmingly favorable success, the 

use of natural-based compounds by many pharmaceutical companies has declined based on their 

incomparability with high-throughput screening approaches (Harvey, 2008). This is largely 

because NPs are often difficult and expensive to obtain and are therefore available in very 

limited quantities. Furthermore, when crude natural product extracts are first acquired, they are 

often composed of highly complex chemical mixtures that require fractionation prior to analysis 

(Roemer et al., 2011). This added step can be both time and resource consuming when performed 

on an industrial scale (Roemer et al., 2011). However, there have been advances in this field and 

diverse chromatographic separation procedures are available (Colegate & Molyneux, 2008). 

Ultimately, the potential benefits of analyzing NPs outweigh the costs and refocusing high-

throughput screening efforts to NP characterization will likely yield myriads of rich biological 

information and many potential pharmaceutical leads. 

1.9 Project rationale  

The utility of yeast CGs for characterizing bioactive compounds and a desire to extend this 
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analysis to natural products has been the impetus for my thesis research. This project has the 

long-term goal of characterizing a relatively new and understudied collection of NP and NP-

based compounds contained within the Natural Products Depository (NPDepo) held at the 

RIKEN institute in Japan. This valuable resource consists of over 40,000 structurally diverse, 

low molecular weight compounds isolated from a multitude of natural sources, including 

bacterial fermentations, secondary metabolites of fungi and compounds extracted from plants 

and marine organisms. One significant asset of this collection is that each compound is pure and 

possesses a known structure cataloged in the NPEdia database (Tomiki et al., 2006). This 

resource also provides detailed information on the compounds origin and biological and physical 

properties, which will ultimately facilitate interpreting the results obtained following their 

analysis. However like most natural products, the compounds contained within this library are 

limited in quantity and are therefore incompatible for screening with the current yeast CG 

interaction profiling strategy.  

To establish yeast chemical genomics as a powerful approach for characterizing low-abundance 

NPs, this thesis had two main objects. First, I sought to modify the current CG profiling strategy 

to reduce the quantity of each compound required for analysis. This entailed selecting a 

diagnostic subset of yeast deletion mutants to screen and regenerating each mutant in a novel 

drug-hypersensitive background. Second, I endeavored to demonstrate the utility of the adapted 

assay by screening a series of previously characterized compounds and comparing the results to 

those obtained previously using a ‘traditional’ CG strategy. Validating that informative 

biological information can be obtained using the adapted approach will pave the road for analysis 

of the valuable RIKEN NPDepo library. These studies have involved collaborations with Jeff 

Piotrowski and Marissa LeBlanc, two post-doctoral fellows at the RIKEN institute in Japan and 

Raamesh Deshpande, a computational scientist from Chad Meyer’s lab at the University of 

Minnesota. 
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 RESULTS 2.0

2.1 Overview: A high-throughput chemical genomics assay for 
the analysis of natural products  

To characterize valuable NP compound libraries, I developed a modified CG interaction profiling 

strategy to reduce the amount of each NP required for analysis (Figure 5). Specifically, the 

volume of each experiment was miniaturized to 0.2mL. This change required selecting a 

diagnostic subset of viable deletion mutants to screen for compound sensitivity in lieu of the 

traditionally used genome-wide collection to maintain adequate representation of each strain in 

the initial inoculum. This adaptation also permitted scaling experiments to a 96-well format to 

increase the throughout of compound analysis. The chosen deletion mutants were then 

regenerated in a drug-hypersensitive background deficient for natural drug-resistance machinery. 

By diminishing the concentration of compound required to inhibit cell growth, this feature will 

further reduce the quantity of each NP screened.  Furthermore, to quantify strain abundance 

following each pooled growth experiment, a recently developed 96-plex next-generation 

sequencing strategy was adopted (Smith et al., 2010b), replacing the previously used microarray 

strategy. Once completed, this modified assay was used to screen a series of previously 

characterized compounds, demonstrating the described adaptations do not affect the quality of 

CG data yielded from screening bioactive compounds with this approach.  

 

2.2 Selection of a diagnostic subset of S. cerevisiae deletion 
mutants to miniaturize pooled growth analysis  

With the existing high-throughput S. cerevisiae chemical genomic assay, a pool comprised of the 

entire collection of viable deletion mutants is screened for compound sensitivity in a culture 

volume of 0.7mL, in 48-well format (Pierce et al., 2007). Given the initial culture is inoculated 

with the pool at an OD600 of 0.06, this strategy enables each strain to be represented at least 300 

times in the initial inoculum to reduce noise in generated CG data that can result from sampling 

errors (Pierce et al., 2007). For my modified assay, I sought to miniaturize this approach by 

decreasing the volume in which the pooled growth analysis is performed to 0.2mL. Assuming the 

same concentration of drug is maintained, this 70% reduction in volume affords a 3.5 fold  
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Figure 5. A modified chemical genomic profiling assay for characterizing low abundance 
natural products. 

To reduce the quantity of each compound required for analysis and permit screening in a 96-well 
format, pooled growth experiments are performed in a reduced volume of 0.2mL. A diagnostic 
subset of ~500 deletion mutants was selected to constitute the mutant pool analyzed to facilitate 
this change. Each of the diagnostic mutants was also regenerated in a drug-hypersensitive 
background, deleted for PDR drug-transport related genes to further reduce the quantity of NP 
required. After adding a NP to each well inoculated with the novel pool of deletion mutants and 
growing the cultures for 5 generations, the relative abundance of each strain is quantified by first 
isolating genomic DNA and then PCR amplifying the unique barcodes, as previously described 
(Pierce et al., 2007). However, modified primers are used to add experiment-specific indexing 
tags to the amplicons from each well to permit pooling the PCR products from 96 experiments.  
Barcode abundances from each experiment are then quantified using a previously described 96-
plex next generation sequencing approach (Smith et al., 2010b).   



19 

 

reduction in the quantity of each NP required for analysis. Additionally, screening at a volume of 

0.2mL is compatible with analysis in a 96-well format to double the scale of compounds 

screened at once relative to analysis in the current 48-well format.  However, to maintain an 

adequate coverage of each strain in the initial inoculum, the complexity of the mutant pool 

evaluated had to be reduced. I reasoned that given the following equation, reducing the 

complexity of the mutant pool screened 10-fold to around 500 strains would ensure a more then 

ideal coverage of each strain could be maintained. 

!"##$  !"#  !"#$%& = !"#$"%&'  !"  ×  !"#$"%&  !"#$%&  ×
!"##$  !"#  !"

!"#$%&  !"  !"#$%&!  

                                                                                                = 960 
  

When:      number of strains = 500   
                 starting OD = 0.06 
                 culture volume = 0.2mL 
                 cells per mL  = 4 x 107 (measured for the haploid strain used) 

  

My main objective when selecting this subset of deletion mutants was to pick strains that 

participated in strong, diagnostic interactions. This would enable the CG interaction profiles 

generated by assaying the streamlined collection to cluster with other interaction data as well as 

if the entire collection of 5000 mutants were analyzed. To make predictions on which genes 

would serve this purpose, I utilized a computational-based approach, developed in collaboration 

with Raamesh Deshpande, a student from Chad Myers lab at the University of Minnesota, to 

analyze our lab’s compendium of genetic interaction data. Importantly, the genetic interactions 

contained within this data set provide a comprehensive coverage of most cellular processes 

(Costanzo et al., 2010). I also employed a complementary, manual-based approach to expand 

upon the computationally selected genes and add functional redundancy to the diagnostic gene 

list. These two approaches are described in detail in the subsequent paragraphs.  

Computational Gene Selection. To select the most informative array genes present in our 

genetic interaction dataset, an approach coined the simple greedy algorithm was developed to 

assess the ability of each array gene to individually re-group interacting query genes correctly 

relative to a published GO co-annotation gold standard (Myers et al., 2006; logic depicted in 

Figure 6A). This comparison was quantified using a precision recall analysis to generate an 

AUPR curve score for each array gene (see Materials and Methods). After assigning an AUPR  
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Figure 6. Computational strategy for selecting a diagnostic subset of yeast deletion strains.  
 

A) A simple greedy algorithm was developed to evaluate the ability of each array gene to 
informatively re-group interacting query genes. Conceptually, this strategy proceeded by: 1) 
selecting an individual array gene, 2) re-grouping query genes based on genetic interaction 
scores, 3) comparing the query-query re-grouping to a GO co-annotation standard, 4) quantifying 
the comparison using a PR analysis to calculate an AUPR curve score and, 5) repeating steps 1-4 
for the remaining 3879 array genes and finally, ranking all genes based on their AUPR curve 
score. B) The exhaustive greedy algorithm was developed to address shortcomings of the simple 
greedy algorithm. Conceptually, this strategy proceeded by: 1) selecting the top ranked array 
gene for each of the 19 different functional categories by repeating A) using a function-specific 
GO co-annotation standard, 2) identifying the second array genes that could improve query-
query re-grouping specific to each of the 19 different functional processes by assessing all 
pairwise combinations with the top array and retaining the gene which could improve the AUPR 
curve score (i-v), 3) iteratively repeating step 2 until the AUPR curve scores reach a maximum, 
4) repeating steps 1-3 using the next 27 top array genes identified by the simple greedy algorithm 
and, 5) ranking the genes present in the 28 lists based on the number of instances which they 
were identified. *Steps 1-5 of strategy B) were performed individually for the 19 functional 
categories. 
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curve score value to all ~3890 array genes, a ranked gene list was formulated to identify the top 

performing array genes. Inspection of this list revealed the top ranked array genes were 

representative of a limited number of biological processes and were therefore not diagnostic of 

the entire cellular landscape. I reasoned that one factor which likely contributed to this result was 

the approach focused on assessing array genes in isolation, neglecting to evaluate how 

combinations of array genes would perform. In other words, two genes that may yield the top 

AUPR scores when evaluated independently may not enhance query-query grouping when 

combined, and screening both would therefore be redundant. Additionally, the limited biological 

processes represented among the top genes in the initial list suggests a possible bias in how 

informative genes are from different processes, highlighting the value of selecting genes from 

each process separately to ensure comprehensive representation. These issues were addressed 

with the development of an alternative computational algorithm loosely based upon a matching 

pursuit algorithm (Mallat & Zhang, 1993), coined the exhaustive greedy approach. This strategy 

proceeded by first subdividing the GO co-annotation gold standard into 19 different previously 

defined functional categories (Costanzo et al., 2010) and repeating the simple greedy algorithm 

to generate 19 function-specific ranked lists. Using the top ranked array gene selected for each 

functional category, the exhaustive greedy algorithm then identified which array genes should be 

added to improve the function-specific re-grouping of interacting query genes, as measured by an 

increase in the calculated AUPR curve score (Figure 6B). The algorithm then iteratively 

repeated this analysis and expanded the gene lists for each functional category until the AUPR 

curve score could not be further improved with an additional array gene. To account for possible 

variations resulting from the use of different starting array genes, the algorithm was initiated 

using the top 28 ranked genes from each functional category that were identified by the simple 

greedy approach. The exhaustive greedy algorithm therefore yielded 28 different gene lists for 

each of the 19 functional categories. The genes selected for each of the 19 functional categories 

were then ranked based on the number of instances they occurred in the 28 lists. After filtering 

out uncharacterized or un-annotated genes, I generated a list of 112 diagnostic genes by selected 

the top occurring genes for each category (Appendix A). 

Manual Gene Selection. Analogous to the computational-based approach described above, I 

manually selected a second set of deletion strains driving query-query clustering across different 

biological processes. This enabled me to increase the functional redundancy of the  



22 

 

computationally selected gene list, as the algorithm could only select a handful of genes from 

each biological process due to the AUPR curve metric rapidly saturating. To manually select a 

diagnostic set of genes, I visually inspected the genetic interaction clustergram and selected the 

array genes that appeared to contribute to the formation of defined clusters (Figure 7). A 

complete analysis of the ~1700 query gene by ~3890 array gene genetic interaction clustergram 

yielded a list of 442 genes (Appendix A). This list included 56% (63/112) of the 112 genes 

selected computationally. Therefore in total, I chose a diagnostic subset of 491 unique array 

genes for the adapted CG assay, which ultimately permitting me to reduce the pooled growth 

assay volume the desired 70%.  

 

2.3 Validating the chosen 491 diagnostic yeast deletion mutants 
by analysis of interaction data 

To assess the diagnostic capacity of the chosen 491 deletion mutants, I wanted to first evaluate 

whether genetic interaction profiles restricted to the 491 array genes would cluster informatively, 

relative to clustering with complete profiles. To achieve this aim, three unique two-dimensional 

clustergrams of the genetic interaction data produced by our lab were generated (see Materials 

and Methods). The first clustergram was created using genetic interactions involving the entire 

set of ~3890 array genes, the second was created by restricting genetic interactions to the chosen 

491 array genes and the third was created by restricting genetic interactions to 491 randomly 

chosen array genes. By comparing the query-query grouping in each clustergram to the GO co-

annotation gold standard (Myers et al., 2006) and using a PR analysis to evaluate the 

comparison, the quality of query-query grouping in each clustergram was assessed. When this 

analysis was performed using a global GO co-annotation standard covering all biological 

processes, the clustering of genetic interaction profiles restricted the chosen 491 genes was 

comparable to the clustering observed using complete profile (Figure 8A). Furthermore, both the 

complete and diagnostic array genes clustered interacting query genes more informatively than 

an equally sized number of random genes, as indicated by an obvious reduction in the PR line 

yielded by the random gene set (Figure 8A). To extend this analysis, subdivided GO co-

annotation gold standards were used to assess function-specific clustering for the 19 previously 

defined functional categories (Costanzo et al., 2010). Additionally, the differences between PR 
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Figure 7. Manual strategy used for selecting the diagnostic subset of yeast deletion strains. 

Similar to the computational approach, the aim of the manual strategy was to select array genes 
that participated in diagnostic interactions driving query-query grouping within a two-
dimensional clustergram of genetic interaction data. To achieve this manually, a genetic 
interaction clustergram based on interactions between ~1700 query genes and ~3890 array genes 
was visually inspected to identify defined clusters. Highlighted in green are four examples of 
defined clusters identified, with the biological processes corresponding to the query genes 
represented in the cluster listed. The array genes participating in the interactions defined by each 
of the visible clusters identified were compiled. Ultimately, inspection of all clusters yielded a 
final list of 442 genes.   
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Figure 8. An analysis of genetic interaction clustering using the chosen 491 diagnostic  
deletion mutants. 

A) A global PR analysis was performed on the chosen 491 diagnostic deletion mutants to 
evaluate their ability to correctly re-cluster genetic interaction data generated by our lab. 
Clustergrams were generated using genetic interactions involving either the complete array of 
~3890 deletion mutants, the diagnostic subset of 491 deletion mutants or a random list of 491 
deletion mutants. The resulting query-query grouping was compared to a GO co-annotation 
standard covering all biological processes to generate a global precision-recall plot. B) An AUPR 
score was calculated to quantify the differences between PR plots generated using the three gene 
lists. The precision-recall analysis and AUPR curve score calculation was repeated for 19 
specific biological processes individually by comparing query-query grouping to 19-function 
specific GO co-annotation standards. *Results plotted for the random gene set represent an 
average of results calculated for 100 random gene sets. 
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plots generated for each comparison were quantified by calculating AUPR curve scores. Similar 

to the results obtained from the global analysis, the query-query grouping present in the 

clustergrams generated using interaction profiles restricted to the diagnostic genes were 

analogous to the grouping present in the complete profile clustergrams for most of the functional 

categories tested (Figure 8B). Interestingly, the diagnostic subset of genes appeared to perform 

slightly better than the complete set of genes at informatively grouping query-genes classified 

among the DNA replication, nuclear to cytoplasmic transport and metabolism functional 

categories. Conversely, both groups appeared to perform as poorly as the random subset of genes 

at grouping genes classified among the autophagy, G1/S & G2 (cell cycle) and peroxisome 

functional groups. This result suggests that genes from these functional categories may be under 

sampled in our genetic interaction data, proposing that the diagnostic genes chosen for these 

functional categories may not be the most informative given the reliance on genetic interaction 

data for selecting the diagnostic gene list. This potential downfall can be addressed in the future 

as additional interaction data is obtained, providing a more comprehensive view of the currently 

under-sampled biological processes to better assess the genes chosen and potentially select a 

more informative gene set for these categories. Overall, this analysis demonstrated genetic 

interaction profiles restricted to the diagnostic subset of 491 deletion mutants could cluster as 

informatively as genome-wide interaction profiles, endorsing the strategy used for gene 

selection.     

To further analyze the 491 deletion strains selected, I wanted to evaluate whether CG interaction 

profiles restricted to the 491 genes could be used to informatively predict the pathways or 

molecules targeted by compounds screened with the assay. Briefly, these predictions can be 

made by computing the cosine similarity correlation coefficient between a given drug’s CG 

interaction profile and the genetic interaction profiles produced by all ~1700 query genes present 

in the genetic interaction dataset (see Materials and Method). The cosine similarity metric 

employed resembles the commonly used Pearson correlation coefficient for comparing datasets, 

but was selected for use in this study based on its lack of reliance on centering data around an 

experimental mean (see Materials and Method). This feature ensures the sign of interactions 

evaluated is maintained and increases the speed with which large datasets can be processed. For 

my analysis, I used the CG interaction data from Parsons et al. (2006) to make target predictions 

for three scenarios: using profiles involving interactions with all ~3890 array genes, with profiles 
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restricted to interactions involving the diagnostic subset of array genes and with profiles 

restricted to an equally sized number of random array genes. Of note, only 449 of the 491 chosen 

strains could be incorporated into this analysis because Parsons et al. (2006) did not provide CG 

data for the remaining 42 strains. Ideally, the accuracy of target predictions could be analyzed 

through comparison with a gold standard that details the known targets of all compounds 

screened. However, such a resource does not exist and I therefore instead compared the 

predictions made using the restricted CG interaction profiles to the predictions made using the 

complete CG interaction profiles. This comparison was quantified by calculating cosine 

similarity correlation coefficients for each of the 82 drug profiles contained within the dataset. 

As shown in Figure 9A, the majority of the points fell to the right of the diagonal (p = 1.1260 x 

10-8). This result indicated target predictions made using CG profiles restricted to the diagnostic 

genes were more correlated and thus similar to predictions made using the complete profiles, 

relative to predictions made using CG profiles restricted to a random set of genes. Averaging the 

correlation coefficients calculated for each of the 82 drugs reiterates this conclusion; the average 

correlation calculated for the diagnostic gene set was significantly greater then the average 

correlation calculated for the random gene set (p = 1.6211 x 10-9; Figure 9B). This outcome was 

particularly important, as it validates the idea that information produced by the analysis of 

restricted CG interaction profiles is comparable to the information gained from the analysis of 

CG interaction profiles generated using the genome-wide deletion collection. Consequently, this 

suggests that data obtained by screening the diagnostic subset of 491 deletion mutants should 

yield CG interaction profiles from which informative predictions can be made regarding the 

pathways or molecules targeted by each compound. The aforementioned analyses performed on 

the diagnostic subset of 491 deletion strains were done in collaboration with Raamesh 

Deshpande.  

 

2.4 An assessment of two PDR mutants reveals the need to 
create a novel drug-hypersensitive strain  

The non-essential yeast PDR drug transporters serve as ideal targets for deletion to create a drug-

hypersensitive strain. While the overexpression of PDR-related genes is connected to multi-drug 

resistance, their deletion has been shown to sensitize yeast to a wide-variety of compounds 
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Figure 9. An analysis of compound-target predictions obtained using CG interaction 
profiles restricted to the diagnostic subset of deletion mutants. 

A) To further examine the diagnostic subset of deletion mutants selected, CG interaction profiles 
from the Parsons et al. (2006) dataset were restricted to the diagnostic strains and target 
predictions were made for all 82 drugs using a correlation-based analysis. This analysis was 
repeating by instead restricting the CG interaction profiles to an equally sized number of random 
deletion strains. All predictions were then compared to predictions made using complete CG 
interaction profiles and the resulting cosine similarity correlation coefficients calculated are 
plotted. Results computed by restricting CG profiles to the diagnostic subset of strains and the 
random subset of strains are plotted on opposing axes for comparison. This analysis reflects the 
results for only 449 of the 491 diagnostic genes because data was not available for the remaining 
42 genes. Results plotted for the random gene set represent an average of results calculated for 
10 equally sized random gene sets. B) The cosine similarity correlation coefficient values 
calculated for all 82 drugs were averaged for both the diagnostic and random gene sets for 
further comparison of the plots in A).   
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(Kolaczkowski et al., 1998; Michalkova-papajova et al., 2000; Rogers et al., 2001). I therefore 

opted to evaluate two strains deleted for PDR transport-related genes as potential backgrounds 

for my modified CG assay. The first strain, described in Rogers et al. (2001), was deleted for 

seven genes encoding PDR transporters (YOR1, SNQ2, PDR5, PDR11, YCF1, PDR15, PDR10) 

and two genes encoding transcription factors (PDR1 and PDR3) that control expression of 

various drug transport genes. Previously, this 9Δ strain was found to exhibit a 2 to 200-fold 

increase in sensitivity to a variety of compounds (Rogers et al., 2001). I created the second strain 

evaluated by deleting only PDR1 and PDR3 to determine whether the absence of these 

homologous TFs alone was sufficient to sensitize the cell. This avenue was selected for 

exploration based on the known importance of PDR1 and PDR3 for regulation of the PDR 

response (reviewed in Moye-Rowley, 2003), and a previous observation that deletion of these 

two TFs increases drug-sensitivity (Rogers et al., 2001). The pdr1Δ pdr3Δ double mutant was 

generated by sequentially deleting PDR1 and PDR3 using PCR-directed mutagenesis (see 

Materials and Methods).  

To evaluate the chemical sensitivity of the two PDR mutant strains, I employed a high-

throughput chemical halo assay, in collaboration with Jeff Piotrowski at the RIKEN institute. 

This procedure was completed by pin transferring 440 NPs to plates seeded with yeast culture 

and evaluating whether the compounds were toxic based on the formation of a visible area of 

growth inhibition (see Materials and Methods). The chemical halo assay was chosen to 

investigate the drug sensitivity of these strains because it permits rapidly assessing many 

compounds and yields a binary outcome for easy data interpretation. While both mutants were 

found to have an increase in sensitivity relative to the wild-type control, the chemical-sensitivity 

of the 9Δ mutant was much greater then that of the pdr1Δ pdr3Δ mutant (Figure 10A). Although 

this result suggested the 9Δ mutant would be ideal for use as the drug-hypersensitive 

background, further analysis revealed the 9Δ strain possessed other undesirable phenotypes. By 

microscopically visualizing cells stained with Con A, I determined the 9Δ mutant possessed a 

budding defect, manifesting as the formation of multicellular clumps due to daughter cells 

remaining attached to mother cells at the bud site septum following cell division (Figure 10B; 

see Materials and Methods). This defect was not present in the pdr1Δ pdr3Δ mutant. 

Additionally, the 9Δ mutant was unable to sporulate, indicating that while this strain was highly 

drug sensitive it was clearly sick and unsuitable for use as a background in which to create a  
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Figure 10. Phenotypic analysis of two S. cerevisiae PDR mutant strains.  
 
A) The chemical-sensitivity of two PDR mutant strains was assessed by robotically pinning 440 
NPs onto YEPD plates seeded with yeast culture. After incubating plates overnight, a compound 
was labeled toxic if it created a visible area of growth inhibition. Values plotted indicate the 
percentage of 440 compounds that were identified as toxic to the strain tested. BY4741 was used 
as a wild-type control. B) Images of the gross appearance of the PDR mutant strains were 
generated by staining log-phase cells with 100 ug/mL of Con A and imaging with fluorescence 
microscopy at 63X magnification. BY4741 was again used as a wild-type control. 
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novel deletion collection. Because the pdr1Δ pdr3Δ mutant did not possess these phenotypes, I 

chose to explore whether I could further sensitive the healthy pdr1Δ pdr3Δ mutant with the 

addition of a third drug-sensitizing mutation, instead of creating an entirely novel hypersensitive 

strain. 

 

2.5 An analysis of chemical genomic and genetic interaction 
data identifies potential drug-sensitizing mutations  

Three criteria were considered when selecting a third gene to delete in the pdr1Δ pdr3Δ mutant 

to increase drug sensitivity. First, deletion of the gene should confer sensitivity to many 

compounds and thus the gene should participate in many CG interactions. Second, deletion of the 

gene should not sensitize the cell to other genetic perturbations and therefore, the gene should 

exhibit few genetic interactions. It was important to ensure the chemical-sensitivity of the deleted 

gene was the result of a true MDR phenomenon and not simply due to the deleted gene 

genetically interacting with many different drug targets. The latter scenario would significantly 

complicate downstream CG interaction profile analysis. Finally, deletion of the gene should not 

result in a cell-fitness defect, as the future deletion mutants created in a sick background would 

perform poorly in a pooled growth CG assay. To identify genes possessing these features, CG 

interaction data produced by screening 2243 compounds was first assessed (data from St Onge et 

al. in preparation). All ~4000 genes present within the dataset were ranked based on the number 

of drugs they conferred sensitivity to when deleted, enabling me to identify the top 500 drug-

sensitizing genes. I then utilized our lab’s compendium of genetic interaction data to identify the 

number of genetic interactions each of the 500 genes participated in (Costanzo et al., 2010). The 

genes ranked among the top 500 based on their number of measured digenetic interactions were 

removed from the list of 500 drug-sensitizing genes. Single mutant fitness values were then 

obtained for the remaining 312 genes from data previously generated by our lab (Costanzo et al., 

2010). As depicted in Figure 11, several genes were identified that fit the three criteria described 

above; many of the top drug-sensitizing genes also ranked low with regards to digenic 

interactions and caused no fitness defect when deleted. Since creating all 312 triple mutants was 

unrealistic and beyond the scope of my thesis, I selected a small subset of genes from two 

regions of the scatterplot for further analysis (Figure 11). The first sub-group was selected from  
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Figure 11. Identifying potential drug-sensitizing mutants through an analysis of CG and 
genetic interaction data. 
 
Using CG data for 2243 compounds (from St Onge et al. in preparation), all array genes were 
ranked based on the number of drugs they conferred sensitivity to when deleted. Each spot 
plotted represents one of the top 500 drug-sensitizing genes. The color scale depicts the single-
mutant fitness score, relative to WT, of each gene-deletion mutant. The genetic interaction ranks 
corresponding to these 500 genes were determined by ranking all array genes based on the 
number of digenic interactions each participates in using the genetic interaction data from 
Costanzo et al., (2010).  Genes ranked among the top 500 for genetic interactions were excluded 
from further analysis. The two regions highlighted were used for gene selection.  Genes found 
within region 1 participate in the most CG interactions and few genetic interactions, while the 
genes found within region 2 participate in fewer CG interactions but have fewer than 5 genetic 
interactions. The spots labeled represent the 18 genes selected for further analysis. PDR1 was 
also identified from this analysis and is labeled. Genes not chosen from regions 1 or 2 were 
excluded because they were either uncharacterized genes or their deletion has been shown to 
result in undesirable phenotypes, according to the SGD database. For example, YHP1 was 
located in region 1, but yhp1Δ mutants have abnormal cell morphology and possess a budding 
defect.   
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the upper-left region of the plot, consisting of genes ranked among the top 200 for drug 

sensitivity and the lowest 2000 for digenic interactions. This represented genes that exhibited 

sensitivity to 86 – 1066 compounds when deleted and participated in 11 – 19 digenic 

interactions. The second sub-group was selected from the top margin of the plot, consisting of 

genes participating in fewer than 5 digenic interactions and broadly ranked the among the top 

500 drug-sensitizing genes. A total of 18 genes were selected from these regions and are listed in 

Table 1, along with their corresponding CG and genetic interaction data values. Independent 

from this analysis I selected an additional PDR transcription factor gene (PDR8) to evaluate. 

While it was not identified by the computational analysis, PDR8 plays a key role in regulating 

the expression of PDR transporters (Hikkel et al., 2003) and its deletion was found to sensitive 

cells to a variety of drugs by our collaborators at the RIKEN institute (unpublished).    

 

2.6 The creation and analysis of 19 xxxΔ pdr1Δ pdr3Δ mutants 
highlights four potential drug-hypersensitive background 
strains 

Each of the 19 selected genes were deleted individually in the pdr1Δ pdr3Δ mutant using PCR-

directed mutagenesis with the K.lactis LEU2 marker (see Materials and Methods). To test the 

chemical sensitivity of the 19 newly created triple mutant strains, I employed a dose-response 

assay with eight different bioactive compounds. This work was done in collaboration with 

Marissa LeBlanc, a former post-doc at the RIKEN institute.  The 8 drugs chosen for analysis 

were all well characterized and functioned through diverse MOAs. The dose-response assay 

performed involved culturing the deletion strains in a wide range of drug concentrations and 

performing a four-parameter logistic regression on the resulting optical density measurements to 

calculate the concentration of drug required to inhibit cell growth by 50% (IC50; see Materials 

and Methods). By dividing the IC50 values obtained for a wild-type control by the IC50 values 

obtained for all 19 triple mutants, I calculated fold changes in chemical sensitivity for all triple 

mutants across the 8 drugs tested (Table 2).   

From this analysis, I sought to identify the triple mutants that exhibited the greatest fold increase 

in drug sensitivity to the most compounds. I achieved this aim by first highlighting the strains 

that exhibited one of the top three fold-increases in sensitivity to each compound, and then  
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Table 1. Genes selected for deletion in the pdr1Δ  pdr3Δ  mutant strain to increase chemical-
sensitivity.  
 

The listed interaction values and chemical/genetic ranks were obtained from the analysis 
described in Figure 11.   
 

ORF 
(Gene Name) 

# of 
CI’s* 

Chemical 
Rank 

# of 
GI’s* 

Genetic 
Rank 

Gene Function/Description** 

YDR035W 
(ARO3) 

521	   11	   6	   2788	   DAHP synthase: catalyzes the first step in 
aromatic amino acid biosynthesis	  

YNL101W 
(AVT4) 

61	   397	   0	   3439	   Vacuolar transporter: exports large, neutral 
amino acids from the vacuole 	  

YDR270W 
(CCC2) 

19	   125	   9	   2367	   Cu+2-transporting P-type ATPase: required 
for Cu+2 export from cytosol 	  

YFR041C 
(ERJ5) 

69	   294	   3	   3214	   Type 1 membrane protein: required to 
preserve folding capacity of the ER	  

YMR058W 
(FET3) 

114	   128	   12	   2070	   Ferro-O2-oxoreductase: required for high-
affinity iron uptake 	  

YMR319C 
(FET4) 

152	   79	   11	   2192	   Low-affinity iron transporter of the plasma 
membrane 	  

YPR198W 
(SGE1) 

136	   91	   8	   2624	   Plasma membrane transporter of the major 
facilitator superfamily (MFS)	  

YDR011W 
(SNQ2) 

124	   108	   4	   3083	   Plasma membrane transporter of the ATP-
binding cassette (ABC) family	  

YJL192C 
(SOP4) 

87	   197	   11	   2158	   ER-membrane protein: deletion slows the 
export of Pma1p from the ER	  

YDR007W 
(TRP1) 

875	   4	   12	   2014	   Phosphoribosylanthranilate isomerase: 
catalyzes third step in Trp biosynthesis	  

YKL211C 
(TRP3) 

1066	   2	   11	   2169	   Bifunctional enzyme: involved in 
tryptophan biosynthesis	  

YDR354W 
(TRP4) 

990	   3	   8	   2502	   Anthranilate phosphoriosyl transferase: 
catalyzes phorphoribosylation of 
anthranilate	  

YGR106C 
(VOA1) 

75	   251	   3	   3220	   ER protein: functions with other factors in 
the assembly of the V0 sector of the 
vacuolar ATPase	  

YGR241C 
(YAP1802) 

64	   343	   5	   2952	   Protein involved in clathrin cage assembly 	  

YLR020C 
(YEH2) 

55	   483	   4	   3137	   Steryl ester hydrolase: catalyzes steryl ester 
hydrolysis at plasma membrane	  

YGL117W 417 16	   2	   3322	   Unknown function	  
YMR102C 93 177	   1	   3412	   Putative multidrug ABC transporter	  
YOR162C 

(YRR1) 
65	   341	   0	   3441	   Zn2-Cys6 zinc-finger TF: activates genes 

involved in multi-drug resistance	  
YLR266C 

(PDR8) 
33	   > 500	   10	   2577	   Transcription factor: regulates genes 

involved in pleiotropic drug resistance 	  

* CI = chemical genomic interactions; GI = genetic interactions 
** Gene descriptions/functions obtained from the SGD website: http://www.yeastgenome.org/  
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Table 2. The fold change in triple mutants sensitivity to the eight compounds tested.   
 
Values were calculated by dividing the IC50 of the BY4741 wild-type strain by the IC50 for the 
triple mutant. Asterisks beside values indicate the fold change calculated was one of the top three 
identified out of the 19 triple mutants screened. The four triple mutants selected for further 
analysis, which exhibited the largest fold increase in sensitivity to the most compounds tested, 
are highlighted in grey. All gene deletions listed were present in a pdr1Δ pdr3Δ mutant 
background.  
 

Gene  
Deletion 

Drug Screened 
AMB	   ANIS	   CYX DAU KETO MICA TERB NYS 

pdr8Δ  *1.8 1.7	   2.5	   *1.9	   54.6	   0.5	   5.0	   1.6	  
sge1Δ  0.9 1.4	   2.5	   1.4	   36.6	   1.2	   4.3	   1.6	  
snq2Δ  1.1 1.0	   *10	   1.4	   25.4	   1	   0.2	   *2.6	  

ymr102cΔ  1.5 1.6	   3.3	   *3.4	   40.5	   1.0	   4.1	   1.6	  
yrr1Δ  1.4 0.7	   2	   *2.0	   6.9	   0.6	   *13.9	   *2.1	  
aro3Δ  1.6 1.3	   2.5	   1.4	   42.3	   1.3	   1.3	   1.8	  
avt4Δ  1.2 1.0	   2	   1.2	   21.2	   1.3	   1.3	   1.6	  
trp1Δ  1.6 0.8 2	   1.2	   49.4	   1.2	   7.6	   1.9	  
trp3Δ  1.6 1.2	   2.2	   1.1	   *87.3	   1.2	   *8.7	   1.6	  
trp4Δ  1.6 1.7	   2	   1.3	   *63.6	   1.3	   8.3	   1.6	  
ccc2Δ  1.6 1.0	   3.3	   0.9	   22.3	   1.2	   1.1	   1.8	  
fet3Δ  1.6 1.3	   2	     1.1	   24.0	   1.3	   5.8	   1.8	  
fet4Δ  *1.8 *1.9	   *6.7	   1.8	   51.4	   *1.5	   2.9	   1.8	  
erj5Δ  1.6 1.5	   5	   1.2	   45.9	   1.2	   0.6	   1.6	  
sop4Δ  1.1 1.0	   2.2	   1.1	   *80.9	   1.3	   3.2	   1.9	  
voa1Δ  1.6 1.5	   2	   1.3	   23.4	   1.2	   2.6	   1.7	  
yap1082Δ  1.6 1.2	   2.2	   1.1	   27.8	   1.2	   1.4	   1.7	  
yeh2Δ  1.5 *3.7	   4	   0.5	   41.2	   1.2	   *11.5	   1.5	  
ygl117wΔ  1.5 *5.2	   *6.7	   1.6	   25.6	   1.2	   1.1	   *2.1	  
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retaining the strains that ranked among the top for the greatest number of compounds.  This 

analysis distinguished four triple mutants to explore further. The top sensitive strain was deleted 

for FET4, which encodes a low-affinity iron transporter. This result was interesting, as Fet4p has 

not been linked previously to drug transport or MDR, yet the strain harboring a FET4 deletion 

ranked among the top three drug-sensitive strains for four out of the eight compounds tested. The 

triple mutant deleted for YRR1 exhibited the second largest increase in drug-sensitivity, followed 

by the PDR8 and SNQ2 triple mutants. All three of these genes have been previously linked to 

MDR; YRR1 and PDR8 encode transcription factors that regulate the expression of drug 

transporters (Le Crom et al., 2002; Hikkel et al., 2003), while SNQ2 encodes a known PDR 

transporter (Balzi et al., 1994). Interestingly, the expression of SNQ2 was initially thought to be 

controlled exclusively by the Pdr1p and Pdr3p TFs (Decottignies et al., 1995). However, the 

observed increase in drug-sensitivity associated with deletion of SNQ2 in a pdr1Δ pdr3Δ mutant 

corroborates a more recent finding that suggests the expression of SNQ2 is controlled by other 

PDR transcription factors, such as Yrr1p (Le Crom et al., 2002).   

 

2.7 Deletion of SNQ2 in the pdr1Δ pdr3Δ mutant yields a highly 
drug sensitive strain 

To further evaluate the chemical sensitivity of the top four drug-sensitive strains identified from 

the dose-response analysis, I performed a high-throughput chemical-halo assay using a collection 

of 440 natural products in collaboration with Jeff Piotrowski (see Materials and Methods). While 

all four strains exhibited an increase in drug-sensitivity relative to the pdr1Δ pdr3Δ mutant strain, 

the triple mutant deleted for SNQ2 exhibited sensitivity approaching that of the 9Δ drug-

hypersensitive strain (Figure 12A). To evaluate whether this chemical-sensitivity was due to the 

deletion of SNQ2 alone or resulted from the unique combination of the pdr1Δ, pdr3Δ and snq2Δ 

deletions, I used PCR mutagenesis to create single and double deletion strains harboring all 

possible combinations of pdr1Δ, pdr3Δ, and snq2Δ. These additional five strains were then 

evaluated using the same chemical-halo assay. As depicted in Figure 12B, I found the chemical-

hypersensitivity was unique to the pdr1Δ pdr3Δ snq2Δ triple mutant, as all single and double 

mutants were markedly insensitive. Further analysis of the pdr1Δ pdr3Δ snq2Δ triple mutant 
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Figure 12. Phenotypic analysis of potential drug-hypersensitive background strains. 

A) The chemical-sensitivity of the top four drug-hypersensitive strains was assessed by 
robotically pinning 440 NPs onto YPD plates seeded with yeast culture. After incubating plates 
overnight, a compound was labeled toxic if it created a visible area of growth inhibition. Values 
plotted indicate the percentage of 440 compounds that were identified as toxic to the strain 
tested. BY4741 was used as a wild-type control. B) To evaluate the contribution of the pdr1Δ, 
pdr3Δ and snq2Δ gene deletions to the drug-hypersensitivity of the triple mutant strain, all 
possible single and double mutant combinations were created and tested using the same 
approach. C) The gross appearance of the pdr1Δ pdr3Δ snq2Δ triple mutant strain was visualized 
by staining log-phase cells with 100 µg/mL of Con A and imaging with fluorescence microscopy 
at 63X magnification. B) To evaluate sporulation, cells were cultured in supplemented SPO 
media for 7 days and resulting tetrads were dissected (control plate). Spores were replica-plated 
onto YPD + G418, SD –URA and SD – LEU media to ensure each marker segregated 1:1 as 
expected. 
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revealed the strain did not possess the clumpy phenotype present in the 9Δ drug-hypersensitive 

strain and was capable of sporulating correctly, as evidenced by tetrad analysis (Figure 12C-D; 

see Materials and Methods). This triple mutant was therefore chosen as the drug-hypersensitive 

background for my CG profiling assay. 

 

2.8 Regenerating the diagnostic subset of yeast deletion 
mutants in the pdr1Δ pdr3Δ snq2Δ background using a 
modified SGA protocol 

The cumbersome task of re-creating the selected 491 deletion mutants in the pdr1Δ pdr3Δ snq2Δ 

background was circumvented using a modified synthetic genetic array (SGA) pipeline. Use of 

the SGA strategy was possible because the pdr1Δ pdr3Δ snq2Δ mutant was created in the SGA 

query strain background (y7092), which harbors the important can1Δ::STEpr-SP_his and lypΔ 

reporters  (Tong et al., 2001). The drug-hypersensitive query mutant was crossed to an ordered 

array of the 491 deletion mutants and quadruple mutant progeny were selected for, in lieu of 

traditional double mutant selection, using a series of replica plating steps via robotic pinning 

(Figure 13; see Materials and Methods). All SGA output colonies were then streaked for single 

colonies to isolate a single clonal population. This process ultimately resulted in the creation of 

491 MATa haploid strains carrying all four marked deletions. I then used a series of quality 

control measures to validate the phenotype of these strains and assess integrity of the modified 

SGA pipeline used for their creation. First, I used a flow-cytometry analysis to evaluate the 

ploidy of the SGA output strains to verify each was haploid (see Materials and Methods). I opted 

to validate the ploidy of the entire set of 491 output strains because this characteristic was 

essential to prevent screening diploid cells, which would ultimately create false negatives in 

future CG data generated using this deletion collection. Similar to the results depicted in Figure 

14A, all 491 mutants yielded profiles characteristic of either 1n or 2n DNA content, as evidenced 

by comparison to the haploid and diploid controls. All 491 SGA output strains were therefore 

classified as haploid. To further interrogate the modified SGA pipeline, I then evaluated a subset 

of strains present on each array plate to ensure the MATa mating type was correctly selected. 

This was performed using a pheromone based mating type test, whereby a strain is identified as 
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Figure 13. A modified SGA protocol for regenerating the 491 deletion mutants in the drug-
hypersensitive background.  
 
A MATα query strain carrying the pdr1Δ pdr3Δ snq2Δ deletions, as well as the can1 Δ::STEpr-
SP_his and lypΔ reporters, was crossed to an ordered array of the 491 MATa xxxΔ::kanMX 
deletion mutants. The resulting zygotes were selected and transferred to enriched SPO to induce 
sporulation. First the MATa haploid meiotic progeny carrying the can1Δ::STEpr-SP_his and 
lypΔ reporters were selected, followed by concurrent selection of the pdr3Δ::KI.URA3 + 
pdr1Δ::natMX deletions and the snq2Δ::KI.LEU2 + xxxΔ::kanMX deletions. Final output strains 
were streaked for single colonies. This approach was modified from Tong et al. (2001).  
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Figure 14. Quality control of SGA output strains.  
 
Quality control experiments were used to confirm the phenotype of SGA output strains and 
validate the modified SGA pipeline. A) Each strain’s ploidy was assessed by fixing and staining 
treated cells grown to mid-log phase and running samples through a flow cytometer. Similar to 
the 6 strains depicted, all 491 SGA output strains were haploid, containing only 1n or 2n DNA 
content. BY4741 was used as the haploid control while BY4743 was used as the diploid control. 
B) Pheromone halo assays were used to verify the mating type of 5 randomly selected strains 
from each array plate. After streaking out strains and growing overnight on YEPD media, cells 
were replica plated onto lawns of bar1Δ or sst2Δ cells. The presence of a halo on the bar1Δ 
lawns indicates MATα cells and the presence of a halo on the sst2Δ lawns indicates MATa cells. 
Similar to depicted, all SGA output strains tested were MATa. The pdr1Δ pdr3Δ snq2Δ strain and 
the SGA query starting strain were used as MATα positive controls, while the his3Δ::kanMX 
strain from the deletion collection was used as a MATa positive control.  C) The mutants 
streaked out for B) were also replica plated onto the following media: YEPD + NAT to test for 
the pdr1Δ::natMX deletion, YEPD + G418 to test for the xxxΔ::kanMX deletion, SD – URA to 
test for the pdr3Δ::KI.URA3 deletion, and SD – LEU to test for the snq2Δ::KI.LEU2 deletion. 
All SGA strains tested harbored all four deletion markers, as evidenced by growth on the 
appropriate media. The pdr1Δ pdr3Δ snq2Δ strain was used as a positive control for the NAT, 
KI.URA3 and KI.LEU2 markers, the his3Δ::kanMX strain from the deletion collection was used 
as a positive control for the kanMX marker and the SGA query starting strain was used as 
negative control for all markers. 
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MATa or MATα based on their production of a or α type mating pheromone which induces G1 

cell cycle arrest in sst2Δ or bar1Δ mutants, respectively (see Materials and Methods). Like the 

results shown in Figure 14B, all SGA output strains tested generated halos of growth inhibition 

on an sst2Δ lawn, verifying they were of the MATa mating type. Finally, I chose to ensure all 

four marked deletions (pdr1Δ::natMX, pdr3Δ::KIURA3, snq2Δ::KILEU2 and xxxΔ::kanMX) 

were selected correctly by replica plating a subset of strains from each array plate onto the 

appropriate selection media (see Materials and Methods). As expected, all strains evaluated grew 

on the four types of selection media, signifying they carried the four deletion markers (Figure 

14C). These results therefore corroborated the phenotypic identity of the output strains to 

validate the integrity of the modified SGA pipeline used for their creation. 

 

2.9 The increased chemical sensitivity of two SGA output strains 
verifies function of the drug-hypersensitive background 

To confirm the utility of the SGA pipeline to regenerate deletion mutants in a functioning drug-

hypersensitive background, I selected two of the 491 4Δ SGA output strains and evaluated their 

known chemical sensitivity.  The first strain selected was deleted for RAD52, a member of the 

RAD52 epistasis group involved in the repair of double-stranded DNA breaks (Symington, 

2002). Deletion of this gene therefore sensitizes yeast to various DNA damaging agents, such as 

the glycopeptide antibiotic phleomycin, which causes double stranded DNA breaks through 

inducing radical mediated DNA damage (Enserink et al., 2009). The membrane integrity gene 

VPS8 was deleted in the second strain chosen, increasing the cell’s sensitivity to drugs like 

nystatin, that function through compromising cell membrane integrity (Giaever et al. 2002). I 

reasoned that if the pdr1Δ, pdr3Δ, and snq2Δ deletions were functional, then the SGA output 

strains harboring rad52Δ and vps8Δ deletions should possess increased sensitivity to phleomycin 

and nystain, respectively, when compared to strains deleted for these genes in a wild-type 

background. To evaluate this prediction, a liquid-growth assay measuring turbidity over time was 

performed to compare the chemical sensitivity of the two SGA output strains to the sensitivity of 

rad52Δ and vps8Δ mutants from the original yeast deletion collection (see Materials and 

Methods). As expected, this analysis revealed deletion of rad52Δ and vps8Δ in the drug 

hypersensitive background increased sensitivity to the tested compounds Figure 15. In addition 
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to validating the function of the drug-hypersensitive background, the observed increase in 

sensitivity further substantiates that I can evaluate a lower concentration of each NP with the 

adapted assay as a result of regenerating each deletion allele in the pdr1Δ pdr3Δ snq2Δ 

background.   

 

2.10 Culturing yeast in galactose-based media further increases 
drug sensitivity, relative to the use of glucose-based media 

Preliminary experiments performed by my collaborator Jeff Piotrowski suggested culturing in 

rich galactose-based media could be used to further sensitive yeast to various compounds 

(unpublished). This analysis was inspired by a previous study that explored the concept of 

altering culture media composition to increase the drug-permeability of yeast (Pannuzio et al., 

2004). I opted to further explore whether replacing dextrose with galactose would sensitize yeast 

by performing a dose-response analysis using six control compounds (see Materials and 

Methods). For all six compounds tested, the measured IC50 value was lower when the analysis 

was performed in YPGal media (Table 3). Specifically, when culturing in YPGal media, cells 

experienced at least a two-fold increase in sensitivity to cyclohexamide, ketoconazole, 

daunorubacin, and ansiomycin, while the fold-change in sensitivity to amphotericin B and 

rapamycin was below 1.5 (Table 3). Although these changes are not drastic, culturing in 

galactose-based media will afford a further reduction in the concentration of compound required 

for analysis, in addition to the sensitivity change resulting from using the drug-hypersensitive 

genetic background. One simple explanation that may explain this observation is yeast grow 

slower in galactose-based media. This change could afford each compound an increased amount 

of time to interact with their target or exaggerate the resulting physiological response. Another 

hypothesis for this result is based on a previous study, which demonstrated that substituting 

glucose with galactose increased the expression and function of various amino acid permeases 

found in the plasma membrane though regulation by the carbon catabolite repression pathway 

(Peter et al., 2006). If these permeases can also import drugs, or if the signaling cascade 

responsible for the up-regulation of these permeases up-regulates expression of other proteins 

capable of drug-import, then this concept may provide an explanation for the observed increase 

in drug-sensitivity resulting from culturing in galactose-based media.      
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Figure 15. The chemical sensitivity of two SGA output strains. 

The chemical sensitivity of strains deleted for RAD52 and VPS8 in both a wild-type background 
(rad52Δ & vps8Δ) and the hypersensitive pdr1Δ pdr3Δ snq2Δ background (rad52Δ in 3Δ and 
vps8Δ in 3Δ) were assessed with a liquid-growth analysis. BY4741 was used as wild-type control 
(WT) for the wild-type background mutants and the pdr1Δ pdr3Δ snq2Δ triple mutant (3Δ) was 
used as a control for the hypersensitive mutants. All strains were grown overnight in YEPD and 
after subculturing the next morning to ~OD600 = 0.0625, the rad52Δ cultures were spiked with 
0.4 ng/µL of phleomycin and 0.05 µg/mL of nystatin was added to the vps8Δ cultures. Turbidity 
was monitored over ~22 hours. Culturing in 2% DMSO was used a no-drug control for both 
experiments.  
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Table 3. A comparison of IC50 values measured following growth in glucose vs. galactose-
based media 
 
IC50 values represent the concentrations of each compound required to inhibit 50% of cell growth 
when culturing yeast in YP media supplemented with 2% dextrose (YPD) or 2% galactose 
(YPGal). Values were determined by performing a four-parameter logistic regression of the 
results obtained using a standard dose-response assay.  Fold-change values were calculated by 
dividing the YPD IC50 by the YPGal IC50.  

 
 Calculated IC50 Value  Fold IC50 

Change Drug Tested YPD YPGal	  

Amphotericin B 0.2123 0.1987 1.07	  
Cyclohexamide 0.1055 0.0557	   1.89	  
Ketoconazole > 2.0 0.9331	   > 2.14	  
Daunorubicin > 10.0 5.2988	   > 1.89	  
Rapamycin 0.0093 0.0082	   1.13	  
Anisomycin 19.674 8.7249	   2.25	  
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2.11 Chemical genomic interaction profiles generated using the 
adapted assay are comparable to those produced by the 
traditional assay  

Prior to screening the valuable NPDepo compounds with the modified assay, it was important to 

investigate whether the adaptations implemented would affect the quality of CG data produced. 

This question was addressed by selecting 5 control compounds, screened previously using the 

traditional CG assay, for analysis. The compounds chosen were the microtubule-disruptant 

benomyl, the DNA damaging agents camptothecin and mitomycin C, the estrogen receptor 

antagonist tamoxifen and the fungal cell-wall disturbing agent micafungin. To simulate the exact 

methodology that would be used for screening the NPDepo library, the 5 compounds were 

evaluated among a series of other compounds contained within four 96-well plates. Including the 

adaptations of a novel deletion collection, the use of YPGal media, and analysis in a 96-well 

format, these compounds were assayed as described previously using next-generation sequencing 

for barcode quantification (Smith et al., 2011; see Materials and Methods). Briefly, this entailed 

inoculating each well of a 96-well plate with the novel deletion pool and spiking with either 

compound or a 2% DMSO solvent. After culturing for 5 generations, gDNA was isolated from 

each well and the strain-specific barcodes were PCR amplified using experiment-specific 

indexing primers. The resulting barcode amplicons were then quantified using 96-plex next 

generation sequencing, and CG interaction profiles for each compound were constructed by 

computing drug-gene interaction z-scores for each strain.  

One test to evaluate the quality of data yielded from the adapted strategy is to compare the CG 

interaction profiles obtained for the 5 compounds to CG interaction profiles obtained previously 

using the traditional assay. In collaboration with Raamesh Deshpande, this was achieved initially 

by combining the CG interaction profiles for benomyl and camptothecin with the 82 CG 

interaction profiles from the Parsons et al. (2006) dataset and using two-dimensional clustering 

to identify which profiles were similar. I reasoned that if the CG data generated by the new assay 

was comparable to the CG data yield produced by the traditional approach, then the benomyl and 

camptothecin profiles should group with the profiles of related drugs within the clustergrams. 

This outcome was observed for both compounds. The benomyl CG profile grouped beside the 

Parsons et al. (2006) benomyl profile and the profile produced by the other microtubule 

disrupting agent nocodazole (Figure 16). Similarly, the camptothecin CG profile grouped within 
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Figure 16. CG profiles generated by the adapted assay group informatively with previously 
generated CG interaction data using two-dimensional hierarchical clustering.  

CG interaction profiles generated using the adapted assay were compared to the CG interaction 
data from Parsons et al. (2006) using two-dimensional hierarchical clustering. Given that only 
491 genes were screened with the adapted assay, this analysis compared the CG interaction 
profiles for benomyl and camptothecin to the CG interaction profiles for the 82 Parsons et al. 
(2006) drugs restricted to same gene set. A) The CG interaction profile generated by benomyl 
grouped near the Parsons et al. (2006) benomyl profile, as well as near the other microtubule 
disrupting agent nocodazole B) The CG interaction profile generated by camptothecin grouped 
appropriately near a series of DNA damaging agents, including MMS, hydroxyurea, cisplatin, 
mitomycin C and the Parsons et al. (2006) camptothecin profile.  
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the profiles produced by a series of other DNA damaging agents, including the Parsons et al. 

(2006) camptothecin profile (Figure 16). To extend this analysis to the remaining 3 compounds 

and analyze the benomyl and camptothecin profiles further, I identified the top correlated CG 

interaction profiles from the Parsons et al. (2006) dataset by computing cosine similarity 

coefficients to quantify profile similarities. This analysis was again performed in collaboration 

with Raamesh Deshpande. For 4 out of the 5 control compounds assessed, the top correlated 

profiles from the Parsons et al. (2006) dataset were produced by the same tested compound, 

while most of the profiles that were second best correlated were produced by compounds 

functioning through a related MOA (Table 4). The exception to this observation was the result 

obtained for mitomycin C, whose profile correlated most with oligomycin (coefficient = 0.1789) 

and menthol (coefficient = 0.1678).  Neither of these correlated compounds function through 

inducing DNA damage; oligomycin inhibits ATP synthase, while menthol is a terpene alcohol 

used as a flavorant. The lack of correlation between my mitomycin C CG profile and the Parsons 

et al. (2006) mitomycin C CG profile may have resulted from noise observed in both profiles, 

and not due to profile differences specific to the adapted assay. This hypothesis is based on a 

further analysis of the mitomycin C profile described below (results section 2.12). Another 

interesting result obtained from this correlation-based analysis was the high correlation found 

between my tamoxifen CG profile and the Parsons et al. (2006) desipramine profile (coefficient 

= 0.4245, with p < 10-4). At first glance, this similarity was unexpected, as tamoxifen is an 

estrogen receptor antagonist and desipramine is a tricyclic antidepressant that inhibits 

norepinephrine reuptake. However, secondary to their primary MOAs, both tamoxifen and 

desipramine have been shown previously to perturb calcium homeostasis (Parsons et al., 2006; 

Qi et al., 2002). Because yeast lacks both estrogen receptors and a nervous system, the CG 

interaction profiles generated by these two compounds are likely representative of their 

secondary MOAs. Consequently, the observed similarity between these two profiles highlights 

the ability to use S. cerevisiae CG profiling to characterize bioactive compounds and provide 

MOA insights in cases where yeast lacks their primary mammalian targets. Comparing the CG 

interaction profiles generated by the adapted assay to a second large CG dataset (Hillenmeyer et 

al., 2008) yielded a similar result to the aforementioned analysis. The profiles for all compounds 

except tamoxifen were significantly correlated to the profiles produced by drugs functioning 

through related MOAs (Table 4). The top profiles found to correlate to tamoxifen were the N-

WASP inhibitor wiskostatin and the smooth muscle relaxant alverine citrate. While
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Table 4. Top correlated CG interaction profiles from the Parsons et al. (2006) and 
Hillenmeyer et al. (2008) datasets 
 
Top correlated profiles from the Parsons et al. (2006) and the homozygous diploid component of 
the Hillenmeyer et al. (2008) datasets. Correlation coefficients were calculating using cosine 
similarity, with p-values estimated by comparing the actual correlation to a null distribution 
generated using a bootstrapping method (see Materials and Methods). The known MOAs of 
these compounds are listed in Appendix B.  
 

 
Compound 
from this 

study 

Profile Correlation with Other CG Data Sets 
 Parsons et al. 2006	   Hillenmeyer et al. 2008	  

Compound	   Correlation	   Compound	   Correlation 

benomyl 
benomyl  0.4560 (p < 10-4)	   benomyl 	   0.6111 (p < 10-4)  	  

nocodazole 	   0.4567 (p < 10-4)	   mebendazole 	   0.2988 (p = 0.0003)	  

camptothecin 
camptothecin  0.4191 (p < 10-4)	   camptothecin 	   0.4300 (p < 10-4)	  
hydroxyurea 	   0.3400 (p < 10-4)	   MMS 	   0.4169 (p < 10-4)	  

tamoxifen 
tamoxifen  0.4298 (p < 10-4)	   wiskostatin 	   0.2705 (p < 10-4)	  

desipramine 	   0.4245 (p < 10-4)	   alverine citrate 	   0.2502 (p = 0.0005)	  

micafungin 
caspofungin  0.2273 (p < 10-4)	   nystatin 	   0.3150 (p < 10-4)	  
extract 95-97 	   0.2039 (p < 10-4)	   cantharidin 	   0.2801 (p = 0.0007)	  

mitomycin C 
oligomycin  0.1789 (p = 0.006)	   hydroxyurea 	   0.2428 (p = 2427)	  

menthol	   0.1678 (p = 0.003)	   methotrexate	   0.1854 (p = 0017)	  
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wiskostatin has not been previously linked to calcium homeostasis, alverine citrate has been 

shown to relax smooth muscle through inhibiting calcium channels and increasing calcium influx 

(Hayase et al., 2007). Therefore, the observed correlation between the CG profiles for tamoxifen 

and alverine citrate likely resulted from both compounds altering yeast calcium homeostasis. As 

mentioned previously, this example further emphasizes the potential of using yeast CGs to 

identify the secondary MOAs of bioactive compounds and characterize drugs that possess 

mammalian specific targets.  

Overall, the expected CG profile similarities identified using this correlation-based analyses 

suggests the profiles produced by the adapted assay are comparable to those produced using the 

traditional approach. Importantly, this observation demonstrates that comparing newly generated 

CG interaction profiles to our compendium CG interaction data should group related compounds 

to provide informative MOA insights. 

 

2.12 The chemical genomic interaction profiles produced by 
screening a diagnostic subset of deletion mutants can be 
used to predict the targeted biological processes of bioactive 
compounds 

The CG interaction profiles generated by screening the 5 control compounds with the adapted 

assay were further analyzed through comparing with genetic interaction data to predict the 

biological processes targeted by each compound. This work was performed in collaboration with 

Raamesh Deshpande. The ideal outcome of this comparison strategy is to predict the specific 

targets of compounds screened by identifying the genes that yield the top correlated genetic 

interaction profiles. However, because most drugs target essential genes, this outcome usually 

requires comparing CG profiles to the interaction profiles produced using essential query genes. 

Given that not all essential genes have been screened for genetic interactions to date, a more 

specific drug-target prediction is not yet possible and the comparison analysis described is 

currently restricted to broadly predicting the targeted biological processes of compounds 

screened. These biological process predictions can be formulated by: using cosine similarity to 

quantify the correlation between a given drug’s CG interaction profile and the genetic interaction 

profiles produced by all ~1700 query genes present in the genetic interaction dataset, and then 
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identifying which cellular pathways or biological processes are enriched among the top 

correlated genes. I reasoned that if the correlated query genes identified using CG profiles from 

the adapted assay were enriched for genes functioning within the targeted pathway, then the CG 

data yielded by this approach is highly informative. Furthermore, if the predictions overlap with 

those generated using CG data from the traditional strategy, then the concept that data from these 

two approaches is comparable will be reinforced. From this analysis, three outcomes were 

observed and are described using the results for camptothecin, benomyl and mitomycin C.  

Using a significance cutoff of p = 0.01, the DNA damaging agent camptothecin yielded 68 

correlated query genes that could be classified into 6 functional categories, but were primarily 

composed of genes involved in DNA replication and repair (Figure 17A). Using GO ontology 

annotations downloaded from the gene ontology website (www.geneontology.org/) and a 

previously developed Java-based algorithm, the top three GO functional enrichments identified 

for these 68 correlated genes were DNA replication (p = 7.55 x10-9), sister chromatid segregation 

(p = 1.35 x10-7) and DNA metabolic processes (p = 4.50 x10-7). Camptothecin functions through 

binding and stabilizing the DNA topoisomerase I enzyme/DNA complex, preventing DNA re 

ligation following replication and causing DNA double strand breaks (Liu et al., 2000). The 

enrichment observed among the 68 genes identified was therefore informative of camptothecin’s 

known MOA. Furthermore, camptothecin has been shown to also affect the cell through inducing 

sister chromatic exchange (Zhao et al. 1992), supporting the observed enrichment for genes 

involved in sister chromatic segregation. Analysis of the camptothecin CG profile therefore 

suggests data yielded by the adapted assay can be used to predict a compounds targeted 

biological process. When predictions were instead made using the camptothecin CG interaction 

profile generated by the traditional assay, the 198 correlated genes identified were also highly 

enriched for informative biological processes. The top three GO enrichments identified were 

DNA metabolic processes (p = 5.53x10-27), DNA replication (p = 7.13 x10-22) and DNA repair (p 

= 2.48 x10-19). Additionally, these 198 correlated genes overlapped significantly (p < 10-6) with 

the correlated genes identified using data from the adapted assay (Figure 17B). This result 

therefore demonstrates that screening a diagnostic subset of deletion mutants can generate CG 

data capable of capturing predictions formulated by screening the entire collection of ~4000 

strains. Of note, a similar result was obtained when target predictions were made using the CG 

profiles produced by tamoxifen and micafungin.  



50 

 

 

Figure 17. Analysis of the targeted processes predicted for camptothecin.  

A) The 68 query genes correlated to the camptothecin CG profile (p < 0.01) were representative 
of 6 functional categories (classified according to a previously generated 19 category standard; 
Costanzo et al., (2010)). These 68 genes were functionally enriched for genes participating in 
DNA replication (p = 7.55 x10-9), sister chromatid segregation (p = 1.35 x10-7) and DNA 
metabolic processes (p = 4.50 x10-7). B) These 68 correlated genes overlapped significantly (p < 
10-6) with the 198 correlated genes identified using the camptothecin CG data from Parsons et al. 
(2006).  
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An alternative outcome was observed when the biological processes targeted by benomyl were 

predicted. Again using a significance cutoff of p = 0.01, the benomyl CG interaction profile 

yielded 39 correlated query genes that fell into 4 functional categories, but were primarily 

represented by chromosome segregation, spindle and microtubule related genes (Figure 18A). 

The top three GO functional enrichments identified for these genes were mitotic cell cycle (p = 

7.35 x10-8), cell cycle (p = 3.35 x10-6) and tubulin folding (p = 4.97 x10-6). Inhibition of tubulin 

polymerization by benomyl can have broad cellular consequences, but may specifically block 

mitosis and prevent cell cycle progression. The GO term enrichments identified for the 39 

correlated query genes are therefore informative of benomyl’s known MOA. Furthermore, the 

top two correlated genes for benomyl were CIN1 (correlation coefficient = 0.365; p < 10-6) and 

TUB3 (correlation coefficient = 0.343; p < 10-6), which encode a tubulin folding factor and the 

α-tubulin protein, respectively. Consequently, the benomyl CG profile generated by the adapted 

assay is also predictive of a specific target, largely because benomyl does not target a specific 

essential protein. However, when target predictions were instead made using the benomyl CG 

interaction profile generated by the traditional assay, an alternative result was observed. While 

the two sets of correlated query genes overlapped significantly (Figure 18B), the correlated 

query genes identified using the Parsons et al. (2006) data were not significantly enriched for 

informative biological processes. Specifically, the top three GO enrichments identified using the 

Parsons et al. (2006) data were negative regulation of metabolic processes (p = 2.59x10-4), the 

negative regulation of biological processes (p = 1.68 x10-3) and protein folding (p = 1.48 x10-2). 

There were over 300 query genes correlated to the Parsons et al. (2006) benomyl CG profile, 

relative to the 39 query genes correlated to my benomyl CG profile. This result suggests the 

observed differences in enrichment may be due to increased noise in the Parsons et al. (2006) 

data, possibly owing to screening a larger library of deletion mutants. Therefore in contrast to the 

camptothecin example described above, analysis of the benomyl CG profile demonstrates the 

adapted may, in some instances, yield CG data that can be used to more informatively predict the 

processes targeted by compounds screened, relative to GC data produced by the traditional assay. 

A final outcome was observed when the biological processes targeted by mitomycin C were 

predicted. Using a significance cutoff of p = 0.01, the mitomycin C CG interaction profile 

yielded 68 correlated query genes that fell into 6 functional categories, but were primarily 

represented by genes participating in DNA replication and repair (Figure 19A). The top three  
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Figure 18. Analysis of the targeted processes predicted for benomyl. 

A) The 39 query genes correlated to the benomyl CG profile were representative of 4 functional 
categories, classified according to a previously generated 19 category standard (Costanzo et al., 
(2010). These 39 genes were functionally enriched for genes participating in the mitotic cell 
cycle (p = 7.35 x10-8), the cell cycle (p = 3.35 x10-6) and tubulin folding (p = 4.97 x10-6).) These 
39 correlated query genes overlapped significantly (p < 10-6) with the 304 correlated genes 
identified using the benomyl CG data from Parsons et al. (2006).  
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GO functional enrichments identified for these correlated genes were DNA repair (p = 3.06 

x107), response to endogenous stimulus (p = 1.32 x10-6) and response to DNA damage stimulus 

(p = 2.93 x10-6). Furthermore, the top correlated gene identified was the non-essential gene 

RAD52, which functions to repair DNA damage that can result from DNA damaging drugs. 

Giving that mitomycin C is a potent DNA cross-linker that causes DNA damage, the biological 

processes predicted to be targeted by this drug are informative of mitomycin C’s known MOA. 

When target predictions were instead made using the mitomycin C CG interaction profile 

produced by the traditional assay, the resulting predictions were also highly enriched for 

informative biological processes (Figure 19B). Specifically, the top three GO enrichments 

identified were DNA replication (p = 8.54 x10-17), DNA metabolic process (p = 1.35 x10-16) and 

DNA repair (p = 1.92 x10-14). However, compared to the other drug profiles analyzed, there was 

a drastic reduction in the overlap of the correlated query genes identified using data generated by 

the two assays. This result suggests the mitomycin C profiles generated by both the adapted and 

traditional assays were noisy, and supports the lack of correlation observed between these two 

profiles described in section 2.11. Interestingly, this noise did not appear to affect the target 

predictions that could be formulated, as evidenced by similar and informative GO functional 

enrichments identified using the set of correlated genes identified by analysis of either profile.  

Inclusively, results from these profile analyses suggest CG interaction profiles produced by the 

adapted assay can be used to informatively predict the biological processes targeted by 

compounds screened. Importantly, these predictions are at least as good as predictions made 

using results generated by the traditional assay, supporting the adaptations implemented do not 

affect the quality of CG produced. 

 

2.13 Confirming the top drug-sensitive strains for two compounds 
reinforces potential of screening with drug-hypersensitive 
strains 

A final experiment performed that reinforced the purpose of the drug-hypersensitive background 

was confirming the top benomyl and micafungin-sensitive strains identified using the adapted 

CG assay. The top two strains found to exhibit a chemical genetic interaction with benomyl were 

deleted for cin1Δ (z = -7.899) and tub3Δ (z = -5.38), while the top two strains found to exhibit a 
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Figure 19. Analysis of the targeted processes predicted for mitomycin C. 

A) The 68 predicted targets of mitomycin C were representative of 6 functional categories, 
classified according to a previously generated 19 category standard (Costanzo et al., (2010). 
These 68 genes were functionally enriched for genes participating in DNA repair (p = 3.06 x10-

7), response to endogenous stimulus (p = 1.32 x10-6) and response to DNA damage stimulus (p = 
2.93 x10-6). B) These 68 correlated query genes overlapped significantly (p = 0.003) with the 62 
correlated genes identified using the mitomycin C CG data from Parsons et al. (2006).  
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chemical genetic interaction with micafungin were deleted for bck1Δ (z = -5.355) and rom2Δ (z 

= -3.456) (See Appendix C for a list of the top 50 strains). To confirm the drug-hypersensitivity 

of these strains, a liquid growth assay was performed using benomyl and micafungin at the 

concentrations screened by the CG assay. Relative to a wild-type control, these four strains 

exhibited the expected drug-hypersensitivity (Figure 20). Testing the bck1Δ and tub3Δ mutants 

for sensitivity to benomyl and micafungin, respectively, demonstrated this sensitivity was 

specific to the expected deletion mutants.  To further validate the use of a drug-hypersensitive 

background, strains harboring the four gene deletions in a wild-type background were also 

evaluated. At a benomyl concentration of 34.4 µM, the strains harboring cin1Δ and tub3Δ 

deletions in the pdr1Δ pdr3Δ snq2Δ drug-hypersensitive background demonstrated sensitivity, 

while strains harboring cin1Δ and tub3Δ deletions in a wild-type background were insensitive 

(Figure 20). The insensitivity of these wild-type background mutants persisted at a higher 

benomyl concentration of 50 µM. This result suggests the pdr1Δ pdr3Δ snq2Δ drug-

hypersensitive background affords at least a 1.4 fold-reduction in the concentrations of benomyl 

required to inhibit cell growth. Similarly, only the strains harboring bck1Δ and rom2Δ deletions 

in the pdr1Δ pdr3Δ snq2Δ drug-hypersensitive background demonstrated sensitivity to 25nM of 

micafungin, while the strains harboring bck1Δ and rom2Δ deletions in a wild-type background 

were insensitive (Figure 20). When an elevated concentration of micafungin was tested, the 

rom2Δ mutant in the wild-type background exhibited sensitivity comparable to the rom2Δ drug-

hypersensitive mutant. While the bck1Δ mutant in the wild-type background was not sensitized 

at this concentration, this result demonstrates the pdr1Δ pdr3Δ snq2Δ drug-hypersensitive 

background affords at least a 1.5 fold-reduction in the concentrations of micafungin required to 

inhibit cell growth. Overall, these results reinforce the power of using drug-hypersensitive strains 

to assay the RIKEN NPDepo library given the desire to conserve this NP resource.  
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Figure 20. Confirming the chemical sensitivity of deletion mutants highlights the 
importance of screening compounds using the drug-hypersensitive deletion collection  

The chemical-sensitivity of the top drug-sensitive deletion mutants identified from the adapted 
assay were confirmed by growing strains in the presence of the tested drug for 24 hours and 
recording the resulting optical density at 600nm. Strains tested harbored deletions either in a 
wild-type background or in the drug-hypersensitive pdr1Δ pdr3Δ snq2Δ background. Values 
plotted are percentages calculated by dividing the OD600 measured after growth in 2% DMSO by 
the OD600 measured after growth the marked concentration of compound and multiplying by 100. 
Y7092 was used as the WT control and the 3Δ pdr1Δ pdr3Δ snq2Δ mutant was used as the drug-
hypersensitive control. (n = 3) 
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 DISCUSSION 3.0
 

High-throughput CG analysis has been positioned as an ideal strategy for characterizing 

bioactive compounds, owing to the relative ease with which compounds can assayed to gain 

insights into their MOA. As such, there has been extensive work performed to develop and 

implement CG strategies for assaying compounds, particularly focused around model organisms 

like budding yeast. One outstanding limitation of many high-throughput compound analysis 

strategies is their methodology precludes screening natural products, which are generally 

available in very limited quantities and are thus incredibly valuable. This class of compounds has 

an outstanding resume as a candidate for the focus of future CG analysis. For instance, NPs have 

been the basis of a significant number of highly influential pharmaceuticals throughput history. 

Consequently, there is a desire to adapt existing high-throughput CG analysis strategies to make 

NP characterization accessible.  

With this thesis, I described the development of a modified yeast CG interaction-profiling assay 

that will permit screening NP compounds. In particular, this strategy was developed with the 

ultimate goal of charactering a relatively novel collection of +40,000 NPs contained within the 

NPDepo at the RIKEN Institute in Japan. My main objective when developing the adapted 

methodology was to reduce the quantity of each NP that would be required for analysis. One 

strategy used to achieve this aim was to reduce the volume in which each experiment was 

performed 70%, affording a 3.5 fold reduction in the quantity of compound screened. Because 

the existing assay was optimized to analyze all yeast deletion mutants for drug hypersensitivity 

in a volume of 0.7mL, reducing the volume to 0.2mL required also reducing the complexity of 

the mutant pool screened. This was accomplished by selecting a subset of 491 deletion mutants 

that were diagnostic of genome-wide genetic interactions and could thus serve as a proxy for 

other deletion strains not assayed. To further reduce the quantity of each NP required for 

analysis, I recreated the 491 deletion mutants in a drug-hypersensitive background that was 

deficient for natural drug resistance machinery. By increasing the sensitivity of each strain, the 

concentration of compound required to inhibit cell growth was reduced, thereby affording a 

further reduction in the quantity of compound consumed by the assay. Once I had completed 

work to adopt these key modifications, I focused my efforts on implementing the assay to ensure 
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CG data yielded from this approach was both informative and comparable to data obtained using 

the traditional strategy. Through screening a series of control compounds for which CG data was 

available, I was able to demonstrate that in addition to exhibiting similarity to existing CG data, 

the CG profiles yielded by the adapted strategy could be used to provide insights into the 

biological processes targeted by each compound. Importantly, these concluding experiments 

endorsed the modified CG strategy I developed, priming the assay for application in NP 

characterization within the near future.  

Selecting a subset of diagnostic strains to comprise the mutant pool screened raised an interesting 

question: could the non-essential yeast genome be simplified to a series of genes, capable of re-

capturing the information contained within our knowledge base of genome-wide genetic 

interactions? The analysis of the 491 yeast deletion mutants chosen supports an affirmative 

answer to this question. First, we determined that genetic interactions restricted to the 491 

deletion mutants were able to re-group interacting query genes as informatively as genome-wide 

interactions, within a genetic interaction clustergram. While this result was based on one specific 

metric developed to assess the ‘correctness’ of query-query grouping, interactions restricted to 

the diagnostic subset were also able to visually recapture the basic network topology present in a 

genome-wide yeast genetic interaction network-diagram (results not shown). Further 

corroboration of the diagnostic capability of the chosen 491 deletion mutants was obtained when 

we assessed the ability to use CG profiles restricted to interactions with the diagnostic genes to 

informatively predict the biological targets of various compounds. As hoped, target predictions 

formulated from CG profiles restricted to the diagnostic genes were comparable to the target-

predictions made using the complete CG profiles. This result was particularly important given 

the ultimate goal of a CG analysis is to use the CG interaction profiles created to predict the 

MOA and targets of bioactive compounds screened. Overall, these results suggest that given an 

understanding of genome-wide genetic interactions within a particular organism, a diagnostic 

subset of genes can be chosen for use as a proxy to screen the remainder of the genome.  

This outcome has interesting implications for developing CG strategies in other organisms. 

While our genome-wide genetic interaction knowledge base is currently restricted to budding 

yeast, there has been an extensive effort in recent years to map and understand interactions in 

other organisms, including C. elegans (Lehner et al. 2006; Byrne et al., 2007), E. coli (Babu et 

al., 2011), and mammalian cells (Lin et al., 2010). Once interactions are better understood in 
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these systems, subsets of mutants could be selected for analysis to either enhance existing CG 

strategies, transition available CG assays across organisms, or develop entirely new approaches.  

Achieving this aim would have exciting consequences for designing mammalian CG screens, as 

one overwhelming limitation of mammalian-based analyses is the immense complexity of 

mammalian genomes. Given advances in techniques for creating targeted or RNAi-based 

mammalian-gene knockouts and progress in completing large-scale deletion collections (Cullen 

& Arndt, 2005; Bu et al., 2010; Skarnes et al., 2011), the ability to select a diagnostic subset of 

mammalian genes could permit transitioning CG analysis to mammalian cells in the near future. 

These strategies would be important for following up on promising drug leads identified from a 

yeast-based CG approach, or analyzing compounds with the goal of identifying agents targeting 

mammalian-specific biological processes.  

The drug-hypersensitive strain collection I created for this thesis is the first available large-scale 

deletion collection of its kind available. Currently, work is being undertaken to extend this 

resource genome-wide, which will ultimately provide a powerful reagent set for chemical-

biology studies in S. cerevisiae. In addition to permitting the analysis of valuable natural 

compounds, use of these strains can save money by generally conserving compound resources. 

Additionally, the drug-sensitized background may permit analyzing compounds that don’t 

typically exhibit antifungal activity. For instance, this feature could serve to better characterize 

human drugs that may not exhibit activity in wild-type yeast based on possible differences in the 

characteristics that determine compound bioactivity in these organisms. Even though yeast may 

lack the homologous mammalian target of a drug screened, this analysis can be used to 

understand a drug’s secondary MOA, as described in Section 2.12 for tamoxifen, desipramine 

and alverine citrate, and demonstrated previously (Ericson et al., 2008). These results could be 

especially beneficial for compounds that possess desirable therapeutic benefits but exhibit 

unspecific toxicity to understand the mechanisms through which the toxicity manifests. In doing 

so, researchers could focus on modifying existing chemicals they have invested significant time 

and money into instead of starting at square one in the drug-discovery pipeline.  

One limitation of using drug-hypersensitive strains to characterize compounds is the results may 

not be directly transferable to strains with intact drug-resistance machinery. While a compound 

may be identified that elicits a desired physiological response or targets a known disease-causing 

gene, it is possible the compound may exhibit little-to-no activity in a wild-type strain, especially 
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if it exhibited low level activity in the drug-hypersensitive mutant. However, I believe this 

limitation can be addressed by one of two solutions.  

Compounds identified that posses a desired target could be modified to increase bioavailability in 

strains with normal drug-resistance machinery. Over the last decade, extensive effort has been 

dedicated to characterizing the physical properties that contribute to bioavailability and drug-like 

features, such as the size of a compound size, lipophilicity and the number of hydrogen bonds it 

possesses (Lipinski et al., 2001). This information could be used to modify the chemical structure 

of compound leads identified from a CG analysis to enhance their potential as pharmaceutical 

agents. Generally, pharmaceutical profiling has focused on analyzing chemicals that have been 

synthetized to adhere to drug-like properties, which intrinsically restricts the range of chemicals 

that can be assessed. I believe that focusing on first screening all classes of chemicals and then 

modifying those that induce a desired physiological response is a better use of profiling efforts 

and would provide access to a larger diversity of chemical structures.  

The second strategy to address the abovementioned limitation is the potential to use desirable 

compounds identified in concert with a second agent that inhibits MDR transport. This solution 

has shown particular promise for repurposing existing cancer therapies to treat cancers exhibiting 

resistance to a broad spectrum of chemotherapeutic agents (Wang et al., 2010). One phenotype 

common to many cancers either at diagnosis or following treatment is the overexpression of 

MDR transport genes like ABCB1, which encodes the p-glycoprotein (p-gp) ABC transporter 

most commonly linked to cancer drug-resistance (reviewed in Borowski et al., 2005). To 

overcome this phenotype and potentiate the activity of the currently used chemotherapeutic 

agents, there has been extensive effort to identify inhibitors of p-gp and other MDR transporters 

(e.g. Sikic et al., 1997; Chen et al., 2004; Coburger et al., 2009; Martelli et al., 2009). This 

concept has also been explored as a potential solution to combat the continued emergence of 

drug-resistance bacteria that exhibit increased expression of membrane drug-efflux pumps 

(Lomovskaya & Watkins, 2001; Mullin et al., 2004). Identifying and implementing a second 

agent that inhibits MDR transporters could therefore facilitate translating drug-leads or potential 

biological probes identified by the CG assay to cells with intact drug-resistance machinery.   

Another important and related factor to consider when employing the drug-hypersensitive yeast 

collection for compound profiling is the potential that deleting the integral ABC membrane 
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proteins may affect cell membrane composition. Changes in yeast cell membrane composition 

have been shown previously to alter the cell’s sensitivity to antifungal agents that target cell 

membrane components (Mukhopadhyay et al., 2002), suggesting NPs screened that possess 

similar targets may exhibit differential sensitivity in these strains. An additional change in the 

reaction of these strains to the NPs screened may result from screening in galactose-based media, 

since the biochemical composition of the cell likely changes as a consequence. To further 

explore these potential cellular variations introduced by using drug-hypersensitive strains and 

galactose-based media, it would be ideal to screen additional control compounds beyond the 5 

described within this thesis, including several which are known to target the cell membrane. 

These screens should be performed using both mutants from the original deletion collection and 

the described drug hypersensitive deletion collection, in glucose and galactose based media. A 

detailed comparison of the resulting CG interaction profiles seeking to identify potential 

differences between the profiles yielded from each experimental condition should shed light on 

whether the described cellular changes affect the sensitivity of the strains tested and thus the 

output of the adapted assay. However, given the results obtained for the 5 compounds I 

described, I do not expect to observe significant differences.  

By analyzing the CG profiles obtained for 5 previously characterized control compounds, I 

demonstrated the modifications adopted did not affect the quality of generated CG data. 

Specifically, I demonstrated that the CG profiles produced for the 5 drugs were comparable to 

CG profiles created for the same compounds using the traditional strategy. I also found that the 

CG profiles for the 5 compounds screened could be used to informatively predict their targeted 

biological processes. While these results support implementing the described assay for NP 

characterization, there are two outstanding issues encountered that must be first addressed. 

Among all of the experimental conditions tested (including the DMSO controls), I found that 

~25% of the strains consistently had low raw sequencing counts ( < 10 reads) or were completely 

absent from the data. This result suggests there are likely errors in either the barcodes or common 

priming sites marking those strains. The possibility of these errors is not a novel idea; re-

characterization of the deletion collection by Smith et. al (2009) revealed errors in the barcode 

and common priming site sequences of many yeast deletion strains. More recently, our lab 

performed a bar-seq analysis of all haploid deletion mutants contained in the deletion collection 

and a comparison of the results demonstrated a significant overlap in the strains that were 
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missing or exhibited low counts in the barcode sequencing data (results not shown). Although I 

was able to obtain informative CG profiles using data from the remaining 75% of the strains I 

assessed, it would be desirable to select additional strains to replace the absent 25% to ensure the 

diagnostic pool remains representative of most biological processes. To accomplish this, I 

propose employing the original gene selection strategy but restricting the algorithm to choose 

genes whose barcodes yield good sequencing counts, based on our labs’ analysis of the complete 

deletion collection. The second issue encountered that must be addressed involves a potential 

bias with either the experiment-specific indexing tags or the position with which drugs are 

screened in a 96-well plate. Specifically, we found that the CG interaction profiles of 

different/unrelated drugs assayed using the same bar-seq indexing tags exhibited a greater 

correlation then the CG profiles of different/unrelated drugs assayed using different bar-seq 

indexing tags (results not shown). Because each indexing tag is used at the same position in each 

96-well drug-plate screened, it is not currently possible to differentiate whether this outcome 

results from the specific indexing tags used or a possible plate-position bias. These two potential 

biases could be assessed separately by scrambling the position of the indexing tags used and re-

screening a series of control compounds. However, one characteristic unique to the correlated 

experiments is they exhibited either high or low sequencing counts relative to the average, 

suggesting the observed bias may be due to the indexing tags and could be addressed by 

developing a new set of indexing tags that yield similar sequencing counts. Within the coming 

months it is likely that solutions to these issues will be identified and implemented, permitting 

work meeting the overarching goal of this project to begin.   

Once the aforementioned issues have been addressed, the immediate goal of this project is to 

begin analysis of the 40,000+ NPDepo library compounds. Priority will be given initially to 

characterizing a subset of around ~15,000 of the more abundant NPs, which have been isolated 

from diverse sources. Following screening these NPs, there are three classes of compounds I 

think would be ideal to follow-up on. First, NPs that may possess either fungal-specific targets or 

targets that are known homologues of human disease-causing proteins would be beneficial to 

further explore. These NPs could present leads for antifungal or human drug development, 

respectively. The second interesting class of compounds I would like to investigate is NPs that 

are predicted to target either an uncharacterized biological process or protein. These compounds 

could serve as ideal biological probes to advance our understanding of the molecular biology of 
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yeast. Finally, I think it would be interesting to investigate NPs that exhibit MOAs similar to 

existing drugs, but possess completely novel or divergent chemical structures. To rapidly identify 

compounds with related MOAs, the CG profiles of well-characterized compounds could be used 

to develop an index to group the NPs into broad MOA classes based on profile similarities (e.g. 

sterol binding or DNA damaging agents). The MOA of the classified compounds could then be 

confirmed using function-specific biochemical assays, such as media supplementation with 

ergosterol to evaluate whether a given NP binds sterols (described in Ho et al., 2009). Using the 

known chemical structure of all NPs in the NPDepo, one could then to determine whether novel 

structures are present within each functionally defined class of compounds. The potential to 

identify novel compound classes is not only interesting, but could allow for better understanding 

the chemical structures required to target specific biological processes.  

In conclusion, over the course of my M.Sc. thesis work, I have developed a modified CG assay 

for characterizing natural compounds in budding yeast. By selecting a diagnostic subset of yeast 

deletion mutants to screen and employing novel drug-hypersensitive background, I have created 

a powerful resource for assaying novel bioactive compounds. In using this strategy to evaluate 

the relatively untapped NPDepo compound library within the near future, I am hopeful that 

valuable biological insights and novel pharmaceutical leads will gained.  
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 MATERIALS AND METHODS 4.0
 

4.1 Yeast strains used in this study 

The yeast strains used in this study are summarized in Table 5.  

4.2 Precision-recall analysis for quantifying the quality of query-
query grouping by comparison to a GO co-annotation 
standard 

Evaluating query-query grouping within a genetic-interaction clustergram was important for 

selecting a diagnostic subset deletion strains and assessing whether the strains chosen could 

informatively re-cluster genetic interaction data. This analysis was performed by comparing 

query-query grouping to a GO co-annotation gold standard and using a precision-recall analysis 

to quantify the comparison. A precision-recall analysis is a commonly used metric to evaluate the 

relevance or informative capacity of data contained within a list. For quantifying the comparison 

of query-query grouping to a GO co-annotation gold standard, the precision-recall analysis 

conceptually proceeded as follows: 

1. Comparing query-query grouping in an interaction clustergram to the GO co-annotation 

gold standard yielded a binary quality score for each gene pair. A score of 1 was 

assigned to the gene pairs that were annotated to the same biological process based on 

the GO co-annotation gold standard, while a score of 0 was assigned to the gene pairs 

that were not annotated to the same biological process.  From the ~1700 query gene by 

~3890 array gene interaction dataset, 1699 gene pair scores were produced.  

2. All gene pair scores were then ordered from greatest to smallest, based on their assigned 

score of 1 or 0. Precision was then calculated across the complete range of possible 

recalls. The value of the computed precision ranges from 0-1, where a precision of 0 

would indicate there were no gene pair scores of 1 in the list for the recall applied, while 

a score of 1 would indicate all gene pair scores were 1 for the recall applied. Similarity, 

the value of the recall used ranges from 0-1, where a recall of 0 indicates no scores were 

used to calculate precision and a recall of 1 would indicate all scores present were used 

to calculate precision.  
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Table 5. Saccharomyces cerevisiae strains used in this study. 
 

Strain Genotype Reference 

9Δ MATa yor1Δ::HisG snq2Δ::HisG pdr5Δ::HisG pdr10Δ::HisG 
pdr11Δ::HisG ycf1Δ::HisG pdr3Δ::HisG pdr15Δ::HisG 
pdr1Δ::HisG 

Rogers et al., 
(2001)	  

pdr1Δ/pdr3Δ MATα pdr1Δ::natMX pdr3Δ::KI.URA3 can1Δ::STE2pr-Sp_his5 
lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 

This study	  

SGA query strain MATα can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 
met15Δ0  

Tong & 
Boone, (2006)	  

BY4741 MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 Brachman et 
al., (1998)	  

BY4743 MATa/α his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 
met15Δ0/MET15 ura3Δ0/ura3Δ0 

Brachman et 
al., (1998)	  

pdr1Δ/pdr3Δ/xxxΔ MATα pdr1Δ::natMX pdr3Δ::KI.URA3 xxxΔ::KI.LEU2 
can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0  

This study	  

pdr1Δ/pdr3Δ/snq2Δ MATα pdr1Δ::natMX pdr3Δ::KI.URA3 snq2Δ::KI.LEU2 
can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 

This study	  

pdr1Δ MATα pdr1Δ::natMX can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 
leu2Δ0 ura3Δ0 met15Δ0 

This study	  

pdr3Δ MATα pdr3Δ::KI.URA3 can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 
leu2Δ0 ura3Δ0 met15Δ0 

This study	  

pdr1Δ/snq2 Δ MATα pdr1Δ::natMX snq2Δ::KI.LEU2 can1Δ::STE2pr-Sp_his5 
lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 

This study	  

pdr3Δ/snq2 Δ MATα pdr3Δ::KI.URA3 snq2Δ::KI.LEU2 can1Δ::STE2pr-
Sp_his5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 

This study	  

pdr1Δ/pdr3Δ/snq2Δ 
diploid 

MATa/α pdr1Δ::natMX/PDR1 pdr3Δ::KI.URA3/PDR3 
snq2Δ::KI.LEU2/SNQ2 can1Δ::STE2pr-Sp_his5/CAN1 
lyp1Δ/LYP1 his3Δ1/ his3Δ1 leu2Δ0/ leu2Δ0 ura3Δ0/ ura3Δ0 
met15Δ0/met15Δ0 

This study	  

rad52Δ in 3Δ MATα pdr1Δ::natMX pdr3Δ::KI.URA3 snq2Δ::KI.LEU2 
rad52Δ::kanMX can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 
ura3Δ0 met15Δ0 

This study	  

vps8Δ in 3Δ MATα pdr1Δ::natMX pdr3Δ::KI.URA3 snq2Δ::KI.LEU2 
vps8Δ::kanMX can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 
ura3Δ0 met15Δ0 

This study	  

rad52Δ MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 rad52Δ::kanMX Giaever et al., 
(2002)	  

vps8Δ MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 vps8Δ::kanMX Giaever et al., 
(2002)	  

cin1Δ in 3Δ MATα pdr1Δ::natMX pdr3Δ::KI.URA3 snq2Δ::KI.LEU2 
cin1Δ::kanMX can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 
ura3Δ0 met15Δ0 

This study	  

tub3Δ in 3Δ	   MATα pdr1Δ::natMX pdr3Δ::KI.URA3 snq2Δ::KI.LEU2 
tub3Δ::kanMX can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 
ura3Δ0 met15Δ0 

This study 
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bck1Δ in 3Δ MATα pdr1Δ::natMX pdr3Δ::KI.URA3 snq2Δ::KI.LEU2 
bck1Δ::kanMX can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 
ura3Δ0 met15Δ0 

This study 

rom2Δ in 3Δ MATα pdr1Δ::natMX pdr3Δ::KI.URA3 snq2Δ::KI.LEU2 
rom2Δ::kanMX can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 
ura3Δ0 met15Δ0 

This study	  

cin1Δ MATa cin1Δ::kanMX his3Δ1 leu2Δ0 ura3Δ0 met15Δ0  Giaever et al., 
(2002)	  

tub3Δ MATa tub3Δ::kanMX his3Δ1 leu2Δ0 ura3Δ0 met15Δ0  Giaever et al., 
(2002)	  

bck1Δ MATa bck1Δ::kanMX his3Δ1 leu2Δ0 ura3Δ0 met15Δ0  Giaever et al., 
(2002)	  

rom2Δ MATa, rom2:kanMX his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 Giaever et al., 
(2002)	  

*YDC – yeast deletion collection 
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Generally, as recall increases the corresponding precision calculated decreases. One clustergram 

is said to have more informative query-query grouping relative to another clustergram if the 

precision remains high for a larger recall. Determining the area under a precision-recall curve is 

representative of the curve shape and can therefore be used to directly compare PR analyses 

performed on different datasets. To perform function-specific PR analysis, the GO co-annotation 

gold standard was subdivided into 19 functional categories and gene pair scores were obtained 

only for the genes present in the standard.   

 

4.3 Comparing interaction profiles using two-dimensional 
hierarchical clustering 

To visualize the comparison of interaction profiles, two-dimensional agglomerative hierarchical 

clustering using Pearson’s correlation and average linkage was applied to the data using Cluster 

3.0 software. Clustering was restricted to genes exhibiting an interaction z-score less than 0.  

 

4.4 Computing the correlation between interaction profiles to 
predict the targeted biological processes and the MOA of 
bioactive compounds  

Identifying which genetic interaction profiles bear similarity to the CG interaction profile 

produced by a compound of interest can be used to predict the biological processes targeted. 

Similarly, MOA insights can be gained by identifying compounds that yielded similar CG 

interaction profiles. To perform these comparisons, the similarity between different interaction 

profiles was determined by computing cosine similarity coefficients using the following 

equation:  

!"#"$%&"'(  !"#$$%!%#&' = !"# ! =   
! ∙ !
! !

=   
!!   !  !!!

!!!

   !! !!
!!!   !   !! !!

!!!
 

Where A is a data vector for one interaction profile and B is a data vector for the second 
interaction profile. 
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A similarity coefficient of 1 indicates the two interaction profiles compared are identical while a 

similarity coefficient of 0 indicates the compared interaction profiles exhibit no similarity.  This 

metric resembles the commonly used Pearson correlation coefficient; the magnitude of 

correlation coefficients calculated using cosine similarity and Pearson correlation are usually 

very similar for comparing interaction profiles. The main difference between these approaches is 

that Pearson correlations are calculated by first centering data around an experimental mean, 

which may change the sign (+/-) of the data analyzed if the experimental mean is not zero. 

Because the sign of an interaction score indicates whether the interaction is negative or positive, 

it was preferred to maintain the correct sign of all scores analyzed. In addition, not centering the 

data enables cosine similarity coefficients to be computed faster then Pearson correlation 

coefficients. This characteristic is ideal given that the ultimate goal of this project is to screen the 

entire NPDepo library, which will yield +40,000 CG interaction profiles to analyze.  

 

4.5 A high-throughput chemical-halo assay for drug-sensitivity 
testing 

The chemical sensitivity of various deletion mutants was assessed using a high-throughput 

chemical-halo assay. After growing yeast strains overnight to saturation, cultures were 

standardized to an OD600 = 4.0 and 2 mL was added to a 50 mL stock of 2% YEPD + 2% agar. 

Seeded plates were prepared by pouring 10 mL of seeded culture into NUNC square plates and 

drying for 10 minutes to facilitate compound absorption. Robotic pinning with the Biotec 

ADS384 was used to transfer 0.2µL of each natural product to the seeded plates at a density of 

96 compounds per plate; 440 natural products were evaluated in total. After incubating the plates 

for 18 – 24 hours at 30°C, plates were imaged and the widths of visible areas of growth 

inhibition were measured using JMicrovision software. A compound was deemed toxic if it 

generated an area of growth inhibition with a diameter greater than 1mm.  
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4.6 Staining and visualization of a yeast budding defect 

To visualize and compare the gross morphological appearance of the 9Δ mutant to that of the 

pdr1Δ pdr3Δ mutant, the pdr1Δ pdr3Δ snq2Δ mutant and a wild-type strain, cells were grown to 

saturation overnight and sub-cultured the following day to early log-phase (OD600 = 0.2 – 0.3). 

Cells were then fixed with formaldehyde and stained with 100µg/mL of a concanavalin A, Texas 

Red conjugate (Con A; Invitrogen) for 30 minutes at 30°C. Con A is a lectin that binds with 

strong affinity to α-linked mannose homopolymers that are found in the yeast cell wall and are 

concentrated in the bud scars of yeast cells following division (Tkacz et al., 1971). All cell 

images were captured at 63X magnification using a DMI 6000B fluorescence microscope (Leica 

Microsystems) equipped with a spinning-disk head, a 561nm laser (Cobalt AB) and an ImagEM 

charge-coupled device camera (Hamamatsu C9100-13, Hamamatsu Photonics). Images were 

processed using Volocity software (Improvision).  

 

4.7 Deleting multi-drug resistance genes via PCR mutagenesis 

A one-step PCR-directed mutagenesis strategy was used to create the pdr1Δ pdr3Δ double 

mutant, all 19 xxxΔ pdr1Δ pdr3Δ triple mutant strains, and the 5 single and double mutants with 

all possible combinations of pdr1Δ, pdr3Δ, snq2Δ deletions. PDR1 was deleted in the SGA 

query strain by replacement with the natMX antibiotic resistance marker, which provides 

resistance to the drug nourseothricin (NAT). To create the pdr1Δ pdr3Δ double mutant, PDR3 

was then deleted in the pdr1Δ mutant by replacement with the K.lactis URA3 autotrophic marker, 

which permits cells to grow on synthetic media lacking uracil. All 19 selected genes were deleted 

individually in the pdr1Δ pdr3Δ mutant by replacement with the K.lactis LEU2 autotrophic 

marker, which permits cells to grow on synthetic media lacking leucine. The pdr1Δ, pdr3Δ, and 

snq2Δ single or double mutants were created by replacement with the natMX, K.lactis URA3 or 

K.lactis LEU2 markers, respectively. The natMX, Kl.URA3 and Kl.LEU2 markers were amplified 

from plasmids using primers designed with 50 base pairs of sequence homologous to regions 

upstream and downstream of the deleted genes (Table 6). PCR amplicons were transformed into 

the appropriate strains using lithium acetate and polyethylene glycol-based transformations 

(Gietz & Schiestl, 2007). Deletion of the native gene and integration of the marker at the correct  
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Table 6. A summary of primers used to create drug-sensitive deletion strains.   

Targeted 
Gene 

Deletion  
Marker 

Primer Sequence  Plasmid  

PDR1 natMX Forward: CATCTCAGCCAAGAATATACAGA	  
AAAGAATCCAAGAAACTGGAAGACATGG	  
AGGCCCAGAATACCC	  

pAG25	  
(Goldstein & 

McCusker, 1999)	  Reverse: CATCTCAGCCAAGAATATACAGA	  
AAAGAATCCAAGAAACTGGAAGAGATCT	  
GTTTAGCTTGCCTTGTCC 	  

PDR3 KI.URA3 Forward: ACTGCATCAGCAGTTTTATTAAT	  
TTTTTCTTATTGCGTGACCGCACGGAGAC	  
AATCATATGGGAG	  

pUG72 
(Guldener et al., 

2002)	  
Reverse: CCATTTACTATGGTTATGCTCTGC	  
TTCCCTATTTCTTTTGCGTTTTCTGGAGGA	  
AGTTTGAGAGG	  

Each of the 
19 selected 

genes 

KI.LEU2 Forward: *50 bases US. - ATGTCTGCCC	  
CTAAGAAGAT	  

pUG73	  
(Guldener et al., 

2002)	  Reverse: *50 bases DS. - TTAAGCAAGG	  
ATTTTCTTAACTTCTTCGG	  

* 50 bases of sequence homologous to regions upstream (US) or downstream (DS) of the gene 
targeted for deletion.  
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loci was confirmed using a series of PCR confirmations. Confirmation primers were designed 

specific to regions both flanking the integration site and internal to the inserted marker to 

interrogate both the full length of the inserted marker and the 5’ and 3’ boundaries. 

 

4.8 Comparing chemical sensitivity with dose-response testing  

A dose-response assay was performed to compare the chemical sensitivity of the 19 triple mutant 

strains created. Each strain was grown in YEPD media overnight to saturation, diluted 1000 fold, 

and sub-cultured in fresh media at 30°C until an optical density of 0.0625 was reached. 100µL of 

each culture was then transferred to a 96-well round-bottom plate and wells were inoculated with 

one of eight compounds at the appropriate concentration. The eight compounds selected and the 

range of concentrations at which they were tested is listed in Table 7. Prepared plates were 

covered with an optically clear adhesive lid and the optical density was measured at 600 nm in a 

plate reader (BioHITS) for 24 hours. The final OD600 values for each strain were plotted against 

the log10 of the drug concentration tested and the data was fit with a four-parameter logistic 

regression model using SigmaPlotTM graphing software. This analysis was used to calculate the 

IC50 values for each drug, as the equation that defines the four-parameter logistic model 

estimates the value of the x-variable required to yield a 50% maximal response in the value of 

the y-variable:  

! ! =   
! − !

1 + !
!

!
+ ! 

where: A = the response measured at x = 0 or when [drug] = 0 
            B = the slope 

            C = the value of x where the response equals ½ max or the concentration of drug      
                   Inhibiting cell growth by 50% (IC50).  

 D = the response measured at x = ∞ or when [drug] = ∞ 
x = independent variable (drug concentration) 

 f(x) = dependent variable (Optical density) 
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Table 7. Drugs and drug-concentrations tested with a dose-response assay to evaluate the 
drug-sensitivity of 19 triple mutant strains. 
 

Drug (acronym) Concentrations tested (µg/mL) 

Amphotericin B (AMB) 0, 0.01, 0.02, 0.05, 0.1, 0.12, 0.2, 0.4, 0.8 
Anisomycin (ANIS) 0, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 4 

Cyclohexamide (CYX) 0, 0.00075, 0.0015, 0.0037, 0.0075, 0.0087, 0.01, 0.02, 0.04 
Daunorubicin (DAU) 0, 0.1, 0.2, 0.5, 1, 1.25, 1.5, 3, 6 
Ketoconazole (KETO) 0, 005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.4 
Micafungin (MICA) 0, 0.0025, 0.005, 0.0125, 0.025, 0.0275, 0.03, 0.06, 0.12 
Terbinafine (TERB) 0, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 4 

Nystatin (NYS) 0, 0.05, 0.1, 0.25, 0.5, 0.55, 0.6, 1.2, 2.4 
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A strain’s fold-change in sensitivity to each of the eight drugs relative to wild-type was 

calculated by dividing the IC50 value obtained for the BY4741 wild-type strain by the IC50 value 

obtained for the mutant. These fold-change values were compared among the 19 mutants to 

determine which strain(s) exhibited the greatest increase in sensitivity to the widest range of 

compounds.  This strategy was also used to compare the chemical hypersensitivity of the pdr1Δ 

pdr3Δ snq2Δ strain when culturing in YPD vs. YPGal media. The procedure used for this 

analysis is identical to described above, except cells were cultured in YP media supplemented 

with either 2% dextrose or 2% galactose as the carbon source. The concentrations of the six 

drugs tested are listed in Table 8. 

 

4.9 Tetrad analysis  

To evaluate whether the pdr1Δ pdr3Δ snq2Δ drug-hypersensitive mutant possessed the 

sporulation defect observed with the 9Δ strain, it was first crossed to the BY4741 MATa haploid 

strain to create a pdr1Δ/PDR1, pdr3Δ/PDR3, snq2Δ/SNQ2 homozygous diploid. After culturing 

in YEPD to an OD600 of 2.5-3.0, diploid cells were washed with sterile water and suspended in 

SPO media supplemented with 0.25X the standard quantity of histidine and methionine.  After 

incubating for 3-5 days at room temperature, cultures were inspected microscopically for the 

presence of asci. To ensure the deletion markers segregated 1:1 among the spores in each ascus, 

cells were washed with sterile water and suspended in 50µL of 0.5 mg/mL zymolyase (in 1M 

sorbitol) to digest the wall of the ascus. Individual spores were then separated using a Singer 

MMS micromanipulation system (Singer) on YEPD plates and were grown for 2 days at 30°C. 

Finally, spores were replica plated onto YEP+NAT, SD-URA and SD-LEU media to evaluate 

segregation of the pdr1Δ::NAT, pdr3Δ::KI.URA3 and snq2Δ::KI.LEU2 deletions.  
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Table 8. Drugs and drug-concentrations tested with a dose-response assay to evaluate drug-
sensitivity when culturing in YPD vs. YPGal media. 
 

Drug  Concentrations tested (µg/mL) 

Amphotericin B  10, 5, 1, 0.75, 0.5, 0.25, 0.1, 0.075 
Cyclohexamide  1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.0156, 0.0078 
Ketoconazole 2, 1, 0.5, 0.125, 0.0625, 0.03125, 0.0156 
Daunorubicin  50, 10, 7.5, 5, 2.5, 1.5, 1, 0.5 
Rapamycin 0.1, 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001, 0.0005 
Anisomycin 20, 10, 8, 6, 4, 2, 1  
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4.10 Synthetic genetic array strategy for transferring yeast 
deletion cassettes to the drug hypersensitive background  

The created pdr1Δ::natMX; pdr3Δ::KI.URA3; snq2Δ::KI.LEU2 MATα query strain carried the 

can1Δ::STEpr-SP_his5 and lypΔ SGA reporters. STEpr-SP_his5 is an auxotrophic marker that 

allows only MATa cells to grow in the absence of histidine, while the can1Δ and lypΔ deletions 

allow haploid cells to grow in the presence of the drugs canavanine and thialysine, respectively. 

The MATα query strain was crossed to an ordered array of the 491 MATa xxxΔ::KanMX deletion 

mutants and the resulting zygotes were selected for on synthetic media lacking uracil and leucine 

with NAT and geniticin (G418). The heterozygous diploids were transferred to media with 

reduced carbon and nitrogen to induce sporulation and the formation of haploid meiotic progeny. 

The resulting spores were transferred to synthetic media lacking histidine and containing 

canavanine and thialysine to select for the MATa meiotic progeny. Cells were then transferred to 

synthetic media lacking uracil and containing NAT to select for growth of cells carrying both the 

pdr3Δ::KI.URA3 and pdr1Δ::NAT deletions. Finally, these cells were transferred to synthetic 

media lacking uracil & leucine and containing G418 & NAT to select for the desired pdr1Δ, 

pdr3Δ, snq2Δ, xxxΔ triple mutants. Mating, diploid selection, sporulation and haploid selections 

steps were carried out in a 96-colony format using robotic replica pinning on a Virtek Colony 

Arrayer (Biorad Laboratories). This protocol was adapted from Tong et al. (2001).  

 

4.11 Quality control of SGA output strains 

Verifying strain ploidy using flow cytometry analysis.  

Flow cytometry was used to verify the integrity of the adapted SGA pipeline by confirming all 

491 SGA output strains were haploid.  After growing strains overnight to saturation in 96-deep-

well plates, cells were transferred to fresh YEPD media and subcultured at 30°C to mid-log 

phase. After fixing cells in 70% ethanol at 4°C overnight, cells were washed with 0.2 mg/mL 

RNase A (Qiagen) for 3 hours at 37°C, followed by 2 mg/mL Proteinase K (Roche Diagnostics) 

for 1 hour at 50°C. Cells were then stained with 4.5nM of the light sensitive Sybrgreen nucleic 

acid stain (Invitrogen), sonicated at low intensity for 1 – 2 seconds per well and covered in foil 

until analysis. After passing samples through the Guava Easycyte flow cytometer (Millipore) 
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using the Guava Express Plus program, results were analyzed with FlowJoTM software. Strains 

were classified as haploid if cells possessed 1n or 2n DNA peaks comparable those produced by 

the haploid control strain, and did not exhibit the 4n peak produced by the diploid control strain.  

Identifying the mating type of yeast strains using a standard pheromone halo test 

Mating type tests were performed on single colonies streaked from the SGA output array to 

verify integrity of the SGA pipeline. Five colonies were randomly selected for testing from each 

of the six array plates. Strains were streaked onto YEPD media, grown for two days at 30°C and 

then replica plated onto YEPD media overlaid with either MATa bar1Δ or MATα sst2Δ mutant 

strains. Replica plated strains were grown for 1 day at 30°C. Colonies were identified as MATa 

or MATα based on the presence or absence of a pheromone-induced halo of G1 arrested cells 

surrounding the replica-plated strains. The strains that induced the formation of a halo on sst2Δ 

lawns were classified as MATa, while the strains that induced the formation of a halo on bar1Δ 

lawns were classified as MATα.   

Testing for presence of four deletion markers 

Single colonies streaked from the SGA output array were evaluated for the presence of the 

natMX, KI.URA3, KI.LEU2 and kanMX deletion markers to further verify the integrity of the 

SGA pipeline. The same five randomly selected colonies used for the mating type test were 

evaluated. Strains were streaked onto YEPD media, grown for two days at 30°C and then replica 

plated onto the following selection media to interrogate for the presence of a deletion marker: 

YEPD + clonNAT to test for natMX, SD – URA to test for KI.URA3, SD – LEU to test for 

KI.LEU2 and YEPD + G418 to test for kanMX. Strains that were able to grow on selection media 

carried the appropriate deletion marker.  

 

4.12 Liquid growth curve analysis 

Liquid growth curve analysis was performed to compare the fitness of strains harboring RAD52 

and VPS8 deletions in the drug-hypersensitive background to strains harboring these deletions in 

a WT background. This analysis was also used to confirm the top benomyl and micafungin drug-
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sensitive strains. Yeast cultures were grown to saturation overnight in YEPD, diluted 1000-fold, 

and then grown at 30oC until an optical density of 0.06 was reached.  100 µl of each sample was 

then transferred to a round-bottomed 96-well plate and covered with an optically clear adhesive 

lid.  Optical density was measured at 600 nm in a TECANTM plate reader every 15 min for 24 h. 

 

4.13 Measuring the sensitivity of yeast strains with an adapted 
barcode sequencing approach 

A pool of the 491 drug-hypersensitive deletion mutants was constructed by first pinning frozen 

96-well glycerol stocks of each strain onto Nunc Omni Tray plates containing YEPD + G418 

solid media and incubating for 2 days at 30°C. Each plate was then flooded with 10mL of YEPD 

liquid media and a cell spreader was used to re-suspend grown colonies. The resulting cell 

suspensions were then transferred to a 50mL conical tube where glycerol was added to a 15% 

final concentration. Finally, the pool was adjusted to a final concentration of 50 OD600/mL by 

dilution or centrifugation and stored at -80°C until required.  

To assay the mutant pool for drug-hypersensitivity, cells were thawed and diluted to an OD600 of 

0.0625 in YEP + 2% galactose in a 96-well round-bottom plate. Cultures were then spiked with 

the desired concentration of drug or with a 2% DMSO control. After growing for 5 generations at 

30°C, cells from each well were harvested by centrifugation. Genomic DNA was purified from 

the harvested cells by re-suspending in 125 µL of zymolyase buffer (1 mg/mL) and using the 

QIAextractor (Qiagen) as per manufacturers instructions, with a 100 µL elution volume. 

Individual barcodes were then PCR amplified using the following PCR mix and protocol: 

PCR Mix with a 50 µL final volume: 

• 44 µL of Platinum PCR supermix (Invitrogen) 
• 2 µL of extracted genomic DNA 
• 2 µL U1 primer, 5µM (see Table 9) 
• 2 µL U2 primer, 5µM (see Table 9) 
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PCR cycle: 

• 1 cycle      – 4 minutes at 95°C  
• 30 cycles  – 30 seconds at 95°C 

                    30 seconds at 55°C 
                    30 seconds at 72°C 

• 1 cycle      – 7 minutes at 72°C 
        

The resulting 150 bp amplicons from each well in a 96-well plate were then pooled and run on a 

12% acrylamide gel to purify the PCR products. The appropriate band was excised and DNA 

was extracted using the crush and soak method (Sambrook & Russell, 2001). Sequencing was 

then performed on the Genome Analyzer IIx (Illumina) as described previously (Smith et al., 

2011), except using 21 cycles to capture the barcode and 8 cycles to capture the indexing tag. 

After computing the log2 of the absolute barcode count for each strain, lowess normalization was 

performed to average counts with respect to the DMSO control. The DMSO control used was an 

average of 16 total DMSO experiments, as 4 DMSO control wells were present in each of the 

four 96-well plates screened. An interaction z-score was then calculated for all strains tested in 

each experiment to identify the significance of barcode-count deviation from the control using 

the following formula: 

! − !"#$% =
!"#$%&'  !"#$% − !"#$!%#  !"#$%"&  !"#$%

!"#$%#&%  !"#$%&$'(
 

where the standard deviation used in the calculation accounted for the maximal variation 

introduced by both the DMSO control and the drug screened. Z-scores calculated for each strain 

were then compiled to create CG interaction profiles for the five compounds described.   
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Table 9. Primers used for barcode amplification 

The sequence of primers used to amplify barcodes for 96-plex next generation sequencing were 
obtained from Smith et al. (2011).  
 

Primer 
Name 

Primer Sequence (5’ – 3’) 

U1 
(forward) 

CAAGCAGAAGACGGCATACGAGCTCTTCCGATCTGATGTCCACGAGGTCTCT 

U2  
(reverse) 

AATGATACGGCGACCACCGACACTCTTTCCCTACACGACGCTCTTCCGATCTXXXXXXXX 
GTCGACCTGCAGCGTACG	  

Italic – Illumina sequence required for cluster formation on flow cell 
Underlined – one of 96 8-mer multiplex tags 
Bold – common priming site sequence 
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 Appendices 6.0
 

Appendix A. Diagnostic subset of 491 yeast deletion strains 
selected 

 
 

ORF 
 

Common Name 
 

Manually Selected 
 

Computationally Selected 
YKL101W HSL1 √	    
YHR200W RPN10 √	    
YDR150W NUM1 √	    
YDR318W MCM21 √	    
YJL030W MAD2 √	    
YML124C TUB3 √	    
YMR307W GAS1 √	    
YHR142W CHS7 √	   √	  
YLR319C BUD6 √	   √	  
YLR342W FKS1 √	    
YPL047W SGF11 √	    
YER155C BEM2 √	    
YHR030C SLT2 √	    
YIL034C CAP2 √	    
YOL067C RTG1 √	    
YML121W GTR1 √	    
YPR060C ARO7 √	    
YDR158W HOM2 √	    
YFL031W HAC1 √	    
YMR238W DFG5 √	    
YJR075W HOC1 √	    
YGL227W VID30 √	    
YDL065C PEX19 √	    
YLR038C COX12 √	    
YDR181C SAS4 √	    
YKR084C HBS1 √	    
YNL001W DOM34 √	   √	  
YNL041C COG6 √	    
YOR070C GYP1 √	    
YFL013C IES1 √	    
YAL002W VPS8 √	    
YPL120W VPS30 √	    
YOR196C LIP5 √	    
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YGL174W BUD13 √	   √	  
YGR129W SYF2 √	    
YHR034C PIH1 √	    
YGR157W CHO2 √	    
YGL077C HNM1 √	   √	  
YNR020C ATP23 √	   √	  
YKR082W NUP133 √	   √	  
YCR077C PAT1 √	    
YDR378C LSM6 √	    
YAL011W SWC3 √	    
YPL055C LGE1 √	   √	  
YOL004W SIN3 √	    
YOR038C HIR2 √	    
YNR010W CSE2 √	    
YOR123C LEO1 √	    
YML102W CAC2 √	   √	  
YMR078C CTF18 √	    
YCL061C MRC1 √	    
YOR368W RAD17 √	   √	  
YLR154C RNH203 √	    
YGL163C RAD54 √	    
YLR320W MMS22 √	    
YHR206W SKN7 √	    

YDR363W-A SEM1 √	    
YGR135W PRE9 √	    
YPR119W CLB2 √	    
YDR260C SWM1 √	   √	  
YBR082C UBC4       √	    
YBR057C MUM2 √	    
YMR067C UBX4 √	   √	  
YHR129C ARP1 √	    
YJR135C MCM22 √	    
YPL018W CTF19 √	    
YJL013C MAD3 √	    
YPL269W KAR9 √	    
YOR349W CIN1 √	    
YOR265W RBL2 √	    
YBR229C ROT2 √	    
YML019W OST6 √	    
YBL061C SKT5 √	    
YDR310C SUM1 √	    
YMR100W MUB1 √	    
YCR088W ABP1 √	   √	  
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YMR109W MYO5 √	   √	  
YDL106C PHO2 √	   √	  
YBL103C RTG3 √	    
YKL176C LST4 √	   √	  
YLR436C ECM30 √	   √	  
YOR002W ALG6 √	    
YMR214W SCJ1 √	    
YLR292C SEC72 √	    
YOR216C RUD3 √	    
YMR135C GID8 √	    
YLR191W PEX13 √	    
YBR164C ARL1 √	    
YLR039C RIC1 √	    
YDL002C NHP10 √	    
YPR179C HDA3 √	    
YHR012W VPS29 √	    
YGL212W VAM7 √	    
YOR106W VAM3 √	    
YBR221C PDB1 √	    
YHR067W HTD2 √	   √	  
YKL074C MUD2 √	    
YPL178W CBC2 √	    
YJR050W ISY1 √	   √	  
YHR066W SSF1 √	    
YOL041C NOP12 √	    
YDR123C INO2 √	    
YJR073C OPI3 √	    
YLR133W CKI1 √	    
YLR393W ATP10 √	    

YML081C-A ATP18 √	    
YGR081C SLX9 √	   √ 
YLR018C POM34 √	    
YNL147W LSM7 √	    
YML041C VPS71 √	    
YMR075W RCO1 √	    
YBR175W SWD3 √	    
YGL244W RTF1 √	    
YMR263W SAP30 √	    
YGL043W DST1 √	    
YCR033W SNT1 √	    
YKR029C SET3 √	    
YBR195C MSI1 √	    
YCL016C DCC1 √	    
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YPR135W CTF4 √	   √	  
YOR144C ELG1 √	   √	  
YPL194W DDC1 √	    
YDR386W MUS81 √	    
YBR228W SLX1 √	    
YML032C RAD52 √	    
YMR224C MRE11 √	    
YLL002W RTT109 √	    
YJL047C RTT101 √	    

YML007W YAP1 √	    
YIR037W HYR1 √	    
YLR021W IRC25 √	    
YPL144W POC4 √	    
YLR199C PBA1 √	    
YLR102C APC9 √	   √	  
YHR152W SPO12 √	    
YOR195W SLK19 √	   √	  
YOR014W RTS1 √	   √	  
YFR010W UBP6 √	    
YKL213C DOA1 √	    
YDL020C RPN4 √	   √	  
YLL049W LDB18 √	    
YKR054C DYN1 √	    
YDR488C PAC11                 √ 	   √	  
YMR294W JNM1 √	    
YMR299C DYN3 √	    
YDR254W CHL4 √	    
YBR107C IML3 √	    
YLR381W CTF3 √	    
YPR046W MCM16 √	    
YPL017C IRC15 √	    
YGL086W MAD1 √	    
YPL253C VIK1 √	   √	  
YOR026W BUB3 √	    
YCR065W HCM1 √	    
YGL216W KIP3 √	   √	  
YLR210W CLB4 √	   √	  
YMR138W CIN4 √	    
YPL241C CIN2 √	    
YLR200W YKE2 √	    
YNL153C GIM3 √	   √	  
YCR082W AHC2 √	    
YOR023C AHC1 √	    



94 

 

YGL094C PAN2 √	    
YKL025C PAN3 √	    
YOR264W DSE3 √	    
YAL058W CNE1 √	   √	  
YJL139C YUR1 √	    
YGL027C CWH41 √  
YCR017C CWH43 √	    
YDR525W API2 √	    
YJL062W LAS21 √	    
YPR095C SYT1 √	    
YLR371W ROM2 √	    
YDR351W SBE2 √	    
YOR188W MSB1 √	    
YKL164C PIR1 √	    
YER149C PEA2 √	    
YKL127W PGM1 √	    
YOL003C PFA4 √	    
YOL070C NBA1 √	    
YML117W NAB6 √	    
YLR443W ECM7 √	    
YBR023C CHS3 √	   √ 
YJL099W CHS6 √	   √	  
YLR330W CHS5 √	    
YKL079W SMY1 √	   √	  
YLL021W SPA2 √	    
YNL079C TPM1 √	    
YGR229C SMI1 √	    
YDR146C SWI5 √	    
YPL158C AIM44 √	    
YGL066W SGF73 √	    
YER164W CHD1 √	    
YMR223W UBP8 √	    
YOL068C HST1 √	    
YOR279C RFM1 √	    
YLR024C UBR2 √	    
YJL095W BCK1 √	    
YPL089C RLM1 √	    
YGR080W TWF1 √	    
YIR003W AIM21 √	    
YJL020C BBC1 √	   √	  

YBR108W AIM3 √	    
YKL007W CAP1  √	    
YHR114W BZZ1 √	    
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YMR092C AIP1 √	    
YDL006W PTC1 √	    
YDR162C NBP2 √	    
YDL106C BAS2 √	    
YBR291C CTP1 √	    
YMR241W YHM2 √	    
YGL252C RTG2 √	    
YNL076W MKS1 √	    
YLR089C ALT1 √	    
YDR128W MTC5 √	    
YBR076W ECM8 √	    
YKR007W MEH1 √	    
YJL036W SNX4 √	    
YDL173W PAR32 √	    
YDR508C GNP1 √	   √	  
YMR304W UBP15 √	   √	  
YDR127W ARO1 √	    
YGL148W ARO2 √	    
YBR068C BAP2 √	   √	  
YER052C HOM3 √	    
YGR208W SER2 √	    
YOR184W SER1 √	    
YJR139C HOM6 √	    

YGL226C-A OST5 √	   √	  
YHR079C IRE1 √	    
YBL082C ALG3 √	    
YGR227W DIE2 √	   √	  
YOR067C ALG8 √	    
YPL227C ALG5 √	    
YNR030W ALG12 √	    
YOR085W OST3 √	    
YDR349C YPS7 √	    
YGL203C KEX1 √	    
YDR389W SAC7 √	    
YAL053W FLC2 √	    
YFL025C BST1 √	    
YGL084C GUP1 √	    
YLR087C CSF1 √	    
YAL023C PMT2 √	    
YDL095W PMT1 √	    
YBR171W SEC66 √	    
YBR162C TOS1 √	    
YDL240W LRG1 √	    
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YKR042W UTH1 √	    
YGL228W SHE10 √	    
YDR372C VPS74 √	    
YDR414C ERD1 √	    
YBR015C MNN2 √	    
YLR110C CCW12 √	   √	  
YER118C SHO1 √	    
YGR014W MSB2 √	    
YPR075C OPY2 √	    
YNL044W YIP3 √	    
YBR105C VID24 √	    
YDR255C RMD5 √	    
YIL017C VID28 √	    

YGL153W PEX14 √	    
YGR077C PEX8 √	    
YGR133W PEX4 √	    
YDR244W PEX5 √	    
YDR329C PEX3 √	    
YAL055W PEX22 √	    
YDR265W PEX10 √	    
YJL210W PEX2 √	    
YKL197C PEX1 √	    
YMR026C PEX12 √	    
YMR035W IMP2 √	    
YOL044W PEX15 √	    
YBR255W MTC4 √	    
YHR151C MTC6 √	    
YKL098W MTC2 √	    
YMR126C DLT1 √	    
YER153C PET122 √	    
YOR065W CYT1 √	    
YPR191W QCR2 √	    
YHR116W COX23 √	    
YMR256C COX7 √	    
YPL172C COX10 √	    
YOR350C MNE1 √	    
YPR134W MSS18 √	    
YOR213C SAS5 √	    
YMR127C SAS2 √	    
YOR109W INP53 √	   √	  
YPL259C APM1 √	    
YDL226C GCS1 √	    
YJR033C RAV1 √	    
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YDR202C RAV2 √	    
YBR288C APM3 √	    
YGR261C APL6 √	    
YPL195W APL5 √	    
YJL024C APS3 √	    
YGL020C GET1 √	    
YDL100C GET3 √	    
YOR164C GET4 √	    
YOL111C GET5 √	    
YOR007C SGT2 √	    
YJL004C SYS1 √	    
YPL051W ARL3 √	    
YGL054C ERV14 √	    
YDR108W GSG1 √	    
YOL018C TLG2 √	    
YNL051W COG5 √	    
YGL005C COG7 √	    
YML071C COG8 √	    
YLR261C VPS63 √	    
YLR262C YPT6 √	    
YER092W IES5 √	   √	  
YNL021W HDA1  √	    
YBR126C TPS1 √	    
YGL253W HXK2 √	    
YDR345C HXT3 √	    
YML048W GSF2 √	    
YKL032C IXR1 √	    
YML128C MSC1 √	    
YLL029W FRA1 √	    
YJL101C GSH1 √	    

YOL049W GSH2 √	    
YKL041W VPS24 √	    

YKR035W-A DID2 √	    
YML097C VPS9 √	    
YOR089C VPS21 √	    
YJL154C VPS35 √	    
YJL053W PEP8 √	    
YOR069W VPS5 √	    
YOR068C VAM10 √	    
YOR132W VPS17 √	    
YLL040C VPS13 √	    
YLR360W VPS38 √	    
YGR193C PDX1 √	    
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YER178W PDA1 √	    
YNL071W LAT1 √	   √	  
YER061C CEM1      √ 	    
YKL055C OAR1 √	    
YJL046W AIM22 √	    
YOR196C LIP5 √	    
YBR119W MUD1 √	    
YHR086W NAM8 √	    
YIR005W IST3 √	    
YOR308C SNU66 √	   √	  
YPR057W BRR1 √	    
YPL157W TGS1 √	    
YDR163W CWC15 √	    
YBR188C NTC20 √	    
YDR482C CWC21 √	   √	  

YNR032C-A HUB1 √	    
YPR152C URN1 √	    
YDL051W LHP1 √	    
YGR276C RNH70 √	    
YHR156C LIN1 √	   √	  
YHR157W REC104 √	    
YBR278W DPB3 √	    
YOL080C REX4 √	   √	  
YKR092C SRP40 √	   √	  
YLR221C RSA3 √	    
YGL231C EMC4 √	    
YCL045C EMC1 √	    
YKL207W LRC3 √	    
YLL014W EMC6 √	    
YJR088C EMC2 √	    
YIL090W ICE2 √	    
YBR283C SSH1 √	    
YOR311C DGK1 √	    
YGR202C PCT1 √	    
YKL020C SPT23 √	   √	  
YDR512C EMI1 √	    
YMR282C AEP2 √	    
YDR192C NUP42 √	    
YKL068W NUP100 √	    
YDR101C ARX1 √	    
YAL059W ECM1 √	    
YAR002W NUP60 √	    
YDL088C ASM4 √	   √	  
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YML103C NUP188 √	   √ 
YJR074W MOG1 √	    
YLR335W NUP2 √	    
YMR129W POM152 √	    
YMR153W NUP53 √	    
YCR079W PTC6 √	    
YJL124C LSM1 √	    

YGL014W PUF4 √	   √	  
YHR167W THP2 √	   √ 
YBR231C SWC5 √	    
YDR334W SWR1 √	    
YDR485C VPS72 √	    
YLR085C ARP6 √	    
YJL168C SET2 √	   √	  
YPR023C EAF3 √	   √	  
YAR003W SWD1 √	    
YDR469W SDC1 √	    
YLR015W BRE2 √	    
YDL074C BRE1 √	    
YAL013W DEP1 √	    
YIL084C SDS3 √	    
YBR095C RXT2 √	   √	  
YNL097C PHO23 √	    
YPL181W CTI6 √	    
YPL139C UME1 √	    
YBL008W HIR1 √	   √	  
YJR140C HIR3 √	    

YGL151W NUT1 √	    
YPR070W MED1 √	    
YBR103W SIF2 √	    
YGL194C HOS2 √	    
YKR028W SAP190 √	    
YLR418C CDC73 √	    
YER161C SPT2 √  
YKL160W ELF1 √	    
YDR225W HTA1 √	    
YBR010W HHT1 √	    
YPR018W RLF2 √	    
YHR191C CTF8 √	   √	  
YPL008W CHL1 √	    
YMR048W CSM3 √	    
YJR043C POL32 √	   √	  
YDR217C RAD9 √	    



100 

 

YER173W RAD24 √	    
YOR025W HST3 √	    
YGL175C SAE2 √	    
YBR098W MMS4 √	    
YLR135W SLX4 √	    
YJL092W SRS2 √	    
YDR363W ESC2 √	    
YMR190C SGS1 √	   √	  
YHR031C RRM3 √	    
YHR154W RTT107 √	    
YDR279W RNH202 √	    
YNL072W RNH201 √	    
YKL113C RAD27 √	    
YML028W TSA1 √	    
YLR032W RAD5 √	   √	  
YDR004W RAD57 √	    
YDR076W RAD55 √	    
YER095W RAD51 √	    
YDR369C XRS2 √	    
YJL115W ASF1 √	    
YPR164W MMS1 √	    
YBR216C YBP1 √	    
YOR208W PTP2 √	   √ 
YNL053W MSG5  √	  
YOR127W RGA1  √	  
YBR118W TEF2  √	  
YGR034W RPL26B  √	  
YFL001W DEG1  √	  
YGL078C DBP3  √	  
YDR083W RRP8  √	  
YPL003W ULA1  √	  
YDR139C RUB1  √	  
YLL046C RNP1  √	  

YMR276W DSK2  √	  
YIL140W AXL2  √	  
YBR260C RGD1  √	  
YMR036C MIH1  √	  
YMR273C ZDS1  √	  
YIL095W PRK1  √	  
YJR066W TOR1  √	  
YDR159W SAC3  √	  
YIL040W APQ12  √	  
YNL141W AAH1  √	  
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YPL180W TCO89  √	  
YDR253C MET32  √	  
YDL066W IDP1  √	  
YML038C YMD8  √	  
YJL134W LCB3  √	  
YPR079W MRL1  √	  
YJR060W CBF1  √	  
YJR125C ENT3  √	  
YOR327C SNC2  √	  
YMR123W PKR1  √	  
YDL056W MBP1  √	  
YGR092W DBF2  √	  
YPR141C KAR3  √	  

YMR292W GOT1  √	  
YDR517W GRH1  √	  
YGR089W NNF2  √	  
YML012W ERV25  √	  
YNR051C BRE5  √	  
YOR115C TRS33  √	  
YMR274C RCE1  √	  
YJL092W SRS2  √	  
YMR055C BUB2  √	  
YLR254C NDL1  √	  
YIR025W MND2  √	  
YDL070W BDF2  √	  
YHR006W STP2  √	  
YOL020W TAT2   √	  
YKR099W BAS1  √	  
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Appendix B. Biological function of compounds listed in Table 4.  

 
Compound Function 

 Benomyl Microtubule -depolymerizing agent 
Camptothecin DNA damaging agent: inhibits DNA enzyme topoisomerase I 

Tamoxifen Estrogen receptor antagonist  
Micafungin Inhibits β-1,3-glucan synthesis – an essential component of fungal cell 

walls 
Mitomycin C DNA damaging agent: crosslinks DNA 
Nocodazole Prevents microtubule polymerization  

Hydroxyurea DNA damaging agent; inhibits ribonuclease reductase 
Desipramine Inhibits synaptic reuptake of norepinephrine and serotonin  
Caspofungin Inhibits β-1,3-glucan synthesis – an essential component of fungal cell 

walls 
Extract 95-97 NP: unknown MOA 
Oligomycin Inhibits ATP synthase by blocking its proton channel  

Menthol Terpene alcohol used as a flavorant  
Mebendazole Antiparasitic drug: Thought to inhibit microtubule synthesis  

MMS DNA damaging agent: methylates DNA  
Wikostatin N-WASP inhibitor  
Alverine 

citrate 
Smooth muscle relaxant  

Nystatin Binds ergosterol (a major component of the cell membrane) to cause toxic 
pores  

Cantharidin Induces cell cycle arrest in G2/M phase, apoptosis, and DNA damage 
Methotrexate DNA damaging agent: inhibits dihydrofolate reductase  
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Appendix C. Top 50 interacting genes interacting with benomyl or 
micafungin  

Top 50 genes found to interact with benomyl 

Gene z-score 
CIN1 -7.89909 
TUB3 -5.38247 
CIN4 -3.26071 

HCM1 -1.85338 
RBL2 -1.45043 
SWR1 -1.25259 
VPS72 -1.23563 
BEM2 -1.235 
ALG6 -1.16714 
RIC1 -1.07483 

ROM2 -1.07129 
SET2 -0.991224 
POC4 -0.962186 
RAD54 -0.877599 
MUD1 -0.853493 
ARP1 -0.83057 
SYS1 -0.830161 
PAN2 -0.817209 
ISY1 -0.802578 
PAT1 -0.77695 
DEP1 -0.77616 
IDP1 -0.768966 
RLM1 -0.758507 
ARP6 -0.733688 
HHT1 -0.711021 
GNP1 -0.708673 
SAC3 -0.69212 
INO2 -0.679163 

VAM10 -0.658327 
RGD1 -0.64897 
BRE2 -0.641851 
SEC66 -0.630684 
RTG1 -0.609855 

RNH201 -0.598024 
SWC5 -0.577148 
YAP1 -0.563866 
MAD2 -0.560774 
IXR1 -0.560239 
SNT1 -0.560132 

NUP100 -0.556307 
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POM152 -0.551477 
IES5 -0.533916 
UBP8 -0.533267 
CAC2 -0.523036 
UBX4 -0.520465 

NUP42 -0.517691 
MKS1 -0.513716 
CTI6 -0.512293 

MMS4 -0.510808 
CTF19 -0.496272 

Top 50 genes found to interact with micafungin 

Gene z-score 
BCK1 -5.3555375 
ROM2 -3.45649 
SMI1 -2.747405 
ALG8 -2.57822 
SKT5 -1.5669275 
BEM2 -1.8994925 
ROT2 -1.04351625 
AIM44 -1.415302 
INO2 -1.30704375 
PAT1 -0.75070875 
PFA4 -1.7681225 
VPS21 -0.57113675 
VPS72 -0.734783075 
RLM1 -1.125246 
COG7 -0.5599325 
ECM1 -0.8371625 
SWD3 -1.2520075 
ASF1 -0.22414325 
SER2 -0.36915 

RNH203 -0.41623915 
LGE1 -1.4834425 
MRL1 -0.96613625 
TOR1 -0.39588075 
PEX2 -0.80091375 
YHM2 -0.318591725 
PIR1 -0.5751209 
SYS1 -0.1012485 
IXR1 -0.66089075 
LSM1 -0.3488 
YPS7 -1.2184555 

RAD17 -0.098794 
TRS33 -0.81937 
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NUP100 0.214489 
SWC5 -0.51063125 
RAD5 -0.5248175 

NUP188 -0.547783075 
VPS35 -1.08139825 
MAD1 -0.5250505 
RRP8 -0.38280525 

RAD52 -0.801045 
PEA2 -0.4026155 
CTF8 -0.51788625 
RMD5 -0.54324825 
SWI5 -0.609976675 
GNP1 0.45403875 
STP2 -0.848168 
CKI1 0.5860785 

RAD27 -0.702155518 
VPS17 0.11202125 
CIN4 -0.315549608 

 

 

 


