
BAYESIAN NETWORKS FOR PATTERN CLASSIFICATION,

DATA COMPRESSION, AND CHANNEL CODING

Brendan J. Frey

A thesis su bmitted in conformity with the requirements

for the degree of Doctor of Philosoph.

Graduate Department of Electrical and Computer Engineering:

University of Toronto

@ Copyright 1997 by Brendan .I. Frey

National Library Bibliothéque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. rue Wellington
Onauva ON K1A ON4 OttawaON K1AON4
Canada Canada

The author has granted a non- L'auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or seil reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la fome de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation .

Bayesian Networks for Pattern Classification,

Data Compression, and Channel Coding

Brendan J. Frey

A t hesis submit t ed in conformity wit h the requirements

for the degree of Doctor of Philosophy,

Graduate Department of Electrical and Computer Engineering,

University of Toronto,

Convocation in 1997

Abstract

Pattern classification- data compression, and channel coding are tasks that usually m u t

deal with complex but structured natural or artscia1 systems. Patterns that we wish ta

classify are a consequence of a causal physical process. Images that we wish to cornpress

are aiso a consequence of a causal physical process. Noisy outputs from a telephone line

are corrupted versions of a signal produced by a structured man-made telephone modem.

Not only are these tasks characterized by complex structure. but they also contain ran-

dom elements. Graphical modek such as Bayesian networks provide a way to describe the

relationships between random variables in a stochastic system.

In this t hesis, 1 use Bayesian networks as an overarching framework to describe and

solve problems in the areas of pattern classification, data compression. and channel coding.

Results on the classification of handwitten digits show t hat Bayesian network pattern

classifiers outperform ot her standard met hods, such as the k-nearest neighbor met hod.

When Bayesian networks are used as source models for data compression, an exponentially

large number of codewords are associated with each input pattern. It tunis out that the

code can still be iised efficiently, if a new technique called *'bits-badc coding" is used.

Several new error-correcting decoding algorithms are instances of "probability propagation"

in various Bayesian networks. These new schernes are rapidly closing the gap between

the performances of practicd channei coding systems and Shannou's 50-year-old channei

coding limit . The Bayesian network framework exposes the similarit ies between t hese codes

and leads the way to a new class of "trellis-constraint codes" which also operate close to

Shannon's iimit.

iii

Nomenclature
Vectors, matrices, high-dimensional matrices and sets of variables are writ ten in boidface

Roman ty-pe. (téctors are iisually written in lower-case type.) Sets are quite different from

vectors. but this abuse of notation permits set operations (e-g.. "s". "\") whle at the same

time permitting cardinal access to the set members (e-g. , weighted s u m of the elements via

indexing) . 1 use cudy braces { . . .) to write the elements in a set or vector of variables.

{Y} is the set containing a singleton variable y, whereas (Z~)F=~ = {q: . - . . z ~ } . Extra

labels on variables usually appear as upper-case Roman in superscripts (e-g. . eV). whereas

vector. matrix, a d high-dimensional rnatrix indices usually appear as subscripts (e . g . .

6:). For example. we can write the following with respect to the set of parameters O:
{9g}f=, = 0: c ûv 2 6. and C j ~ s h j . Some types of index (notably training case indices)

appear as superscripts in braces (cg.. d t)) .

Probability mass functions are usually written in upper-case Roman italics type (e-g.

P(-) . Q (-)) whereas probability density functions are usually writ ten in Iower-case Roman

italics type (e -g . p (-) . q (-)) . The distribution is identified by the random variable. so the

distribution P(v) is different kom P (x) . Also. to keep the formulas short. the symbols

for a randorn variable and its value are usunUy the same. So. P(ukly) sometimes refers

to the probability that the random variable Lik takes on the value uk. and at other times

refers to the set of probabilities corresponding to the values that Uk cnn take on. In cases

where a random variable and its value must be distinguishable. I m i t e an assignment.

SO. P(uk = u;Iy) means PukIY(u;Iy). A distribution subscripted with Y' refers to the

correct. or "real" distribution. For example. if P (v) is a mode1 distribution. we hope that

P { v , Y Pr@).

Here is a Est of symbols:

represents the binary "ala.rm" variable in the burglar alarm problem: or

represents an entire signalling waveform defined on O 5 t 5 T
signalhg (channel input) waveform for channel coding

set of variables containing the parents of zk

represents the binary "burglar" miable in the burglar alarm problem

bit error rate

lower bound on log P(Vl9), BpllP = -FqllP = log P(v) - DQllP
communication capacity of a channel in bits/second or bits/usage

set of variables containing the children of z k

delay buffer in an LFSR: or mathematical delay operator

collection of data

Kullback-Leibler divergence (relative entropy) between Q(-) and P(.)

set of variables containing the descendents of zk

Hamming distance between the closest two codewords in a channel code

expectation with respect to the stated distribution

E(v) is the expected length of the codeword for v. in a multi-vaIued source

code

the energJr transmitted per information bit in channel coding

represents the binary "earthquake" variable in the burglar alarm problem

3(v) is the theoreticai b i t s - b d codeword length for input pattern v

free energy between Q(-) and P(-). FqllP = DQ!lP - log P (v)
G (D) is the generator polynomial in the delay operator D. For a convolutional

code

logistic hction: g(z) = I / (l + exp[-21): or output bit generating function for

an LFSR
entropy measured in bits

binary entropy function. H @) = - p log p - (1 - p) log(1 - p)

set of hidden (unobserved) variables: or codeword index in a multi-valued

source code

vector of hidden variables for trainirig case t

number of hidden variables: or number of information variables

log-likelihood ratio for a random variable given some observations

- e..q.. L (L = 2) = log[P(z = z l l y) /P (r # z'ly)]

approximation to L(.) produced at iteration i of iterative decoding

[(v) is the length of the source codeword for v

{(v. h) is the length of the hth codeword for v. in a multi-valued source code

natural logarithm

logarithm to the base L

number of variables in a network: or number of visible variables: or number of

codeword variables

number of constituent trellises in an interleaved trellis-constraint code

single-sided spectral density for a white Gaussian process

set of variables coataining the nondescendents of z k (excluding z k)

transmit ter power for channei coding

set of all distributions that c m be represented by a Bayesian network

probability mass function for a Bayesian network; or the probability

function for a mixed (discrete and continuous) set of variables

estimate of P(.)
conditional probability matrix for variable z,, P:;: = P(z , l*)

probability density funct ion for a Bayesian network

general variational distribution: or geaeral recognition network distribution

vector of parity-check variables

variationai probability density: or recognition network probability density

rate of a binaxy chamel code in information bits / codeword bits

state transition function for a LFSR: s k = S (S ~ - ~ . uk)

set of discrete LFSR state variabIes, where si is the state at time i

training case index. I 5 t < T

vector of binary information variables

an estimate of the true information vector u

vector of visible (O bserved) variables

vector of visible (observed) variables for training case t

vector of binary codeword variables: or dummy vector mriable

the j th branch variable that participates in constraint i of an interleaved

trellis-cons traint code

vector of reai channel output variables: or dllmmy vector variable

channel output waveform for rhannel coding

observed value of a variable y f v in a Bayesian network

set of variables iised to discuss properties of Bayesian networks in generd

norrnakation constant

delta function: 6(2. y) = 1 if z = C/ and O otherwise

iearning rate for steepest descent parameter estimation

set of all parameters for a parameterized Bayesian network

set of parameters associated with variable i

parameter associated with the connection fiom variable j to variable i

constant (bias) parameter associated wit h *miable i

set of parameters associated with the set of hidden variables h

set of parameters associated with the set of visible variables v

child-parent message sent from zi to - - has 1z2 1 elements

variational paramet ers

permutation function that maps integers in il, N] to [l, NI, for some integer N
parent-child message sent from 11 to i - has lzi(elements

time in a Markov chain Monte Carlo simulation

cumulative distribution for a standard normal p.d. f.

recognition network parameters (see Bi and Bij for refined details)

1 . 1 lzl = nurnber of -ariables in z; or !q[= number of values rk can take on

EX summation over al1 possible contigurations of x

, summation over the configurations of x' for which element xi = x,

{ . . . } set or vector of variables. { zk) means the set containing y alone
- -
d addition modulo 2

vii

Acknowledgements

During m y Ph.D. program here at the University of Toronto. 1 have been fortunate

to benefit from interactions with several excellent researchers. I thank my thesis advisor

Geoffrey Hinton for h i . ,guidance. I greatly value his open-mindedness. his inspirational

discussions. and his honest criticisms. 1 aiso thank Radford Neal. whose creativity and

persistent pursuit of precision has certainly enhanced my research and this dissertation. I

am grateful to Frank Kschischang for mluable discussions on error-correcting coding and for

introducing me to some of the premier communications researchers. Glenn Gulak was very

helpful in pointing out c o ~ e c t i o n s between my work and ot her areas. especially between my

early research on machine learning and the turbo-decoding aigorithm for error-correcting

codes. 1 also greatly appreciate recent energetic collaborations with David MacKay. who

I find is lots of fun to work witb. In addition. 1 thank the other members of my thesis

cornmittee: LMichael Jordan. Subbarayan Pasupathy. (and Tas Venetsanopoulos.

T h d s dso go to the following former and present members of the Neural Networks

Research Group for mluabie conversations: Peter Dayan. Zoubin Ghahramani, Car1 Ras-

mussen. Virginia de Sa. Brian Sallans. and C h i s Williams.

My love goes to my wife Utpala Purohit-Fkey and my son Shardul Frey. for being s u p

portive of my interest in research and indeed for motivating me to get some work done!

I was Gnancially supported by a Naturd Sciences and Engineering Research Council

1967 Science and Engineering Scholarship. a Walter C. Sumner ;Mernorial Fellowship. and a

University of Toronto Open FeUowship. My work was tinimcially supported by grants Erom

the Natiual Sciences and Engineering Research Council and the Institute for Robotics and

Intelligent S ystems.

Contents

1 Introduction

. 1.1 A probabilistic perspective

. 1.1. I Pattern classification

. 1.1.2 Data compression

. 1.1.3 Channel coding

1 1.4 Probabilist ic inference .

. 1.2 Bayesian networks

. 1.2.1 Probabilistic structure

. 1.2.2 Definition of a Bayesian network

. L.2.3 Ancestral simulation

. 1.24 Dependency separation

1.2.5 Example 1: Reciirsive convolirtional codes and turbo-codes

. 1.2.6 Parameterized Bayesian networks

. 1.2.7 Example 2: The bars problem

. 1.3 Organization of this tliesis

2 Probabilistic Inference in Bayesian Networks

2.1 Exact inference in singly-connected Bayesian networks

. 2.1.1 The generaliaed forward- backward dgorit hm

. 2.1.2 The burglar d a m problem

. 2.1.3 Probability propagation

. 2.1.4 Grouping variables and dupLicating variables

. 2.1.5 Exact inference in multiply-connected networks is NP-hard

. 2.2 Monte Car10 inference

. 2.2.1 Inference by ancestral simulation

viii

Contents ix

3.2.2 Gibbssampiing . 34

2.2.3 Gibbs sampling for the burglar a l m problern 35

2.2.4 Slice sampling . 3'7

. 2.3 Variational inference 38

2.3.1 Clioosing the distance measure . 39

. 2.3.2 Choosing the form of Q(hlc) 40

2.3 -3 Variat ionai inference for t lie burglar alarm probiem 41

2.3.4 Boiinds and extended representations 43

. 2.4 Helmholtz machines 43

. 2.4.1 Factorial recognition networks 44

. 2.4.2 Nonfactorid recognition networks 45

. 2.4.3 The stochastic Helmholtz machine 46

2.4.4 A nonfactorial recognition network for the burglar alarm problem . . 47

3 Pattern Classification 48

. 3.1 Bayesian networks for pattern classification 51

. 3.2 Autoregressive networks 52

. 3.2.1 The logistic autoregressive network 53

. 3.2.2 MAP estimation for autoregressive networks .54

. 3.2.3 Scaled priors in logistic autoregressive networks 55

. 3.2.4 Ensembles of autoregressive networks 56

. 3.3 Estimation of models with iinobserved variables 57

3.3.1 ML estimation by expectation-maximization (EM) 59

. 3.3.2 Maximum likclihood-bound (MLB) estimation 39

. 3.4 Multiple-cause networks 6 1

. 3.4.1 Estimation by Gibbs sampling 63

. 3.4.2 MLB estimation by variational inference 64

. 3.4.3 The stohastic Helmholtz machine 66

. 3.4.4 Hierarchical networks 71

. 3.4.5 Ensembles of networks 72

. 3.5 Classification of hand-written digits 73

. 3.5.1 Logistic autoregressive classifiers (LARC-1,ELAR C-1) 73

. 3.5.2 The Gibbs Machine (GM-1) 74

. 3.5.3 The mean field (variational) Bayesian network (MFBN-1) 74

Contents x

3.5.4 Stochastic Helmholtz machines (SHM.1.SHM.S.ESH M.1) 75

3.5.5 The classification and regression tree (CART-1) 76

3.5.6 The naive Bayes classifier (NBAYESC-1) 76

3.5.7 The k-nearest neighbor classifier (MNN-CLASS- 1) 77

. 3.5.8 Results 78

3.6 Extracting structure frorn noisy binary images 81

. 3.6.1 Wake-sleep parameter estimation 81

. 3.6.2 Automatic clean-up of uoisy images 85

. . . . 3.6.3 Wake-sleep estimation without positive parameter constraints 85

. 3.6.4 How hard 2s the bars problem? 86

. 3.7 Simultaneousextractionofcontinuousandcategoricalstructure 86

. 3.7.1 An adapt ive rasdom variable 88

. 3.7.2 Inference using slice sampling 90

. 3.7.3 Parameter estimation using slice sampling 91

4 Data Compression 94

. 4.1 Fast compression with Bayesian networks 95

. 4.2 Communicating extra information through the choice of codeword 96

. 4.2.1 Example: A simple mixture mode1 97

. 4.2.2 The optimal bits-back coding rate 99

. 4.2.3 Suboptimal bits-back coding 101

. 4.3 Relationship to maximum likelihood estimation 102

. 4.4 The bits-back coding algorithm 104

. 4.4.1 The bits-back codingalgorithm withfeedback 106

. 4.1.2 Queue drought in feedback encoders 107

. 4.5 Experimental results 108

. 4.5.1 Bits-badc coding with a multiple-cause mode1 108

4.5.2 A Bayesian network that compresses images of handwritten digits . 111

. 4.6 Integrating out mode1 parameters using bits-back coding 112

5 Channel coding 114

. 5.1 Simplifying the playing field 116

. 5.1.1 Additive white Gaussian noise (AWGN) 116

. 5.1.2 Capacity of an AWGN channel 117

Contents xi

. 3.1.3 Signal constellations 118

. 5.1.4 Linear binary codes are all we need! 119

. 5.1.5 Bit error rate (BER) and signal-to-noise ratio (Eb/&) 121

. 5.1.6 CapacityofanAWGN~hannelwith+l/-isignalling 121

5.1.7 Achievable BER for an AWGN channel with +l/-l signalLing 123

. 5.2 Bayesian networks for channel coding 124

. 5.2.1 Hamming codes 125

. 5.2.2 Convoliitional codes 127

5.2.3 Decoding convolutional codes by probability propagation 130

. 5.2.4 Turbo-codes: pa rde l concatenated convolutional codes 133

5.2.5 Serially-concatenated convolut ional codes . low-density parity-check
. codes . and product codes 136

. 5.3 Trellis-constraint codes (TCC's) 139

. 5.3.1 Constraintcodes 139

5.3.2 A code by any other network would not decode as sweetly 140

. 5-33 Trellis-constraint codes 141

. 5.3.4 TCC's with equality constraints 144

. 5.3.5 NonsystematicTCC's 115

. 5.4 Decoding cornplexity of iterative decoders 146

. 5.5 Speeding iip iterative decoding by early-detection 147

. 5.5.1 Early-detection 147

. 5.5.2 Early-detection criteria 1-49

. 5.5.3 Reduction in decoding time due to early-detection 132

. 5 . 5 Early-detection for turbo-codes: Trellis splicing 154

. 5.5.5 Experimental results 157
. 5.6 Pardlel iterative decoding 159

. 5.6.1 Concurrent turbo-decoding 160

. 5.6.2 Results 160

6 Sumrnary and Future Research 163

6.1 A statisticdy valid cornparison of Bayesian network pattern classifiers . . . 163

. 6.2 Wake-sleep learning in the Helmholtz machine 164

. 6.3 Multi-valued source codes 164

. 6.4 Integrating out mode1 pasameters using bits-back coding 164

Contents xii

6.5 A graphical model framework for iterative channel decoding 165

. 6 -6 Trellis-cons t raint codes 165

A Proofs and Derivations 166

. A . 1 Probability propagation in Bayesian Networks 166

. A . 1.1 Computing P(y Jv) kom the incoming messages 167

. A.1.2 Outgoing R-messages 168

. A.1.3 Outgoing A-messages 169

. A.1.4 GlobaI consistency 171

. h.2 Grouping variables in Bayesian networks 171

. A.3 Proof of condition for inference by ancestral simulation 112

. A.4 Proof of detailed balance for slice sampling 173

. A.5 Bayesian confidence in t ends for bit error rates 174

B The BNC Software Package 178

. B.l Installing the software 179

. 8 . 2 An example: The burglar alarm problem 179

. B.3 Scripts used to decode a turbo-code 182

. B.3.1 1fsr.tcl 182

. B.3.2 berrou.tc1 185

Chapter 1

Introduction

In t his t hesis. 1 explore algorit hms for pattern classification. data compression. and channel

coding. At first. it may be hard to imagine how three so differe~t research areas can be

brought into focus under a single theme that is both novel and of practicd value. 1My hope

is to convince the reader that these t h e e problems can be attacked in an interesting and

fruithl manner using a recentiy developed ciass of algorithms that make use of probabilistic

stmcture. T hese algorit h m take advantage of a graphicd description of the dependencies

between random variables in order to cornpute. or estimate, probabilities derived from a

joint distribut ion. As simple and well-known examples. the forward-backward a l g o r i t h

[Baum and Petrie 19661 and the Viterbi algorithm [Forney 19731 make use of a chain-like

blarkovian relationship between random variabIes.

The mots of probabilistic structure reach far back to the beginningof the 20th centirry. In

1921. Sewall W-right developed m'path analysis" as a means to st iidy statisticd relat ionships

in biological data. Few new developments were made until the 1960's when statisticians

began using graplis to describe restrictions in statisticd models called .'log-linear models"

[Vorobev 1962: Goodman 19701. In 1963. the idea of hierarchical probabilistic striicture

briefiy reared its head in the engineering resetvch community when Gallager iwented an

error-correct ing decoding algorit hm based on a grap hical descript ion of the probabilist ic

relationships between variables involved in channel coding. Most likely because of the

primitive cornputers available at the tirne. his algorithm was quickly overIooked by bis

peers, only to be rediscovered nearly 35 years later independently by at least three research

groups, and to be shown to yield unprecedented performance in error-correcting coding

applications [Berrou. Glaviewt and Thitimajshima 1993: Wiberg, Loeliger and Kotter 1995:

MacKay and N e d 19951. A simpler chah-type Markovian graphical structure later became

popular and very useful in the engineering community, largely due to an excellent tutorial

1.1 A probabiIistic perspective 2

paper by Forney [1973]. in which the notion of a ntreilis" was introduced. Probabilistic

structure has been most extensively developed in the artificial intelligence literature. with

applications ranging born taxonornic hierarchies [Woods 1975; Schubert 19761 to medical

diagnosis [Spiegelhalter 1990]. In the late 1980's' Pearl [1986] and Lauritzen and Spiegelhal-

ter [1988] independently published a general algorithm for computing probabilities based

on a graphical representation of probabilistic structure. This algorithm is practical and

exact for only a special type of probabilistic structure. Over the last decade, there has also

been a trernendous increase in interest in estimating the parameters of models with fixed

graphical structure. In the mid 1980's. Hinton and Sejnowski Il9861 introduced a maximum

likelihood algorithm for learning the parameters of a graph-based log-lineu model called a

"Markov random field". More recently, approximate a l g o r i t h for general models based on

directed graphs have been introduced. These include Markov chain Monte Carlo methods

[Pearl 1987: Neal 19921: *Helmholtz machines" [Hinton et al. 1995: Dayan et al. 19951. and

variational techniques [Saul. Jaakkola and Jordan 1996: Jaakkola. Saul and Jordan 1996:

Frey 199?b].

1.1 A probabilistic perspective

Otfhand. it is not obvious t hat sophisticated probability models are needed to solve problems

in pattern classification. data compression, and channel coding. Given a segment of speech.

a classifier outputs a decision. Say. as to whether or not the speaker has security clearance.

It appears there are no random variables in this model. The classifier may also output

a mesure of reliability regarding the decision it makes. In this case. it appears there is

just one binary randorn variable that captures the variability in the decision. The mean of

t his Bernoulli random variable m u t somehow be related to the input, and this task can be

viewed as some sort of h c t i o n approximation. Similady. &en a highly-redundant image?

a data compression algorithm usudy produces a unique sequence of codeword symbols.

Given the output of a noisy telephone line, a channel decoder (telep hone modem) rnakes a

deterministic decision about the contents of the transmitted data file.

While the above modelling approaches eit her require ody very low-dimensional prob-

ability models or do not use random variables at dl, in doing so. they are clearly not

representing the tme causal structure in each problem. For example, in reality eadi speaker

has a unique glottis that interacts in a random way with a unique shape of vocal tract and

a unique random style of articulation to produce a speech segment. It seems like a fkuitfiil

approach to speaker identification would involve representing t hese random variables and

the probabilistic relationships between them. In the following three sections. 1 attempt to

1.1 A probabilistic perspective 3

reveal some of the probabilistic structure present in pattern classification. data compression,

and channel coding problems.

1.1.1 Pattern classification

A soft-decision classifier estimates the probability that a given pattern v belongs to each

class j E {O:. . . , J - 1). That is. the classifier estimates

where the subscript "r" in Pr indicates a true (real) probability (as opposed to one produced

by a model). If these probabiiities can be accurately estimated. Bayes decision theury tells

us that a minimum rate of error can be achieved by choosing the class j that maximizes

P,(jlv) [Chow 1957: Duda and Hart 19731.

We could use a Iogistic regression model to estimate P,(jlv). For example. regression

using a ffexible model has been successfully used to classify individual digits extracted fiom

handwritten United States ZIF' codes [Le Cun et al. 19891. However. t his approach ignores

the causal structure of the physical process of producing handwritten digits.

Iri order to faithfully capture the actual physical process that produces each digit. we

first ought to specify an a ption distribution P (j) over the digit classes j E {O.9} -

maybe some digits are more common than others. Next, for a given class of digit j. we

expect there t o be a distribution P (h (j) over a set of digit attributes h. These attributes are

called "hidden variables". because they are not part of the classifier inputs or outputs. Each

elernent of h might specify the presence or absence of a particu1a.r Line segment or Bourish.

Given a set of features h, we expect there to be a distribution P(vlh) over possible images

- this distribution models the way in which features combine to make an image. as well as

noise such as ink spots. The joint distribution given by this model of the real world can be

written

and the distribution over classes given a pattern cau be obtained by marginalizing out h
and using Bayes' rule:

So, it appearç t hat to properly model the structure of the problem, we need a more sophis-

1.1 A probabilistic perspective 4

t icated probabilistic description t han (1.1). In generd, a correct mode1 of this sort. where

P(jlv) =r P,(j\v) will perform optirndly in terms of classification error.

1.1.2 Data compression

A source code maps each input pattern v to a codeword u, such that for each valid u

there is a unique pattern. 1 wiU consider sources where the patterns are i.i.d. (independent

and identicdy drawn) 6.om P,(v). The purpose of noiseless source coding, or lossless

data compression, is to lossiessly represent the source patterns by codewords. so that the

expected codeword length is as Iow as possible. Shannon's noiseless source coding theorem

phannon 19481 states that the average codeword length per source pattern cannot be less

than the entropy of the source:

where t(v) is the Iength of the codeword for v in bits. and U is the entropy of the source

in bits:

Arithmetic coding [Rissanen and Langdon 1976: Witten. Ned and Cleary 19871 is a.

practical dgorithm for producing near-optimal codewords w hen the soiirce dis tribut ion

P,(v) is known. Sometimes. e-g.. if v is binary-vdued. these probabilities c m be easily

estimated from the source. Often. however. the distribution is too complex. and so a more

sophisticated parametric mode1 or flexible mode1 must be used to estimate the probabilities.

For example. consider a high-dimensional binary image v that is produced by the physical

process described above. so that

The probabilities used by the arithmetic encoder are obtained by marginalking out j and

h :

We see that a probabilistic description can &O be very usefui for source coding.

1.1 A probabilistic perspective 5

1.1.3 Channel coding

A block channel code maps a vector of information symbols u to a vector of codeword

symbols x. This mapping adds redundancy to u in order to protect the block agaiast

channel noise. (As a simple example. the codeword might consist of three repetitions of

the information vector.) After x is transmitted across the channel. the decoder receives a

noise-corrupted version y and produces an estimate of the informat ion block û. We Say that

a block error or a word error has occurred if û # u. In it's simplest form, Shannon's channel

coding t hwrern [S hamon 19481 states t hat for any $ven channel. t here ezists ' a code t hat

can achieve an arbitrarily Iow probability of block error when the signal-to-noise ratio is

greater than a channel-dependent threshold called the Shannon liniit. Roughly speaking,

the codewords are kept far apart in codeword symbol space. so that when a moderately

noise-corrupted codeword is received. it is still possible to determine with high probability

which codeword was transmitted.

From a probabilistic perspective. the decoder c m minirnize the word error rate by choos-

ing an estimate û that maximizes P,(ûly). or minimize the symbol error rate by choosing

an estimate û that maximizes nk P,(ùkly). A probabilistic mode1 c m be constructed by

examining the encoding process and the channel. We first speci% a (risually uniform) dis-

tribution for the information blocks. P(u). Often. the encoder uses a set of state variables.

S. in order to produce the codeword. These variables are determined hom the information

block using a distribution P (SI u) - d t hough t his relationship is usually deterministic. t his

probabilist ic descript ion will corne in handy later on when we st udy probabilist ic decoding.

The transmitted codeword is determined from the information block and state variables by

P (xi u. s) . Finally. the real-valued channel outputs are related to the transmit ted codeword

by a probability density function p(y (x) that modeis the chamel. The joint distribution

given by the mode1 is

and the distribution over information symbol u k given the charinel output can be obtained

by marginalizing out S. x and u,: for al1 j # k. and using Bayes' rule:

Although this probabilistic formulation rnay seem strange compared to many of the strongly

'Shannon was quite the tease. He proved the code exists, but did not show us a practical way to encode
or decode it.

1.2 Bayesian networks 6

zlgebraic traditional approaches, it is this formulation that 1 view as the foundation of the

recently proposed high-performance turbo-codes [Berrou and Glavieux 19961.

1.1.4 Probabilistic inference

As presented above, pattern classification, data compression, and channel coding are al1
siniilar in that some type of marginal (and possibly conditioned) distribution is sought for

a given joint distribution. Consider a set of random variables z = {q, z2, . . . , Z N) that

co-vary according to a joint distribution P (z l , 22, . . . , zN). For any two subsets of variables

z1 C z and z2 C Z, 1 wiU refer to the computation or estimation of P(z11z2), or a decision

based on P (z l lz') as probabilistic inference.

Examples of probabilistic inference include the computation of the class probabilities for

pattern classification (1.3), the computation of the input probability for data compression

(1.7), and the information symbol decisions based on the information symbol probabilities

for channel coding (1.9). Notice that in these different cases of probabilistic inference, the

joint distributions can be decomposed in different ways. In fact, if we decompose the joint

distributions at the Ievel of individual variables instead of vector variables, we can envision

a wide variety of rich structures. In the next section, 1 describe Bayesian networks, which

can be used to describe this structure.

1.2 Bayesian networks

Often, the joint distribution associated with a probabilistic inference problem can be de-

composed into locally interacting factors. For example, the joint distributions involved in

the applications of Bayes' rule in (1.3), (1.7), and (1.9) can be expressed in the forms given

in (1.2), (1.6), and (1.8). By taking advantage of such probabilistic structure. we can design

inference algorithms that are more efficient than the blind application of Bayes' rule.

1.2.1 Probabilistic structure

Probabilistic structure can be characterized by a set of conditional independence relation-

ships. (This structural description does not fix the values of the probabilities.) For example,

in the case of channel coding, we can use the chah rule of probability to write out the joint

distribution:

1.2 Bayesian networks 7

The probability density hnction (the last factor) c m be simplified. since the received vector

y is conditionally independent of the information vector u and the state vector S. given the

trmsmitted codeword x:

By substituting this conditional independency celâtionship into (1.10). we obtain the more

structured form of the joint distribution given in (1.8).

The general idea is to express the joint distribution as a product of factors. where each

factor depends on a subset of the random variables. In the simplest case. eadi factor depends

on a single random variable. making marginalization easy. Most distributions that describe

practical problems cannot be broken up in this way, and the subsets overlap. Within this

richer set of models, some structures lead to highly efficient exact aigorithms (e.9.. the

forwud-backwarci algorit hm for a chain- type structure). Ot her stnictiires are not tractable

and lead to approximate algorit hms.

It turns out that graph theory provides a succinct way to represent probabilistic struc-

ture. A graphical represent ation for probabilistic structure. dong wit h Eunct ions t hat can

be iised to derive the joint distribution. is called a graphical mode/. Examples of graphi-

cal models include Markov randorn fields [Kinderman and Snell 19801. Bay eszan ne tworks

[Pearl 19881. chain graphs [Lauritzen and Wermuth 19893. and Jactor graphs [Frey et al.

19981. Here. I consider Bayesian networks.

1.2.2 Definition of a Bayesian network

The conditional independency relationships for a distribution can be describeci graphically.

Not only does the grap hicd represeiit at ion concisely capture probabilist ic structure. but it

forms a framework for computing usefid probabilities. Bayesian networks x e specified in

terms of directed acyclic gruphs. in which aL1 edges are directed and in which there are no

closed paths when edge directions are followed. A Bayesian network for a set of random

variables z = (ri, q.. . . . Z N) consists of a directed acyclic graph with one vertex for each

variable. and a set of probability hinctions P(zt lak) k = 1. N. where the parents ak of

r k are the variabiw: that have directed edges comecting to zk. (For sinrplicity of prose, I will

often refer to a vertex by its variable name.) If zk has no parents, then ak = B. For now,

we can think of each function P(zk]ak) as an exhaustive list of probabilities corresponding

to the possible configurations of rk and ak. (In the case of a density p(zklak), the entire

density huiction must be specified.) Together, the graph and the probability f~inctions are

referred to as the network speczfication.

Figure 1.1: (a) An example of a Bayesian network. (b) The parents as of zs are shown by a solid
loop; the children cs are shown by rr sparse dotted loop; the descendents d5 are shown by a dense
dotted loop; the nondescendents ns are shown by a dashed loop.

Several definitions will help to understand how a Bayesian network describes the prob-

abilistic structure for a joint distribution P (z) . The children c k of z k are the variables

that have directed edges connecting fronz zk. The descendents dk of t k are its children, its

children's children, etc. The nondescendents nk of zk are the variables in {zr, t ~ , . . . ? zk -1 ,

zk+ 1 , z N } that are not in dr , i. e.: nk = z \ (dk U {q }). Note that nk # z \ dk, since 2k

is not included in the nondescendents. From these definitions, it follows that a k Ç nk.

Figure 1.1 shows an example of a Bayesian network. along with the parents. children,

descendents and nondescendents of variable 2s.

The meaning of a Bayesiail network is that given the parents of z k , the distribution over

zk wili not change if any combination of the nondescendents of zk are also given:

In other words, zk is conditionally independent of any combination of its nondescendents,

given its parents. To take the family hierarchy (not necessarily a tree) analogy further,

given the genetic code of Susan's parents, deterrnining the genes of her siblings. her grand-

parents, her grandparents' children, ber children's other parents or any combination of the

above does not influence our prediction of Susan's genetic make-up. This is not true for

descendents. For example, determining the genes of Susan's grandchildren does influence

our prediction of her genetic make-up, even though determining the genes of those parents

of Susan's grandchildren who are not Swan's children does not (notice that the latter are

1.2 Bayesian networks 9

noudescendents) .'
The joint distribution for a Bayesian network can be written in a structured form simply

by writing out the product of the distributions for individuai variables. where each vCwiable

is conditioned on its parents:

This form follows from (1.12) in the following way. Since a Bayesian network contains no

directeci cycles. it is always possible to dioose an ancestral ordering z,(,), zTt2) z,(N I .

where T (-) is a permutation map. so that the descendents of each variable corne later in the

ordering: d,(k) 2 { z , (~ + ~) . - . . r , (,~]). For example. the variables in the network shown in

Figure 1.1 were assigned so that zl . e. ri:$ is an ancestral ordering. Using the general

chain rule of probability üpplied to the ancestral ordering, we have

Rom the definition of the ancestral ordering, it follows that the set of variables that precede

+(k) is a subset of its noodescendents and that the parents of z,(k) are x subset of the

Inserting this result into (1.14). we obtain the form given in (1.13).

If the probability funçtions for a Bayesian network ~ u e not specified? the network is
rneant to cepresent ail distributions that can be written in the form given in (1.13). For

the network with ancestral ordering r i , 22, z13 shown in Fiyre 1.1. (1.13) gives a joint

'Interestingly, if we have previoiisiy determined the genes of Susan's grandchikiren, then detemining the
g e n s of those parents af Susan's grandchildren who are not Susan's children does influence our prediction
of Susan's gcnetic make-up. See Section 1.2.4 for more details.

1.2 Bayesian networks 10

Figure 1.2: .ln example of a chain-type Bayesian network. or a Markou chain.

distribution

This product çould have been vrritten in any order. but using an ancestral ordering heips

dari6 the dependencies. In this equation. each variable zk is conditioned on variables whose

distributions appear to the left of the distribution for zk. Note that a Bayesian network

may have more than one ancestral ordering. In this case. ~ 1 0 : 36.23.27. zl . z?. z4.z5.=q,

z l ~ , q. ~13.212 is also an ancestral ordering.

An interesting specid case of a Bayesian network is the chab type network shown in

Figure 1.2. also known as a first-order Markov chuin. Applying (1.13) to this network. we

ob t ain

This type of structure is fkequently used to mode1 time series data. where it is often assumed

that the next state of a physical system depends only on the previous state. Comparing

this network to the more complex networks that appear later in this thesis? the Bayesian

network c m be thought of as a generalization of the Markov chain.

1.2.3 Ancestral simulation

It is often practically impossible to sirnulate vectors z that are distributed according to P (z) .
However, if the joint distribution c m be described by a Bayesian network, and if a value

for each y can be drawn £rom its conditional probability P(zklak) in a practical rnanner.

then the ancestral ordering can be used to draw an entire vector. Starting with k = 1. we

draw z , (~) from P(z,(,)). We continue to draw z n (k) from P (z ~ (~) lq(k)) for k = 2, . . . N

until an entire vector z has been drawn. In this way, the probabilistic structure implied by

the graph dows us to decompose the simulation problem into local pieces.

1.2 Bayesian networks 11

neit her zk
of dk are

nor any i, I
/

in zS -. - - _ _ - - fl

Figure 1.3: The three ways in which a path may be blocked. If al1 paths from al1 variables in zri
to dl variables in zB are blocked, then zA and zB are dependency-separated by zs.

1.2.4 Dependency separation

In Section 1.2.2. 1 used the notion of conditional independence to define a Bayesian network.

In particular. a Bayesian network implies that variable zk is conditionally independent of

any subset of its nondescendents, given its parents. This is expressed mathernatically by

(1.12). A convenient way to descri be this scenario is to Say t hat ;zk is dependency-separated

from any combination of its noudescendents by its parents".

Consider the uncountable set of distributions P that can be described by a given Bayesian

network. In general. 1 will Say tbat z - ~ is dependency-separated from zB by zS (-Sv for

separation). if and only if

B s p(z"[zS. zB) = P (z - ' I z ~) . or. equidently P(z.'. z I Z) = P (Z - ' I Z ~) P (z ~ I z ') .

(1.19)

for al1 P E P . (See [Pearl 19881 for an extensive discussion of dependency-separa~iou.)

Notice that dependency-separation is symmetric with respect to 2.' and za. The case of

dependency-separation that I used CO define a Bayesian network is specid. in that zS was

the set of parents of the single variable zs4. and zB was a subset of the nondescendents of

zX*

It is possible to ascertain dependency separation in the general case simply by inspecting

the Bayesian network. If zA . zB . and zS are three disjoint subsets of z. then zJ dependency-

separates zA from zB if. in every path connecting any variable in z" to any variable in zB.

there is a t least one variable zk that satisfies one or more of the foUowing three conditions:

1. zc acts as both a parent and a child in the path and y E zS (Figure l.3a), or

2. s acts as the parent of two variables in the path and zk E zS (Figure 1.3b): or

3. zk acts as the child of two variables in the pat h and neither zk nor any of its descendents

1.2 Bayesian networks 12

are in zS (Figure 1 . 3 ~) .

{Note that the identification of a path does not depend on edge directions.) A path for

which one of these conditions is met is said to be blocked. In order to ascertain dependency-

separation, we need to consider only paths that do not intersect themselves. since those

conditions that hold for any given pat h will also hoid for the pat h when extra variables t hat

form a loop are considered.

For example. in Figure 1.1s we have the following dependency separation relationships.

zs is dependencg-separated fkom (by nothing), since the soIe path z ~ . 29, an, zlo is

blocked by zi3 in condition 3. What if rg is observed? Then, z~ is still dependency-

separated from zlo, by condition 1 applied to the sole path TG. ZCJ, ~ 1 . 3 , Z I O . In contrast. if

only z1.3 is observed. t hen ze is not dependency-separateci from z10. since there exists a path

ze,zg. z13? ~ 1 0 for which none of the three conditions can be met. This means that once zls

is observed. zg and 210 may become dependent. Note ttiat there may exist a distribution

in P where ZG and tio are independent given q 3 . but there exists at least one distribution

in T' where zs and zig <axe dependent given 113.

Here are some more complicated examples. zz is dependency-separated from ZIJ by z5.

since path q, 25. z g is blocked by zs in condition 1, paths e! q. zg. ~ 1 2 , z9 and zi q ,zg,
212, zg are blocked by t l - in condition 3. paths z4, zg, 2.5. zg and z.1: 21 . q. ze? r s , zg are

blocked by z 5 in condition 2 and by ZR in condition 3. path q, q. a3: rl-. z!, is blocked

by ri in condition 1 and by zl2 in condition 3. z2 is dependency-separated from {za. z i)

(by nothing). since the paths z2: r,. r:j and i' - 5 . z3. z; are blocked by r5 in condition 3.

This means that in the absence of observations 72 and {z3, z;.) are independent. z2 is not

dependency-separated fkom { z : ~ . ri} by ZI? since t here exists a path zzo z,. z3 for w hich none

of the conditions can be met. Condition 3 applied to z, fails. because zi? is e descendent

of 15. This means that once 212 is observed. z2 and {zn, r7) may become dependcnt.

1.2.5 Example 1: Recursive convolutional codes and turbo-codes

RecaiI fiom Section 1.1.3 that the purpose of channel coding is to communicate over a

noisy channel in an error-free (or nearly error-free) fashion. To do this. we encode a given

binary information vector u as a longer codeword vector x. which contains extra bits whose

purpose is to "protect" the information Eiom the channel noise. (An example is a repetition

code. where each information bit is simply tr<?ssmitted several times.) The codeword is

converted to a physical form (e.9. . radio waves) and then sent over a channel. A vector of

noisy si@s y is received at the output of the channel. Given y: the decoder must make a

guess ù at what the original u was.

1.2 Bayesian networks 13

Figure 1.4: The LFSR for a systematic recursive convolutional code that has a minimum distance
of 10.

One very popular class of chmnel codes (you probably have one of these in your telephone

modem) c m be described using Bayesian networks. The cncoder for a recursive conunlu-

tional code is simply a linear feedback shift register (LFSR) that takes in information bits

and generates codeword bits. See [Lin and Costello 19831 for an extensive treatrnent of con-

volutional codes. Figure 1.4 shows the LFSR for the convolutional code that is described

below. Each box represents a 1-bit memory elernent and D indicates a delay buffer. The

discs represent addition modulo 2 (XOR). For this particular convolutiond code. every sec-

ond output is actually just a copy of the input bit. This type of code is called s?jstemutic.

Notice that for each input bit. two output bits are produced. so this is a rate 1/2 code. If
there are K information bits. then there will be 1V = 2K codeword bits. The device shown

in Figure 1.4 is called a linear feedback shift register because the oiitput sequence gener-

ated by the sum of two input sequences is equd to the sum of the two output sequences

that are generated by the individual input sequences (wherc summation is modulo 2) . The

detaiis of how to choose the feedback delay taps and the outpilt taps in order to produce

a good code can be found in [Lin and CostelIo 1983: Berrou and Glavieux 19961. However.

the operation of an encoder of this type is quite simple. The LFSR is initialized so that

ail memory elernents contain 0:s. Then. the information bits uk are fed into the LFSR.
producing codeword bits zk. Sipals that represent the codeword bits are then trsnsmitted

over the channel. For example. on a twisted pair of wires, we might appiy +l volts if zr; = 1

and - i volts if xk = 0.

Figure 1.5a shows the Bayesian network for a recursive systematic convolutional code.

Normally. the nuniber of information bits K is much lager than 6 (typical numbers range

tkom 100 to 100,000 bits). sr, is the state of the LFSR at time k. extended to include the

input bit (this makes the network simpler). To ful1y specify the Bayesian network, we must

&O provide the conditional distributions. Assuming the information bits are uniformly

1.2 Bayesian networks 14

distributed,

P(uk) = 0.5, for uk E {O, I). (1.20)

Let S (S ~ - ~ , U ~) be a function (deterrnined from the LFSR) that maps the previous state

and curent input to the next state, and let g(sk) be a function that maps the state to the

nonsysternatic output bit. Thea, the deterministic conditional distributions for the states

and state outputs are

where 6(a, b) = 1 if a = b and O otherwise. Assuming that the channel simply adds

independent Gaussian noise with variance o' to the +1/-1 signals described above. the

conditional distributions for the received chane l output signals are

Given an information vector u, encoding and channel transmission can be simuiated by one

sweep of ancestral simulation. For example, we first directIy copy uo into zo, whicb is then

used to draw a noisy channel output value yo. Shen, we use uo to determine so, which is

then used to determine 11, which is then used to draw a noisy channel output value yi.

Then, we directly copy ul into 2 2 and so on until the entire channel output vector y has

been obtained.

The decoder sees only the vector y, and ideally would infer the most likely value of each

information bit, i. e., determine for each k the uk that maximizes P(ukly). In general such

a probabilistic inference is very difficitlt, but if we take advantage of the graphitai structure

of the code it turns out it can be done quite easily. In fact, it is possible to compute

Pjuk[y) k = O , . . . , K - 1 exactly using the forward-backward (a.k.a. BCJR) algorithm

[Baum and Petrie 1966; Bah1 et al. 19741, which is just a special case of the general

probabilzty propagation algorit hm discussed in Section 2.1. Once the block is decoded,

we can compare the decoded information bit values with the true ones to determine the

number of bit errors made for the block transmission. If we simulate the transmission of

1.2 Bayesian networks 15

(c) 3e-1

le- 1

I I 1 I 1

Convolutionai code - - - -
Concacenaced RS-CC ------

-Turbo-code -,

N

,

I ')

- - - 1 '. -

Figure 1.5: (a) The Bayesian network for a recimive systematic convolutional code. (b) The
BGesian network for an e k n p l e of the recently proposed turbo-code. (c) The bit error rate (BER)
performance for instances of these two codes.

many blocks. we can obtain an estimate of the bit error rate (BER).

This procedure was carried out using the convolutionai code shown in Figure 1.4. This

recursive systematic convohtional code was designed to maximize the minimum Hamming

distance between al1 pairs of codewords [Viterbi and Omura 1979; Lin and Costello 19831

(dmin = 10). The information vector length was K = 5000 (giving a codeword Iength of
N = 10000), and 5000 vectors (25 x 106 information bits in all) were transmitted for a fixed

noise variance. It is cornmon practice to give BER results as a function of the noise level

measured by a signal-to-noise ratio Eb/No in decibels. For any system with N = 2K and
2 transmission power (variance) of unity, Eb/No is related to a2 bjr Eb/NO = -10 luglo a .

Figure 1 . 5 ~ shows the BER as a function of Eb/& for t his recursive systematic convolut ional

code3. Notice that as Ea/No increases (O' decreases). the BER drops.

'.A technical detail: Trellis termination was used to improve the performance of the code.

1.2 Bayesian networks 16

In the same figure. 1 also give the BER curve for a simple repetition code. where each

information bit is transmitted twice. maintaining N = 2K. If the information bit is O. a

pair of - 1's are sent; if the information bit is 1. a pair of + 1's are sent. Each pair of received

noisy signals is then averaged before a threshold of 0.0 is applied to detect the information

bit. The curve on the far Ieft shows Shannon's Limit: for a given &,/No: it is impossible to

communicate with a BER below this curve. (See Sections 5.1.6 and 5.1.7 for a derimtion of

this cunre.) So. systems of practical interest give performance points that lie between the

Shannon limit curve and the curve for the repetition code. Performance points to the Iefi

of the Shannon Smit are impossible, and performance points to the right of the curve for

the repetition code are not of practical interest.

Recently. a code and decoding algorithm were discovered that give unprecedented BER
performance. t t t urns out t hat the turbo-decoding algorithm for these turbo-codes [Berrou

and Glavieux 19961 is just the probability propagation algorithm discussed in Section 2.1

applied to a code network Iike the one shown in Figure 1.Sb [Frey and Kschischang 1996:

Kschischang and Rey 1997: MacKay. McEliece and Cheng 19971. This Bayesian network

contains two recursive convolutional code networks that are connected to the information

bits in dinerent ways. The information bits feed directly into one of the chains (s') . but

feed into the second chain (s2) in a pennuted o d e r as shown. In order to produce the same

number of codeword bits per codeword as would be produced by the recursive systematic

convolutional encoder described above. every second output of each LFSR is dternately not

t rmmit ted (a procedure caIled punctvring) .

Figure 1% shows the BER performance for a turbo-code system with = 65.536 and

N = L3l.072. 530 vectors (- 35 x 10"nformation bits) were transmitted to determine

the BER for each noise level. Each of the two LFSRs had 4 bits of mernory and iised

identical feedback and output delay taps. AU four delayed bits were fed back to the input

of the LFSR. O d y the bit entering the firçt delay element and the most-delayed bit were fed

forward to the output. (This block length and these constituent LFSR's were proposed in

[Berrou, Glavieux and Thitimajshima L9931). The decoding complexity per information bit

for the turbo-code was roughly twice that for the convolutional code described above. The

information bit permuter was chosen at rândom. The turbo-code system clearly outperforrns

the computationally comparable single convolutionai code system. At a BER of IO-'. the

turbo-code system is tolerant to 3.3 dB more noise than the single convolutional code system.

and is only 0.5 dB nom the Shannon limit. Also shown on this graph is the performance

of a concatenated Reed-So!omon convolutional code described in [Lin and Costello 19831:
which had been considered to be the best practical code untif the proposal of turbo-codes.

The tubecode system is tolerant to 1.5 dB more noise than the concatenated system.

1.2 Bayesian networks 17

In Chapter 5. 1 explore some of the exciting new applications of Bayesian networks

to charnel coding problems. with a focus on using the probability propagation aigorithm

discussed in Section 2.1 for inference.

1.2.6 Parameterized Bayesian networks

It is sometimes convcnient to represent the conditional distribut ions P(rk lak) in parametric

form. That is. the distribution over zk given its parents ak is specified not by an exhaustive

list of probability masses. but by a function of zk, akl and a set of parameters Ok. [The sub-

script k indicates that ek is a set of parameters associated with zk.) In this case. we mite the

conditional distribution as P(zk lak, Bk). The total set of parameters is 8 = (8:
and the parameterized joint distribution is expressed as P (z (8) . Such a parametric form

can be useful in applications such as density estimation. pattern classification. and data

compression. where the distribution P(z18) is to be estimated kom a data set. In this case.

the parametric form can act as a regularizer. Since the number of possible configurations of

each z k and ak is u s u d y quite large. we would need an extremely large data set to estimate

all probabilities accurately. Using the parametric form. however. we need only estimâte each

parameter. As described in Section 2.3. a parametric form is also useful when formulating

variat iond inference a l g o r i t b .

A common parametric Bayesian network is the sigmoidal Bayesian network [Neal 1992:

Jordan 1995: Sad. Jaakkola and Jordan 19961. whose random variables are all binary. The

conditional probability function P(zklak' ek) can be viewed as a regession mode1 t int is

meant to predict zk f?om a set of attributes ak. X standard statistical method for predicting

a binary-valued variable is 1ogi.stic regression [McCullagh and Yelder 19831. in which the

conditional probability for zk given a k is

where the parameter OkO represents a constant bias in the exponent. The Iogistic function

g(x) = 1/(1 + expi-21) is used to restrict the probability to lie between O and 1. (This

function is shown in Figure 1.6.) In terms of log-odds.

which shows how each parent zJ E ai, independently increases or decreases the log-odds for

zk. depending on the sign of B k J .

1.2 Bayesian neborks 18

Figure 1.6: The Iogistic Function g (x) = 1/(1 + ey[-rt]).

Sometimes. for the sake of notationai simplicity, 1 will assume that the set of parents

for each variable z k is specified by sorne parameter constraints. Assume without loss of

generality that for a @en network. the random variables a have an ancestral ordering

~1~2'. . . .z,v. 1 take P(zkk;ak.Ok) = P(~~({zj}:1:.8~) - where in the second expression the

parameters are constrained so t hat the function does not depend on nonparents. Aiso. in

order to succinctly account for the bias. 1 will usually assume that there is a durnmy variable

that is set to ro = 1- (Thus the notation Bko for the bias in the summations above.)

üsing t hese notational simpiifications and using g (.) for the logistic function. the sigrnoidal

mode1 described above cm be written

where Bk] is set to 0 for each nonparent 2,.

1.2.7 Example 2: The bars problem

Bayesian networks provide a usefui fiamework for specifiiog generative modeis. A gener-

ative mode1 can be used to generate data vectors that exhibit interesting structure. The

generative rnodeis discussed in this thesis can also be used for pattern classification and data

compression. in the fashion described in Sections 1.1.1 and 1.1.2. If the Bayesian network

is parameterized. we can estimate the parameters of the network from a training set by

making the generative distribution "close" (say, in the Kullback-Leibler pseud~distance)

to the training set distribution. W-e hope that in this fashion, we can extract the "true"

underlying generative process. or at l e s t one that is equaily efficient at describing the data.

For example. the 4 x 4 binary images shown in Figure 1.ïa were generated by tirst

selecting an orientation (horizontal or vertical) with equal probability, and then randomly

1.2 Bayesian networks 19

Figure 1.7: ta) Examples of training images typicd of the "bars problem1 . (b) The graph for
a parameterized Bayesian network that was estimated from a large training set using the wake-
sleep aigorithm. Edges that terminate on the box are connected to ail vertices within the box. (c)
The parameters of the Bayesian network clearly show that the network has l e m e d the notion of
horizontal and vertical bars (see the main text for a more cornpiete description).

instantiating each of the four possible bars with that orientation with probability 0.5. (The

aiLon images were removeci from the training set. since the orientation of the bars in an

dl-on image is ambiguous.) Using the Helmholtz machine and the wake-sleep dgorithm

(described in Sections 2.4 and 3.4.3). 1 fit the parameterized network shown in F i p e 1.7b

to a large training set of 2 x 106 images produced in this way. The network has three

layers of binary variables: 1 in the top layer. 8 in the middle layer. and 16 in the visible

layer (the image). The variables in adjacent layers are Wy-connected, and the conditional

distributions are modelled using logistic regression. as described in the previous section.

After parameter estimation (see [Hinton et al. 19951 for details). ancestral simulation of the

network produces output images that are indistinguishable from the training images.

After learning? the bias for the top-layer variable is nearly zero. so that under the joint

distribution it has the vdue I as often as it bas the value O. The vaiues of the other param-

eters are depicted in Figure 1.7~. The eight large blocks on the left show the pürameters

associated with the connections that feed into and out of the middle-Iayer variables. The

bias for a variable is shown by the smdl black or white square on the top right of the block

for each middle-layer variable. Positive parameters are white, negative parameters are black,

1.3 Organization of t his t hesis 20

and the area of the square is proportional to the magnitude of the parameter. (The targest

parameter sfiown in the figure is 14.1.) The parameter associated with the connection h m

the top-layer variable to a rniddle-layer variable is shown by the small square on the top

Ieft of the block for each middle-layer variable. Finaily, the parameters associated with the

connections from a middle-layer variable to the visible variables are shown by the 4 x 4 grid

of squares in the block for each middle-layer variable. The biases for the 16 visible variables

are shown by the 4 x 4 grid of squares on the far right of Figure 1.7~.

It is clear from these parameters that each middle-iayer variable represents the presence

(value of 1) or absence (value of O) of a particular horizontal or vertical bar. If the top-iayer

variable is 1. the probability that a horizontal bar is present is nearly zero. since the biases

for these variables are nearly zero and the parameters that comect these variables to the

toplayer variable are large and negative. On the other hand, if the toplayer variable is O.

the probability that a horizontal bar is present is 0.5. In this way, the network captures the

true generative model that produced the training data.

In Chapters 3 and 4. 1 show how Monte Carlo inference. variational inference. and

Helmholtz machines can be used to fit Bayesian networks to training data for the purposes

of pattern classification. unsupervised learning, and data compression.

1.3 Organization of this thesis

In the remainder of ths thesis. 1 use Bayesian networks as a platform to develop algorithms

for pattern classification. data compression. and channel coding. The last of these problems

is quite different from the former two. since we will usually design an error-correcting code

using a Bayesian network and then use probabilistic inference to perform decoding. On the

other hand. for pattern classification and data compression. we will iisually estimate a pa-

rruneterized Bayesian network from some training data and then use probabilistic inference

to classZy a new pattern or produce a source codeword for a new pattern.

In Chapter 2. 1 discuss dament ways to perform probabilistic inference. including proba-

biiity propagation, Markov chain Monte Carlo. variational optimization? and the Helmholtz

machine.

Several types of Bayesian networks that are suitable for pattern classification are p r e

sented in Chapter 3. 1 show how Markov chain Monte CarIo, vaziational optimization. and

the Helmholtz machine wake-sleep algorithm can be used for probabilistic inference and

puameter estimation in these networks. Based on a digit classification problem, I compare

the performances of t hese systerns with severai standard algorit hms, including the k-nearest

neighbor method and classification and regression trees (CART). Learning to extract struc-

1.3 Ornaaization of this thesis 21

t u e from data luithout using a supervised signal such as class identity is another interesting

parameter estimation problem. At the end of this chapter. 1 examine unsupervised learning

in Bayesian networks that have binary-valued and real-valued variables.

In Chapter 4, I consider the probiem of how to efficiently compress data using Bayesian

networks with hidden variables. When t here are hidden variables, a Bayesian network may

assign maay source codewords of simi1a.r length to a particular input pattern. 1 present the

"bits-back" coding algorit hm that can be used to efficient ly cornmunicate patterns. despite

this redundancy in the source code.

In Chapter 5, I present severai published error-correcting codes in terms of Bayesian

networks and show that their corresponding iterative decoding algorithms can be derived

as special cases of probability propagation. In particular. the recently proposed turbo-

decoding algorithm. which brought researchers a leap closer to (and almost up against) the

Shannon lirnit. is an instance of probability propagation. Motivated by these results and the

breadth in perspective offered by Bayesian networks. 1 present a new class of "interleaved

treliis-constra.int codesn which when iterat ively decoded are compet it ive wit h iteratively

decoded turbo-codes. 1 also present ta-O approaches for speeding up a popular class of

computat iondy burdensome iterat ive decoding algorit h m .

Chapter 2

Probabilist ic Inference in Bayesian

Networks

In t his chapter. 1 discuss methods for probabilistic inference t hat make use of the Bayesian

network description of the joint distribution. blany readers may be aware of how prob-

abilistic inference in a Markov chain is simplified by a chain-type graphical structure. A

generalized form of this simpIification hoIds for those Bayesian networks that have only a

single path (when edge directions are ignored) between any two vertices. In Section 2.1.

I review an algorithm for "prnbability propagation". which c m be used to infer the exact

distributions over individual variables or srna11 groups of variables in such networks. For

networks that have multiple paths between one or more pairs of vertices, this algorithm is

not exact. Xlthough there are procedures for attempting to convert an original network

to one that is appropriate for probability propagation ppiegelhalter 1986: Lauritzen and

Spiegelhalt er 19881 t hese procedures are not pract ically fiuitful when the number of multiple

pat hs is large. In these cases. approximate inference met hods must be used. In Section 2.2.

1 discuss a Monte Car10 approach to inference, where we attempt to produce a sampk kom

the desired distribution. Histograms based on the sample can then be iised to approximate

the true marginal distributions of interest. In Section 2.3, 1 present a variational method

for approximate inference. Here. we construct a parameterized approximation to the true

distribution and then at tempt to optimize the parameters of t h s variational approximation

in order to make it as close as possible to the true distribution. This technique requires

that the distribution specified by the Bayesian network can be expressed in a form suit-

able for mathematicai analysis. Findy. in Section 2.4 1 present the Helmholtz machine.

This method can be very efficient. and is tailored to inference in Bayesian networks whose

parameters are estimated fkom data.

2.1 Exact inference in singly-connected Bayesian networks 23

2.1 Exact inference in singly-connected Bayesian networks

In the late 1980's. Pearl [1986: 19881 and Lauritzen and Spiegelhalter [Spiegelhalter 1986;

Lauritzen and Spiegelhalter 1988: Lauritzen 19961 independeotly published an exact pm b-

ability propagation algorithm for inferring the distributions over individual variables in

singly-connected Bayesian networks. A singly-connected network h a only a single path

(ignoring edge directions) connecting any two vertices (see Figure 2. la for an example).

Not only does the algorithm rnake use of the probabilistic structure implied by a Bayesian

network, but it also uses the network as a circuit that specifies message passing channels for

inference computations. In a singly-connected network. cutting an edge breaks the network

into two pieces. So. each edge acts as a message passing bottle-neck for communicating

information regarding one side of the network to the other.

By passing short real-dued vectors between neighboring vertices in the singly-connected

Bayesian network for a set of variables z = { r i zja, }. the probability propagation

algorit hm computes P (4 v) i = 1. /z(for an arbitrazy subset v of observed dements

in z. One flavor of probability propagation is the generahted fomnrd-backward algorithm.

in which messages are passed in a highiy regular way. Since this regularity simplifies the

description of the algorit hm. 1 will present the generalized forward-backward algorit hm first .
The more general probability propagation algorit hm c ~ m then quite easily be described by

relaxing the regilarity in the way messages are passed. A proof t hat probability propagation

cornputes P(z*Jv) : i = 1.. . . . jzJ can be found in Appendix A.1. A simple Tcl-based

probability propagation software package is described in Appendix B.

2.1.1 The generalized forward-backward algorithm

To begin with. the singly-connected Bayesian network is arranged as a horizontal tree with

an arbitrarily chosen -'root7 vertex on the far right. For example. if the cirded vertex zg

in Figure 2.la is chosen as the root? we obtain the tree shown in Figure 2.lb. (Imagine the

network sits in a viscous fluid and we grasp the root vertex and pull it down and then to

the right.) Beginning with the leaves of the tree (Le. . the vertices on the le&), messages

are passed level by 1eveI forward to the root. Each vertex "fusesn its incoming messages in

order to produce an outgoing message, and also stores the incoming messages for later use.

Then. messages are passed level by level backward from the root to the leaves. The total

number of messages passed in this fashion is 2(1z1 - l), since each edge passes a message

in both directions. Once both passes are complete, each vertex 2i fuses al1 stored incoming

messages to obtain P(zi IV). This algorithm diners from the standard forward-backward

(a.k.a. "BCJR") algorithm [Baum and Petrie 1966; Bah1 et al. 19741 in two ways. First, the

2-1 Exact inference in singiy-connected Bayesian networlcs 24

Figure 2.1: (a) shows a singly-connected Bayesian network. -4 tree is obtained by choosing z9 as
a root vertex, as shown in (b). (c) shows a network fragment with the A- and r-messages that are
passed to and fiom the parents x and the chiidren z of y, durhg the two passes of the generalized
forward-backward algon t hm.

underlying graph is a tree. not a c h a h Second. some edges may be directed forward while

ot hers may be directed backward. whereas in the standard forward- backward algorit hm. ail

edges are directed forward.

Diuing each of the forward and backward passes. two types of vector messages are passed.

A n-message is passed fkom a parent to a child in the direction of the edge. and represents

the probabdzty distribution over the parent given the observed variables connected to the

parent through aiI paths that do not go through the cbild. X A-message is passed from

a child to a parent in the opposite direction of the edge. a d represents the likelihood for

the observed tariables connected to the child through all paths that do not go through the

parent. given the parent variable. Both types of vector have lengths that are equd to the

number of values the parent uariabie cm take on. In fact. since a normaiization operation

can be applied at a later stage. one fewer elements may be passed by assuming that the

first element is always I. For example. in a Bayesian network with binary variables. each

message may corisist of just a single real value, since a& parent variables are binary.

Consider the network fkagment shown in Figure 2 . 1 ~ ~ where x is the set of parents of y.

and z is the set of chldren of y. Let ly(be the number of discrete values that g can take
on. Without loss of generality, 1 assume y E (1.. . . , lyl). (The following equations hold

for red-valued variables as weU, if summations are replaced by integrals.) In this case, the

conditional probabihty P(y lx) c m be viewed as a high-dimensional matrix pX".

2.1 Exact inference in singly-connected Bayesian networks 25

In this section 1 use capitalized variable names in superscripts to label vectors and matrices.

and lower-case variable names in subscripts to index the elements of vectors and matrices.

If y has no parents, then we take x = 0 so that

To compute an outgoing message, a vertex must take into account the incoming messages

on ail other edges. Let 1x1 be the number of parents of TJ (number of variables in x) and let

be the number of values that parent x, can take on. VariabIe y may receive a vector

message kom each parent x, i = 1.. . . .lxl:

and a vector message Eom each child 2, j = 1. 1 zl :

To compute an outgoing n-message (e-g.. in Figure 2.lb. from 24 to in the forward

pass. and from ZG to 210 in the backward p a s) ' a variable must fuse the incoming A- and

sr-messages on the ot her edges. For example, in the network fragment shown in Figure 2. lc.

y computes the elements of a T-message sent to zj in the following way:

(The sum is over all possible configurations of the parents. x.) If y has no parents. 1x1 = O

and the second term in (2.5) evaluates to PZ. which is equal to the probability P(y) given

in the rietwork specification. In the special case that y is connecteci by only one edge. the

first term in (2.5) e d u a t e s to 1. so thât

If y is not a free variable, but has the observed value y*. it computes the elements of the

n-message in a different way:

where 6(y, yO) = 1 if y = y0 and O otherwise.

To compute an outgoing A-message (e-g., in Figure 2.lb, from ci0 to zs in the forward

2.1 Exact inference in singly-connected Bayesian networks 26

p a s , and £rom z~ to z;r in the backward pass). a variable must again fuse the incoming

A- and T-messages on the other edges. For example. in the network kagrnent shown in

Figure 2. lc. y computes the e1ements of a A-message sent to si in the following way:

If y has no children. (z(= O and the first term in the summation in (2.5) evaliiates to 1. In

the specid case that y is connected by only one edge. the second term in the summation

evaluates to piYi' = P (g l x ,) . so that

If y is observed and has the value y*. the elernents of the A-message are

Xfter the forward pass and the backward pass are complete. each unobserved vertex ?J

computes P(9lv) by fusing the stored incoming messages as follows:

where a is a norrnalizing constant. which is computed to ensure that xZl P (y l v) = 1.

2.1.2 The burglar alarm problem

In order to illustrate how the generalized forward-backward algorithm works, 1 now in-

troduce a variant of the simple .'biirglar alarm" network described by Pearl [1988]. The

network describes a shoddy burglar alarm that is sensitive not only to burglars, but also to

earthquakes. The three binary random variables in the network are b for "burglary". e for

"eart hquake" , and a for "alam". A value of O for one of t hese variables indicates t hat the

corresponding event has not occurred, whereas a value of 1 indicates that the correspond-

ing event has occurred. Figure 2.2a shows the network. which has the lollowing conditionai

2.1 Exact inference in singly-connected Bayesian networks 27

Fi X e 2.2: (a) The Bayesian network for the burglar alam problem. Nith variables b ("buïglary"), p e earthquake") and a ("alam"). (b) to (e) show the messages passed during the generaiized
forward-backward algorithm.

probability relat ionships:

Suppose that while you are away at a conference. the burgiar alarxn contacts you by

ceU phone and informs you that the alarm is ringing (a = 1). We would like to infer the

distribution over the two causes to make a well-informed decision about whether or not you

should be concerned about a burglary. Since this network is quite simple. we can apply

Bayes rule P(b. e(a) = P(alb. e)P(b)P(e)/ x,f.z P(nib1. e1)P(b')P(e') to obtain the exact

solution,

The most lïkely explanation for the ringing alarm is that a burglary took place. Notice.

however, that although an earthquake is also a likely explanation. i t is relatively rrnlzkely

that both s burglar and an earthquake were simultaneously the cause of the alarm.

Now. consider using probability propagation for probabilistic inference in this network.

(See Appendix B.2 for s description of how this network can be processed using the BNC
software package). After we arbitrarily select e as the root. the generalized forward-

badtward algorithm proceeds by sending a message Born the leaf b to u, as shown in Fig-

ure 2.2b. Since b is a parent of a, this vector wiLI be a rr-message. and since b is connected

2.1 Exact inference in singly-connected Bayesian networks 28

by only one edge, we use (2.6):

rBA = (P(b = O). P(b = 1)) = (0.9,0-1). (2.14)

Next, a sends a message to the root e. as shown in Figure 2 .2~. Since a is a child of e. this

vector will be a X-message, and since a is observed (aV = 1). we use (2.10):

B-l x * ~ ~ = ([' & ~ (a = llb.e=~)irf;']. [C~,~P(U = i Ib . e= l)q 1)

= (0.001 - 0.9 + 0.368 - 0.1. 0.135 - 0.9 + 0.607 - 0.1) = (O.O37?.0.1822). (2.15)

Next, e sends a message to a. as shown in Figure 2.26. Since e is a parent of a. t his vector

will be a K-message. and since e is connected by only one edge. we use (2.6):

xE" = (~ (e = O), P(e = 1)) = (0.9.0.1). (2.16)

Findly, n sends a message to b. as shown in Figure 2.2e. Since a is a child of b. this vector

will be a X-message, and since a is observed, we use (2.10):

Xow, b and e can compute their marginal distributions using (2.11):

(P (b = ~ l a = 1). P(b= lia= 1)) = (a X t B ~ (h = O) ? a X f B ~ (b = 1))

= (0.01296~~. 0.03919ai) = (0.249.0.75 1). and

(P (e = ~ l a = l) , P (e = I l a = l)) = (oXOEp(e = O) . C Y X ~ ~ P (, = 1))

= (0.03393~, 0.01822a) = (0.651: 0.349). (2.18)

These distributions are exactly equal to the marginal posterior distributions computed horn

(2.13).

2.1.3 Probability propagation

The highly regular way in which messages are passed in the generalized forward-backward

algorithm c m be reIaxed to obtain a more general probabihty propagation algorithm. It

2.1 Exact inference in singly-connected Bayesian networks 29

turns out that as long as a few simple rules are followed, messages may be passed in

any order (even in parallel) to obtain the probabilities P(zilv) i = 1. izl. These d e s

prescribe how the network is to be initialized for propagation. and how messages are created.

propagated? absorbed. and bufIered. Aside kom these rules. the formulas for propagating

messages are identicai to those in (2.5) to (2.10).

Before propagation begins, the network must be initialized. This procedure cornputes

the a prion' incoming messages for each vertex, and corresponds to a generalized forward-

backward pass without any observations. Tt is easy to show that in this case al1 A-messages

will be equal to 1. and so initialization consists of passing îr-messages using an ancestral

ordering. (To see this, imagine performing a forward-backward pass on the network in

Figure 2.la. without any obsenations.) After initialization. each vertex t i has amilable its

a priori probability P(z i) . In some networks (such as those used for charnel coding) these

probabilities are uniform and so the initialization procedure can be skipped.

Messages are now created in response to observations. If variable y is observed to have

the value y', then a message must be sent out on each of the edges connected to y. using

(2.7) for y's children and (2.10) for y's parents.

Messages are propagated in response to other messages. If variable y receives a message

on an edge. y must scnd out messages on al1 o ther edges.

Messages are absorbed by vertices that are coanected by only a single edge. This rule

follows naturally from the propagation rule. since if such a vertex receives a message on its

only edge, the vertex is not required to propagate it back.

It is not necessq that messages be propagated without delay. In fact. a vertex may

bufler one or more outgoing messages and pass them at aay time. (It is usually most

convenient to compute them at a later time. too.) For exarnple. if a vertex has just received

a message and is about to receive another one. cornputations caii often be saved by waiting

for the second message before comput ing and sending out a set of messages.

At any time during propagation. vertex y can compute a current estimate P (~ J V) of

P(y1v) using (2.1 1). If the above rules are followed and propagation continues until there

are no buffered messages remaining in the network. then the estimates wilI equd the exact

probabilities: P(IJ lv) = P(y1v).

Instead of a complete initialkation, it is possible to simply bufFer the initial messages

leaving each parentless vertex. Since these messages will be propagated eventually. this has

the same final result as the initialization procedure described above, although the interme-

diate probabilities may differ.

The generdized forward-backward algorit hm described in the previous section can be

2.1 Exact inference in singly-connected Bayesian networks 30

viewed as a special case of probability propagation. First, the network is arranged as a tree.

Then, the T-messages leaving each parentless vertex in response to network initialization are

buffered. Next, the messages created in response to observations are al1 buffered. (At t h 3

point, no computations have been performed.) During the forward pass, each right-going

message induces a set of bufFered Ieft-going messages and a single right-going message. The

latter right-going message is passed to the next level, where it too induces a set of buffered

left-going messages and a single right-going message. So, once the forward pass is complete,

there are uo more buffered right-going messages in the network. During the backward p a s ,

each vertex receives a left-going message from its only right-hand edge. Since an incoming

message to a vertex never induces an outgoing message on the same edge, the left-going

message will induce only a set of buffered left-going messages. So, there will be no buffered

messages remaining in the network once the backward pass is cornplete. Finally, each vertex

zi can compute the exact value for P(zïlv) .

2.1.4 Grouping variables and duplicating variables

Often, i t is possible to convert a mult iply-connect ed Bayesian network to a singly-connected

Bayesian network, so that probability propagation can then be applied in a practical marner.

To do this, we group variables, until there are no more multiple paths in the network.

Graphically, two variables zj and z k are grouped by removing fiom the graph zj and zk as

well as the edges to which they are connected, and then introducing a new vector variable

{ z j , y }. The set of parents of the new vector variable is the union of the sets of parents of

the two old variables. The set of parents of each child of rj and zk is extended to include

both zj and zt . New edges are introduced to reflect these relationships. This grouping

operation will produce a valid Bayesian network as long as zk is not an indirect descendent

of z, and vice versa. Otherwise, a directed cycle will result from the grouping, violating

the requirernent that a Bayesian network have no directed cycles. Note that if zk is a chiId

of z j , and at the same time not an indirect descendent, the grouping is still valid. since no

directed cycles are produced.

As shown in Appendix A.2, this grouping operation also preserves the representational

capacity of the network. Any distribution represerited by the old network can be represented

by the new one. In fact, al1 of the conditional probabilities P(zklak) in the new network

will be the same as in the old network, except the ones that involve either of the grouped

variables. The latter condi tionai probabilities can quite easily be derived fkom the old ones.

Note that although grouping variables may help to produce a singly-connected network

to which probability propagation can be applied. the grouping operation also hides the

structure that rnakes probability propagation an attractive inference method in the first

2.1 Exact inference in singly-connected Bayesian networks 31

Figure 2.3: Transforming the muitiply-connected Bayesian network for a recursive convolutional
code (a) into a singly-connected network (cl, involves variable duplication (a)-(b) and grouping
(WC)-

place. So, it is important to produce minimal groupings and retain as much of the structure

as possible. Not surprisingly, by grouping miables. any network can be made singly-

connecteci - simply group al1 variables together into a single vertex. However. extreme

groupings of t his sort iisually eliminate too much structure. -'Probability propagation" for

the single vertex is equivalent to mhpu la t ing the Ml joint distribution. wbich in most

practical cases is unwieldy.

Xnother useful operation is dupfzcatlng variables. A variable z, can be duplicated by

adding an extra variable z,vi to the network. and creating the following new parent-child

and arw = {zLv+ j . This procedure is especially usehl in relationships: a,~; 1 = aoId
combination with pouping. since although we rnay wish to g o u p z, and r k in order to

make the network singly-connected. we may also wisb to graphicdy distinguish 3 h m the

vector variable { 2,. zk) .

For example. the recursive convolutional code network shown in Figure 1.5a can be

derived kom the more natural recursive convolutional code network shown in Figure 2.3a.

The Iatter network explicitly shows the dependence of the encoder state variable sk on the

previous information symbol uk-i and the previous state sk- 1. as well as the dependence

of the encoder output zk on u k aud sk. This network is multiply-connected, so probability

propagation cannot be used to compute P(ukly) for maximum a posteriori information

symbol decoding. To convert the network to a singly-connected one. ive &st duplicate the

information symbols (so that they are graphically distinOdhed in the final network) as

s h o w in Figure Wb. Then, we group pairs of information symbols and state variables as

shown by the dashed loop, producing the singly-connected network shown in Figure 2 . 3 ~ .
Note that by grouping variables in this way, the number of values that each new state s i

can take on is increased by a factor of two.

Although in many cases grouping can be used to produce a tractable network! there are

cases where it is impossible to h d an appropriate grouping. In fact. it turns out that in

2.1 Exact inference in singly-connected Bayesian networks 32

general. inference in multiply-connected networks is a very diacult problem.

2.1.5 Exact inference in multiply-connected networks is NP-hard

Probability propagation is an exact method of inferencc for singlg-connected Bayesian net-

works. Cooper [1990] has shown that probabilistic inference in Bayesian networks is in gen-

eral NP-hard. Summations relevant to inference. such as the ones in (1.3). (1.7). and (1.9).

contain an exponential number of terms and it appears that in generd these siimmations

cannot be simplified. Researchers have thus focused on developing exact inference algo-

rithms for restricted classes of networks (e -g . . probability propagation for singly-comected

networks) , and on developing approximate inference algorit hms for networks t hat are in-

tractable (assuming P # NP) . In fact. Dagum [1993] (see &O [Dagurn and Chavez 19931)

has shown that for general Bayesian networks. approximate inference to a desired number

of digits of precision is NP-hard. (I-e.. the time needed to obtain an approximate inference

that is accurate to n digits is believed to be e-xponential in n.)

One obvious approach to approximate inference in a multiply-connected Bayesian net-

work is to use the probability propagation aigorithm while ignoring the fact that the network

is mdtiply-comected. Each vertex propagates messages as if the network were singly-

connected. In this case, the propagation procedure wili never tenninate, because there will

t e loops in which messages will endlessly circulate. Although this method has provided

excellent results in the area of channe1 coding, it is frowned upon in other areas (such a s

medical diagnosis j because t here is lit t le t heoret ical understanding of the behavior of t his

iterat ive procedure.

Another disadvantage of the probability propagation algorithm is that it is cumbersome

for inferring the joint distribution over several miables (e-g.. u 1 and ud in Figure 2 . 3 ~) . This

inference is accomplished by firs t computing the distribution over u 1 given the observations.

using one forward-backward sweep. Then. the distribution over u4 given the observations

and each of the possible values for ui is computed using one forward-backward sweep for

each possible value for u1 . (Notice that these sweeps may be partial. since they need only

take into account the effects of clamping .ul to different values.) If the variables of interest

have n possible configurations. roughly n (possibly partial) forward-backward sweeps are

needed. If we cannot a o r d the time to perform atl of these sweeps. a. faster approximate

algorithm may be more appropriate.

In the following sections, 1 describe severd more principled approaches to approximate

probabilistic inference. including Monte Carlo, variational inference. and Helmholtz ma-

chines.

2.2 Monte Carlo inference 33

2.2 Monte Carlo inference

The Monte Carlo method [Hammersley and Handscomb 1964; Kalos and Whitlock 1986:

Ripley 19871 makes use of pseuderandom numben in order to perform computations.

Monte Carlo inference uses random numbers in order to perform inference in a Bayesian

network that describes a joint distribution P (z) . If we can somehow obtain a reasonably

large sample kom the distribution P(h1v) over some unobserved hidden variables h C z in

a Bayesian network, given some observed visible variables v C z then relative frequencies

can be used for approximate inference.

2.2.1 Inference by ancestral simulation

One brute force Monte Car10 approach is to sirnply simulate the network using the ancestral

ordering. Then, we extract Erom the sample al1 those vectors that have the desired value

for the component v. Next. we compile a frequency histogram for the different values that

h can take on. Although this approach is sometirnes useful (notably, when using a srnall

network to verify that a more sophisticated inference method works), in general it is not

computationaily efficient. The problern is that the value of v that we wish to condition

on may occur extrernelg rarely, so that an inordinate sampIe size must be used in order to

obtain results.

If we are interested in a subset h1 C h of the hidden variables, it so happens that in

some cases ancestral simulation cari be used to obtain a sample from p(hl I V) in an efficient

manner. In general, if the parents of the visible variables are dependency-separated (see

Section 1.2.4) from the hidden variables of interest by the visible variables. then ancestral

simulation can be used to obtain a sample fiom ~(h'lv). (See Appendix A.3 for a proof.)

If the visible variables have no parents, then it follows trivially that the variables in this

nul1 set are dependency-separated from t be hidden variables. Using the ances t r d ordering,

a value is drawn for each hidden variable given its parents. After one complete sweep, the

value for h1 will be an unbiased draw $om p(hl[v).

For example, suppose that in the rnultiply-connected network with ancestral ordering

21 , qi z3,~4~ a, zg,z7 shown in Figure 2.4, the set of visible variables is {zl, z4). Suppose

also that we would like to infer the distribution over the subset of hidden variables (26, ri}.

Since {y, zl) is dependency-separated by {zi , z4} fkom the parents { z 2 } of (zl, z.! 1, we c m

estimate P(al z7)zl, zq) by ancestral simulation. We draw a value for r2, then for z3 given

zl, then for q, then for 26 given ZJ and 24, then for 27 given rd and zs. We can estimate

P(y, ri. lzl, y) by repeating this procedure over and over while building up a histogram for

{zlj, ~7).

2.2 Monte Carlo inference 34

Figure 2.4: An e-sample of a Bayesian network.

Notice that in the above example, it was not r e d y necessq to draw a vaiue for 22,

since for the ancestral simulation method to work. it was required that z2 be dependency-

separated fkom {zg, z ;) by { r i . z t } ; i-e.. given {z1. q}. - does not influence {zo. z ~) . In
general. values need only be drawn for those variables in the ancestral ordering that are

not dependency-sepaxated kom h1 by v. If these can be easily isolated. then simulation

computations can be saved.

2.2.2 Gibbs sampling

When inference by ancestral simulation is not possible? Markov chain Monte Car10 is often

used (see an excellent review of these methods by Neal [1993]). Given v. a temporal sequence

h(l) . h(2). . . . of the hidden variable values is produced by simulating a Markov c h a h whose

stationary distribution is carefully constructed (e . g . , as described below) to be equal to

P(h1v). By coilecting these values over time. an approximate sample is obtained. Ideally.

the chain is run long enoiigh so that equilibrium is reached. In practice. the blarkov chain

may be terminated before equilibrium is reached. so that the simulation time can be kept

within a reasonable Lirnit. Once collected. the sample can be used to produce a frequency

histogram of the variables of interest in h.

The Gibbs sampling algorithm is the simplest of the Markov chain Monte Carlo rnethods.

and Lias been successfully applied to Bayesian networks [Pearl 1987; Pearl 1988; Neal 19921

as weil as other graphical models [Geman and Geman 1984: Hinton and Sejnowski 19861.

In this algorithm. each successive state h(l) is chosen by modifying only a single variable

in the previous state h(r-L). The variables are usually modified in sequence. If at time r.

we have decided to modify zi, E h. then we draw a value r r) hom

Usuaily, we cannot obtain this distribution directly, but instead must first compute the joint

2.2 Monte Carlo inference 35

(b) '
e :

Figure 2.5: (a) The Bayesian network for the burglar a l m probicm. with v,uiabies b ("burglary").
e ("earthquake") and a (*'dm3). (b) -LOO steps of Gibbs sampiing for the variables b and e when
the alarm is observed to be ringing (a = 1).

probability which is proportional to the conditional probability:

where the constant of proportionality does not depend on z k . The joint probability can

usually be computed easily from (1.13). If u7k is ciiscrete. ive compute the joint probability

for each value that it can t&e on. normaiize these values. ;and then randornly draw a vdue

z;) £rom this normaiized distribution. When zk is a continuous randorn variable. it can

be quite difficult to tiraw a. value fÏom its distribution. Efficient sarnpling methods for

several special types of continuous parametric distribution are given in [Devroye 19861 and

[Ripley 19871. In order to draw values kom other types of distribution. more sophisticated

techniques such as adaptive rejection sampling [Gilks and Wild 19921 must be iised.

2.2.3 Gibbs sampling for the burglar alarm problem

In order to illustrate how Gibbs sampiïng works, I use the simple burglar aiarm problem

presented in Section 2.1.2. whose Bayesian network is shown in Figure 2.5a.

In order to pedorm Gibbs sampling, we ceed the probabilities for each of the hidden

variables conditioned on al1 the other variables. Since these conditional probabilities are

proportional to the joint probabilities, we can compute them in the foilowing way, using

2.2 Monte Carlo inference 36

where P(bl e. a) = P(alb. e) P(b)P(e) is the joint distribution determined fkom the network

specification in (2.12). Similady,

Gibbs sarnpling proceeds by alternately visiting b and e . while sampling £rom P(b(e.o= 1)

and P(e1b. a = 1) using the above formulas. Figure 2.5b shows the values of b and e for 400

steps of Gibbs sampling, starting from an initial configuration (b = O. e = O). (la each step.

one variable is updated.) The Markov chah shows that the configurations (6 = O. e = O)

and (b = l . e = 1) are unlikely compared to (b = 1. e = O) and (b = 0.e = 1). The correct

probabilities in (2.13) can be approximated using the reIative frequencies computed kom

this chain:

These are quite close to the correct d u e s given in (2.13). Usually, an initial segment

of the Markov chah is discarded when computing these statistics. The motivation for

this procedure is that we wouid like to have samples that are typicd of the equil~briuna

distribution, not the initial configuration.

2.2 Monte Carlo inference 37

Figure 2.6: SIice sampling. Xfter obtaining a random slice from the density (a), random values are
drawn until one is accepted. (b) and (c) show two such sequences.

2.2.4 Slice sampling

In networks with continuous variables, it is often not an easy task to sample fkom the

conditional distribution of each hidden variable, as Gibbs sampling requires. Unlike the

case for discrete variables, it is usually not possible to compute the joint distribution for

every configuration of a hidden variable. There are infinitely many configurations, and it is

often practically impossible to determine an effective discretization. Methods for sampling

from continuous distributions include the Metropolis algorithm [Metropolis et al. 1953: Neal

19931 and hybrid methods that use "momentum" in order to help search the configuration

space [Duane et al. 1987: Neal 19931. In this section, I review a technique cailed dice

sampling [Neal 1997; Frey 1997a], that can be used for drawing a value z from a univariate

probability density p (z) - in the context of inference, p(z) is the conditional distribution

(T - l)) Slice sampling does not directly produce values distributed p (z k l { z j = r - 1 }j=ij+k

according to p(z) , but instead produces a Markov chah that is guaranteed to converge to

p (z) . At each step in the sequence, the old value zold is used as a guide for where to pi&

the new value znew. Wheo used in a systern with many variables, tliese updates may be

interleaved for greatly improved efficiency.

To perform slice sampling, al1 that is needed is an efficient way to evaluate a function

f (2) that is proportional to p (z) - in this application, the easily computed joint probability

p (z r , (zj = . z ~ ~ - !) } ~ = ~ jpk) is appropriate. Figure 2.6a shows an example of a univariate

distribution, p (z) . The version of slice sampling discussed here requires that all of the prob-

abiiity m a s lies within a bounded interual as shown. To obtain zneW from znew, f (PW) is

first computed and then a uniform random value is drawn frorn [O, f (znew)]. The distribu-

tion is then horizontally "sliced" at this value, as shown in Figure 2.6a. Any r for which

f (z) is greater than this value is considered to be part of the slice, as indicated by the

bold line segments in the picture shown at the top of Figure 2.6b. Idedly, rnew would now

be drawn uniforrnly from the slice. However, determining the line segments that comprise

the slice is not easy. for although it is easy to determine whether a particular 2 is in the

2.3 Variationai inference 38

slice, it is much more difficult to determine the line segment boundaries, especially if the

distribution is multimodal. Instead. a uniform value is drawn from the original interval as

shown in the second picture of Figure 2.6b. If this value is in the slice it is accepted as

p e w (note that this decision requires an evaluation of f (4). Otherwise either the Mt or

the right i n t e d boundary is rnoved to this new d u e , while keeping znew in the interval.

This procedure is repeated until a value is accepted. For the sequence in Figure 2.6b. the

new value is in the same mode as the old one, whereas for the sequence in Figure 2 . 6 ~ ~ the

new value is in the other mode. Once znew is obtained, it is used as znew for the next step.

As shown in Appendix A.4, t his procedure satisfies detailed balance and t herefore gives the

desired stationary distribution p(z) .

2.3 Variat ional inference

In contrast to both the rather unprincipled approach of applying probability propagation

to multiply-connec ted networks, and the computat ionally intensive stochast ic approach of

Monte Carlo, variational inference is a nonstochastic technique that directly addresses the

quality of inference. In the Bayesian aetwork literat ure, variational inference met hods [Sad-

Jaakkola and Jordan 1996; Ghahrarnani and Jordan 1997; Jaakkola, Saul and Jordan 19961

were introduced as an alternative variation on the central theme of Helmhoitz machines

[Hinton et al. 1995; Dayan et al. 19951, which are described in Section 2.1. However, I will

present variational inference first? because it is simpler to understand.

Suppose we are given a set of visible mriables v C a. (This set may includes different

variables on different occasions.) In order to solve the inference problem of estimating

P(hlv), we introduce a parameterized variational distribution Q(h] t) that is meant to

approximate P(h(v). The most appropriate form of this distribution will depend on many

factors, including the network specification and the quality of inference desired. Next, the

distance between P (hlv) and Q (hl<) (e.g., Euclidean, relative ent ropy) is rninimized wit h
respect to c, either directly or by using an optimization technique such as a Newton-like

method or a conjugate gradient method [Fletcher 19871. Once optimized, the distribution

Q(h(c) is used as an approximation to P(h(v).

The main advantage of variational inference over probability propagation in multiply-
connected networks is the explicit choice of a distance measure that is minimized. Al-
though probability propagation is optimal for singly-connected networks, there is very little

known theoretically about the quality of inference that results when the network is multiply-

connected. On the other hand, there is no general guarantee that in multipiy-connected

networks, variat ional met hods will perform better t han probability propagation. An ex-

2.3 Variational inference 39

ample where pro bability pmpagat ion in mult iply-connected networks works very weil for

practical purposes is the celebrated turbo-decoding algorithm for error-correcting coding

[Berrou. Glavieux and Thitimajshima 1993: k e y and Kschischang 19961.

Compared to Monte Carlo. variational inference may provide the designer with a more

structured approach to choosing a computstionally tolerable approximation to P(h(v).
However, variational met hods do not tsually provide a means to obtain exact inference.

Also, variational inference can only be applied when the network is well-tailored to a sen-

sible d i s tace measure dong with a fkuitful form of variational distribution. (For example.

the rnajority of work on variational methods for Bayesian networks to date has focussed

on networks that are parameterized.) In contrat. Monte Carlo methods can be applied to

any Bayesian network. and can be designeci so that they are guaranteed to converge to the

correct soliit ion.

2.3.1 Choosing the distance measure

Depending on the particular problem. difTerent measures of distuce may be appropriate.

For example. in the case of hard-decision classification and hard-decision channel coding, a

binary distance is ideal. Under this distance. the distributions are identical if they lead to

the same decisions. Otherwise, the distance is incremented for each incorrect decision. In
practice. this distance must be softened in order to ilse continuous optimization methods.

As another example. we will see in Chapters 3 and 4 that for pattern classification and

data compression. the appropriate "distance" is the Kullback-Leibler divergence. or relative

entropy, between Q(h(c)

Notice that this is not a

and P(h1v):

true distance since it is not symmetric: DQllP # Dpllp. where

(For density functions, the summations arc replaced by integrals.)

The choice of whether to use DQllP or DPl iq depends on our objective. The former

places emphasis on not inferring unlikely values of h at the cost of not inferring some of

the likely values, whereas the latter places ernphasis on inferring dl likely values of h at the

cost of inferring some of the unlikely values. For exampie, consider a real-valued univariate

probability density p (z) over z that has two modes. as shown in Figure 2.7. Suppose the

2.3 Variational inference 40

Figure 2.7: The effect of using (a) DrrIlp versus (b) LIplI,, when fitting a variational distribution
q(z lc) that is unirnodel to a bimodd distribution p (=) .

variational distribution q (z f<) is a Gaussian with < consisting of a mean and a variance.

Figure 2.7a shows the optimum variational distribution that is obtained by rninimizing

Dqllp: whereas Figure 2.21 shows the optimum variational distribution that is obtained by

rninimizing DpIlq -

Notice that in order to compute Dgl lP in (2.24). we need P(hlv): which is what we

were after in the first place. So. in practice. we usually rninimize the following free energy

func t ion:

Notice that minimizing FQilP wirh respect to F gives the same set of parameters as minimiz-

ing DQllp. since log P(v) does not depend on S. In order to compute FqllP. we only need

P(h.v), which is readily available in Bayesian networks. (P(h.v) is not easy to compute

in other types of graphical models. such as Markov random fields.)

2.3.2 Choosing the form of &(hl<)

The form of Q (hl<) will strongly influence the qudity of the variational inference as well as

the tractability of computing the distance and its derivatives (which may be needed for the

optimization procedure). Exact inference can be achieved in principle by associating one

parameter Eh with each state of the hidden variables h, where Q is meant to be an estimate

of P(h(v). However. computing the distance will require an explicit summation over ail

possible states of the hidden variables. The number of terms in this s u equals the number

of possible configurations of the hidden variables, so this approach will only be tractabie

when there are not many configurations of the hidden variables. In fact, in Most cases the

above procedure wiil not be any more computationdy efficient than directly computing

P(hlv) using Bayes ride.

We wodd like to choose Q(hlE) so that the effect of the hidden variables h in the distance

2.3 Variationai inference 41

measure can be integrated out either analytically or using a reasonably small number of

cornputatious. In this way, the distance and its gradients can be determined without having

to numericdy examine each possible state of the hidden variables h.

2.3.3 Variational inference for the burglar alarm problem

Io this section. 1 illustrate variational inference using the burgIar darm network described

in Section 2.2.3. One type of variational distribution that is often used is the product form

distribution. Under this variational distribution. the hidden variables are independent. For

continuous variables. f u t her assumptions may be needed regarding the distributions for

each hidden variable (e-g.. see Section 3.7). For the binary burglar b <and earthquake e vari-

ables in the burgiar darm network. we can specify an arbitrary product-form distribution

riçing the parameters cl and 52 for the probabilities that b = 1 and e = 1 respectively. That

Inserting this variationai distribution into (2.26). and using the simple bin-ary entropy f~rnc-

tion H(C1) = -Ci log<1 - (i - C r) log(1 - c i) . we get

- Q(b. el() log P(b. e. a = 1)

= -H(EI) - H(&) - C Q(b. el() log P(b. e, a= 1).

Notice that the product form of Q(b. el<) was used to sirnplifjr the first term of the second

equality.

At this point, without any fixther restrictions, we have not gained any computational

advantage by using the variational approach. To compute FpllP and its derivatives, we must

stiil examine ail possible configurations of the hidden variables to compute the expectation

of log P(b, e, a = 1). In order to make profitable use of variationai inference, log P(b, e, a = 1)

2.3 Variational inference 42

Figure 2.8: The contours of Fqllp for a variational technique applied CO the burglar alarm prohlem.
The global minimum occurs at ci = 0.951. & = 0.186.

must have a form that makes the computation of FqllP easy. It turns out that the conditional

probabilities (2.12) for the burglar alam network were obtained fiom

So. the joint distribution P(b. e. a = 1) c m be written

Substituting this into (2.28). we get

Notice thât the hidden variables 6 and e do not appear in this final expression. Because

of the product form of Q (b . elE) and the exponential form of P(b, e' a = 1). we were able to

integate them out.

Figure 2.8 shows a plot of the contours of Fgllp as a function of CI and &. The global

minimum occurs at EL = 0.951. & = 0.186, which means the inference estimates are ~ (b =

Ila=L) = 0.951 and P (e = lin= 1) = 0.186. These estimates clearly favor a burglar as the

cause of the alarm. R e c d that Gibbs smpling allowed us to estimate covariance statistics

2.4 Helmholtz machines 43

between the two hidden variables. Variational inference does not readily produce those

estimates. However. compared to the margind probabilities P (b = 1 ja = 1) = 0.751 and

P(e = 1 la = 1) = 0.349 produced by the probability propagation algorithm. the variational

method places more emphasis on the more iikely cause 6. In this sense, the variational

technique prodiices a product form distribution that reveals covariance better than the

marginals. produced. Say. by probability propagation. For example. iising only the margind

probabilities produced by propagation. we might conclude that the probability that bath

a burglar and an earthquake occmed is 0.751 x 0.349 = 0.262. In contrast. ming the

probabilities produced by the variationai method gives 0.951 x 0.186 = 0.177. wbich is

closer to the correct value of 0.116 given in (2.13).

In this case. because the biirglar alarm network is so small. the analytic form of FqllP
in (2.31) is not much simpler than the expression that would be obtained if (2.27) were

substituted into (2.28) and explicit summation over al1 values of b and e were performed.

However, for targer networks. exponent ial computat ional savings may be achieved by using

conditional distributions chat lead to simple forms of log P(h. v).

2 -3.4 Bounds and extended representations

In practice. the form of log P(h. v) is often not simple. so that a straight-forward variational

npproach cannot be attempted. In these cases. it may be possible to derive an upper bound

on the distance that does not depend on h. and t hen try to minimize the bound instead of the

distance itself [Saul. Jaakkola and .Jordan 19961. Effectively. we approximate log l/P(h. v)

with an upper bound that can be integrated analytically.

Alternatively. we may express each condit ional dis tribut ion P (zk 1 ak) in terms of condi-

tional distributions over a n extended set of variables [J d k o l a . Saul and .Jordan 19961. For

example, P(qlak) might be the marginal distribution of P(zk7 yklak), where yk is part of

the extended representation. Let yH be the extension variables associated with the variables

in h. It is sometimes possible to introduce a variational distribution Q(h, yH le) over the

extended representation for which h and yH ean be integrated out in the distance measure.

2.4 Helmholtz machines

One of the main drawbacks of Mczrkov chah Monte Car10 inference and variational inference

is that for complex networks. each time a set of variables is observed, either a computation-

d l y taxing Markov chain must be simulated. or a high-dimensional optimization must be

performed to find the best variationd distribution. The essentiai problern, of course. is that

2.4 Helmholtz machines 44

the optimal distribution over h is dxerent for different d u e s v of the visible variables. A
Helmholtz machine [Dayan et al. 1995: Hinton et al. 19951 taddes this problem by coupling

the original generative network with a recognition Bayesian network that is rneant to be

capable of quickly producing an estimate of. or an approximate sample h m . P(h1v). This
recognition network essentidy replaces the variational optimizat ion needed for variat ionai

inference. I t is c d e d a "recognition" network because it is meant to recognize the hidden

variable values, or "causes". that are responsible for the values of the visible variables.

As described above. the job of the recognition network is to quickly produce an approxi-

mation to P(h1v). Obviously. the recognition network must be ditferent fiom the generative

network. or the inference could be done directly on the generative network. I will higMght

this dXerence by labeling the recognition distribution with Q. So. the recognition network

is used to compute Q(hlv)? which is an approximation CO P(h(v) as given by the generative

network. Various types of recognition network are described below, but they a l l share a

common property. Since the recognition aetwork is a Bayesian network. we casnot expect

to be able to quickly compute Q(hlv) for a r b i t r q sets h and v. In k t . 1 wiU usually

assume that the set of visible variables is the same for each inference case. although. of

couse, the d u e s for the visible variables may d 8 e r from case to case. This restriction is

the main disadvantage of the Helmholtz machine compared to Monte Car10 inference and

vaciational inference. which usually place no restrictions on which variables are obsenred.

2.4.1 Factorial recognition networks

To ensure that the inference process is fast. we oiight to design the recognition network

so that the computation of Q(h(v) can be carried out efficiently. The simplest recognition

network in this sense is one for which each variable in h is dependency-separated £rom each

other variable in h by the visible variables v. In other words. given the visible variables, the

hidden variables are independent. I will refer to such a network as a factorial recognition

network. since given the visible variables. the distribution over the hidden variables c m be

factored into a product of probabilities:

A factoriai recognition network with h = {zi; 22' 23) is shown in Figure 2.9a. Note that by

condition 2 in Section 1.2.4. variables in h are dependency-separated by v = {z4, t.5: rn, z7).

In many cases. the product form approximation given in (2.32) is not very close to P(h(v).
However, it is the easiest network to design or estimate, and because the ùidden variables

2.4 Helmholtz machines 45

Figure 2.9: (a) An example of a factorid recognition network. (b) X factorial recognition network
for the burglar alarm problem.

are independent given the visible variables. it is computationally efficient for inference.

Figure 2.9b shows a factorial recognition network for the burglar alarm problem. The

recognition distribution is given by Q(b. ela) = Q(b(a)Q(e!a) . and so is limited to the sane

inference estimates as the variat ionai technique described in Section 2.3.3. Namely, the

factarial recognition network cannot capture the covariance between the two causes. Can
we design a recognition network that can give better estimates? The answer is "yes" . by

using a nonfactorial recognition network.

2.4.2 Nonfactorial recognition networks

Xlthough it is easy to imagine situations where a factorial recognition network will suffice.

for the burglar alarm problem discussed above we saw that a factorid recognition network

could not capture the covariance between the two causes of the alarm. In this section. I
describe nonfactorial recognition networks t hat are more powerful t han factorial ones.

A nonfactorial recognition network can represent cr distribution where at least one vari-

able in h is not dependency-separated kom at least one other variable in h by the visible

vruiables v. Of course. there are many ways to make a network nonfactorial. For example.

a nonfactorial recognition network is obtained by making some hidden variables depend

on other ones in addition to the visible variables. Figure 2.10a shows a My-connected

nonfactorial recognition network, which can be contrasted with the factorial network in

Figure 2.9a.

Another way to produce a nonfactorial recognition network is through the use of auziliaq

van'ables or danglzng units [Dayan and Hinton 19961. These variables do not influence the

output of the generative model. but help facilitate inference in the recognition network. For

example, an auxiliary variable in the recognition network can be used to choose between

two or more modes.

2.4 Helmholtz machines 46

Figure 2.10: (a) An e~arnple of a nonfactorial recognition network. (b) -4 nonfactorid recognition
network for the burglar alarm problem.

2.4.3 The stochastic Helmholtz machine

Suppose we are interested in only one of the hidden variables. and we would Lke to obtain i ts

distribution given the visibIe variables, &ter marginalking out the other hidden variables.

For a factorial recognition network. each hidden variable is independent given the visible

variables. So. the margind distribution is obtained simply by ignoring the other hidden

variables. In fact. the marginal distribution for zk E h in this case is Q (z k l v) . which is part

of the recognition network specification.

Such a simple procedure for marginalization is not in generd available for nonfactorial

recognition networks. In t hese networks. the hidden variables are no t independent given

the visible variables. However. Monte Carlo provides an easy way to estimate marginal

statistics. If we can obtain a sdficiently large sample hom the recognition network. the

distribution for zk can be approximated by constructing a histogram for zk alone. Of course.

we could directly apply Monte Carlo methods such as Gibbs sampiing (Section 2-22) to

the generative network. However. the hope is that we csn carefully design the nonfactorid

recognition network so that it is better suited to Monte Carlo th= the generative network.

In fact, we can avoid complicated Markov chain Monte Carlo by using a recopitiori network

for which ancestral simulation (see Section 1.2.3) c m be used.

In general, recognition networks can be either factorial or nonfactoriai and stochastic or

nonstochastic. Here. "nonstochastic" refers to the way the recognition network is used, not

to what the network represents. Al1 Bayesian networks represent a stochastic phenornena,

but not al1 networks are used with Monte Carlo. A factorial recognition uetwork can easily

be operated stochastically, simply by choosing each hidden variable zk fiom its distribution

Q(zk 1 h) A nonfactorial recognition network is operated stochastically using a Monte Car10

met hod (preferably ancestral simdat ion). .4 factorial recognition network c m easily be

2.4 Heimholtz machines 47

operated nonsto&astically, since the joint distribution over the hidden variables factors

and the marginal distribution for e d hidden variabIe is readiIy available. However. a

nonfactorial recognition network usually cannot be operated nonstochastically. As described

above, the dependencies between the hidden variables makes this difficuk. However. there

are special cases where nonfactorial recognition networks can be operated nonstochastically.

In particular. recognition networks that can be viewed as a mixture of factoriai networks

can be operated nonstochast ically wit h relative ease.

2.4.4 A nonfactorial recognition network for the burglar darm problem

In many cases. a simple nonfactorial recognition network can be uscd to represent cov,a.ri-

ances between hidden viti-iables. A nonfactorial recognition network for the burglar aiarm

problem is shown in Figure 2.10b. The difference between this network and the factorial

one in Figure 2.9b. is that e uow depends on b as well as a. The conditional distributions

for a recognition network that performs exact inference are

Sampling hidden variables using ancestral simulation in this network is a c t u d y more effi-

cient than using Gibbs sampiing in the generative network. as described in Section 2.2.3.

(The computationd savings are quite low in this case. becaiise there are only two hidden

variables.)

The joint distribution over the hidden variables given a = I can be cornputeci fiom

Q(b. e f a = 1) = Q(e(b. a = l)Q(b(a = 1):

These probabilities are identical to the probabilities in (2.13) for exact inference.

Chapter 3

Pattern Classification

Automated methods for making decisions based on inputs play a. very important role both

in engineering applications and in helping us understand how biological systems respond

to their erivironments. As m m y engineers and cognitive scientists will attest. the terms

.'input3 and "decision" for this pattern classification problem are not clearly ciefined in

theory. in practice. the probIem is usudly decomposed through design and analysis. The

input to the classifier is provided by a preprocessor that transcribes part of the physicd state

of the world. Different preprocessors are appropriate for differeiit ciassifiers. and often an

iterstive process is used to find the optimal preprocessor-classifier pair for a given problem.

In general. the preprocessor uses simple statisticsl and signal processing techniques, whereas

the classifier is left with the "bard" problem of coming up with decisions.

A very simple method for making hard decisions is the nearest neighbor classzfier. This

classifier keeps a database of labcled training patterns. Given a test pattern. the nearest

neighbor classifier outputs the class of the pattern in its database tiiat is *closest" to the

test pattern. Any distance metric may be used, but typicdly Euclidean distance or one

of its generalizations are used. Figure 3.1 shows a selection of normalized and quantized

8 x 8 b i n q images of haad-written digits made available by the US Postal Service Office of

Advanced Technology. il database with a total of 7000 patterns was constructed with 700

patterns Born each digit class. Using nearest neighbor classification, a misclassification rate

of 6.7% was obtained on a test set of 4000 patterns. Slightly better resdts c m be achieved

by using the k-nearest neighbor method. This method picks the most common ciass of the

k training patterns that are closest to the test pattern.

One interesting property of the k-nearest neighbor method is that it is a consistent

classifier. That is, as the number of training cases T tends to infinity, the decisions produced

by the k-nearest neighbor method (with. e.g., k = fi) become Bayes optimal. However,

Figure 3.1: -450 examples of 8 x 8 binary images of liand-writ.ten digits.

although k-nearest neighbor classification works quite well when a large training set is

available. it perfornis poorly when training data is limited. Figure 3.2 shows a training set

consisting of two classes with 30 2-dimensional red-valued patterns in each clriss. Suppose

we wish to classifi the indicated test point. The nearest neighbor met hod will choose class

A. In fact. just as our intuition tells iis. the test point was drawn from class B. If a k-nearest

neighbor classifier is used. class A will consistently be erroneously chosen for sensible values

of k.

The above example illiistrates a fundamental flaw with the nearest neighbor approach

- namely. that it does not use global structure. Viewing the data from class B with a

local jnmow) .'window". the test pattern seems very unlikely. However. a. more global

examination of the data from class B leads us to believe that the data cornes fkom a roughly

sinusoidal manifold: and that just by chance t here isn't any training data for this class in

the central region of the figure. Under this view. the test pattern is much more likely. An

even more global examination indicates that the two classes of data are probably similar,

except for the fact that they lie on manifolds that are relatively inverted. As a result.

by inverting one class of d a t a we ac tudy have 60 points available for estimating the
prototypical manifold. In this way. we obtain even more evidence that the test point is

hom class B.

One way to endow methods with the ability to extract global structure is to use param-

eterized models that c m genemlize in nontrivial ways. In Bayesian terxns, we have prior

expectations about certain properties of the data. For example, we expect the probability

density function for the data within a given class to be smooth on some scale. The class of

distributions t hat our mode1 can represent should reflect these prior expectations. By fitting

Test point +

Figure 3.2: Two classes of 2-dimemional training data and a test point.

the mode1 to the data. this prior knowledge is then modified to obtain a more data-driven

set of posterior expectations. In the above example, we decide that a sinusoidal manifold

is a reasonable compromise between our prior expectations regarding continuity and the

observed data within class B.

Simple parametric models, such as multidimensional Gaussian density functions. c m

be used to obtain some degree of generalization. However. overly simple models of this

sort are inflexible in that they cannot generaiize in complex ways. Also. for reai-world

proùlerns. such inflexible models are often incons~stent~ since they often cannot represent

the complexity in natural data sets. In this chapter. I examine the use of more flexible

Bayesian network models for pattern classification.

1 begin this chapter with a description of how Bayesian networks can be used for pattern

classification. Then. in Section 3.2, I present the %utoregressive" network which is quite

simple? but performs surprisingly well as a pattern classifier. In Section 3.3, 1 describe

maximum likelihood estimation and "maximum likelihood-bound" estimation for models

with latent (hidden) variables. Latent variables are not part of the input pattern. but

are meant to represent higher-order structure in the data (e-g.. handwriting style). In
Section 3.4: 1 review three techniques for estimating the parameters of sigrnoidal Bayesian

networks with latent variables: Gibbs sampling, variational inference, and the wake-sleep

algorithm. Then, in Section 3.5, ail of these models are compared with the k-oearest

neighbor classifier and a tree-based classifier when classifying handwritteu digits.

An area which is closely related to estimating pmbability models for pattern classifica-

tion is unsupervised Iearning. I view unsupervised learning as the process of estimating

3.1 Bayesian nehorks for pattern classification 51

a probability model for a class of data. The hope is that some of the latent variables in

the model will come to represent interesting features. and that these features can then be

automaticdy extracted for novel input patterns. In Section 3.6 1 present results for the

Helmholtz machine. when it is given the task of trying to extract structure fÏom noisy

16 x 16 images of horizontal and vertical b#xs. Finaily, in Section 3.7. 1 present a new type

of pxameterized Bayesian network that can be used to simultaneously extract continuous

and categorical structure in an unsupervised manner.

3.1 Bayesian networks for pattern classification

Bayesian networks provide a means of producing structured probabilistic modeis with ar-

bitrary complexity. In this sense. they are flexible models. The majority of this chapter is

devoted to using Bayesian networks to produce one model for each class of training data.

X new test pattern is classified by choosing the class of the model that is best suited to the

test pattern. In ~on t r a s t~ it is certainly possible to construct a Bayesian network that Lias

one set of pattern variables v. a variable that represents the class j . plus othcr variables

that represent important physical effects. An inference method can then be used to com-

pute P(j!v) using the network. An advantage of this approach is that the model may make

efficient use of the similarities and differences between al1 of the classes. For example. if

each class of data in Figure 3.2 is modelled separateiy, then the similarity between the two

classes cannot be exploited as described above. In practice. however. a parameter estima-

tion algorithm may fail to End such similarities and in the process of trying to mode1 both

classes fail to properly extract the features from any one class. ilnother disadvantage of the

single-mode1 approach is t hat a new class of data cannot be introduced without refitting the

model. Despite these di~adv~mtages. the single-mode1 approach is seductively interesting.

In Sections 3.6 and 3.7, 1 study networks that are estimated from unlabeled data. where

the hidden variables automatically come to represent data classes. Although estimation

met hods for t his unsupervised learning problem are currentiy not highly cornpetitive wit h

ot her practical engineering techniques, they are potentially very powerful and help shed

light on how natural neural systems might work.

The multiple-mode1 approach to pattern classification consists of est imating one model

for each of the J classes of data. In this sense, each model is conditioned on a class

number. For the sake of generality, I will assume that the j th mode1 has a set of features

or hidden attributes hj that help mode1 the pattern variables v. Network j thus represents

a distribution P(v. hj l j) . Finally, the class probabilities P (j) must be specified; these are

simply determined hom the relative sizes of the classes of data and any prior knowledge we

3.2 Autoregressive networks 52

have at hand. (For example. even though a training set contains 10 patterns from class O

and 14 patterns from class 1. if we know ahead of time that the classes are equally iikely

then we set P(j = 0) = P (j = l).)

Idealiy, the model estimate for class 3 will yield a distribution

distribution P,(v(j) of the data fkom class j:

P(v~ j) = C P(v. hj lj) P,(v~ j) .
hl

that is close to the true

(3.1)

However, even if the approximation is good. the sum in the above expression is exponential

in the number of feature variables, and so cannot be computed directly. Instead. for a given

test pattern v. one of the inference methods described in Chapter 1 can be used to produce

class likelihood est imates,

~ (v l j) ? j E {O.. .. . J - 1). (3.2)

Findy? Bayes nile is used to produce soft classification decisions,

and a hard decision j* can be made by choosing the best class.

The technique used to estimate the class models and the inference method used to

estimate P(j (v) depend on the structure of the networks. Before examining intractable

models for which inference and parameter estimation must be approximated. 1 discuss an

interesting class of tractable systems. For the sake of notational simplicity, the fouowing

sections present models and algorithms for estimating P(v), with the class index j left off.

It shodd be kept in mind that one such density model m u t be estimated for each class.

3.2 Autoregressive networks

There are a variety of Bayesian network architectures for which inference and parameter

estimation c m be performed exactly within a reasonable amount of time. An architecture

of this type that 1 discuss here is easy to implement and works surprisingly well on sorne

problems. 1 define an outoregressiue network as a fdly-connected parameterized Bayesian

3.2 Autoregressive networks 53

Figure 3.3: An autoregressive network with ancestral ordering u l , u- ? , u 3 , ~ . 4 ! US.

network without any latent variables. The graph for the network is thus specified corn-

pletely by an ancestral ordering. Unless 1 am considering different ancestral orderings of

the variables, 1 will usudy assume that the variables are labeled in the ancestral order.

Then, the parameterized distribution P(vl0) for the data can be written

where 8 is the entire set of parameters, and Bi is the set of parameters associated with input

Each of the conditional probability distributions in this expression is represented using

some sort of parametric or flexible model. Figure 3.3 shows an example of an autoregressive

network wit.h five variables.

3.2.1 The logistic autoregressive network

If the pattern consists of binary variables (vi E {O? 1)) logistic regession [McCullagh and

Nelder 19831 (see Section 1.2.6) may be used:

where g(x) = 1/(1 + exp[-x]) is the logistic function, and a dummy variable uo = 1 is used

to account for a constant in the arguments of the exponent.

For this logistic autoregressive network, P(vl6) can be computed in C?(N2) time in the

following way. For each variable vi , the sum CZ eviVk vk is determined kom the values

of V I , . . . , ui- 1, and t hen P(vi 1 {ut };z'~, Oui) is determined fiom the value of ui using (3.6).

P(vl9) is then computed using (3.5).

3.2 Autoregressive networks 54

3.2.2 MAP est irnation for autoregressive networks

An autoregressive network can be fit to a class of training patterns dl)'. . . . viT) using

MAP parameter estimation. To do so, we need to specifi both a prior distribution over

the parameters 8, and also the training set likelihood given the parameters. Assuming that

each training case is independent and identically drawn (i.i.d.). the log-likeiihood of the
training set is

log ~ ({ v (~ j }T= 1 10) = log P(v(~) 10) = log P (v (~) 10) = log I-J P (V ~ 1 {?IF));zll,
t= 1 t= l t= 1 L1

If the parameters are independent under the prior, t hen given a training set. the it h term

in the sum of the last expression depends on a set of parameters Bi = {Oi 1 f i i T i - 1) t hat

are independent of ail the other sets of parameters 8,). i' # i. So. MAP estimation can be

broken down into N subproblems. where subproblem i is to estimate the parameters Bi for

the model that predicts ui from { u k } ~ ~ l l .

Here, I derive a gradient-based MAP estimation method for the logistic regression model

used in the logistic autoregressive network. Let the data for subproblem i be denoted
(t) . Di = {IV,];=,}T=l. Up to a constant of proportiondity that does not depend on Bi, the

likelihood of the training data for subproblem i is

where the 1 s t expression is obtained fÎom (3.6).

1 use a prior distribution under which the parameters in Bi are independent and normdy

distributed with mean O and a 6xed variance a::

Up to a constant of proportionality that is independent of Oi, the posterior distribution

3.2 Autoregressive networks 55

over the mode1 parameters Bi given the data V, is

Taking the logarithm of this expression and leaving out constants that do not efFect the

optimization procedure. MAP estimation for subproblern i entails maxixuizing

1 use the conjugate gradient optimizat ion met hod [Fletcher 19871 which requires the

derivatives of C':

Both Ca and its derivatives can be computed in O(iT) time.

3.2.3 Scaled priors in logistic autoregressive networks

In the prior distribution over the parameters (3.9). how should the miance of of the

parameters for the ith input depend on i? That is. before seeing any training data, how do

we expect the variance of the parameters for a variable to depend on how many inputs that

variable receives?

Assume we don't have prior knowledge of a preferred ordering of the variables. By
symmetry, it makes sense to assume a uniform prior distribution over the variables: i -e . ,

under the prior each variable is equally Likely to have each of the values O and 1. The

dummy variable va = t is exempt from this prior, of course. Now, consider the prior

probability predictions made for vi. This prior distribution has two sources of variability: a

Gaussian prior over the parameters Bi, and a uniform distribution over the inputs { v ~ } ; ~ ~ ~ .

By symmetry, t his prior distribution over the probability predictions made for vi should not

depend on i. As shown below, this restriction determines how to set the variance for the

parameters 0; for eadi variable vi .

Since the probability prediction for vi is determined by its totd input ~ ~ ~ ~ 9 i k u ç , 1

3.2 Autoregressive networks 56

will enforce the above restriction on the total inputs. Averaging over the two sources of

variability, we get a mean value of the total input for ui of

We can take E[Bikvk] = E[Bik] E[vk], since the parameters and the inputs are independent

under the prior. The final step holds since the parameters have mean O.

Since the mean total input is 0, the variance of the total input for vi is

NOW, since Bir: and O i j , k # j are independent under the prior, EIOikOij] is nonzero only if

j = k. So, the variance of the total input for vi is

Under the prior, the probability predictions for ui should not depend on i. So, the

variances of the total inputs for vl and vi should not difTer:

Note that o: is the variance of the total input for V I , which has no input variables. Al1 of

the variances can be set by picking a reasonable value for a:. In rny simulations, I chose

of = 4. This value allows for probabilities near O and 1 at the output of the logistic function,

without favoring them too much (see Figure 1.6 on page 18).

It may be a good idea to let the biases in the network have a separate Gaussian prior,

although I have not yet explored this possibility experimentally.

3.2.4 Ensembles of autoregressive networks

An autoregressive network is specified by chosing an order for the rariables VI,. . . , U N .
Leaving computational considerations aside, if the subproblem models P (V ~ ~ { V ~ } & ' ~) are

consistent (i -e . , they converge to the correct distribution as the number of training ex-

amples tends to infinity) and there is a sufEciently large training set, then the particular

ordering chosen is not important. The mode1 for subproblem i will correctly represent the

real conditional distribution pr(vi 1 { v k } ~ ~ ~) , and so the product of the subproblem distri-

3.3 Estimation of modeis with unobserved variables 57

butions will give the true joint distribution. Honrever, the data sets considered here are

small, and the parametric subproblem models considered here (e-g., logist ic regression) are

inconsistent for many distributions of data. In this case, the order of the variables is impor-

tant in two contrasting ways. Certain orderings may give rise to simpler true conditional

distributions pr(vi[{ u k } i l \) that can be more accurately represented by the model distri-

butions p(v i 1 {vk}fi, - Bi). In contrast. for a given training set. dinerent orderings may lead

to different amounts of overfitting.

1 do not address here the difficult issue of how to select an ordering that optimally

balances these two effecix This problem is OifEcult both because the discrete ordering

cannot be optimized by a gradient-based method and because For the training sets I will

consider here. there is not enough data available to get a reliabie estimate of which ordering

is best. Imtead of searching for an optimal ordering, I estimate an ensemble of autoregressive

networks. where each network uses a randornly selected ordering of the variables. The

probability prediction for a given vector v is then taken to be the average of the predictions

over the ensemble of networks.

3.3 Estimation of models with unobserved variables

The notion of unobserved or hidden variables arises in mxny model estimation contexts.

For example. due to mechanicd failure. training data derived fiom physical measurements

may sometimes lack values for some variables in some cases. In contrast, it is often useful

to build hidden variables into a model by design. These variables are meant to represent

latent causes that influence the visible variables. Several of the Bayesian network models

discussed in the remainder of this chapter are latent variable models (e -g . . see Section 3.4).

For the sake of notational ~implicity~ 1 will use v to refer to the observed variables and h

to refer to the unobserved variables. This is a siight abuse of notation. since it c m happen

that some visible variables are unobserved. For example, severd of the photo-sensors in a

digital camera may be burned out, so that some of the variables in the image pattern v are

unobserved.

We would Like to estimate a probabilistic model P (z) for a training set consisting of T
patterns v('), d2) . . . , dT). where each pattern specifies the values of an observed subset v

of the variables in z. In general, each training case rnay specify a diflerent subset of visible

variables.

Let h(') = z\v(') be the set of hidden (unobserved) variables for training case t. Assuming

3.3 Estimation of models with unobserved variabIes 58

t hat the training cases are i.i.d., the iog-iikelihood of the training data is

To rnaximize this log-iikelihood. we set its derivative with respect to each parameter 0 in 0
to zero:

T
- P . h 6) - a log P (v (~) . hjt) (0)

- ' t=I ' h(t) P (v (~) . I I (~) ' , O) afl

The relation 8 log f (6) /88 = (1/0)a f (B) / B O was used in the first and third Line of the

derivation. Even though 8 log P (V (~) . h(')!B)/LW is quite often easy to compute. in many

cases of practical interest the system 01 equations obtained by setting a log P('DlO)/iW to

zero for each O is hghly noiilinear and cannot be solved in closed-form. One approach is

to perform gradient descent in Log P(v(') . h(t) 18). while sampling fkom ~ (h (" IV('). 8) using

bIarkov chain Monte Carlo. This gives .z Monte Carlo appro-ximation to gradient descent in

log P(V 18) as given in (3.18). Anot her approach is to solve the sysrem of nonlinear equations

iteratively. Aithough in principle any rnethod for solving a nonlinear system of equations

can be used (e -g . . Newton's method [Fletcher 1987]), the structure of (3.18) gives rise to a

particularly simple two-phase iterative method, c d e d the ezpectatzon-muximlzatzon (EM)
algorithm [Baum and Petrie 1966; Dempster. Laird and Rubin 1977].

3.3 Estimation of modeis with unobserved variables 59

3.3.1 M L estimation by expectation-maximization (EM)

Often, we have available an efficient method for estirnatirig the mode1 when al1 of the

variables are visible. That is. the system of equations obtained by setting

for arbitrary h(L) can be solved quite easily. Notice that it is essentially this system of

equations that is obtained if the dependence of P @ (~) idt). 8) on 8 in (3.18) is ignored.

The summation over h(" in (3.18) has the effect of replicating training case 1 once for

each configuration of the hidden variables for that case. and weighting each replication by

~ (h (') Idt). O) . This obse-tion leads to the following iterative two-phase EM algorithm:

1. Estep: Compute ~ (h (') [dt). 6) for each configuration h(') of the hidden variables for

each training case. and set ~ (h (')) c ~ (h (') IV('! . O) .

2. M-step: Solve the following system of equations for 8.

Stop if a convergence criterion is satisfied: otherwise go to 1.

In practice. the values of ~ (h l ')) for each training case are iisually not stored during the E
step. Instead. statistics that are sufFicient for the M-step are accumulated while processing

the training set. There are several proofs tliat each EM iteration is guaranteed to increase

the iikelihood of the training data [Baum and Petrie 1966: Dempster. Laird and Rubin 1977:

Meng and Rubin 1992: Neal and Hinton 19931. After presenting a more general algorithm

for maximizing lower bounds on the data likelihood P(V(8) . 1 will show that each iteration

of EM is guaranteed to increase the data likelihood.

3.3.2 Maximum likelihood-bound (MLB) estimation

Neal and Hinton [1993] introduced a new view of the EM dgorithm as s method for max-

irnizing a lower bound on the likelihood of a training set. This interpretation opened the

door to tractable approximations to EM for models that were clearly intractable. I will refer

to the new approach as maximum likeiihood-bound (MLB) estimation in order to highlight

its relationship to ML estimation. MLB estimation is an approximation to ML estimation

that follows from using the wrong distribution ~ (h (')) in the Es tep of the EM algorithm:

3.3 Estimation of models with unobserved variables 60

i. e.. ~ (h (~)) # ~ (h (l) idt). 9) . There are practical reasons for using a suboptirnal distribu-

tion ~ (h (~)) , the most obvious being that in some cases it is computationally infeasible to

cornpute ~ (h (')) for e v e q configuration of the hidden variables h(t) for eadi training case.

For example. some of the Bayesian network models discussed below have over one million

configurations per training case.

The bound used in ML% estimation is obtaîned using the foUowing form of Jensen's

inequality [Cover and Thomas 199 11 :

where x, g, = 1. and a, are arbitr- scalars. Xpplying this inequality to the log-likelihood

of the training data (3.17). we get

T T

log P(DI0) = c la@ P(v@). h(')10)] = 5 log[x ~(h('1) P(v(') . h(') 1 O)]
t = I hct, h('1 Q(h(t,

The goal of MLF3 estimation is to jointly estimate a distribution Q(h(t i) (which may or rnay

uot be pararneterized) and a distribution P (d t) . h(') IO). so as to rnaximize this lower bound

on the likelihood. This Ieads to the following generalized EM algorithm:

1. Generalized Estep: Increase the bound with respect to a distribution ~ (h (~)) .

2. Generalized M-step: Increase the bound BpllP with respect to O .

Note that unlike the Estep of the EM algorithm. the generalized Estep may produce a

Q-distribution for which ~ (h (')) # ~ (h (~) ! v (') . O) .

The EM algorithm can be viewed as a special case of the generalized EM aigorithm. where

we alternately rnaximize the bound BQliP with respect to an unconstrained distribution

~ (h (')) , and then with respect to P (v (~) h(t) (O) via 9. If the bound is rnaximized with

respect to ~ (h (')) during the generahed Estep, while enforcing Chil) ~ (h (')) = 1 using a

Lagrange multiplier. we obtain ~(h(')) = ~ (h (') ~ v (~) . O) . This form of the generalized EM
algorithm is identical to the standard EM algorithm presented in the previous section. Also,
in this case the inequality in (3.22) becomes an equality: BqllP = log P(-DIB). It follows

that the EM algorithm is a maximum likelihood estimation method.

Note that in general, MLB estimation does not give the same estimates as ML esti-

3.4 Multiplecause networks 61

mation. As a degenerate example. imagine that we use ML estimation to obtain a model

P (v (~) . h(t) 10) fkom a training set. and that we then apply MLB estimation with ~ (h (')) fixed

at a uniform distribution. In this case. the bound can be increased by moving P(v(') . h(')J@)

uwap fiom the ML estimate (unless P(v(') h(t). O) happens to be uniform. in which case a

uniform ~ (h (~)) makes the bound tight so that P(v(') , h(')l@) wiil not change). However.

a s long as we are able produce estimates of ~ (h (')) that are "close" to ~ (h (') /v(~). O). MLB
estimation will be close to ML estimation. Of course. in most cases. if we have the compu-

tational resources available to obtain an ML estirnate. MLB estimation should not be iised.
In Section 3.4. I introduce a class of Bayesian networks that have many latent (hidden)

variables. For these networks. it is computationally intractable to perform ML estirn a t ' lori.

and so MLB estimation is used.

3.4 Multiple-cause networks

In m m y cases. it makes sense to postulate that a data vector v natiirally arises from the

consequences of a set of hidden causes h. For example. an image may be nicely described

as a two-dimensional rendition of a combination of objects. If hk is a, b i n q variable

indicating the presence of object k in the image. then the model distribution P(v1h. 8')

is the distribution wer images given which objects are present. (eV is a set of parameters

associated with the distribution over v). This distribution is meant to capture the way in

which the objects interact to form the image as well as any inexplicable noise.

The model P(vlh. 0') may be simplified by assuming that the K causes dependency-

separate the image pixels. That is. once we know which causes are present, each pixel

is independent of the others. In this case. P(vl h. 9') = n:", , P(ui jh. O :)) . If the visible

variables <are binary. each conditional distribution can be implemented using, for example,

logistic regression. In contrast to the logistic autoregressive network where each visible

variable is regressed on a subset of the other visible variables (see (3.5)), in the multiple-

cause network each visible vasiable is regressed on the hidden cause variables h:

where 0: = {O:, . . . : 0L }' and we take ho = 1 in order to account for a constant in the

summations. Binary Bayesian networks which use logistic regression for the conditional

distributions are often called binary sigrnoidal networks [Ned 19921 and are sometimes

c d e d stochastic multi-layer perceptrons.

To complete the model, we provide a distribution p(hlkJH) over the set of causes. Al-

Figure 3.4: A multiple-cause network with five visible variabies v and four hidden cause tariables
h.

though it seems na tua l that in many cases the hidden variables hk might be interdependent.

for the sake of simpiicity. 1 will assume for now that they are not:

where eH = (O p a:-}. Thse probabilities can be nicely parameterized using the logistic

hnction:

An exmple of this type of multiple-cause Bayesian network is shown in Figure 3.4.

Yotice that the dependency-separation of the variables v by the set of hidden variables h

is ensured by condition 2 described in Section 1.2.4.

Supposing that we have somehow obtained an accurate model of the triie causal process

for each class of data (e.g.. iising a method described below). in order to perform classifica-

tion we would Like to cornpute the marginal probability P(vl6) for each class model. This

c m be computed exactly using

where 0 = (O*. eV} is the entire set of parameters. However. this sum is exponential in

the number of causes K and so in practice. we must m e another approach. It is obvioiis

from Figure 3.4 that probability propagation cannot be iised to obtain an exact result. siiice

the Bayesian network contains many cycles. In fact. we must use an approximate inference

method.

3.4 Multiple-cause networks 63

Since exact probabilistic inference is needed for M L and MAP parameter estimation.

these estimation methods are &O intractable. For example. in order to perform the E s t e p

of the EM algorithm. we must compute P(h1v. O), which has .an exponeniiai number (2 K)

of terms.

In the next three sections. 1 show how Gibbs sampling, variationai inference, and the

stochastic Helmholtz machine can be used to approximate P(vj0) and perform maximum

Likelihood-bound (PVILB) parameter estimation in multiple-cause networks.

3.4.1 Estimation by Gibbs sampling

In order to estimate a multiple-cause network from a set of training examples v('). dT).
we c m perform on-line gradient descent in log P(v. hl@) while sampling h m P(h1v. 8) us-

ing the Gibbs sampling method described in Section 3-22. For the current training case

dt). we simulate a Markov chain to obtain a configuration h(') of the hidden variables.

(Notice that in general h(t) will be different each time v(') is processed - idedy. h(')
will have a distribution P (hlv('). O) .) In order to perform Gibbs sampling for the logistic

multiple-cause network described above. we need to be able to sample from the distribu-

tion for each hidden variable hk given the other cause variables a d the visible variables.

Since the cause variables are binary. we only need to compute a function that is pro-

portional to P(hkl{h, v. 0) . The two values can then be normaiized to obtain

P(hk! {h, f ~ ~ , , + , . v. 8). Since the total joint probability for h and v can be easily corn-

puted in U (K N) time using the ancestral ordering, the joint probability c m be used to

compute the conditional distribution as follows:

For a piven training case dt): the latent wiirbles are visited in a specified order while

drawing a new value for each variable kom its conditional distribution. The entire set of

latent variables h is processed in this fashion for a specified number of times before the

Markov chain is terminated and some configuration htt) of the latent variables is produced.

The hidden variable biases and the parameters comecting the hidden variables to the

visible variables are adjusted by following the derivat ives of log P(v(') , h(t) 10) ag follows:

3.4 Multiple-cause networks 64

and

where q is a learning rate.

In order to perform classification. we would like to compute P(v18) for a given visible

vector:

This problem can be viewed ari a form of fiee erzergy estimation [Sheykhet and Simkin 1990:

Neal 19931. 1 use a very simple approximation that is quite fast and works well in practice

for classification purposes. Since the number of terms in the above sum is exponential in the

number of causes. 1 approximate it by assuming that the rnajority of the total probability

mass is contributed by a smdl number of clusters in h-space. These clusters are foiind

bÿ simulating a Markov chah as described above. At multiple points in the chain. the

configuration of h and al neighboring configurations (2-e., those configurations within a

Hamming distance of 1) are added to a list of "significant terms". Only the neighboring

states of h are considered because once P (v , h(8) has been computed. it is easy to compute

the probabilities for configurations that differ fkom h by only one bit. After a specified

number of chsters have been visited in this manner, the above sum is approximated by

adding up the terms for the tabulated configurations. This method for estimating P(v18)
will not work well when there is a large number of clusters in h-space that contribute

significantly to the surn. However. I have found that in practice the Gibbs sampling learuing

algorithm tends to favor a srnail number of clusters. making this approximation reasonable.

3 A.2 MLB estimation by variational inference

In this section. 1 review the variational method developed by S a d e t ai. [1996] for MLB
estimation in sigrnoidal Bayesian networks. Tt turns out that a product-form variational

distribution leads to m intractable boiind. and so the bound itself must be boiinded by a

tractable function.

For MLB estimation by variational inference, the Q-distribution in the likelihood bound

(3.22) depends on some variational parameters S. For the sake of simplicity. consider the

bound for one training case v:

MLB estimation entails iteratively rnaximizing t his bound. first by varying < (the generalized

Estep), and second by adjusting the mode1 parameters 6 (the generaiized hl-step). The

first term in this bound is the entropy of the variationd distribution Q(hlc). and the second

term is the expected log-probability of h and v under the variational distribution.

Here. 1 consider a product-form variational distribution over the K latent variables

h l , hK (notice that ho is not inciuded since it is fixed to ho = 1):

where Ck: is the probabiiity under the variationd distribution that hk = 1. C'sing this

variational distribution. the entropy term in simplifies to

The second term in (3.31) is

Since the conditional probabilities are given by logistic cegression. this term containç many

expectations of noniinear functions. The first step to simplifying these expectations is to

express the conditiooal probability p(hc 19:) given in (3.25) in the following way:

The expectation of log p(hklO,H) is then

3.4 Multiple-cause networks 66

Similady. the conditional pro bability P(ui h. 0:) can be written

The expectation of log P(vilh. 0;) is then

The overall bound for v is

Except for the last term. the values of these terms and their derivatives (wit h respect to the

variational parameters) can quite easily be computed. The explicit summation over h in the

last term c a n o t be reduced to a tractable form. However. the Iast term can be bounded by

introducing some extra variational paraneters y . (See [Saul. Jaakkola and Jordan 19961 for

details.) MLB estimation for the new bound BP!,p < BQllP entails iteratively maximizing

this bound. first by varying and v (the generalized Estep). and second by adjusting the

mode1 parameters O (the generalized M-step) .

3.4.3 The stochastic Helmholtz machine

A stochastic Helmholtz machine consists of a pair of Bayesian networks that are fit to

training data using an algorithm t hat approximates MLB parameter estimation, where the

bound on the likeiihood may be very cornplex. lii addition to the multiple-cause network

that describes P (v , h(8) (the genemtive network), there is a recognition network that de-

scribes Q (h(v? 4) . The stochastic Helmholtz machine requires t hat the recognition network
have an ancestral ordering such that it is easy to draw samples boom Q(hlv, 4). The ad-

vantage of the stochastic Helmholtz machine over Markov chain Monte Car10 is that each

s m p l e h m the recognition network is independent. as opposed to dependent on the last

sarnple. The advantage of the stochastic Helmholtz machine over variational inference is

t hat more complicated (e. g., nonfactorial) distributions can be represented by the inference

process used for MLB estimation. The main disadvantage of the stochastic Helmholtz ma-

3.4 Multiple-cause networks 67

chine is that a recognition network that is compatible with the generative network must

somehow be estirnated? and this can be a very difficult task when a complex recognition

network is used. An example of inference in the stochastic Helmholtz machine is described

in Section 2.4.4. Here, 1 describe the wake-sleep algorithm for on-line estimation of both

the generative and recognition parameters (O and 9) [Hinton et al. 19951.

Suppose we have a current generative network (which may or may not be a good mode1

of the data) and a current recognition network. For a pararneterized recognition network,

the likelihood bound in (3.22) is

T ~ (h , dt) le)
log P(vie) 2 B Q , ~ = ~ (h l v ? 4) log

t=1 h Q (h l ~ (~) : 4 j '

This bound can be estimated by averaging log P(h , v (~) ~ e) / ~ (h l v (') : 4) over multiple recog-

nition sweeps for each input pattern. In each recognition sweep, the recognition network is

stochasticaily simulated to obtain a configuration h of the latent variables.

We would like to maxirnize BgllP with respect to the recognition network parameters 9
for al1 v, if possible. As discussed in Section 3.3.2, the unconstrained recognition distribution

that ma-uimizes this likelibood bound is

However, except for very simple recognition networks, t bis optimization is intract able for

the sarne reason that exact inference is intractable. Instead, we op timize a different function

whose global maxima give identical recognition networks in certain limits to those produced

by maximizing BQIIP The limits may not apply in practice, so that the recognition network

may be slightly suboptimd.

Assume for the moment that the recognition network is consistent with the distribution

P(hlv, O) . In this caseo the parameters 4 that maximize

will also maximize BQllP in (3.40). (Note the reversed order of the distributions). So, for

a given generat ive network, the optimum recognition network can be found by maximizing

BPllQ with respect to the recognition parameters #. The derivative of BPllQ with respect

3.4 Multiple-cause networks 68

to a recognition network parameter q5 is

Sot the recognition network can be estimated using stochastic gradient descent by sampling

h and v fiom P(h. vie) using ancestral simulation. and then adjusting the recognition

network parameters so as to increase the log-likelihood of the hidden variables given the

visibIe variables. This procedure is called sleep-phase learning, since the recognition network

is adjusted to be better suited to the -fantasies' produced by the generative network.

In practice. sleep-phase learning is only an approximation to the generalized Es tep

of iterative MLB estimation (Section 3.3.2) for one main reason. An ideal recognition

network produces a good approximation to P(h[v. O) even for a vector v t hat has a very

smdl probability under P(h. ~(6). (This corresponds to a plausible real-world pattern t hat

the generative network has not yet lemed.) For sieepphase learning to produce such

a recognition network. an extremely large sample size must be drawn Erom P(h.vl0) in

order to get an example of the unlikely vector. For the sake of tractability. a relatively

s m d sample size must be used. which impfies that the ideal recognition network cannot be

found. This means that in practice. maximizing does not give the same recognition

network as wodd be obtained by maximizing BqllP. In fact. in order to prevent overfitting

of t t e recognition network. an inconsistent parametric recognition network is used. so t hat

the global maxima of the two functions may not even coincide.

For a given recognition network. the generative network is adjusted in the uiake-phase

using a Monte Cu10 implementation of the generaüzed M-step of iterative MLB estimation.

That is. on-line stochastic gradient descent in the likelihood bound BQllP is performed with

respect to the generative network parameters 8. The derivative of the bound with respect

to a generative network parameter 9 is

~ B Q I ~ P a T
= - P(h . vit) le)

ae ae 1 1 Q(~IV'~' 0) log ~(h l~ i l , . 9)
t=L h

For a training vector dt). the recognition network is used to sample values for the latent

vaxiables h. Then, the generative parameters are adjusted so as to increase the log-likelihood

of the latent variables and the visible mriabIes.

3.4 Mult iple-cause networks 69

The two phases of learning are usually applied in alternation. A training pattern is

presented; the recognition network is used to obtain a random h; and the generative network

is adjusted. Next, the generative network is used to obtain a random h and then a random

v; and the recognition network is adjusted. The result of this constant mixing of the two

phases is that the generative network becomes bet ter at modelling the training data and ut

the same tame tries to produce causes for the training data that can be properly inferred

by the restricted recognition network. This can be seen mathematically by breaking BQllP
into two pieces:

T

Bq!lp = log P(ole) - C C Q (~ I v " ' . 4) log
Q (~ I v (~) 4)

t=l h
~ (h l v (~) , 8) '

The first term encourages the generative network to mode1 the data, whereas the second

term (a negative Kullback-Leibler pseudo-distance) encourages it to be compatible with the

recognition network. 4 s a result of the latter, for a generative network that is estimated

using the wake-sleep dgoritlm, the global maxima of BQllP and BpllQ often do coincide.

Assuming that under the recognition distribution, the latent variables are independent

given the visible variables, we have:

Also. consider rnodelling each of thcse components using logistic regression:

where we take uo = 1 in order to account for a constant in the exponents. This recognition

network is shown in Figure 3.5.

For t his logistic recognition network, the recognition parameters are adjusted as follows

diiring the sleep phase, in order to increase log Q(h(v, 9):

It turns out that in maay practical cases this recognition network is sufficient for produc-

ing good density estimates. However, if it is estimated in conjunction with a fked generative

network that describes the simple burglar a l a m problem (see Section 2.2.3), the likelihood

bound BQllP may actually decrease. Consider how the recoguition network is modified for

fantasies where the burglar alarrn is ringing. We simulate the generative network, obtaining

Figure 3.5: -4 recognition network that implements Q(h(v. 4) for the generative network shown in
Figure 3.4.

values for b. e. and a , and discard those samples for which a # 1. For the recognition net-

work parameten and q5E;' t hat comect the common consequence a to the two causes

b and e. the expected learning updates becorne

where +Bo and +Eo are the recognition biases for b and e. Each connection is modified so

as to predict as closely as possible the marginal posterior distributions P (b = Ila = 1) and

P(e = lla = 1) over the corresponding causes b and e. After training? the recognition distri-

bution over b and e given a = 1 will be the product of the rnarginais. For the configuration

b = I t a = 1.

where the values for P(b = I] a = 1) and P(e = 1(a = 1) were computed from (2.13). This
value is quite a bit higher than the correct value of P(b = 1. e = lla = 1) = 0.116. En

fact, if we assume that b and e are independent given a = 1. the recognition distribution

that rnaximizes the iikelihood bound BpllP has ~ (b = 1'e = I/a = 1) = 0.177. This is an

example a-here maximiaing Bpllq is a poor approximation to maximizing BQIIP Notice.

however, that the problem arises because we are using an inconsistent recognition network.

3.4 Multiple-cause networks 71

Figure 3.6: (a) .II hier archical network with three extra keta-cause'' variables which produce
correlations between the cause variables (midde layer). (b) X sirnilarly lay~red recognition network.

3.4.4 Hierarchical networks

Earlier in this section. I presented multiple-cause networks with the assumption that the

causes were independent in the generative network (see (3.24) on page 62). Even with the

assumption that the causes are independent. it is still possible to represent quite complex

correlations in the visible variables v. However. in many cases the causes are certainly

interdependent. For example. if the causes variables represent the presence or absence of

various objects in facial images. we expect that both a toque and a top-hat are not present

simult aneously.

In order to model interdependent causes. we can simply add asiother layer of "meta-

causes" at a higher level in the network. Even if we assume that the "meta-causes'' are

independent. the network can still represent fairly cornplex relationships between the causes.

Such a hiernrchical network is shown in Figure 3.6a. We have already seen examples of

hierarchical networks. such as the network used in the bars problem example (Figure 1.7).

The parameter estimation methods already described in t his chapter are applicable to

hierarchical networks wit h any reasonable depth. Of particular interest, however. is the

recognition model for the Helmholtz machine. Figure 3.6b shows a recognition model that

is appropriate for the network in Figure 3.6a Note that the top layer of hidden variables

could receive input £rom the bottom layer of visible variables. not just the middle layer of

hidden variables. However . t his introduces extra parameters into the Helmholtz machine.

which may worsen the effect of ovedtting. In my experiments. 1 use layered generative

and recognition networks Like the ones shown in Figure 3.6. In some cases, adding extra

3.4 Multiple-cause networks

connections may help-

3.4.5 Ensembles of networks

According to the Bayesian doctrine for prediction, when using a density model P(v(8) to

estimate the probability of v. we ought to integrate out the model parameters 8. If we

specify a prior P(8) and measure the likelihood P (D (8) of the training data V. Bayesian

inference uses the posterior P(O(V) x P(8) P(V (O) (where the constant of proportionality

does not depend on 8) to obtain a probability

For example, t his integrai can be approximated using Laplace's approximation [S piegelhal-

ter and Lauritzen 19901, Markov chain Monte Carlo methods [Neal 1993; Neal 19961 or

variational techniques [Jaakkola and Jordan 199?]. Here. 1 consider the ensemble method.

which is less sophisticated t han the above approaches, but is also easier to implement and

and in pract ice usually gives a significant improvement over M.4P parameter estimation.

Suppose we perform MAP parameter estimation using multiple restarts (dinerent random

initial parameters) so that we have an ensemble of Ad models. where model m has parameters

9,. Each model may correspond to a different local maximum of the posterior P(8lV).

and we assume that each model is equally likely in the posterior. W e then approximate the

If P(v(8) does not change much over the width of each

long as the modes are properly represented by the ensemble

mode in the posterior, then as

of models. ~ (~ 1 ' 2 7) will be very

close to the correct value P (v (D) @en by integration. On the other hand. if there is a mode

in the posterior that is so wide that P(vlt3) does vary significantly across the mode. t hen

P(V(V) may be quite different from P(v1D). This is because oniy a peak in the posterior

is being included in the sum, while the mass surrounding the peak is being ignored, even

t hough the corresponding predictions are quite variable.

Since the Bayesian networks described above are flexible models, we expect that with

limited training data they may have multiple data likelihood optima (corresponding to

multiple peaks in the posterior, if we assume a uniform prior over network parameters). For

this reason, when time perrnits, a signincant classification rate improvement can be obtained

3.5 Classification of hand-written digits 73

by using an ensemble of networks for each class of data. The classification decision is then

based on the average probabilities computed from the ensemble for each class.

3.5 Classification of hand-writ ten digits

An interest ing and usehl pattern classification problem is the classification of hand-written

digits- In this section. 1 present resdts on the classification of 8 x 8 binary images of hand-

written digits made available by the US Postal Service Office of Advanced Technoiogy. I

compare the following Bayesian network met Lods: iogist ic autoregressive classifier (LXitC-

1) ? a stochastic Helmholtz machine with one hidden layer (S m - 1). a stochastic Helmholtz

machine with two hidden layers (SHM-2) and an ensemble of stochastic Helmholtz machines

with one hidden layer (ESHM-1). In order to place the performance of these networks in

context. 1 inciude the following met hods: classification and regression trees (C ART- 1). the

naive Bayes classifier (NBAYESC- 1). m d the k-nearest neighbor method (KNN-CLASS- 1).

The performances of these ciassifiers are assessed using 5 different training set sizes (120.

240. 480. 960 and 1920 cases) so that the effect of the number of training cases on each

rnethod can be studied. After describing the classifiers and the methods used to estimate

t hem, 1 present and discuss the performance resdts.

3.5.1 Logistic autoregressive classifiers (LARC-1,ELARC- 1)

LAW-1 modek each of the 10 classes of data using a logistic autoregressive network (see

Section 3.2)? where the vuiables are ordered in a raster-scan fashion. Once each of the

10 networks have been estimated from the training data. a test pattern is clasified by

outputing the class corresponding to the network that gives the geatest likelihood to the

pattern.

Before estimating each network h m its respective class of training patterns. the double

precision parameters 0 were initialized to uniformly random values on [-0.01.0.01). Over-

fitting was prevented by using MAP estimation with a scaled Gaussian parameter prior.

The prior variance of the first input was set to o: = 4.0. A conjugate gradient algorithm

was used for MAP estimation.

ELARC-1 uses an ensemble of 8 logistic autoregessive networks, where each element

in the ensemble uses a dÎfTerent ordering of the variables in v. One of the elements uses

the raster-scao ordering, whereas the other 7 elements use a randornly selected ordering.

The probabiiity of a test pattern for a given class is estimated by averaging the probability

estimates r o m each of the 8 networks in the ensemble for that class.

3.5 Classification of hand-written digits 74

3.5.2 The Gibbs Machine (GM-1)

GM-1 models the distribution of each of the 10 classes of data using a logistic multiple-

cause network of the type shown in Figures 3 . 4 that is trained using Gibbs sampling. Each
network h a 64 visible binary (O / l) variables fS x 8) md one tiidden layer of 16 binary

(0/1) variables. Once the 10 networks have been estimated, ciassification of a test pattern

proceeds by estimating the probability of the pattern under each network. using the method

described in Section 3.4.1. The class corresponding to the network that gives the highest

probability is output as the prediction.

Before estimating a network using Gibbs sampling, all of its double precision parameters

(O) were initialized to uniformly random values on [-0.01.0.01). For each training pattern.

a single configi.iration of the hidden variables was obtained by perfonning 10 sweeps of Gibbs

sampiing, while amealing the network from a temperature of 5.0 to 1 .O using a 1 /T schedule.

where T is the sweep count. Then. the network parameters were adjusted using a learning

rate of 0.01. For a training set of T patterns, a randomly chosen set of LT/3l cases were

set aside as a "validation" set. By monitoring the probability estimate for this validation

data, early-stcjpping was used to prevent overfitting. After every 10 epochs of Iearning

(1 epoch = one sweep through the remaining [2T/31 trahing cases). for each validation

pattern. 10 sweeps of Gibbs sampling with mnealing were performed as described above.

and then 20 sweeps of Gibbs sampling at unity temperature were performed to obtain 20

codigurations. Then. the probability of the validation pattern ws estimated by computing

the probabiiity mass associated with each configuration and its 1-nearest neighbors. Each

network was trained for a minimum of 100 epochs (the validation probability estimate was

still computed every 10 epochs in this interval). Then. learning was stopped after the current

epoch n. if the epoch nm, at which the maximum validation probability estimate occurred

took place no less than n / 3 epochs ago. Also. in order to terminate learning runs where

the validation probability estimate continued to inmecase asymptotically towards a iimit . a

maximum of 2000 training epochs were performed. In siunmary. Iearning was stopped at

epoch n if n 3 2000 or if n,, 5 2n/3 and .n >_ 100. (A sirnilas early stopping technique

has been used with regression rnodels [Rasmussen 19961.)

3.5.3 The mean field (variational) Bayesian network (MFBN-1)

MFBN-1 models the distribution of each of the 10 classes of data using a logistic multiple-

cause network of the type shown in Figures 3.4. Each network is fit using the variational

technique described in Section 3.4.2. Each network has 64 visible binary (0/1) variables

(8 x 8) and one hidden layer of 16 binary (0/1) variables. Once the 10 networks have been

3.5 Classification of hand-written digits 75

estimated. classification of a test pattern proceeds by computing the likelihood bound for

each network, using the method described in Section 3.4.2. The class corresponding to the

network that gives the highest bound is output as the prediction.

Bef~re estimating a network iising the variational method. d l of its doubIe precision pa-

rameters (O) were initialized to uniformly random values on [-0.01,0.01). For each training

case, the variational parameters were initialized to unifonnly random values on [-0.01.O.OL).

The variationai bound was increased at each generalized Estep using the following itera-

tive method (Sad. daakkola and Jordan 19961. After each iteration. if the bound did not

increase by more than 1% then no more iterations were performed for the current train-

ing case. A maximum of 10 iterations was performed. These aigorithm parameters were

suggested by Jaakkola (personal communicatio~i). The variational bound was increased at

each generalized iul-step using bat ch gradient desceut with a learning rate of 0.01.

The validation procedure used to train each network was identical to the one used for

GM-1, except t hat the ~~iriational bound was used instead of an estimate of the validation

case probability. The validation bound was computed every 5 epochs. N o fewer tiian 100

epochs were performed. and no more than 1000 epochs were performed.

3.5.4 Stochastic Helmholtz machines (SHM-1,SHM-2,ESHM-1)

SHM-1 models the distribution of each of the 10 classes of data using a stochastic Helmholtz

machine with 64 visible binary (011) variables (8 x 8) and one bidden layer of 16 binary (0/1)

variables. The generative and recognition networks are of the form shown in Figures 3.4
and 3.5. and logistic regression is used to iniplement the conditional relationships. The

likelihood bound for a given input pattern is estimated iising 20 recognition sweeps. Once

the 10 machines have been estimated. classification of a test pattern proceeds by estimating

the likelihood bound for each machine. The class corresponding to the machine that gives

the highest likelihood bound estimate is output as the prediction.

Before estirnating a Helmholtz machine using the wake-sleep algorithm. all of its double

precision parameters (9 and #) were initialized to uniformly random values on [-0.01.0.01).

A learning rate of 0.01 was used for both phases of learning. The validation procedure

used to train each machine was identical to the one used for GM-1, except that instead

of obtaining an estimate of the validation set probability as described above, 20 epochs

of recognition passes were performed on the validation set to obtain an estimate of the

likelihood bound for the d d a t ion data.

SHLM-2 is similar to SHM-1. except that it uses stochastic Helmholtz machines with a

visible layer of 64 binary variables, a middle hidden layer of 16 binary variables, and a top

3.5 Classification of hand-written digits 76

hidden hyer of 8 binary variables. The generative and recognition networks are of the form

shown in Figure 3.6.

ESHM-1 uses an ensemble of 8 SHM-1 networks to mode1 each class of patterns. Each

network in an ensemble is estimated using the above procedure, where a diEerent randomiy

chosen validation set of LT/3] patterns is set aside for each network. .illso. different initial

random parameters are chosen for each network. Once 8 networks have been estimated for

each of the 10 claqses of data. a. test pattern is processed by approximating 8 likeiihood

bounds for each data class. These are averaged together within each ciass to obtain 10

average likeiihood bounds. The final ciass decision for the test pattern is based on these

averages.

3.5.5 The classification and regression tree (CART-1)

This tree-based classifier has previously b e n riin on several ciassification tasks in DELVE
[Rasmussen et al. 19961. CART-1 uses a binary decision tree to classiS the test patterns.

where each node in the tree makes a binary decision based on an ais-aligned decision

surface in the input space. and each leaf in the tree hm a class label. A test pattern is

classified by traversing the tree from the root to a leaf. while following the decisions at each

node. That is. decision node d, looks a t a particular input variable ui, and compares it to

a threshold t,. If vi, > t l . the right child is chosen. and otherwise the left child is chosen.

When a leaf is reached. the class of the leaf node is output by the classifier.

The tree is constructed from a training set using 10-fold cross validation. The details of

how the tree is prodiiced can be found in [Breiman et al. 19841'.

3.5.6 The naive Bayes classifier (NBAYESC-1)

The naive Bayes methocl of modelling can be viewed as a multiplccaiise Bayesian network

where there aren't nny hidden cause variables. That is. we assume that each of the inputs

is independent given the class identity. For the binary input case, this model becomes very

simple. The naive Bayes model for each class of data is

' 1 used Version 1.1 of the CART software
Ct. Lafayette, Caiifomia 94549. Tel: +1 415

provided by California Statistical Software Inc., 961 Yorkshire
283 3392.

3.5 Classification of hand-written diaits 77

where Oi E [O. 11 is the probability that v; = 1 under the model. For a given class of

training data, 1 use the Bayesian method to obtain a minimum squared-loss estimate of

P (v) , assuming a uniform prior for 8:

Once one such estimate is obtained for each of the 10 classes of training data. a test pattern

is clâssified by choosing the class that gives the probability to the pattern. Notice that if

f, = O or T. the probability P(v) is not O or 1. This prevents overfitting.

3.5.7 The k-nearest neighbor classifier (KNN-CLASS-1)

This is the only nonparametric classifier studied in this section. The software I used was

contributed to DELVE by Michael Revow jRasrnussen et al. 19961. In order to guess the

class of an input pattern v. the k-nearest neighbor classifier considers the classes of the k

training patterns that 'are nearest to v in Euclidean distance. Let nj j = 0,. I - 1 be
J-1 the number of snch training patterns in çlass j . so that Cl=, n, = k. Then. the k-nearest

neighbor classifier outputs the most fkequent class:

If two or more classes have the maximum number of k-nearest neighbor training pattcrris.

then the classifier chooses the class whose training patterns arc closest to v on average in

Euclidean dis tance.

k is chosen using leave-one-out cross validation. If there axe T training patterns, T new
training sets with T - 1 patterns each are produced by leaving each pattern out once. k

is set to 1, and the misclassification rate on the Ieft out patterns is computed using the k-

nearest neighbor classifier. Then* k is increased and this process is repeated until k = T - 1.

The value for k that gives the lowest leave-oneout cross-validation error is used to make
predictions for the test patterns.

In order to estimate the pmbabiiity that v cornes korn each class. the k-nearest neighbor

method uses

In this case, the squared difference between the predicted probability vector and the true

class identity vector (a vectors of 0's with a single 1) is used as the cross-validation metric

3.5 Classification of hand-written digits 78

to determine k. See the DELVE manual [Rasmussen et ai. 1996j for more information.

3.5.8 Results

The performances of the ~Iassification methods described above were assessed using the

DELIT (data for evaluating learning in valid experiments) system [Rasmussen et al. 19961.

Under this system. the digit ~Iassification problem that 1 am interested in is called a proto-

task- A particular choice of training set size (e-g.. 120 training patterns) is called a task. In

order to get an accurate measure of the performances of the methods (with error bars), each

method was trained and testeci at least 4 times wing disjoint training set - test set pairs

(,each of which is called a task instance). An original data set consisting of 10460 patterns

(1096 of eaich class) was partitioned into a training collection of 7680 patterns and a test

collection of 3280 patterns. For each of the tasks with training set sizes 120. 240. 480. and

960, the training collection was partitioned into 8 disjoint training sets: for the task with

training set size 1920. the training collection was partitioned into 4 disjoint training sets.

Notice that for the tasks with training set sizes 960 and 1920, dl of the training partition

cases were used. wiiereas for the tasks with training set sizes 120. 240. and 480. not al1 of

the training paxtition cases were used. For each of the tasks wit h training set sizes 120. 240.

480, and 960. the test collection was partitioned into 8 disjoint test sets with 410 patterns

each: for the task with traioing set size 1920. the test collection was partitioned into 4

disjoint test sets with 820 patterns each. This way of partitioning the data eliminates the

dependence between each of the 8 experiments performed to assess the performance of each

method on each task instance.

Figure 3.7 shows the losses (haction of patterns misclassified) for each of the tasks (five

boxes). Each horizontal bar gives an estimate of the expected loss for a particular method

on a particular task. The methods are ordered (kom left to right within each box) : CART-

1. NBAYESC-1. KNN-CLASS-1. MFBN-1. SHM- 1. SHM-2. GM-1. ESHM-1, LARC- L -
this is the same ordering as is given top to bottom in the lower-left hand region of the

figure. Each vertical bar gives an estimate of the error (one standard deviation) for the
corresponding estimate of the expected loss. Numben in the boxes lying beneath the x-

axis are pvalues (in percent) for a paired t-test. C h o s e your favorite method from the

List in the lower left-hand corner of the figure and scan from lefi to right. Whenever you

see a number. that means that mother method has performed better than your favorite

method, with the given statistzcul signzjcance. A low pvalue indicates the difference in the
miscIassi£ication rates is very signincant. More precisely. a pvalue is an estimate of the

probability of obtaining a clifference in performance that is equal to or greater than the

observed difference. given that we assiune the two methods actually perform equally well

3.5 Classification of hand-written digits 79

dig8x8b/ class

Figure 3.7: Estimates of expected fractions of misclassified patterns for nine methods trainet1 on
Five different sizes of training sets.

(the null hypothesis).

The ESHM-1 and LARC-1 methods clearly oiitperform al1 other methods for al1 tasks.

If we scan the p-values for these two methods Erom left to right. we see that there is only a

single method that performs significantly better t han ESHM-1. and t hat is LARC-1 on the

task with the smallest training set size (120). I found that the performance of ELARC-1
(ensemble of logistic autoregressive networks, not shown) was indistinguishable Eiom plain

LARC- 1 wit h respect to classification error. In contrast. ESHM- 1 performs significant ly

better than SHM-1. It is of particular interest that LARC-1. which contains no latent

variables, performs slightly better than the methods that contain latent variables.

GM-1 performs the best out of dl approximate maximum likelihood methods, including

MFBN- 1, SHM- 1, and SHM-2. However, GM- 1 required an order of magnitude more train-

ing and validation time than SHM-1. For this reason, an ensemble of logistic multiple cause

networks was not considered for the Gibbs sampling estimation method. Tabie 3.1 shows

the average time taken to train and test each method for each training set size on a 195

MHz MZPS R4400 processor. MFBN-1 also required an order of magnitude more training

and validation time than SHM-1, and so an ensemble of mean field Bayesian networks was

3.5 Classification of hand-written digits 80

Figure 3.5: Estimates of e-xpected negative log-probability of the true digit identity
of eight methods trained on five different sizes of training sets.

aven by each

Table 3.1: Average time in minutes required to train and test the methods fkom Figure 3.7 for eadi
of the training set sizes.

Training set size
Method 120 240 480 960 1920

CART-I 0.6 1.1 1.9 4.7 5.1
NBAYESC- 1 0.0 0.0 0.0 0.0 0.0
KNN-CLASS-I 0.2 1.0 4.6 25.7 192.9
MFBN-1 19.8 64.4 130.5 216.9 3 4 . 6
SHM-1 2.3 5.4 11.8 21.8 46.0
S Hhf- 2 3.7 7.5 32.3 41.7 77.6
G LM- I 41.7 85.8 176.8 238.0 396.3
ESHM-1 19.4 44.7 95.5 186.7 358.9
LARC- 1 0.2 0.5 L.2 3.0 6.5

not considered.

Figure 3.8 shows the performance results for soft decisions (the loss is the negative

log-probability of the true class under each model). Thc methods are: NBAYESC-1, KWN-

3.6 Extracting structure from noisy binary images 81

CLASS-1, MFBN-1. SHM-1. SHM-2. GM-1? ESHM-1, LARC- 1. ELARC- 1. In this case

ELARC- 1 performs significantly better than LARC- 1. Also. in t his case ESHM- 1 pei-fonns

slightly better than LARC-1 and ELARC-1.

3.6 Extracting structure from noisy binary images

The Bayesian networks described so fa in this chapter have been supemised. in the sense

that they are trained witb pattern - ciass label pairs. Can we corne up with a l g o r i t h that

can organize the training data iato meariingful classes. without the heip of class labels?

This section and the following one give examples of Bayesian network models that exhibit

this emergeut classification behavior. In tliis section. 1 show how a network can learn to

recognize vertical and horizontal lines in synthetic images: and even learn to recognize the

orientation of t hose lines. In the following section. I show how a network can l e m to extract

bot h categorical and continuous structure simultaneously.

An interesting problem relevant to vision is that of extracting independent horizontal and

vertical bars bom an image [Foldiak 1990: Saund 1995; Zemel 1993: Dayan and Zemel 1995;

Hinton et al. 19951. Figure 3.9 shows 48 examples of the binary images 1 am interested in.

Each image is produced by randomly choosing between horizontal and vertical orientations

with equal probability. Then. each of the 16 possible bars of the chosen orientation is

independently instantiated wit h probability 0.25. Finally: additive noise is introduced by

randomly turning on with a probability of 0.25 each pixel that was previously off. So.

the production of these images involves three levels of hierarchy: the first and lowest level

represents pixel noise. the second represents bars that consist of groups of 16 pixels each.

and the third represents the overdl orientation of the b a s in the image.

3.6.1 Wake-sleep paramet er estimation

Using the wake-sleep algorithm. 1 trained a stochastic binary Helmholtz machine that has 4

top-layer m meta-cause") variables. 36 middle-hyer variables. and 256 bottom-layer image

variables. Each conditional distribution is modelled using logistic regression. Learning

is performed through a series of iterations, where each iteration consists of one bottorn-up

wake phase sweep used to adjust the generative network parameters and one top-down sleep

phase sweep used to adjust the recognition network parameters. Every 5000 iterations, the

recognition network is used to obtain an estimate (with error bars) of the lower bound on the

data log-likelihood under the generative network. To do this, 1000 recognition sweeps are

performed without learning. During each recognition sweep' binary values for the hidden

3.6 Extracting structure from noisy binary images 82

Figure 3.9: Exampies of training images whose production involved t hree levels of hierarchy. Fust,
an orientation (i .e . . horizontal or vertical) is randomiy chosen with fair odds. Second, each bar
of the chosen orientation is randomly instantiated with probability 0.25. Third, additive noise is
introduced by randomly turning on with a probability of 0.25 each p i ~ e l that was previously off.

variables are obtained for the given training image. The log-likelihood of the values of al1

the variables under the generative network minus the log-likelihood of the hidden variable

values under the recognition uetwork gives an unbiased estimate of the log-likelihood bound

(3.40). In this way, 1 obtain 1000 i.i.d. noisy unbiased estimates of the log-iikelihood bound.

The average of these values gives a less noisy unbiased estimate. Also. the variance of this

estimate is estimated by dividing the sample variance by 999.

1 am interested in solutions where the generative network can construct the image by

adding features, but canno t remove previously instantiated features. If the network pa-

rameters are in no way constrained to favor this type of solution, perceptuaily unattractive

solutions are found (see Section 3.6.3). So, I constrain the parameters of the logistic re-

gression mode1 that connects the rniddle layer to the bottom Iayer to be positive by setting

to zero any negative weights every 20th learning iteration. In order to encourage a so-

lution where each image can be succinctly described by the minimum possible number of

causes in the rniddle layer, 1 initialize the rniddle-layer generative biases to -4.0 which favors

most middle-layer variables being inactive (value of O) on average. Al1 other parameters

3.6 Extracting structure from noisy binary images 83

Optimum log-likelihood - i

Figure 3.10: Variation of the lower log-likeiihood bound with the number of wake-sleep learning
iterations for the stochastic Helmholtz machine.

are ini t iahed to 0.0. For the fkst 100,000 iterations, a learning rate of 0.1 is used for the

generative parameters of the model feeding into the bottom layer and for the recognition

puameters of the model feeding into the middle layer: the rernaining Iearning rates are set

to 0.001. After t h . levning is accelerated by setting ail learning rates to 0.01.

Figure 3.10 shows the learning curve for the first 300.000 iterations of a simulation

consisting of a total of 1.000.000 iterations. Aside fkom several minor fiuctiiations. the

wake-sleep algorithm ma.uimizes the log-likelihood bound in this case. Eventudy. the bound

converges to the optimum value (-170 bits) shown by the soiid Line. This value is computed

by estimating the average log-likelihood of the data under the method that was used to

produce the data. i. e., the negative entropy of the training data.

By examining the generative parameters after learning, we see that the wake-sleep ai-

gorit hm has extracted the correct 3-level hierarchical structure. Figure 3.11 shows the

parameters for the generative Iogistic regression models feeding into and out of the middle

layer in the network. A black blob indicates a negative parameter and a white blob indi-

cates a positive parameter: the area of each blob is proportional to the magnitude of the

parameter (the largest value shown is 7.77 and the smallest value shown is -7.21). There

are 36 blocks arraoged in a 6 x 6 grid and each block corresponds to a middlelayer vari-

able. The 4 blobs at the upper-left of a block show the parameters that connect each of

the toplayer variables to the corresponding middle-layer variable. The single blob a t the

upper-right of a block shows the bias for the corresponding middle-layer variable. The

16 x 16 matrix that forms the bulk of a particular block shows the parameters that connect

the corresponding middle-layer variable to the bottom-layer image. These matrices clearly

3.6 Extracting structure fkom noisy binary images 84

Figure 3.11: Parameters for connections that feed into and out of the middle-layer variables in
the generative network. -4 black blob indicates a negative parameter and a white blob indicates a
positive parameter; the area of each blob is proportional to the parameter's magnitude (the iargest
value shown is 7.77 and the smallest value shown is -7.21).

indicate that 32 of the 36 middle-layer variables are used by the network as "feature vari-

ables" to represent the 32 possible bars. These feature variables are controlled mainly by

the right-most toplayer "orientation" variable - the parameters connecting all the other

top-layer variabIes to the feature variables are nearly zero. If the orientation variable is off,

the probability of each feature variable is determined mainly by its bias. Vertical feature

variables have significantly negative biases, czusing them to remain off if the orientation

neuron is off. Horizontal feature variables have only slightly negative biases, causing them

to turn on roughly 25% of the time if the orientation variable is off. The parameters con-

necting the orientation variable to the vertical feature variables are significantly positive, so

3.6 Extracting structure from noisy binary images 85

that when the orientation variable is on the total input to each verticai feature variable is

slightly negative, causing the vertical feature variables to turn on roughly 25% of the time.

The parameters connecting the orientation variable to the horizontal feature variable, c are

significantly negative, so that when the orientation variable is on the to td input to each

horizontal feature variable is significantly negative, causing the horizontal feature variables

to remain off. Since the parameters connecting the top-layer variable to the 4 middle-iayer

nonfeature variables are negative, and since the nonfeature variables have large negative

biases, the nonfeature variables are üsually inactive. Because the bot t om-layer biases (not

shown) are only slightly negative, a pixel that is not turned on by a feature variable still

has a probability of 0.25 of being turned on. This accounts for the additive noise.

3.6.2 Automatic clean-up of noisy images

Once learned, the recognition network can nonlinearly filter the noise from a given image,

detect the underlying bars, and determine the orientation of these bars. To clean up each

of the training images shown in Figure 3.9, 1 apply the learned recognition network to

the image and obtain middle-layer variable values which reveal an estimate of which bars

are on. The results of this procedure are shown in Figure 3.12 and cleady show that the

recognition network is capable of filtering out the noise. Usually, the recognition network

correctly identifies which bars were instantiated in the original image. Occasionally, a bar

is not successfully detected. In two cases a bar is detected that has an orientation that is

the opposite of the dominant orientation; however, usually the recognition network chooses

a single orientation. Inspection of the original noisy training images for the two incorrect

cases shows that aside hom the single-orientation constraint, there is significant evidence

that the mistakenly detected bars should be on. F'urther training reduces the chance of

misdetection.

3.6.3 Wake-sleep estimation without positive parameter constraints

If al1 the parameters are initialized to 0.0, the parameters that connect the middle layer to

the bottom layer are not constrained to be positive, and al1 the learning rates are set to 0.01,

the estimated generative network does not properly extract the bar structure. Figure 3.13
shows the generative network parameters that connect the middle layer to the bottom layer,

after 5,000,000 leaming iterations. The black bars indicate that some middle-layer variables

are capable of "uninstantiating" bars that may be instantiated by other variables. Although

it is imaginable that such a complex scheme is still capable of modelling the training images,

the log-likelihood bound for this trained Helmholtz machine is -190 bits - significantly lower

3.7 Simdtaneous extraction of continuous and categorical structure 86

Figure 3.12: Filtered versions of the training examples from Figure 3.9 extracted using the estimated
recognition network.

than the optimum value of -170 bits.

3.6.4 How hard is the bars problem?

Although this bar extraction problem may seem simple: it must be kept in mind that the

network is not given a priori topology information - a h e d randorn rearrangement of the

pixels in the training images would not change the learning performance of the network. So,

insofar as the network is concerned, the actual training examples look like those shown in

Figure 3.14 which were produced by applying a fixed random rearrangement to the pixels

in the images from Figure 3.9.

3.7 Simultaneous extraction of continuous and categorical

structure

The Bayesian networks presented so fax in this chapter have contained discrete variables.

However, sorne hidden variables, such as translation or scaling in images of shapes, are best

3.7 Simultaneous extraction of continuous and categorical structure 87

Figure 3.1
estimation
layers, and

3: Parameters for generative connections that feed out of the rniddle-layer variables after
without speciai initiaiization of the weights, without different learning rates between
without positive weight constraints in the generative network.

represented using continuous values. Work done on continuous-vdued Bayesian networks

has focussed mainly on Gaussian random variables that are linked linearly such that the

joint distribution over d l variables is also Gaussian [Pearl 1988; Heckerman and Geiger

19951. Lauritzen et al. [1990] have included discrete random variables within the linear

Gaussian kamework. They consider networks that are singly-connected, so that probability

propagation can be used. Most work on continuous-valued Bayesian networks requires that

al1 the conditional distributions represented by the network can be easily derived using

information elicited kom experts. Hofmann and Tresp [1996] consider estimating continuous

Bayesian networks that may be richly connected, but they assume that al1 variables are
observed. As far as nonlinear continuous networks with latent variables are concerned,

continuous-valued Boltzmann machines have been developed [Movellan and McClelland

3.7 Simultaneous extraction of continuous and categorical structure 88

Figure 3.14: Training examples from Figure 3.9 after a fked random rearrangement of the pixels
has been applied. These are indicative of the difficuity of the bars problem in the absence of a
topological prior that favors local intensity coherence.

19921, but these suffer from long simulation settling times and the requirement of a 'negative

phase" during learning. Tibshirani [1992], MacKay [1995] and Bishop et al. [1997] consider

estimating rnappings fiom a continuous latent variable space to a higher-dimensional input

space, eEectively using multiplecause type networks of the form shown in Figure 3.4 on

page 62. In this section: 1 consider a hierarchical Bayesian network with variables that can

adapt to be continuous or categorical, as needed by the training data [Frey 1997a; Frey

3.7.1 An adaptive random

The proposed random variable is

effect zi via a total input,

variable

shown schematically in Figure 3.15a2. The parents ai

' ~ e o f f r e ~ Hinton çuggested this unit as a way to make factor anaiysis nonlinear.

3.7 Simultaneous extraction of continuous and categorical structure 89

Figure 3.15: (a) schematicaily shows the dependence of the proposeci variable on its parents. (b)
to (e) illustrate four quite different modes of behavior: (b) deterrninistic mode; (c) stocfiastic linear
mode; (d) stochastic noniinear mode; and (e) stochastic binary mode (note the different horizontal
scale). For the sake of graphical clarity, the density functions are normalized to have equal maxima
and the subscripts are left off the variables.

where we constrain Bij = 0.0 if Z j 6 %. The probability density over the presigmoid activity

xi for variable zi is

(its postsigmoid activity) is obtained by passing

cumulative Gaussian squas hing t'unction:

Networks of these variables can represen t a

ministic multilayer perceptrons [Bishop 19951,

the presigmoid activity through a sigmoidai

broad range of structures, iucluding deter-

binary sigmoidal Bayesian networks [Ned

19921 (see Section 3.4). mixture models. mixture of expert models [Jacobs et al. 19911,

hierarchicd mixture of expert models [Jordan and Jacobs 19941, and factor analysis models

[Everitt 19841. This versatility is brought about by a range of significantly dSerent modes

of behavior amilable to each variable.

Deterministic mode: If the noise variance a l is very s m d . the postsigmoid activity

will be a practically deterministic sigmoidd function of the mean (see Figure 3.15b) . This

mode is usefui for representing deterministic nonlineu mappings such as those found in

deterministic multilayer perceptrons and mixture of expert modeis.

Stochastic iinear mode: For a given mean, if the squashing function is approximately

Linear over the span of the added noise, the postsigmoid distribution will be approximately

Gaussian with the mean and standard deviation linearly transformed (see Figure 3.15~).

3.7 Simultaneous extraction of continuous and categorical structure 90

This mode is useful for representing Gaussian noise effects such as those found in mixture

models, the outputs of mixture of expert models. and factor analysis models.

Stochastic nonlinear mode: If the variance of a variable in the stochastic iinear mode

is increased so that the squashing function is used in its nonlinear region, a variety of

distributions are producible that range from skewed Gaussian to uniform to bimodd (s e

Figure 3.15d).

Stochastic binary mode: This is an extreme case of the stochastic nonlinear mode. If the

variance a: is very large. then nearly d l of the postsigmoid probability mass will Lie near

the ends of the interval (O, 1) (see Figure Xlse). Kg.. for a standard deviation of 150, less

than 1% of the mass lies in (0.1.0.9). In this mode. the postsigmoid activity zi appears to

be binary with probability of being "on" (i.e.. ti > 0.5 or, eqiiivalently, z, > 0):

This sort of stochastic activation is found in binary sigrnoidal belief networks [Jaakkola.

S a d and Jordan 19961 and in the decision-making components of mixture of expert rnodels

and hierarchical mixture of expert models.

3.7.2 Inference using slice sampling

Assuming the variables are labeled in ancestral order. the joint distribution can be written

where N is the number of variables. p(zi l { z j 1;;;) and p(z i l { z j };::) are the presipoid

and postsigmoid conditionai deusities for variable 2,. (R e c d that the set of parents is

represented by parameter constraints.) As usual, 1 define zo r 1 to dlow for a constant

bias.

Even for s m d networks of these variables. probabilistic inference c m be very difficult.

Not only is the inference problem combinatorial, but it involves continuous hidden variables

whose distribution when conditioned on visible variables may be multimodal with peaks

that are broad in some dimensions but riarrow in others. 1 use a Markov chain Monte car10

procedure, which consists of sweeping a prespecified number of times through the set of

hidden variables. A new value is obtained for each hidden variable using slice sampling

[Neal 19971 (see Section 2.2.4)? based on the distribution for the variable conditioned on dl

3.7 Simultaneous extraction of continuous and categorical structure 91

other variables. If an infinite number of slice samples are drawn for each hidden variable

before passing on to the next hidden variable, this procedure is equivalent to Gibbs sampling

(see Section 2.2.2). In fact, detailed balance still holds if only a fixed number of slice samples

are drawn for each variable before passing on to the next variable. In most cases, drawing

only one slice sample for each variable before continuing on will be most efficient.

If the parent-child influences cause there to be two very narrow peaks in the conditional

distribution p(zil{rj);~b, { z ~ } ; Y , ~ + ~) for a hidden miable (corresponding to a variable in

the stochastic binary mode). the slices will almost always consist of two very short Line

segments and it will be very difficult for the above procedure to switch from one mode to

another. To fix this probIem, slice sampling is performed in a new domain, yi = @ ({ x i -

p } In this domain the parent-child distribution p(yi 1 {z, 1;:;) is uniform on (0. I), so

(i ~ j , {) = ({ z ~ }) SO: I can use the following function for slice

sampling:

where ,ui i = xi&pi 19 ,~ ,, rj . Since s i ? yi and zi are all deterministically related. sampling

born the distribution of yi will give appropriately distributed values for the other two3.

3.7.3 Parameter estimation using slice sampling

I use on-line stochastic gradient ascent to perform MLB parameter estimation. This consists

of sweeping through the training set and for each training case following the gradient of

log p ({ x i }zl) . while sampling hidden unit values as described above. The parameters are

changed as follows:

where q is the learning rate.

I designed two experiments meant to elicit the four modes of operation described above.

Both experiments were based on a simpie network with one hidden layer h containing two

variables and one visible layer v containing two variables. Training data was obtained

by carefully seIecting model parameters so as to induce various modes of operation and

3 ~ o t h 90 and do not have closed-form expressions, so I use the C-library erf() function to impIe-
ment @() and table lookup with quadratic interpoiation to implement +-'0.

3.7 Sirndtaneous extraction of continuous and cateeorical structure 92

Figure 3.16: For each experiment (a) and (b), contours show the distribution of the 2-dimensional
training cases- The inferred mean postsigmoid activity of the two hidden units after learning are
shown in braces for several traicing cases, rnarked by x .

then generating 10.000 two-dimensional examples. Before training, the log-variances were

initialized to 10.0. and the other parameters were initiaiized to uniforrnly random values

between -0.1 and 0.1. Training consisted of 100 epochs using a learning rate of 0.001 and

20 sweeps of slice sampling to complete each training case. Each task required roughly five

minutes on a 195 MHz h,lIPS R4OO processor.

The distribution of the training cases in visible unit space (vi -u2) for the fkst experiment

is shown by the contours in Figure 3.16a. After training the network, I ran the inference

algorit hm for each of ten representative training cases. The mean postsigmoid activities

of the two hidden units are shown beside the cases in Figure 3.16a; clearly, the network

has identified four classes that it labels (O. 0): (O 1 1): (1.0). and (1.1). Based on a 30 x 30

histogram. the relative entropy between the training set and data generated kom the trained

network is 0.02 bits. Figure 3.16b shows a sirnilar picture for the second experiment, using

different training data. In this case. the network has identified two categories that it labels

using the 6rst postsigmoid activity. The second pos tsigmoid activity indicates how Far dong

the respective "ridge" the data point lies. The relative entropy in this case is 0.04 bits.

The above experiments illustrate how the same network can be used to model two quite

different types of data. In contrast, a Gaussian mixture model would require many more

cornponents for the second task as compared to the k t . Although the methods due to

Tibshirani and Bishop et al. would nicely model each submanifold in the second task. they

would not properly distinguish between categories of data in eit her task. MacKay's method

may be capable of extracting both the submanifolds and the categories, but I am not aware

of any results on such a dual problem.

It is not diflicult to conceive of models for which naive Markov chain Monte Car10

procedures will become fiuitlessly slow. In particular, if two variables are highly correlated.

the procedure of sampling one variable at a time wiU converge extremely slowly. Also. the

blarkov c h a h method may be prohibitive for larger networks. One approach to avoiding

3.7 Sirnultaneous extraction of continuous and categorical structure 93

these problems is to use the Helmholtz machine or variational methods.

Chapter 4

Data Compression

The goal of data compression is to exploit the redundancy in input patterns so as to r e p

resent individual patterns concisely on average. In this thesis. 1 focus on lossless data

compression. in which the original pattern can be completely recovered from the concise

representation. A source code maps each input pattern v to a codeword. such that for each

valid codeword there is a unique input pattern. 1 will consider sources where the patterns

are i.i.d. (independent and identicdly drawn) kom a distribution Pr@).

S hanoon's noiseless source coding t heorem [Shannon 19481 States t hat the average code-

word length cannot be less than the entropy of the source:

where l(v) is the length in bits of the codeword for input pattern v. and R is the entropy

of the source:

Traditional approaches to data compression have focussed on producing source codes whose

codeword lengths are nearly optimal, where the optimal length of the codeword for v is

log2 Prb) -

Arithmetic coding [Rissanen and Langdon 1976; Witten, Neal and Cleary 19871 is a

practicd algorithm for producing near-optimal codewords when the source distribution

P,(v) is known. If v is binary-valued. P,(v) can be easily estimated and arithmetic coding

can be used to produce near-optimal "fractional bit" codewords. If v is high-dimensional

and the distribution is quite cornplex (e.g., images of faces), it may be desirable to estimate

4.1 Fast compression with Bayesian networks 95

a more sophisticated flexible probability model P(v) . Unfortunately: even if su& a mode1

can be estimated so that P (v) = P,(v), there may not be a practical uray ta encode v using

the model. For example. an arithmetic encoder requires a table of the probabilities for all

possible inputs. For a 16 x 16 binary image. this table would have 2256 entries! So. not

o d y do we need a model that provides a probability P(vj, but we also need a mode1 that

somehow decomposes P (v) in a way that allows the encoder to encode the variables one at

a time (or in s m d groups).

Graphicd modeis provide a structured description of P (v) , and so they seern like a good

place to look for the source modeis described above. However, it turns out that undirected

graphical models do not provide the right type of structure. For example, the Boltzmann

machine [Hinton and Sejnowski 19861 (a Markov random field that l ems) is poorly suited

to data compression. because it does not decompose P (v) in a way that is suitabIe for

efficient piece-wise compression. (A method such as Markov chah Monte Car10 must be

used to estimate the partition fwlction, which normalizes the probabilities.) On the other

hand, Bayesian networks do provide an ideal structure for data compression.

In Section 4.1, I show how Bayesian network source models that do not have latent

variables can be used very efficiently to compress data. Then, in Section 4.2, 1 go on

to discuss source models that have many latent variables. Values can be chosen for the

latent variables and the entire configuration can be encoded. In this way. s *Lrnulti-valued

source code" with many codewords for each input pattern is obtained. In many cases.

these codewords cannot be rnixed together in a tractable way. To remedy this problem.

I show how extra information can ride .'piggyback5 on the ciioice of codeword and derive

the communication rate for this .'bits-back" procedure. In Section 4.3. we see that a broad

c1ass of approximations to maximum likelihood parameter estimation actually minimizes

this communication rate. In Section 4.4. 1 outline the =bits-back coding" algorithm. which is

a practical implementation of the .'bits-back7 idea. It turns out that by using an aithmetic

decoder in the bits-back encoder and an arithmetic encoder in the bits-back decoder. we

can achieve a practical communication rate that is nearly optimal. Finally, in Section 4.5.

1 present compression results for Helmholtz machine source models that are adapted using

the wake-sleep algorithm.

4.1 Fast compression with Bayesian networks

Suppose we have at hand a Bayesian network for the binary variables in v, such that

P(v) = P,(v) . As discussed in Section 1.2.2, the joint distribution for a Bayesian network

4.2 Communicating extra information through the choice of codeword 96

can be written

where N is the number of variables in v, and ak are the parents of vk. This decornposition

is very well-suited to arithmetic coding.

In order to encode v. we pick an ancestral order for the variables. 1 wili assume wit hout

Ioss of generality that vl U N is such an ordering. Compression begins wit h ul . whose

observed value is fed into the arithmetic encoder. along with its distribution { P (v i =

O), P(vl = l)], which is part of the network specification. Next, we compute {P(v2 =
01a2), P(vz = 1 la2)) using the conditional probability given in the network specification as

well as the values of 9% parents (Le.. either (ui } or 0) which have already been encoded.

We feed the observed value of vz into the arithmetic encoder, along with its distribution.

Encoding continues in this fashion until d l network variables have been encoded.

For this procedure to work as described, the Bayesian network must be fully visible.

That is, al1 network variables are part of the input pattern. Suppose there are some latent

variables h that are not part of the input. Then, the Bayesian network models P(v. h).
These variables may be important for representing higher-order structure in the input v,

as discussed extensively in Chapter 3. Now, the decomposition in (4.3) c a o t be used.

If there aren't many latent variables. we can use a procedure that is similar to the one

described above. We pick an ancestral order and proceed as described abave, encoding only

the observed variables. Whenever we encounter an observed variable that is not dependency-

separated from an unobserved variable by the variables that have beeli encoded so far. the

unobserved variable must be integrated out, by siimming over its values. The complexity

of this encoding procedure is usually exponential in the number of unobserved variables.

Sometimes, the graphical structure of the network permits this procedure to be done in a

very efncient way. For example, the latent variables in a hidden Markov mode1 [Rabiner

19891 with a fixed state space size can be integrated out in a way so that the encoding

complexity is linear in the number of latent variables (number of time steps).

4.2 Communicating extra information t hrough the choice of
codeword

In general, when the latent variables in a Bayesian network cannot siimmed away to compute

P (v) in a tractable way, we are left with the option of picking values for them. Shen, the

4.2 Comrnunicating extra information through the choice of codeword 97

Codeword Receiver
Awciliary data Atxiliary data

Figure 4.1: A scheme in which a~uiliary data is communicated dong with the symbol in order to
achieve optimal compression when the source code is multi-vaiued.

entire set of variables {v. h) can be encoded using the procedure described above. as if

aU values were observed. This can be viewed as a multi-uah~ed source code, where there

are many codewords for each input v. The codeword depends on which values are chosen

for the Latent variables. Often. as with the hidden ,Markov model, these codewords can be

mixed in an eficient way. However. there is an interesting class of multi-valiied source codes

(e - g . . Bayesian networks with latent variables) for which the multiple codewords cannot be

mixed in a tractable rnanner.

The approach 1 take to solve this problem [F'rey and Hinton 1996: Frey and Hinton

19971 is motivated by the *bits-back" argument of Hinton and Zemel [1904], which they

used to develop a Lyapunov function for machine leaming. It turns out that Wallace

[I!39O] devised a similar argument to constntct minimum-length integer-length messages

for use in minimum-message-lengt h inference. By selecting codewords t hroiigh the use of

extra avziliary data. the au'uliary data c m ride .'piggyback'' on the codewords for the

symbok that we are encoding. Cornparcd to the optimal single-valued source code obtained

by mking together the codewords for an input pattern. the bits cornmunicated in the

auxiliary data will make up for the lengths of the suboptimal codewords that are sent. In
particular. the communication rate will be less than the rate that would be obtained by

always picking the shortest codeword. A block diagram for this communication scheme is

shown in Figure 4.1. A simple example will help illustrate this procediire.

4.2.1 Example: A simple mixture model

Consider a source that outputs real nurnbers that are distributed according to a mixture

of two Gaussians. These numbers are rounded to some precision to form a set of symbols.

The component distributions and the output distribution are shown in Figure 4.2a, where

the rounding effect is left out for the sake of graphical simplicity.

The most natural source code to use in this case is one that requires one bit to specify

from which Gaussian a given symbol was produced plus however many bits are needed to

code the symbol using that Gaussian. However, the identity of the Gaussian that produced

a given symbol is ofien ambiguous. ùi particular. a number near vo could well have come

4.2 Communicating extra information through the choice of codeword 98

Figure 4.2: The most natural source mode1 may produce multiple codewords for a given symbol. (a)
shows a source with a single binary hidden variable which identifies Erom which Gaussian, Gi or G2,
the symbol value v is sarnpled. Vaiues of u near uo are likely to have corne from either Gaussian. (b)
shows the resulting coding density effectively used if we were to aiways pick the shorter codeword.
This density wastes coding space because it is wrongly shaped and has an area significantly less than
unity.

from either Gaussian. In these cases the source mode1 maps each sy~nbol to two codewords

- one for each Gaussian - producing a rnulti-valued source code. If we were to always

pick the shorter of the two codewords, we would effectively be assiiming the symbols were

distributed as in Figure 4.2b. However, this distribution is obviously incorrect - it is not

even normalized - and will lead to suboptimal compression.

The obvious way around this problem is to use a single-valued code that is based on a

summation of the mixture component probabilities. That is, we assign a new codeword to

each symbol based on its total probability mass, obtained by summing the contributions

from each Gaussian. Although this procedure is obviously computationally feasible for this

example, there are more complicated models where it is not (see Section 4.5). In fact, the

same rate c m be achieved by using the original multi-valued source code and commiinicating

extra information through the choice of codeword. This may seem surprising, since for a

given symbol both codewords in the multi-valued source code are longer than the codeword

in the single-valued source code.

Consider a sender that wishes to encode a rounded value d that requires 2 bits if encoded

using Gi and requires 3 bits if encoded using Gz (Le . , v' is twice as likely under Gi as it

is under G 2) . Including the single bit required to specify which Gaussian is being used, an

optimal source code (where the Gaussian identity is explicit) will thus have codewords with

lengths ti = 3 bits and l2 = 4 bits. If the sender always picks the shorter codeword, the

average codeword length is 3 bits.

Suppose instead t hat whenever the sender must communicate the part icular symbol

v', the sender chooses between the two codewords with equal probability. (In general,

4.2 Cornmunicating extra information through the choice of codeword 99

the ratio of choices will depend on v'.) It appears the average codeword length in this

case is (ti + t 2) / 2 = 3.5 bits, which is higher than that obtained by aiways choosing the

shortest codeword. However, t his cost is effectively lowered because the receiver can recover

information from the choice of codeword in the foliowing manner. Say the sender has high-

entropy auxiliary data available in the form of a queued bit stream with O and 1 having

equal fiequency. When encoding v', the sender uses the next bit in the auxiliary data queue

to choose between Gr and Gz. The sender then produces a codeword that wiU have an

average length of 3.5 bits (it is important to note that this codeword specifies which of Gl
and G2 is being used).

When decoding, the receiver reads off the bit that says which Gaussian was used and

then determines the rounded value v' kom the codeword. Given the decoded value, the

receiver can run the same encoding algorithm that the sender used, and determine that a

choice of equal probability was made between G1 and Ga. Since the receiver also knows

which Gaussian was selected, the receiver can recover the queued auxiliary data bit that was

used to make the choice. In this way, on average 1 bit of the auxihary data is communicated

at no extra cost. E refer to these recovered bits as bits-buck.

If the auxiliary data is useful, the average effective codeword length is reduced by 1 bit

due to the savings, giving an effective average length of 2.5 bits - less than the 3 bits

required by the shortest codeword. 1 refer to this rnethod of source coding as bits-back

coding. i t is important to note that the ratio of choices between Gi and G2 depends on

the symbol being encoded. For exarnple, if the rounded value is far to the right of vo in

Figure 42a, then picking the codewords equally often would be v e q inefficient, since the

codeword under Gl would be extremely long, making the benefit of the single recovered

bit negligible. In this case the sender should pi& Gl much less often and as a result the

sender will read off only "part" of a bit from the auxiliary data queue to determine which

codeword to use. As we will see below, choosing between the two codewords with equal

probability is not optimal in the above exarnple.

4.2.2 The optimal bits-back coding rate

The rate for bits-badc coding can be determined by defining a distribution that is used to

select codewords for a given input symbol (pattern), v:

where h is a binary vector representing the index of the selected codeword for input v. (It

is represented as a vector, since it too must be encoded.) Letting [(v, h) be the length of

4.2 Communicating extra information through the choice of codeword 100 -

the hth codewordL for a specific pattern v. the expected length of the two-part codeword

for v is

E(v) = Q(h(v)t(v. h).
h

The expected bits-back for v is the information content (entropy) of the distribution used
to select codewords:

The difference between (4.5) and (4.6) gives the communication cost for v:

The overaii rate 3 for bits-back coding is given by averaging this cost over the source

distribut ion, Pr (v):

It is easily proven fkom (4.8) that for each v the codeword selection distribution which

minimizes the bits-back coding rate is the Boltzmann distribution:

1 denote by * those quantities determined £rom the Boltzmann distribution. Xote that

this distribution depends on the input symbol. v. The optimal rate for a given multi-

valued source code is achieved if for each input symbol a codeword is selected using the

conesponding Boltzmann distribution. By substituting (4.9) into (4.8). we find t hat the

optimal bits-back coding rate is

This rate is the same as the rate for a singlevalued source code that has codeword lengths

which properly reflect the total codeword space associated with each symbol in the multi-

valued source code.

' ~ h e codewords may have fractiond lengths produced, say. by arithmetic coding

4.2 Communicating extra information t hrough the choice of codeword IO1

In the mixture of Gaussians example, where for symbol 11' we had li = 3 bits and 4 = 4

bits.

2 1
E * (v f) = (3 bits) + _(4 bits) = 3.333 bits. 3 S

F (v f) = 3.333 bits - 0.918 bits = 2.415 bits. (4. i l)

This is the minimum F(vr) for the given example. A slightly higher than optimal 3 (u f) of

2.5 bits was obtained above using Q(G~[I . ') = Q(G?~u') = 0-5.

4.2.3 Suboptimal bits-back coding

For cornplex source models, the summation in the denominator of (4.9) is usually intractable:

in these cases, it is not possible to obtain the exact Boltzmann distribution. When it is

possible to obtain the exact Boltzmann distribution. the denominator in (4.9) can often be

directly used to create a single-valued source code. The advantage of bits-back coding is

that when the multi-valued source code is unmixable. an approximation ta the Boltzmann

distribution can be used. There are a variety of practicai algorithms for obtaining such an

approximation. including Markov chain Monte Carlo methods [Geman and Geman 1984:

Hinton and Sejnowski 1986: RipIey 1987; Potamianos and Goutsias 19931, mean field meth-

ods [Chandler 1987: Peterson and Anderson 1987: Zhang 1993: Sad. Jaakkoia and Jordan

19961: and inverse mode1 methods [Hinton et al. 1995; Dayan e t al. 19951 (see Section 4.5).

The rate for an arbitrary codeword selection distribution Q(h(v) can be compared to the

optimal rate given by the Boltzmann distribution:

This is the information divergence (a.k.a. relative entropy) between the codeword selection

distribution and the Boltzmann distribution, averaged over the source distribution. It is

always non-negative and yields the increase in coding rate caused by the approximation to

the Boltzmann codeword seiection distribution.

A suboptimal codeword selection distribution of particular interest is vhon(hlv), which

4.3 Relationship to maximum Iikelihood estimation 102

dways picks the shortest codeword: hshon (v). (This is andogous to the twepart codes

disciissed by Rissanen [1989].) In this case. the rate increase cornpared to the optimal rate

is

(hlv) 1 phon - r = pr(v) Q ~ ~ O * (~ (V) log2 = 1 Pr(v) log2 Q* (hshort (y
v h Qn(hlv)

Bits-back coding makes gains over shortest codeword selectioa by approximately taking into

account the entire codeword space associated with an input symbol, as opposed to just the

codeword space associated with the shortest codeword. If several of the shortest codewords

have roughly equal lengths, or if there are a large number of codewords with lengths some-

what larger t han the shortest. then Q* (hshoa(h) lvj is significantly less than unity indicating

that picking the shortest codeword is far fiom optimal. Relative to Rissanen's work. bits-

back coding provides a tract able way to approxirnate the stochastic complexity [Rissanen

19891 and furthemore comrnunicate at this rate.

4.3 Relationship to maximum likelihood estimation

The whole idea of a multi-valued source code may seem absurd. Why waste codeword space

by associating multiple codewords with each symbol? An answer to this question must be

closely related to the structure of the source model. In addition to the input pattern being

encoded. it is often usefui and naturai to consider extra latent variables whose purpose is

t O capture hi&-order struct lire. For example. when modelling grey-scale images. it may

help to create a latent variable that measures overall image contrast. The codeword for a

particular image wiil include a binary representation of this contrast value. However. there

rnay be several quite different contrast values that are equaily plausibleo leading to several

ditferent codewords.

A genemtive mode1 of the type described above typically provides a parameterized dis-

tribution p(h(eH) that can be used for encoding the set of latent variables h, as well as

a distribution P(vlh, eV) to be used for encoding the input symbol v for a given setting

of the latent variables. Such a codeword wiil have an optimal length (e.g., obtained using

arithmetic coding) given by

t(v, h) - log, p(hlgH) - log2 ~ (v l h ? eV).

Note that the generative structure Mplies that P(vl h. O") is easy to cornpute. (Rissanen

[1989] refers to this type of code as a two-part code.)

4.3 Relationship to maximum Iikelihood estimation 103

The set of parameters 0 = {B': eV} must be h e d by hand, estimated using a stored

data sett or adapted on-Une. Estimating these parameters is a difficuit task when there are

latent variables. The popular technique of maximum likelihood estimation minimizes the

following cost :

Combining (4.14) and (4. la) , we find t hat maximum likelihood estimation minimizes

which is equal to the optimal bits-back coding rate (4.10). In contrat. maximum likeli-
hood estimation does not minimize the rate for an encoder that always picks the shortest

codeword.

Ofien. maximum likelihood estimation is not tractable when the generative mode1 is

overly cornplex. In these cases. it is possible to use various approximations to maximum

likelihood estimation. A common approach [Peterson and Anderson 1987: Neal and Hinton

1993; Zhang 1993: Hinton et al. 1995: Dayan et al. 1995: Sad. JEtitldCola and Jordan

19961 is to minimize an upper bound on C. thus guaranteeing that the cost is lower than

a certain d u e . (This is described in Section 3.3, where it is called mm-murn likelihood-

bound estimation.) The logarithmic term in (4.16) is first bounded by introducing an extra

distribution Q(h1v) and using Jensen's inequdity:

Inserting this bound into (4.16). we get an upper bound on C:

which is equal to the suboptimal bits-badr coding rate (4.8). So' these met hods - including

the algorithms presented in Section 3.4 - minimize the suboptimal bits-back coding rate.

As wit h exact maximum likelihood estimation, these methods do not rninimize the rate for

an encoder that always picks the shortest codeword.

4.4 The bits-back coding algorithm 104

Part of the auxiliaxy
data defines a finite
precision random
number

The probability for each
codeword is given by the
partition height

u The auxiliary data selects
a codeword

Figure 4.3: Feeding a random number into am arithmetic decoder with appropriate probabilities
(s h o w by the partition heights within a column) selects codewords (shaded partitions), while at
the same time consenlng information.

4.4 The bits-back coding algorithm

To implement the communication scheme shown in Figure 4.1. we need a general method of

recovering the auxiliary data bits fiom the codeword choices. In the mixture of Gaussians

example, we considered a specific input symbol for which there were two codewords- These

codewords were selected equally often so t hat a single bit could be used for bits-back. If the

codeword selection distribution is dyadic? H&man decodzng [Huffman 19521 can be used

to pick codewords. In this section. I consider the c'se of an arbitrary codeword selection

distribution. Software that implements the bits-back coding algorithm described in this

section can be found at http: //utm. CS .utoront0 .ca/-frey.

In the case of an arbitrary codeword selection distribution. it is not obvious how random

codeword choices c m be made without losing airxiliary data information. To address this

problem, consider the operation of an arithmetic decoder [Rissanen and Langdon 1976:

Witten, Neal and C l e q 19871. It receives a finite-precision number on [O. 1) and extracts

from it a series of decisions according to a table of probabilities. If a collection of uniformly

distributed finite-precision numbers on [O, 1) is decoded in parallel, we wiil obtain a collection

of decisions whose distribution exactly matches the table of probabilities. Figure 4.3 shows

how an arithmetic decoder can be used to conserve the information in the auxiliary data

when making random codeword choices. The probabilities associated with the decisions

form the table of the arithmetic decoder. while the auxiliary data defines a random number

' i - e . , each probability is an integral power of 2.

4.4 The bits-back coding algorithm 105

v
Symbol

1
---c Multi-Vdued

SOLLTC~ -t Codeword

EzZ-l code I
select ion

A uxiliary Arit hmet ic
data decoder

.\rithmetic
encoder

Codeword ;w

Figure 4.4: The Mock diagrams for (a) the bits-back encoder and (b) the bits-back decoder.

to be decoded. Each column of the figure corresponds to a single codeword choice and is

partitioned into severd possible outcomes with the height of each partition proportional to

the probability of the corresponding outcome. It is easy to see that if the random number

defined by the awiliary data is uniform, codeword choices will be made according to the

Codeword
select ion

v
Miilti-Valued

source
code

codeword selection distribution (as shown for a part icdu case by the shaded partitions).

- + Symbol
h

It is also easy to see that by applying an arithmetic encoder to the sequence of decisions.

we can regenerate the random number.

Figures 44a and 4.4b show block diagrams for the bits-back encoder and decoder re-

spectively. When the bits-back encoder acquires a symbol v, it uses the codeword selection

distribution Q(h1v) with an a i t hmetic decoder to choose codeword h, while consuming

some auxiliary data bits. The multi-valued source code is then used to produce a codeword

of length t(v, h). (For the experiments described in the next section, the multi-valued source

code is implemented using an aithmetic encoder in conjunction wit h a source model distri-

4.4 The bits-back coding algorit hm 106

b4,J Storage queue

Figure 4.5: The need for extra a ~ d i q data is eliminated by feeding the codeword bits back into
the bits-back encoder as aitxiiiary data.

bution P(h(B)P(vlh. 8) as described in Section 4.3). When the bits-back decoder receives

the codeword, it first decodes v and h using the multi-vdued source code. It then uses

the codeword select ion distribution Q(hJ v) with an arithmetic encoder to recover auxiliary

data bits back hom the codeword choice h.

Insofar as algorithm complexity goes. for an arbitrary codeword selection distribution.

the codeword selection procedure described above requires an arithmetic encoder/decoder

pair. If codewords are produced using a r i t he t i c coding, the incremental cost of the code-

word selection procedure is not overwhelming. In a hardware implementation (e.g.. [Feygin

1995]), the codeword selection procedure can run in pardel with codeword production.

4.4.1 The bits-back coding algorithm with feedback

In practice. when encoding a block of symbols. extra a~uiliary data is often not readily

available. One solution to this problem is to use the binary form of a portion of the block

of symbols for auxiliary data. However. so that the bits-back are efficiently utilized. this

portion of symbok should first be source coded. Figure 4.5 shows a scheme for using the

same multi-valued source code for doing just this. when the codewords have integer lengths.

In order to encode a block of symbols, some initial pràrner bits (e . g . . a few unencoded source

symbols) are h s t placed in the queue. When the next symbol is bits-back encoded. some
of the bits in the storage queue are used for auxiliary data. The resulting codeword is

fed back into the storage queue so that it can (possibly) be used as auxiliary data later

on. Once the entire block of symbols is encoded. the bits-back decoder proceeds to remove

the codewords from the storage queue in reverse order. Since the decoder ha3 no way of

knowing a priori how long each codeword is. it is essentiai that the encoder reverse the

bits within each codeword before feeding the codeword into the storage queue. The source

symbols are decoded in reverse order compared to the order in which they were encoded.

As decoding proceeds, the recovered bits-back are fed into the opposite end of the storage

4.4 The bits-back coding algorithm 107

queue and d l later be used as codeword bits or primer.

This method is inherently block-oriented, siace -ch blo& must be decoded in the o p

posite order in which it was encoded. As a consequence. a block delay is introduced. which

is often undesirable. Shorter block lengths will lead to extra overhead duc to the primer

and also due to kaming inhrmation (such as a codeword i ~ e d to indicate the end of the

block). Elonlevert if the block deiay is tolerable, this scheme niceiy eliminates the need for

extra auxiliary data-

When the multi-valued source code is implemented iising mithmetic coding, the above

feedback procedure cannot be used as defined. An arithmetic encoder produces a sequence

of codeword bits and in general there is no way to break apart this sequence into pieces of

integer length such that each piece corresponds to one symbol. This problem is easily solved

by dividing the block of symbols into snb-blocks. The arithmetic encoder used to produce

codeword bits is halted after each siib-block of symbols is processed. The resulting series

of codeward bits is reversed and fed into the storage queue as described above. Practical

arithmetic encoders usudly waste only a few bits (2 in the implementation described in

[Witten. Neal and Cleary 19871) when encoding is terminated. The sub-block size should

be chosen so as to minimize the effect of t his wastage. For example. if the optimal bits-back

coding rate is 1 bit/symbol. then choosing a sub-block size of 1000 symbols/sub-block will

lead to a rate increase of ody 0.2%. On the other liand? if the optimal bits-back coding

rate is 1000 bits/symbol. xithmetic encoding can be terminated after each symbol (ie..

the sub-block size is 1 symbol/sub-block) and the rate will increase by only 0.2%.

4.4.2 Queue drought in feedback encoders

At first sight, it may appear that queue drought is a serious problem. This can occur if the

arithmetic decoder in the bits-back encoder uses up all of the bits in the storage queue and

still can't make a codeword choice. In fact, this is usually not a problem because practical

arithmetic decoders/encoders [Witten. Neal and Cleary 19871 use a coding value with a

restricted size (32 bits in my implementation) . Consequently. in my implementation no

more thaa 32 auxiliary data bits will ever be drawn fkom the storage queue when making

a codeword choice. In degenerate cases where the codeword selection distribution places

very lit tle mass on one or more short codewords, it is possible for a queue drought to occur

when a sequence of very short codewords are chosen that consistently draw a large number

of bits each from the storage queue. Howevert even in such degenerate cases, the sequence

of events that leads to a queue drought is highly atypical. 1 have found that in practice

queue drought is not a problem, as long as a reasonable amount of primer (say 20 patterns)

is used.

4.5 Experirnentd results 108

4.5 Experimental results

En this section. 1 present two sets of results for bits-back data compression. The source

modeis are Helmholtz machines trained using the wake-sIeep algorithm (see Section 3.4).

The fkst data set consists of simple patterns of horizontal and vertical bars. The second

data set consists of binary images tif handwritten digits.

4.5.1 Bits-back coding with a multiple-cause mode1

In this section, 1 describe how bits-back coding can be applied to a binary Bayesian network

source model, that has one Iayer of hidden binary variables. Then. 1 present compression

results when the model is fit to images of horizontal and vertical bars using the wake-sleep

algorithm described in Section 3-43. 1 compare the compression efficiency of the one-to-

mmy bits-back source coding dgorithm with the one-to-one source code obtained iising

approximate shortest codeword selection. and also with the U N E gzip utifity. The multi-

valued source code has over 68 billion codewords for each input symbol. and there is no

tractable way to mix them. as there is with a hidden Markov model. For a given symbol.

most of ttiese codewords are extrernely long and therefore play a negligible role in the source

code. However. it turns out that the rate for an algorithm that uses a tractable approxi-

mat ion to shortest codeword selection is significantly higber t han the suboptimal bits- back
coding rate. This indicates that multiple codewords should in some way be accounted for.

It turns out that there isn't an efficient way to couvert the multi-valued source code

for the sigrnoidal Bayesian network into a single-valued source code that achieves a rate

that is comparable to the bits-back coding rate. To perform such a conversion. we must

compute most of the probability nias corresponding to the codewords for a given data

vector. Because of the combinatorid way in which the latent variables h interact to prodiice

P(vlh), the marginal probability mass P (v) cannot be computed in a tractable marner.

v coiild bc? encoded bit by bit iising Gibbs sampling to collect statistics. However. this

procedure would require the computationally taxing simulation of a Markov c h i n for each

element in v.

In order to use bits-back coding, we need a codeword selection distribution that is close

to P(hlvl O). The Helmholtz machine with the wake-sleep learning algorithm provides an

estimate of the optimal codeword selection distribution. The learning algorithm jointly es-

timates the generative network P(v, hl@) and a recognition network Q(hlv. #) % P(hlv. O).

So, an input pattern can be encoded as follows. The sender first uses an ancestral order

for the recognition network to compute the probability for the ûrst latent variable (in the

ancestral order). This probability and some auxillary data are then fed into an arithmetic

4.5 Experimental results 109

decoder which outputs a value for the first latent variable. Given the input pattern and the

value for the first Latent variable. the sender then computes the probability for the second

latent variable. and so on. Once h has been chosen in this marner. the entire configuration

for {v. h} is arit hmetically encoded using the method described in Section 1.1.

The receiver decodes the entire configuration for {v, h) and then computes the prob-

ability for the first latent variable using the saxne ancestrd order that was used by the

sender. This probability and the value for the variable are fed into an aritlunetic encoder.

While this process is repeated for the remaining latent variables. the arithmetic encoder

will output auxiliary data bits.

So that we can compare the performance of bits-back coding with the actual entropy

rate of the source. II used a synthetic source to produce 6 x 6 binary images. The images

are iid.? and each image is produced by tuniing on each of the 12 possible horizontal and

vertical bars with probability 0.2. (Both types of bars may appear in the same image.) The

entropy rate of this source is 8.6 bits/image.

The multiple-cause network had a single hidden layer containing 36 binary variables.

in addition to the visible layer containing 36 binary variables. In order to avoid the need

for extra auxiliary data. bits-back coding with feedback was used (see Section 44 .1) . The

images were grouped into sub-blocks of size 20 images/sub-block and a block size of 200

sub-blocks/block was used. Before each block was encoded. the first sub-block of binary

images was used to prime the storage queue. After each block of images was communi-

cated, bot h the encoding mode1 and the decoding mode1 were adapted using the wake-sleep

algorithm with a gradient descent step size of 0.01. The parameters for both the gener-

ative network and the recognition network were initialized to 0.0 before any images were

processed. 1 also approximated shortest codeword selection by picking for each image v the

configuration h t hat rnaximized Q(hlv, 4) . (The quality of t his approximation is discussed

below.) Choosing the configuration h that maximizes Q(h(v, 4) can be done efficiently by

considering one latent variable at a time. Figure 4.6 shows the number of codeword bits

communicated as a b c t i o n of the number of bIocks encoded for both of these methods.

The curves for the uncoded binary image data and the Shannon iimit given by the entropy

rate of the source are &O given. The curve for the UNIX gzip utility with the *-best"

option is shown for compaxison. (Although the U N E gzip utility is not really meant for

image compression, I include it as a reference point for the reader.) It is evident that if we

were to compare the Helmholtz machine with gzip, we wodd arrive at different conclusions

depending on whether we used approximate shortest codeword selection or bits- back cod-

ing. The bits-back coding curve is clearly superior to the curve for approximate shortest

codeword selection.

4.5 Experimental resuits 110

Shortest codeword coding (RelmhoItz machine) ------
UN?X gzip utiIity (witb -best option) - - - - - - -

Bits-back coding (Helmholtz machine) -

O 50 100 150 200 250 300 350 400
Num ber of bIocks encoded

Figure 4.6: Experimentd results for a Helmholtz machine with one hidden layer of binary units
applied to binary synthetic images.

Table 4.1: Rate cornparisons of software-implernented codes for synthetic images.

Rate (b i ts / ima~e)
Uncoded binary images 36.0
UNIX gzip utility (with "-best" option)
Approximate shortest codeword selection (Helmholtz machine)
Bits- back coding (Helmholtz machine)
Logistic autoregressive network
Shannon limit

Table 4.1 gives a cornparison of the rates obtained for the next block after 400 blocks of

images were processed. The rate for approximate shortest codeword selection is significantly

higher than the rate for bits-back coding, indicating that a significant practical savings can

be made by using the new algorithm as opposed to shortest codeword selection. However,

the communication rate for a logistic autoregressive network tbat was trained on-line (using

a learning rate of 0.01) is &O given in Table 4.1, and is significantly lower than the rate

for the Helmholtz machine. It appears that dthough bits-back coding opens the door to

new multi-valued source codes, the ones studied in this section are not yet competit ive with

simpler compression methods.

4.5 Experimental results 111

Figure 4.7: Examples of 8 x 8 binary images of handwritten digits.

How close does the approximation to shortest codeword seiection corne to actudly picking

the shortest codeword for each data vector? Since there are over 68 billion codewords for

each image in the above example. we cannot make a. direct cornparison by actually searching

for the shortest codeword. However. consider the same type of multiple-cause network.

except with 9 hidden variables and 9 visible variables, applied to similar synthetic data.

except with an image size of 3 x 3 and a bar probability of 0.1. This network is small

enough that an exhaustive codeword seuch is possible. After processing 1100 blocks of 1000

images each. 1 found that the approximation to shortest codeword selection gave a rate of

5.92 bits/image and exact shortest codeword selection gave a rate of 5.87 bits/image. These

two rates are indistinguishable in the fust decimal place. 1 expect that the results for the

approximation used for the larger network are also close to the restilts that would have been

obtained if an exhaustive seaxch had been performed.

4.5.2 A Bayesian network that compresses images of handwritten digits

Figure 4.7 shows 50 exampies of the binary images that were fed into an adaptive hierarchi-

cal Helmholtz machine source model and compressed using bits-back coduig. The binary

Bayesian network that we use as a source model had three liidden Iayers of binary vari-

ables and one bottom layer of 64 visible variables. Fkom top to bottom. the thme layers of

causes haù 16 variables. 20 variables, and 24 variables, giving a total of 60 latent variables

(2" codewords for each input pattern). Both the topdown and the bottom-up networks

were My-connected from laysr to layer, but had no connections within each layer. The

Helmholtz machine was fit to a training set consisting of 100,000 images. using the wake-

sleep algorithm.

4.6 Integrating out mode1 parameters using bits-back coding 112

Table 4.2: Rate compa.risons for software-implemented source codes on the b i n q digit data.

Rate (bitsiimage)
Original binary file 64
Shortest codeword select ion using the Helmholtz machine 60
gzip -best 39
Bits-back coding using the Helmholtz machine 33

X cornparison of the average rates obtained on the training set using approximate shortest

codeword seIection and bits-back coding with the estimated binary Bayesian network, as

well as the rates obtained by the UNIX gzip utility with the -best option. are @ven in

Table 3.2. The rate for shortest codeword selection is again si,pificantly higher than the

rate for bitsback coding, indicating that a significant practical savings can be made by

using bits-back coding.

4.6 Integrating out model parameters using bits-back coding

As noted in Section 4.3. bits-badc coding is closely related to statistical inference. In fact.

the optimal bits-back coding rate is equivaient to Rissanen's stochastzc cornplexitg [Rissanen

19891 if we interpret the choice of codeword as a model parameter. Aiso. if the codewords

are constructed by dioosing a prior over codeword identities (l'(h(dH) in (4.14)). bits-back

coding effectively integrates over a discrete set of models.

Both of these relationships Iead to an interesting application for bits-back coding. S u p

pose we are interested in encoding blocks of source syrnbols and that the source changes

f'rorn block to block. but not within any single block. Given a model with a continuous

parameter vector 8 , there is a single block codeword with length - log, P('Dl0) for each

block of source symbols. 'D. Xccording to the principles of Bayesian analysis. we ought to

encode D by integrating over the entire continuum of rnodels, giving a codeword of length

- log, P(V) = - log, P(DI9) P(9)dB. In practice. t his integral is usually impossible to

compute and an approximation rnust be used. One approximation is to use the maximum

a posteriori (MAP) model (ie.. 8 = arpaxeP(VIB)P(B)) , for which the parameters are

communicated using some (hard to de termine) preckion.

In fact, bits-back coding can be used to comrnunicate each block of symbols using the

entire continuum of models, as long as a good approximation to the posterior distribution,

Q(BID), is available. This distribution is used as the model selection distribution (in place

of the codeword selection distribution) and the model parameters are communicated to an

4.6 Integrating out mode1 parameters using bits-back coding 113

arbitranj precision. Whereas with the MAP approach. greater precision eventually leads to

an increase in coding rate. with the bits-back coding approacli. greater precision usually

leads to a decrease in coding rate. Intuitively. this can be seen as an interaction of two

processes. First . the extra codeword Iength caused by greater precision is part ly recovered

as bits-back. Second. greater precision tisudy leads to a more accurate approximation to

the posterior distribution. and therefore shorter codewords on average. The latter process

dominates except in the unusual case when the quantized version of Q(9 1 P) has a Iower

entropy relative to P(0IV) than the tinqiiantized version. 1 am currently exploring the use

of bits-back coding for integrating over continuous parameter spaces.

Chapter 5

Channel coding

Our increasingly wired world demands efficient methods for communicating discrete mes-

sages over physical channek that introduce errors. Examples of real-world charmels include

twisted-pair telephone wires, shielded cable-TV wire, fibre-opt ic cable, deepspace radio, ter-

restrial radio, and indoor radio. Each of these channels is subject to information-theoretic

limitations, physical degradation, and governrnental regdation. The prime information-

theoretic limitation is Shannon's limit, which gives the maximum average number of infor-

mation bits that can be communicated per second over a specific channel for a given set

of transmit ter constraints (e.g., transmission power) . Examples of p hysical ciegradat ion in-

clude attenuation, thermal noise, self-interference (inter-symbol-interference) . mu1 tiple-user

interference, multiple-path radio reflections, and power limitations in practical circuits. Ex-
amples of governmental regulations inciude transmission power limits, bandwidth usage,

and information packet sizes. Sogether, al1 of these restrictions and many more define the

pract ical channel coding problem of how to communicat e discrete messages reliably.

Despite the mult i-faceted nature of the practical channel coding problem, t fie bot tom

line is nonetheless quite straightforward. (See [MacKay 19981 for an excellent introduc-

tion to information theory and its connections with probabilistic inference.) In order to

communicate, the transmit ter sends a finite-durat ion red-valued signalling wave form. This

waveform is determined by a binary information sequence, which we usually assume is uni-

forrnly distributed over all possible informat ion sequences. The duration of this waveform

may correspond to a relatively short block of information or an iniînite-length limiting-case

block of information. Once the transmitter has produced a sigrialling waveform, it is trans-

formed stochasticdly by the channel and a received wavefom or channel output waveform

is obtained at the output of the channel. The receiver then uses the received waveform to

make a guess at the informatiou sequence.

Physicd channeIs are usually band-izrnited: meaning that for practical purposes the chan-

riel output waveforrn will not have any kequency components above some limit W Hz. Mmy

channels are also Linear (or we assume they are). so that the fkequency components of the

signalling waveform that are above W Ifi wiU not influence the channel output. Because

of this, we need only consider signalling waveforms that are also band-limited to W Hz.

Using Nyquist sampling at a rate of IlAt = 2W samples/second. a signalhg waveform
.v-1 defined on [O. N a t] can be represented ezactfy by the discrete-time sequence a = {q l l Z o .

The transmission of each sample ai is called a channel usage. Similady, the channel output

wavefom can be represented exactly by the discrete-time sequence y = { y i 1:; '.
Since the information sequence is effectively random, for multiple trials different sig-

nalling sequences will be produced according to some (usually discrete) distribution p(a).

The channel output sequence is probabilisticdy related to this sequence by a channei mode1

p(yl4.

For a fixed Ievel of additive noise. the transrnitter c m communicate in an error-free fash-

ion simply by using a very poweL-ful signalling waveform. However, t his is an uninteresting

and practically expensive solution to the channel coding problem. In practice. a Lmit is

pIaced on the average transmission power:

It

with

turns out that the information rate (in bits/channel usage) that c m be communicated

arbitrarily low probability of bit error. is bounded kom above by the capacity C of

the channel:

where the power constra.int in (5.1) is enforced during the maximization. This optimal

information rate was introduced by Shannon [1948]. and is jiist the mutual information

between the channel input sequence and the channel output sequence. (As a practical note.

to lower the bit error rate or to use an information rate that is closer to C, we must generally

use longer signalling waveforms.)

The channel coding design game essentially consists of devising encoders (ways to map

information sequences to signalhg sequences) and decoders (ways to guess at what the

information sequence is for a given received sequence). In this thesis, 1 a m mainly inter-

ested in conveying to the reader the insight and breadth of application offered by describing

channel coding problerns using Bayesian networks and using the probabilistic inference al-

5.1 Simplifj&g the playing field 116

gorithms presented in Chapter 2 to perform decoding. For this reason. I begin this chapter

by distilling out the essence of the channel coding problem and presenting a simple proto-

typical problem that will be t he focus for the remainder of the chapber. In the prototypical

problem. the transmitter sends a discrete-time b i n q sequence of -i 1's and - 1's. and each

of these values is corrupted by additive Gaussian noise. So, the encoder maps each infor-

mation sequence to a binary signailing sequence, and given a received noisy sequence. the

decoder rnakes a mess at the binary information sequence. It turns out that the solution

to t his pro blem has far-reaching consequences in mu1 ti-level (nonbinary) coding [Imai and

Hirakawa 19771. rnainly due to recent proofs by Wachsmann and Huber [1995] and Forney

[1997].

In Section 5.2, 1 show how Bayesian networks and prohability propagation can be

used to describe and decode Harnming codes. convolut ional codes. turbo-codes. serially-

concatenated convolut ional codes. and low-density parity-check codes. In Section 5 -3, 1

introduce "trellis-constra.int codes". wtiich are a trellis-based generaiization of d l of the

above codes. In Section 5.5, I present a method for speeding up iterative decoders that are

implemented on serial machines.

5.1 Simplieing the playing field

The real-valued signalling sequençes described above are the price to pay for an efficient

description of digital communication in the real world. wliere signai amplitudes are usually

real-valued. The channel coding problem would be much simpler to pose and impiement if

(1) signal levels were discrete. (2) the channei model was simple. and (3) the mapping hom

information sequences to chmuel inputs waç assumed to be of a relatively simple form.

While this approach can sirnpli@ the problem, it can also lead to a communication rate

that is f a . below the generai capacity given in (5.2). In this section, 1 simpliS the coding

problern in the ways described above. while attempting to argue that if done properly, the

simplification will lead to a communication rate that is practically very close to capacity.

5.1.1 Additive white Gaussian noise (AWGN)

A channel model that is simple and works well in practice is the AWGN channel. Additive

white Gaussian noise with single-sided spectral density No is added to the signalling wave-

form to obtain the channel output waveform. Assuming the channei is bandlimited to W
Hz (as described above). the decoder c a n apply a low-pass filter with bandwidth W Hz and

sample the noisy waveform at the Nyquist rate to get a discrete-time sequence {yi }Li '. It

5.1 Simplifjring the playing field 117

turns out that an AWGN chamel simply adds independent Gaussian noise to each input

value ai, where the variance of the noise is related to No by a2 = No/2:

If the decoder applies a low-pass filter with a higher bandwidth, then frequency components

of the AWGN that are above W Hz will increase the effective noise on the sequence):% '.
The AWGN channel leads to an appealing formulation of maximum likelihood (ML)

signal detection. The log-probability density of the received sequence given the signalhg

sequence is

So? ML signal detection for the AWGN channel consists of finding the ailowed signalling

sequence a that is closest to y in Euclidean distance.

5.1.2 Capacity of an AWGN channel

For the AWGN channel, each channel output depends only on ai? and not any aj? 3 # i.
Consequently, the signalling distribution p(a) t hat will give the highest mutuai information

is of product form:

(This distribution allows us to stufF as much information into each ai as possible.) In this

case, the capacity in (5.2) simplifies to

bits per channel usage. Note that for a product-form signalling distribution. the power limit

in (5.1) becomes VAR[a,] = Jas p (~ i) ~ : d ~ i 6 P.

It turns out that the maximum in (5.6) is obtained by a Gaussian signalling distribution

5.1 Simplifying the playing field 118

with variance P (see [Cover and Thomas lggl]), and the capacity is

For example, if P = 302, then C = 1 bit/channel usage. For reasonable power levels, it is

not possibIe to deterministically map C bits of information to a value ai that will have a

Gaussian distribution (or one that is even close to Gaussian). For example, try mapping 1

bit of information to a variable whose distribution close to Gaussian!

The optimality of a Gaussian signalling distribut ion leads to a new type of coding concept

cdled shaping. A signdling technique has good shape if the marginal signalling distributions

are nearly Gaussian. If the signalling shape is poor, then the capacity given in (5.7) cannot

be achieved no matter how good a code is used. For example. if binâry signalling is used (ai E

{-Jp, +O)), then the channel capacity cannot be achieved, as shown in Section 5.1.6

and Figure 5.2.

The interplay between shaping and coding is very important. As another example. here

is a method that has an excellent signalling shape, but uses a poor code. We ürst construct

a table t hat maps each information vector u to a r e d value c, in a way so that a uniform

distribution over information vectors induces a nearly Gaussian distribut ion over c,. For

a given information vector u, the transmitter simply sends a constant waveform. ai = c,,

i = O, N - 1. Using this method, each marginal distribution p(ai) caa be made to be as

close to Gaussian as desired, by increasing N and refining the map from u to c,. However.

because the waveform is constant there is no way to introduce a good code. A fruitfil

structure that leads to a nice mix between coding and shaping is the signal constellation.

5.1.3 Signal constellations

Since the information sequeiice is discrete and the signalling sequence is determined Erom the

information sequence, the allowable set of signaUing sequences is also discrete. How shouid

we specib the set of allowed signalling sequences? One way is to require that the signalling

variable at each time step be a rnember of a fixed signd set. Figure 5.la shows the signalling

points for two signalling variables a0 and ai, where each variable can take on one of eight

values. Even if a good code is used with these signalling points, the marginal s i g n a h g

distributions are quite far from Gaussian and so the rate will be below capacity. Instead,

consider breaking the signaliing sequerice into a series of groups (i .e . , subspaces) containing

n values each. A discrete set of values (cded a constellation) is then judiciously chosen

within each n-dimensional subspace in a way that leads to marginal signalling distributions

that are close to Gaussian.

5.1 Sirnplifjring the playing field 119

Figure 5.1: Signal constellations can be used to increase the Euclidean distance between signalling
points (indicated by crosses). (a) X naive constellation for an n = 2 signalling set with 64 points.
(b) The same 64 points can be rearranged in order to reduce the transmission power. (c) The
constellation fiorri (b) scded up so that its transmission power is the sarne as the power for (a) -
notice tha t the nearest-neighbor distance has increased.

Another way to understand the benefit of using signal constelations is through a sphere-

packing argument. Consider the %dimensional constellation shown in Figure 5.1 a that

corresponds to the naive approach described above. For a ftted noise level in an AWGN
channel. detection error falis off with distance between nearest-neighbor signals. Imagine

centering a 2-dimensional sphere on each signal point as shown. Now. by trying to pack the

spheres as tightly as possible. we obtain the constellation shown in Figure 5 . l b. The nearest-

neighbor distance has not changed. but the transmission power has decreased (since the sum

of squared distances to signalling points is lower). In order to use the same power as the naive

approach uses. we can now increase the Euclidean distance between nearest-neighbors as

shown in Figure 5. lc. This will increase the noise-toierance of the system. and so increase t lie

communication rate relative to the naive approach. For higher-dimensional consteIlations.

this sphere-packing gain becornes more valuable. (This simple example ignores the increase

in the number of nearest neighbors Lom 4 to 6 . See Lee and Messerschmitt [1904] for more

details.)

5.1.4 Linear binary codes are all we need!

Altliough the design of optimal high-dimensional consteilat ions is straightforward in t heory.

it is very diflicult to implement practical encoders and decoders that use t hese constellations.

Consequently, we must approximate optimal constellations by practical ones. Ways of

doing this include trellis codes (a.k.a. coset codes) [Ungerboeck 1982: Calderbank and

Sloane 1987: Fomey 19881. w hich your telephone modem probably uses. Alternatively.

Wachsmann and Huber (19951 and Forney [1997] have shown that by using a technique

called multiLeveL codzng [b a i and Hirakawa 19771: we c m achieve the capacity in (5.2) by

5.1 Simpliwng the playing field 120

combining several relatively simple lznear bznaq codes. That is. optimal constellations can

be well approximated if we can design appropriate linear binary codes. 1 refer to these new

proofs to justify my focus on linear binary codes in this thesis.

A binanj code maps each binary information vector u of length K to a binary codeword

vector x of length N. The rate R of such a binary code is defined as

1 will sometimes highlight the mapping by w~iting the codeword for u as x(u). A binary

code is linear if for any Ur and us, x(ul + u2) = x(ul) + x(u2). where. .'%" indicates

component-wise modulo 2 addition (O + O = O? O + I = 1. 1 + O = 1. and I + 1 = Oj. Note

that ths form of Linerrrity is highly nonLinear in the sense of continuous algebra (where

1 + 1 = 2). In general, Linear codes are easier to analyze than nonlinear ones.

Each bit in the codeword can be transmitted using binary signalling, also called binary

antipodal signalling. (If the b i n q signal is rnodulated by a carrier so that it is a passband

signal, it is sometimes called binury phase-shzft keging (BPSK) .) For xi = 1 we transmit

ai = Jp and for = O we transmit ai = -"/P. In this way. the average transmitted

power is P. For an AWGN Channel. we can mi te the probability density of channe1 output

yi directly in terms of xi (bypassing a,):

A simple linear binary code is the repetition code. Each information bit is transmitted rn

times. so that R = K/mK = l/m. Using (5.9). the probsbility density of channel outputs

go, . . . , tjm-i given xg is

where the constant of proportionality does not depend an xo. By basing the decoding

decision on the receiver effectively reduces the noise variance by a factor of

l/m. It turns out that this is a very poor code. because the suppression of noise cornes at

too high a cost in terms of decreasing the code rate.

5.1 Simplifying the playing field 121

5.1.5 Bit error rate (BER) and signal-to-noise ratio (Eb/?V,)

For many engineering applications, the distortion d u e of interest is the probability ph that

an information bit will be guessed incorrectly by the decoder. When analytic methods

are not available for computing pb, we must resort to simulation. Often the simulation

results are siimmarized as a point estimate c d e d the bit error rate (BER). The BER is

usually simply the obsemed fraction of information bit errors. When it is not possible

to simuiate the transmission of enough words to accurately pin down the probability of

bit error, techniques such as the one described in Section A 5 can be used to produce a

confidence interval.

To compare the BER'S of different coding schemes. we need a relatively robust measure

of the noise level that each system is being exposed to. SimpIy stating the noise variance

for an AWGN channel is not sufficient, since one system may be transmitting at a much

higher power t han another. A h . as shown above. pedormance can be improved in a trivial

fashion simply by repeating signals. A reasonably robust measure of the noise level is

where P is the transmitter power. No is the single-sided spectral density of the -4WGN. a2
is the AWGN variance, and R is the rate of the code. Eb/No is the ratio between the power

that is transmitted per information bit. and the AWGN power. It is usually given in units

of decibek (dB),

Notice that although dividing by R in (5.11) does cancel the effect of the improvement

obtained trivially by repeating signals. it does not take into account the increased bandwidth

needed for lower rate codes. In fact, in the next section we see that the minimum Eb/No
ueeded for error-kee communication depends on the rate. So, when comparing one coding

system to another that uses a lower rate. we must keep in mind that there is usually some

way to modify the former systern so as to lower its rate and at the same time lower the

Eb/No it needs to achieve error-free communication at that rate.

5.1.6 Capacity of an AWGN channel with +1/ - 1 signalling

Engineering bandwidth restrictions aside, what are the communication lunits for an AWGN
charinel when we use +1/ - 1 signalling (Le., binary antipodal signailing with P = l)?

5.1 Simplifying the playing field 122

(Without loss of generality, we wiU assume that P = 1.) The answer to this question depends

on whether we are wiiling to tolerate a certain non-vanishing BER. Before considering the

non-vanishing BER case in the next section, 1 will address the simpler case of a vanishing

BER. More specificdly, what is the minimum Eb/No needed to communicate error-&ee

using a rate R code on an AWGN channel with +1/ - 1 signaliing?

The mutud information between the channel input ai and the channel output y; a t time

step i gives the number of bits that can be communicated per channel usage on average.

For an AWGN channel with +l / - 1 signalling, the mutud information as a hnction of the

noise variance is

The first term is the entropy of yi given ai, which is just the entropy of a Gaussian distri-

bution, 0.5 1og,(2~02e). Since p(yi) is a mixture of two Gaussians. the second term is

which can be approximated quite well using a Monte Car10 method. In this fashion. it is

possible to obtain a good estimate of ~ (a *) .

To communicate error-free, the rate of the code must be less than the mutual information

between the channel input and the channel output: R < n/l(02) [Shannon 19481. Insert-

ing 02 = 1/(2REb/No) (see (5.11)) into this inequality. we get R < hl(-&). After

rearrangernent , we have

This bound (based on an interpolated inverse of a Monte Carlo estimate of ~ (a ~)) is shown

in Figure 5.2a7 along with the minimum Eb/No required by optimal (Gaussian) signalling

(see Section 5.1.2).

For example, an R = 112 code requires Eb/Na > 0.2 dB. To communicate error-free

without coding (R = l) , an infinite Eb/No is needed.

A standard result fiom information theory is that regardless of rate, an Eb/No of at least

5.1 Simplifying the playing field 123

. +l/4 sgmlling -
Gaussian signalling ------

3 .O L L . -

1/32 1/16 118 1/3/4 113 112 1 -2 - 1.5 - I -0.5 0 0.5 1

Rate R (bits/channel usage) J%/NI (dB)

Figure 5.2: (a) The minimum Eh/.\TO needed for error-free communication with a rate R code. over
an AWGN channel using +l/ - 1 signalling and optimal (Gaussian) signalling. (b) The minimum
achievable BER as a function of Eb/No for several different code rates using +1/ - I signalling.

log, 2 = - 1.5917 dB) is required for error-£ree communication [Cover and Thomas 19911.

This limit is apparent from the convergence of the curve as R -t 0.

5.1.7 Achievable BER for an AWGN channel with +I/-1 signalling

If we are willing to tolerate a certain non-vanishing BER while using a rate R code. it

turns out we can use a lower Eb/No than described in the previous section. One way to

pose the problem for this scenario is: For an optimal code with rate R and a specified

BER, what is the minimum required Eb/NoY We can think of this as a two-stage problem.

First, we find a shorter representat ion for the information vector. This representation

will obviously be lossy. since a uniformly random vector of information bits cannot be

represented losslessly on average by a shorter binary vector. Second, we use a new optimal

code to communicate this shorter representation error-he over the channel with the largest

tolerable noise variance. Since the representation is shorter than the information vector. the

new code rate R' will be lower than the old one: R' < R. So. the tolerable noise variance

for error-bee communication of the lossy representation will be higher than the tolerable

noise variance for error-6.ee communication of the information vector.

We would like to use a representation that is as short as possible, so that R' will be

as low as possible and the tolerable noise variance will be as large as possible. However.

5.2 Bayesian networks for channel coding 124

shorter representations are also more lossy and will lead to higher BER'S. What is the
minimum ratio between the lengt h of the representat ion and the Iength of the idormation

vector, such that the error rate does not rise above the specified BER? It turns out that the

minimum ratio is just the mutual information between a uniformiy random bit and its noisy

duplicate, wbere the probability that the value of the duplicate is flipped is BER. (This can

be viewed as a result of rate-distortion theory applied to a Bernouili source [Cover and

Thomas 19911 .) This mutual information is

1 + BER log2(BER) + (1 - BER) iog2 (1 - BER). (5.16)

The new code rate is

R' = ~ [1 + BER log,(BER) + (1 - BER) log,(l - BER)]. (5.17)

For a specified R and BER, we can compute R', determine the maximum tolerable noise

variance a2 = Ad-' (R'), and compute the minimum Eb/No = 1/(202 R) (note that to

compute Eb/No, we use the original R, not R'). Figure 5.2b shows the achievable BER as

a function of Eb/& for several different rates. For e u h rate, the value for &/No at which

the BER converges to zero is the same as the d u e shown in Figure 5.2a. These achievable

BER c w e s are used as guides for ascertaining the performances of codes and decoders

later in this chapter.

5.2 Bayesian networks for channel coding

A critical component of a channel coding system is the decoder. Even if the code gives

excellent performance when optimal decoding is used, if there is no way to implement a

practical decoder that gives simiiar performance. it is not clear that the code is of any use.

Channel decoders can be broken into two classes: algebraic and probabilistic. Algebraic

decoders for binary cades usually quaiitize the diannel output to two or three levels. The

received vector y is interpreted as a copy of the binary codeword vector x, wit h some of the

bits flipped. Alternatively, received values that are highly ambiguous (e-g., the value 0.1

when +1/ - 1 signalling is used) are considered as emsures - a. e.: the corresponding bit

in y is assumed to be unknown. In both cases, decoding is a matter of using linear algebra

(in a finite field) to find the binary codeword vector x that is closest to y in H;tmming

distance (dimensions that are erased are ignored). There are many techniques for algebraic

decoding [Lin and Costeilo 1983; Blahut 1990; Wicker 1995) and algebraic decoders usually

take advantage of special structure that is built into the code to make decoding easier.

5.2 Bayesian networks for channd coding 125

However, it is obvious that by using such a coarsely quantized form of the channe1 output.

these decoders are suboptimd (e-3-, the value 0.1 from above does provide some evidence

t hat a signal value of + I was sent).

Probabilistic decoders are designed to make as much use as is practically possible of

the real-vdued unquantized channel output. The goal of probabilistic decoding is either

maximum likelihood (ML) information sequence detection. or rnacimum a posteriori (MAP)
information bit detection:

Obviously, ML sequence detection minimizes the word error rate (we usually assume that

al1 words are equally likely n priori). while MAP bit detection minimizes the BER. So, by

definition, optimal probabilistic decoders are superior to optimal algebraic decoders. How-

ever. can we implement useful probabilistic decoders? The success of algebraic decoders is

due to the way they take advantage of the algebraic stnicture of a code. 1s there an anal-

ogous structure that probabilistic decoders can use? In this section, 1 show how Bayesian

networks can be used to describe probabilistic structure for channel codes and how the

inference algorithms that make use of t his structure can be used for probabilistic decoding.

See [Frey et al. 19981 for a monograph on the applications of graphical models to chanoel

coding.

5.2.1 Hamming codes

Hamming codes are an extension of the notion of adding a single parity-check bit to a vector

of information bits. Instead of adding a single bit, multiple bits are added and each of t hese

parity-check bits depends on a different subset of the information bits. Hamming developed

these codes with a special algebraic structure in mind. Consequently. they are really meaot

for binary channels where the noise consists of randomly flipping bits. However. Hamming

codes are short and easy to describe, so they make a nice toy example for the purpose of

illustrating probabilistic decoding.

An (N. K) Hamming code takes a binary information vector of length K and produces

a binary codeword of lengt h N. For an integer rn 2 2. N and K must satisfy N = 2m - 1

and K = 2* - m - 1. The Bayesian network for a K = 4, iV = 7 rate 4/7 Hamming code

is shown in Figure 5.3a. The algebraic structure of this code c m be cast in the form of the

conditional probabilities that specify the Bayesian network. Assuming the information bits

5.2 Bayesian networks for channel coding 126

Figure 5.3: (a) The Bayesian network for a K = 4, iV = 7 Harnming code. (b) BER pexformance
for the maximum Iikelihood decoder, the iterative probability propagation decoder, and an algebraic
decoder. (The key lists the curves in the order in which they appear from left to right at BER =
le-6.)

are uniformly random. we have P(uk = 1) = P(uk = 0) = 0.5, k = 0.1,2.3. Codeword

bits O to 3 are direct copies of the information bits: P (x k (u t) = b (x k , uk)- k = 0.1.2.3.

Codeword bits 4 to 6 are parity-check bits:

Assuming binary antipodal signalling with power P over an AWGN channel. the conditional

channel probabilities p(yi lxi), i = 0.1,2,3,4,5.6 are given by (5.9)- where O* is related to

Eb/No by (5.11).

This code is small enough that we can compute the MAP bit values in (5.18) exactly

using Bayes rule. The BER-Eb/No cuve for MAP bit decoding and the achievable BER
(see Section 5.1.7) at rate 4/7 are shown in Figure 5.3b. Although there is an 8 dB gap

between these curves at a BER of 10-~, the MAP decoder gives a significant improvement

of 2 dB over uncoded transmission (whose corresponding cuve is also shown).

By making hard decisions for the channel outputs (calling a value below O a "0" and

cdling a value above O a "1"), an algebraic decoder can be used. This decoder applies a

5.2 Bayesian networks for channel coding 127

pan'ty-check n z a t k to the received binary word in order to try to iocate any errors. (See

Lin and Costello [1983] for details.) In this fashioo, it can correct up to oiie bit error

per codeword. The curve for algebraic decoding is also shown in Figure 5.3b. Algebraic

decoding gives m improvement of only 0.5 dB over uncoded transmission at a BER of

10-~. Although this may seem surprising, keep in mind that the receiver for the uncoded

transmission is allowed to average the channe1 output to reduce the effective noise (see

Section 5.1.4) 7/4 times Ionger than the receiver for the algebraic decoder.

One way to approxirnate the probabilities P(ukly) used for MAP bit decoding is to

apply the probability propagation inference algorithm (Section 2.1) to the Bayesian network

shown in Figure 5.3a. Probability propagation is only approximate in this case because the

network is multiply-connected or -'loopy2 (e-g.. u ~ - x , ~ - u ~ - ~ ~ - ~ u ~) . Once a channel output

vector y is observed. propagation begins by sending a message kom yk to xr; for k =

0.1.2 .3 .4 ,5 .6 . Then. a message is sent fkom zk to ul; for k = 0.1.2,3. An iteration now

begins by sending messages hom the information variables uo. i r l , u ~ , uz to the parity-

check variables z,!. xs. LG in paraiIei. The iteration finishes by sending messages from the

parity-check variables back to the information variables in parallel. Each time an iteration is

completed. new estirnates of P(uk[y) for k = 0. 1.2 .3 are obtained. The curve for probability

propagation decoding using 5 iterations is shown in Figure 5.3b. It is quite close to the

MAP decoder. and significantly superior to the algebrak decoder. The interactive software

package BNC (Bayesian Networks for Coding) that was used to obtain these results is

described in Appendix B.

For this simple Hamming code. the complexities of the probability propagation decoder

and the MAP decoder are comparable. However, the similarity in performance between

these two decoders raises the question: T a n probability propagation decoders give per-

formances comparable to MAP decoding in cases where MAP decoding is computation-

ally intractable?" Before exploring a variety of systems w here probability propagation

in multiply-connected networks gives surprisingly good results. 1 will review convolutionai

codes, whose Bayesian networks are essentidly singly-connected chains. For these networks.

the probability propagation algorithm is exact and it reduces to the well-known forward-

backward algorithm [Baum and Petrie 19661 (a.k.s. BCJR algorithm [Bahl et al. 19741).

5.2.2 Convolutional codes

Convolutional codes are produced by driving a finite state machine with information bits.

The outputs of the finite state machine (which may include copies of the inputs) are then

used as codeword bits. A code for which each information bit appears as a codeword bit is

c d e d systematic. Typically. linear convolutional codes are used, and any code in this class

5.2 Bayesian networks for channel coding 128

can be represented by a h e u r feedback shift register (LFSR). An example of a systematic

code of this type with a memory of 7 bits is shown in Figure 5 . 4 ~ ~ . Each box represents a

1-bit memory element and D is a delay operator: Dnuk = Uk-n- In this example, there

is no feedback from the shift register to its input; a convolutional code of this type is

called nonrecursive. An output is produced by adding (rnodulo 2) values "tapped" from

the memory chain. The output taps for this rate 112 systematic nonrecursive convolutional

code were chosen to maximize the minimum distance dmin between codewords [Lin and

Costello 19831. For this code, dmin = 7: meaning that the codeword vectors for any two

information vectors will d8e r in at least 7 places. Using the delay operator, this code can

be described by the foliowing two equations:

where G (D) is called the genemtor polgnomial. This po1ynomia.l is often expressed in octal

form by letting the coefficient of Do be the least significant bit and the coefficient of D~ be

the most significant bit. In this case the octal representation is 3538.

Since dmin plays the central role in determining the error-correcting capabilities of a code

at high signal-to-noise ratio Eb/&, we would like to use codes that have large dmin- One way

to obtain a greater dmin for convolutional codes is to use a larger rnemory. However, it turns

out that decoding complexity increases exponentially with the size of the memory In fact,

it is possible to increase the minimum distance of aay systematic nonrecursive convolutional

code without using more memory. Figure 5.4b shows a rate 1/2 nonsystematic nonrecursive

convolutional code that has dmin = IO. (The two sets of output taps that maximize dmin

were found using a method described in [Lin and Costello 19831.) This code can be described

as follows:

For a nonsystematic convolutional code, there are two generator polynomials corresponding

to the two sets of output taps. For this code, the octal representation is (2478. 371s).

Although the performance of the nonsystematic code described above is better than the

systematic one at high Eb/No, it is the other way around for values of Eb/No near the

Shannon limit. Berrou and Glaview [1996] have argued that a nice compromise between

these codes is a systematic recursive convolutional code. The code in Figure 5.4b can be

converted to a systematic code by taking one set of the output taps (either one wiU do)

and using them as feedback to the input of the shift register, making a LFSR. If we do this

5.2 Bayesian networks for channel coding 129

Figure 5.4: The linear feedback shift register (LFSR) configurations for rate 1/2 convdutional
codes with maximum dmin. (a) .II systematic nonrecursive convoIutional code (dmin = 7). (b) X
nonsystematic nonrecursive convolutiond code (dmi, = IO). (c) -4 systematic recursive convolutional
code (dmin = 10).

with the upper set of taps. we obtain the rate 1/2 systematic recursive convo1utiona.l code

shown in Figure 5.4~. This code can be described by the following two equations:

The second equation is to be interpreted as

5.2 Bayesian networks for channel coding 130

which can be derived hom the figure1. The former expression allows us to retain the G(D)
notation. which in this case is 24Ts/37l8. From the point of view of linear algebra. we

have obtained this new code simply by dividing Gi(D) and G 2 (D) from above by G i (D) .

It can be shown that this operation does not change the algebraic structure of the code.

For example. the new code has dmin = LO as before. However. as we saw in the previous

section. there is more to channel coding than algebraic stnicture. Et turns out that this

systemat ic cecursive code performs bet ter than the above nonsystematic nonreciirsive code

at tow &/&.

5.2.3 Decoding convolutional codes by probability propagation

Bayesian networks for nonsystematic and systematic convoIutional codes are shown in Fig-

ures 5.5a and 5.5d. In the former case. both codeword bits at stage k depend on the encocier

state as well as the information bit. whereas in the latter case. one codeword bit is simply

a direct copy of the information bit. Notice that because of the dependency of at l e s t

one codeword bit at stage k on the ençoder state and the information bit. these networks

axe not singly-connected. However, they can be converted to singly-connected networks in

the following way. By duplzcatiny the information bits, we obtain the networks shown in

Figures 5.5b and 5.5e (see Section 2.1.4). By grouping each state variable with one of thcse

duplicates as shown by dashed Ioops, we obtain the singly-connected networks shown in

Figures 5 . 5 ~ and 5.5f (see Section 2.1.4).

In the new networks, each state variable actually contains a copy of the current infor-

mation bit. We can interpret each state variable as a binrtry number whose Ieast significant

bit (LSB) is a copy of the current information bit and whose most significant bit (MSB)
is the oldest value in the LFSR (i. e.. the value in the memory element that appears on

the far right in the LFSRs shown in F i y e 5.4). Let sk.2 be the binary number obtained

by cutting off the LSB of s k . and let sk%2 be the value of the LSB of s k . Let j (s k - 1) be

the binary number obtained by cutting off the MSB of sk -1 and replacing the LSB of sk-1

with the value of the LFSR feedback bit obtained by adding (modulo 2) the values of the

bits in skW1/2 that correspond to the LFSR feedback taps. So. f (sk-1) is the value of the

new state at stage k. excluding information bit q. Findy. let g(sk) be the bit obtained by

adding (modulo 2) the values of the bits in sk that correspond to the LFSR output taps. If

there are two sets of taps, then there will be two output functions gl(sk) and q2(sk)-

Now, we can specify the conditional probabilities for the convolut ional code Bayesian

k t , this representation is algebraically consistent. We cm, for e~ample, multiply the numerator
and the denominator in (5.22) by a polynomial in D without changing the set of output sequences that the
LFSR can producc. See picker 19951 for a textbook treatment.

5.2 Bayesian networks for channel coding 131

Figure 5.5: The multiply-connected Bayesian network (aj for a nonsystematic convolutionai code
can be converted to a singly-connected network by duplicating the information variables (b) and then
grouping together information variables and state variables (ci. The multiply-connected network for
a systematic convolutional code can be converted to a singly connected one (d) - (f).

networks. For the sake of brevity, 1 wiil consider only the systematic code shown in Fig-

ure 5.5f. Assiming the information bits are iiniformly ranciom. we have P(uk = L) =

P(uk = 0) = 0.5. k = 0:. . . : K - 1. The state transition probabilities are

where we assume s- 1 = O to initialize the chain. The codeword bit probabilities are

Assuming binary antipodal signalling with power P over an AWGN channel. the conditional

channel probabilities p (y i (x i) , i = 0,. . . ,2K - 1 are given by (5.9). where o' is related ta

Eb/No by (5.11).

5.2 Bayesian networks for channe1 coding 132

Figure 5.6: The computation of P(ukIy), P (s k (y) , and P (z i l y) by probability propagation using the
fornard-bacbard message-pussang schedule, which minimizes the total number of messages passed.
Xrrows represent messages in transit, whereas solid dots represent messages waiting to be cem.

Using the singly-connected Bayesian networks for convolutional codes. probabihty propa-

gation can be used to compute the a posteriori bit probabilities P(ukly) exactly. The MAP
values ai1"' can be obtained by applying a threshold of 0.5 to these probabilities. Although

the probability messages can be passed in any order. the fornard-backward message-passing

schedule gives the lowest number of total messages passed, and so it is most appropriate

for decoding on a serial machine. Figure 5.6 shows how messages are passed according to

this schedule in the Bayesian network for a simple systernatic convolutional code. First,

probability messages are propagated £rom the obsemed channel output miables (crossed

vertices) to the "backbone" of the chah (the state variables). Then, the messages are

buffered as shown. (See Section 2.1.3 for an explanation of bdered messages in probability

propagation.) Pictorially. when a message arrives at a vertex on an edge, but is buffered

and not propagated on to the other neighbors, 1 draw a small dot adjacent to each of the

other edges. Each of these dots can be tumed into an arrow (indicating a message is being

passed) at any time. Next messages are passed forward dong the chain, and then back-

ward dong the chah. Findy, messages are propagated to the information bits and to the

codeword bits. (It is not necessary to propagate probabilities to the observeci variables,

since P (y i [y) is trivial to compute.) Notice that this algorithm computes P(uk [y), P(skly),

and P (x i J y) . If al1 we need are the information bit probabilities P(ucly), then it is not

5.2 Bayesian networks for channel coding 133

Se- 1

Ic- i

Achievable BER -----

,
6

I i I \i ... 1 1

Figure 5.7: Performances of 7-bit memory LFSR convolutional codes with maximum dmin.

necessary to propagate the last set of messages shown in the figure.

Figure 5.7 shows the performances of the three convolutionai codes described above. The

systematic nonrecursive convolutional code has a BER that is significantly higher than the

BER's for the other two codes at reasonably high Eb/No. The nonsystematic nonrecursive

convolutional code and the systematic recursive convolutional codes have similar BER's.

except for low Ea/No, wliere the systematic code has a significantly lower BER. The software

package BNC was used to obtain these results.

5.2.4 Turbo-codes: parallel concatenated convolutional codes

Although the convolutional codes and decoder described above give roughiy a 5.7 dB im-

provernent over uncoded transmission at a BER of 10-5! they are still roughly 3.7 dB from

Shannon's limit at this BER. Up until the last few years, a serially-concatenated Reed-

Solomon convolutional code [Lin and Costello 19831 was considered to be the state of the

art. At a BER of IO-^, this system is roughly 2.3 dB from Shannon's Limit . However, in

1993, Berrou, Glavieux, and Thitimajshima introduced the turbo-code and the practical it-

erative turbo-decoding algorithm. Their system was roughly 0.5 dB from Shannonk Limit at

a BER of 10-~. Also, these binary codes have b e n successfully combined with mdti-level

coding to obtain bandwidth-efficient coding within 0.7 dB of Shannon's b i t [Wachsma~

and Huber 19951.

The original presentation of turbo-codes lacked a principled fkamework. For example, it

5.2 Bayesian networks for channel coding 134

Figure 5.8: (a) The Bayesian network for a K = 6. Ji = 12 rate 1/2 tubecode. (b) The
performance of a K = 63,536 rate 1/2 turbo-code using 18 iterations of turbo-decoding.

was not at d l clear how decoding shouid proceed when there were three or more constituent

convolutional codes instead of two [Divsalar and Pollara 19951. However. it turns out that

the turbo-code can be concisely described as a rnultiply-connected Bayesian network, and

that the turbc~decoding algorithm is just probability propagation in this network [Frey

and Kschischang 1996; Kschischang and Ftey 1997; MacKay, McEliece and Cheng 19971.

This general graphical mode1 kamework makes it easier to describe new codes and their

corresponding iterative decoding a l g o r i t h . For example. decoding a turbo-code that has

three constituent convolutional codes is just a mâtter of propagating probabilities in the

corresponding Bayesian network.

Figure 5.8a shows the Bayesian network for a rate 1/2 turbo-code. For a given infor-

mation vector, the codeword consists of the concatenation of two constituent convolutional

codewords, each of whicb is based based on a different permutation in the order of the

information bits. The subnetwork indicated by a dashed Ioop is essentiaily the same as the

network for the systematic convolutional code described above. The only dxerence is that

every secorid LFSR output is left off, for a reason given below. The information bits are

also fed into the upper convolutional encoder, but in permuted order. Every second LFSR
output of the upper code is also left off By leaving off every second LFSR output in both

constituent codes, the total number of codeword bits is twice the number of information

bits, so the rate is 112.

Once the Channel output y for an encoded information vector is observed, probability

5.2 Bayesian networks for channe1 coding 135

propagation can be used to approximate P(ukJy) and perform approximate MAP bit de-

coding. Figure 5.8b shows the performance of the probability propagation decoder for a

K = 65,536 rate 1/2 turbo-code with a randomly drawn permuter. The scripts used with

the BNC software package to obtain these results are given in Appendix 3.3.

Each (identical) constituent convolutionai code uses a 4-bit LFSR wit h polynornids

(21/37)8. Although at low Eb/No the turbo-code gives a BER that is sigpficantly higher

than the BER for uncoded transmission, the turbo-code c w e drops below a BER of 10-'

at less than 0.5 dB frorn Shannon's iimit. Berrou and Glavieux suggest that for very low

BER performance (say 10-'O), the permuter should be designed to maximize dmin [Berrou

and Giavieux 19961. 1 have found that for BER'S at or above IO-'. a randomly drawn

permuter typically works fine.

Since the turbecode network is multiply-connected, we must specifjr a message-passing

schedule in order to decode by probability propagation. That is, the order in which messages

are passed can affect the final result as well as the rate of convergence to a good decoding

solution. Since the network is multiply-connected, we must also speciw when to stop passing

messages, since otherwise they ~ ~ o u l d propagate indefinitely. Figure 5.9 shows how messages

are passed up to the end of the first iteration of turbdecoding. First , messages are passed

fkom the channel output variables (crossed vertices) to the state variables of bot h constituent
codes. Assuming we are only interested in estimating P(ukly), we can now ignore the

channel output variables and the codeword variables. The simplified network with buffered

messages waiting to be sent is shown in the upper-right picture in Figure 5.9

Next, messages are passed £rom the information variables to the state variables of one of

the constituent codes. This c h i n is processed in the forward-backward manner and then

messages are propagated to the information variables. Messages are then passed to the state

variables of the ot her constituent code. T hese messages are called "ext rinsic informat ion"

in [Berrou and Glavieux 19961. Once the second chain has been processed in the forward-

backward manner, messages are propagated back to the information variables, as shown in

the lower-right picture in Figure 5.9. This completes the first itemtion of turbo-decoding.

Messages are t hen propagated from the informat ion variables back to the first constituent

code chain, and so on. The series of 16 pictures outlined by a dashed rectangle in Figure 5.9

shows how messages are passed during one complete iteration of turbedecoding. (Note that

after the &st iteration, there aren't any buffered messages in the first picture within the

dashed rectangle. The buffered messages in this picture are due to the initial observations.)

5.2 Bayesian networks for Channel coding 136

Figure 5.9: The message-passing schedule corresponding to the standard turbo-decoding algorithm.

5.2.5 Seridy-concatenated convolutional codes, low-density parity-check
codes, and product codes

It turns out that many of the iterative decoding algorithms for a variety of codes can be

viewed as probability propagation in the corresponding Bayesian networks For the codes

[Frey and Kschischang 19961. Figure 5.10a shows the Bayesian network for a serially-

concatenated convoiut ional code [Benedetto and Montorsi 1996bI. The information bits

are 6rst encoded using the upper convolutional code. The generated codeword bits xL

are then permuted and fed into a second convolutional encoder, whose output bits x2 are

transmitted over the channel. The iterative decoding algorithm introduced in [Benedetto

and Montorsi 1996aI was presented without reference to any of the Literature on probabiiity

propagation. However, their iterative decoding algorithm is in fact probability propagation

in the corresponding Bayesian network. After observing the channel output y, the decoder

5.2 Bayesian networks for channel coding 137

propagates messages hom y to the lower c h a h Then. messages are propagated forward

and backward along the lower chain before being passed to the upper chain. The upper

chah is processed and then messages are passed back to the lower chain, and so on.

The t heoret icd ML-decoding upper bounds on BER-Eb/No for seridy-concatenated

convolutional codes are superior to those for turbcxodes [Benedetto et al. 19973. However.

it is not dear that t hese theoreticai bounds are of any pract i d value. First of all. the bounds

are bzsed on the average performance over al1 possible permuters. Suppose t hat on average

1 in every 1000 permuters gives a very poor code that when ML-decoded gives a BER of 0.1.

Further, suppose that the ot her permuters give codes that when ML-decoded give BER'S of

10-'O. If we randomly pi& a permuter. we are very iikely to get a code that gives a BER of

10-Io. However, the average performance over all permuters is 0.001 - 0.1 + 0.999 IO-'' =
IO-'. In this way. the average perfomaoce over permuters can be misleading. Second of

d l , since ML àecoding is intractable. in practice we m u t use a suboptimal decoder. such as

probability propagation. Even if the ML-curve for one code is superior to that of another

code, the performance of the practicd iterative decoder may be inferior.

It is suggested in [Benedetto et al. 19971 that for short block lengths (say, K = 200)

serialy-concatenated convolut iond codes give bet ter performance t han t urbo-codes. when

iterative decoding is used. However. for short block lengths. it is not at all clear that either

of these codes performs better than sequentiai decoding [Lin and CosteHo 19833 with a

convolutional code wit h large memory.

Figure 5.10b shows the Bayesian network for a low-density parity-check code [Gallager

1963; Tanner 1981; MacKay and Neal 1996]. These codes were largely forgotten in the

channel coding cornmunity for roughly 35 years. probably due to the computationally in-

tensive encoder and decoder that GaIlager proposed. However, it turns out that they have

excellent t heoret ical performance [MacKay 19971 and t hat the iterat ive decoder proposed

by Gallager is in fact equivalent to probability propagation in the network shown above. In
these codes, each parity-check vertex q, requires that the codeword bits { x ~) ~ ~ ~ , to which

qi is connected have even parity:

where q is clamped (observed) to O to ensure even parity. The term "low-density" refers to

the fact that each parity-check variable is connected to very few codeword bits (a vanishing

Baction, as N -t CE). (Notice t hat since t his network is parity-check oriented and does not

show how an information vector is mapped to a codeword, it appears an encoder must use

a pre-derived generator matrix and encode the K information bits in 0(K2) time.) The

5.2 Bayesian networks for channe1 coding 138

Figure 5.10: The Bayesian networks for (a) a K = 3, !V = 9 rate 1/3 seridy-concatenated
convolutional code; (b) a(nonsystematic) K = 2, :V = 6 rate 113 low-density parity-check code; and
(c) a (nonsystematic) K = 3, -V = 9 rate 1/3 product code.

iterat ive decoder passes messages between the parity-check variables and the codeword bit

variabIes. Due t o the simplicity of the codeword constraints (parity-checks), the decoder is

simpler than the iterative decoder for turbo-codes. However. it appears they do not corne

as close to Shannon's Lmit as do turbo-codes for rates of 1/3 and 1/2 [MacKay and Neai

l996].

Figure 5 . 1 0 ~ shows the Bayesian network for a product code. In this network, each

variable qi is a generahed parity-check variable - for example. qi may require t hat { z,), cQ,

be a codeword in a convolutional code. Recently proposed iterative decoders for product

codes [Lodge et al. 1993; Hagenauer. Offer and Papke 19961 can be viewed as probability

propagation in the corresponding networks. As wit h the low-density parity-check code, the

decoder iteratively passes messages between the generalized parity-check variables and the

codeword bit variables.

5.3 Trellis-constraint codes (TC C s) 139

5.3 Trellis-constraint codes (TCC4s)

In the previous section. E presented the Bayesian networks for a varie@ of codes whose

iterative decoding algorithms can be viewed as probability propagation in corresponding

Bayesian networks. Can we use th% perspective to propose new codes and derive new

iterative decoders? Partly, the answer is "yes" . However, we cannot expect to obtain good

results simply by tossing the ingredients of a Bayesian network into a bag and shaking.

Firsi of dl. we want the resulting code to give excellent performance if ML decoding is used.

Second of all, we want the resulting code to give good results when decoded by probability

propagation, which is only an approximation to maximum Iikelihood decoding. Keeping

these issues in rnind. a wise approach to proposing new code networks is to incrementally

generaiize previous work. In this section. 1 present a code that can be viewed as a trellis-

based generalization of turbo-codes. seridy-concatenated convolut ionai codes. low-density

parity-check codes. and product codes.

5.3.1 Constraint codes

A binary (N. K) code is a set of 2 codewords. that is a subset of a (u s u d y much larger)

set of 2" binary vectors of length N. So. one way to view a code is as the set of N-vectors

that sa t i se a set of constraints. I will refer to a code that is described in this way as a

constraint code. For example. any (.M. K) linear binary code c m be described by a set of

N - linearly independent parity-check equations. A more complex example is an (N. K)
binary convolutional code whose codewords are derived kom the 2 K allowed configurations

of the Markov chain that describes the code (e . g . . see Figure 5 . 6) . This view of codes is

similar to the systems approach of Wiberg [1996].

We can construct a Bayesian network that describes the parity-check equations for a

code by creating one vertex qi for each parity-check equation i. and one vertex Xj for each

codeword bit. The parents of parity-check variable qi are the codeword variables { z j } jEq ,

which appear in equation i. Tlie conditional probabilïty for pa-ity-check variable i is

Finally, clamping q = O defines the allowed configurations of the graphical model. If there

are N codeword bits and N - K parity-check variables whose parity-check equations are

linearly independent, then the number of allowed configurations is 2 K . A code that is

described in this way can be iteratively decoded by propagating probabilities back and
forth between the set of parity-check vertices and the set of codeword bit vertices. (The

5.3 Trellis-constraint codes (TCC's) 140

Figure 5.1 1: (a) The constraint network for the turbo-code shown in Figure 5.8a. (b) Each of the
upper and lower subnetworks in (a) can be made singly-connected by grouping parity-check vertices.

Bayesian networks and iterative decoders for low-density parity-check codes and product

codes fit into this framework - see Section 5.2.5.)

For example. Figure 5. Lla shows the parity-check network for the simple turbo-code

shown in Figure 5.8a. The channel output variables have been left out for the sake of

graphical simplicity. As usuai. the parity-check variables are clamped to O. The 6 systematic

codeword bits are in the center row of unclarnped vertices. The two sets of 3 nonsystematic

codeword bits are in the upper and lower rows of unclamped vertices. Notice that each

parie-check vertex checks a single nonsystematic bit as w d as al1 systematic bits to its

Left (up to the permutation). One way to decode this network is to propagate probabilities

from the systematic bits to the upper row of pari@-check bits, back down aU the way to

the lower row of parity-check bits. and so on. Notice that each systematic-parity-systemat ic

sweep of propagation is not exact, since both the upper and lower subnetworks (obtained

by a horizontal cut across the systematic bits) are multiply-connected.

5 - 3 2 A code by any other network would not decode as sweetly

Since any linear binary code can be described by a set of parity-check equations, it may

seem that a kuitful approach to getting closer to capacity is to simply find a good code (e.g.,

a random linear code), mi te down its parity-check equations, construct the corresponding

Bayesian network. and then decode it using probability propagation. However, in general

the parity-check network will be multiply-connected. Since probability propagation is only

approximate in such networks, the performance of the decoder will depend heavily on which

set of Linearly independent equations is w d . Operations such as grouping parity-check

5.3 Trellis-constraint codes (TCC's) 141

variables together (creating generalized check variables that have more than 1 degree of

constraint) , will also heavily iduence the decoder's performance.

For example, after grouping e x h set of 6 parity-check vertices into one check vertex

with 6 degrees of constraint. we obtain the network shown in Figure 5.llb. In this case.

both the upper and lower subnetworks are singly-connected, so each systematic-parity-

systematic sweep of propagation is exact. Obviously. iterative decoding in this network

will give different resuits than iterative decoding in the original network. Notice that by

grouping several parity-check variables. we obtained a check vertex with greater complexity

than a single parity-check. In general. this wiil lead to a check vertex for which exact

propagation is intractable. However. with judicious design. even a very high-order check

vertex can still be processed in a tractable way. In the above example. each check vertex

can be processed using the forward-backward algorithm.

In order to obtain a good coding system. we need to simultaneously find a good code and

a corresponding Bayesian network that gives good performance when decoded by probability

propagation.

5.3.3 Trellis-constraint codes

The term trellzs was introduced by Forney [Forney 19731 and refers to a diagram that

explicitly shows the values of a discrete state variable at each time step and the allowed state

transitions. A treilis is more general than a LFSR. since in a treKs the state transitions and

even the nurnber of states may Vary with time. (Also. a treiiis can represent a nonlinear

code.) Figure 5.12a shows the trellis for the first 4 time steps of a rate 1/2 systematic

recursive convolutional code with LFSR polynomiais (5/7)s. Le.. 52k = u k and z s k + ~ =

(1 + D Z) u k / (l + D + D2). The leveis of the state variable (black discs) corresponds to the

memory of the LFSR. and in this case there are 2 bits of memory. Each branch in the

t r e h indicates an allowed state transition, and the corresponding branch variable values

(in this case the LFSR outputs x 2 k i x 2 k + l) are written beside each branch. Figure 5.12b

shows the corresponding Bayesian network. In the Bayesian network. the branch variab les

are functions of the state done, and so each state variable must have 8 levels instead of the

4 levels used in the trellis.

A trellis-constraint code (TCC) is a constraint cade whose dowed configurations are

defined by the interleaved interactions between the branch variables of two or more trel-

lises. Because of the permuters, the branch variable interactions can lead to a TCC whose

equivalent single t r e b is very complex, even if the constituent trellises in the TCC aie

simple (e.g., 16 states in the experiments below). The permuters (interleavers) may be

5.3 TrelIis-constraint codes (TCC's) 142

0-

Branch variables

Branch
variables

Figure 5.12: (a) shows the creliis for a simple rate 1/2 systernatic recursive convolutionai code.
Each branch indicates an ailowed state transition, and the corresponding pair of output bits are
written beside the branch. (b) shows the corresponding Bayesian network. which requires one e-xtra
bit of state so that the outputs c m be determined directly from the state variabies.

structured or random. and theïe is no restriction on which branch variables are allowed to

interact. For example. the systematic bits. the nonsystematic bits! or a mixture of both

may interact with the other trellises. Also, there is no restriction on which variables are

used as codeword symbols. For example, in a TCC with two trellises? the codeword bits

rnay be the nonsystematic bits of one trellis. the nonsystematic bits of both trellises, the

systematic bits of one trellis and the nonsystematic bits of the other trellis. etc .

Figure 5.13a shows the Bayesian network for a general TCC with nt trellises and a vector

of constraint satisfaction indicator variables c. (Each double-track arrow represents paralle1

directed edges corresponding to the branch variables that participate in the constraints.)

Let n, be the number of branch variables participating in the ith constraint. and let the

corresponding branch variables be x , , ~ , . . . , xi,ni. (E.g., if each treliis contributes one branch

variable to each constraint, we have ni = nt for all i, and Xi, is the branch variable that

trellis j contributes to constraint i.) Let ci be the constraint satisfaction indicator for the

ith eonstra.int. That is, = 1 if and only if {xij};Li is a valid configuration for constra.int i;

otherwise, ci = O. For example, we may require that the labels participating in constra.int i

have even parity, be equal, or form the codeword of a short code. For the equality-constraint

5.3 Trellis-constraint codes (TC C's) 143

Treliis nt (3
Figure 5.13: (a) The Bayesian network for a generai tre!lis-constra.int code (TCC). The networks
for TCC's corresponding to turbo-codes. serially-concatenated codes. low-density parity-check codes.
a d product codes are shown in (b) - (e) . "Sv = systematic coupling; "YS" = nonsystematic
coupling.

interaction. the conditional probability for constraint indicator i is

where xiJ E {O. 1). Xotice that the conditional distribution for the constraint vector vari-

able c factors:

(This couid of course be shown graphically in the Bayesian network. but the figure woiild

become much too cliittered.) The constraints arc enforced by clarnping c = 1.

Viewed as a generalization of turbo-codes and serially-concatcnüted convohtional codes.

TCC's retain the graphical structure of two or more long chains that interact through a

permuter. As with other iterative decoders. 1 have found that the decoding complexity of

the probability propagation decoder for TCC's scaies Lnearly with block length. However.

the encoding complexity for a TCC is not guaranteed to be linear, as i t is for turbo-codes

and seriaily-concatenated convolutional codes. Later in this section, 1 give an example

of a TCC whose BER-Eb/No performance is cornpetitive with a turbo-code's, but whose

encoding time is superlinear (possibly quadratic) in the block length. However, it sliould

be kept in mind that the encoder can use binary operationso whereas iterative decoders

use floating point or fixed (integer) point operations. So, it is often the complexity of

the iterative decoder that is most important for practical block lengths (e.g., in broadcast

applications, where an expensive encoder can be used, but the decoder must be higbly

5.3 Trellis-constraint codes (TC C's) 144

affordable) .

5.3.4 TCC7s with equality constraints

The equality constraint is the most severe constraint. If there are ni branch variables

participating in comtra.int i! then an equality constraint has nt - 1 degrees of constraint.

(1 exclude constraints with ni degrees of constraint fiom consideration. since they do not

act ually couple the trellises.)

Figures 5.13b to 5.13e show the TCC's corresponding to a simple turbo-code. a serially-

concatenated convolut ional code. a low-density parity-check code. and a product code. Each

elongated ellipse corresponds to a constraint trellis. and each horizontal row of vertices

corresponds to the constraint vertices. Each group of edges leaving a trellis is Iabeled -'NS"

(nonsystematic) if the corresponding set of branch variables is constrained by the trellis.

Each group of edges leaving a trellis is labeled "S7 (systematic) if the corresponding set

of branch variables is not constrained by the treliis (ie.. the set of branch variables is a

subset of a possible set of systematic branch variables). In al1 four cases. the constraints

are equality constraints. The TCC corresponding to a turbo-code consists of two or more

trellises that have equal (up to an interleaving) systematic bits. The TCC corresponding

to a seriaUy-concatenôted convolutiond code consists of two trellises, where the systematic

bits of one trellis are equal to the permuted nonsystematic bits of another trellis. The

TCC corresponding to a low-density parity-check code consists of a large number of simple

parity-check trellises. where each constraint ensures that one nonsystematic branch variable

fiom each of a very srnall number of trellises are equal (two or three treEses are used in

[MacKay and Ned 19963). Interestingly. the standard iterative decoders for low-density

parity-check codes [Gallager 1963: MacKay and Neal 19961 process the soft decisions for

each pari ty-check equat ion by apply ing the forward- backward algori t hm t O a pari ty-check

trellis. The TCC corresponding to a product code consists of one parity-check trellis for

each row and column of a rectangular mangement of the constraints. where each constraint

ensures that the nonsystematic branch variables from the 'iow trellis" and " c o l m trellis"

are equal.

The networks discussed above do not show which variables are used as codeword symbols.

Although the graphical structure of an TCC may be well-suited to decoding by probability

propagation, the quality of the code will depend on which symbols are used as codeword

symbols, among other things. For example, if the nonsystematic bits for only one of the

turbo-code treUises are sent, the double-trellis TCC degenerates into a single-trellis 'TCCn

that is equivalent to a convolutional code.

5.3 Trellis-constraint codes (T CC's) 145

Figure 5.14: (aj The Bayesian network for a new TCC, c d e d a nonsystematic TCC. (b) The
performance of a Ii' = 65.536. A- = 131.072 rate 112 nonsystematic TCC cornpared to a standard
turbecode and a low-density parity-check code. The 95% confidence in te rds were cornputed using
the method described in Section 5.1.5.

5.3.5 Nonsystematic TCC's

In this section. 1 present a new type of TCC that fills a gap in the spectrum of TCC's shown

in Figure 5.13. and give resdts that show this new TCC is cornpetitive with turbo-codes

and low-density parity-check codes. The TCC's in Figure 5.13 v q in both their number

of constituent trellises and in which type of brmch variables (systematic or nonsystematic)

they couple. TCC's of the type shown in Figures 5.13b and 5 .13~ have a small number of

very long trellises. whereas TCC7s of the type shown in Figures 5.13d and 5.13e have a large

number of reIatively short treliises. In contrast, TCC's of the type shown in Figure 5.13b

emphy a systematic-systematic coupling, whereas TCC's of the type shown in Figure 5 . 1 3 ~

ernploy a systematic-nonsystenatic coupling. Figure 5.14a shows a new type of TCC that

has very long trellises and employs a nonsysternatzc-nonsgstematic coupling. 1 will refer to

this type of TCC as a nonsysternatzc TCC [Fkey and MacKay 19971. in order to emphasize

h~7w it differs from the TCC's for t urbo-codes and seridy-concatenated convolutional codes.

Consider a TCC of this type, where the nonsystematic branch variables (which are
constrained to be the equd) are transmitted as codeword bits. Let N be the number of

codeword bits and let RJ be the rate of treliis j (2-e.' trellis j imposes N(1- RJ) degrees of

constra.int on the codeword). Assuming that the constraints for al1 nt trellises are linearly

independent, the degrees of freedom left over after all trellises are coupled is K = N -

5.4 Decoding complexity of iterative decoders 146

C;:, N(l - Rj) . So. the overall rate of the code is

R >_ 1 - C(1 - R,).

For each constraint that is linearly dependent on the other constraints. R is increased by

1/N.

Figure 5.14b shows the perfarrnance of a K = 65,536. N = 131.072 rate 1/2 nonsys-

tematic TCC. with two trellises (nt = 2). Each treliis was obtained by puncturing every

fifth nonsystematic bit of a rate 4/5 nonsystematic convolutional code with maximum dmin.

(The generators for this code were obtained from [Daut. Modestino and Wismer 19821 and

are (32.4,22.15. .) After puncturing, each convoliitional code had rate 3/4. so that the

overall rate of the TCC was 1/2. The BNC software package was used to obtain these results.

Although this nonsystematic TCC does not perform as well as a turbo-code with the same

K and N o it does perform significantly better than the best rate 1/2 low-density parity-

check code published to date [MacKay and Neal 19961 with K = 32.621 and N = 65.389.

(1 have observed that for long block lengths (N > 50.000). the only significant effect that

increasing the block Length has is to steepen the dope of the BER-Z$/N~J c w e ta the right

of the point of high curvature.)

The three iterative decoders used to produce the curves shown in Figure 5.14b iterated

either until a valid codeword was found or until a large niimber (200 for the turbo-code and

nonsystematic TCC. f O0 for the low-density parity-check code) iterations were complete.

The 95% confidence intervals were computed iising the method described in Section A.5.
The turbo-decoder kequently produced low-weight error patterns and much less kequently

produced high-weight error patterns. so 1 used the larger of the two confidence intervals

produced by ignoring the low-weight error patterns and by ignoring the high-weight error

patterns.

5.4 Decoding complexity of iterative decoders

The decoding complexities per iteration for low-density parity-check codes, turbo-codes, and

nonsystematic TCC's Vary as sigrilficantly as do their proximities to Shannon's limit. The

decoding complexity for a low-density parity-check code is roughly ncL = 61t multiplies

per codeword bit, where I is the average number of iterations required to find the correct

codeword, and t is the average number of checks with which each codeword bit participates
[MacKay and Neal 19961.

5.5 Speeding up iterative decoding by eariy-detection 147

For turbo-codes and nonsystematic TCC's, most of the computations are spent process-

ing the constituent trellises. Each section of a bi-proper trellis requires roughly 6 x 2"

multiplies to process, where 2" is the number of states in the regular trellis. For a turbo-

code with rate R and nt constituent convolutional codes, there are L V R ~ E ~ trellis sections in

d l , so that the decoding complexity for a turbo-code is roughly QTc = 6 R l r ~ ~ 2 ~ multiples

per codeword bit. For a nonsystematic TCC. there are iVnt trellis sections in all. so that

the decoding complexity is roughly ClNsTcc = 61nt2" multiples per codeword bit.

For example. at &/No = 1.3 dB, the t 3 low-density parity-check code discussed in

the previous section has I = 11 -2 (David MacKay, personal communication). so fiGL = 202

multiplies per codeword bit. The R = 1/2. nt = 2, u = 4 turbo-code has 1 = 5.3. so

ilTc = 509 multiplies per codeword bit. The R = 1/2. nt = 2, v = 4 nonsystematic TCC
has 1 = 10.5, so QNSTCC = 2016 multiplies per codeword bit. Although the iterative decoder

for the low-density parity-check code clearly requires the fewest computations. it should be

kept in mind that the turbo-code and the nonsystematic TCC wiU yield signikantly lower

BER'S.

5.5 Speeding up iterative decoding by early-detection

The excellent bit error rate performance of iterative probability propagation decoders is

achieved a t the expense of a computationally burdensome decoding procedure. In this sec-

tion? 1 present a method cailed earlg-drtection that can be used to reduce the computationd

complexity of a variety of iterative decoders. Using a confidence criterion. some informa-

tion symbols, state variables and codeword symbols are detected early on in the iterstive

decoding procedure. In this way. the complexity of fùrther processing is reduced with a

controllable increase in BER. 1 present an eczsily implemented instance of this dgorithm,

called trellis spla'czng, that c m be used with turbo-decoding. For a simdated system of this

type, 1 obtain a reduction in computational complexity of up to a factor of four. relative to

a turbo-decoder that performs the fewest iterations needed to achieve the same BER.

One way to view early-detection is as a refmement of a block-oriented stopping criterioo

used to terminate the iterative process in iterative decoders. For example, Hagenauer et al.

[Hagenauer, Offer and Papke 19961 proposed monitoring the relative entropy between the set

of soft information bit decisions for the current iteration and the previous iteration. When

the change in this relative entropy falls below some threshold. the iterative decoding process

5.5 Speeding up iterative decoding by early-detect ion 148

-10 ' 1 1 I 1 1 1

O 2 4 6 8 10 12
Iteration number. i

Figure 5.15: A plot of the log-odds ratio versus iteration number, for the correct value of each
information bit in a randornly selected set of 100 bits within the same block of 10 000 bits.

is terminated. The basic idea is that iterative decoding should stop when the decoder's

soft decisions are stable. Block-oriented stopping criteria lead to iterative decoders t hat are

more efficient t han fixed-complexity iterative decoders, since the s topping criteria effect ively

allows the decoder to spend more iterations on "tough" blocks, a d fewer iterations on

L'easy" blocks.

Taking this reasoning one step further, 1 believe that in some cases, parts of the codecuord

may be more easily decoded than other parts. Although different parts of a codeword are

usuaily inter-dependent, for particular noise patterns the coupling between parts may be

weak. In these cases, it makes sense that the decoder should spend more computations

on "tough" parts, and fewer computations on "easy" parts. During decoding, those parts

that are deemed to be successfuily decoded are clâmped. Decoding computations are then

focussed on the remaining parts.

For example, Figure 5.15 shows how the soft decisions for a randornly selected subset of

information bits { u r } wzthin the same block evolve during iterative decoding of a turbo-code.

The all-zero codeword was transmitted, so a large positive value of Li(uk = O) indicates

that the decoder is quite confident of the value for ur , and that this value is correct. Large

negative values (nooe shown) of Li(ur = O) indicate that the decoder is quite confident of

the value for uk, and that this value is wrong.

5.5 Speeding up iterat ive decoding by early-detection 149

These curves were produced by sirnulating the transmission of a single binary block over a

0.2 dB AWGN channel, for a rate 1/3 unpunctured turbo-code that had 10 000 information

bits, identical constituent encoders (21, 37)0ctd, and a randomly drawn permuter. Clearly,

the decoder is correctly confident of many information bits long before it has sorted out

the values of other information bits. By detecting some of the well-determined bits early,

computat ions can be refocussed on decoding the less well-determined bits.

The notion of revisiting a decoding operation after "pinning" some of the variables

has been used before to improve BER performance. The most cornmon application is

for decoding the serial concatenation of a Reed-Solomon outer code with a convolutional

inner code. For practicd purposes, the Reed-Solomon decoder either outputs aa error-free

codeword segment or flags the segment as a decoding failure. After the convolutional code

has been decoded and its output decoded by the Reed-Solomon decoder, the codeword

segments that are practically known to be error-free can be fed back to the convolutional

decoder and used to pin certain treUis states for a second round of improved decoding. By

using this approach, substantial coding gains have been reported by Lee [Lee 19771, Collins

[Collins 19931, and Hagenauer et al. [Hagenauer, Offer and Papke 19931.

The present application of "pinning" . called eurly-detection, is meant to decrease the

computational complexity of decoding, but not improve BER performance or improve coding

gain. For example, turbo-codes do not have component decoders that can flag decoding

failures, so there is no way to be practically certain that an early-detected variable is

correct. When applied to some types of iterative decoders such as turbo-decoders. early-

detection actually worsens the BER performance. However, if the main concern in a system

is the computational complexity of the decoder. early-detection can be used to reduce the

complexity of an iterative decoder in a way that leads to a smaller increase in BER compared

to other techniques, such as performing fewer decoding iterations.

5.5.2 Early-detection criteria

As discussed in the next section, the computation time of an iteration decreases with the

number of early-detected variables. So, in order to obtain the greatest speed-up, the de-
coder should early-detect as many variables as possible. However, an ovcrly aggressive

early-detection criterion will lead to a high rate of erroneous decisions, spoiling the BER
performance. In addition to this constraint, the early-detection criterion should be relatively

simple, so t bat the overhead of ascertainhg which miables ought to be early-detected does

not overshadow the reduction in the computational complexity of subsequent iterative de-
coding. In this section, I explore criteria that use the soft decision reliabilities in order to

ascertain whet her or not an early-detection should occur.

5.5 Speeding up iterat ive decoding by early-detection 150

The soft decisions used for iterative decoding can be represented as log-odds ratios that

approximate the true a postenon' log-odds ratios. The Iog-odds ratio for an information

symbol, state variable, or codeword symbol z at iteration i given the channel output y is

PI(* = z l ! y)
L'(Z = 2) = log ,, ,

P (z # z'ly) :

where j>'(zly) is the approximation to the a postenon distribution P(rly) produced at

iteration i. 1 will let i be fractionai when the meaning is clear. For exampIe. in a turbo-

decoder with two constituent codes. i = 0.5 refers to quantities produced by processing the

first constituent code for the k t time.

In order to determine an appropriate early-detection criterion. 1 simulated the transmis-

sion of 100 blocks fiom a rate 1/3 unpunctured tubecode that had 10 000 information bits,

identicai constituent encoders (21. 3?)octd, and a randomly drawn permuter. I used binary

signalling over an additive white Gaussian noise (AWGN) channel with &/& = 0.2 dB.
To speed up decoding. our fornard-backward dgorithm was implemented using a Iinear

interpolation approximation to the function log(1 + exp(-)). Also, our decoder did not

weight the "extrinsic informat ion3 by the reliability variznces as was originally suggested

by Berrou et al. [Berrou and Glavieux 19961. (1 found that this weighting operation is not

necessary at BER greater than 10-~.) Figure 5.16 shows a plot of the log-odds ratio versus

iteration number for the correct d u e of a randomly positioned information bit in each of

the 100 blocks. In contrast to Figure 5.15. this figure shows the diversity of log-odds ratio

convergence rates between blocks.

It appears from Figure 5.16 that the only simple criterion that a decoder can use witbout

introducing too many early-detection errors is a simple threshold. Higher order criteria. such

as the change in L (U ~) ? would produce too many erroneous eady-detections. Although the

relative entropy hom one iteration to the next was successfully used in [Hagenauer, Offer

and Papke 1996) as a block-oriented termination criterion, the same d e wouid not work at

the more refined symbol-oriented level of early-detection. The decoder rem& undecided

on some variables for many iterations (up to i = 8.5 for one curve in Figure 5-16), and

consequently L(,,) does not change mu& for those variables. However. eventually the

decoder finds a consistent codeword segment and then the log-odds ratios for the related

information bits change drastically.

For the turbcxode system described above, Figure 5.17 shows 25 randomly selected

cases (each from a different block) for which the log-odds ratios drap behw -10.0 during

decoding. These traces show that the decoder can becorne incorrectly coddent of the value

of an information bit, but then with fûrther iterations become correctly confident. By using

5.5 Speeding up iterative decoding by early-detect ion 151

-10 l 1 1 L I 1 1

O 2 4 6 8 10 12
Iteration number, i

Figure 5.16: A plot of the log-odds ratio versus iteration number. for the correct value of a randomly
positioned information bit in each of 100 decoded turbo-code blocks.

O 2 4 6 8 10 12
Iteration number, i

Figure 5.17: A plot of the log-odds ratio versus iteration number, for the correct value of 25
information bit,s (from different blocks) for which the log-odds ratio dropped below -10.0 during
decoding .

5.5 Speeding up iterative decoding by early-detection 152

a threshold of 15.0 for early-detection, al1 of the bits that the decoder correctly decodes as

i -t m can be detected early and correctly (the four curves t hat are between -5.0 and 10.0

a t i = 12 eventually rise above 15.0). On the other hand, if the change in the log-odds

ratio is used for early-detection. many of the bits that the decoder correctiy decodes as

i + x would be incorrectly detected early at the d u e s for i where the c m e s stop falling

and begin to rise. That is. the change in L ' (U ~) is close to zero at the iteratioo where

the decoder begins to correct the bit. Higher order criteria may actually help in this case

(by detecting that a cunre is turning around), but it appears the data is too noisy for this

approach to be successful- Also. higher-order criteria increase the computational overhead

of eariy-detection-

5.5.3 Reduction in decoding time due to early-detection

The Bayesian networks for a variety of codes are shown in the first coliimn of pictiires in

Figure 5.18. (The channel output variables are not shown - their likelihoods are to be

included as "bias" effects on the state variables. codeword bits. and information bits (where

applicable) during decoding.)

Let IP(zil+)I be the number of configurations of a discrete vaxiable z, and its discrete

parents a, for which P(zi 1%) # 0: and let 1% 1 be the number of parents for q. (If zi has
no parents, let l&l = 1.) In general. the time needed for an iteration of iterative decoding

scdes as

For example, if the constituent convolutional code for a turbo-code has memory v. then

1 P(s,'lsf- ,. q) 1 = 2"+' and the state variable s i contributes a complexity of 1 P(sf I S ~ - ~ , ui) l -

2' = 4.2"1L. A notable exception to the above formula is the time needed to proçess one set

of parents for a parity check in a iow-density parity-check code. In t his case, 1 P (qi 1 {x) jcQs) 1
is exponential in the number of parents (see Section 5.2.5). However, the time needed to

process each such paxity-check vertex qi is h e a r in the number of parents.

An early-detection can reduce the computational complexity given in (5.32) both directly

and indirectly. The first three pictures in Figure 5.18a show how the early-detection of

information bit up directly simplifies the Bayesian network, thereby decreasing Q. The

modified sum in (5.32) no longer includes the term IP(uî)l - 1 (= 2) for us: and in each of

the terrns for the children sk and sz of U.Z, the number of configurations is reduced by a

factor of 2 and the number of parents is decreased by 1. In the case of the turbo-code, the

5.5 Speeding up it erative decoding by early-det ection

1

Figure 5-18: Early-detection effectively modifies the Bayesian network for (a) a turbwcode. (b) a
seridy-concatenated convolutionai code. (c) a product code. (d) a low-density parity-check code.

former reduction decreases the complexity contributed by sf from 4 - 2"+' to Z Y .

The indirect effect of detecting uz early is showri by the fourt h picture in Figure 5. Ma.

Since the objective of the decoder is to make decisions for the information bits. the two

states si and s: can ac tudy be removed kom the network. Suppose ùz is the early-detected

5.5 Speeding up iterative decoding by earl y-detection 154

value of us Then. the new conditional distributions for si, after si has been removed. is

where LV is a normalization operator, which ensures that C,i P'(s:ls:. us) = 1 YS:. un.

Notice that each of the terms in this sum includes a channel liieiihood. The computation

of these new conditionai probabilities is actually performed as a normal part of iterative

decoding. So, in practice al1 that is needed is a srnaJi integer lookup table to relate the

codgurations of si and UJ to the proper values of si.

Figs. 5.18b to 518d show how the networks for other compound codes are simplified by

detecting variables. In the serially-concatenated convolutional code, detecting information

bits (not shown) early leads to relatively little reduction in fi. Instead, the intermediate

codeword bits can be early-detected to obtain a significant reduction in the complexity of

decoding. Notice that oniy one trellis is simplified by a single early-detection. Each section

of the upper trellis requires that bot h its outputs be early-detected. as shown by the lower

two pictures in Figure 5.18b. For the product code and the low-density parity-check code.

detecting codeword bits early simplifies the relevant constituent parity check equations.

5.5.4 Early-detection for turbo-codes: Trellis splicing

In this section. 1 illustrate how early-detection applied to turbo-codes can be used to reduce

the overail decoding compiexity. For turbo-codes. the Bayesian network consists of two or

more chains that are processed using a speciai case of the probability propagation algorithm.

c d e d the fonvard-backward (a.k.a. .'BCJRn) algorithm [Baum and Petrie 1966; Bah1 et al.

19741. This aigorithm cornputes the a posterion information bit probabilities using the

channe1 output and a priori information bit probabilities. The forward-backward algorit hm

ca. be viewed simply as a combination of probabilistic *80ws3 [McEliece 19961 computed

in the forward direction and in the backward direction. Alternatively, a soft-output Viterbi

algorithm (SOVA) [Hagenauer, Offer and Papke 19961 can be used. Here. 1 consider early-

detection for information symbols only. As discussed earlier, early-detection of a single

information symbol reduces the complexity of both constituent codes.

Consider the simple two-state trellis shown in Figure 5.19~~. Let uk be the random

variable for the information bit in the kth section of the trellis, and let s k be the random

variable for the state at the beginning of the kth section of the trellis. The edge in the

kth section of the trellis that leaves state s k E {O, 1) in response to information bit ur; E

5.5 Speeding up iterative decoding by early-detection 155

Section k

Figure 5.19: Treilis splicing. (a) shows a two-state trellis with edges accompanied by information bit
labels and metrics and with nodes accompanied by flows. (b) and (c): If we know that information
bit k + 1 has a value of 1, we can cut the corresponding section out of the treUis and splice the trellis
back together, introducing new information bit labels and new metrics for the connecting edges.

{O, 1) has an associated brandi metric. y;* (sk). These metrics are determined kom the

received signals and the a priori probabilities regarding the transmitted information bit

values. (In a systematic code, the iïkelihoods for the noisy received information bits can

be included in the a priori probabilities.) If p(yk[ukr sk) is the likelihood function for

the kth received signai and P(uk) is the a priori probability for information bit uk, then

(y k) = P (U ~) P (I J ~ ~ U ~ , s k) The forward pass cousists of computing the flows from these

metrics in the forward direction. This results in a fiow value ak (sk) for each state sk a t each

5.5 Speeding up iterative decoding by early-detection 156

section k,k = O . . . K - io computed as c rk+ , (~) = $ (o) ~ & (o) + +(l)ak(l) , and crk+l(l) =

-y: (0)ak(O) + 7; (l)<rk (1). The backward pass simply consists of a flow computatioo in

the reverse direction in order to obtain a flow d u e gk (sk) for each state a t each section:

ok(o) = Y:(o)~+,(o> +$(o)a+l(i), and j î kw = ~ : (l) f i + d ~) + $ (l) h c i (l) - These two
types of flow are cornbined to obtain the a posteriori log-odds ratio that each information

bit is I versus O! given the received signal sequence y:

The computat ional cost of each section in the forward-backward algorit hm t hus consists

of the time spent cornputing the 0:s and B's for each state: as well as the time spent

computing the a posteriori Iog-odds ratios. Although there are various useful techniques

and approximations for decreasing t his cost [Hagenauer, Offer and Papke 1996: Benedetto

et al. 19961, such as the SOVA [Hagenauer. Offer and Papke 19961, I will define it as a basic

computational unit. and refer to it as a treliis section operation.

Suppose that according to some early-detection criterion, we decide that the value of

information bit U ~ + I is 1. (Here, 1 will consider early-detection for information bits only.)

As a consequence. the treilis simplifies to the one shown in Figure 5.19b. The treliis can

be simplified hrther by multiplying out the path metrics, giving the trellis shown in Fig-

ure 5.19~. Note that not only have the path metrics changed, but also the transitions

now correspond to different information bit d u e s . In general, portions of the trellis cone-

sponding to early-detected information bits can be cut away, and the remaining segments

spliced together with new path metrics and new information bit edge labels. If the values

of b information bits are known. the spliced trellis will be b sections shorter, leading to a

computational savings of b section operations for each future forward-backward sweep.

In order to implement trellis spiicing, an integer array must be used to determine the

state transitions, (sk: uk) -+ sk+l. Whereas in the original trellis this mapping is very

regular, after t r e h splicing it is usuaily not. (E.g., the information bits associated with

the outgoing edges of the kt h state in Figure 5.lSc have opposite values compared to those

in Figure 5. Na.) The use of this array slightly increases the computational complexity of

each section operation. Also, the array must be rnodified each time a section is cut away.

However, both of these computational costs are insipifkant compared to the cost of the

basic section operation. In the implementation of trellis splicing used for the experiments

presented in Section 5.5.5, 1 found that the percentage of cpu time spent on trellis splicing

was less thaa 6%. The integer artay also requires extra memory. However, the total memory

used ac tudy decreases during decoding while using trellis splicing. When a single section

5.5 Speeding up iterative decoding by early-detection 157

le-1

BER

l e-2

i thout eariy-detection ------

Section operations per information bit decoded

Figure 5 -20: BER performance of turbo-decoding with and without early-detection, for Eb /No = 0.1
dB. for thresholds of 6. 8. 10. 12, 14. 16. 18.

is cut away, the memory liberated by the elimination of 7s. o s and as more t h m rnakes up

for the extra integer array memory introduced. Moreover. if sections adjacent to the first

are crit away. the transition m a y is simply modified. so that the memory (associated with

the 7s. (YS and fis of the adjacent sections is completeiy recovered.

5.5.5 Experimental results

1 have simulated treUis splicing results at Eb/Na = 0.1.0.2 and 0.3 dB. for the turbo-

decoding system described in Section 5.5.2. At the end of each half-iteration of turbo-

decoding, the log-odds ratio of each information bit was cornpared with a threshold in order

to decide whether or not the bit should he early-detected. In order to average out the effects

of block failure modes (i. e.. failure modes where a large &action of the information block

is incorrectly decoded), I simulated the transmission of 20 000 information blocks for each

value of the threshold. The resulting number of errors and number of section operations

were then averaged over block transmissions. Figs. 5.20, 5.21 and 5.22 show plots of BER
versus average number of section operations per information bit decoded, for a variety of

thresholds. The curves for turbo-decoding withou t early-detection are aJso shown. For these

simulations, a fixed number of decoding iterations were performed for each biock.

For a given BER. the computational complexity of decoding can be reduced the most

cornpared to standard turbo-decoding by using the threshold that corresponds to the cunre

5.5 Speeding up iterative decoding by eariy-detection 158

BER

Section operations per information bit decoded

Figure 5.21: BER performance of tur bedecoding with and without earIy-detection, for Eb/lVo = 0.2
dB, for thresholds of 6, 8, 10, 12, 14, 16. 18, 20, 22.

le- 1

BER

1 e-2

5 6 7 8 910 20 30 ' 40 50 60

Section operations per information bit decoded

Figure 5.22: BER performance of turbo-decoding with and without early-detection, for Eb/No = 0.3
dB, for thresholds of 6, 8, 10, 12, 14, 16, 18, 20.

in each figure that bottoms out a t the prespecified BER. Thus, the locus of points corre-

sponding t o the knees of the curves gives the optimal achievable BER-complexity perfor-

mance. Using these c w e s , we can answer the question, "At a specified Eb/No aod for

5.6 Parailet iterative decoding 159

5

Gain

l e-5 1 e-4 f e-3 1 e-2 le- 1

BER

Figure 5.23: The computational gain for turbo-decoding with early-detection compared to turbo-
decoding without early-detection as a function of BER, for Eb/:\iO = 0.1. 0.2. and 0.3 dB.

different BER, what is the computational gain obtained by using early detection compared

to using fewer decoding iterations without early detection?" The locus of points described

above is interpolated in Figure 5.23 which shows the computational gain as a function of

BER for the different values of Eb/No- For al1 three values of Eb/No, the greatest compu-

tat ional gain is obtained near the minimal BER.

5.6 Parallel it erat ive decoding

The decoding algorithm for low-density parity-check codes proposed by Gallager [1963]

and later by MacKay and Neai [1996] is inherently a pa rde l algorithm. As described in

Section 5 -2.5. probability propagation in the Bayesian network for a low-density parity-check

code consists of passing sets of messages ba.ck and forth between the codeword bits and the

clamped parity-check variables. It turns out that the standard decoders for turbo-codes and

seridy-concatenated convolutional codes are inherently serial. In this section, 1 consider a

pardel message-passing scheduk for turbo-decoding.

5.6 ParaIlel iterative decoding 160

5.6.1 Concurrent turbo-decoding

If each chain in a turbo-code is viewed as a single unrefined vertex (e-g. , Figure 5. l l b) , t hen

turbo-decoding can also be viewed as a "parallei" algorithm2. However, if each chain in a

turbo-code is viewed at a refined level (e.g., Figure 5.8): then the standard turbedecoding

algorithm is inherently serid. That is. when messages are passed as s h o m in Figrue 5.9.

most of the computations are used to compute messages that cannot be propagated in

pardel.

Here, I consider concurrent turbo-decoding in wbich messages are passed in a parallel

fashion. One time step of concurrent t urbedecoding consists of simultaneously passing

messages in both directions on al1 graph edges in the Bayesian network for the code. (Al-
though "concurrentn is not quite the right term for such a pardlel algorithm. the term

"parallel" is used in the other name for turbo-codes, "parallel concatenated convolutional

codes".) Notice that concurrent turbedecoding is not just a parailel implementation of

standard turbo-decoding. It is a different algorithm which may have different properties.

A naive approach to a hardware implementation of concurrent turbedecoding would

be to build one simple processor for each vertex in the Bayesian aetwork for a code. Of

course, for reasonably long block lengths, a prohibitively large number of these processors

would be needed for a fully parailel VLSI implementation of concurrent turbPdecoding.

In the following section, 1 empiricdly compare the time complexity of standard decoding

with concurrent decoding, while ignoring practical irnplementation issues such as wiring

complexity. In practice, a more space-efficient irnplementation (e - g . , time-shared processors)

would be used at some detriment to the cornputational efficiency.

5.6.2 Results

The code used for the simulations was a rate 1/2 K = 5: 000, N = 10,000 turbecode with

two constituent convolut iond codes. each with generator polynomials (21/37)octd. The

constituent chains were connected by a randomly selected permuter. Every second output

of each constituent chain was punctured to get a rate of 1/2. For each of three values of

Eb/No7 the transmission of 107 information bits was simulated, and the resdts are shown

in Figures 5.24 and 5.25. Interestingly, for a given Eb/No it appears that both algorithrns

converge to the same BER.

Figure 5.24 shows the BER versus the number of messages passed in the constituent

'When there is more than one chain in a turbo-code, messages may be passed between chains in either
a serial or parallel rnanner.

5.6 Parallel iterative decoding 161

le- 1

1 z5 1 e6 1 c7 l e8

Number of crp-Messages Passed

Figure 5.24: Performance of standard (S) and concurrent (C) turbedecoding when implemented
on a serial computer, for 3 values of Eb/NO.

3c- I

le- 1

Number of Time Steps

Figure 5.25: Performance of standard (S) and concurrent (C) turbo-decoding when implemented
on a parailel computer, for 3 values of Eb/No.

chahs, for standard and concurrent turb~decoding. (The computation of the messages

passed in the constituent chah dominates the decoding time). The number of messages

passed gives a good indication of decoding complexity on a serial computer. Not surprisingly,

it is apparent that the standard algorithm is better suited to serial implementation. It is

interesting that for a given BER, the concurrent decoding algorithm is roughly 3,000 times

slower than the standard algorithm when implemented ou a serial computer.

Figure 5.25 shows the BER versus the number of time steps for the case where 10,000

5.6 Parallel iterative decodina 162

processors are available for concurrent turbo-decoding. We assume that pipelining is not

used for standard turbo-decoding. For a given BER, the concurrent decoding algorithm

is roughly 550 times faster than the standard algorithm when implemented on a parade1

computer. If one processor is used for each half iteration of 5 iterations of standard turbo-

decoding in a pipeline fashion. standard decoding can be sped up by a factor of onIy 10

(extra pipeline stages do not irnprove the BER). Concurrent turbwAecoding is still85 times

fast er .

Chapter 6

Summary and Future Research

My goal in this thesis bas been to present to the reader a unified graphical mode1 frame-
work for describing problems and deveIoping inference algorithms in the areas of pattern

classification, data compression, and channel coding. The previous three chapters have

shown how Bayesian networks and various inference algorithms can be applied to problems

in these areas. A major theme of this work is that probabilistic structure can be exploited

to corne up with eficient algorithms. 1 conclude by highhghting the contributions made in

this thesis and the importance of these contributions.

6.1 A statistically valid comparison of Bayesian network pat-

tern classifiers

Recent research papers on new learning met hods for parameterized Bayesian networks have

suggested t bat the new algorit hms could produce good density est imators. These met hods

include parameter estimation by Markov chah Monte Carlo, wake-sleep leuning in the

Helmholtz machine, and variational estimation. One outcome of my research (Section 3.5)
is a statistically valid comparison of the performance of these methods and other stan-

dard algorit hms using the DELVE (data for evaluating learning in valid experirnents) test

system. The Bayesian network classiners perform very well compared to other standard

methods, such as the k-nearest neighbor classifier. One surprise is that the simple logistic

autoregressive network (which does not have any latent variables) performs very well.

6.2 Wake-sleep learning in the Helmholtz machine 164

6.2 Wake-sleep learning in the Helmholtz machine

The wake-sleep algorithm is only an approximate form of the generalized expectation max-

irnization algorithm. As such, experimental confirmation t hat the wake-sleep algorit hm

works at aU is important. In Section 3.6, 1 presented original results showing that the wake-

sleep algorithm can extract high-order structure £rom noisy images that were produced by

a hierarchical graphics rnodel. After estimation, the Helmholtz machine can be used to

non-linearly filter a test image and recover i ts hierarchical description.

6.3 Multi-valued source codes

Aside fiom pattern classification, another use for parameterized Bayesian networks is data

compression. Bayesian networks that have many "unmixable" latent variables naturally

lead to multi-valued source codes in which there are a very large number of codewords

for each input pattern. Previous research on source coding has focussed on single-mlued

source codes, since at first glance it seems that a multi-valued code must irrevocably waste

codeword space. Another outcorne of my research (Chapter 4) is a practical bits-back

encoder that is &en able to use multi-valued source codes to communicate in a highly

efficient manner, even when the codewords are unmixable. The compression rate for bits-

back coding is identical to the cost function for the generalized expectation maximization

algorithm. It follows t hat pararneterized Bayesian networks that are estimated using the

generalized expectat ion maximizat ion algorithm (or an approximation to it, such as the

wake-sleep algorit hm) are well-suited to bits-back coding.

The results 1 obtained for bits-back coding indicate that for the source models 1 explored,

the method is currently not a strong contender in the data compression practice. The main

reason for this is that the underlying source models were not good enough. However, bits-

back coding does provide an extra degree of source model design freedom, and so it leaves

open a door for further research into models that produce multi-valued source codes.

6.4 Integrating out model parameters using bits-back coding

The work on bits-back coding described above leads to a practical coding method for inte

grating over continuous parameter spaces. Suppose we are interested in encoding blocks of

patterns and that the source changes fiom block to block, but not within any single block.

Given a block of patterns, a parameterized model can be estimated. Then, the parameters

can be quantized to some precision and communicated. The block of patterns is then en-

6.5 A graphical mode1 framework for iterative channel decoding 165

coded using the quantized parameters. According to the principies of Bayesian analysis, we

ought to integrate out the mode1 parameters and use an ensemble of models to communicat e

the block of patterns. It turns out that bits-back coding can be used to communicate each

block of patterns using the ensemble of models, as long as a good approximation to the

posterior distribution over the parameters given the bIock of patterns is available. In this

case, the ensemble of modeis corresponds to the multi-valued source code. 1 am currently

exploring the use of bits-back coding for integating over continuous parameter spaces.

6.5 A graphical model framework for iterative channel de-
coding

A recent class of iterative error-correct ing decoding algorit hms are show ing great promise

in closing the gap between practical chamel coding and S hannonYs 50-year-old t heoret ical

limit. In Chapter 5, 1 showed that this class of algoritbms can be viewed as probability

propagation in Bayesian networks that describe different types of error-correcting code. This

overarching fiamework is important, since prior to this work. iterative decoders have been

proposed in an ad. hoc. way with only a limited exposition of the similarities between the

algorithms. This framework also lead to a contribution in the area of reduced-complexity

iterative decoding, both for serial implementations and for pa rde l implementations.

6.6 Trellis-constraint codes

In Section 5.3, 1 proposed a general class of "treilis-constraint codes" ? which have a graphical

structure consisting of two or more finite-state chahs t hat interact t hrough permuted state

transition labels. This class of codes includes turbo-codes. serially-concatenated convolu-

tional codes, low-density parity-check codes, and product codes, al1 of which have recently

been shown to give good performance. The generalization shows that this spectrum of codes

has several gaps, one of which 1 refer to as a "nonsystematic trellis-constrajnt code". An

instance of this new code performs nearly as well as a standard turbecode, and significantly

better than the best known Iow-density parity-check code with the same communication

rate. I believe the Bayesian network and probability propagation frameworks cernent a

broad foundation for understanding a variety of new decoders and for developing new de-

coding algorit hrns.

Appendix A

Proofs and Derivations

A. 1 Probability propagation in Bayesian Networks

In order to prove that the probability propagation algorithm described in Section 2.1.3

computes P(zi I V) i = 1. lé/ exactly. I will show that the propagation rules implement a

locally consistent form of probabilistic inference. After some arguments regarding the unim-

portance of the order in which messages are passedo the global validity of the algorithm will

fotlow by induction. The definition of dependency-separation and the rules for determining

dependency-separation (Section L.2.4) are used extensively in the following derivations.

Recail that in probability propagation, there are two types of messages. R-rnessuges are

probability vectors that are passed Bom parents to chilcireri in the direction of the edges.

A-messages are likelihood vectors that are passed from children to parents in the opposite

direction of the edges. Both types of vector have lengths that are equal to the number of

values the puent variable can take on. Consider the network fragment shown in Figure 2.1~.

where x is the set of parents of y, and z is the set of children of y. I d e j n e the incoming

A-messages as follows:

where V ' J - ~ C v is the set of observations that are connected directly or indirectly to Z j

through paths that do not go through y. Associated with each child z j . there is a constant

Pj that does not depend on the value of y. That is, each A-message need only be proportional

to the appropriate likelihood vector.

A.l ProbabiIity propagation in Bayesian Networks 167

1 define the incoming R-messages as follows:

where ~ ~ s - ~ C v is the set of observations that are connected directly or indirectly to xi

through paths that do not go through y. Associated with each pazent xi, there is a constant

pi that does not depend on the value of xi. Notice that regarding the unobserved variables in

the network, n-messages axe pro bability vectors w hereas X-messages are likelihood vec t ors.

A. 1.1 Comput ing P (y I V) from the incoming messages

Consider the fusion formula (2.11) that is used to compute P(ylv) for an unobserved variable

y. (If y is observed, the couiputation of P(y lv) is trivial.) Substituting the above definitions

and the definition for PZ (2.1) into the final fusion formula (2.11) (and renaming the

function computed by the fusion formula F (y)) , we get

a! is an axbitraq constant used to normalize F (Y) later on, so the first term in braces can

be replaced by a new constant a'' which will be computed to normalize F(y) .

Since the network is singly-connected, the observations connected to the children of y by

paths that do not go through y are dependency-separated fkom each other by y (condition

2 in Section 1.2.4), and thus n f ' l ~ (v z k - u l y) = p(vz-YIy). Since the network is singly-

connected, the parents of y are connected to each other only through y. Consequently,

the parents of y are dependency-separated fiom each other by the observations that are

connected to the parents of y by pat hs t hat do not go through y (condition 3 in Section 1.2.4).

Thus, nE, l'(xi ~v~ t - ' ') = P(X(V~-') . The parents of y dependency-separate y fkom vx-Y

(condition 1), so P (~ ~ X) P (X (V ~ - ') = P(y, xlvX-'). Making these substitutions, we get

However, vZ-Y is dependency-separated from v ~ - ~ by y (condition l), and as a result we

have P (v ~ - ~ lY) = P (V ~ - ~ (~ , v ~ - ~) , and

A.1 Probability propagation in Bayesian Networks 168

After computing the n' that normalizes F (y) with respect to y. we get

which just3e.s the final fusion equation (2.11).

A.1.2 Outgoing ir-messages

1. y observed: If y has the observed value y*. then P(~~V'-~J) = d(y.yO). since iyO) 2
v Y d Z ~ . From (2.7): it follows that

2. y unobsented: Fur unobserved y. the formula for for an outgoing pi-message (2.5) after

substitut ing the definitions for the incoming messages. is

where the product of the constants has been replaced by cl. According to the same type of

arguments as presented in the previous szction. the Grst term equals p({vZ, -' }!! l ,kfj l Y) .
and the second term equals P(TJ~V~-")~ so we get

(A. 10)

Y I Z I ~ v X - ~ , w e g e t Noting that vY-'1 = {v J - }k=l ,kW

YZJ rY = c ~ P (~ ~ v ~ - ~ J) - (A. I l)

(A.7) and (A.11) show that probability propagation is locally consistent in the outgoing

n-messages; i. e.. the outgoing T-messages are proport ional to the appropriate probability

A. 1 Probability propagation in Bayesian Networks 169

vectors.

A. 1.3 Outgoing A-messages

1. y obserued: After substituting the definitions for the incoming messages into the formula

(2.10) for computing outgoing A-messages when y is observed to have the value y". we get

where the product of the constants has been replaced by cl. Using the same type of
arguments as were used in Section A.1.1. it can be shown that the summand equals

P(yO. { x ; } f ~ l . k + i l ~ i . { v x k A y)rJi.k#i). - After summing over x' we get

Notice that this formula does not include the observations vZ-Y connected to 9's children.

This makes seuse. since if y is observed? the iikelihood of vZ-' does not depend on x,. (It
wouid if y was not observed.) However. I now include the likelihood of vZ-' for the sake

of notational clarity later on. Since P(V'-~ lgO) is just a constant (with respect to xi). we

can write

Of course. zi and { v ~ * - ~ } ~ ~ ~ , ~ ~ ~ are dependency-separated (by nothing) (condition 3) so

that P ({ V " L - ~ }k=l,kgilxi) lx' - - P ({ ~ X * -'}!XI k= 1 , k f i >

A . l Probability propagation in Bayesian Networks 170

2. y unobserued: After substituting the definitions for the incoming messages into the

formula (2.5) for computing outgoing A-messages when y is unobserved, we get

X ~ K = c i ~ [n ~ ~ l ~ (Y ~ l - ~ ~ g)] [C P (~ I ~ O ~ : L ~ P (X ~ I ~ ~ ~ - ~)] '
x' -da =XI k # i Y (A. 18)

where the product of the constants has been repiaced by c 1. According to the same type

of arguments as presented in Section A. 1.1. the fint term in braces equals p (v Z a Y jy) . The
summand of the inner s u m equals ~ (g . {si}rLl.kFi ili. }t=i,t+i)l lx' but after sumrning

over d the second term in braces equals P (y (s i ? {vdYk -' } k = L , k t i / : lx' and thus

A.2 Grouping variables in Bayesian networks 171

(A.17) and (A.22) show that probability propagation is locaily consistent in the o u t p

ing A-messages. That is. the outgoing A-messages are proportional to the right likelihood

vectors.

A. 1.4 Global consistency

Sections A.1.1, A. 1.2 and A.1.3 show that if the incoming messages to vertex y are propor-

tional to the appropriate likelihood vectors (A.1) and probability vectors (A-2), then the

propagation equations compute P(y(v) as well as outgoing messages that are proportionai

to the right probability vectors and likelihood vectors. Zn this sense. probability propaga-

tion is locally consistent. In this section. 1 show that if the propagation rules described in

Section 2.1.3 are foilowed until there are no more buffered messages, then each vertex will

have available ail incoming messages as defined in (A . l) and (A.2).

First: note the the message passing formulas accumulate the effects of observations. That

is. if a message is passed from t, to z, in response tu the observation of -1: then when a
message is passed korn r, to 3 in response to the observation of 22, the latter message will

include the effects of 21 and 2 2 . Second. note that the rules for probability propagation

ensure that once propagation is complete. the final message passed kom zi to z, is computed

from the final messages passed to ri from d l other neighbors of zi. Combining the above

two comments. it follows tliat the final message passed fkom z, to z, will contain the effects

of al1 observations o Z t - Z ~ connecteci both directly and indirectly to zi by paths that do

not go through 2,. (Notice thac network initialization is required in order to propagate the

effects of nul1 observations.) In other words. once propagation is cornplete each vertex has

available the incoming messages as defined in (Al) and (A.2).

A.2 Grouping variables in Bayesian networks

As described in Section 2.1.4' two variables tj and may be grouped into a single vertex.

as long as Zj is not an indirect descendent of zk and vice versa. Here. I show that this

grouping operation preserves the representational capacity of the network. That is. the new

network can represent at least ail those distributions that the old network could represent.

Grouping introduces new conditional probabilities for the variables that are grouped and

for variables whose set of parents includes one or both of the variables that are grouped.

A.3 Proof of condition for inference by ancestral simulation 172

The new joint distribution is

Now. set

For all i such that i # j - i # k. z, G, and z k g &, set

For dl i such that i # j , i # k. and also such that z, 6 a, and/or zk E G? set

Substituting these into (A.23). we see that

In this way. the joint distribution of the old network can be represented by the new network.

A.3 Proof of condition for inference by ancestral simulation

Here, I show that if the parents of the visible variables in a Bayesian network are dependency-

separated Born the hidden variables of interest h1 by the visible variables v, then ancestral

simulation can be used to obtain a sample fiom ~ (h ' l v) . If the condition holds, then ev-

ery path connecting each m i a b l e in h1 to the parents of each visible variable is blocked.

This means that dasconnecting each visible variable fiom its parents will not change the

distribution p(hllv). Since each visible variable wiu then have no parents, its value can be

included as h e d constant in the conditional probability functions for its children. We are

then left with a new Bayesian network that describes a distribution P t (h) over the tariables

h that were not observed in the original network. Although in general P1(h) # P(hlv), as

shown above we have p t (h l) = ~ (h ' l v) . So, we may simply use ancestral simulation in the

A.4 Proof of detailed balance for slice sampling 173

new network to obtain samples fÏom ~ (h ' l v) . Notice that ancestral simulation in the new

network is equivalent to ancestral simulation for the unobsewed variables in the original

network.

A.4 Proof of detailed balance for slice sampling

In order to show that the slice sampiing Markov chain Monte Carlo procedure for p (z) de-

scribed in Section 2.2.1 has p (z) bas a stationary distribution, 1 will show that the procedure

satisfies detailed balance:

where q(gj tj is the p.d.f. that the procedure chooses the new value y = znP" h m the old

value z = zold. Factor this transition probability using the two steps taken by the procedure:

choosing a slice at height s given z and then choosing 9 @en the slice and z:

The equation for detailed balance c m be written

In order to prove detailed balance I show that

q j s (z) p (z) = q (s l y) p (y) and q (y J s . z) = q(z!s. I/). (A.31)

Let f (2) = <rp(z). The p.d.t for s given z is uniform over the interval [O. f (z)] , so

q (s l z) = i / I (z) = l / (n p (z)) . and q (s l r) p (z) = p (z) / (a p (z)) = l /a . Similarly the p.d.f.
for s given y is uniform over the interval [O, f (y)] , so q (s 1 ~) = l / f (y) = l / (ap(y)). and

q(sIy)p(y) = p(y! / b p (y) = va . Threfore. q(slz)p(4 = < I (~ M P (' J) *
To prove q (y l s , z) = q (~ 1 s . y) ~ first consider the case where y and i are in the sarne

segment of the slice. Given that y and z are in the same segment of the slice. the procedure

for picking y does not depend on z, and vice versa. It follows trivially that q (y l s , z) =

q(zls, y). Reasoning by symmetry, it can be shown that q (y (s , z) = q (z l s . y) in the case
where y and z are in different segments.

A.5 Bayesian confidence intervals for bit error rates 174

A.5 Bayesian confidence intervals for bit error rates

When analytic methods are not available for computing bit error rates in error-correcting

coding systerns, we must resort to simulation. Estimated BER'S can Vary significantly fiom

experiment to experiment. and so it is often desirable to include confidence intervals. This is

especiaily important for the long block Iength codes discussed in Chapter 5. since significant

variability can be introduced by our inability to simulate enough blocks to pin down the

word error rate. Also. for low bit error rates (e-g.. 1 0 - ~) we may not be able to rneasiire

the distribution of bit errors within erronmusly decoded words. In this section. 1 present

a Monte Carlo approach for estirnating the median and a 2.5% / 97.5% confidence interval

for the BER.

The error model contains two parameters: the probability p,, of word error, and the

probability pb of bit error within erroneous words. This is a rather crude approximation.

since in practice we expect there to be more than one failure mode. Le.. there ought to be

several ph's corresponding to different failure modes-

Let -44 be the number of worcis transmitted and let n, be the number of rneastrred word

errors. Let K be the number of information bits per word. and let nb be the total number

of bit errors measured while transmitting d l M biocks. I wiil refer to the measured vahies

as the data. D = {n,. nb}. From the Bayesian perspective. before observing D. we place

a prior distribution p (p W l p b) on the error model parameters. Xfter observing 'D. ive draw

conclusions (e .g . . compute a confidence interval) fkom the posterior distribution p(p, . pblD)?

w here

In this equation. the constant of proportionality does not depend on p , or ph. The last

factor P (P (p , , p b) is called the Iikelihood.

1 let p, and pb be independent beta-distributed random variables under the prior:

P ~ W : ~ b) = P ~ W) P (P ~) ,

In bequentist terms. a, and 0, have the effect of shrinking our measurements toward a

word error rate of a,/(u, + 13,). where the influence of this shrinkage grows with a, +
4,. Typically, 1 choose a, = P, = 1. which gives a uniform prior over p, as shown in

Figure A.la.

As for the prior over pb, it should be chosen while keeping in mind the behavior of the

A.5 Bayesian confidence intervals for bit error rates 175

Figure A.1: (a) The prior distribution over the probability of word error p,,. (b) The prior distri-
bution over the probability of bit error pb within erroneous words. This distribution is designed JO

that its median is equal to the probabiiity of bit error for uncoded transmission.

decoder. If the main mode of decoding error is a failure to decode. and if we beiieve that

for failures the decoder will produce a probability of bit error that is roughly equal to the

probability pu of bit error for uncoded transmission. then the prior should place weight on

pb = pu. In this case. 1 choose ab = 2 and Pb = l / p u . which ensures that the mode of the

prior occurs at pu and that the prior is relatively broad. For example. b r Eb/iVo = 1 dB

we have pu = 0.0563. and so 1 choose alJ = 2 and Pb = 1/0.0563 = 17.76. giving the prior

distribution for ph shown in Figure A.lb.

It is straightforward to show that the 1ikeLihood is

This distribution is the product of a binomial distribution for the number of word errors

and a binomial distribution for the number of bit errors. Combining this Likelihood with

the prior, we obtain the posterior.

which is just the product of a beta distribution over p, and a separate beta distribution

over pb. Of course' we are actually interested in the posterior distribution p(p,pbl'D) over

the total probability of a bit error p,pb. A sample is obtained from p@,pblD) by drawing

A.5 Bayesian confidence intervals for bit error rates 176

Figure A.2: (a) A 1000-point sample froni p(pw,pblV) for M = 332, n, = 14, K = 65,536 and
nb = 34,225. for the prior described in the main text. (b) -4 1000-point sarnpIe from p(p,, pblV) for
M = 10,216, n, = O, K = 65,536 and nb = 0, for the sarne prior.

p, - pb pairs from the posterior in (A.35) and taking the product of p , and pb in each pair.

This sample is sorted in ascending order, and the value of p,pb occuring half-way through

the sorted Iist is taken as an estirnate of the median of p (p , p b l V) . Similarly, the d u e s

of p,pb occuring 2.5% and 97.5% through the sorted list are taken as the 95% confidence

interval.

For the nonsystematic trelIis-constraint code presented in Section 5.3 -5: 1 simulated the

transmission of M = 332 blocks at Eb/No = 0.95 dB using a block iengtb of K = 65,536

information bits. 1 measured n, = 14 and nb = 3.1: 225. Using the prior presented above

for the slightly higher value of Eb/& = I dB, a sample of ZOO0 points h m the posterior

over p , and pb was obtained and is shown in Figure A.2a. As described above, for -1 =

0.025, 0.5 and 0.975. 1 found the values for p, such that @@,pb < p,JD) = y? where p is

the sample distribution. The corresponding three curves of the form p,pb = p, are shown

in Figure A.2a, and the corresponding values of p, give a median of 1.7 x 1 0 - ~ and a 95%
confidence interval of (9.9 x IO-^, 2.6 x lod3). Clearly, in this case it is the values for p ,

that determine the p,'s for these curves, whereas the values for pb are webdetermined by

the measurements. We could have assumed that pb took on its measured value instead of

sampling fkom the posterior.

For the nonsystematic trellis-constraint code described above, 1 &O simulated the trans-

mission of M = 10,216 blocks at Eb/& = 1.0 dB. In this case, I measured n, = O and

n b = O. Using naive methods, we might conclude that the bit error rate is O and that there

isn't any variation in this value. However, the Bayesian technique gives the sample fiom

A.5 Bayesian confidence intervals for bit error rates 177

the posterior shown in Figure A.2b. ln this case, the d u e s of both p , and pb play a role

in determining the p,'s for the three curves. The median is 5.1 x 10-~ and the confidence

interval is (1.6 x IO-'. 1.8 x 10-~).

Appendix B

The BNC Software Package

BNC (Bayesian Networks for coding) is a Tcl-based interactive program that performs

probability propagation. The package is tailored to coding applications. but can be used

to propagate probabilities in any Bayesian network where the real-valued variables are

O bserved and where the conditional pro babilities for the real-valued variables are mixtures

of Gaussians. BNC uses vectors. so for example a group of information variables can

be handled quite easily. Also. instead of defining one conditional distribution (link) for

each variable in the network. BNC uses prototypical links that can be reused for different

variables. Some of the commands that BNC uses are

0 crvars: creates a vector of discrete or red variables

crlink: creates a prototypical link

addtolink: adds to a prototypical Link a parent-chdd configuration that has non-zero

probabihty

ïinkVars: links a variable to its parents

srnet: shows the network connectivity

clVal: clamps a variable to a given value

sndrcvMsg: passes a probability message from one variable to another

shProb: shows the curent estimate of the marginal probability for a variable

After describing where to find the software and how tcr i n s t d it. 1 give a simple example

of how BNC c m be used to propagate probabilities in the burglar alarm network £rom

Section 2.1.2. Then, I give the BNC scripts that 1 used to obtain the turbo-code results

described in Chapter 5.

B.1 Installing the software 179

B. 1 Installing the software

BNC makes use of the Tc1 and extended Tc1 iibraries, which can be downloaded from

The BNC tar file bnc. tar can be obtained from my web page,

http: //vuw/cs .utoront0 .ca/-frey

Untar this file with a command like tar xf bnc-tar, and you will get a directory c d e d

. /bnc which will contain the source for BNC and some helpful scripts (e.g.. copies of

the commands given in the following tutorials). You should see the following files in the

directory . /bnc: berrou. tcl. bnc. c, If sr. tcl. Makef i l e . man.ps. r sc . t c l . and sr . t c l .

man. ps contains a tutorial and a BNC command reference.

Before making bnc, you'll need to know which version of Tcl you have instailed on

your machine. Change into the directory . /bric' and edit Makef ile in order to set the

B N C J N C L U D E M I N flag as described in Makefile. You may &O need to edit the include

directory and library links to get the Tcl and extended Tc1 Iibraries working right.

B.2 An example: The burglar alarm problem

The burglar alarrn network described in Section 2.1.2 consists of three variables b (burglar),

e (eart hquake) and a (alarrn) , and the following conditional probabilit ies:

In this section, 1 show how BNC can be used to propagate probabilities in response to the

observation a = 1.

1 suggest that bnc be run with fep so that command lines can he easily modi£ied:

> fep bnc

B.2 An example: The burglar alarm problem 180

Next , create t hree biuary vector variables containing one element each:

With the option d. the command crVars d u m n creates a vector called v of n discrete

variables, each of which can take on the values {O,. . . , m - 1). The elements of a vector

are referred to with a hyphen. For example, to find out about variable b-O, type

bnc>shVax b-O

Variable name: b-O

Real-vaiued : No

Observed: No

Number of states : 2

Value: 32320

Currently unlinked

Note that the value of b-O is uridefined since b-O has not been observed.

Now create the prototypical conditional probability links, using the values given in (B.l):

BNC interprets P (b) as a string representing the name of the Iink, and does not parse

characters such as (,), and 1 . In particular, at this point BNC does not relate the link

P(b) to the burglar variable vector b created above. In the command crLink P(b) d 2, d

indicates the child variable for the link is discrete, and 2 indicates the child can take on two

values, {0,1}. The command addtoLink P(b) 0.1 1 adds to the link P(b) a probability

mass of 0.1 for the child having the value 1. Note that i t is only necessary to speci& the

parent-child configurations that have non-zero probability. addtoLink P (a l b , e) 0.368 1

B.2 An example: The burglar alarm problem 181

1 O specifies a probability of 0.368 that the child has the d u e 1 given that the first parent

has the value 1 and the second parent has t be value 0.

Now that the prototypical Links have been defined, link together the network and take a

look at it:

bnc>linkVars P (b) b-O

bnc>linkVars P (el e-O

bnc>linkVars P (a l b , e) a-O b-O e-O

bnc>sh.Net

NULL -> b-O

NüLL -> e-O

b-O e-O -> a-O

Here, NULL indicates that the variable does not have any parents. This completes the

specification of the Bayesian network.

The next series of commands clamps the values of a-O to 1 and propagates messages

across the network in the fashion shown in Figure 2.2:

The flag v in the comrnand sndrcvMsg means "verbose", and causes the command to print

out the probability message. Note that these messages are normalized versions of the ones

shown in Figure 2.2.

Finally, examine the marginal probabilities for b-O and e-O given that a-O is clamped

to 1:

bnc>shProb b-O

(O. 2485, O. 7515)

bnc>shProb a-O

(O. 6506, O. 3494)

B.3 Scripts used to decode a turbo-code 182

In general, it is rip to the user to decide in what order the probability messages shodd

be passed.

See man. ps for a complete BNC cammand reference.

B.3 Scripts used to decode a turbo-code

Before listing the main BNC script be r rou - t c l used to simulate a turbo-code. I list the

script l f s r . t c l that is used to build the conditional probability Links for linear feedback

shift registers. given the feedforward and feedback delay taps.

B.3.1 If sr. tcl

usage: buildLFSR <num> <den> Cu-%> <us->s> Cs->x> [es->s> [<s->u>]]

Copyright 1996 Brendan J . Frey.

This bnc s c r i p t defines a procedure f o r building a binary I/O

LFSR given the coefficients of the z-transform numerator and

denominator polynomials. n u and den a r e lists of b i t s . This

procedure re tu ras -1 i f there is an e r ro r and othemise

re tu rns the number of Sta tes f o r the s t a t e variable. Note

t h a t t he 2-0 coeff ic ients i n n u and den (right-most b i t s)

must be 1. Also, outputs are a function of the s t a t e *alone*,

so t he input i s included a s p a r t of the s t a t e ; this approach

d i f f e r s from the t re l l i s -based approach (where outputs are

associa ted with s ta te * t rans i t ions*) , but gives a Bayesian

network t h a t is singly-connected and so can be processed

using probabi l i ty propagation, So, the current s t a t e contains

the t r u e s t a t e of the LFSR plus the input b i t t o be used in

d e t e m i n h g the next s t a t e . The procedure creates tbree

l i n k s and tuo more optional ones. The link names are

passed t o buildLFSR by the user. utos links the f i r s t input

t o the LFSR. I n contrast , ustos l inks an input and a previous

s t a t e t o the next s t a t e . s tox links the s t a t e t o the output .

B.3 Scripts used t o decode a turbo-code 183

The op t iona l l i nk stos l i n k s a previous s t a t e t o t h e next

s t a t e s o t h a t the s t a t e v i l 1 eventually reach O . (E.g. ,
i n coding appl ica t ions , t h i s l i n k can be used t o implement

t r e l l i s termination.) The second optional l i n k s tou de temines

which input b i t is stored i n the s t a t e . (E.g., if systematic

t r e l l i s termination is being used, t h i s l i n k can be used t o

obta in t h e input bit t h a t uas needed t o help terminate the

t r e l l i s .)

proc buildLFSR {num den utos ustos s tox {stos llNüLL1l) {stou 1'NULL81)) (

set lnum [l length $numl ; s e t lden [l length $den]

s e t stmem $lden; s e t s t s z [expr 1 CC $stmem]

Check t h a t coeff ic ients make sense.

i f ([expr $Iden != $hum]) (re tu rn -1 3

if { [expr [lindex $num [expr $Inun - l]] != 11) { re tu rn -1 3
if { [expr [lindex $den [expr $Iden - 111 != 11) { re tu rn -1)

Build the l i nk used f o r the f i r s t s t a t e .

crLinlc $utos d $s tsz 2

addtoLink $utos 1 .O O O ; addtoLink $utos 1 . O 1 1

Make t h e o ther links, by examining the LFSR t r a n s f e r function.

crLink $ustos d $stsz 2 $s t sz ; crLink $stox d 2 $ s t s z

if ([expr ("NULL" != "$stosn)]) { crLink $s tos d $ s t s z $s t sz)

if { [expr ("MILL" != "$stouN)]) (crLink $stou d 2 $s t sz)

laop s t O $ s t s z (

Get the input b i t from the s t a t e .

s e t u [expr $ s t â 11

i f ([expr {"NULLM != "$stouU)]) { addtoLink $stou 1.0 $w $ s t)

XOR t h e input b i t u i t h the feedback bit.

loop i 1 $stmem {

i f { [expr [lindex $den [expr 8lden - $i - 11 1 == 11) (

set w [expr $w + (($ s t >> $ i) 8 111

>

B.3 Scripts used to decode a turbo-code 184

s e t v Cexpr $u % 21

Compute the next s t a t e and add to the ustos l ink , f o r each

possible input b i t (b t) a t the next time s tep .

loop b t O 2 {

s e t ns t [expr (((($ s t >> 1) << 1) + Sv) C< 1) % $s t s z + $bt]

addtoLink $ustos 1 .0 $nst $bt $ s t

>

Compute the next state for the s tos link and add t o the l i n k .

i f {[expr {"NULL" != "$stosU)3) {

set ns t [expr (((($ s t >> 1) << 1) + $VI << 1) % $stszJ

se t b t O

loop i 1 $stmem (

i f < [expr [lindex $den [expr Olden - $i - 11 1 == 1 3 1 {
set b t [expr $bt + (($nst >> $i) & l)]

I

set bt [expr $bt % 21 ; se t ns t [expr $nst + $bt]

addt oLink

1

Compute the

stox l ink.

$s tos 1.0 $nst $s t

output b i t from u and the s t a t e , and add t o the

i f { [expr [lindex $num [expr $hum-11 1 ==II 3 {
se t x $V e l s e C se t x O 1

loop i 1 $stmem <
if {[expr [lindex $num [expr $Inum - $i - 133 == 11) {

s e t x [expr $x + (($s t >> $ i > & 111

3
>
s e t x Cexpr $x % 23

addtoLink $stox 1.0 $x $st

B.3 Scripts used to decode a turbo-code 185

The following BNC script is for a specific Eb/-No (0.6 dB) and for a specific number of

transmitted blocks (530). The value of Eb/& was varied to obtain BER-Eb/No curves.

Results f o r a punctured r a t e 1/2 turbo-code. Since the al l -zero

codeuord is always s e n t , a decoder network is b u i l t , p lus a noise

vector network (independent Gaussian u n i t s) .

Set up t h e constants

s e t LOGFILE berrou0.6. log

s e t SNR 0.6

s e t K 65536

s e t NBLOCKS 530

s e t NITERS 18

s e t NüM Ci O O O 1)

s e t DEN (1 1 1 1 1)

s e t K 2 [expr 2*$K] ; s e t Km1 [expr $K-l]

s e t RATE [expr 1.0*$K/$K2] ; set VAR [expr pov(l0. O , -($SNR/10 .O)) /2.0/$RATE]

Build t h e recurs ive convolut ional encoder l i n k .

source I f s r - t c l

s e t S [buildLFSR $NUM $DEN u->s us->s s->x]

if { [ex-pr $S == -11) { puts "Error : Could not b u i l d encoder l i n k . " ; exit)

Create information b i t v a r i a b l e s , s t a t e va r i ab les , codeword bit var i ab les ,

and rece ived s i g n a l var iables f o r cons t i tuen t codes 1 and 2.

crVars d du 2 $K; crVars d d s l $S $K; crVars d ds2 $S $ K ; crVars d dx 2 $K2

crVars r dy $K2

Create t h e noise vector v a r i a b l e s .

crVars r ns $K2

Create a 50/SO prior l i n k for t h e info b i t s

crLink u d 2; addtoLink u 0 . 5 0; addtoLink u 0 .5 1

B.3 Scr i~ts used to decode a turbo-code 186

Create a link used for the systematic codevord bits .

crLink u->x d 2 2; addtoLink u->x 1 . 0 O 0; addtolink u->x 1.0 1 1

Create the charnel link (Gaussian distribution).

crLink x->y r 2

addtoLink x->y 1 . 0 -1.0 $VAR O; addtoLink x->y 1 . 0 1.0 $VAR 1

Create the noise vector link (Gaussian distribution).

crLink ns r; addtoLink ns 1.0 -1.0 $VAR

Build the interleaver.

set P [permute $KI

Connect up the noise links to the noise variables.

loop i O $K2 { linkvas ns ns-$i)

Comect up the variables for the decoder netvork. (Don't forget to

puncture the two constituent convolutional codes.)
loop i O $K { linkVars u du-$i; linkvars u->x dx-[eqr 2*$i] du-$i)

loop i O $K2 { linkvars x->y dy-$i dx-$i)

linkVars u->s dsl-0 du-O;

linkVars u->s ds2-0 du- [lindex $P 01

loop i 1 $K 1
linkVars us-% dsl-$i du-Si dsl-[expr $i-11

linkVars us->s ds2-$i du- [lindex $P $il ds2-[expr $i-11

loop i O $K {

set i p l [expr $i+l]; set i2pl [expr (2*$i)+l]

if C [expr ($iX2) == O]) { linkVars s->x dx-$i2pl dsl-Sipl

) e lse { linkVars s->x dx-$12~1 ds2-$i)

>

Define vhich var iables are clamped in the decodex.

loop j O $K2 { clVal dy-$j 3

B.3 Scr i~ t s used to decode a turbo-code 187

Define the transmit procedure.

proc transmit €3 i &Val ns; t ransfer ns dy)

Define the schedule and procedure f o r i n i t i a l i z i n g the decoder.

loop j O $K2 { addtosched i n i t sndrcv dy-$j dx-$j)

loop i O $K {

set i p l [expr $i+13 ; s e t i 2 [expr 2*$i] ; s e t i2pl [expr $i2+13

i f 1 [expr ($i%2) == 01) addtosched i n i t sndrcv dx-$i2pl ds l -$ ip l

) e l s e (addtosched i n i t sndrcv dx-$i2pl ds2-$i)

1
loop j O $K { addtosched i n i t sndrcv dx- [expr 2*$j] du-$j 3
proc initDecoder C) {

initMsgs du; initMsgs d s i ; initMsgs ds2; initMsgs d x ; initMsgs dy

exSched i n i t

1

Define the fb1 and fb2 schedules.

loop j O $K < addtosched fbl sndrcv du-$j dsl-$j)

loop j O $Km1 { addtosched f b l sndrcv dsl-$j dsl-[expr $j+1])

loop j $Km1 O -1 { addtosched f b i sndrcv dsl-$j dsl-[expr $j- l])

loop j O $K { addtoSched fbl sndrcv dsl-$j du-$j)

loop j O $K { addtosched fb2 sndrcv du-Clindex $P $j] ds2-$j

loop j O $ h l { addtosched fb2 sndrcv ds2-$j ds2- [expr $j+1])

loop j $Km1 O -1 (addtosched fb2 sndrcv ds2-$j ds2-[expr $ j-11)

h o p j O $K { addtosched fb2 sndrcv ds2-$j du-Clindex $P $j]

Simulate many block transmissions, p r in t ing the c u r e n t BER es t imate out

as ve go. Also, Save the noise patterns t h a t cause problems.

set f I D [open SLOGFILE v] ; seed O

s e t n e n € 1 ; loop k O [expr $NITERS+l] < lappend nerr O)

loop i O 8NBLOCKS

transmit; initDecoder; detMAP du; set d s t [sWom du]

s e t ne r r Clreplace $nerr O O [expr $ds t + Clindex $nerr 0331

s e t a [format "X8.21e " [expr 1 .O * [lindex $nerr O] /$K/($i+l)]]

puts -nonevline $ f I D $a

B.3 Scripts used to decode a turbo-code 188

loop k 1 [expr $NITERS+II {

exSched fbi; exSched fb2; detMAP du; set dst [shNorm du]

set nerr Clreplace $nerr $k $k Cexpr $dst + [liadex $nerr $k]]]

set a [format "X8 -21e " [expr 1 .O * [lindex $ne= $kJ /$K/($i+l)]]

puts -nonewline $ f I D $a

puts $fID ""; flush

J

c lose $ f I D

Bibliography

Bahl. L. R.. Cocke. J.. Jelinek. F.. and Raviv, J. { 1974). Optimd decoding of linear codes for

minimizing symbol error rate. IEEE Transactions on Infornation Theoq? 20:284-287.

Baum. L. E. and Petrie. T. (1966). Statistical inference for probabilistic functions of tinite

state rnarkov chains- Annals of hfathematical Statistics. 37:1559-1563.

Benedetto. S.. Divsalar. D.. Montorsi. G.. and Pollara. F. (1996). Soft-ouput decoding al-

gorit hms in iterative decoding of parallei concatenated convolut ional codes. Submitted

to IEEE International Conference on Cammuaications.

Benedetto, S. and Montorsi. G. (1996a). Iterative decoding of se r idy concatenated convo-

lut ional codes. Electronics Letters. 32: 1186-1 188.

Benedetto, S. and Montorsi. G. (l996b). Serid concatenation of block and convoIutionai

codes. Electronics Letters. 32:887-888.

Benedetto. S.. Montorsi. G.. Divsalar. D.. and Pollara. F. (1997). Serial concatenation of

interleaved codes: Performance andysis, design. and iterative decoding. So appear in

IEEE lFansactions on fnformation Theory.

Berrou. C. and Glavieux. A. (1996). Near optimum erroi correcting coding and decoding:

Turbo-codes. IEEE Transactions on Communications, 44:1261-1272.

Berrou. C.. Glavieux, A.. and Thitimajshima. P. (1993). Near Shannon k t error-

correcting coding and decoding: Turbo codes. In Proceedzngs of the IEEE International

Conference on Communications.

Bishop, C. M. (1995). iVeuml iVetworks /or Pattern Recognition Oxford University Press

inc.. New York W.

Bishop. C. M., Svensén. M., and Williams. C. K. 1. (1997). Gtm: the generative topographie

mapping. To a p p e a in Neuml Computatzon.

Bibliograp hy 190

Blahut, R. E. (1990). DigituI ïkansmzssion of In/omation. Addison-Wesley Pub. Co.,
Reading MA.

Breiman, L., Friedman, J. H., Olshen, R. A.. and Stone, C. J. (1984). Clas.sification and
regression trees. Wadswort h, Blemont CA.

Calderbank, A. R. and Sloane, N. J. A. (1987). New trellis codes based on lattices and

cosets. IEEE Ransactions on Information Theory, 33:177.

Chandler, D. (1987). Introduction to Modern Stotistical Mechanics. Oxford University

Press, New York NY.

Chow, C. K. (1957). An optimum character recognition system using decision h n c t ions.

IRE Bansactions on Electronic Computing, 6:247-254.

Collins, O. M. (1993). Determinate state convolutiona,i codes. IEEE If-ansactions on

Communications. 41 (12) : 1785- 1794.

Cooper, G. F. (1990). The computat ional complexity of probabilist ic inference using

Bayesian belief networks. Artificial Intelligence, 42:393-405.

Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. John Wiley &

Sons, New York W .

Dagum, P. (1993). Approximating probabilistic inference in Bayesian belief networks is

NP-hard. Artzficial Intelligence, 60: 141-153.

Dagum. P. and Chavez, R. M. (1993). Approximating probabilistic inference in bayesian

belief networks. IEEE Runsactions on Pattern Analysis and Machine Intelligence,

15(3):246-255.

Daut, O. G., Modestino, J. W.? and Wismer, L. D. (1982). New short constraint length

convolutional code constructions for selected rational rates. IEEE Tkansactions on

Information Theoq, 28(5):794-800.

Dayan, P. and Hinton, G. E. (1996). Varieties of Helmholtz machine. Neural Networks,

9:1385-1403.

Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. (1995). The Helmholtz machine.

Neural Computation, 7:889-904.

Dayan, P. and Zemel, R. S. (19%). Cornpetition and multiple cause models. Neural Com-

putation, 7:565-579.

Bibliography 191

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the EM aigorit hm. Proceeda'ngs of the Royal Statàstical Society,
B-39: 1-38.

Devroye. L. (1986). Nonuniform Random Variate Generation. Springer-Verlag, New York

W .

Divsalar, D. and Pollara, F. (1995). Turbo-codes for PCS applications. In Proceedings of

the International Conference on Communications, pages 54-59.

Duane: S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid monte carIo.

Physical Letters B, 195:216-222.

Duda, R. O. and Hart, P. E. (1973). Pattern Classafication and Scene Analysis. John Wiley,

New York NY.

Everitt, B. S. (1984). An Introduction to Latent Variable -Models. Chapman and Hall, New

York NY.

Feygin, G. (1995). Arithrnetzc Codzng: Paraflel Algorithms and .4rchitectures. Depart-

ment of EIectrical and Computer Engineering, University of Toronto, Toronto Canada.

Doctoral dissertation.

Fletcher, R. (1987). Practicd methods 01 optimzzation. John Wiley & Sons, New York NY.

Foldiak, P. (1990). Forming sparçe represent ations by local ant i-hebbian learning. Biological

Cybenetics, 64: 165-170.

Forney, Jr.. G. D. (1973). The Viterbi algorithm. Proceedings of the IEEE, 61(3):268-277.

Forney, Jr., G. D. (1988). Coset codes - Part 1: Introduction and geometrical classification.

IEEE ïkansactàons on Information Theory. 34:1123.

Forney, Jr., G. D. (1997). Approaching the capacity of the AWGN channel with coset codes

and multilevel coset codes. Submitted to IEEE î+ansactàons on Infornation Theory.

Ftey, B. J. (1997a). Continuous sigmoidal belief networks trained using slice sam-

piing. In Mozer, M. C., Jordan, M. I., and Petsche, T., editors, Advances in Neu-

ml Information Processing Systems 9. MIT Press, Cambridge MA. Available a t

http: //m. CS .utoronto. ca/-frey.

Frey? B. J . (l997b). Variational inference for cont inuous sigmoidal bayesian networks. In

Sixth International Workshop on Artzficial Intelligence and Statzstics. Ft. Lauderdale

FL.

Bibliography 192

Frey, B. J. and Hinton, G. E. (1996). Free energy coding. In Storer. J. A. and Cohn,
M., editors, Proceedings of the Data Compression Con ference 1996. IEEE Cornputer

Society Press. Available at h t tp : //vvv. CS. utoronto. ca/-f rey.

Frey, B. J. and Hinton, G. E. (1997). Efficient stochastic source coding and an application

to a Bayesian network source model. To appear in The Cornputer .lournaf.

Fkey, B. J. and Kschischang, F. R. (1996). Probability propagation and itera-

tive decoding. In Proceedings o j the 34th Allerton Conference. Available at

http: //vwv. CS .utoronto. ca/-frey.

Frey, B. J., Kschischang, F. R.' Loeliger, H. A., and Wiberg, N. (1998).

Factor Graphs und Algorithms. In preparât ion, current ly available at

h t t p : //wu. CS .utoronto. ca/-frey.

Frey, B. J. and MacKay, D. J. C. (1997). Nonsystematic trellis-consiraint codes. Subrnitted

to IEEE Communications Letters.

Gallager, R. G. (1963). Low-Density Parity-Check Codes. MIT Press, Cambridge M-4.

Geman. S. and Geman, D. (1984). Stochastic relaxation. Gibbs distribution and the

Bayesian restoration of images. iEEE lhnsactzons on Pattern Anafysis and Machine

Intelligence, 6:?21-741.

Ghahramani, Z. and Jordan, M. 1. (1997). Factorial hidden Markov models. In Press.

Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied
Statistics, 41:337-348.

Goodman, L. A. (1 970). The multivariate analÿsis of qualitative data: Interaction among

multiple classifications. Journal o j the American Statisticai Association. 65:226-256.

Hagenauer, J., Offer, E., and Papke, L. (1993). Improving the standard coding system for

deep space missions. In Praceedings of IEEE International Conference on Cornmuni-

cations, pages 1092-1097.

Kagenauer, J., Offer, E-, and Papke, L. (1996). Iterative decoding of binary block and

convolutional codes. IEEE Tkansactions on Infonnûtion Theory, 42(2):429-445.

Hammersley, J. M. and Handscomb, D. C. (1964). Monte Car10 Methods. Chapman and

Hall, London Eugland.

Bibliography 193

Heckerman, D. and Geiger, D. (1995). Learning Bayesian networks: a unification for dis-

crete and gaussian domains. In Besnard, P. and Hanks, S.? editors, Proceedings of the

Eleuenth Conference on Uncertainty in Artz'ficial Intelligence. Morgan Kaufmann.

Hinton, G. E., Dayan, P., F'rey, B. J., and Neal, R. M. (1995). The wake-sleep algorithm
for unsupervised neural networks. Science, 268: 1158- 1161.

Hinton, G . E. and Sejnowski, T. J. (1986). Learning and relezrning in Boltzmann machines.

In Rumelhart D. E. and McClelland, J. L., editors, Parallel Distributed Processing:

Exploratiûns in the Microstructure of Cognition, volume 1, pages 282-317. MIT Press,

Cambridge MA.

Hinton, G. E. and Zernel. R. S. (1994). Autoencoders, minimum description length and

Helmholtz free energy. In Cowan, J. D., Tesauro, G., and Alspector, J., editors, Ad-
uances in Neural Infornation Processing Systems 6. Morgan Kauffmann.

Hofmann, R. and Tresp, V. (1996). Discovering structure in continuous variables using

bayesian networks. In Touretzky, D., Mozer, M., and Hasselmo, M.. editors, Advances

in Neural Information Processing Systems 5. MIT Press.

Huffman, D. A. (1952). A method for the construction of minimum redundancy codes.

Proceedings of the Institute of Radio Engineers. 40: 1098- 110 1.

Imai, H. and Hirakawa, S. (1977). A new multilevel coding method using error-correcting

codes. IEEE Tkansactions on Information Theory, 23:371-377. Correction, Nov. 1977,
p. 784.

Jaakkola, T. and Jordan, M. 1. (1997). A variationai approach to Bayesian logistic regression

models and their extensions. In Sixth International Workshop on Artzficial Intelligence

and Statistics.

Jaakkola, T., Saul, L. K., and Jordan, M. 1. (1996). Fast learning by bounding likelihoods

in sigmoid type belief networks. In Touretzky, D. S., Mozer, M. C., and Hasselmo.

M. E., editors, Advances in Neural In formation Processing Systems 8. MIT Press.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J.. and Hinton, G. E. (1991). Adaptive mixtures

of local experts. Neural Computation, 3:79-87.

Jordan. M. 1. (1995). Why the logistic function? A tutorial discussion on probabilities

and neural networks. Technical Report Computational Cognitive Science 9503, MIT,
Cambridge MA.

Jordan, M. 1. and Jacobs, R. A. (1994). Hierarchical mixtures of experts and the EM
algorithm. Neural Computation, 6: 181-214.

Kdos, M. H. and Whitlock, P. A. (1986). Monte Carlo Methods, Volume 1: Busics. John

Wiley, New York IW.

Kinderman, R. and Snell. J. L. (1980). Markov Random Fields and Their Applications.

American Mathematical Society, Providence USA.

Kschischang, F. R. and Frey, B. J . (1997). lterative decoding of compound codes by prob-

ability propagation in graphical modeis. To appear in IEEE Journal on Selected Areas

in Communications, amilable at http : //wu. CS. utoronto . ca/-f rey.

Lauritzen, S. L. (1996). Graphical Models. Oxford University Press. New York NY.

Lauritzen, S. L., Dawid, A. P.? Larsen, B. N.. and Leimer. H. G. (1990). Independence

properties of directed Markov fields. Netvtorks, 20:491-505.

Lauritzen, S. L. and Spiegelhalter. D. J. (1988). Local computations with probabilities

on graphical structures and their application to expert systems. Journal of the Royal

Statistical Society B, 50: 157-224.

Lauritzen, S. L. and Wermuth. N. (1989). Graphical models for associations between vari-

ables? some of which are qualitative and some quantitative. Annals of Statistics. 1731-

57.

Le Cun, Y., Boser, B., Denker. J. S.. Henderson. D., Howard, R. E., Hubbard, W.. aad
.Jackel, L. D. (1989). Back-propagation applied to handwritten zip code recognition.

Neural Cornputation. 1:541-551.

Lee, E. A. and Messerschmitt, D. G. (1994). Digital Communication. Klwer Academic

Publishers. Norweil MA.

Lee, L. (1977). Concatenated coding sys tem employing a unit-mernory convolutiond

code and a byte-oriented decoding algorithm. IEEE ïkansactions on Communications.

25(10):1064-1074.

Lin, S. and Costello, Jr.. D. J. (1983). E m r Control Codzng: Fundamentals and Applica-

tions. Prentice-Hall fnc., Englewood ClSs NJ.

Lodge, J.. Young, R., Hoeher. P., and Hagenauer, J. (1993). Separable MAP 'filters' for

the decoding of product and concatenated codes. In Pmceedings of IEEE international

Conference on Communications, pages 174û-1745.

Bibliography 195

MacKay, D. J. C. (1995). Bayesian neural networks and density networks. Nuclear Instru-

ments and Methods in Physacs Research, 354:73-80.

MacKay, D. J. C. (1997). Good codes based on very sparse matrices. Submitted to IEEE
ïkansactions on Infornation Theory.

MacKay, D. J. C. (1998). Information Theory, Inference and Learning Algorithm. Book

in preparation, currently available at http : //vol. ra. phy . Ca. ac . uk/mackay.

MacKay, D. J. C., McEliece, R. J., and Cheng, J. F. (1997). Turbo-decoding as an instance

of Pearl's 'belief propagation' algorithm. To appear in IGFE Journal on Selected Areas

in Communications.

MacKay, D. J. C. and Ned, R. M. (1995). Good codes based on very sparse matrices.

In Boyd, C., editor, Cryptography and Coding. 5th IMA Conference, number 1025 in

Lecture Notes in Computer Science. pages 100-111. Springer, Berlin Germany.

MacKay, D. J. C. and Neal, R. M. (1996). Near Shannon limit performance of low den-

sity parity check codes. Electronics Letters, 32(18):1645-1646. Due to editing errors,
reprinted in Electronics Letters, vol. 33, March 1997, 457-458.

McCullagh, P. and Nelder, J. A. (1983). Generalized Linear Models. Chapman and Hd,
London England.

McEliece, R. .J. (1996). On the BJCR trellis for Iinear biock codes. IEEE ï''kansactzons on

Information Theory. 42.

Meug, X. L. and Rubin, D. B. (1992). Recent extensions of the EM algorithm (with

discussion). In Bernardo, J. M.. Berger, J. O., Dawid, A. P., and Smith, A. F. M.,
editors, Bayesian Statistics 4. Clarendon Press, Oxford England.

Metropolis. N., Rosenbluth, A. W., Rosenbluth, M. N.. Teller, A. H., and Teller, E. (1953).
Equation of state calculation by fast computing machines. Journal of ChemHcal Physics,

21:1087-1092.

Movellan, J. R. and McClelland, J. L. (1992). Learning continuous probability distributions

with symmetric diffusion networks. Cognitive Science, 17:463-496.

Neal, R. M. (1992). Connectionist learning of belief networks. Arttficiai Intelligence, 56:71-
113.

Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Car10

methods. Unpubiished manuscript avaiIable over the internet by ftp at

ftp://ftp.cs.utoronto.ca/pub/radford/review.ps.Z.

Bibliography 196

Neal, R. M. (1996). Bayesion Learning for Neural Networks. Springer-Verlag, New York

NY.

Neal, R. M. (1997). Markov chain Mmte Car10 methods based on Wcing" the density

function. In preparation.

Neal, R. M. and Hinton, G. E. (1993). A new view of the EM aigorithm that justifies

incremental and ot her variants. Unpublished manuscript available over the internet by

ftp at f tp : //f tp . C S . utoronto. ca/pub/radf ord/em. ps -2 .

Pearl, J. (1 986). Fusion. propagation. and structuring in belief networks. Artificial Intelli-

gence, 29241-288.

Pearl, J. (1987). Evidential reasoning using stochastic simulation of causal rnodels. Artificial

Intelligence, 32:245-257.

Pearl. J. (1988). Pro habilistic Reasoning i n Intelligent Sgsterns. -Morgan Kauhann. San

Mateo CA.

Peterson, C. and Anderson. J. R. (1987). A mean field t heory learning algorithm for neural

networks. Complex Sgstems, 1:995-1019.

Potamianos, G. G. and Goutsias. J. K. (1993). Partition function estimation of Gibbs

random field images using Monte Car10 simulations. IEEE î'kunsactions on Infornation

Theory, 39:1322-1332.

Rabiner, L. (1989). X tutoriai on hidden hlarkov models and selected applications in speech

recognition. Proceedings of the IEEE. ?7:257-286.

Rasmussen, C. E. (1996). Eualuation of Gaussian Processes and Other

Methods for Non- Linear Regression- De part ment of Cornputer Sci-

ence, University of Toronto, Toronto Canada. Doctord dissertation

(ftp://ftp.cs .toronto.edu/pub/carl/thesis.ps.gz).

Rasmussen, C. E.. Neal, R. M., Hinton, G. E., van Camp. D.. Revow. M., Ghahrarnani, Z..
Kustra, R., and Tibshirani, R. (1996). The DELVE Manual. University of Toronto,

Toronto Canada. h t t p : //uvv. C S . utoronto. ca/-delve.

Ripley, B. D. (1987). Stochastic Simulation. John Wiley, New York NY.

Rissanen, J. (1989). Stochastic Cornplexity i n Statzstical Inquiry. WorId Scientific. Singa-

pore.

Bibliography 197

Rissanen, J. and Langdon. G. G. (1976). Arithmetic coding. IBM J o u ~ n a i of Research and

Development, 23149-162.

SauI' L. K.. .Jaakkola. T.. and Jordan, M. 1. (1996). Mean field theory for sigrnoid belief

networks. Journal of Artificial Intelligence Research. 4:6 1-76.

Samd. E. (1995). A multiple cause mixture mode1 for unsupe~ised learning. iVeuml
Cornputation. f:Sl-71.

Schubert. L. K. (1976). Extending the expressive power of semantic networks. Artzficiai
Intelligence. 7: 163-198.

Shannon. C. E. (1948)- A mat hematical t heory of communication. Bell S p t e m Technlcal

Journal. 27~379-423. 623-656.

Sheykhet, 1. 1. and Simkin. B. Y. (1990). Monte Carlo rnethod in the theory of solutions.

Cornputer Physics Reports. 12:67-133.

Spiegeihaiter. D. J. (1986). Probabilistic reasoning in predictive expert systems. Io Kmal,

L. N. and Lemmer. .J. F.. editors. Uncertainty in Art$cial Intelligence. pages 47-68.

North Houand. Amsterdam.

Spiegeihalter. D. J. (1990). Fast algorithm for probabilistic reasoning in influence diagrams.

with applications in genetics and expert systems. In Oliver. R. M. and Smith. J . Q..

edi tors. Infiuence Diagrams. Belie f Nets. and Deczsion .4nalysis. pages 36 1-384. John

Wiley k Sons. New York NY.

Spiegelhalter. D. J. and Lauritzen. S. L. (1990). Sequentid updating of conditional proba-

bilities on directed graphical structures. Networks, 20:579-605.

Tanner. R. M. (1981). X recursive approach to low complexity codes. IEEE ?f.ansactions

on Information Theory. 27533-547.

Tibshirani. R. (1992). Principal curves revisited. Statistics and Computing, 2: 183-190.

Ungerboeck. G. (1982). Channel coding wit h multilevel/phase signals. IEEE Transactions

on Information Theory, 28(1).

Viterbi, A. J. and Omura. J. K. (1979). Principles of Digital Communication und Codz'ng.

McGraw-Hill. New York W .

Vorobev? N. N. (1962). Consistent families of rneasures and their extensions. Theoriy of

Pro bability and Applications, 7: 147-163.

Bibliography 198

Wachsmann, U. and Huber. J . (1995). Power and bandwidth efficient digital communication

using t urbcxodes in mult ilevel codes. European Transactions on Teiecornmunicat.ions,

6 (5) :557-567.

Wallace, C. S. (1990). Classification by minimum-message-lengt h inference, In S. G. Akl.

et. al ... editor, Advances i n Cornputing and Infornation - ICCI 1990. number 468 in

Lecture Notes in Computer Science. Springer, Berlin Germany.

Wiberg, N. (1996). Codes and Decoding on General Graphs. Depanment of Electricd

Engineering, Linkoping University. Linkoping Sweden. Doctoral dissertation.

Wiberg. N.. Loeliger. H.-A.: and Kotter. R. (1995). Codes and iterative decoding on general

grap hs- European Transactions on Telecommunica tions. 6:s 13-525.

Wicker, S. (1995). E m r Control Systems for Digital Communications and Storage.

Prentice-Hall Inc.. Englewood Cliffs N J.

Witten, 1. H.. Xeal. R. M.. and Cleary: J. G. (1987). Arithmetic coding for data compression.

Communications of the .4CM 30:520-540.

Woods, W. A. (1975). What's in a hnk? Foundations for semantic networks. In Bobrow.

D. and C o b . A.. editors. Representation and understanding. pages 35-72. Academic

Press, New York LW.

Wright, S. (1921). Correlation and causat ion. Journal of Agricultural Research. 20557-585-

Zemel. R. E. (1993). A minimum descnp tion Iength framework for unsuperuised learning.

Department of Computer Science. University of Toronto. Toronto Canada. Doctoral

dissertation.

Zhang, J. (1993). The mean field theory in EM procedures for blind Markov randorn field

Mage restoration. IEEE Transactions on Image Processing. 2 2 7 4 0 .

IMAGE EVALUATION
TEST TARGET (QA-3)

APPLIED - & IMAGE. lnc = 1653 East Main Street - -- - - Rochester. NY 14609 USA -- --= Phone: 71 6/4û2-0300 -- -- - - Fax: 71 6i28ô-5989

O 1993. Applied image. lm.. Ail Rights R e s e d

