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Abstract 

Pattern classification- data compression, and channel coding are tasks that usually m u t  

deal with complex but structured natural or artscia1 systems. Patterns that we wish ta 

classify are a consequence of a causal physical process. Images that we wish to cornpress 

are aiso a consequence of a causal physical process. Noisy outputs from a telephone line 

are corrupted versions of a signal produced by a structured man-made telephone modem. 

Not only are these tasks characterized by complex structure. but they also contain ran- 

dom elements. Graphical modek such as Bayesian networks provide a way to describe the 

relationships between random variables in a stochastic system. 

In this t hesis, 1 use Bayesian networks as an overarching framework to describe and 

solve problems in the areas of pattern classification, data compression. and channel coding. 

Results on the classification of handwitten digits show t hat Bayesian network pattern 

classifiers outperform ot her standard met hods, such as the k-nearest neighbor met hod. 

When Bayesian networks are used as source models for data compression, an exponentially 

large number of codewords are associated with each input pattern. It tunis out that the 

code can still be iised efficiently, if a new technique called *'bits-badc coding" is used. 

Several new error-correcting decoding algorithms are instances of "probability propagation" 

in various Bayesian networks. These new schernes are rapidly closing the gap between 

the performances of practicd channei coding systems and Shannou's 50-year-old channei 

coding limit . The Bayesian network framework exposes the similarit ies between t hese codes 

and leads the way to a new class of "trellis-constraint codes" which also operate close to 

Shannon's iimit. 
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Nomenclature 
Vectors, matrices, high-dimensional matrices and sets of variables are writ ten in boidface 

Roman ty-pe. (téctors are iisually written in lower-case type.) Sets are quite different from 

vectors. but this abuse of notation permits set operations (e-g.. "s". "\") whle at the same 

time permitting cardinal access to the set members (e-g. ,  weighted s u m  of the elements via 

indexing) . 1 use cudy braces { . . . ) to write the elements in a set or vector of variables. 

{Y} is the set containing a singleton variable y, whereas (Z~)F=~ = {q: . - . . z ~ } .  Extra 

labels on variables usually appear as upper-case Roman in superscripts (e-g. .  eV). whereas 

vector. matrix, a d  high-dimensional rnatrix indices usually appear as subscripts ( e . g . .  

6:). For example. we can write the following with respect to the set of parameters O: 
{9g}f=, = 0: c ûv 2 6. and C j ~ s h j .  Some types of index (notably training case indices) 

appear as superscripts in braces (cg.. d t ) ) .  

Probability mass functions are usually written in upper-case Roman italics type (e-g. 

P(-) . Q ( - ) ) whereas probability density functions are usually writ ten in Iower-case Roman 

italics type (e -g .  p ( - ) .  q ( - ) ) .  The distribution is identified by the random variable. so the 

distribution P(v) is different kom P ( x ) .  Also. to keep the formulas short. the symbols 

for a randorn variable and its value are usunUy the same. So. P(ukly) sometimes refers 

to the probability that the random variable Lik takes on the value uk. and at other times 

refers to the set of probabilities corresponding to the values that Uk cnn take on. In cases 

where a random variable and its value must be distinguishable. I m i t e  an assignment. 

SO. P(uk = u;Iy) means PukIY(u;Iy). A distribution subscripted with Y' refers to the 

correct. or "real" distribution. For example. if P ( v )  is a mode1 distribution. we hope that 

P { v ,  Y Pr@). 

Here is a Est of symbols: 

represents the binary "ala.rm" variable in the burglar alarm problem: or 

represents an entire signalling waveform defined on O 5 t 5 T 
signalhg (channel input) waveform for channel coding 

set of variables containing the parents of zk 

represents the binary "burglar" miable in the burglar alarm problem 

bit error rate 

lower bound on log P(Vl9),  BpllP = -FqllP = log P(v) - DQllP 
communication capacity of a channel in bits/second or bits/usage 

set of variables containing the children of z k  

delay buffer in an LFSR: or mathematical delay operator 

collection of data 

Kullback-Leibler divergence (relative entropy) between Q( - ) and P( .) 



set of variables containing the descendents of zk 

Hamming distance between the closest two codewords in a channel code 

expectation with respect to the stated distribution 

E(v) is the expected length of the codeword for v. in a multi-vaIued source 

code 

the energJr transmitted per information bit in channel coding 

represents the binary "earthquake" variable in the burglar alarm problem 

3(v)  is the theoreticai b i t s - b d  codeword length for input pattern v 

free energy between Q(- )  and P(-). FqllP = DQ!lP - log P ( v )  
G ( D )  is the generator polynomial in the delay operator D. For a convolutional 

code 

logistic hction:  g(z) = I / ( l  + exp[-21): or output bit generating function for 

an LFSR 
entropy measured in bits 

binary entropy function. H @ )  = - p  log p - ( 1 - p) log( 1 - p) 

set of hidden (unobserved) variables: or codeword index in a multi-valued 

source code 

vector of hidden variables for trainirig case t 

number of hidden variables: or number of information variables 

log-likelihood ratio for a random variable given some observations 

- e..q.. L ( L  = 2)  = log[P(z = z l l y ) /P ( r  # z'ly)] 

approximation to L(.)  produced at iteration i of iterative decoding 

[(v) is the length of the source codeword for v 

{(v. h) is the length of the hth codeword for v. in a multi-valued source code 

natural logarithm 

logarithm to the base L 

number of variables in a network: or number of visible variables: or number of 

codeword variables 

number of constituent trellises in an interleaved trellis-constraint code 

single-sided spectral density for a white Gaussian process 

set of variables coataining the nondescendents of z k  (excluding z k )  

transmit ter power for channei coding 

set of all distributions that c m  be represented by a Bayesian network 

probability mass function for a Bayesian network; or the probability 

function for a mixed (discrete and continuous) set of variables 

estimate of P(.) 
conditional probability matrix for variable z,, P:;: = P(z ,  l*) 



probability density funct ion for a Bayesian network 

general variational distribution: or geaeral recognition network distribution 

vector of parity-check variables 

variationai probability density: or recognition network probability density 

rate of a binaxy chamel code in information bits / codeword bits 

state transition function for a LFSR: s k  = S ( S ~ - ~ .  uk) 

set of discrete LFSR state variabIes, where si is the state at time i 

training case index. I 5 t < T 

vector of binary information variables 

an estimate of the true information vector u 

vector of visible ( O  bserved) variables 

vector of visible (observed) variables for training case t 

vector of binary codeword variables: or dummy vector mriable 

the j th branch variable that participates in constraint i of an interleaved 

trellis-cons traint code 

vector of reai channel output variables: or dllmmy vector variable 

channel output waveform for rhannel coding 

observed value of a variable y f v in a Bayesian network 

set of variables iised to discuss properties of Bayesian networks in generd 

norrnakation constant 

delta function: 6(2. y)  = 1 if z = C/ and O otherwise 

iearning rate for steepest descent parameter estimation 

set of all parameters for a parameterized Bayesian network 

set of parameters associated with variable i 

parameter associated with the connection fiom variable j to variable i 

constant (bias) parameter associated wit h *miable i 

set of parameters associated with the set of hidden variables h 

set of parameters associated with the set of visible variables v 

child-parent message sent from zi to - - has 1z2 1 elements 

variational paramet ers 

permutation function that maps integers in il, N ]  to [l, NI, for some integer N 
parent-child message sent from 11 to i - has lzi( elements 

time in a Markov chain Monte Carlo simulation 

cumulative distribution for a standard normal p.d. f. 

recognition network parameters (see Bi and Bij for refined details) 



1 . 1 lzl = nurnber of -ariables in z; or !q[ = number of values rk can take on 

EX summation over al1 possible contigurations of x 

, summation over the configurations of x' for which element xi = x, 

{ . . . } set or vector of variables. { zk ) means the set containing y alone 
- - 
d addition modulo 2 
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Chapter 1 

Introduction 

In t his t hesis. 1 explore algorit hms for pattern classification. data compression. and channel 

coding. At first. it may be hard to imagine how three so differe~t research areas can be 

brought into focus under a single theme that is both novel and of practicd value. 1My hope 

is to convince the reader that these t h e e  problems can be attacked in an interesting and 

fruithl manner using a recentiy developed ciass of algorithms that make use of probabilistic 

stmcture. T hese algorit h m  take advantage of a graphicd description of the dependencies 

between random variables in order to cornpute. or estimate, probabilities derived from a 

joint distribut ion. As simple and well-known examples. the forward-backward a l g o r i t h  

[Baum and Petrie 19661 and the Viterbi algorithm [Forney 19731 make use of a chain-like 

blarkovian relationship between random variabIes. 

The mots of probabilistic structure reach far back to the beginningof the 20th centirry. In 

1921. Sewall W-right developed m'path analysis" as a means to st iidy statisticd relat ionships 

in biological data. Few new developments were made until the 1960's when statisticians 

began using graplis to describe restrictions in statisticd models called .'log-linear models" 

[Vorobev 1962: Goodman 19701. In 1963. the idea of hierarchical probabilistic striicture 

briefiy reared its head in the engineering resetvch community when Gallager iwented an 

error-correct ing decoding algorit hm based on a grap hical descript ion of the probabilist ic 

relationships between variables involved in channel coding. Most likely because of the 

primitive cornputers available at the tirne. his algorithm was quickly overIooked by bis 

peers, only to be rediscovered nearly 35 years later independently by at least three research 

groups, and to be shown to yield unprecedented performance in error-correcting coding 

applications [Berrou. Glaviewt and Thitimajshima 1993: Wiberg, Loeliger and Kotter 1995: 

MacKay and N e d  19951. A simpler chah-type Markovian graphical structure later became 

popular and very useful in the engineering community, largely due to an excellent tutorial 
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paper by Forney [1973]. in which the notion of a ntreilis" was introduced. Probabilistic 

structure has been most extensively developed in the artificial intelligence literature. with 

applications ranging born taxonornic hierarchies [Woods 1975; Schubert 19761 to medical 

diagnosis [Spiegelhalter 1990]. In the late 1980's' Pearl [1986] and Lauritzen and Spiegelhal- 

ter [1988] independently published a general algorithm for computing probabilities based 

on a graphical representation of probabilistic structure. This algorithm is practical and 

exact for only a special type of probabilistic structure. Over the last decade, there has also 

been a trernendous increase in interest in estimating the parameters of models with fixed 

graphical structure. In the mid 1980's. Hinton and Sejnowski Il9861 introduced a maximum 

likelihood algorithm for learning the parameters of a graph-based log-lineu model called a 

"Markov random field". More recently, approximate a l g o r i t h  for general models based on 

directed graphs have been introduced. These include Markov chain Monte Carlo methods 

[Pearl 1987: Neal 19921: *Helmholtz machines" [Hinton et al. 1995: Dayan et al. 19951. and 

variational techniques [Saul. Jaakkola and Jordan 1996: Jaakkola. Saul and Jordan 1996: 

Frey 199?b]. 

1.1 A probabilistic perspective 

Otfhand. it is not obvious t hat sophisticated probability models are needed to solve problems 

in pattern classification. data compression, and channel coding. Given a segment of speech. 

a classifier outputs a decision. Say. as to whether or not the speaker has security clearance. 

It appears there are no random variables in this model. The classifier may also output 

a mesure  of reliability regarding the decision it makes. In this case. it appears there is 

just one binary randorn variable that captures the variability in the decision. The mean of 

t his Bernoulli random variable m u t  somehow be related to the input, and this task can be 

viewed as some sort of h c t i o n  approximation. Similady. &en a highly-redundant image? 

a data compression algorithm usudy  produces a unique sequence of codeword symbols. 

Given the output of a noisy telephone line, a channel decoder (telep hone modem) rnakes a 

deterministic decision about the contents of the transmitted data file. 

While the above modelling approaches eit her require ody very low-dimensional prob- 

ability models or do not use random variables at dl, in doing so. they are clearly not 

representing the tme causal structure in each problem. For example, in reality eadi speaker 

has a unique glottis that interacts in a random way with a unique shape of vocal tract and 

a unique random style of articulation to produce a speech segment. It seems like a fkuitfiil 

approach to speaker identification would involve representing t hese random variables and 

the probabilistic relationships between them. In the following three sections. 1 attempt to 
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reveal some of the probabilistic structure present in pattern classification. data compression, 

and channel coding problems. 

1.1.1 Pattern classification 

A soft-decision classifier estimates the probability that a given pattern v belongs to each 

class j E {O:. . . , J - 1). That is. the classifier estimates 

where the subscript "r" in Pr indicates a true (real) probability (as opposed to one produced 

by a model). If these probabiiities can be accurately estimated. Bayes decision theury tells 

us that a minimum rate of error can be achieved by choosing the class j that maximizes 

P,(jlv) [Chow 1957: Duda and Hart 19731. 

We could use a Iogistic regression model to estimate P,(jlv). For example. regression 

using a ffexible model has been successfully used to classify individual digits extracted fiom 

handwritten United States ZIF' codes [Le Cun et al. 19891. However. t his approach ignores 

the causal structure of the physical process of producing handwritten digits. 

Iri order to  faithfully capture the actual physical process that produces each digit. we 

first ought to specify an a ption distribution P ( j )  over the digit classes j E {O. . . . .9} - 

maybe some digits are more common than others. Next, for a given class of digit j. we 

expect there t o  be a distribution P ( h ( j )  over a set of digit attributes h. These attributes are 

called "hidden variables". because they are not part of the classifier inputs or outputs. Each 

elernent of h might specify the presence or absence of a particu1a.r Line segment or Bourish. 

Given a set of features h, we expect there to be a distribution P(vlh) over possible images 

- this distribution models the way in which features combine to make an image. as well as 

noise such as ink spots. The joint distribution given by this model of the real world can be 

written 

and the distribution over classes given a pattern cau be obtained by marginalizing out h 
and using Bayes' rule: 

So, it appearç t hat to properly model the structure of the problem, we need a more sophis- 
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t icated probabilistic description t han ( 1.1). In generd, a correct mode1 of this sort. where 

P(jlv) =r P,(j\v) will perform optirndly in terms of classification error. 

1.1.2 Data compression 

A source code maps each input pattern v to a codeword u, such that for each valid u 

there is a unique pattern. 1 wiU consider sources where the patterns are i.i.d. (independent 

and identicdy drawn) 6.om P,(v). The purpose of noiseless source coding, or  lossless 

data compression, is to lossiessly represent the source patterns by codewords. so that the 

expected codeword length is as Iow as possible. Shannon's noiseless source coding theorem 

phannon 19481 states that the average codeword length per source pattern cannot be less 

than the entropy of the source: 

where t(v) is the Iength of the codeword for v in bits. and U is the entropy of the source 

in bits: 

Arithmetic coding [Rissanen and Langdon 1976: Witten. Ned and Cleary 19871 is a. 

practical dgorithm for producing near-optimal codewords w hen the soiirce dis tribut ion 

P,(v) is known. Sometimes. e-g.. if v is binary-vdued. these probabilities c m  be easily 

estimated from the source. Often. however. the distribution is too complex. and so a more 

sophisticated parametric mode1 or flexible mode1 must be used to estimate the probabilities. 

For example. consider a high-dimensional binary image v that is produced by the physical 

process described above. so that 

The probabilities used by the arithmetic encoder are obtained by marginalking out j and 

h : 

We see that a probabilistic description can &O be very usefui for source coding. 



1.1 A probabilistic perspective 5 

1.1.3 Channel coding 

A block channel code maps a vector of information symbols u to a vector of codeword 

symbols x. This mapping adds redundancy to u in order to protect the block agaiast 

channel noise. (As a simple example. the codeword might consist of three repetitions of 

the information vector.) After x is transmitted across the channel. the  decoder receives a 

noise-corrupted version y and produces an estimate of the informat ion block û. We Say that 

a block error or a word error has occurred if û # u. In it's simplest form, Shannon's channel 

coding t hwrern [S hamon 19481 states t hat for any $ven channel. t here ezists ' a code t hat 

can achieve an arbitrarily Iow probability of block error when the signal-to-noise ratio is 

greater than a channel-dependent threshold called the Shannon liniit. Roughly speaking, 

the codewords are kept far apart in codeword symbol space. so that when a moderately 

noise-corrupted codeword is received. it is still possible to determine with high probability 

which codeword was transmitted. 

From a probabilistic perspective. the decoder c m  minirnize the word error rate by choos- 

ing an estimate û that maximizes P,(ûly). or minimize the symbol error rate by choosing 

an estimate û that maximizes nk P,(ùkly). A probabilistic mode1 c m  be constructed by 

examining the encoding process and the channel. We first speci% a (risually uniform) dis- 

tribution for the information blocks. P(u). Often. the encoder uses a set of state variables. 

S. in order to produce the codeword. These variables are determined hom the information 

block using a distribution P (SI u) - d t  hough t his relationship is usually deterministic. t his 

probabilist ic descript ion will corne in handy later on when we st udy probabilist ic decoding. 

The transmitted codeword is determined from the information block and state variables by 

P (xi u. s) . Finally. the real-valued channel outputs are related to the transmit ted codeword 

by a probability density function p(y (x)  that modeis the chamel.  The joint distribution 

given by the mode1 is 

and the distribution over information symbol u k  given the charinel output can be obtained 

by marginalizing out S. x and u,: for al1 j # k. and using Bayes' rule: 

Although this probabilistic formulation rnay seem strange compared to many of the strongly 

'Shannon was quite the tease. He proved the code exists, but did not show us a practical way to  encode 
or decode it. 
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zlgebraic traditional approaches, it is this formulation that 1 view as the foundation of the 

recently proposed high-performance turbo-codes [Berrou and Glavieux 19961. 

1.1.4 Probabilistic inference 

As presented above, pattern classification, data compression, and channel coding are al1 
siniilar in that some type of marginal (and possibly conditioned) distribution is sought for 

a given joint distribution. Consider a set of random variables z = {q, z2, . . . , Z N )  that 

co-vary according to a joint distribution P ( z l ,  22, . . . , zN). For any two subsets of variables 

z1 C z and z2 C Z, 1 wiU refer to the computation or estimation of P(z11z2), or a decision 

based on P ( z l  lz') as probabilistic inference. 

Examples of probabilistic inference include the computation of the class probabilities for 

pattern classification (1.3), the computation of the input probability for data compression 

(1.7), and the information symbol decisions based on the information symbol probabilities 

for channel coding (1.9). Notice that in these different cases of probabilistic inference, the 

joint distributions can be decomposed in different ways. In fact, if we decompose the joint 

distributions at the Ievel of individual variables instead of vector variables, we can envision 

a wide variety of rich structures. In the next section, 1 describe Bayesian networks, which 

can be used to describe this structure. 

1.2 Bayesian networks 

Often, the joint distribution associated with a probabilistic inference problem can be de- 

composed into locally interacting factors. For example, the joint distributions involved in 

the applications of Bayes' rule in (1.3), (1.7), and (1.9) can be expressed in the forms given 

in (1.2), (1.6), and (1.8). By taking advantage of such probabilistic structure. we can design 

inference algorithms that are more efficient than the blind application of Bayes' rule. 

1.2.1 Probabilistic structure 

Probabilistic structure can be characterized by a set of conditional independence relation- 

ships. (This structural description does not fix the values of the probabilities.) For example, 

in the case of channel coding, we can use the chah rule of probability to write out the joint 

distribution: 
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The probability density hnction (the last factor) c m  be simplified. since the received vector 

y is conditionally independent of the information vector u and the state vector S. given the 

trmsmitted codeword x: 

By substituting this conditional independency celâtionship into (1.10). we obtain the more 

structured form of the joint distribution given in (1.8). 

The general idea is to express the joint distribution as a product of factors. where each 

factor depends on a subset of the random variables. In the simplest case. eadi factor depends 

on a single random variable. making marginalization easy. Most distributions that describe 

practical problems cannot be broken up in this way, and the subsets overlap. Within this 

richer set of models, some structures lead to highly efficient exact aigorithms (e.9.. the 

forwud-backwarci algorit hm for a chain- type structure). Ot her stnictiires are not tractable 

and lead to approximate algorit hms. 

It turns out that graph theory provides a succinct way to represent probabilistic struc- 

ture. A graphical represent ation for probabilistic structure. dong wit h Eunct ions t hat can 

be iised to derive the joint distribution. is called a graphical mode/. Examples of graphi- 

cal models include Markov randorn fields [Kinderman and Snell 19801. Bay eszan ne tworks 

[Pearl 19881. chain graphs [Lauritzen and Wermuth 19893. and Jactor graphs [Frey et al. 

19981. Here. I consider Bayesian networks. 

1.2.2 Definition of a Bayesian network 

The conditional independency relationships for a distribution can be describeci graphically. 

Not only does the grap hicd represeiit at ion concisely capture probabilist ic structure. but it 

forms a framework for computing usefid probabilities. Bayesian networks x e  specified in 

terms of directed acyclic gruphs. in which aL1 edges are directed and in which there are no 

closed paths when edge directions are followed. A Bayesian network for a set of random 

variables z = (ri, q.. . . . Z N )  consists of a directed acyclic graph with one vertex for each 

variable. and a set of probability hinctions P(zt  lak) k = 1. . . . . N. where the parents ak of 

r k  are the variabiw: that have directed edges comecting to zk. (For sinrplicity of prose, I will 

often refer to a vertex by its variable name.) If zk has no parents, then ak = B. For now, 

we can think of each function P(zk ]ak )  as an exhaustive list of probabilities corresponding 

to the possible configurations of rk and ak. (In the case of a density p(zklak), the entire 

density huiction must be specified.) Together, the graph and the probability f~inctions are 

referred to as the network speczfication. 



Figure 1.1: (a) An example of a Bayesian network. (b) The parents as of zs are shown by a solid 
loop; the children cs are shown by rr sparse dotted loop; the descendents d5 are shown by a dense 
dotted loop; the nondescendents ns are shown by a dashed loop. 

Several definitions will help to understand how a Bayesian network describes the prob- 

abilistic structure for a joint distribution P ( z ) .  The children c k  of z k  are the variables 

that have directed edges connecting fronz zk. The descendents dk of t k  are its children, its 

children's children, etc. The nondescendents nk of zk are the variables in {zr, t ~ ,  . . . ? zk -1 ,  

zk+ 1 ,  . . . . z N }  that are not in dr , i. e.: nk = z \ (dk U {q }). Note that nk # z \ dk, since 2k 

is not included in the nondescendents. From these definitions, it follows that a k  Ç nk. 

Figure 1.1 shows an example of a Bayesian network. along with the parents. children, 

descendents and nondescendents of variable 2s. 

The meaning of a Bayesiail network is that given the parents of z k ,  the distribution over 

zk wili not change if any combination of the nondescendents of zk are also given: 

In other words, zk is conditionally independent of any combination of its nondescendents, 

given its parents. To take the family hierarchy (not necessarily a tree) analogy further, 

given the genetic code of Susan's parents, deterrnining the genes of her siblings. her grand- 

parents, her grandparents' children, ber children's other parents or any combination of the 

above does not influence our prediction of Susan's genetic make-up. This is not true for 

descendents. For example, determining the genes of Susan's grandchildren does influence 

our prediction of her genetic make-up, even though determining the genes of those parents 

of Susan's grandchildren who are not Swan's children does not (notice that the latter are 
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noudescendents ) .' 
The joint distribution for a Bayesian network can be written in a structured form simply 

by writing out the product of the distributions for individuai variables. where each vCwiable 

is conditioned on its parents: 

This form follows from (1.12) in the following way. Since a Bayesian network contains no 

directeci cycles. it is always possible to dioose an ancestral ordering z,(,), zTt2) . . . . z,( N I .  

where T ( - )  is a permutation map. so that the descendents of each variable corne later in the 

ordering: d,(k) 2 { z , ( ~ + ~ )  . - . . r , ( ,~]  ). For example. the variables in the network shown in 

Figure 1.1 were assigned so that zl . e. . . . . ri:$ is an ancestral ordering. Using the general 

chain rule of probability üpplied to the ancestral ordering, we have 

Rom the definition of the ancestral ordering, it follows that the set of variables that precede 

+(k )  is a subset of its noodescendents and that the parents of z,(k) are x subset of the 

Inserting this result into ( 1.14). we obtain the form given in (1.13). 

If the probability funçtions for a Bayesian network ~ u e  not specified? the network is 
rneant to cepresent ail distributions that can be written in the form given in (1.13). For 

the network with ancestral ordering r i ,  22, . . . . z13 shown in Fiyre  1.1. (1.13) gives a joint 

'Interestingly, if we have previoiisiy determined the genes of Susan's grandchikiren, then detemining the 
g e n s  of those parents af Susan's grandchildren who are not Susan's children does influence our prediction 
of Susan's gcnetic make-up. See Section 1.2.4 for more details. 
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Figure 1.2: .ln example of a chain-type Bayesian network. or a Markou chain. 

distribution 

This product çould have been vrritten in any order. but using an ancestral ordering heips 

dari6 the dependencies. In this equation. each variable zk is conditioned on variables whose 

distributions appear to the left of the distribution for zk. Note that a Bayesian network 

may have more than one ancestral ordering. In this case. ~ 1 0 :  36.23.27. zl . z?. z4.z5.=q, 

z l ~  , q. ~13.212 is also an ancestral ordering. 

An interesting specid case of a Bayesian network is the chab type  network shown in 

Figure 1.2. also known as a first-order Markov chuin. Applying (1.13) to this network. we 

ob t ain 

This type of structure is fkequently used to mode1 time series data. where it is often assumed 

that the next state of a physical system depends only on the previous state. Comparing 

this network to the more complex networks that appear later in this thesis? the Bayesian 

network c m  be thought of as a generalization of the Markov chain. 

1.2.3 Ancestral simulation 

It is often practically impossible to sirnulate vectors z that are distributed according to P ( z ) .  
However, if the joint distribution c m  be described by a Bayesian network, and if a value 

for each y can be drawn £rom its conditional probability P(zklak) in a practical rnanner. 

then the ancestral ordering can be used to draw an entire vector. Starting with k = 1. we 

draw z , ( ~ )  from P(z,( ,)  ). We continue to draw z n ( k )  from P ( z ~ ( ~ )  lq(k)) for k = 2, . . . N 

until an entire vector z has been drawn. In this way, the probabilistic structure implied by 

the graph dows  us to decompose the simulation problem into local pieces. 
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neit her zk 
of dk are 

nor any i, I 
/ 

in zS -. - - _ _ - -  fl 

Figure 1.3: The three ways in which a path may be blocked. If al1 paths from al1 variables in zri 
to dl variables in zB are blocked, then zA and zB are dependency-separated by zs. 

1.2.4 Dependency separation 

In Section 1.2.2. 1 used the notion of conditional independence to define a Bayesian network. 

In particular. a Bayesian network implies that variable zk is conditionally independent of 

any subset of its nondescendents, given its parents. This is expressed mathernatically by 

( 1.12). A convenient way to descri be this scenario is to Say t hat ;zk is dependency-separated 

from any combination of its noudescendents by its parents". 

Consider the uncountable set of distributions P that can be described by a given Bayesian 

network. In general. 1 will Say tbat z - ~  is dependency-separated from zB by zS (-Sv for 

separation). if and only if 

B s p(z"[zS. zB) = P ( z - ' I z ~ ) .  or. equidently P(z.'. z I Z  ) = P ( Z - ' I Z ~ )  P ( z ~ I z ' ) .  

(1.19) 

for al1 P E P .  (See [Pearl 19881 for an extensive discussion of dependency-separa~iou.) 

Notice that dependency-separation is symmetric with respect to 2.' and za. The case of 

dependency-separation that I used CO define a Bayesian network is specid. in that zS was 

the set of parents of the single variable zs4. and zB was a subset of the nondescendents of 

zX*  

It is possible to ascertain dependency separation in the general case simply by inspecting 

the Bayesian network. If zA . zB . and zS are three disjoint subsets of z. then zJ dependency- 

separates zA from zB if. in every path connecting any variable in z" to any variable in zB. 

there is a t  least one variable zk that satisfies one or more of the foUowing three conditions: 

1. zc acts as both a parent and a child in the path and y E zS (Figure l.3a), or 

2. s acts as the parent of two variables in the path and zk E zS (Figure 1.3b): or 

3. zk acts as the child of two variables in the pat h and neither zk nor any of its descendents 
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are in zS (Figure 1 . 3 ~ ) .  

{Note that the identification of a path does not depend on edge directions.) A path for 

which one of these conditions is met is said to be blocked. In order to ascertain dependency- 

separation, we need to consider only paths that do not intersect themselves. since those 

conditions that hold for any given pat h will also hoid for the pat h when extra variables t hat 

form a loop are considered. 

For example. in Figure 1.1s we have the following dependency separation relationships. 

zs is dependencg-separated fkom (by nothing), since the soIe path z ~ .  29, an, zlo is 

blocked by zi3 in condition 3. What if rg is observed? Then, z~ is still dependency- 

separated from zlo, by condition 1 applied to the sole path TG. ZCJ, ~ 1 . 3 ,  Z I O .  In contrast. if 

only z1.3 is observed. t hen ze is not dependency-separateci from z10. since there exists a path 

ze,zg. z13? ~ 1 0  for which none of the three conditions can be met. This means that once zls 

is observed. zg and 210 may become dependent. Note ttiat there may  exist a distribution 

in P where ZG and tio are independent given q 3 .  but there exists at least one distribution 

in T' where zs and zig <axe dependent given 113. 

Here are some more complicated examples. zz is dependency-separated from ZIJ by z5. 

since path q, 25. z g  is blocked by zs in condition 1, paths e! q. zg. ~ 1 2 ,  z9 and zi q ,zg, 
212, zg are blocked by t l -  in condition 3. paths z4, zg, 2.5. zg and z.1: 21 . q. ze? r s ,  zg are 

blocked by z 5  in condition 2 and by ZR in condition 3. path q, q. a3: rl-. z!, is blocked 

by ri in condition 1 and by zl2 in condition 3. z2 is dependency-separated from {za. z i )  

(by nothing). since the paths z2: r,. r:j and i' - 5 .  z3. z; are blocked by r5 in condition 3. 

This means that in the absence of observations 72 and {z3, z;. ) are independent. z2 is not 

dependency-separated fkom { z : ~ .  ri}  by ZI? since t here exists a path zzo z,. z3 for w hich none 

of the conditions can be met. Condition 3 applied to z, fails. because zi? is e descendent 

of 15. This means that once 212 is observed. z2 and {zn, r7) may become dependcnt. 

1.2.5 Example 1: Recursive convolutional codes and turbo-codes 

RecaiI fiom Section 1.1.3 that the purpose of channel coding is to communicate over a 

noisy channel in an error-free (or nearly error-free) fashion. To do this. we encode a given 

binary information vector u as a longer codeword vector x. which contains extra bits whose 

purpose is to "protect" the information Eiom the channel noise. (An example is a repetition 

code. where each information bit is simply tr<?ssmitted several times.) The codeword is 

converted to a physical form (e.9. .  radio waves) and then sent over a channel. A vector of 

noisy si@s y is received at the output of the channel. Given y: the decoder must make a 

guess ù at what the original u was. 
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Figure 1.4: The LFSR for a systematic recursive convolutional code that has a minimum distance 
of 10. 

One very popular class of chmnel codes (you probably have one of these in your telephone 

modem) c m  be described using Bayesian networks. The cncoder for a recursive conunlu- 

tional code is simply a linear feedback shift register (LFSR) that takes in information bits 

and generates codeword bits. See [Lin and Costello 19831 for an extensive treatrnent of con- 

volutional codes. Figure 1.4 shows the LFSR for the convolutional code that is described 

below. Each box represents a 1-bit memory elernent and D indicates a delay buffer. The 

discs represent addition modulo 2 (XOR). For this particular convolutiond code. every sec- 

ond output is actually just a copy of the input bit. This type of code is called s?jstemutic. 

Notice that for each input bit. two output bits are produced. so this is a rate 1/2 code. If 
there are K information bits. then there will be 1V = 2K codeword bits. The device shown 

in Figure 1.4 is called a linear feedback shift register because the oiitput sequence gener- 

ated by the sum of two input sequences is equd to the sum of the two output sequences 

that are generated by the individual input sequences (wherc summation is modulo 2) .  The 

detaiis of how to choose the feedback delay taps and the outpilt taps in order to produce 

a good code can be found in [Lin and CostelIo 1983: Berrou and Glavieux 19961. However. 

the operation of an encoder of this type is quite simple. The LFSR is initialized so that 

ail memory elernents contain 0:s. Then. the information bits uk are fed into the LFSR. 
producing codeword bits zk. Sipals  that represent the codeword bits are then trsnsmitted 

over the channel. For example. on a twisted pair of wires, we might appiy +l volts if zr; = 1 

and - i volts if xk = 0. 

Figure 1.5a shows the Bayesian network for a recursive systematic convolutional code. 

Normally. the nuniber of information bits K is much lager than 6 (typical numbers range 

tkom 100 to 100,000 bits). sr, is the state of the LFSR at time k. extended to include the 

input bit (this makes the network simpler). To ful1y specify the Bayesian network, we must 

&O provide the conditional distributions. Assuming the information bits are uniformly 
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distributed, 

P(uk) = 0.5, for uk E {O, I). ( 1.20) 

Let S ( S ~ - ~ , U ~ )  be a function (deterrnined from the LFSR) that maps the previous state 

and curent input to the next state, and let g(sk) be a function that maps the state to the 

nonsysternatic output bit. Thea, the deterministic conditional distributions for the states 

and state outputs are 

where 6(a, b) = 1 if a = b and O otherwise. Assuming that the channel simply adds 

independent Gaussian noise with variance o' to the +1/-1 signals described above. the 

conditional distributions for the received chane l  output signals are 

Given an information vector u, encoding and channel transmission can be simuiated by one 

sweep of ancestral simulation. For example, we first directIy copy uo into zo, whicb is then 

used to draw a noisy channel output value yo. Shen, we use uo to determine so, which is 

then used to determine 11, which is then used to draw a noisy channel output value yi. 

Then, we directly copy ul into 2 2  and so on until the entire channel output vector y has 

been obtained. 

The decoder sees only the vector y, and ideally would infer the most likely value of each 

information bit, i. e., determine for each k the uk that maximizes P(ukly). In general such 

a probabilistic inference is very difficitlt, but if we take advantage of the graphitai structure 

of the code it turns out it can be done quite easily. In fact, it is possible to compute 

Pjuk[y )  k = O , .  . . , K - 1 exactly using the forward-backward (a.k.a. BCJR) algorithm 

[Baum and Petrie 1966; Bah1 et al. 19741, which is just a special case of the general 

probabilzty propagation algorit hm discussed in Section 2.1. Once the block is decoded, 

we can compare the decoded information bit values with the true ones to determine the 

number of bit errors made for the block transmission. If we simulate the transmission of 
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Figure 1.5: (a) The Bayesian network for a recimive systematic convolutional code. (b) The 
BGesian network for an e k n p l e  of the recently proposed turbo-code. (c) The bit error rate (BER) 
performance for instances of these two codes. 

many blocks. we can obtain an estimate of the bit error rate (BER). 

This procedure was carried out using the convolutionai code shown in Figure 1.4. This 

recursive systematic convohtional code was designed to maximize the minimum Hamming 

distance between al1 pairs of codewords [Viterbi and Omura 1979; Lin and Costello 19831 

(dmin = 10). The information vector length was K = 5000 (giving a codeword Iength of 
N = 10000), and 5000 vectors (25 x 106 information bits in all) were transmitted for a fixed 

noise variance. It is cornmon practice to give BER results as a function of the noise level 

measured by a signal-to-noise ratio Eb/No in decibels. For any system with N = 2K and 
2 transmission power (variance) of unity, Eb/No is related to a2 bjr Eb/NO = -10 luglo a . 

Figure 1 . 5 ~  shows the BER as a function of Eb/& for t his recursive systematic convolut ional 

code3. Notice that as Ea/No increases (O' decreases). the BER drops. 

'.A technical detail: Trellis termination was used to improve the performance of the code. 
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In the same figure. 1 also give the BER curve for a simple repetition code. where each 

information bit is transmitted twice. maintaining N = 2K. If the information bit is O. a 

pair of - 1's are sent; if the information bit is 1. a pair of + 1's are sent. Each pair of received 

noisy signals is then averaged before a threshold of 0.0 is applied to detect the information 

bit. The curve on the far Ieft shows Shannon's Limit: for a given &,/No: it is impossible to 

communicate with a BER below this curve. (See Sections 5.1.6 and 5.1.7 for a derimtion of 

this cunre.) So. systems of practical interest give performance points that lie between the 

Shannon limit curve and the curve for the repetition code. Performance points to the Iefi 

of the Shannon Smit are impossible, and performance points to the right of the curve for 

the repetition code are not of practical interest. 

Recently. a code and decoding algorithm were discovered that give unprecedented BER 
performance. t t  t urns out t hat the turbo-decoding algorithm for these turbo-codes [Berrou 

and Glavieux 19961 is just the probability propagation algorithm discussed in Section 2.1 

applied to a code network Iike the one shown in Figure 1.Sb [Frey and Kschischang 1996: 

Kschischang and Rey  1997: MacKay. McEliece and Cheng 19971. This Bayesian network 

contains two recursive convolutional code networks that are connected to the information 

bits in dinerent ways. The information bits feed directly into one of the chains (s') .  but 

feed into the second chain (s2) in a pennuted o d e r  as shown. In order to produce the same 

number of codeword bits per codeword as would be produced by the recursive systematic 

convolutional encoder described above. every second output of each LFSR is dternately not 

t rmmit ted  (a procedure caIled punctvring ) . 

Figure 1% shows the BER performance for a turbo-code system with = 65.536 and 

N = L3l.072. 530 vectors (- 35 x 10"nformation bits) were transmitted to determine 

the BER for each noise level. Each of the two LFSRs had 4 bits of mernory and iised 

identical feedback and output delay taps. AU four delayed bits were fed back to the input 

of the LFSR. O d y  the bit entering the firçt delay element and the most-delayed bit were fed 

forward to the output. (This block length and these constituent LFSR's were proposed in 

[Berrou, Glavieux and Thitimajshima L9931). The decoding complexity per information bit 

for the turbo-code was roughly twice that for the convolutional code described above. The 

information bit permuter was chosen at rândom. The turbo-code system clearly outperforrns 

the computationally comparable single convolutionai code system. At a BER of IO-'. the 

turbo-code system is tolerant to 3.3 dB more noise than the single convolutional code system. 

and is only 0.5 dB nom the Shannon limit. Also shown on this graph is the performance 

of a concatenated Reed-So!omon convolutional code described in [Lin and Costello 19831: 
which had been considered to be the best practical code untif the proposal of turbo-codes. 

The tubecode  system is tolerant to 1.5 dB more noise than the concatenated system. 
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In Chapter 5. 1 explore some of the exciting new applications of Bayesian networks 

to charnel coding problems. with a focus on using the probability propagation aigorithm 

discussed in Section 2.1 for inference. 

1.2.6 Parameterized Bayesian networks 

It is sometimes convcnient to represent the conditional distribut ions P( rk lak) in parametric 

form. That is. the distribution over zk given its parents ak is specified not by an exhaustive 

list of probability masses. but by a function of zk, akl and a set of parameters Ok.  [The sub- 

script k indicates that ek is a set of parameters associated with zk.) In this case. we mite the 

conditional distribution as P(zk  lak, Bk). The total set of parameters is 8 = (8: .  . . . . 
and the parameterized joint distribution is expressed as P ( z ( 8 ) .  Such a parametric form 

can be useful in applications such as density estimation. pattern classification. and data 

compression. where the distribution P(z18) is to be estimated kom a data set. In this case. 

the parametric form can act as a regularizer. Since the number of possible configurations of 

each z k  and ak is u s u d y  quite large. we would need an extremely large data set to estimate 

all probabilities accurately. Using the parametric form. however. we need only estimâte each 

parameter. As described in Section 2.3. a parametric form is also useful when formulating 

variat iond inference a l g o r i t b .  

A common parametric Bayesian network is the sigmoidal Bayesian network [Neal 1992: 

Jordan 1995: Sad. Jaakkola and Jordan 19961. whose random variables are all binary. The 

conditional probability function P(zklak' ek)  can be viewed as a regession mode1 t int  is 

meant to predict zk f?om a set of attributes ak. X standard statistical method for predicting 

a binary-valued variable is 1ogi.stic regression [McCullagh and Yelder 19831. in which the 

conditional probability for zk given a k  is 

where the parameter OkO represents a constant bias in the exponent. The Iogistic function 

g(x) = 1/(1 + expi-21) is used to restrict the probability to lie between O and 1. (This 

function is shown in Figure 1.6.) In terms of log-odds. 

which shows how each parent zJ E ai, independently increases or decreases the log-odds for 

zk. depending on the sign of B k J .  
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Figure 1.6: The Iogistic Function g ( x )  = 1/(1 + ey[-rt]). 

Sometimes. for the sake of notationai simplicity, 1 will assume that the set of parents 

for each variable z k  is specified by sorne parameter constraints. Assume without loss of 

generality that for a @en network. the random variables a have an ancestral ordering 

~1~2'. . . .z,v. 1 take P(zkk;ak.Ok) = P(~~({zj}:1:.8~) - where in the second expression the 

parameters are constrained so t hat the function does not depend on nonparents. Aiso. in 

order to succinctly account for the bias. 1 will usually assume that there is a durnmy variable 

that is set to ro = 1- (Thus the notation Bko for the bias in the summations above.) 

üsing t hese notational simpiifications and using g ( . )  for the logistic function. the sigrnoidal 

mode1 described above cm be written 

where Bk] is set to 0 for each nonparent 2,. 

1.2.7 Example 2: The bars problem 

Bayesian networks provide a usefui fiamework for specifiiog generative modeis. A gener- 

ative mode1 can be used to generate data vectors that exhibit interesting structure. The 

generative rnodeis discussed in this thesis can also be used for pattern classification and data 

compression. in the fashion described in Sections 1.1.1 and 1.1.2. If the Bayesian network 

is parameterized. we can estimate the parameters of the network from a training set by 

making the generative distribution "close" (say, in the Kullback-Leibler pseud~distance) 

to the training set distribution. W-e hope that in this fashion, we can extract the "true" 

underlying generative process. or at l e s t  one that is equaily efficient at describing the data. 

For example. the 4 x 4 binary images shown in Figure 1.ïa were generated by tirst 

selecting an orientation (horizontal or vertical) with equal probability, and then randomly 
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Figure 1.7: ta) Examples of training images typicd of the "bars problem1 . (b) The graph for 
a parameterized Bayesian network that was estimated from a large training set using the wake- 
sleep aigorithm. Edges that terminate on the box are connected to ail vertices within the box. ( c )  
The parameters of the Bayesian network clearly show that the network has l e m e d  the notion of 
horizontal and vertical bars (see the main text for a more cornpiete description). 

instantiating each of the four possible bars with that orientation with probability 0.5. (The 

aiLon images were removeci from the training set. since the orientation of the bars in an 

dl-on image is ambiguous.) Using the Helmholtz machine and the wake-sleep dgorithm 

(described in Sections 2.4 and 3.4.3). 1 fit the parameterized network shown in F i p e  1.7b 

to a large training set of 2 x 106 images produced in this way. The network has three 

layers of binary variables: 1 in the top layer. 8 in the middle layer. and 16 in the visible 

layer (the image). The variables in adjacent layers are Wy-connected, and the conditional 

distributions are modelled using logistic regression. as described in the previous section. 

After parameter estimation (see [Hinton et al. 19951 for details). ancestral simulation of the 

network produces output images that are indistinguishable from the training images. 

After learning? the bias for the top-layer variable is nearly zero. so that under the joint 

distribution it has the vdue I as often as it bas the value O. The vaiues of the other param- 

eters are depicted in Figure 1.7~.  The eight large blocks on the left show the pürameters 

associated with the connections that feed into and out of the middle-Iayer variables. The 

bias for a variable is shown by the smdl black or white square on the top right of the block 

for each middle-layer variable. Positive parameters are white, negative parameters are black, 
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and the area of the square is proportional to the magnitude of the parameter. (The targest 

parameter sfiown in the figure is 14.1.) The parameter associated with the connection h m  

the top-layer variable to a rniddle-layer variable is shown by the small square on the top 

Ieft of the block for each middle-layer variable. Finaily, the parameters associated with the 

connections from a middle-layer variable to the visible variables are shown by the 4 x 4 grid 

of squares in the block for each middle-layer variable. The biases for the 16 visible variables 

are shown by the 4 x 4 grid of squares on the far right of Figure 1.7~. 

It is clear from these parameters that each middle-iayer variable represents the presence 

(value of 1) or absence (value of O) of a particular horizontal or vertical bar. If the top-iayer 

variable is 1. the probability that a horizontal bar is present is nearly zero. since the biases 

for these variables are nearly zero and the parameters that comect these variables to the 

toplayer variable are large and negative. On the other hand, if the toplayer variable is O. 

the probability that a horizontal bar is present is 0.5. In this way, the network captures the 

true generative model that produced the training data. 

In Chapters 3 and 4. 1 show how Monte Carlo inference. variational inference. and 

Helmholtz machines can be used to fit Bayesian networks to training data for the purposes 

of pattern classification. unsupervised learning, and data compression. 

1.3 Organization of this thesis 

In the remainder of ths thesis. 1 use Bayesian networks as a platform to develop algorithms 

for pattern classification. data compression. and channel coding. The last of these problems 

is quite different from the former two. since we will usually design an error-correcting code 

using a Bayesian network and then use probabilistic inference to perform decoding. On the 

other hand. for pattern classification and data compression. we will iisually estimate a pa- 

rruneterized Bayesian network from some training data and then use probabilistic inference 

to classZy a new pattern or produce a source codeword for a new pattern. 

In Chapter 2. 1 discuss dament ways to perform probabilistic inference. including proba- 

biiity propagation, Markov chain Monte Carlo. variational optimization? and the Helmholtz 

machine. 

Several types of Bayesian networks that are suitable for pattern classification are p r e  

sented in Chapter 3. 1 show how Markov chain Monte CarIo, vaziational optimization. and 

the Helmholtz machine wake-sleep algorithm can be used for probabilistic inference and 

puameter estimation in these networks. Based on a digit classification problem, I compare 

the performances of t hese systerns with severai standard algorit hms, including the k-nearest 

neighbor method and classification and regression trees (CART). Learning to extract struc- 
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t u e  from data luithout using a supervised signal such as class identity is another interesting 

parameter estimation problem. At the end of this chapter. 1 examine unsupervised learning 

in Bayesian networks that have binary-valued and real-valued variables. 

In Chapter 4, I consider the probiem of how to efficiently compress data using Bayesian 

networks with hidden variables. When t here are hidden variables, a Bayesian network may 

assign maay source codewords of simi1a.r length to a particular input pattern. 1 present the 

"bits-back" coding algorit hm that can be used to efficient ly cornmunicate patterns. despite 

this redundancy in the source code. 

In Chapter 5, I present severai published error-correcting codes in terms of Bayesian 

networks and show that their corresponding iterative decoding algorithms can be derived 

as special cases of probability propagation. In particular. the recently proposed turbo- 

decoding algorithm. which brought researchers a leap closer to (and almost up against) the 

Shannon lirnit. is an instance of probability propagation. Motivated by these results and the 

breadth in perspective offered by Bayesian networks. 1 present a new class of "interleaved 

treliis-constra.int codesn which when iterat ively decoded are compet it ive wit h iteratively 

decoded turbo-codes. 1 also present ta-O approaches for speeding up a popular class of 

computat iondy  burdensome iterat ive decoding algorit h m .  



Chapter 2 

Probabilist ic Inference in Bayesian 

Networks 

In t his chapter. 1 discuss methods for probabilistic inference t hat make use of the Bayesian 

network description of the joint distribution. blany readers may be aware of how prob- 

abilistic inference in a Markov chain is simplified by a chain-type graphical structure. A 

generalized form of this simpIification hoIds for those Bayesian networks that have only a 

single path (when edge directions are ignored) between any two vertices. In Section 2.1. 

I review an algorithm for "prnbability propagation". which c m  be used to infer the exact 

distributions over individual variables or srna11 groups of variables in such networks. For 

networks that have multiple paths between one or more pairs of vertices, this algorithm is 

not exact. Xlthough there are procedures for attempting to convert an original network 

to one that is appropriate for probability propagation ppiegelhalter 1986: Lauritzen and 

Spiegelhalt er 19881 t hese procedures are not pract ically fiuitful when the number of multiple 

pat hs is large. In these cases. approximate inference met hods must be used. In Section 2.2. 

1 discuss a Monte Car10 approach to inference, where we attempt to produce a sampk kom 

the desired distribution. Histograms based on the sample can then be iised to approximate 

the true marginal distributions of interest. In Section 2.3, 1 present a variational method 

for approximate inference. Here. we construct a parameterized approximation to the true 

distribution and then at tempt to optimize the parameters of t h s  variational approximation 

in order to make it as close as possible to the true distribution. This technique requires 

that the distribution specified by the Bayesian network can be expressed in a form suit- 

able for mathematicai analysis. Findy. in Section 2.4 1 present the Helmholtz machine. 

This method can be very efficient. and is tailored to inference in Bayesian networks whose 

parameters are estimated fkom data. 
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2.1 Exact inference in singly-connected Bayesian networks 

In the late 1980's. Pearl [1986: 19881 and Lauritzen and Spiegelhalter [Spiegelhalter 1986; 

Lauritzen and Spiegelhalter 1988: Lauritzen 19961 independeotly published an exact pm b- 

ability propagation algorithm for inferring the distributions over individual variables in 

singly-connected Bayesian networks. A singly-connected network h a  only a single path 

(ignoring edge directions) connecting any two vertices (see Figure 2. la for an example). 

Not only does the algorithm rnake use of the probabilistic structure implied by a Bayesian 

network, but it also uses the network as a circuit that specifies message passing channels for 

inference computations. In a singly-connected network. cutting an edge breaks the network 

into two pieces. So. each edge acts as a message passing bottle-neck for communicating 

information regarding one side of the network to the other. 

By passing short real-dued vectors between neighboring vertices in the singly-connected 

Bayesian network for a set of variables z = { r i  . . . . zja, }. the probability propagation 

algorit hm computes P ( 4 v )  i = 1. . . . . /z( for an arbitrazy subset v of observed dements 

in z. One flavor of probability propagation is the generahted fomnrd-backward algorithm. 

in which messages are passed in a highiy regular way. Since this regularity simplifies the 

description of the algorit hm. 1 will present the generalized forward-backward algorit hm first . 
The more general probability propagation algorit hm c ~ m  then quite easily be described by 

relaxing the regilarity in the way messages are passed. A proof t hat probability propagation 

cornputes P(z*Jv) :  i = 1.. . . . jzJ can be found in Appendix A.1. A simple Tcl-based 

probability propagation software package is described in Appendix B. 

2.1.1 The generalized forward-backward algorithm 

To begin with. the singly-connected Bayesian network is arranged as a horizontal tree with 

an arbitrarily chosen -'root7 vertex on the far right. For example. if the cirded vertex zg 

in Figure 2.la is chosen as the root? we obtain the tree shown in Figure 2.lb. (Imagine the 

network sits in a viscous fluid and we grasp the root vertex and pull it down and then to 

the right.) Beginning with the leaves of the tree (Le. .  the vertices on the le&), messages 

are passed level by 1eveI forward to the root. Each vertex "fusesn its incoming messages in 

order to produce an outgoing message, and also stores the incoming messages for later use. 

Then. messages are passed level by level backward from the root to the leaves. The total 

number of messages passed in this fashion is 2(1z1 - l), since each edge passes a message 

in both directions. Once both passes are complete, each vertex 2i fuses al1 stored incoming 

messages to obtain P(zi  IV). This algorithm diners from the standard forward-backward 

(a.k.a. "BCJR" ) algorithm [Baum and Petrie 1966; Bah1 et al. 19741 in two ways. First, the 
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Figure 2.1: (a) shows a singly-connected Bayesian network. -4 tree is obtained by choosing z9 as 
a root vertex, as  shown in (b). ( c )  shows a network fragment with the A- and r-messages that are 
passed to and fiom the parents x and the chiidren z of y,  durhg the two passes of the generalized 
forward-backward algon t hm. 

underlying graph is a tree. not a c h a h  Second. some edges may be directed forward while 

ot hers may be directed backward. whereas in the standard forward- backward algorit hm. ail 

edges are directed forward. 

Diuing each of the forward and backward passes. two types of vector messages are passed. 

A n-message is passed fkom a parent to a child in the direction of the edge. and represents 

the probabdzty distribution over the parent given the observed variables connected to the 

parent through aiI paths that do not go through the cbild. X A-message is passed from 

a child to a parent in the opposite direction of the edge. a d  represents the likelihood for 

the observed tariables connected to the child through all paths that do not go through the 

parent. given the parent variable. Both types of vector have lengths that are equd to the 

number of values the parent uariabie cm take on. In fact. since a normaiization operation 

can be applied at a later stage. one fewer elements may be passed by assuming that the 

first element is always I. For example. in a Bayesian network with binary variables. each 

message may corisist of just a single real value, since a& parent variables are binary. 

Consider the network fkagment shown in Figure 2 . 1 ~ ~  where x is the set of parents of y. 

and z is the set of chldren of y. Let ly( be the number of discrete values that g can take 
on. Without loss of generality, 1 assume y E (1.. . . , lyl). (The following equations hold 

for red-valued variables as weU, if summations are replaced by integrals.) In this case, the 

conditional probabihty P(y lx) c m  be viewed as a high-dimensional matrix pX". 
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In this section 1 use capitalized variable names in superscripts to label vectors and matrices. 

and lower-case variable names in subscripts to index the elements of vectors and matrices. 

If y has no parents, then we take x = 0 so that 

To compute an outgoing message, a vertex must take into account the incoming messages 

on ail other edges. Let 1x1 be the number of parents of TJ (number of variables in x) and let 

be the number of values that parent x, can take on. VariabIe y may receive a vector 

message kom each parent x, i = 1.. . . .lxl: 

and a vector message Eom each child 2, j = 1. . . . . 1 zl : 

To compute an outgoing n-message (e-g.. in Figure 2.lb. from 24 to in the forward 

pass. and from ZG to 210 in the backward p a s ) '  a variable must fuse the incoming A- and 

sr-messages on the ot her edges. For example, in the network fragment shown in Figure 2.  lc. 

y computes the elements of a T-message sent to zj in the following way: 

(The sum is over all possible configurations of the parents. x.) If y has no parents. 1x1 = O 

and the second term in (2.5) evaluates to PZ. which is equal to the probability P( y )  given 

in the rietwork specification. In the special case that y is connecteci by only one edge. the 

first term in (2.5) e d u a t e s  to 1. so thât 

If y is not a free variable, but has the observed value y*. it computes the elements of the 

n-message in a different way: 

where 6(y, yO) = 1 if y = y0 and O otherwise. 

To compute an outgoing A-message (e-g., in Figure 2.lb, from ci0 to zs in the forward 



2.1 Exact inference in singly-connected Bayesian networks 26 

p a s ,  and £rom z~ to z;r in the backward pass). a variable must again fuse the incoming 

A- and T-messages on the other edges. For example. in the network kagrnent shown in 

Figure 2. lc. y computes the e1ements of a A-message sent to si in the following way: 

If y has no children. (z( = O and the first term in the summation in (2.5) evaliiates to 1. In 

the specid case that y is connected by only one edge. the second term in the summation 

evaluates to piYi' = P ( g l x , ) .  so that 

If y is observed and has the value y*. the elernents of the A-message are 

Xfter the forward pass and the backward pass are complete. each unobserved vertex ?J 

computes P(9lv) by fusing the stored incoming messages as follows: 

where a is a norrnalizing constant. which is computed to ensure that xZl P ( y l v )  = 1. 

2.1.2 The burglar alarm problem 

In order to illustrate how the generalized forward-backward algorithm works, 1 now in- 

troduce a variant of the simple .'biirglar alarm" network described by Pearl [1988]. The 

network describes a shoddy burglar alarm that is sensitive not only to burglars, but also to 

earthquakes. The three binary random variables in the network are b for "burglary". e for 

"eart hquake" , and a for "alam". A value of O for one of t hese variables indicates t hat the 

corresponding event has not occurred, whereas a value of 1 indicates that the correspond- 

ing event has occurred. Figure 2.2a shows the network. which has the lollowing conditionai 
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Fi X e  2.2: (a) The Bayesian network for the burglar alam problem. Nith variables b ("buïglary"), p e earthquake") and a ("alam"). (b) to (e) show the messages passed during the generaiized 
forward-backward algorithm. 

probability relat ionships: 

Suppose that while you are away at a conference. the burgiar alarxn contacts you by 

ceU phone and informs you that the alarm is ringing ( a  = 1). We would like to infer the 

distribution over the two causes to make a well-informed decision about whether or not you 

should be concerned about a burglary. Since this network is quite simple. we can apply 

Bayes rule P(b. e(a )  = P(alb. e)P(b)P(e)/  x,f.z P(nib1. e1)P(b')P(e') to obtain the exact 

solution, 

The most lïkely explanation for the ringing alarm is that a burglary took place. Notice. 

however, that although an earthquake is also a likely explanation. i t  is relatively rrnlzkely 

that both s burglar and an earthquake were simultaneously the cause of the alarm. 

Now. consider using probability propagation for probabilistic inference in this network. 

(See Appendix B.2 for s description of how this network can be processed using the BNC 
software package). After we arbitrarily select e as the root. the generalized forward- 

badtward algorithm proceeds by sending a message Born the leaf b to u, as shown in Fig- 

ure 2.2b. Since b is a parent of a, this vector wiLI be a rr-message. and since b is connected 
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by only one edge, we use (2.6): 

rBA = (P(b  = O). P(b = 1)) = (0.9,0-1). (2.14) 

Next, a sends a message to the root e. as shown in Figure 2 .2~.  Since a is a child of e. this 

vector will be a X-message, and since a is observed (aV = 1). we use (2.10): 

B-l x * ~ ~  = ( [ ' & ~ ( a  = llb.e=~)irf;']. [C~,~P(U = i Ib . e= l )q  1) 

= (0.001 - 0.9 + 0.368 - 0.1. 0.135 - 0.9 + 0.607 - 0.1) = (O.O37?.0.1822). (2.15) 

Next, e sends a message to a. as shown in Figure 2.26. Since e is a parent of a. t his vector 

will be a K-message. and since e is connected by only one edge. we use (2.6): 

xE" = ( ~ ( e  = O), P(e = 1)) = (0.9.0.1). (2.16) 

Findly, n sends a message to b. as shown in Figure 2.2e. Since a is a child of b. this vector 

will be a X-message, and since a is observed, we use (2.10): 

Xow, b and e can compute their marginal distributions using (2.11): 

( P ( b = ~ l a =  1). P(b= lia= 1)) = ( a X t B ~ ( h  = O ) ?  a X f B  ~ ( b  = 1)) 

= (0.01296~~. 0.03919ai) = (0.249.0.75 1). and 

( P ( e = ~ l a = l ) , P ( e = I l a = l ) )  = (oXOEp(e = O ) . C Y X ~ ~ P ( ,  = 1)) 

= (0.03393~, 0.01822a) = (0.651: 0.349). (2.18) 

These distributions are exactly equal to the marginal posterior distributions computed horn 

(2.13). 

2.1.3 Probability propagation 

The highly regular way in which messages are passed in the generalized forward-backward 

algorithm c m  be reIaxed to obtain a more general probabihty propagation algorithm. It 
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turns out that as long as a few simple rules are followed, messages may be passed in 

any order (even in parallel) to obtain the probabilities P(zilv) i = 1. . . . . izl. These d e s  

prescribe how the network is to be initialized for propagation. and how messages are created. 

propagated? absorbed. and bufIered. Aside kom these rules. the formulas for propagating 

messages are identicai to those in (2.5) to (2.10). 

Before propagation begins, the network must be initialized. This procedure cornputes 

the a prion' incoming messages for each vertex, and corresponds to a generalized forward- 

backward pass without any observations. Tt is easy to show that in this case al1 A-messages 

will be equal to 1. and so initialization consists of passing îr-messages using an ancestral 

ordering. (To see this, imagine performing a forward-backward pass on the network in 

Figure 2.la. without any obsenations.) After initialization. each vertex t i  has amilable its 

a priori probability P(z i ) .  In some networks (such as those used for charnel coding) these 

probabilities are uniform and so the initialization procedure can be skipped. 

Messages are now created in response to observations. If variable y is observed to have 

the value y', then a message must be sent out on each of the edges connected to y. using 

(2.7) for y's children and (2.10) for y's parents. 

Messages are propagated in response to other messages. If variable y receives a message 

on an edge. y must scnd out messages on al1 o ther edges. 

Messages are absorbed by vertices that are coanected by only a single edge. This rule 

follows naturally from the propagation rule. since if such a vertex receives a message on its 

only edge, the vertex is not required to propagate it back. 

It is not necessq  that messages be propagated without delay. In fact. a vertex may 

bufler one or more outgoing messages and pass them at aay time. (It is usually most 

convenient to compute them at a later time. too.) For exarnple. if a vertex has just received 

a message and is about to receive another one. cornputations caii often be saved by waiting 

for the second message before comput ing and sending out a set of messages. 

At any time during propagation. vertex y can compute a current estimate P ( ~ J V )  of 

P(y1v) using (2.1 1). If the above rules are followed and propagation continues until there 

are no buffered messages remaining in the network. then the estimates wilI equd the exact 

probabilities: P(IJ lv) = P(y1v). 

Instead of a complete initialkation, it is possible to simply bufFer the initial messages 

leaving each parentless vertex. Since these messages will be propagated eventually. this has 

the same final result as the initialization procedure described above, although the interme- 

diate probabilities may differ. 

The generdized forward-backward algorit hm described in the previous section can be 
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viewed as a special case of probability propagation. First, the network is arranged as a tree. 

Then, the T-messages leaving each parentless vertex in response to network initialization are 

buffered. Next, the messages created in response to observations are al1 buffered. (At t h 3  

point, no computations have been performed.) During the forward pass, each right-going 

message induces a set of bufFered Ieft-going messages and a single right-going message. The 

latter right-going message is passed to the next level, where it too induces a set of buffered 

left-going messages and a single right-going message. So, once the forward pass is complete, 

there are uo more buffered right-going messages in the network. During the backward p a s ,  

each vertex receives a left-going message from its only right-hand edge. Since an incoming 

message to a vertex never induces an outgoing message on the same edge, the left-going 

message will induce only a set of buffered left-going messages. So, there will be no buffered 

messages remaining in the network once the backward pass is cornplete. Finally, each vertex 

zi can compute the exact value for P(zïlv) .  

2.1.4 Grouping variables and duplicating variables 

Often, i t is possible to convert a mult iply-connect ed Bayesian network to a singly-connected 

Bayesian network, so that probability propagation can then be applied in a practical marner. 

To do this, we group variables, until there are no more multiple paths in the network. 

Graphically, two variables zj and z k  are grouped by removing fiom the graph zj and zk as 

well as the edges to which they are connected, and then introducing a new vector variable 

{ z j ,  y }. The set of parents of the new vector variable is the union of the sets of parents of 

the two old variables. The set of parents of each child of rj and zk is extended to include 

both zj and zt .  New edges are introduced to reflect these relationships. This grouping 

operation will produce a valid Bayesian network as long as zk is not an indirect descendent 

of z, and vice versa. Otherwise, a directed cycle will result from the grouping, violating 

the requirernent that a Bayesian network have no directed cycles. Note that if zk is a chiId 

of z j ,  and at the same time not an indirect descendent, the grouping is still valid. since no 

directed cycles are produced. 

As shown in Appendix A.2, this grouping operation also preserves the representational 

capacity of the network. Any distribution represerited by the old network can be represented 

by the new one. In fact, al1 of the conditional probabilities P(zklak) in the new network 

will be the same as in the old network, except the ones that involve either of the grouped 

variables. The latter condi tionai probabilities can quite easily be derived fkom the old ones. 

Note that although grouping variables may help to produce a singly-connected network 

to which probability propagation can be applied. the grouping operation also hides the 

structure that rnakes probability propagation an attractive inference method in the first 
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Figure 2.3: Transforming the muitiply-connected Bayesian network for a recursive convolutional 
code (a) into a singly-connected network (cl, involves variable duplication (a)-(b) and grouping 
(WC)- 

place. So, it is important to produce minimal groupings and retain as much of the structure 

as possible. Not surprisingly, by grouping miables. any network can be made singly- 

connecteci - simply group al1 variables together into a single vertex. However. extreme 

groupings of t his sort iisually eliminate too much structure. -'Probability propagation" for 

the single vertex is equivalent to mhpu la t ing  the Ml joint distribution. wbich in most 

practical cases is unwieldy. 

Xnother useful operation is dupfzcatlng variables. A variable z, can be duplicated by 

adding an extra variable z,vi to the network. and creating the following new parent-child 

and arw = {zLv+ j .  This procedure is especially usehl in relationships: a,~; 1 = aoId 
combination with pouping. since although we rnay wish to g o u p  z, and r k  in order to 

make the network singly-connected. we may also wisb to graphicdy distinguish 3 h m  the 

vector variable { 2,. zk ) . 

For example. the recursive convolutional code network shown in Figure 1.5a can be 

derived kom the more natural recursive convolutional code network shown in Figure 2.3a. 

The Iatter network explicitly shows the dependence of the encoder state variable sk on the 

previous information symbol uk-i and the previous state sk- 1. as well as the dependence 

of the encoder output zk on u k  aud sk. This network is multiply-connected, so probability 

propagation cannot be used to compute P(ukly)  for maximum a posteriori information 

symbol decoding. To convert the network to a singly-connected one. ive &st duplicate the 

information symbols (so that they are graphically distinOdhed in the final network) as 

s h o w  in Figure Wb.  Then, we group pairs of information symbols and state variables as 

shown by the dashed loop, producing the singly-connected network shown in Figure 2 . 3 ~ .  
Note that by grouping variables in this way, the number of values that each new state s i  

can take on is increased by a factor of two. 

Although in many cases grouping can be used to produce a tractable network! there are 

cases where it is impossible to h d  an appropriate grouping. In fact. it turns out that in 
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general. inference in multiply-connected networks is a very diacult problem. 

2.1.5 Exact inference in multiply-connected networks is NP-hard 

Probability propagation is an exact method of inferencc for singlg-connected Bayesian net- 

works. Cooper [1990] has shown that probabilistic inference in Bayesian networks is in gen- 

eral NP-hard. Summations relevant to inference. such as the ones in (1.3). (1.7). and (1.9). 

contain an exponential number of terms and it appears that in generd these siimmations 

cannot be simplified. Researchers have thus focused on developing exact inference algo- 

rithms for restricted classes of networks (e -g . .  probability propagation for singly-comected 

networks) , and on developing approximate inference algorit hms for networks t hat are in- 

tractable (assuming P # NP) .  In fact. Dagum [1993] (see &O [Dagurn and Chavez 19931) 

has shown that for general Bayesian networks. approximate inference to a desired number 

of digits of precision is NP-hard. (I-e.. the time needed to obtain an approximate inference 

that is accurate to n digits is believed to be e-xponential in n.) 

One obvious approach to approximate inference in a multiply-connected Bayesian net- 

work is to use the probability propagation aigorithm while ignoring the fact that the network 

is mdtiply-comected. Each vertex propagates messages as if the network were singly- 

connected. In this case, the propagation procedure wili never tenninate, because there will 

t e  loops in which messages will endlessly circulate. Although this method has provided 

excellent results in the area of channe1 coding, it is frowned upon in other areas (such a s  

medical diagnosis j because t here is lit t le t heoret ical understanding of the behavior of t his 

iterat ive procedure. 

Another disadvantage of the probability propagation algorithm is that it is cumbersome 

for inferring the joint distribution over several miables ( e-g.. u 1 and ud in Figure 2 . 3 ~ ) .  This 

inference is accomplished by firs t computing the distribution over u 1 given the observations. 

using one forward-backward sweep. Then. the distribution over u4 given the observations 

and each of the possible values for ui is computed using one forward-backward sweep for 

each possible value for u1 . (Notice that these sweeps may be partial. since they need only 

take into account the effects of clamping .ul to different values.) If the variables of interest 

have n possible configurations. roughly n (possibly partial) forward-backward sweeps are 

needed. If we cannot a o r d  the time to perform atl of these sweeps. a. faster approximate 

algorithm may be more appropriate. 

In the following sections, 1 describe severd more principled approaches to approximate 

probabilistic inference. including Monte Carlo, variational inference. and Helmholtz ma- 

chines. 
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2.2 Monte Carlo inference 

The Monte Carlo method [Hammersley and Handscomb 1964; Kalos and Whitlock 1986: 

Ripley 19871 makes use of pseuderandom numben in order to perform computations. 

Monte Carlo inference uses random numbers in order to perform inference in a Bayesian 

network that describes a joint distribution P ( z ) .  If we can somehow obtain a reasonably 

large sample kom the distribution P(h1v) over some unobserved hidden variables h C z in 

a Bayesian network, given some observed visible variables v C z then relative frequencies 

can be used for approximate inference. 

2.2.1 Inference by ancestral simulation 

One brute force Monte Car10 approach is to sirnply simulate the network using the ancestral 

ordering. Then, we extract Erom the sample al1 those vectors that have the desired value 

for the component v. Next. we compile a frequency histogram for the different values that 

h can take on. Although this approach is sometirnes useful (notably, when using a srnall 

network to verify that a more sophisticated inference method works), in general it is not 

computationaily efficient. The problern is that the value of v that we wish to condition 

on may occur extrernelg rarely, so that an inordinate sampIe size must be used in order to 

obtain results. 

If we are interested in a subset h1 C h of the hidden variables, it so happens that in 

some cases ancestral simulation cari be used to obtain a sample from p(hl I V )  in an efficient 

manner. In general, if the parents of the visible variables are dependency-separated (see 

Section 1.2.4) from the hidden variables of interest by the visible variables. then ancestral 

simulation can be used to obtain a sample fiom ~(h'lv). (See Appendix A.3 for a proof.) 

If the visible variables have no parents, then it follows trivially that the variables in this 

nul1 set are dependency-separated from t be hidden variables. Using the ances t r d  ordering, 

a value is drawn for each hidden variable given its parents. After one complete sweep, the 

value for h1 will be an unbiased draw $om p(hl[v). 

For example, suppose that in the rnultiply-connected network with ancestral ordering 

21 , qi z3,~4~ a, zg,z7 shown in Figure 2.4, the set of visible variables is {zl, z4). Suppose 

also that we would like to infer the distribution over the subset of hidden variables (26, ri}. 

Since {y, zl) is dependency-separated by {zi , z4} fkom the parents { z 2 }  of (zl, z.! 1, we c m  

estimate P(al z7)zl, zq ) by ancestral simulation. We draw a value for r2, then for z3 given 

zl, then for q, then for 26 given ZJ and 24, then for 27 given rd and zs. We can estimate 

P( y, ri. lzl, y ) by repeating this procedure over and over while building up a histogram for 

{zlj, ~7). 
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Figure 2.4: An e-sample of a Bayesian network. 

Notice that in the above example, it was not r e d y  necessq  to draw a vaiue for 22, 

since for the ancestral simulation method to work. it was required that z2 be dependency- 

separated fkom {zg, z ; )  by { r i .  z t } ;  i-e.. given {z1. q}. - does not influence {zo. z ~ ) .  In 
general. values need only be  drawn for those variables in the ancestral ordering that are 

not dependency-sepaxated kom h1 by v. If these can be easily isolated. then simulation 

computations can be saved. 

2.2.2 Gibbs sampling 

When inference by ancestral simulation is not possible? Markov chain Monte Car10 is often 

used (see an excellent review of these methods by Neal [1993]). Given v. a temporal sequence 

h(l) .  h(2). . . . of the hidden variable values is produced by simulating a Markov c h a h  whose 

stationary distribution is carefully constructed ( e . g . ,  as described below) to be equal to 

P(h1v). By coilecting these values over time. an approximate sample is obtained. Ideally. 

the chain is run long enoiigh so that equilibrium is reached. In practice. the blarkov chain 

may be terminated before equilibrium is reached. so that the simulation time can be kept 

within a reasonable Lirnit. Once collected. the sample can be used to produce a frequency 

histogram of the variables of interest in h. 

The Gibbs sampling algorithm is the simplest of the Markov chain Monte Carlo rnethods. 

and Lias been successfully applied to Bayesian networks [Pearl 1987; Pearl 1988; Neal 19921 

as weil as other graphical models [Geman and Geman 1984: Hinton and Sejnowski 19861. 

In this algorithm. each successive state h(l) is chosen by modifying only a single variable 

in the previous state h(r-L). The variables are usually modified in sequence. If at time r. 

we have decided to modify zi, E h. then we draw a value r r )  hom 

Usuaily, we cannot obtain this distribution directly, but instead must first compute the joint 
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(b) ' 
e : 

Figure 2.5: (a) The Bayesian network for the burglar a l m  probicm. with v,uiabies b ( "burglary" ). 
e ("earthquake") and a (*'dm3). (b) -LOO steps of Gibbs sampiing for the variables b and e when 
the alarm is observed to be ringing (a  = 1). 

probability which is proportional to the conditional probability: 

where the constant of proportionality does not depend on z k .  The joint probability can 

usually be computed easily from (1.13). If u7k is ciiscrete. ive compute the joint probability 

for each value that it can t&e on. normaiize these values. ;and then randornly draw a vdue 

z;) £rom this normaiized distribution. When zk is a continuous randorn variable. it can 

be quite difficult to tiraw a. value fÏom its distribution. Efficient sarnpling methods for 

several special types of continuous parametric distribution are given in [Devroye 19861 and 

[Ripley 19871. In order to draw values kom other types of distribution. more sophisticated 

techniques such as adaptive rejection sampling [Gilks and Wild 19921 must be iised. 

2.2.3 Gibbs sampling for the burglar alarm problem 

In order to illustrate how Gibbs sampiïng works, I use the simple burglar aiarm problem 

presented in Section 2.1.2. whose Bayesian network is shown in Figure 2.5a. 

In order to pedorm Gibbs sampling, we ceed the probabilities for each of the hidden 

variables conditioned on al1 the other variables. Since these conditional probabilities are 

proportional to the joint probabilities, we can compute them in the foilowing way, using 



2.2 Monte Carlo inference 36 

where P(bl e.  a) = P(alb. e )  P(b)P(e)  is the joint distribution determined fkom the network 

specification in (2.12). Similady, 

Gibbs sarnpling proceeds by alternately visiting b and e .  while sampling £rom P(b(e.o= 1) 

and P(e1b. a =  1) using the above formulas. Figure 2.5b shows the values of b and e for 400 

steps of Gibbs sampling, starting from an initial configuration ( b  = O. e = O).  (la each step. 

one variable is updated.) The Markov chah shows that the configurations (6 = O. e = O )  

and ( b  = l . e  = 1) are unlikely compared to ( b  = 1. e = O )  and ( b  = 0.e = 1). The correct 

probabilities in (2.13) can be approximated using the reIative frequencies computed kom 

this chain: 

These are quite close to the correct d u e s  given in (2.13). Usually, an initial segment 

of the Markov chah  is discarded when computing these statistics. The motivation for 

this procedure is that we wouid like to have samples that are typicd of the equil~briuna 

distribution, not the initial configuration. 
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Figure 2.6: SIice sampling. Xfter obtaining a random slice from the density (a), random values are 
drawn until one is accepted. (b) and ( c )  show two such sequences. 

2.2.4 Slice sampling 

In networks with continuous variables, it is often not an easy task to sample fkom the 

conditional distribution of each hidden variable, as Gibbs sampling requires. Unlike the 

case for discrete variables, it is usually not possible to compute the joint distribution for 

every configuration of a hidden variable. There are infinitely many configurations, and it is 

often practically impossible to determine an effective discretization. Methods for sampling 

from continuous distributions include the Metropolis algorithm [Metropolis et al. 1953: Neal 

19931 and hybrid methods that use "momentum" in order to help search the configuration 

space [Duane et al. 1987: Neal 19931. In this section, I review a technique cailed dice 

sampling [Neal 1997; Frey 1997a], that can be used for drawing a value z from a univariate 

probability density p ( z )  - in the context of inference, p(z)  is the conditional distribution 

( T - l )  ) Slice sampling does not directly produce values distributed p ( z k l { z j  = r -  1 }j=ij+k 

according to p( z ) ,  but instead produces a Markov chah that is guaranteed to converge to 

p ( z ) .  At each step in the sequence, the old value zold is used as a guide for where to pi& 

the new value znew. Wheo used in a systern with many variables, tliese updates may be 

interleaved for greatly improved efficiency. 

To perform slice sampling, al1 that is needed is an efficient way to evaluate a function 

f (2) that is proportional to p ( z )  - in this application, the easily computed joint probability 

p ( z r ,  (zj = . z ~ ~ - ! ) } ~ = ~  jpk) is appropriate. Figure 2.6a shows an example of a univariate 

distribution, p ( z ) .  The version of slice sampling discussed here requires that all of the prob- 

abiiity m a s  lies within a bounded interual as shown. To obtain zneW from znew, f (PW) is 

first computed and then a uniform random value is drawn frorn [O, f (znew)]. The distribu- 

tion is then horizontally "sliced" at this value, as shown in Figure 2.6a. Any r for which 

f (z )  is greater than this value is considered to be part of the slice, as indicated by the 

bold line segments in the picture shown at the top of Figure 2.6b. Idedly, rnew would now 

be drawn uniforrnly from the slice. However, determining the line segments that comprise 

the slice is not easy. for although it is easy to determine whether a particular 2 is in the 
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slice, it is much more difficult to determine the line segment boundaries, especially if the 

distribution is multimodal. Instead. a uniform value is drawn from the original interval as 

shown in the second picture of Figure 2.6b. If this value is in the slice it is accepted as 

p e w  (note that this decision requires an evaluation of f (4). Otherwise either the Mt or 

the right i n t e d  boundary is rnoved to this new d u e ,  while keeping znew in the interval. 

This procedure is repeated until a value is accepted. For the sequence in Figure 2.6b. the 

new value is in the same mode as the old one, whereas for the sequence in Figure 2 . 6 ~ ~  the 

new value is in the other mode. Once znew is obtained, it is used as znew for the next step. 

As shown in Appendix A.4, t his procedure satisfies detailed balance and t herefore gives the 

desired stationary distribution p(z ) .  

2.3 Variat ional inference 

In contrast to both the rather unprincipled approach of applying probability propagation 

to multiply-connec ted networks, and the computat ionally intensive stochast ic approach of 

Monte Carlo, variational inference is a nonstochastic technique that directly addresses the 

quality of inference. In the Bayesian aetwork literat ure, variational inference met hods [Sad- 

Jaakkola and Jordan 1996; Ghahrarnani and Jordan 1997; Jaakkola, Saul and Jordan 19961 

were introduced as an alternative variation on the central theme of Helmhoitz machines 

[Hinton et al. 1995; Dayan et al. 19951, which are described in Section 2.1. However, I will 

present variational inference first? because it is simpler to understand. 

Suppose we are given a set of visible mriables v C a. (This set may includes different 

variables on different occasions.) In order to solve the inference problem of estimating 

P(hlv), we introduce a parameterized variational distribution Q(h] t )  that is meant to 

approximate P(h(v). The most appropriate form of this distribution will depend on many 

factors, including the network specification and the quality of inference desired. Next, the 

distance between P (hlv) and Q (hl<) ( e.g., Euclidean, relative ent ropy ) is rninimized wit h 
respect to c, either directly or by using an optimization technique such as a Newton-like 

method or a conjugate gradient method [Fletcher 19871. Once optimized, the distribution 

Q(h(c) is used as an approximation to P(h(v). 

The main advantage of variational inference over probability propagation in multiply- 
connected networks is the explicit choice of a distance measure that is minimized. Al- 
though probability propagation is optimal for singly-connected networks, there is very little 

known theoretically about the quality of inference that results when the network is multiply- 

connected. On the other hand, there is no general guarantee that in multipiy-connected 

networks, variat ional met hods will perform better t han probability propagation. An ex- 
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ample where pro bability pmpagat ion in mult iply-connected networks works very weil for 

practical purposes is the celebrated turbo-decoding algorithm for error-correcting coding 

[Berrou. Glavieux and Thitimajshima 1993: k e y  and Kschischang 19961. 

Compared to Monte Carlo. variational inference may provide the designer with a more 

structured approach to choosing a computstionally tolerable approximation to P(h(v). 
However, variational met hods do not tsually provide a means to obtain exact inference. 

Also, variational inference can only be applied when the network is well-tailored to a sen- 

sible d i s tace  measure dong with a fkuitful form of variational distribution. (For example. 

the rnajority of work on variational methods for Bayesian networks to date has focussed 

on networks that are parameterized.) In contrat. Monte Carlo methods can be applied to 

any Bayesian network. and can be designeci so that they are guaranteed to converge to the 

correct soliit ion. 

2.3.1 Choosing the distance measure 

Depending on the particular problem. difTerent measures of distuce may be appropriate. 

For example. in the case of hard-decision classification and hard-decision channel coding, a 

binary distance is ideal. Under this distance. the distributions are identical if they lead to 

the same decisions. Otherwise, the distance is incremented for each incorrect decision. In 
practice. this distance must be softened in order to ilse continuous optimization methods. 

As another example. we will see in Chapters 3 and 4 that for pattern classification and 

data compression. the appropriate "distance" is the Kullback-Leibler divergence. or relative 

entropy, between Q(h(c) 

Notice that this is not a 

and P(h1v): 

true distance since it is not symmetric: DQllP # Dpllp. where 

(For density functions, the summations arc replaced by integrals.) 

The choice of whether to use DQllP or DPl iq  depends on our objective. The former 

places emphasis on not inferring unlikely values of h at  the cost of not inferring some of 

the likely values, whereas the latter places ernphasis on inferring dl likely values of h at the 

cost of inferring some of the unlikely values. For exampie, consider a real-valued univariate 

probability density p ( z )  over z that has two modes. as shown in Figure 2.7. Suppose the 
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Figure 2.7: The effect of using (a) DrrIlp versus (b) LIplI,, when fitting a variational distribution 
q(z lc )  that is unirnodel to a bimodd distribution p ( = ) .  

variational distribution q (z f< )  is a Gaussian with < consisting of a mean and a variance. 

Figure 2.7a shows the optimum variational distribution that is obtained by rninimizing 

Dqllp: whereas Figure 2.21 shows the optimum variational distribution that is obtained by 

rninimizing DpIlq - 

Notice that in order to compute Dgl lP  in (2.24). we need P(hlv): which is what we 

were after in the first place. So. in practice. we usually rninimize the following free energy 

func t ion: 

Notice that minimizing FQilP wirh respect to F gives the same set of parameters as minimiz- 

ing DQllp. since log P(v) does not depend on S. In order to compute FqllP. we only need 

P(h.v), which is readily available in Bayesian networks. (P(h.v) is not easy to compute 

in other types of graphical models. such as Markov random fields.) 

2.3.2 Choosing the form of &(hl<) 

The form of Q (hl<) will strongly influence the qudity of the variational inference as well as 

the tractability of computing the distance and its derivatives (which may be needed for the 

optimization procedure). Exact inference can be achieved in principle by associating one 

parameter Eh with each state of the hidden variables h, where Q is meant to be an estimate 

of P(h(v). However. computing the distance will require an explicit summation over ail 

possible states of the hidden variables. The  number of terms in this s u  equals the number 

of possible configurations of the hidden variables, so this approach will only be tractabie 

when there are not many configurations of the hidden variables. In fact, in Most cases the 

above procedure wiil not be any more computationdy efficient than directly computing 

P(hlv) using Bayes ride. 

We wodd like to choose Q(hlE) so that the effect of the hidden variables h in the distance 
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measure can be integrated out either analytically or using a reasonably small number of 

cornputatious. In this way, the distance and its gradients can be determined without having 

to numericdy examine each possible state of the hidden variables h. 

2.3.3 Variational inference for the burglar alarm problem 

Io this section. 1 illustrate variational inference using the burgIar darm network described 

in Section 2.2.3. One type of variational distribution that is often used is the product form 

distribution. Under this variational distribution. the hidden variables are independent. For 

continuous variables. f u t  her assumptions may be needed regarding the distributions for 

each hidden variable ( e-g.. see Section 3.7). For the binary burglar b <and earthquake e vari- 

ables in the burgiar darm network. we can specify an arbitrary product-form distribution 

riçing the parameters cl and 52 for the probabilities that b = 1 and e = 1 respectively. That 

Inserting this variationai distribution into (2.26). and using the simple bin-ary entropy f~rnc- 

tion H(C1) = -Ci log<1 - ( i  - C r )  log(1 - c i ) .  we get 

- Q(b.  el() log P(b. e. a = 1) 

= -H(EI) - H(&) - C Q(b. el() log P(b.  e, a= 1). 

Notice that the product form of Q(b. el<) was used to sirnplifjr the first term of the second 

equality. 

At this point, without any fixther restrictions, we have not gained any computational 

advantage by using the variational approach. To compute FpllP and its derivatives, we must 

stiil examine ail possible configurations of the hidden variables to compute the expectation 

of log P(b,  e, a = 1). In order to make profitable use of variationai inference, log P(b, e, a = 1) 
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Figure 2.8: The contours of Fqllp for a variational technique applied CO the burglar alarm prohlem. 
The global minimum occurs at ci = 0.951. & = 0.186. 

must have a form that makes the computation of FqllP easy. It turns out that the conditional 

probabilities (2.12) for the burglar alam network were obtained fiom 

So. the joint distribution P(b. e. a =  1 )  c m  be written 

Substituting this into (2.28). we get 

Notice thât the hidden variables 6 and e do not appear in this final expression. Because 

of the product form of Q ( b .  elE) and the exponential form of P(b, e' a = 1). we were able to 

integate them out. 

Figure 2.8 shows a plot of the contours of Fgllp as a function of CI and &. The global 

minimum occurs at EL = 0.951. & = 0.186, which means the inference estimates are ~ ( b  = 

Ila=L) = 0.951 and P ( e  = lin= 1) = 0.186. These estimates clearly favor a burglar as the 

cause of the alarm. R e c d  that Gibbs smpling allowed us to estimate covariance statistics 
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between the two hidden variables. Variational inference does not readily produce those 

estimates. However. compared to the margind probabilities P ( b  = 1 ja = 1) = 0.751 and 

P(e  = 1 la = 1) = 0.349 produced by the probability propagation algorithm. the variational 

method places more emphasis on the more iikely cause 6.  In this sense, the variational 

technique prodiices a product form distribution that reveals covariance better than the 

marginals. produced. Say. by probability propagation. For example. iising only the margind 

probabilities produced by propagation. we might conclude that the probability that bath 

a burglar and an earthquake occmed is 0.751 x 0.349 = 0.262. In contrast. ming the 

probabilities produced by the variationai method gives 0.951 x 0.186 = 0.177. wbich is 

closer to the correct value of 0.116 given in (2.13). 

In this case. because the biirglar alarm network is so small. the analytic form of FqllP 
in (2.31) is not much simpler than the expression that would be obtained if (2.27) were 

substituted into (2.28) and explicit summation over al1 values of b and e were performed. 

However, for targer networks. exponent ial computat ional savings may be achieved by using 

conditional distributions chat lead to simple forms of log P(h. v). 

2 -3.4 Bounds and extended representations 

In practice. the form of log P(h. v) is often not simple. so that a straight-forward variational 

npproach cannot be attempted. In these cases. it may be possible to derive an upper bound 

on the distance that does not depend on h. and t hen try to minimize the bound instead of the 

distance itself [Saul. Jaakkola and .Jordan 19961. Effectively. we approximate log l/P(h. v)  

with an upper bound that can be integrated analytically. 

Alternatively. we may express each condit ional dis tribut ion P (zk 1 ak ) in terms of condi- 

tional distributions over a n  extended set of variables [ J d k o l a .  Saul and .Jordan 19961. For 

example, P(qlak) might be the marginal distribution of P(zk7 yklak), where yk is part of 

the extended representation. Let yH be the extension variables associated with the variables 

in h. It is sometimes possible to introduce a variational distribution Q(h, yH le) over the 

extended representation for which h and yH ean be integrated out in the distance measure. 

2.4 Helmholtz machines 

One of the main drawbacks of Mczrkov chah Monte Car10 inference and variational inference 

is that for complex networks. each time a set of variables is observed, either a computation- 

d l y  taxing Markov chain must be simulated. or a high-dimensional optimization must be 

performed to find the best variationd distribution. The essentiai problern, of course. is that 



2.4 Helmholtz machines 44 

the optimal distribution over h is dxerent for different d u e s  v of the visible variables. A 
Helmholtz machine [Dayan et al. 1995: Hinton et al. 19951 taddes this problem by coupling 

the original generative network with a recognition Bayesian network that is rneant to be 

capable of quickly producing an estimate of. or an approximate sample h m .  P(h1v). This 
recognition network essentidy replaces the variational optimizat ion needed for variat ionai 

inference. I t  is c d e d  a "recognition" network because it is meant to recognize the hidden 

variable values, or "causes". that are responsible for the values of the visible variables. 

As described above. the job of the recognition network is to quickly produce an approxi- 

mation to P(h1v). Obviously. the recognition network must be ditferent fiom the generative 

network. or the inference could be done directly on the generative network. I will higMght 

this dXerence by labeling the recognition distribution with Q. So. the recognition network 

is used to compute Q(hlv)? which is an approximation CO P(h(v) as given by the generative 

network. Various types of recognition network are described below, but they a l l  share a 

common property. Since the recognition aetwork is a Bayesian network. we casnot expect 

to be able to quickly compute Q(hlv) for a r b i t r q  sets h and v. In k t .  1 wiU usually 

assume that the set of visible variables is the same for each inference case. although. of 

couse, the d u e s  for the visible variables may d 8 e r  from case to case. This restriction is 

the main disadvantage of the Helmholtz machine compared to Monte Car10 inference and 

vaciational inference. which usually place no restrictions on which variables are obsenred. 

2.4.1 Factorial recognition networks 

To ensure that the inference process is fast. we oiight to design the recognition network 

so that the computation of Q(h(v) can be carried out efficiently. The simplest recognition 

network in this sense is one for which each variable in h is dependency-separated £rom each 

other variable in h by the visible variables v. In other words. given the visible variables, the 

hidden variables are independent. I will refer to such a network as a factorial recognition 

network. since given the visible variables. the distribution over the hidden variables c m  be 

factored into a product of probabilities: 

A factoriai recognition network with h = {zi; 22' 23) is shown in Figure 2.9a. Note that by 

condition 2 in Section 1.2.4. variables in h are dependency-separated by v = {z4, t.5: rn, z7). 

In many cases. the product form approximation given in (2.32) is not very close to P(h(v). 
However, it is the easiest network to design or estimate, and because the ùidden variables 
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Figure 2.9: (a)  An example of a factorid recognition network. (b) X factorial recognition network 
for the burglar alarm problem. 

are independent given the visible variables. it is computationally efficient for inference. 

Figure 2.9b shows a factorial recognition network for the burglar alarm problem. The 

recognition distribution is given by Q(b. ela) = Q(b(a)Q(e!a) .  and so is limited to the sane 

inference estimates as the variat ionai technique described in Section 2.3.3. Namely, the 

factarial recognition network cannot capture the covariance between the two causes. Can 
we design a recognition network that can give better estimates? The answer is "yes" . by 

using a nonfactorial recognition network. 

2.4.2 Nonfactorial recognition networks 

Xlthough it is easy to imagine situations where a factorial recognition network will suffice. 

for the burglar alarm problem discussed above we saw that a factorid recognition network 

could not capture the covariance between the two causes of the alarm. In this section. I 
describe nonfactorial recognition networks t hat are more powerful t han factorial ones. 

A nonfactorial recognition network can represent cr distribution where at least one vari- 

able in h is not dependency-separated kom at least one other variable in h by the visible 

vruiables v. Of course. there are many ways to make a network nonfactorial. For example. 

a nonfactorial recognition network is obtained by making some hidden variables depend 

on other ones in addition to the visible variables. Figure 2.10a shows a My-connected 

nonfactorial recognition network, which can be contrasted with the factorial network in 

Figure 2.9a. 

Another way to produce a nonfactorial recognition network is through the use of auziliaq 

van'ables or danglzng units [Dayan and Hinton 19961. These variables do not influence the 

output of the generative model. but help facilitate inference in the recognition network. For 

example, an auxiliary variable in the recognition network can be used to choose between 

two or more modes. 
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Figure 2.10: (a) An e~arnple of a nonfactorial recognition network. (b) -4 nonfactorid recognition 
network for the burglar alarm problem. 

2.4.3 The stochastic Helmholtz machine 

Suppose we are interested in only one of the hidden variables. and we would Lke to obtain i ts 

distribution given the visibIe variables, &ter marginalking out the other hidden variables. 

For a factorial recognition network. each hidden variable is independent given the visible 

variables. So. the margind distribution is obtained simply by ignoring the other hidden 

variables. In fact. the marginal distribution for zk E h in this case is Q ( z k l v ) .  which is part 

of the recognition network specification. 

Such a simple procedure for marginalization is not in generd available for nonfactorial 

recognition networks. In t hese networks. the hidden variables are no t independent given 

the visible variables. However. Monte Carlo provides an easy way to estimate marginal 

statistics. If we can obtain a sdficiently large sample hom the recognition network. the 

distribution for zk can be approximated by constructing a histogram for zk alone. Of course. 

we could directly apply Monte Carlo methods such as Gibbs sampiing (Section 2-22 )  to 

the generative network. However. the hope is that we csn carefully design the nonfactorid 

recognition network so that it is better suited to Monte Carlo th= the generative network. 

In fact, we can avoid complicated Markov chain Monte Carlo by using a recopitiori network 

for which ancestral simulation (see Section 1.2.3) c m  be used. 

In general, recognition networks can be either factorial or nonfactoriai and stochastic or 

nonstochastic. Here. "nonstochastic" refers to the way the recognition network is used, not 

to what the network represents. Al1 Bayesian networks represent a stochastic phenornena, 

but not al1 networks are used with Monte Carlo. A factorial recognition uetwork can easily 

be operated stochastically, simply by choosing each hidden variable zk fiom its distribution 

Q(zk  1 h) A nonfactorial recognition network is operated stochastically using a Monte Car10 

met hod ( preferably ancestral simdat ion). .4 factorial recognition network c m  easily be 
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operated nonsto&astically, since the joint distribution over the hidden variables factors 

and the marginal distribution for e d  hidden variabIe is readiIy available. However. a 

nonfactorial recognition network usually cannot be operated nonstochastically. As described 

above, the dependencies between the hidden variables makes this difficuk. However. there 

are special cases where nonfactorial recognition networks can be operated nonstochastically. 

In particular. recognition networks that can be viewed as a mixture of factoriai networks 

can be operated nonstochast ically wit h relative ease. 

2.4.4 A nonfactorial recognition network for the burglar darm problem 

In many cases. a simple nonfactorial recognition network can be uscd to represent cov,a.ri- 

ances between hidden viti-iables. A nonfactorial recognition network for the burglar aiarm 

problem is shown in Figure 2.10b. The difference between this network and the factorial 

one in Figure 2.9b. is that e uow depends on b as  well as a. The conditional distributions 

for a recognition network that performs exact inference are 

Sampling hidden variables using ancestral simulation in this network is a c t u d y  more effi- 

cient than using Gibbs sampiing in the generative network. as described in Section 2.2.3. 

(The computationd savings are quite low in this case. becaiise there are only two hidden 

variables. ) 

The joint distribution over the hidden variables given a = I can be cornputeci fiom 

Q(b.  e f a  = 1) = Q(e(b. a = l)Q(b(a = 1): 

These probabilities are identical to the probabilities in (2.13) for exact inference. 



Chapter 3 

Pattern Classification 

Automated methods for making decisions based on inputs play a. very important role both 

in engineering applications and in helping us understand how biological systems respond 

to their erivironments. As m m y  engineers and cognitive scientists will attest. the terms 

.'input3 and "decision" for this pattern classification problem are not clearly ciefined in 

theory. in practice. the probIem is usudly decomposed through design and analysis. The 

input to the classifier is provided by a preprocessor that transcribes part of the physicd state 

of the world. Different preprocessors are appropriate for differeiit ciassifiers. and often an 

iterstive process is used to find the optimal preprocessor-classifier pair for a given problem. 

In general. the preprocessor uses simple statisticsl and signal processing techniques, whereas 

the classifier is left with the "bard" problem of coming up with decisions. 

A very simple method for making hard decisions is the nearest neighbor classzfier. This 

classifier keeps a database of labcled training patterns. Given a test pattern. the nearest 

neighbor classifier outputs the class of the pattern in its database tiiat is *closest" to the 

test pattern. Any distance metric may be used, but typicdly Euclidean distance or one 

of its generalizations are used. Figure 3.1 shows a selection of normalized and quantized 

8 x 8 b i n q  images of haad-written digits made available by the US Postal Service Office of 

Advanced Technology. il database with a total of 7000 patterns was constructed with 700 

patterns Born each digit class. Using nearest neighbor classification, a misclassification rate 

of 6.7% was obtained on a test set of 4000 patterns. Slightly better resdts c m  be achieved 

by using the k-nearest neighbor method. This method picks the most common ciass of the 

k training patterns that are closest to the test pattern. 

One interesting property of the k-nearest neighbor method is that it is a consistent 

classifier. That is, as the number of training cases T tends to infinity, the decisions produced 

by the k-nearest neighbor method (with. e.g., k = fi) become Bayes optimal. However, 



Figure 3.1: -450 examples of 8 x 8 binary images of liand-writ.ten digits. 

although k-nearest neighbor classification works quite well when a large training set is 

available. it perfornis poorly when training data is limited. Figure 3.2 shows a training set 

consisting of two classes with 30 2-dimensional red-valued patterns in each clriss. Suppose 

we wish to classifi the indicated test point. The nearest neighbor met hod will choose class 

A. In fact. just as our intuition tells iis. the test point was drawn from class B. If a k-nearest 

neighbor classifier is used. class A will consistently be erroneously chosen for sensible values 

of k.  

The above example illiistrates a fundamental flaw with the nearest neighbor approach 

- namely. that it does not use global structure. Viewing the data from class B with a 

local jnmow) .'window". the test pattern seems very unlikely. However. a. more global 

examination of the data from class B leads us to believe that the data cornes fkom a roughly 

sinusoidal manifold: and that just by chance t here isn't any training data for this class in 

the central region of the figure. Under this view. the test pattern is much more likely. An 

even more global examination indicates that the two classes of data are probably similar, 

except for the fact that they lie on manifolds that are relatively inverted. As a result. 

by inverting one class of d a t a  we ac tudy  have 60 points available for estimating the 
prototypical manifold. In this way. we obtain even more evidence that the test point is 

hom class B. 

One way to endow methods with the ability to extract global structure is to use param- 

eterized models that c m  genemlize in nontrivial ways. In Bayesian terxns, we have prior 

expectations about certain properties of the data. For example, we expect the probability 

density function for the data within a given class to be smooth on some scale. The class of 

distributions t hat our mode1 can represent should reflect these prior expectations. By fitting 
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Figure 3.2: Two classes of 2-dimemional training data and a test point. 

the mode1 to the data. this prior knowledge is then modified to obtain a more data-driven 

set of posterior expectations. In the above example, we decide that a sinusoidal manifold 

is a reasonable compromise between our prior expectations regarding continuity and the 

observed data within class B. 

Simple parametric models, such as multidimensional Gaussian density functions. c m  

be used to obtain some degree of generalization. However. overly simple models of this 

sort are inflexible in that they cannot generaiize in complex ways. Also. for reai-world 

proùlerns. such inflexible models are often incons~stent~ since they often cannot represent 

the complexity in natural data sets. In this chapter. I examine the use of more flexible 

Bayesian network models for pattern classification. 

1 begin this chapter with a description of how Bayesian networks can be used for pattern 

classification. Then. in Section 3.2, I present the %utoregressive" network which is quite 

simple? but performs surprisingly well as a pattern classifier. In Section 3.3, 1 describe 

maximum likelihood estimation and "maximum likelihood-bound" estimation for models 

with latent (hidden) variables. Latent variables are not part of the input pattern. but 

are meant to represent higher-order structure in the data (e-g.. handwriting style). In 
Section 3.4: 1 review three techniques for estimating the parameters of sigrnoidal Bayesian 

networks with latent variables: Gibbs sampling, variational inference, and the wake-sleep 

algorithm. Then, in Section 3.5, ail of these models are compared with the k-oearest 

neighbor classifier and a tree-based classifier when classifying handwritteu digits. 

An area which is closely related to estimating pmbability models for pattern classifica- 

tion is unsupervised Iearning. I view unsupervised learning as the process of estimating 
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a probability model for a class of data. The hope is that some of the latent variables in 

the model will come to represent interesting features. and that these features can then be 

automaticdy extracted for novel input patterns. In Section 3.6 1 present results for the 

Helmholtz machine. when it is given the task of trying to extract structure fÏom noisy 

16 x 16 images of horizontal and vertical b#xs. Finaily, in Section 3.7. 1 present a new type 

of pxameterized Bayesian network that can be used to simultaneously extract continuous 

and categorical structure in an unsupervised manner. 

3.1 Bayesian networks for pattern classification 

Bayesian networks provide a means of producing structured probabilistic modeis with ar- 

bitrary complexity. In this sense. they are flexible models. The majority of this chapter is 

devoted to using Bayesian networks to produce one model for each class of training data. 

X new test pattern is classified by choosing the class of the model that is best suited to the 

test pattern. In ~on t r a s t~  it is certainly possible to construct a Bayesian network that Lias 

one set of pattern variables v. a variable that represents the class j .  plus othcr variables 

that represent important physical effects. An inference method can then be used to com- 

pute P(j!v) using the network. An advantage of this approach is that the model may make 

efficient use of the similarities and differences between al1 of the classes. For example. if 

each class of data in Figure 3.2 is modelled separateiy, then the similarity between the two 

classes cannot be exploited as described above. In practice. however. a parameter estima- 

tion algorithm may fail to End such similarities and in the process of trying to mode1 both 

classes fail to properly extract the features from any one class. ilnother disadvantage of the 

single-mode1 approach is t hat a new class of data cannot be introduced without refitting the 

model. Despite these di~adv~mtages. the single-mode1 approach is seductively interesting. 

In Sections 3.6 and 3.7, 1 study networks that are estimated from unlabeled data. where 

the hidden variables automatically come to represent data classes. Although estimation 

met hods for t his unsupervised learning problem are currentiy not highly cornpetitive wit h 

ot her practical engineering techniques, they are potentially very powerful and help shed 

light on how natural neural systems might work. 

The multiple-mode1 approach to pattern classification consists of est imating one model 

for each of the J classes of data. In this sense, each model is conditioned on a class 

number. For the sake of generality, I will assume that the j th  mode1 has a set of features 

or hidden attributes hj that help mode1 the pattern variables v. Network j thus represents 

a distribution P(v. hj l j ) .  Finally, the class probabilities P ( j )  must be specified; these are 

simply determined hom the relative sizes of the classes of data and any prior knowledge we 
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have at hand. (For example. even though a training set contains 10 patterns from class O 

and 14 patterns from class 1. if we know ahead of time that the classes are equally iikely 

then we set P(j = 0) = P ( j  = l).) 

Idealiy, the model estimate for class 3 will yield a distribution 

distribution P,(v(j) of the data fkom class j: 

P(v~ j) = C P(v. hj lj) P,(v~ j ) .  
hl 

that is close to the true 

(3.1) 

However, even if the approximation is good. the sum in the above expression is exponential 

in the number of feature variables, and so cannot be computed directly. Instead. for a given 

test pattern v. one of the inference methods described in Chapter 1 can be used to produce 

class likelihood est imates, 

~ ( v l j ) ?  j E {O.. .. . J - 1). (3.2) 

Findy?  Bayes nile is used to produce soft classification decisions, 

and a hard decision j* can be made by choosing the best class. 

The technique used to estimate the class models and the inference method used to 

estimate P( j (v) depend on the structure of the networks. Before examining intractable 

models for which inference and parameter estimation must be approximated. 1 discuss an 

interesting class of tractable systems. For the sake of notational simplicity, the fouowing 

sections present models and algorithms for estimating P(v), with the class index j left off. 

It shodd be kept in mind that one such density model m u t  be estimated for each class. 

3.2 Autoregressive networks 

There are a variety of Bayesian network architectures for which inference and parameter 

estimation c m  be performed exactly within a reasonable amount of time. An architecture 

of this type that 1 discuss here is easy to implement and works surprisingly well on sorne 

problems. 1 define an outoregressiue network as a fdly-connected parameterized Bayesian 
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Figure 3.3: An autoregressive network with ancestral ordering u l ,  u- ? , u 3 , ~ . 4 !  US. 

network without any latent variables. The graph for the network is thus specified corn- 

pletely by an  ancestral ordering. Unless 1 am considering different ancestral orderings of 

the variables, 1 will usudy  assume that the variables are labeled in the ancestral order. 

Then, the parameterized distribution P(vl0) for the data can be written 

where 8 is the entire set of parameters, and Bi is the set of parameters associated with input 

Each of the conditional probability distributions in this expression is represented using 

some sort of parametric or flexible model. Figure 3.3 shows an example of an autoregressive 

network wit.h five variables. 

3.2.1 The logistic autoregressive network 

If the pattern consists of binary variables (vi E {O? 1)) logistic regession [McCullagh and 

Nelder 19831 (see Section 1.2.6) may be used: 

where g(x) = 1/(1  + exp[-x]) is the logistic function, and a dummy variable uo = 1 is used 

to account for a constant in the arguments of the exponent. 

For this logistic autoregressive network, P(vl6) can be computed in C?(N2) time in the 

following way. For each variable vi , the sum CZ eviVk vk is determined kom the values 

of V I ,  . . . , ui- 1, and t hen P(vi 1 {ut };z'~, Oui)  is determined fiom the value of ui using (3.6). 

P(vl9)  is then computed using (3.5). 
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3.2.2 MAP est irnation for autoregressive networks 

An autoregressive network can be fit to a class of training patterns dl)'. . . . viT) using 

MAP parameter estimation. To do so, we need to specifi both a prior distribution over 

the parameters 8, and also the training set likelihood given the parameters. Assuming that 

each training case is independent and identically drawn (i.i.d.). the log-likeiihood of the 
training set is 

log ~ ( { v ( ~ j  }T= 1 10) = log P(v(~)  10) = log P ( v ( ~ )  10) = log I-J P ( V ~  1 {?IF) );zll, 
t= 1 t= l t= 1 L1 

If the parameters are independent under the prior, t hen given a training set. the it h term 

in the sum of the last expression depends on a set of parameters Bi = {Oi 1 . . . . f i i T i  - 1 ) t hat 

are independent of ail the other sets of parameters 8,). i' # i. So. MAP estimation can be 

broken down into N subproblems. where subproblem i is to estimate the parameters Bi for 

the model that predicts ui from { u k } ~ ~ l l .  

Here, I derive a gradient-based MAP estimation method for the logistic regression model 

used in the logistic autoregressive network. Let the data for subproblem i be denoted 
( t )  . Di = {IV, ];=,}T=l. Up to a constant of proportiondity that does not depend on Bi, the 

likelihood of the training data for subproblem i is 

where the 1 s t  expression is obtained fÎom (3.6). 

1 use a prior distribution under which the parameters in Bi are independent and normdy 

distributed with mean O and a 6xed variance a:: 

Up to a constant of proportionality that is independent of Oi, the posterior distribution 
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over the mode1 parameters Bi given the data V, is 

Taking the logarithm of this expression and leaving out constants that do not efFect the 

optimization procedure. MAP estimation for subproblern i entails maxixuizing 

1 use the conjugate gradient optimizat ion met hod [Fletcher 19871 which requires the 

derivatives of C': 

Both Ca and its derivatives can be computed in O(iT) time. 

3.2.3 Scaled priors in logistic autoregressive networks 

In the prior distribution over the parameters (3.9). how should the miance of of the 

parameters for the ith input depend on i? That is. before seeing any training data, how do 

we expect the variance of the parameters for a variable to depend on how many inputs that 

variable receives? 

Assume we don't have prior knowledge of a preferred ordering of the variables. By 
symmetry, it makes sense to assume a uniform prior  distribution over the variables: i -e . ,  

under the prior each variable is equally Likely to have each of the values O and 1. The 

dummy variable va = t is exempt from this prior, of course. Now, consider the prior 

probability predictions made for vi. This prior distribution has two sources of variability: a 

Gaussian prior over the parameters Bi, and a uniform distribution over the inputs { v ~ } ; ~ ~ ~ .  

By symmetry, t his prior distribution over the probability predictions made for vi should not 

depend on i. As shown below, this restriction determines how to set the variance for the 

parameters 0; for eadi variable vi .  

Since the probability prediction for vi  is determined by its totd input ~ ~ ~ ~ 9 i k u ç ,  1 
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will enforce the above restriction on the total inputs. Averaging over the two sources of 

variability, we get a mean value of the total input for ui of 

We can take E[Bikvk] = E[Bik] E[vk], since the parameters and the inputs are independent 

under the prior. The final step holds since the parameters have mean O. 

Since the mean total input is 0, the variance of the total input for vi is 

NOW, since Bir: and O i j ,  k # j are independent under the prior, EIOikOij] is nonzero only if 

j = k. So, the variance of the total input for vi is 

Under the prior, the probability predictions for ui should not depend on i. So, the 

variances of the total inputs for vl and vi should not difTer: 

Note that o: is the variance of the total input for V I ,  which has no input variables. Al1 of 

the variances can be set by picking a reasonable value for a:. In rny simulations, I chose 

of = 4. This value allows for probabilities near O and 1 at the output of the logistic function, 

without favoring them too much (see Figure 1.6 on page 18). 

It may be a good idea to let the biases in the network have a separate Gaussian prior, 

although I have not yet explored this possibility experimentally. 

3.2.4 Ensembles of autoregressive networks 

An autoregressive network is specified by chosing an order for the rariables VI,. . . , U N .  
Leaving computational considerations aside, if the subproblem models P ( V ~ ~ { V ~ } & ' ~ )  are 

consistent ( i -e . ,  they converge to the correct distribution as the number of training ex- 

amples tends to infinity) and there is a sufEciently large training set, then the particular 

ordering chosen is not important. The mode1 for subproblem i will correctly represent the 

real conditional distribution pr(vi 1 { v k } ~ ~ ~ ) ,  and so the product of the subproblem distri- 
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butions will give the true joint distribution. Honrever, the data sets considered here are 

small, and the parametric subproblem models considered here ( e-g., logist ic regression) are 

inconsistent for many distributions of data. In this case, the order of the variables is impor- 

tant in two contrasting ways. Certain orderings may give rise to simpler true conditional 

distributions pr(vi[ { u k } i l \ )  that can be more accurately represented by the model distri- 

butions p(v i  1 {vk}fi, - Bi). In contrast. for a given training set. dinerent orderings may lead 

to different amounts of overfitting. 

1 do not address here the difficult issue of how to select an ordering that optimally 

balances these two effecix This problem is OifEcult both because the discrete ordering 

cannot be optimized by a gradient-based method and because For the training sets I will 

consider here. there is not enough data available to get a reliabie estimate of which ordering 

is best. Imtead of searching for an optimal ordering, I estimate an ensemble of autoregressive 

networks. where each network uses a randornly selected ordering of the variables. The 

probability prediction for a given vector v is then taken to be the average of the predictions 

over the ensemble of networks. 

3.3 Estimation of models with unobserved variables 

The notion of unobserved or hidden variables arises in mxny model estimation contexts. 

For example. due to mechanicd failure. training data derived fiom physical measurements 

may sometimes lack values for some variables in some cases. In contrast, it is often useful 

to build hidden variables into a model by design. These variables are meant to represent 

latent causes that influence the visible variables. Several of the Bayesian network models 

discussed in the remainder of this chapter are latent variable models ( e -g . .  see Section 3.4). 

For the sake of notational ~implicity~ 1 will use v to refer to the observed variables and h 

to refer to the unobserved variables. This is a siight abuse of notation. since it c m  happen 

that some visible variables are unobserved. For example, severd of the photo-sensors in a 

digital camera may be burned out, so that some of the variables in the image pattern v are 

unobserved. 

We would Like to estimate a probabilistic model P ( z )  for a training set consisting of T 
patterns v('), d2) . . . , dT). where each pattern specifies the values of an observed subset v 

of the variables in z. In general, each training case rnay specify a diflerent subset of visible 

variables. 

Let h(') = z\v(') be the set of hidden (unobserved) variables for training case t. Assuming 
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t hat the training cases are i.i.d., the iog-iikelihood of the training data is 

To rnaximize this log-iikelihood. we set its derivative with respect to each parameter 0 in 0 
to zero: 

T 
- P .  h 6 )  - a log P ( v ( ~ ) .  hjt) (0 )  

- ' t=I ' h(t) P ( v ( ~ ) .  I I ( ~ ) ' , O )  afl 

The relation 8 log f (6 ) /88  = ( 1/0)a f ( B ) / B O  was used in the first and third Line of the 

derivation. Even though 8 log P ( V ( ~ ) .  h(')!B)/LW is quite often easy to compute. in many 

cases of practical interest the system 01 equations obtained by setting a log P('DlO)/iW to 

zero for each O is hghly noiilinear and cannot be solved in closed-form. One approach is 

to perform gradient descent in Log P(v( ' ) .  h(t) 18). while sampling fkom ~ ( h ( "  IV('). 8) using 

bIarkov chain Monte Carlo. This gives .z Monte Carlo appro-ximation to gradient descent in 

log P(V 18) as given in (3.18). Anot her approach is to solve the sysrem of nonlinear equations 

iteratively. Aithough in principle any rnethod for solving a nonlinear system of equations 

can be used (e -g . .  Newton's method [Fletcher 1987]), the structure of (3.18) gives rise to a 

particularly simple two-phase iterative method, c d e d  the ezpectatzon-muximlzatzon (EM) 
algorithm [Baum and Petrie 1966; Dempster. Laird and Rubin 1977]. 
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3.3.1 M L  estimation by expectation-maximization (EM) 

Often, we have available an efficient method for estirnatirig the mode1 when al1 of the 

variables are visible. That is. the system of equations obtained by setting 

for arbitrary h(L) can be solved quite easily. Notice that it is essentially this system of 

equations that is obtained if the dependence of P @ ( ~ )  idt). 8) on 8 in (3.18) is ignored. 

The summation over h(" in (3.18) has the effect of replicating training case 1 once for 

each configuration of the hidden variables for that case. and weighting each replication by 

~ ( h ( ' )  Idt). O ) .  This obse-tion leads to the following iterative two-phase EM algorithm: 

1. Estep: Compute ~ ( h ( ' )  [dt). 6 )  for each configuration h(') of the hidden variables for 

each training case. and set ~ ( h ( ' )  ) c ~ ( h ( ' )  IV('! . O ) .  

2. M-step: Solve the following system of equations for 8. 

Stop if a convergence criterion is satisfied: otherwise go to 1. 

In practice. the values of ~ ( h l ' ) )  for each training case are iisually not stored during the E 
step. Instead. statistics that are sufFicient for the M-step are accumulated while processing 

the training set. There are several proofs tliat each EM iteration is guaranteed to increase 

the iikelihood of the training data [Baum and Petrie 1966: Dempster. Laird and Rubin 1977: 

Meng and Rubin 1992: Neal and Hinton 19931. After presenting a more general algorithm 

for maximizing lower bounds on the data likelihood P(V(8) .  1 will show that each iteration 

of EM is guaranteed to increase the data likelihood. 

3.3.2 Maximum likelihood-bound (MLB) estimation 

Neal and Hinton [1993] introduced a new view of the EM dgorithm as s method for max- 

irnizing a lower bound on the likelihood of a training set. This interpretation opened the 

door to tractable approximations to EM for models that were clearly intractable. I will refer 

to the new approach as maximum likeiihood-bound (MLB) estimation in order to highlight 

its relationship to ML estimation. MLB estimation is an approximation to ML estimation 

that follows from using the wrong distribution ~ ( h ( ' ) )  in the Es tep  of the EM algorithm: 
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i. e.. ~ ( h ( ~ ) )  # ~ ( h ( l )  idt). 9) .  There are practical reasons for using a suboptirnal distribu- 

tion ~ ( h ( ~ ) ) ,  the most obvious being that in some cases it is computationally infeasible to 

cornpute ~ ( h ( ' ) )  for e v e q  configuration of the hidden variables h(t) for eadi training case. 

For example. some of the Bayesian network models discussed below have over one million 

configurations per training case. 

The bound used in ML% estimation is obtaîned using the foUowing form of Jensen's 

inequality [Cover and Thomas 199 11 : 

where x, g, = 1. and a, are arbitr- scalars. Xpplying this inequality to the log-likelihood 

of the training data (3.17). we get 

T T 

log P(DI0) = c la@ P(v@). h(')10)] = 5 log[x ~(h( '1 )  P(v(') . h(') 1 O ) ]  
t = I  hct, h('1 Q(h(t, 

The goal of MLF3 estimation is to jointly estimate a distribution Q(h(t i)  (which may or rnay 

uot be pararneterized) and a distribution P ( d t ) .  h(') IO). so as to rnaximize this lower bound 

on the likelihood. This Ieads to the following generalized EM algorithm: 

1. Generalized Estep: Increase the bound with respect to a distribution ~ ( h ( ~ ) ) .  

2. Generalized M-step: Increase the bound BpllP with respect to O .  

Note that unlike the Estep of the EM algorithm. the generalized Estep may produce a 

Q-distribution for which ~ ( h ( ' ) )  # ~ ( h ( ~ ) ! v ( ' ) .  O ) .  

The EM algorithm can be viewed as a special case of the generalized EM aigorithm. where 

we alternately rnaximize the bound BQliP with respect to an unconstrained distribution 

~ ( h ( ' ) ) ,  and then with respect to P ( v ( ~ )  h(t) ( O )  via 9. If the bound is rnaximized with 

respect to ~ ( h ( ' ) )  during the generahed Estep, while enforcing Chil) ~ ( h ( ' ) )  = 1 using a 

Lagrange multiplier. we obtain ~(h(')) = ~ ( h ( ' )  ~ v ( ~ ) .  O ) .  This form of the generalized EM 
algorithm is identical to the standard EM algorithm presented in the previous section. Also, 
in this case the inequality in (3.22) becomes an equality: BqllP = log P(-DIB). It follows 

that the EM algorithm is a maximum likelihood estimation method. 

Note that in general, MLB estimation does not give the same estimates as ML esti- 
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mation. As a degenerate example. imagine that we use ML estimation to obtain a model 

P ( v ( ~ ) .  h( t )  10) fkom a training set. and that we then apply MLB estimation with ~ ( h ( ' ) )  fixed 

at a uniform distribution. In this case. the bound can be increased by moving P(v( ' ) .  h(')J@) 

uwap fiom the ML estimate (unless P(v(') h(t). O) happens to be uniform. in which case a 

uniform ~ ( h ( ~ ) )  makes the bound tight so that P(v(') ,  h(')l@) wiil not change). However. 

a s  long as we are able produce estimates of ~ ( h ( ' ) )  that are "close" to ~ ( h ( ' )  /v(~). O). MLB 
estimation will be close to ML estimation. Of course. in most cases. if we have the compu- 

tational resources available to obtain an ML estirnate. MLB estimation should not be iised. 
In Section 3.4. I introduce a class of Bayesian networks that have many latent (hidden) 

variables. For these networks. it is computationally intractable to perform ML estirn a t '  lori. 

and so MLB estimation is used. 

3.4 Multiple-cause networks 

In m m y  cases. it makes sense to postulate that a data vector v natiirally arises from the 

consequences of a set of hidden causes h. For example. an image may be nicely described 

as a two-dimensional rendition of a combination of objects. If hk is a, b i n q  variable 

indicating the presence of object k in the image. then the model distribution P(v1h. 8') 

is the distribution wer images given which objects are present. (eV is a set of parameters 

associated with the distribution over v). This distribution is meant to capture the way in 

which the objects interact to form the image as well as any inexplicable noise. 

The model P(vlh. 0' ) may be simplified by assuming that the K causes dependency- 

separate the image pixels. That is. once we know which causes are present, each pixel 

is independent of the others. In this case. P(vl h. 9') = n:", , P(ui jh. O : ) ) .  If the visible 

variables <are binary. each conditional distribution can be implemented using, for example, 

logistic regression. In contrast to the logistic autoregressive network where each visible 

variable is regressed on a subset of the other visible variables (see (3.5)), in the multiple- 

cause network each visible vasiable is regressed on the hidden cause variables h: 

where 0: = {O:, . . . : 0L }' and we take ho = 1 in order to account for a constant in the 

summations. Binary Bayesian networks which use logistic regression for the conditional 

distributions are often called binary sigrnoidal networks [Ned 19921 and are sometimes 

c d e d  stochastic multi-layer perceptrons. 

To complete the model, we provide a distribution p(hlkJH) over the set of causes. Al- 



Figure 3.4: A multiple-cause network with five visible variabies v and four hidden cause tariables 
h. 

though it seems na tua l  that in many cases the hidden variables hk might be interdependent. 

for the sake of simpiicity. 1 will assume for now that they are not: 

where eH = ( O p .  . . . a:-}. Thse probabilities can be nicely parameterized using the logistic 

hnction: 

An exmple  of this type of multiple-cause Bayesian network is shown in Figure 3.4. 

Yotice that the dependency-separation of the variables v by the set of hidden variables h 

is ensured by condition 2 described in Section 1.2.4. 

Supposing that we have somehow obtained an accurate model of the triie causal process 

for each class of data (e.g.. iising a method described below). in order to perform classifica- 

tion we would Like to cornpute the marginal probability P(vl6)  for each class model. This 

c m  be computed exactly using 

where 0 = (O*.  eV} is the entire set of parameters. However. this sum is exponential in 

the number of causes K and so in practice. we must m e  another approach. It is obvioiis 

from Figure 3.4 that probability propagation cannot be iised to obtain an exact result. siiice 

the Bayesian network contains many cycles. In fact. we must use an approximate inference 

method. 
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Since exact probabilistic inference is needed for M L  and MAP parameter estimation. 

these estimation methods are &O intractable. For example. in order to perform the E s t e p  

of the EM algorithm. we must compute P(h1v. O), which has .an exponeniiai number ( 2 K )  

of terms. 

In the next three sections. 1 show how Gibbs sampling, variationai inference, and the 

stochastic Helmholtz machine can be used to approximate P(vj0)  and perform maximum 

Likelihood-bound (PVILB) parameter estimation in multiple-cause networks. 

3.4.1 Estimation by Gibbs sampling 

In order to estimate a multiple-cause network from a set of training examples v( '). . . . . dT). 
we c m  perform on-line gradient descent in log P(v. hl@) while sampling h m  P(h1v. 8 )  us- 

ing the Gibbs sampling method described in Section 3-22. For the current training case 

dt). we simulate a Markov chain to obtain a configuration h(') of the hidden variables. 

(Notice that in general h(t) will be different each time v(') is processed - idedy. h(') 
will have a distribution P (hlv('). O )  .) In order to perform Gibbs sampling for the logistic 

multiple-cause network described above. we need to be able to sample from the distribu- 

tion for each hidden variable hk given the other cause variables a d  the visible variables. 

Since the cause variables are binary. we only need to compute a function that is pro- 

portional to P(hkl{h, v. 0 ) .  The two values can then be normaiized to obtain 

P(hk!  {h, f ~ ~ , , + , .  v.  8). Since the total joint probability for h and v can be easily corn- 

puted in U ( K N )  time using the ancestral ordering, the joint probability c m  be used to 

compute the conditional distribution as follows: 

For a piven training case dt):  the latent wiirbles are visited in a specified order while 

drawing a new value for each variable kom its conditional distribution. The entire set of 

latent variables h is processed in this fashion for a specified number of times before the 

Markov chain is terminated and some configuration htt) of the latent variables is produced. 

The hidden variable biases and the parameters comecting the hidden variables to the 

visible variables are adjusted by following the derivat ives of log P(v( ' ) ,  h(t) 10) ag follows: 
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and 

where q is a learning rate. 

In order to perform classification. we would like to compute P(v18) for a given visible 

vector: 

This problem can be viewed ari a form of fiee erzergy estimation [Sheykhet and Simkin 1990: 

Neal 19931. 1 use a very simple approximation that is quite fast and works well in practice 

for classification purposes. Since the number of terms in the above sum is exponential in the 

number of causes. 1 approximate it by assuming that the rnajority of the total probability 

mass is contributed by a smdl number of clusters in h-space. These clusters are foiind 

bÿ simulating a Markov chah  as described above. At multiple points in the chain. the 

configuration of h and al neighboring configurations (2-e., those configurations within a 

Hamming distance of 1) are added to a list of "significant terms". Only the neighboring 

states of h are considered because once P ( v ,  h(8) has been computed. it is easy to compute 

the probabilities for configurations that differ fkom h by only one bit. After a specified 

number of chsters have been visited in this manner, the above sum is approximated by 

adding up the terms for the tabulated configurations. This method for estimating P(v18) 
will not work well when there is a large number of clusters in h-space that contribute 

significantly to the surn. However. I have found that in practice the Gibbs sampling learuing 

algorithm tends to favor a srnail number of clusters. making this approximation reasonable. 

3 A.2 MLB estimation by variational inference 

In this section. 1 review the variational method developed by S a d  e t  ai. [1996] for MLB 
estimation in sigrnoidal Bayesian networks. Tt turns out that a product-form variational 

distribution leads to m intractable boiind. and so the bound itself must be boiinded by a 

tractable function. 

For MLB estimation by variational inference, the Q-distribution in the likelihood bound 

(3.22) depends on some variational parameters S.  For the sake of simplicity. consider the 



bound for one training case v: 

MLB estimation entails iteratively rnaximizing t his bound. first by varying < (the generalized 

Estep), and second by adjusting the mode1 parameters 6 (the generaiized hl-step). The 

first term in this bound is the entropy of the variationd distribution Q(hlc). and the second 

term is the expected log-probability of h and v under the variational distribution. 

Here. 1 consider a product-form variational distribution over the K latent variables 

h l , .  . . . hK (notice that ho is not inciuded since it is fixed to ho = 1): 

where Ck: is the probabiiity under the variationd distribution that hk = 1. C'sing this 

variational distribution. the entropy term in simplifies to 

The second term in (3.31) is 

Since the conditional probabilities are given by logistic cegression. this term containç many 

expectations of noniinear functions. The first step to simplifying these expectations is to 

express the conditiooal probability p(hc 19:) given in (3.25) in the following way: 

The expectation of log p(hklO,H) is then 
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Similady. the conditional pro bability P(ui h. 0:) can be written 

The expectation of log P(vilh. 0; )  is then 

The overall bound for v is 

Except for the last term. the values of these terms and their derivatives (wit h respect to the 

variational parameters) can quite easily be computed. The explicit summation over h in the 

last term c a n o t  be reduced to a tractable form. However. the Iast term can be bounded by 

introducing some extra variational paraneters y .  (See [Saul. Jaakkola and Jordan 19961 for 

details.) MLB estimation for the new bound BP!,p < BQllP entails iteratively maximizing 

this bound. first by varying and v (the generalized Estep).  and second by adjusting the 

mode1 parameters O (the generalized M-step ) . 

3.4.3 The stochastic Helmholtz machine 

A stochastic Helmholtz machine consists of a pair of Bayesian networks that are fit to 

training data using an algorithm t hat approximates MLB parameter estimation, where the 

bound on the likeiihood may be very cornplex. lii addition to the multiple-cause network 

that describes P ( v ,  h(8) (the genemtive network), there is a recognition network that de- 

scribes Q (h(v? 4) .  The stochastic Helmholtz machine requires t hat the recognition network 
have an ancestral ordering such that it is easy to draw samples boom Q(hlv, 4). The ad- 

vantage of the stochastic Helmholtz machine over Markov chain Monte Car10 is that each 

s m p l e  h m  the recognition network is independent. as opposed to dependent on the last 

sarnple. The advantage of the stochastic Helmholtz machine over variational inference is 

t hat more complicated ( e. g., nonfactorial) distributions can be represented by the inference 

process used for MLB estimation. The main disadvantage of the stochastic Helmholtz ma- 
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chine is that a recognition network that is compatible with the generative network must 

somehow be estirnated? and this can be a very difficult task when a complex recognition 

network is used. An example of inference in the stochastic Helmholtz machine is described 

in Section 2.4.4. Here, 1 describe the wake-sleep algorithm for on-line estimation of both 

the generative and recognition parameters ( O  and 9) [Hinton et al. 19951. 

Suppose we have a current generative network (which may or may not be a good mode1 

of the data) and a current recognition network. For a pararneterized recognition network, 

the likelihood bound in (3.22) is 

T ~ ( h ,  dt )  le) 
log P(vie) 2 B Q , ~  = ~ ( h l v ?  4)  log 

t=1 h Q ( h l ~ ( ~ ) :  4 j ' 

This bound can be estimated by averaging log P(h ,  v ( ~ )  ~ e ) / ~ ( h l v ( ' ) :  4)  over multiple recog- 

nition sweeps for each input pattern. In each recognition sweep, the recognition network is 

stochasticaily simulated to obtain a configuration h of the latent variables. 

We would like to maxirnize BgllP with respect to the recognition network parameters 9 
for al1 v,  if possible. As discussed in Section 3.3.2, the unconstrained recognition distribution 

that ma-uimizes this likelibood bound is 

However, except for very simple recognition networks, t bis optimization is intract able for 

the sarne reason that exact inference is intractable. Instead, we op timize a different function 

whose global maxima give identical recognition networks in certain limits to those produced 

by maximizing BQIIP The limits may not apply in practice, so that the recognition network 

may be slightly suboptimd. 

Assume for the moment that the recognition network is consistent with the distribution 

P(hlv, O ) .  In this caseo the parameters 4 that maximize 

will also maximize BQllP in (3.40). (Note the reversed order of the distributions). So, for 

a given generat ive network, the optimum recognition network can be found by maximizing 

BPllQ with respect to the recognition parameters #. The derivative of BPllQ with respect 
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to a recognition network parameter q5 is 

Sot the recognition network can be estimated using stochastic gradient descent by sampling 

h and v fiom P(h. vie) using ancestral simulation. and then adjusting the recognition 

network parameters so as to increase the log-likelihood of the hidden variables given the 

visibIe variables. This procedure is called sleep-phase learning, since the recognition network 

is adjusted to be better suited to the -fantasies' produced by the generative network. 

In practice. sleep-phase learning is only an approximation to the generalized Es tep  

of iterative MLB estimation (Section 3.3.2) for one main reason. An ideal recognition 

network produces a good approximation to P(h[v. O )  even for a vector v t hat has a very 

smdl probability under P(h. ~(6). (This corresponds to a plausible real-world pattern t hat 

the generative network has not yet lemed.)  For sieepphase learning to produce such 

a recognition network. an extremely large sample size must be drawn Erom P(h.vl0) in 

order to get an example of the unlikely vector. For the sake of tractability. a relatively 

s m d  sample size must be used. which impfies that the ideal recognition network cannot be 

found. This means that in practice. maximizing does not give the same recognition 

network as wodd be obtained by maximizing BqllP. In fact. in order to prevent overfitting 

of t t e  recognition network. an inconsistent parametric recognition network is used. so t hat 

the global maxima of the two functions may not even coincide. 

For a given recognition network. the generative network is adjusted in the uiake-phase 

using a Monte Cu10 implementation of the generaüzed M-step of iterative MLB estimation. 

That is. on-line stochastic gradient descent in the likelihood bound BQllP is performed with 

respect to the generative network parameters 8. The derivative of the bound with respect 

to a generative network parameter 9 is 

~ B Q I ~ P  a T 
= -  P(h .  vit) le) 

ae ae 1 1 Q(~IV'~' 0 )  log ~(h l~ i l , .  9) 
t=L h 

For a training vector dt). the recognition network is used to sample values for the latent 

vaxiables h. Then, the generative parameters are adjusted so as to increase the log-likelihood 

of the latent variables and the visible mriabIes. 
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The two phases of learning are usually applied in alternation. A training pattern is 

presented; the recognition network is used to obtain a random h; and the generative network 

is adjusted. Next, the generative network is used to obtain a random h and then a random 

v; and the recognition network is adjusted. The result of this constant mixing of the two 

phases is that the generative network becomes bet ter at modelling the training data and ut 

the same tame tries to produce causes for the training data that can be properly inferred 

by the restricted recognition network. This can be seen mathematically by breaking BQllP 
into two pieces: 

T 

Bq!lp = log P(ole) - C C Q ( ~ I v " ' .  4)  log 
Q ( ~ I v ( ~ )  4) 

t=l  h 
~ ( h l v ( ~ ) ,  8 )  ' 

The first term encourages the generative network to mode1 the data, whereas the second 

term (a  negative Kullback-Leibler pseudo-distance) encourages it to be compatible with the 

recognition network. 4 s  a result of the latter, for a generative network that is estimated 

using the wake-sleep dgoritlm, the global maxima of BQllP and BpllQ often do coincide. 

Assuming that under the recognition distribution, the latent variables are independent 

given the visible variables, we have: 

Also. consider rnodelling each of thcse components using logistic regression: 

where we take uo = 1 in order to account for a constant in the exponents. This recognition 

network is shown in Figure 3.5. 

For t his logistic recognition network, the recognition parameters are adjusted as follows 

diiring the sleep phase, in order to increase log Q(h(v,  9):  

It turns out that in maay practical cases this recognition network is sufficient for produc- 

ing good density estimates. However, if it is estimated in conjunction with a fked generative 

network that describes the simple burglar a l a m  problem (see Section 2.2.3), the likelihood 

bound BQllP may actually decrease. Consider how the recoguition network is modified for 

fantasies where the burglar alarrn is ringing. We simulate the generative network, obtaining 



Figure 3.5: -4 recognition network that implements Q(h(v. 4) for the generative network shown in 
Figure 3.4. 

values for b. e. and a ,  and discard those samples for which a # 1. For the recognition net- 

work parameten and q5E;' t hat comect the common consequence a to the two causes 

b and e. the expected learning updates becorne 

where +Bo and +Eo are the recognition biases for b and e. Each connection is modified so 

as to predict as closely as possible the marginal posterior distributions P ( b  = Ila = 1 )  and 

P(e  = lla = 1) over the corresponding causes b and e. After training? the recognition distri- 

bution over b and e given a = 1 will be the product of the rnarginais. For the configuration 

b =  I t  a = 1. 

where the values for P(b = I ] a  = 1) and P(e  = 1(a = 1) were computed from (2.13). This 
value is quite a bit higher than the correct value of P(b = 1. e = lla = 1) = 0.116. En 

fact, if we assume that b and e are independent given a = 1. the recognition distribution 

that rnaximizes the iikelihood bound BpllP has ~ ( b  = 1'e  = I/a = 1) = 0.177. This is an 

example a-here maximiaing Bpllq is a poor approximation to maximizing BQIIP Notice. 

however, that the problem arises because we are using an inconsistent recognition network. 
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Figure 3.6: (a) .II hier archical network with three extra keta-cause'' variables which produce 
correlations between the cause variables (midde layer). (b) X sirnilarly lay~red recognition network. 

3.4.4 Hierarchical networks 

Earlier in this section. I presented multiple-cause networks with the assumption that the 

causes were independent in the generative network (see (3.24) on page 62). Even with the 

assumption that the causes are independent. it is still possible to represent quite complex 

correlations in the visible variables v. However. in many cases the causes are certainly 

interdependent. For example. if the causes variables represent the presence or absence of 

various objects in facial images. we expect that both a toque and a top-hat are not present 

simult aneously. 

In order to model interdependent causes. we can simply add asiother layer of "meta- 

causes" at a higher level in the network. Even if we assume that the "meta-causes'' are 

independent. the network can still represent fairly cornplex relationships between the causes. 

Such a hiernrchical network is shown in Figure 3.6a. We have already seen examples of 

hierarchical networks. such as the network used in the bars problem example (Figure 1.7). 

The parameter estimation methods already described in t his chapter are applicable to 

hierarchical networks wit h any reasonable depth. Of particular interest, however. is the 

recognition model for the Helmholtz machine. Figure 3.6b shows a recognition model that 

is appropriate for the network in Figure 3.6a Note that the top layer of hidden variables 

could receive input £rom the bottom layer of visible variables. not just the middle layer of 

hidden variables. However . t his introduces extra parameters into the Helmholtz machine. 

which may worsen the effect of ovedtting. In my experiments. 1 use layered generative 

and recognition networks Like the ones shown in Figure 3.6. In some cases, adding extra 
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connections may help- 

3.4.5 Ensembles of networks 

According to the Bayesian doctrine for prediction, when using a density model P(v(8) to 

estimate the probability of v. we ought to integrate out the model parameters 8. If we 

specify a prior P(8) and measure the likelihood P ( D ( 8 )  of the training data V. Bayesian 

inference uses the posterior P(O(V)  x P(8) P(V (O) (where the constant of proportionality 

does not depend on 8 )  to obtain a probability 

For example, t his integrai can be approximated using Laplace's approximation [S piegelhal- 

ter and Lauritzen 19901, Markov chain Monte Carlo methods [Neal 1993; Neal 19961 or 

variational techniques [Jaakkola and Jordan 199?]. Here. 1 consider the ensemble method. 

which is less sophisticated t han the above approaches, but is also easier to implement and 

and in pract ice usually gives a significant improvement over M.4P parameter estimation. 

Suppose we perform MAP parameter estimation using multiple restarts (dinerent random 

initial parameters) so that we have an ensemble of Ad models. where model m has parameters 

9,. Each model may correspond to a different local maximum of the posterior P(8lV). 

and we assume that each model is equally likely in the posterior. W e  then approximate the 

If P(v(8) does not change much over the width of each 

long as the modes are properly represented by the ensemble 

mode in the posterior, then as 

of models. ~ ( ~ 1 ' 2 7 )  will be very 

close to the correct value P ( v ( D )  @en by integration. On the other hand. if there is a mode 

in the posterior that is so wide that P(vlt3) does vary significantly across the mode. t hen 

P(V(V)  may be quite different from P(v1D). This is because oniy a peak in the posterior 

is being included in the sum, while the mass surrounding the peak is being ignored, even 

t hough the corresponding predictions are quite variable. 

Since the Bayesian networks described above are flexible models, we expect that with 

limited training data they may have multiple data likelihood optima (corresponding to 

multiple peaks in the posterior, if we assume a uniform prior over network parameters). For 

this reason, when time perrnits, a signincant classification rate improvement can be obtained 
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by using an ensemble of networks for each class of data. The classification decision is then 

based on the average probabilities computed from the ensemble for each class. 

3.5 Classification of hand-writ ten digits 

An interest ing and usehl pattern classification problem is the classification of hand-written 

digits- In this section. 1 present resdts on the classification of 8 x 8 binary images of hand- 

written digits made available by the US Postal Service Office of Advanced Technoiogy. I 

compare the following Bayesian network met Lods: iogist ic autoregressive classifier (LXitC- 

1) ? a stochastic Helmholtz machine with one hidden layer ( S m -  1 ). a stochastic Helmholtz 

machine with two hidden layers (SHM-2) and an ensemble of stochastic Helmholtz machines 

with one hidden layer (ESHM-1). In order to place the performance of these networks in 

context. 1 inciude the following met hods: classification and regression trees ( C ART- 1). the 

naive Bayes classifier (NBAYESC- 1). m d  the k-nearest neighbor method (KNN-CLASS- 1). 

The performances of these ciassifiers are assessed using 5 different training set sizes (120. 

240. 480. 960 and 1920 cases) so that the effect of the number of training cases on each 

rnethod can be studied. After describing the classifiers and the methods used to estimate 

t hem, 1 present and discuss the performance resdts. 

3.5.1 Logistic autoregressive classifiers (LARC-1,ELARC- 1) 

LAW-1  modek each of the 10 classes of data using a logistic autoregressive network (see 

Section 3.2)? where the vuiables are ordered in a raster-scan fashion. Once each of the 

10 networks have been estimated from the training data. a test pattern is clasified by 

outputing the class corresponding to the network that gives the geatest likelihood to the 

pattern. 

Before estimating each network h m  its respective class of training patterns. the double 

precision parameters 0 were initialized to uniformly random values on [-0.01.0.01). Over- 

fitting was prevented by using MAP estimation with a scaled Gaussian parameter prior. 

The prior variance of the first input was set to o: = 4.0. A conjugate gradient algorithm 

was used for MAP estimation. 

ELARC-1 uses an ensemble of 8 logistic autoregessive networks, where each element 

in the ensemble uses a dÎfTerent ordering of the variables in v. One of the elements uses 

the raster-scao ordering, whereas the other 7 elements use a randornly selected ordering. 

The probabiiity of a test pattern for a given class is estimated by averaging the probability 

estimates r o m  each of the 8 networks in the ensemble for that class. 
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3.5.2 The Gibbs Machine (GM-1) 

GM-1 models the distribution of each of the 10 classes of data using a logistic multiple- 

cause network of the type shown in Figures 3 . 4  that is trained using Gibbs sampling. Each 
network h a  64 visible binary ( O / l )  variables fS x 8) md one tiidden layer of 16 binary 

(0/1) variables. Once the 10 networks have been estimated, ciassification of a test pattern 

proceeds by estimating the probability of the pattern under each network. using the method 

described in Section 3.4.1. The class corresponding to the network that gives the highest 

probability is output as the prediction. 

Before estimating a network using Gibbs sampling, all of its double precision parameters 

( O )  were initialized to uniformly random values on [-0.01.0.01). For each training pattern. 

a single configi.iration of the hidden variables was obtained by perfonning 10 sweeps of Gibbs 

sampiing, while amealing the network from a temperature of 5.0 to 1 .O using a 1 /T schedule. 

where T is the sweep count. Then. the network parameters were adjusted using a learning 

rate of 0.01. For a training set of T patterns, a randomly chosen set of LT/3l cases were 

set aside as a "validation" set. By monitoring the probability estimate for this validation 

data, early-stcjpping was used to prevent overfitting. After every 10 epochs of Iearning 

(1 epoch = one sweep through the remaining [2T/31 trahing cases). for each validation 

pattern. 10 sweeps of Gibbs sampling with mnealing were performed as described above. 

and then 20 sweeps of Gibbs sampling at unity temperature were performed to obtain 20 

codigurations. Then. the probability of the validation pattern ws estimated by computing 

the probabiiity mass associated with each configuration and its 1-nearest neighbors. Each 

network was trained for a minimum of 100 epochs (the validation probability estimate was 

still computed every 10 epochs in this interval). Then. learning was stopped after the current 

epoch n. if the epoch nm, at which the maximum validation probability estimate occurred 

took place no less than n / 3  epochs ago. Also. in order to terminate learning runs where 

the validation probability estimate continued to inmecase asymptotically towards a iimit . a 

maximum of 2000 training epochs were performed. In siunmary. Iearning was stopped at 

epoch n if n 3 2000 or if n,, 5 2n/3 and .n >_ 100. (A  sirnilas early stopping technique 

has been used with regression rnodels [Rasmussen 19961.) 

3.5.3 The mean field (variational) Bayesian network (MFBN-1) 

MFBN-1 models the distribution of each of the 10 classes of data using a logistic multiple- 

cause network of the type shown in Figures 3.4. Each network is fit using the variational 

technique described in Section 3.4.2. Each network has 64 visible binary (0/1) variables 

(8 x 8) and one hidden layer of 16 binary (0/1) variables. Once the 10 networks have been 
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estimated. classification of a test pattern proceeds by computing the likelihood bound for 

each network, using the  method described in Section 3.4.2. The class corresponding to the 

network that gives the highest bound is output as the prediction. 

Bef~re  estimating a network iising the variational method. d l  of its doubIe precision pa- 

rameters (O) were initialized to uniformly random values on [-0.01,0.01). For each training 

case, the variational parameters were initialized to unifonnly random values on [-0.01.O.OL). 

The variationai bound was increased at each generalized Estep using the following itera- 

tive method (Sad. daakkola and Jordan 19961. After each iteration. if the bound did not 

increase by more than 1% then no more iterations were performed for the current train- 

ing case. A maximum of 10 iterations was performed. These aigorithm parameters were 

suggested by Jaakkola (personal communicatio~i). The variational bound was increased at 

each generalized iul-step using bat ch gradient desceut with a learning rate of 0.01. 

The validation procedure used to train each network was identical to the one used for 

GM-1, except t hat the ~~iriational bound was used instead of an estimate of the validation 

case probability. The validation bound was computed every 5 epochs. N o  fewer tiian 100 

epochs were performed. and no more than 1000 epochs were performed. 

3.5.4 Stochastic Helmholtz machines (SHM-1,SHM-2,ESHM-1) 

SHM-1 models the distribution of each of the 10 classes of data using a stochastic Helmholtz 

machine with 64 visible binary (011) variables (8 x 8) and one bidden layer of 16 binary (0/1) 

variables. The generative and recognition networks are of the form shown in Figures 3.4 
and 3.5. and logistic regression is used to iniplement the conditional relationships. The 

likelihood bound for a given input pattern is estimated iising 20 recognition sweeps. Once 

the 10 machines have been estimated. classification of a test pattern proceeds by estimating 

the likelihood bound for each machine. The class corresponding to the machine that gives 

the highest likelihood bound estimate is output as the prediction. 

Before estirnating a Helmholtz machine using the wake-sleep algorithm. all of its double 

precision parameters (9 and #) were initialized to uniformly random values on [-0.01.0.01). 

A learning rate of 0.01 was used for both phases of learning. The validation procedure 

used to train each machine was identical to the one used for GM-1, except that instead 

of obtaining an estimate of the validation set probability as described above, 20 epochs 

of recognition passes were performed on the validation set to obtain an estimate of the 

likelihood bound for the d d a t  ion data. 

SHLM-2 is similar to SHM-1. except that it uses stochastic Helmholtz machines with a 

visible layer of 64 binary variables, a middle hidden layer of 16 binary variables, and a top 
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hidden hyer of 8 binary variables. The generative and recognition networks are of the form 

shown in Figure 3.6. 

ESHM-1 uses an ensemble of 8 SHM-1 networks to mode1 each class of patterns. Each 

network in an ensemble is estimated using the above procedure, where a diEerent randomiy 

chosen validation set of LT/3] patterns is set aside for each network. .illso. different initial 

random parameters are chosen for each network. Once 8 networks have been estimated for 

each of the 10 claqses of data. a. test pattern is processed by approximating 8 likeiihood 

bounds for each data class. These are averaged together within each ciass to obtain 10 

average likeiihood bounds. The final ciass decision for the test pattern is based on these 

averages. 

3.5.5 The classification and regression tree (CART-1) 

This tree-based classifier has previously b e n  riin on several ciassification tasks in DELVE 
[Rasmussen et al. 19961. CART-1 uses a binary decision tree to classiS the test patterns. 

where each node in the tree makes a binary decision based on an ais-aligned decision 

surface in the input space. and each leaf in the tree hm a class label. A test pattern is 

classified by traversing the tree from the root to a leaf. while following the decisions at each 

node. That is. decision node d, looks a t  a particular input variable ui, and compares it to 

a threshold t,. If vi, > t l .  the right child is chosen. and otherwise the left child is chosen. 

When a leaf is reached. the class of the leaf node is output by the classifier. 

The tree is constructed from a training set using 10-fold cross validation. The details of 

how the tree is prodiiced can be found in [Breiman et al. 19841'. 

3.5.6 The naive Bayes classifier (NBAYESC-1) 

The naive Bayes methocl of modelling can be viewed as a multiplccaiise Bayesian network 

where there aren't nny hidden cause variables. That is. we assume that each of the inputs 

is independent given the class identity. For the binary input case, this model becomes very 

simple. The naive Bayes model for each class of data is 

' 1 used Version 1.1 of the CART software 
Ct. Lafayette, Caiifomia 94549. Tel: +1 415 

provided by California Statistical Software Inc., 961 Yorkshire 
283 3392. 
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where Oi E [O. 11 is the probability that v; = 1 under the model. For a given class of 

training data, 1 use the Bayesian method to obtain a minimum squared-loss estimate of 

P ( v ) ,  assuming a uniform prior for 8: 

Once one such estimate is obtained for each of the 10 classes of training data. a test pattern 

is clâssified by choosing the class that gives the probability to the pattern. Notice that if 

f, = O or T. the probability P(v) is not O or 1. This prevents overfitting. 

3.5.7 The k-nearest neighbor classifier (KNN-CLASS-1) 

This is the only nonparametric classifier studied in this section. The software I used was 

contributed to DELVE by Michael Revow jRasrnussen et al. 19961. In order to guess the 

class of an input pattern v. the k-nearest neighbor classifier considers the classes of the k 

training patterns that 'are nearest to v in Euclidean distance. Let nj j = 0,.  . . . .I - 1 be 
J-1 the number of snch training patterns in çlass j .  so that Cl=, n, = k. Then. the k-nearest 

neighbor classifier outputs the most fkequent class: 

If two or more classes have the maximum number of k-nearest neighbor training pattcrris. 

then the classifier chooses the class whose training patterns arc closest to v on average in 

Euclidean dis tance. 

k is chosen using leave-one-out cross validation. If there axe T training patterns, T new 
training sets with T - 1 patterns each are produced by leaving each pattern out once. k 

is set to  1, and the misclassification rate on the Ieft out patterns is computed using the k- 

nearest neighbor classifier. Then* k is increased and this process is repeated until k = T - 1. 

The value for k that gives the lowest leave-oneout cross-validation error is used to make 
predictions for the test patterns. 

In order to estimate the pmbabiiity that v cornes korn each class. the k-nearest neighbor 

method uses 

In this case, the squared difference between the predicted probability vector and the true 

class identity vector (a  vectors of 0's with a single 1) is used as the cross-validation metric 
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to determine k. See the DELVE manual [Rasmussen et ai. 1996j for more information. 

3.5.8 Results 

The performances of the ~Iassification methods described above were assessed using the 

DELIT (data for evaluating learning in valid experiments) system [Rasmussen et al. 19961. 

Under this system. the digit ~Iassification problem that 1 am interested in is called a proto- 

task- A particular choice of training set size (e-g..  120 training patterns) is called a task. In 

order to get an accurate measure of the performances of the methods (with error bars), each 

method was trained and testeci at least 4 times wing disjoint training set - test set pairs 

(,each of which is called a task instance). An original data set consisting of 10460 patterns 

(1096 of eaich class) was partitioned into a training collection of 7680 patterns and a test 

collection of 3280 patterns. For each of the tasks with training set sizes 120. 240. 480. and 

960, the training collection was partitioned into 8 disjoint training sets: for the task with 

training set size 1920. the training collection was partitioned into 4 disjoint training sets. 

Notice that for the tasks with training set sizes 960 and 1920, dl of the training partition 

cases were used. wiiereas for the tasks with training set sizes 120. 240. and 480. not al1 of 

the training paxtition cases were used. For each of the tasks wit h training set sizes 120. 240. 

480, and 960. the test collection was partitioned into 8 disjoint test sets with 410 patterns 

each: for the task with traioing set size 1920. the test collection was partitioned into 4 

disjoint test sets with 820 patterns each. This way of partitioning the data eliminates the 

dependence between each of the 8 experiments performed to assess the performance of each 

method on each task instance. 

Figure 3.7 shows the losses (haction of patterns misclassified) for each of the tasks (five 

boxes). Each horizontal bar gives an estimate of the expected loss for a particular method 

on a particular task. The methods are ordered (kom left to right within each box) : CART- 

1. NBAYESC-1. KNN-CLASS-1. MFBN-1. SHM- 1. SHM-2. GM-1. ESHM-1, LARC- L - 
this is the same ordering as is given top to bottom in the lower-left hand region of the 

figure. Each vertical bar gives an estimate of the error (one standard deviation) for the 
corresponding estimate of the expected loss. Numben in the boxes lying beneath the x- 

axis are pvalues (in percent) for a paired t-test. C h o s e  your favorite method from the 

List in the lower left-hand corner of the figure and scan from lefi to right. Whenever you 

see a number. that means that mother method has performed better than your favorite 

method, with the given statistzcul signzjcance. A low pvalue indicates the difference in the 
miscIassi£ication rates is very signincant. More precisely. a pvalue is an estimate of the 

probability of obtaining a clifference in performance that is equal to or greater than the 

observed difference. given that we assiune the two methods actually perform equally well 
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dig8x8b/ class 

Figure 3.7: Estimates of expected fractions of misclassified patterns for nine methods trainet1 on 
Five different sizes of training sets. 

(the null hypothesis). 

The ESHM-1 and LARC-1 methods clearly oiitperform al1 other methods for al1 tasks. 

If we scan the p-values for these two methods Erom left to right. we see that there is only a 

single method that performs significantly better t han ESHM-1. and t hat is LARC-1 on the 

task with the smallest training set size (120). I found that the performance of ELARC-1 
(ensemble of logistic autoregressive networks, not shown) was indistinguishable Eiom plain 

LARC- 1 wit h respect to classification error. In contrast. ESHM- 1 performs significant ly 

better than SHM-1. It is of particular interest that LARC-1. which contains no latent 

variables, performs slightly better than the methods that contain latent variables. 

GM-1 performs the best out of dl approximate maximum likelihood methods, including 

MFBN- 1, SHM- 1, and SHM-2. However, GM- 1 required an order of magnitude more train- 

ing and validation time than SHM-1. For this reason, an ensemble of logistic multiple cause 

networks was not considered for the Gibbs sampling estimation method. Tabie 3.1 shows 

the average time taken to train and test each method for each training set size on a 195 

MHz MZPS R4400 processor. MFBN-1 also required an order of magnitude more training 

and validation time than SHM-1, and so an ensemble of mean field Bayesian networks was 
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Figure 3.5: Estimates of e-xpected negative log-probability of the true digit identity 
of eight methods trained on five different sizes of training sets. 

aven by each 

Table 3.1: Average time in minutes required to train and test the methods fkom Figure 3.7 for eadi 
of the training set sizes. 

Training set size 
Method 120 240 480 960 1920 

CART-I 0.6 1.1 1.9 4.7 5.1 
NBAYESC- 1 0.0 0.0 0.0 0.0 0.0 
KNN-CLASS-I 0.2 1.0 4.6 25.7 192.9 
MFBN-1 19.8 64.4 130.5 216.9 3 4 . 6  
SHM-1 2.3 5.4 11.8 21.8 46.0 
S Hhf- 2 3.7 7.5 32.3 41.7 77.6 
G LM- I 41.7 85.8 176.8 238.0 396.3 
ESHM-1 19.4 44.7 95.5 186.7 358.9 
LARC- 1 0.2 0.5 L.2 3.0 6.5 

not considered. 

Figure 3.8 shows the performance results for soft decisions (the loss is the negative 

log-probability of the true class under each model). Thc methods are: NBAYESC-1, KWN- 
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CLASS-1, MFBN-1. SHM-1. SHM-2. GM-1? ESHM-1, LARC- 1. ELARC- 1. In this case 

ELARC- 1 performs significantly better than LARC- 1. Also. in t his case ESHM- 1 pei-fonns 

slightly better than LARC-1 and ELARC-1. 

3.6 Extracting structure from noisy binary images 

The Bayesian networks described so fa in this chapter have been supemised. in the sense 

that they are trained witb pattern - ciass label pairs. Can we corne up with a l g o r i t h  that 

can organize the training data iato meariingful classes. without the heip of class labels? 

This section and the following one give examples of Bayesian network models that exhibit 

this emergeut classification behavior. In tliis section. 1 show how a network can learn to 

recognize vertical and horizontal lines in synthetic images: and even learn to recognize the 

orientation of t hose lines. In the following section. I show how a network can l e m  to extract 

bot h categorical and continuous structure simultaneously. 

An interesting problem relevant to vision is that of extracting independent horizontal and 

vertical bars bom an image [Foldiak 1990: Saund 1995; Zemel 1993: Dayan and Zemel 1995; 

Hinton et al. 19951. Figure 3.9 shows 48 examples of the binary images 1 am interested in. 

Each image is produced by randomly choosing between horizontal and vertical orientations 

with equal probability. Then. each of the 16 possible bars of the chosen orientation is 

independently instantiated wit h probability 0.25. Finally: additive noise is introduced by 

randomly turning on with a probability of 0.25 each pixel that was previously off. So. 

the production of these images involves three levels of hierarchy: the first and lowest level 

represents pixel noise. the second represents bars that consist of groups of 16 pixels each. 

and the third represents the overdl orientation of the b a s  in the image. 

3.6.1 Wake-sleep paramet er estimation 

Using the wake-sleep algorithm. 1 trained a stochastic binary Helmholtz machine that has 4 

top-layer m meta-cause") variables. 36 middle-hyer variables. and 256 bottom-layer image 

variables. Each conditional distribution is modelled using logistic regression. Learning 

is performed through a series of iterations, where each iteration consists of one bottorn-up 

wake phase sweep used to adjust the generative network parameters and one top-down sleep 

phase sweep used to adjust the recognition network parameters. Every 5000 iterations, the 

recognition network is used to obtain an estimate (with error bars) of the lower bound on the 

data log-likelihood under the generative network. To do this, 1000 recognition sweeps are 

performed without learning. During each recognition sweep' binary values for the hidden 
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Figure 3.9: Exampies of training images whose production involved t hree levels of hierarchy. Fust, 
an orientation ( i .e . .  horizontal or vertical) is randomiy chosen with fair odds. Second, each bar 
of the chosen orientation is randomly instantiated with probability 0.25. Third, additive noise is 
introduced by randomly turning on with a probability of 0.25 each p i ~ e l  that was previously off. 

variables are obtained for the given training image. The log-likelihood of the values of al1 

the variables under the generative network minus the log-likelihood of the hidden variable 

values under the recognition uetwork gives an unbiased estimate of the log-likelihood bound 

(3.40). In this way, 1 obtain 1000 i.i.d. noisy unbiased estimates of the log-iikelihood bound. 

The average of these values gives a less noisy unbiased estimate. Also. the variance of this 

estimate is estimated by dividing the sample variance by 999. 

1 am interested in solutions where the generative network can construct the image by 

adding features, but canno t remove previously instantiated features. If the network pa- 

rameters are in no way constrained to favor this type of solution, perceptuaily unattractive 

solutions are found (see Section 3.6.3). So, I constrain the parameters of the logistic re- 

gression mode1 that connects the rniddle layer to the bottom Iayer to be positive by setting 

to zero any negative weights every 20th learning iteration. In order to encourage a so- 

lution where each image can be succinctly described by the minimum possible number of 

causes in the rniddle layer, 1 initialize the rniddle-layer generative biases to -4.0 which favors 

most middle-layer variables being inactive (value of O) on average. Al1 other parameters 
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Optimum log-likelihood - i 

Figure 3.10: Variation of the lower log-likeiihood bound with the number of wake-sleep learning 
iterations for the stochastic Helmholtz machine. 

are ini t iahed to 0.0. For the fkst 100,000 iterations, a learning rate of 0.1 is used for the 

generative parameters of the model feeding into the bottom layer and for the recognition 

puameters of the model feeding into the middle layer: the rernaining Iearning rates are set 

to 0.001. After t h .  levning is accelerated by setting ail learning rates to  0.01. 

Figure 3.10 shows the learning curve for the first 300.000 iterations of a simulation 

consisting of a total of 1.000.000 iterations. Aside fkom several minor fiuctiiations. the 

wake-sleep algorithm ma.uimizes the log-likelihood bound in this case. Eventudy. the bound 

converges to the optimum value (-170 bits) shown by the soiid Line. This value is computed 

by estimating the average log-likelihood of the data under the method that was used to 

produce the data. i. e., the negative entropy of the training data. 

By examining the generative parameters after learning, we see that the wake-sleep ai- 

gorit hm has extracted the correct 3-level hierarchical structure. Figure 3.11 shows the 

parameters for the generative Iogistic regression models feeding into and out of the middle 

layer in the network. A black blob indicates a negative parameter and a white blob indi- 

cates a positive parameter: the area of each blob is proportional to the magnitude of the 

parameter (the largest value shown is 7.77 and the smallest value shown is -7.21). There 

are 36 blocks arraoged in a 6 x 6 grid and each block corresponds to a middlelayer vari- 

able. The 4 blobs at the upper-left of a block show the parameters that connect each of 

the toplayer variables to the corresponding middle-layer variable. The single blob a t  the 

upper-right of a block shows the bias for the corresponding middle-layer variable. The 

16 x 16 matrix that forms the bulk of a particular block shows the parameters that connect 

the corresponding middle-layer variable to the bottom-layer image. These matrices clearly 
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Figure 3.11: Parameters for connections that feed into and out of the middle-layer variables in 
the generative network. -4 black blob indicates a negative parameter and a white blob indicates a 
positive parameter; the area of each blob is proportional to the parameter's magnitude (the iargest 
value shown is 7.77 and the smallest value shown is -7.21). 

indicate that 32 of the 36 middle-layer variables are used by the network as "feature vari- 

ables" to represent the 32 possible bars. These feature variables are controlled mainly by 

the right-most toplayer "orientation" variable - the parameters connecting all the other 

top-layer variabIes to the feature variables are nearly zero. If the orientation variable is off, 

the probability of each feature variable is determined mainly by its bias. Vertical feature 

variables have significantly negative biases, czusing them to remain off if the orientation 

neuron is off. Horizontal feature variables have only slightly negative biases, causing them 

to turn on roughly 25% of the time if the orientation variable is off. The parameters con- 

necting the orientation variable to the vertical feature variables are significantly positive, so 
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that when the orientation variable is on the total input to each verticai feature variable is 

slightly negative, causing the vertical feature variables to turn on roughly 25% of the time. 

The parameters connecting the orientation variable to the horizontal feature variable, c are 

significantly negative, so that when the orientation variable is on the to td  input to each 

horizontal feature variable is significantly negative, causing the horizontal feature variables 

to remain off. Since the parameters connecting the top-layer variable to the 4 middle-iayer 

nonfeature variables are negative, and since the nonfeature variables have large negative 

biases, the nonfeature variables are üsually inactive. Because the bot t om-layer biases ( not 

shown) are only slightly negative, a pixel that is not turned on by a feature variable still 

has a probability of 0.25 of being turned on. This accounts for the additive noise. 

3.6.2 Automatic clean-up of noisy images 

Once learned, the recognition network can nonlinearly filter the noise from a given image, 

detect the underlying bars, and determine the orientation of these bars. To clean up each 

of the training images shown in Figure 3.9, 1 apply the learned recognition network to 

the image and obtain middle-layer variable values which reveal an estimate of which bars 

are on. The results of this procedure are shown in Figure 3.12 and cleady show that the 

recognition network is capable of filtering out the noise. Usually, the recognition network 

correctly identifies which bars were instantiated in the original image. Occasionally, a bar 

is not successfully detected. In two cases a bar is detected that has an orientation that is 

the opposite of the dominant orientation; however, usually the recognition network chooses 

a single orientation. Inspection of the original noisy training images for the two incorrect 

cases shows that aside hom the single-orientation constraint, there is significant evidence 

that the mistakenly detected bars should be on. F'urther training reduces the chance of 

misdetection. 

3.6.3 Wake-sleep estimation without positive parameter constraints 

If al1 the parameters are initialized to 0.0, the parameters that connect the middle layer to 

the bottom layer are not constrained to be positive, and al1 the learning rates are set to 0.01, 

the estimated generative network does not properly extract the bar structure. Figure 3.13 
shows the generative network parameters that connect the middle layer to the bottom layer, 

after 5,000,000 leaming iterations. The black bars indicate that some middle-layer variables 

are capable of "uninstantiating" bars that may be instantiated by other variables. Although 

it is imaginable that such a complex scheme is still capable of modelling the training images, 

the log-likelihood bound for this trained Helmholtz machine is -190 bits - significantly lower 
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Figure 3.12: Filtered versions of the training examples from Figure 3.9 extracted using the estimated 
recognition network. 

than the optimum value of -170 bits. 

3.6.4 How hard is the bars problem? 

Although this bar extraction problem may seem simple: it must be kept in mind that the 

network is not given a priori topology information - a h e d  randorn rearrangement of the 

pixels in the training images would not change the learning performance of the network. So, 

insofar as the network is concerned, the actual training examples look like those shown in 

Figure 3.14 which were produced by applying a fixed random rearrangement to the pixels 

in the images from Figure 3.9. 

3.7 Simultaneous extraction of continuous and categorical 

structure 

The Bayesian networks presented so fax in this chapter have contained discrete variables. 

However, sorne hidden variables, such as translation or scaling in images of shapes, are best 
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Figure 3.1 
estimation 
layers, and 

3: Parameters for generative connections that feed out of the rniddle-layer variables after 
without speciai initiaiization of the weights, without different learning rates between 
without positive weight constraints in the generative network. 

represented using continuous values. Work done on continuous-vdued Bayesian networks 

has focussed mainly on Gaussian random variables that are linked linearly such that the 

joint distribution over d l  variables is also Gaussian [Pearl 1988; Heckerman and Geiger 

19951. Lauritzen et al. [1990] have included discrete random variables within the linear 

Gaussian kamework. They consider networks that are singly-connected, so that probability 

propagation can be used. Most work on continuous-valued Bayesian networks requires that 

al1 the conditional distributions represented by the network can be easily derived using 

information elicited kom experts. Hofmann and Tresp [1996] consider estimating continuous 

Bayesian networks that may be richly connected, but they assume that al1 variables are 
observed. As far as nonlinear continuous networks with latent variables are concerned, 

continuous-valued Boltzmann machines have been developed [Movellan and McClelland 
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Figure 3.14: Training examples from Figure 3.9 after a fked random rearrangement of the pixels 
has been applied. These are indicative of the difficuity of the bars problem in the absence of a 
topological prior that favors local intensity coherence. 

19921, but these suffer from long simulation settling times and the requirement of a 'negative 

phase" during learning. Tibshirani [1992], MacKay [1995] and Bishop et al. [1997] consider 

estimating rnappings fiom a continuous latent variable space to a higher-dimensional input 

space, eEectively using multiplecause type networks of the form shown in Figure 3.4 on 

page 62. In this section: 1 consider a hierarchical Bayesian network with variables that can 

adapt to be continuous or categorical, as needed by the training data [Frey 1997a; Frey 

3.7.1 An adaptive random 

The proposed random variable is 

effect zi via a total input, 

variable 

shown schematically in Figure 3.15a2. The parents ai 

' ~ e o f f r e ~  Hinton çuggested this unit as a way to make factor anaiysis nonlinear. 
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Figure 3.15: (a) schematicaily shows the dependence of the proposeci variable on its parents. (b) 
to (e) illustrate four quite different modes of behavior: (b) deterrninistic mode; ( c )  stocfiastic linear 
mode; (d) stochastic noniinear mode; and (e) stochastic binary mode (note the  different horizontal 
scale). For the sake of graphical clarity, the density functions are normalized to have equal maxima 
and the subscripts are left off the variables. 

where we constrain Bij = 0.0 if Z j  6 %. The probability density over the presigmoid activity 

xi for variable zi is 

(its postsigmoid activity ) is obtained by passing 

cumulative Gaussian squas hing t'unction: 

Networks of these variables can represen t a 

ministic multilayer perceptrons [Bishop 19951, 

the presigmoid activity through a sigmoidai 

broad range of structures, iucluding deter- 

binary sigmoidal Bayesian networks [Ned  

19921 (see Section 3.4). mixture models. mixture of expert models [Jacobs et al. 19911, 

hierarchicd mixture of expert models [Jordan and Jacobs 19941, and factor analysis models 

[Everitt 19841. This versatility is brought about by a range of significantly dSerent modes 

of behavior amilable to each variable. 

Deterministic mode: If the noise variance a l  is very s m d .  the postsigmoid activity 

will be a practically deterministic sigmoidd function of the mean (see Figure 3.15b) . This 

mode is usefui for representing deterministic nonlineu mappings such as those found in 

deterministic multilayer perceptrons and mixture of expert modeis. 

Stochastic iinear mode: For a given mean, if the squashing function is approximately 

Linear over the span of the added noise, the postsigmoid distribution will be approximately 

Gaussian with the mean and standard deviation linearly transformed (see Figure 3.15~). 
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This mode is useful for representing Gaussian noise effects such as those found in mixture 

models, the outputs of mixture of expert models. and factor analysis models. 

Stochastic nonlinear mode: If the variance of a variable in the stochastic iinear mode 

is increased so that the squashing function is used in its nonlinear region, a variety of 

distributions are producible that range from skewed Gaussian to uniform to bimodd ( s e  

Figure 3.15d). 

Stochastic binary mode: This is an extreme case of the stochastic nonlinear mode. If the 

variance a: is very large. then nearly d l  of the postsigmoid probability mass will Lie near 

the ends of the interval (O, 1) (see Figure Xlse). Kg.. for a standard deviation of 150, less 

than 1% of the mass lies in (0.1.0.9). In this mode. the postsigmoid activity zi appears to 

be binary with probability of being "on" (i.e.. ti > 0.5 or, eqiiivalently, z, > 0): 

This sort of stochastic activation is found in binary sigrnoidal belief networks [Jaakkola. 

S a d  and Jordan 19961 and in the decision-making components of mixture of expert rnodels 

and hierarchical mixture of expert models. 

3.7.2 Inference using slice sampling 

Assuming the variables are labeled in ancestral order. the joint distribution can be written 

where N is the number of variables. p(zi l  { z j  1;;;) and p(z i l  { z j  };::) are the presipoid 

and postsigmoid conditionai deusities for variable 2,. ( R e c d  that the set of parents is 

represented by parameter constraints.) As usual, 1 define zo r 1 to dlow for a constant 

bias. 

Even for s m d  networks of these variables. probabilistic inference c m  be very difficult. 

Not only is the inference problem combinatorial, but it involves continuous hidden variables 

whose distribution when conditioned on visible variables may be multimodal with peaks 

that are broad in some dimensions but riarrow in others. 1 use a Markov chain Monte car10 

procedure, which consists of sweeping a prespecified number of times through the set of 

hidden variables. A new value is obtained for each hidden variable using slice sampling 

[Neal 19971 (see Section 2.2.4)? based on the distribution for the variable conditioned on dl 
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other variables. If an infinite number of slice samples are drawn for each hidden variable 

before passing on to the next hidden variable, this procedure is equivalent to Gibbs sampling 

(see Section 2.2.2). In fact, detailed balance still holds if only a fixed number of slice samples 

are drawn for each variable before passing on to the next variable. In most cases, drawing 

only one slice sample for each variable before continuing on will be most efficient. 

If the parent-child influences cause there to be two very narrow peaks in the conditional 

distribution p(zil{rj);~b, { z ~ } ; Y , ~ + ~ )  for a hidden miable  (corresponding to a variable in 

the stochastic binary mode). the slices will almost always consist of two very short Line 

segments and it will be very difficult for the above procedure to switch from one mode to 

another. To fix this probIem, slice sampling is performed in a new domain, yi = @ ( { x i  - 

p } In this domain the parent-child distribution p(yi 1 {z,  1;:;) is uniform on (0. I), so 

( i ~ j ,  { )  = ( { z ~ } )  SO: I can use the following function for slice 

sampling: 

where ,ui i  = xi&pi 19 ,~  ,, rj . Since s i ?  yi and zi are all deterministically related. sampling 

born the distribution of yi will give appropriately distributed values for the other two3. 

3.7.3 Parameter estimation using slice sampling 

I use on-line stochastic gradient ascent to perform MLB parameter estimation. This consists 

of sweeping through the training set and for each training case following the gradient of 

log p ( { x i  }zl ) . while sampling hidden unit values as described above. The parameters are 

changed as follows: 

where q is the learning rate. 

I designed two experiments meant to elicit the four modes of operation described above. 

Both experiments were based on a simpie network with one hidden layer h containing two 

variables and one visible layer v containing two variables. Training data was obtained 

by carefully seIecting model parameters so as to induce various modes of operation and 

3 ~ o t h  90 and do not have closed-form expressions, so I use the C-library erf() function to impIe- 
ment @() and table lookup with quadratic interpoiation to implement +-'0. 
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Figure 3.16: For each experiment (a) and (b), contours show the distribution of the 2-dimensional 
training cases- The inferred mean postsigmoid activity of the two hidden units after learning are 
shown in braces for several traicing cases, rnarked by x .  

then generating 10.000 two-dimensional examples. Before training, the log-variances were 

initialized to 10.0. and the other parameters were initiaiized to uniforrnly random values 

between -0.1 and 0.1. Training consisted of 100 epochs using a learning rate of 0.001 and 

20 sweeps of slice sampling to complete each training case. Each task required roughly five 

minutes on a 195 MHz h,lIPS R4OO processor. 

The distribution of the training cases in visible unit space (vi -u2) for the fkst experiment 

is shown by the contours in Figure 3.16a. After training the network, I ran the inference 

algorit hm for each of ten representative training cases. The mean postsigmoid activities 

of the two hidden units are shown beside the cases in Figure 3.16a; clearly, the network 

has identified four classes that it labels (O. 0): ( O 1  1): (1.0). and (1.1). Based on a 30 x 30 

histogram. the relative entropy between the training set and data generated kom the trained 

network is 0.02 bits. Figure 3.16b shows a sirnilar picture for the second experiment, using 

different training data. In this case. the network has identified two categories that it labels 

using the 6rst postsigmoid activity. The second pos tsigmoid activity indicates how Far dong 

the respective "ridge" the data point lies. The relative entropy in this case is 0.04 bits. 

The above experiments illustrate how the same network can be used to model two quite 

different types of data. In contrast, a Gaussian mixture model would require many more 

cornponents for the second task as compared to the k t .  Although the methods due to 

Tibshirani and Bishop et al. would nicely model each submanifold in the second task. they 

would not properly distinguish between categories of data in eit her task. MacKay's method 

may be capable of extracting both the submanifolds and the categories, but I am not aware 

of any results on such a dual problem. 

It is not diflicult to conceive of models for which naive Markov chain Monte Car10 

procedures will become fiuitlessly slow. In particular, if two variables are highly correlated. 

the procedure of sampling one variable at a time wiU converge extremely slowly. Also. the 

blarkov c h a h  method may be prohibitive for larger networks. One approach to avoiding 
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these problems is to use the Helmholtz machine or variational methods. 



Chapter 4 

Data Compression 

The goal of data compression is to exploit the redundancy in input patterns so as to r e p  

resent individual patterns concisely on average. In this thesis. 1 focus on lossless data 

compression. in which the original pattern can be completely recovered from the concise 

representation. A source code maps each input pattern v to a codeword. such that for each 

valid codeword there is a unique input pattern. 1 will consider sources where the patterns 

are i.i.d. (independent and identicdly drawn) kom a distribution Pr@). 

S hanoon's noiseless source coding t heorem [Shannon 19481 States t hat the average code- 

word length cannot be less than the entropy of the source: 

where l(v) is the length in bits of the codeword for input pattern v. and R is the entropy 

of the source: 

Traditional approaches to data compression have focussed on producing source codes whose 

codeword lengths are nearly optimal, where the optimal length of the codeword for v is 

log2 Prb) - 

Arithmetic coding [Rissanen and Langdon 1976; Witten, Neal and Cleary 19871 is a 

practicd algorithm for producing near-optimal codewords when the source distribution 

P,(v)  is known. If v is binary-valued. P,(v) can be easily estimated and arithmetic coding 

can be used to produce near-optimal "fractional bit" codewords. If v is high-dimensional 

and the distribution is quite cornplex (e.g., images of faces), it may be desirable to estimate 
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a more sophisticated flexible probability model P(v) .  Unfortunately: even if su& a mode1 

can be estimated so that P ( v )  = P,(v), there may not be a practical uray ta encode v using 

the model. For example. an arithmetic encoder requires a table of the probabilities for all 

possible inputs. For a 16 x 16 binary image. this table would have 2256 entries! So. not 

o d y  do we need a model that provides a probability P(vj, but we also need a mode1 that 

somehow decomposes P ( v )  in a way that allows the encoder to encode the variables one at 

a time (or in s m d  groups). 

Graphicd modeis provide a structured description of P ( v ) ,  and so they seern like a good 

place to look for the source modeis described above. However, it turns out that undirected 

graphical models do not provide the right type of structure. For example, the Boltzmann 

machine [Hinton and Sejnowski 19861 (a Markov random field that l ems )  is poorly suited 

to data compression. because it does not decompose P (v )  in a way that is suitabIe for 

efficient piece-wise compression. (A  method such as Markov chah Monte Car10 must be 

used to estimate the partition fwlction, which normalizes the probabilities.) On the other 

hand, Bayesian networks do provide an ideal structure for data compression. 

In Section 4.1, I show how Bayesian network source models that do not have latent 

variables can be used very efficiently to compress data. Then, in Section 4.2, 1 go on 

to discuss source models that have many latent variables. Values can be chosen for the 

latent variables and the entire configuration can be encoded. In this way. s *Lrnulti-valued 

source code" with many codewords for each input pattern is obtained. In many cases. 

these codewords cannot be rnixed together in a tractable way. To remedy this problem. 

I show how extra information can ride .'piggyback5 on the ciioice of codeword and derive 

the communication rate for this .'bits-back" procedure. In Section 4.3. we see that a broad 

c1ass of approximations to maximum likelihood parameter estimation actually minimizes 

this communication rate. In Section 4.4. 1 outline the =bits-back coding" algorithm. which is 

a practical implementation of the .'bits-back7 idea. It turns out that by using an aithmetic 

decoder in the bits-back encoder and an arithmetic encoder in the bits-back decoder. we 

can achieve a practical communication rate that is nearly optimal. Finally, in Section 4.5. 

1 present compression results for Helmholtz machine source models that are adapted using 

the wake-sleep algorithm. 

4.1 Fast compression with Bayesian networks 

Suppose we have at hand a Bayesian network for the binary variables in v,  such that 

P(v) = P,(v) .  As discussed in Section 1.2.2, the joint distribution for a Bayesian network 
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can be written 

where N is the number of variables in v, and ak are the parents of vk. This decornposition 

is very well-suited to arithmetic coding. 

In order to encode v. we pick an ancestral order for the variables. 1 wili assume wit hout 

Ioss of generality that vl . . . . U N  is such an ordering. Compression begins wit h ul . whose 

observed value is fed into the arithmetic encoder. along with its distribution { P ( v i  = 

O),  P(vl = l)], which is part of the network specification. Next, we compute {P(v2 = 
01a2), P(vz = 1 la2) ) using the conditional probability given in the network specification as 

well as the values of 9% parents (Le.. either (ui } or 0 )  which have already been encoded. 

We feed the observed value of vz into the arithmetic encoder, along with its distribution. 

Encoding continues in this fashion until d l  network variables have been encoded. 

For this procedure to work as described, the Bayesian network must be fully visible. 

That is, al1 network variables are part of the input pattern. Suppose there are some latent 

variables h that are not part of the input. Then, the Bayesian network models P(v. h). 
These variables may be important for representing higher-order structure in the input v, 

as discussed extensively in Chapter 3. Now, the decomposition in (4.3) c a o t  be used. 

If there aren't many latent variables. we can use a procedure that is similar to the one 

described above. We pick an ancestral order and proceed as described abave, encoding only 

the observed variables. Whenever we encounter an observed variable that is not dependency- 

separated from an unobserved variable by the variables that have beeli encoded so far. the 

unobserved variable must be integrated out, by siimming over its values. The complexity 

of this encoding procedure is usually exponential in the number of unobserved variables. 

Sometimes, the graphical structure of the network permits this procedure to be done in a 

very efncient way. For example, the latent variables in a hidden Markov mode1 [Rabiner 

19891 with a fixed state space size can be integrated out in a way so that the encoding 

complexity is linear in the number of latent variables (number of time steps). 

4.2 Communicating extra information t hrough the choice of 
codeword 

In general, when the latent variables in a Bayesian network cannot siimmed away to compute 

P ( v )  in a tractable way, we are left with the option of picking values for them. Shen, the 
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Codeword Receiver 
Awciliary data Atxiliary data 

Figure 4.1: A scheme in which a~uiliary data is communicated dong with the symbol in order to 
achieve optimal compression when the source code is multi-vaiued. 

entire set of variables {v. h)  can be encoded using the procedure described above. as if 

aU values were observed. This can be viewed as a multi-uah~ed source code, where there 

are many codewords for each input v. The codeword depends on which values are chosen 

for the Latent variables. Often. as with the hidden ,Markov model, these codewords can be 

mixed in an eficient way. However. there is an interesting class of multi-valiied source codes 

( e - g . .  Bayesian networks with latent variables) for which the multiple codewords cannot be 

mixed in a tractable rnanner. 

The approach 1 take to solve this problem [F'rey and Hinton 1996: Frey and Hinton 

19971 is motivated by the *bits-back" argument of Hinton and Zemel [1904], which they 

used to develop a Lyapunov function for machine leaming. It turns out that Wallace 

[I!39O] devised a similar argument to constntct minimum-length integer-length messages 

for use in minimum-message-lengt h inference. By selecting codewords t hroiigh the use of 

extra avziliary data. the au'uliary data c m  ride .'piggyback'' on the codewords for the 

symbok that we are encoding. Cornparcd to the optimal single-valued source code obtained 

by mking together the codewords for an input pattern. the bits cornmunicated in the 

auxiliary data will make up for the lengths of the suboptimal codewords that are sent. In 
particular. the communication rate will be less than the rate that would be obtained by 

always picking the shortest codeword. A block diagram for this communication scheme is 

shown in Figure 4.1. A simple example will help illustrate this procediire. 

4.2.1 Example: A simple mixture model 

Consider a source that outputs real nurnbers that are distributed according to a mixture 

of two Gaussians. These numbers are rounded to some precision to form a set of symbols. 

The component distributions and the output distribution are shown in Figure 4.2a, where 

the rounding effect is left out for the sake of graphical simplicity. 

The most natural source code to use in this case is one that requires one bit to specify 

from which Gaussian a given symbol was produced plus however many bits are needed to 

code the symbol using that Gaussian. However, the identity of the Gaussian that produced 

a given symbol is ofien ambiguous. ùi particular. a number near vo could well have come 
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Figure 4.2: The most natural source mode1 may produce multiple codewords for a given symbol. (a) 
shows a source with a single binary hidden variable which identifies Erom which Gaussian, Gi or G2, 
the symbol value v is sarnpled. Vaiues of u near uo are likely to have corne from either Gaussian. (b) 
shows the resulting coding density effectively used if we were to aiways pick the shorter codeword. 
This density wastes coding space because it is wrongly shaped and has an area significantly less than 
unity. 

from either Gaussian. In these cases the source mode1 maps each sy~nbol to two codewords 

- one for each Gaussian - producing a rnulti-valued source code. If we were to always 

pick the shorter of the two codewords, we would effectively be assiiming the symbols were 

distributed as in Figure 4.2b. However, this distribution is obviously incorrect - it is not 

even normalized - and will lead to suboptimal compression. 

The obvious way around this problem is to use a single-valued code that is based on a 

summation of the mixture component probabilities. That is, we assign a new codeword to 

each symbol based on its total probability mass, obtained by summing the contributions 

from each Gaussian. Although this procedure is obviously computationally feasible for this 

example, there are more complicated models where it is not (see Section 4.5). In fact, the 

same rate c m  be achieved by using the original multi-valued source code and commiinicating 

extra information through the choice of codeword. This may seem surprising, since for a 

given symbol both codewords in the multi-valued source code are longer than the codeword 

in the single-valued source code. 

Consider a sender that wishes to encode a rounded value d that requires 2 bits if encoded 

using Gi and requires 3 bits if encoded using Gz (Le . ,  v' is twice as likely under Gi  as it 

is under G 2 ) .  Including the single bit required to specify which Gaussian is being used, an 

optimal source code (where the Gaussian identity is explicit) will thus have codewords with 

lengths ti = 3 bits and l2 = 4 bits. If the sender always picks the shorter codeword, the 

average codeword length is 3 bits. 

Suppose instead t hat whenever the sender must communicate the part icular symbol 

v', the sender chooses between the two codewords with equal probability. (In general, 
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the ratio of choices will depend on v'.) It appears the average codeword length in this 

case is (ti + t 2 ) / 2  = 3.5 bits, which is higher than that obtained by aiways choosing the 

shortest codeword. However, t his cost is effectively lowered because the receiver can recover 

information from the choice of codeword in the foliowing manner. Say the sender has high- 

entropy auxiliary data available in the form of a queued bit stream with O and 1 having 

equal fiequency. When encoding v', the sender uses the next bit in the auxiliary data queue 

to choose between Gr and Gz. The sender then produces a codeword that wiU have an 

average length of 3.5 bits (it is important to note that this codeword specifies which of Gl 
and G2 is being used). 

When decoding, the receiver reads off the bit that says which Gaussian was used and 

then determines the rounded value v' kom the codeword. Given the decoded value, the 

receiver can run the same encoding algorithm that the sender used, and determine that a 

choice of equal probability was made between G1 and Ga.  Since the receiver also knows 

which Gaussian was selected, the receiver can recover the queued auxiliary data bit that was 

used to make the choice. In this way, on average 1 bit of the auxihary data is communicated 

at no extra cost. E refer to these recovered bits as bits-buck. 

If the auxiliary data is useful, the average effective codeword length is reduced by 1 bit 

due to the savings, giving an effective average length of 2.5 bits - less than the 3 bits 

required by the shortest codeword. 1 refer to this rnethod of source coding as bits-back 

coding. i t  is important to note that the ratio of choices between Gi and G2 depends on 

the symbol being encoded. For exarnple, if the rounded value is far to the right of vo in 

Figure 42a, then picking the codewords equally often would be v e q  inefficient, since the 

codeword under Gl would be extremely long, making the benefit of the single recovered 

bit negligible. In this case the sender should pi& Gl much less often and as a result the 

sender will read off only "part" of a bit from the auxiliary data queue to determine which 

codeword to use. As we will see below, choosing between the two codewords with equal 

probability is not optimal in the above exarnple. 

4.2.2 The optimal bits-back coding rate 

The rate for bits-badc coding can be determined by defining a distribution that is used to 

select codewords for a given input symbol (pattern), v: 

where h is a binary vector representing the index of the selected codeword for input v. (It 

is represented as a vector, since it too must be encoded.) Letting [(v, h) be the length of 
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the hth codewordL for a specific pattern v. the expected length of the two-part codeword 

for v is 

E(v) = Q(h(v)t(v. h). 
h 

The expected bits-back for v is the information content (entropy) of the distribution used 
to select codewords: 

The difference between (4.5) and (4.6) gives the communication cost for v: 

The overaii rate 3 for bits-back coding is given by averaging this cost over the source 

distribut ion, Pr (v): 

It is easily proven fkom (4.8) that for each v the codeword selection distribution which 

minimizes the bits-back coding rate is the Boltzmann distribution: 

1 denote by * those quantities determined £rom the Boltzmann distribution. Xote that 

this distribution depends on the input symbol. v. The optimal rate for a given multi- 

valued source code is achieved if for each input symbol a codeword is selected using the 

conesponding Boltzmann distribution. By substituting (4.9) into (4.8). we find t hat the 

optimal bits-back coding rate is 

This rate is the same as the rate for a singlevalued source code that has codeword lengths 

which properly reflect the total codeword space associated with each symbol in the multi- 

valued source code. 

' ~ h e  codewords may have fractiond lengths produced, say. by arithmetic coding 
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In the mixture of Gaussians example, where for symbol 11' we had li = 3 bits and 4 = 4 

bits. 

2 1 
E * ( v f )  = ( 3  bits) + _(4 bits) = 3.333 bits. 3 S 

F ( v f )  = 3.333 bits - 0.918 bits = 2.415 bits. (4. i l )  

This is the minimum F(vr)  for the given example. A slightly higher than optimal 3 ( u f )  of 

2.5 bits was obtained above using Q(G~[I . ' )  = Q(G?~u') = 0-5. 

4.2.3 Suboptimal bits-back coding 

For cornplex source models, the summation in the denominator of (4.9) is usually intractable: 

in these cases, it is not possible to obtain the exact Boltzmann distribution. When it is 

possible to obtain the exact Boltzmann distribution. the denominator in (4.9) can often be 

directly used to create a single-valued source code. The advantage of bits-back coding is 

that when the multi-valued source code is unmixable. an approximation ta the Boltzmann 

distribution can be used. There are a variety of practicai algorithms for obtaining such an 

approximation. including Markov chain Monte Carlo methods [Geman and Geman 1984: 

Hinton and Sejnowski 1986: RipIey 1987; Potamianos and Goutsias 19931, mean field meth- 

ods [Chandler 1987: Peterson and Anderson 1987: Zhang 1993: Sad. Jaakkoia and Jordan 

19961: and inverse mode1 methods [Hinton et al. 1995; Dayan e t  al. 19951 (see Section 4.5). 

The rate for an arbitrary codeword selection distribution Q(h(v) can be compared to the 

optimal rate given by the Boltzmann distribution: 

This is the information divergence (a.k.a. relative entropy ) between the codeword selection 

distribution and the Boltzmann distribution, averaged over the source distribution. It is 

always non-negative and yields the increase in coding rate caused by the approximation to 

the Boltzmann codeword seiection distribution. 

A suboptimal codeword selection distribution of particular interest is vhon(hlv), which 
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dways picks the shortest codeword: hshon (v). (This is andogous to the twepart codes 

disciissed by Rissanen [1989].) In this case. the rate increase cornpared to the optimal rate 

is 

(hlv) 1 phon - r = pr(v) Q ~ ~ O * ( ~ ( V )  log2 = 1 Pr(v) log2 Q* (hshort (y 
v h Qn(hlv) 

Bits-back coding makes gains over shortest codeword selectioa by approximately taking into 

account the entire codeword space associated with an input symbol, as opposed to just the 

codeword space associated with the shortest codeword. If several of the shortest codewords 

have roughly equal lengths, or if there are a large number of codewords with lengths some- 

what larger t han the shortest. then Q* (hshoa(h) lvj is significantly less than unity indicating 

that picking the shortest codeword is far fiom optimal. Relative to Rissanen's work. bits- 

back coding provides a tract able way to approxirnate the stochastic complexity [Rissanen 

19891 and furthemore comrnunicate at this rate. 

4.3 Relationship to maximum likelihood estimation 

The whole idea of a multi-valued source code may seem absurd. Why waste codeword space 

by associating multiple codewords with each symbol? An answer to this question must be 

closely related to the structure of the source model. In addition to the input pattern being 

encoded. it is often usefui and naturai to consider extra latent variables whose purpose is 

t O capture hi&-order struct lire. For example. when modelling grey-scale images. it may 

help to create a latent variable that measures overall image contrast. The codeword for a 

particular image wiil include a binary representation of this contrast value. However. there 

rnay be several quite different contrast values that are equaily plausibleo leading to several 

ditferent codewords. 

A genemtive mode1 of the type described above typically provides a parameterized dis- 

tribution p(h(eH) that can be used for encoding the set of latent variables h, as well as 

a distribution P(vlh, eV) to be used for encoding the input symbol v for a given setting 

of the latent variables. Such a codeword wiil have an optimal length (e.g., obtained using 

arithmetic coding) given by 

t(v,  h) - log, p(hlgH) - log2 ~ ( v l h ?  eV). 

Note that the generative structure Mplies that P(vl h. O")  is easy to cornpute. (Rissanen 

[1989] refers to this type of code as a two-part code.) 
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The set of parameters 0 = {B': eV} must be h e d  by hand, estimated using a stored 

data sett or adapted on-Une. Estimating these parameters is a difficuit task when there are 

latent variables. The popular technique of maximum likelihood estimation minimizes the 

following cost : 

Combining (4.14) and (4. la) ,  we find t hat maximum likelihood estimation minimizes 

which is equal to the optimal bits-back coding rate (4.10). In contrat.  maximum likeli- 
hood estimation does not minimize the rate for an encoder that always picks the shortest 

codeword. 

Ofien. maximum likelihood estimation is not tractable when the generative mode1 is 

overly cornplex. In these cases. it is possible to use various approximations to maximum 

likelihood estimation. A common approach [Peterson and Anderson 1987: Neal and Hinton 

1993; Zhang 1993: Hinton et al. 1995: Dayan et  al. 1995: Sad. JEtitldCola and Jordan 

19961 is to minimize an upper bound on C. thus guaranteeing that the cost is lower than 

a certain d u e .  (This is described in Section 3.3, where it is called mm-murn likelihood- 

bound estimation.) The logarithmic term in (4.16) is first bounded by introducing an extra 

distribution Q(h1v) and using Jensen's inequdity: 

Inserting this bound into (4.16). we get an upper bound on C: 

which is equal to the suboptimal bits-badr coding rate (4.8). So' these met hods - including 

the algorithms presented in Section 3.4 - minimize the suboptimal bits-back coding rate. 

As wit h exact maximum likelihood estimation, these methods do not rninimize the rate for 

an encoder that always picks the shortest codeword. 
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Part of the auxiliaxy 
data defines a finite 
precision random 
number 

The probability for each 
codeword is given by the 
partition height 

u The auxiliary data selects 
a codeword 

Figure 4.3: Feeding a random number into am arithmetic decoder with appropriate probabilities 
( s h o w  by the partition heights within a column) selects codewords (shaded partitions), while at 
the same time consenlng information. 

4.4 The bits-back coding algorithm 

To implement the communication scheme shown in Figure 4.1. we need a general method of 

recovering the auxiliary data bits fiom the codeword choices. In the mixture of Gaussians 

example, we considered a specific input symbol for which there were two codewords- These 

codewords were selected equally often so t hat a single bit could be used for bits-back. If the 

codeword selection distribution is dyadic? H&man decodzng [Huffman 19521 can be used 

to pick codewords. In this section. I consider the c'se of an arbitrary codeword selection 

distribution. Software that implements the bits-back coding algorithm described in this 

section can be found at http: //utm. CS .utoront0 .ca/-frey. 

In the case of an arbitrary codeword selection distribution. it is not obvious how random 

codeword choices c m  be made without losing airxiliary data information. To address this 

problem, consider the operation of an arithmetic decoder [Rissanen and Langdon 1976: 

Witten, Neal and C l e q  19871. It receives a finite-precision number on [O. 1) and extracts 

from it a series of decisions according to a table of probabilities. If a collection of uniformly 

distributed finite-precision numbers on [O, 1) is decoded in parallel, we wiil obtain a collection 

of decisions whose distribution exactly matches the table of probabilities. Figure 4.3 shows 

how an arithmetic decoder can be used to conserve the information in the auxiliary data 

when making random codeword choices. The probabilities associated with the decisions 

form the table of the arithmetic decoder. while the auxiliary data defines a random number 

' i - e . ,  each probability is an integral power of 2. 
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Figure 4.4: The Mock diagrams for (a) the bits-back encoder and (b) the bits-back decoder. 

to be decoded. Each column of the figure corresponds to a single codeword choice and is 

partitioned into severd possible outcomes with the height of each partition proportional to 

the probability of the corresponding outcome. It is easy to see that if the random number 

defined by the awiliary data is uniform, codeword choices will be made according to the 

Codeword 
select ion 

v 
Miilti-Valued 

source 
code 

codeword selection distribution (as shown for a part icdu case by the shaded partitions). 

- + Symbol 
h 

It is also easy to see that by applying an arithmetic encoder to the sequence of decisions. 

we can regenerate the random number. 

Figures 44a and 4.4b show block diagrams for the bits-back encoder and decoder re- 

spectively. When the bits-back encoder acquires a symbol v, it uses the codeword selection 

distribution Q(h1v) with an a i t  hmetic decoder to choose codeword h, while consuming 

some auxiliary data bits. The multi-valued source code is then used to produce a codeword 

of length t(v, h). (For the experiments described in the next section, the multi-valued source 

code is implemented using an aithmetic encoder in conjunction wit h a source model distri- 
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b4,J Storage queue 

Figure 4.5: The need for extra a ~ d i q  data is eliminated by feeding the codeword bits back into 
the bits-back encoder as aitxiiiary data. 

bution P(h(B)P(vlh. 8 )  as described in Section 4.3). When the bits-back decoder receives 

the codeword, it first decodes v and h using the multi-vdued source code. It then uses 

the codeword select ion distribution Q(hJ v) with an arithmetic encoder to recover auxiliary 

data bits back hom the codeword choice h. 

Insofar as algorithm complexity goes. for an arbitrary codeword selection distribution. 

the codeword selection procedure described above requires an arithmetic encoder/decoder 

pair. If codewords are produced using a r i t he t i c  coding, the incremental cost of the code- 

word selection procedure is not overwhelming. In a hardware implementation (e.g.. [Feygin 

1995]), the codeword selection procedure can run in pardel  with codeword production. 

4.4.1 The bits-back coding algorithm with feedback 

In practice. when encoding a block of symbols. extra a~uiliary data is often not readily 

available. One solution to this problem is to use the binary form of a portion of the block 

of symbols for auxiliary data. However. so that the bits-back are efficiently utilized. this 

portion of symbok should first be source coded. Figure 4.5 shows a scheme for using the 

same multi-valued source code for doing just this. when the codewords have integer lengths. 

In order to encode a block of symbols, some initial pràrner bits ( e . g . .  a few unencoded source 

symbols) are h s t  placed in the queue. When the next symbol is bits-back encoded. some 
of the bits in the storage queue are used for auxiliary data. The resulting codeword is 

fed back into the storage queue so that it can (possibly) be used as auxiliary data later 

on. Once the entire block of symbols is encoded. the bits-back decoder proceeds to remove 

the codewords from the storage queue in reverse order. Since the decoder ha3 no way of 

knowing a priori how long each codeword is. it is essentiai that the encoder reverse the 

bits within each codeword before feeding the codeword into the storage queue. The source 

symbols are decoded in reverse order compared to the order in which they were encoded. 

As decoding proceeds, the recovered bits-back are fed into the opposite end of the storage 



4.4 The bits-back coding algorithm 107 

queue and d l  later be used as codeword bits or primer. 

This method is inherently block-oriented, siace -ch blo& must be decoded in the o p  

posite order in which it was encoded. As a consequence. a block delay is introduced. which 

is often undesirable. Shorter block lengths will lead to extra overhead duc to the primer 

and also due to kaming inhrmation (such as a codeword i ~ e d  to indicate the end of the 

block). Elonlevert if the block deiay is tolerable, this scheme niceiy eliminates the need for 

extra auxiliary data- 

When the multi-valued source code is implemented iising mithmetic coding, the above 

feedback procedure cannot be used as defined. An arithmetic encoder produces a sequence 

of codeword bits and in general there is no way to break apart this sequence into pieces of 

integer length such that each piece corresponds to one symbol. This problem is easily solved 

by dividing the block of symbols into snb-blocks. The arithmetic encoder used to produce 

codeword bits is halted after each siib-block of symbols is processed. The resulting series 

of codeward bits is reversed and fed into the storage queue as described above. Practical 

arithmetic encoders usudly waste only a few bits (2 in the implementation described in 

[Witten. Neal and Cleary 19871) when encoding is terminated. The sub-block size should 

be chosen so as to minimize the effect of t his wastage. For example. if the optimal bits-back 

coding rate is 1 bit/symbol. then choosing a sub-block size of 1000 symbols/sub-block will 

lead to a rate increase of ody  0.2%. On the other liand? if the optimal bits-back coding 

rate is 1000 bits/symbol. xithmetic encoding can be terminated after each symbol (ie.. 

the sub-block size is 1 symbol/sub-block) and the rate will increase by only 0.2%. 

4.4.2 Queue drought in feedback encoders 

At first sight, it may appear that queue drought is a serious problem. This can occur if the 

arithmetic decoder in the bits-back encoder uses up all of the bits in the storage queue and 

still can't make a codeword choice. In fact, this is usually not a problem because practical 

arithmetic decoders/encoders [Witten. Neal and Cleary 19871 use a coding value with a 

restricted size (32 bits in my implementation) . Consequently. in my implementation no 

more thaa 32 auxiliary data bits will ever be drawn fkom the storage queue when making 

a codeword choice. In degenerate cases where the codeword selection distribution places 

very lit tle mass on one or more short codewords, it is possible for a queue drought to occur 

when a sequence of very short codewords are chosen that consistently draw a large number 

of bits each from the storage queue. Howevert even in such degenerate cases, the sequence 

of events that leads to a queue drought is highly atypical. 1 have found that in practice 

queue drought is not a problem, as long as a reasonable amount of primer (say 20 patterns) 

is used. 
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4.5 Experimental results 

En this section. 1 present two sets of results for bits-back data compression. The source 

modeis are Helmholtz machines trained using the wake-sIeep algorithm (see Section 3.4). 

The fkst data set consists of simple patterns of horizontal and vertical bars. The second 

data set consists of binary images tif handwritten digits. 

4.5.1 Bits-back coding with a multiple-cause mode1 

In this section, 1 describe how bits-back coding can be applied to a binary Bayesian network 

source model, that has one Iayer of hidden binary variables. Then. 1 present compression 

results when the model is fit to images of horizontal and vertical bars using the wake-sleep 

algorithm described in Section 3-43.  1 compare the compression efficiency of the one-to- 

mmy bits-back source coding dgorithm with the one-to-one source code obtained iising 

approximate shortest codeword selection. and also with the U N E  gzip utifity. The multi- 

valued source code has over 68 billion codewords for each input symbol. and there is no 

tractable way to mix them. as there is with a hidden Markov model. For a given symbol. 

most of ttiese codewords are extrernely long and therefore play a negligible role in the source 

code. However. it turns out that the rate for an algorithm that uses a tractable approxi- 

mat ion to shortest codeword selection is significantly higber t han the suboptimal bits- back 
coding rate. This indicates that multiple codewords should in some way be accounted for. 

It turns out that there isn't an efficient way to couvert the multi-valued source code 

for the sigrnoidal Bayesian network into a single-valued source code that achieves a rate 

that is comparable to the bits-back coding rate. To perform such a conversion. we must 

compute most of the probability nias corresponding to the codewords for a given data 

vector. Because of the combinatorid way in which the latent variables h interact to prodiice 

P(vlh), the marginal probability mass P ( v )  cannot be computed in a tractable marner. 

v coiild bc? encoded bit by bit iising Gibbs sampling to collect statistics. However. this 

procedure would require the computationally taxing simulation of a Markov c h i n  for each 

element in v. 

In order to use bits-back coding, we need a codeword selection distribution that is close 

to P(hlvl O). The Helmholtz machine with the wake-sleep learning algorithm provides an 

estimate of the optimal codeword selection distribution. The learning algorithm jointly es- 

timates the generative network P(v, hl@) and a recognition network Q(hlv. #) % P(hlv. O). 

So, an input pattern can be encoded as follows. The sender first uses an ancestral order 

for the recognition network to compute the probability for the ûrst  latent variable (in the 

ancestral order). This probability and some auxillary data are then fed into an arithmetic 
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decoder which outputs a value for the first latent variable. Given the input pattern and the 

value for the first Latent variable. the sender then computes the probability for the second 

latent variable. and so on. Once h has been chosen in this marner. the entire configuration 

for {v. h} is arit hmetically encoded using the method described in Section 1.1. 

The receiver decodes the entire configuration for {v, h) and then computes the prob- 

ability for the first latent variable using the saxne ancestrd order that was used by the 

sender. This probability and the value for the variable are fed into an aritlunetic encoder. 

While this process is repeated for the remaining latent variables. the arithmetic encoder 

will output auxiliary data bits. 

So that we can compare the performance of bits-back coding with the actual entropy 

rate of the source. II used a synthetic source to produce 6 x 6 binary images. The images 

are iid.? and each image is produced by tuniing on each of the 12 possible horizontal and 

vertical bars with probability 0.2. (Both types of bars may appear in the same image.) The 

entropy rate of this source is 8.6 bits/image. 

The multiple-cause network had a single hidden layer containing 36 binary variables. 

in addition to the visible layer containing 36 binary variables. In order to avoid the need 

for extra auxiliary data. bits-back coding with feedback was used (see Section 44 .1 ) .  The 

images were grouped into sub-blocks of size 20 images/sub-block and a block size of 200 

sub-blocks/block was used. Before each block was encoded. the first sub-block of binary 

images was used to prime the storage queue. After each block of images was communi- 

cated, bot h the encoding mode1 and the decoding mode1 were adapted using the wake-sleep 

algorithm with a gradient descent step size of 0.01. The parameters for both the gener- 

ative network and the recognition network were initialized to 0.0 before any images were 

processed. 1 also approximated shortest codeword selection by picking for each image v the 

configuration h t hat rnaximized Q(hlv, 4) .  (The quality of t his approximation is discussed 

below.) Choosing the configuration h that maximizes Q(h(v,  4 )  can be done efficiently by 

considering one latent variable at a time. Figure 4.6 shows the number of codeword bits 

communicated as a b c t i o n  of the number of bIocks encoded for both of these methods. 

The curves for the uncoded binary image data and the Shannon iimit given by the entropy 

rate of the source are &O given. The curve for the UNIX gzip utility with the *-best" 

option is shown for compaxison. (Although the U N E  gzip utility is not really meant for 

image compression, I include it as a reference point for the reader.) It is evident that if we 

were to compare the Helmholtz machine with gzip, we wodd arrive at different conclusions 

depending on whether we used approximate shortest codeword selection or bits- back cod- 

ing. The bits-back coding curve is clearly superior to the curve for approximate shortest 

codeword selection. 
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Shortest codeword coding (RelmhoItz machine) ------ 
UN?X gzip utiIity (witb -best option) - - - - - - -  

Bits-back coding (Helmholtz machine) - 

O 50 100 150 200 250 300 350 400 
Num ber of bIocks encoded 

Figure 4.6: Experimentd results for a Helmholtz machine with one hidden layer of binary units 
applied to binary synthetic images. 

Table 4.1: Rate cornparisons of software-implernented codes for synthetic images. 

Rate (b i ts / ima~e)  
Uncoded binary images 36.0 
UNIX gzip utility (with "-best" option) 
Approximate shortest codeword selection (Helmholtz machine) 
Bits- back coding (Helmholtz machine) 
Logistic autoregressive network 
Shannon limit 

Table 4.1 gives a cornparison of the rates obtained for the next block after 400 blocks of 

images were processed. The rate for approximate shortest codeword selection is significantly 

higher than the rate for bits-back coding, indicating that a significant practical savings can 

be made by using the new algorithm as opposed to shortest codeword selection. However, 

the communication rate for a logistic autoregressive network tbat was trained on-line (using 

a learning rate of 0.01) is &O given in Table 4.1, and is significantly lower than the rate 

for the Helmholtz machine. It appears that dthough bits-back coding opens the door to 

new multi-valued source codes, the ones studied in this section are not yet competit ive with 

simpler compression methods. 
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Figure 4.7: Examples of 8 x 8 binary images of handwritten digits. 

How close does the approximation to shortest codeword seiection corne to actudly picking 

the shortest codeword for each data vector? Since there are over 68 billion codewords for 

each image in the above example. we cannot make a. direct cornparison by actually searching 

for the shortest codeword. However. consider the same type of multiple-cause network. 

except with 9 hidden variables and 9 visible variables, applied to similar synthetic data. 

except with an image size of 3 x 3 and a bar probability of 0.1. This network is small 

enough that an exhaustive codeword seuch is possible. After processing 1100 blocks of 1000 

images each. 1 found that the approximation to shortest codeword selection gave a rate of 

5.92 bits/image and exact shortest codeword selection gave a rate of 5.87 bits/image. These 

two rates are indistinguishable in the fust decimal place. 1 expect that the results for the 

approximation used for the larger network are also close to the restilts that would have been 

obtained if an exhaustive seaxch had been performed. 

4.5.2 A Bayesian network that compresses images of handwritten digits 

Figure 4.7 shows 50 exampies of the binary images that were fed into an adaptive hierarchi- 

cal Helmholtz machine source model and compressed using bits-back coduig. The binary 

Bayesian network that we use as a source model had three liidden Iayers of binary vari- 

ables and one bottom layer of 64 visible variables. Fkom top to bottom. the thme layers of 

causes haù 16 variables. 20 variables, and 24 variables, giving a total of 60 latent variables 

(2" codewords for each input pattern). Both the topdown and the bottom-up networks 

were My-connected from laysr to layer, but had no connections within each layer. The 

Helmholtz machine was fit to a training set consisting of 100,000 images. using the wake- 

sleep algorithm. 
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Table 4.2: Rate compa.risons for software-implemented source codes on the b i n q  digit data. 

Rate (bitsiimage) 
Original binary file 64 
Shortest codeword select ion using the Helmholtz machine 60 
gzip -best 39 
Bits-back coding using the Helmholtz machine 33 

X cornparison of the average rates obtained on the training set using approximate shortest 

codeword seIection and bits-back coding with the estimated binary Bayesian network, as 

well as the rates obtained by the UNIX gzip utility with the -best option. are @ven in 

Table 3.2. The rate for shortest codeword selection is again si,pificantly higher than the 

rate for bitsback coding, indicating that a significant practical savings can be made by 

using bits-back coding. 

4.6 Integrating out model parameters using bits-back coding 

As noted in Section 4.3. bits-badc coding is closely related to statistical inference. In fact. 

the optimal bits-back coding rate is equivaient to Rissanen's stochastzc cornplexitg [Rissanen 

19891 if we interpret the choice of codeword as a model parameter. Aiso. if the codewords 

are constructed by dioosing a prior over codeword identities (l'(h(dH) in (4.14)). bits-back 

coding effectively integrates over a discrete set of models. 

Both of these relationships Iead to an interesting application for bits-back coding. S u p  

pose we are interested in encoding blocks of source syrnbols and that the source changes 

f'rorn block to block. but not within any single block. Given a model with a continuous 

parameter vector 8 ,  there is a single block codeword with length - log, P('Dl0) for each 

block of source symbols. 'D. Xccording to the principles of Bayesian analysis. we ought to 

encode D by integrating over the entire continuum of rnodels, giving a codeword of length 

- log, P(V) = - log, P(DI9) P(9)dB. In practice. t his integral is usually impossible to 

compute and an approximation rnust be used. One approximation is to use the maximum 

a posteriori (MAP) model (ie.. 8 = arpaxeP(VIB)P(B)) ,  for which the parameters are 

communicated using some (hard to de termine) preckion. 

In fact, bits-back coding can be used to comrnunicate each block of symbols using the 

entire continuum of models, as long as a good approximation to the posterior distribution, 

Q(BID), is available. This distribution is used as the model selection distribution (in place 

of the codeword selection distribution) and the model parameters are communicated to  an 
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arbitranj precision. Whereas with the MAP approach. greater precision eventually leads to 

an increase in coding rate. with the bits-back coding approacli. greater precision usually 

leads to a decrease in coding rate. Intuitively. this can be seen as an interaction of two 

processes. First . the extra codeword Iength caused by greater precision is part ly recovered 

as bits-back. Second. greater precision tisudy leads to a more accurate approximation to 

the posterior distribution. and therefore shorter codewords on average. The latter process 

dominates except in the unusual case when the quantized version of Q(9 1 P )  has a Iower 

entropy relative to P(0IV) than the tinqiiantized version. 1 am currently exploring the use 

of bits-back coding for integrating over continuous parameter spaces. 



Chapter 5 

Channel coding 

Our increasingly wired world demands efficient methods for communicating discrete mes- 

sages over physical channek that introduce errors. Examples of real-world charmels include 

twisted-pair telephone wires, shielded cable-TV wire, fibre-opt ic cable, deepspace radio, ter- 

restrial radio, and indoor radio. Each of these channels is subject to information-theoretic 

limitations, physical degradation, and governrnental regdation. The prime information- 

theoretic limitation is Shannon's limit, which gives the maximum average number of infor- 

mation bits that can be communicated per second over a specific channel for a given set 

of transmit ter constraints ( e.g., transmission power) . Examples of p hysical ciegradat ion in- 

clude attenuation, thermal noise, self-interference (inter-symbol-interference) . mu1 tiple-user 

interference, multiple-path radio reflections, and power limitations in practical circuits. Ex- 
amples of governmental regulations inciude transmission power limits, bandwidth usage, 

and information packet sizes. Sogether, al1 of these restrictions and many more define the 

pract ical channel coding problem of how to communicat e discrete messages reliably. 

Despite the mult i-faceted nature of the practical channel coding problem, t fie bot tom 

line is nonetheless quite straightforward. (See [MacKay 19981 for an excellent introduc- 

tion to information theory and its connections with probabilistic inference.) In order to 

communicate, the transmit ter sends a finite-durat ion red-valued signalling wave form. This 

waveform is determined by a binary information sequence, which we usually assume is uni- 

forrnly distributed over all possible informat ion sequences. The duration of this waveform 

may correspond to a relatively short block of information or an iniînite-length limiting-case 

block of information. Once the transmitter has produced a sigrialling waveform, it is trans- 

formed stochasticdly by the channel and a received wavefom or channel output waveform 

is obtained at the output of the channel. The receiver then uses the received waveform to 

make a guess at  the informatiou sequence. 



Physicd channeIs are usually band-izrnited: meaning that for practical purposes the chan- 

riel output waveforrn will not have any kequency components above some limit W Hz. Mmy 

channels are also Linear (or we assume they are). so that the fkequency components of the 

signalling waveform that are above W Ifi wiU not influence the channel output. Because 

of this, we need only consider signalling waveforms that are also band-limited to W Hz. 

Using Nyquist sampling at a rate of IlAt = 2W samples/second. a signalhg waveform 
.v-1 defined on [O. N a t ]  can be represented ezactfy by the discrete-time sequence a = {q l l Z o  . 

The transmission of each sample ai is called a channel usage. Similady, the channel output 

wavefom can be represented exactly by the discrete-time sequence y = { y i  1:; '. 
Since the information sequence is effectively random, for multiple trials different sig- 

nalling sequences will be produced according to some (usually discrete) distribution p(a).  

The channel output sequence is probabilisticdy related to this sequence by a channei mode1 

p(yl4. 

For a fixed Ievel of additive noise. the transrnitter c m  communicate in an error-free fash- 

ion simply by using a very poweL-ful signalling waveform. However, t his is an uninteresting 

and practically expensive solution to the channel coding problem. In practice. a Lmit is 

pIaced on the average transmission power: 

It 

with 

turns out that the information rate (in bits/channel usage) that c m  be communicated 

arbitrarily low probability of bit error. is bounded kom above by the capacity C of 

the channel: 

where the power constra.int in (5.1) is enforced during the maximization. This optimal 

information rate was introduced by Shannon [1948]. and is jiist the mutual information 

between the channel input sequence and the channel output sequence. (As a practical note. 

to lower the bit error rate or to use an information rate that is closer to C, we must generally 

use longer signalling waveforms.) 

The channel coding design game essentially consists of devising encoders (ways to map 

information sequences to signalhg sequences) and decoders (ways to guess at what the 

information sequence is for a given received sequence). In this thesis, 1 a m  mainly inter- 

ested in conveying to the reader the insight and breadth of application offered by describing 

channel coding problerns using Bayesian networks and using the probabilistic inference al- 
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gorithms presented in Chapter 2 to perform decoding. For this reason. I begin this chapter 

by distilling out the essence of the channel coding problem and presenting a simple proto- 

typical problem that will be t he  focus for the remainder of the chapber. In the prototypical 

problem. the transmitter sends a discrete-time b i n q  sequence of -i 1's and - 1's. and each 

of these values is corrupted by additive Gaussian noise. So, the encoder maps each infor- 

mation sequence to a binary signailing sequence, and given a received noisy sequence. the 

decoder rnakes a mess at the binary information sequence. It turns out that the solution 

to t his pro blem has far-reaching consequences in mu1 ti-level (nonbinary ) coding [Imai and 

Hirakawa 19771. rnainly due to recent proofs by Wachsmann and Huber [1995] and Forney 

[1997]. 

In Section 5.2, 1 show how Bayesian networks and prohability propagation can be 

used to describe and decode Harnming codes. convolut ional codes. turbo-codes. serially- 

concatenated convolut ional codes. and low-density parity-check codes. In Section 5 -3, 1 

introduce "trellis-constra.int codes". wtiich are a trellis-based generaiization of d l  of the 

above codes. In Section 5.5, I present a method for speeding up iterative decoders that are 

implemented on serial machines. 

5.1 Simplieing the playing field 

The real-valued signalling sequençes described above are the price to pay for an efficient 

description of digital communication in the real world. wliere signai amplitudes are usually 

real-valued. The channel coding problem would be much simpler to pose and impiement if 

(1) signal levels were discrete. (2) the channei model was simple. and ( 3 )  the mapping hom 

information sequences to chmuel inputs waç assumed to be of a relatively simple form. 

While this approach can sirnpli@ the problem, it can also lead to a communication rate 

that is f a .  below the generai capacity given in (5.2). In this section, 1 simpliS the coding 

problern in the ways described above. while attempting to argue that if done properly, the 

simplification will lead to a communication rate that is practically very close to capacity. 

5.1.1 Additive white Gaussian noise (AWGN) 

A channel model that is simple and works well in practice is the AWGN channel. Additive 

white Gaussian noise with single-sided spectral density No is added to the signalling wave- 

form to obtain the channel output waveform. Assuming the channei is bandlimited to W 
Hz (as described above). the decoder c a n  apply a low-pass filter with bandwidth W Hz and 

sample the noisy waveform at the Nyquist rate to get a discrete-time sequence {yi }Li '. It 
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turns out that an AWGN chamel simply adds independent Gaussian noise to each input 

value ai, where the variance of the noise is related to No by a2 = No/2:  

If the decoder applies a low-pass filter with a higher bandwidth, then frequency components 

of the AWGN that are above W Hz will increase the effective noise on the sequence ):% '. 
The AWGN channel leads to an appealing formulation of maximum likelihood (ML) 

signal detection. The log-probability density of the received sequence given the signalhg 

sequence is 

So? ML signal detection for the AWGN channel consists of finding the ailowed signalling 

sequence a that is closest to y in Euclidean distance. 

5.1.2 Capacity of an AWGN channel 

For the AWGN channel, each channel output depends only on ai? and not any aj? 3 # i. 
Consequently, the signalling distribution p(a) t hat will give the highest mutuai information 

is of product form: 

(This distribution allows us to stufF as much information into each ai as possible.) In this 

case, the capacity in (5.2) simplifies to 

bits per channel usage. Note that for a product-form signalling distribution. the power limit 

in (5.1) becomes VAR[a,] = Jas p ( ~ i ) ~ : d ~ i  6 P. 

It turns out that the maximum in (5.6) is obtained by a Gaussian signalling distribution 
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with variance P (see [Cover and Thomas lggl]),  and the capacity is 

For example, if P = 302, then C = 1 bit/channel usage. For reasonable power levels, it is 

not possibIe to deterministically map C bits of information to a value ai that will have a 

Gaussian distribution (or one that is even close to Gaussian). For example, try mapping 1 

bit of information to a variable whose distribution close to Gaussian! 

The optimality of a Gaussian signalling distribut ion leads to a new type of coding concept 

cdled shaping. A signdling technique has good shape if the marginal signalling distributions 

are nearly Gaussian. If the signalling shape is poor, then the capacity given in (5.7) cannot 

be achieved no matter how good a code is used. For example. if binâry signalling is used (ai E 

{-Jp, +O)), then the channel capacity cannot be achieved, as shown in Section 5.1.6 

and Figure 5.2. 

The interplay between shaping and coding is very important. As another example. here 

is a method that has an excellent signalling shape, but uses a poor code. We ürst construct 

a table t hat maps each information vector u to a r e d  value c, in a way so that a uniform 

distribution over information vectors induces a nearly Gaussian distribut ion over c,. For 

a given information vector u, the transmitter simply sends a constant waveform. ai = c,, 

i = O, . . . . N - 1. Using this method, each marginal distribution p(ai) caa be made to be as 

close to Gaussian as desired, by increasing N and refining the map from u to c,. However. 

because the waveform is constant there is no way to introduce a good code. A fruitfil 

structure that leads to a nice mix between coding and shaping is the signal constellation. 

5.1.3 Signal constellations 

Since the information sequeiice is discrete and the signalling sequence is determined Erom the 

information sequence, the allowable set of signaUing sequences is also discrete. How shouid 

we specib the set of allowed signalling sequences? One way is to require that the signalling 

variable at each time step be a rnember of a fixed signd set. Figure 5.la shows the signalling 

points for two signalling variables a0 and ai, where each variable can take on one of eight 

values. Even if a good code is used with these signalling points, the marginal s i g n a h g  

distributions are quite far from Gaussian and so the rate will be below capacity. Instead, 

consider breaking the signaliing sequerice into a series of groups ( i .e . ,  subspaces) containing 

n values each. A discrete set of values (cded a constellation) is then judiciously chosen 

within each n-dimensional subspace in a way that leads to marginal signalling distributions 

that are close to Gaussian. 
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Figure 5.1: Signal constellations can be used to increase the Euclidean distance between signalling 
points (indicated by crosses). (a) X naive constellation for an n = 2 signalling set with 64 points. 
(b) The same 64 points can be rearranged in order to reduce the transmission power. ( c )  The 
constellation fiorri (b) scded up so that its transmission power is the sarne as the power for (a) - 
notice tha t  the nearest-neighbor distance has increased. 

Another way to understand the benefit of using signal constelations is through a sphere- 

packing argument. Consider the %dimensional constellation shown in Figure 5.1 a that 

corresponds to the naive approach described above. For a ftted noise level in an  AWGN 
channel. detection error falis off with distance between nearest-neighbor signals. Imagine 

centering a 2-dimensional sphere on each signal point as shown. Now. by trying to pack the 

spheres as tightly as possible. we obtain the constellation shown in Figure 5 .  l b. The nearest- 

neighbor distance has not changed. but the transmission power has decreased (since the sum 

of squared distances to signalling points is lower). In order to use the same power as the naive 

approach uses. we can  now increase the Euclidean distance between nearest-neighbors as 

shown in Figure 5. lc. This will increase the noise-toierance of the system. and so increase t lie 

communication rate relative to the naive approach. For higher-dimensional consteIlations. 

this sphere-packing gain becornes more valuable. (This simple example ignores the increase 

in the number of nearest neighbors Lom 4 to 6 .  See Lee and Messerschmitt [1904] for more 

details.) 

5.1.4 Linear binary codes are all we need! 

Altliough the design of optimal high-dimensional consteilat ions is straightforward in t heory. 

it is very diflicult to  implement practical encoders and decoders that use t hese constellations. 

Consequently, we must approximate optimal constellations by practical ones. Ways of 

doing this include trellis codes (a.k.a. coset codes) [Ungerboeck 1982: Calderbank and 

Sloane 1987: Fomey 19881. w hich your telephone modem probably uses. Alternatively. 

Wachsmann and Huber (19951 and Forney [1997] have shown that by using a technique 

called multiLeveL codzng [ b a i  and Hirakawa 19771: we c m  achieve the capacity in (5.2) by 
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combining several relatively simple lznear bznaq codes. That is. optimal constellations can 

be well approximated if we can design appropriate linear binary codes. 1 refer to these new 

proofs to justify my focus on linear binary codes in this thesis. 

A binanj code maps each binary information vector u of length K to a binary codeword 

vector x of length N. The rate R of such a binary code is defined as 

1 will sometimes highlight the mapping by w~iting the codeword for u as x(u). A binary 

code is linear if for any Ur and us, x(ul + u2) = x(ul) + x(u2). where. .'%" indicates 

component-wise modulo 2 addition (O + O = O? O + I = 1. 1 + O = 1. and I + 1 = Oj.  Note 

that ths form of Linerrrity is highly nonLinear in the sense of continuous algebra (where 

1 + 1 = 2). In general, Linear codes are easier to analyze than nonlinear ones. 

Each bit in the codeword can be transmitted using binary signalling, also called binary 

antipodal signalling. (If the b i n q  signal is rnodulated by a carrier so that it is a passband 

signal, it is sometimes called binury phase-shzft keging (BPSK) . )  For xi = 1 we transmit 

ai = Jp and for = O we transmit ai = -"/P. In this way. the average transmitted 

power is P. For an AWGN Channel. we can mi te  the probability density of channe1 output 

yi  directly in terms of xi (bypassing a,): 

A simple linear binary code is the repetition code. Each information bit is transmitted rn 

times. so that R = K/mK = l/m. Using (5.9). the probsbility density of channel outputs 

go, .  . . , tjm-i given xg is 

where the constant of proportionality does not depend an  xo. By basing the decoding 

decision on the receiver effectively reduces the noise variance by a factor of 

l/m. It turns out that this is a very poor code. because the suppression of noise cornes at 

too high a cost in terms of decreasing the code rate. 
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5.1.5 Bit error rate (BER) and signal-to-noise ratio (Eb/?V,) 

For many engineering applications, the distortion d u e  of interest is the probability ph that 

an information bit will be guessed incorrectly by the decoder. When analytic methods 

are not available for computing pb, we must resort to simulation. Often the simulation 

results are siimmarized as a point estimate c d e d  the bit error rate (BER). The BER is 

usually simply the obsemed fraction of information bit errors. When it is not possible 

to simuiate the transmission of enough words to accurately pin down the probability of 

bit error, techniques such as the one described in Section A 5  can be used to produce a 

confidence interval. 

To compare the BER'S of different coding schemes. we need a relatively robust measure 

of the noise level that each system is being exposed to. SimpIy stating the noise variance 

for an AWGN channel is not sufficient, since one system may be transmitting at a much 

higher power t han another. A h .  as shown above. pedormance can be improved in a trivial 

fashion simply by repeating signals. A reasonably robust measure of the noise level is 

where P is the transmitter power. No is the single-sided spectral density of the -4WGN. a2 
is the AWGN variance, and R is the rate of the code. Eb/No is the ratio between the power 

that is transmitted per information bit. and the AWGN power. It is usually given in units 

of decibek (dB), 

Notice that although dividing by R in (5.11) does cancel the effect of the improvement 

obtained trivially by repeating signals. it does not take into account the increased bandwidth 

needed for lower rate codes. In fact, in the next section we see that the minimum Eb/No 
ueeded for error-kee communication depends on the rate. So, when comparing one coding 

system to another that uses a lower rate. we must keep in mind that there is usually some 

way to modify the former systern so as to lower its rate and at the same time lower the 

Eb/No it needs to achieve error-free communication at that rate. 

5.1.6 Capacity of an AWGN channel with +1/ - 1 signalling 

Engineering bandwidth restrictions aside, what are the communication lunits for an AWGN 
charinel when we use +1/ - 1 signalling (Le.,  binary antipodal signailing with P = l)? 
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(Without loss of generality, we wiU assume that P = 1.) The answer to this question depends 

on whether we are wiiling to tolerate a certain non-vanishing BER. Before considering the 

non-vanishing BER case in the next section, 1 will address the simpler case of a vanishing 

BER. More specificdly, what is the minimum Eb/No needed to communicate error-&ee 

using a rate R code on an AWGN channel with +1/ - 1 signaliing? 

The mutud  information between the channel input ai and the channel output y; a t  time 

step i gives the number of bits that can be communicated per channel usage on average. 

For an AWGN channel with +l /  - 1 signalling, the mutud information as a hnction of the 

noise variance is 

The first term is the entropy of yi given ai, which is just the entropy of a Gaussian distri- 

bution, 0.5 1og,(2~02e). Since p(yi) is a mixture of two Gaussians. the second term is 

which can be approximated quite well using a Monte Car10 method. In this fashion. it is 

possible to obtain a good estimate of ~ ( a * ) .  

To communicate error-free, the rate of the code must be less than the mutual information 

between the channel input and the channel output: R < n/l(02) [Shannon 19481. Insert- 

ing 02 = 1/(2REb/No) (see (5.11)) into this inequality. we get R < hl(-&). After 

rearrangernent , we have 

This bound (based on an interpolated inverse of a Monte Carlo estimate of ~ ( a ~ ) )  is shown 

in Figure 5.2a7 along with the minimum Eb/No required by optimal (Gaussian) signalling 

(see Section 5.1.2). 

For example, an R = 112 code requires Eb/Na > 0.2 dB. To communicate error-free 

without coding (R = l ) ,  an infinite Eb/No is needed. 

A standard result fiom information theory is that regardless of rate, an Eb/No of at  least 
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. +l/4  sgmlling - 
Gaussian signalling ------ 
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1/32 1/16 118 1/3/4 113 112 1 -2 - 1.5 - I  -0.5 0 0.5 1 

Rate R (bits/channel usage) J%/NI (dB) 

Figure 5.2: (a) The minimum Eh/.\TO needed for error-free communication with a rate R code. over 
an AWGN channel using +l/ - 1 signalling and optimal (Gaussian) signalling. (b) The minimum 
achievable BER as a function of Eb/No for several different code rates using +1/ - I signalling. 

log, 2 = - 1.5917 dB) is required for error-£ree communication [Cover and Thomas 19911. 

This limit is apparent from the convergence of the curve as R -t 0. 

5.1.7 Achievable BER for an AWGN channel with +I/-1 signalling 

If we are willing to tolerate a certain non-vanishing BER while using a rate R code. it 

turns out we can use a lower Eb/No than described in the previous section. One way to 

pose the problem for this scenario is: For an optimal code with rate R and a specified 

BER, what is the minimum required Eb/NoY We can think of this as a two-stage problem. 

First, we find a shorter representat ion for the information vector. This representation 

will obviously be lossy. since a uniformly random vector of information bits cannot be 

represented losslessly on average by a shorter binary vector. Second, we use a new optimal 

code to communicate this shorter representation error-he over the channel with the largest 

tolerable noise variance. Since the representation is shorter than the information vector. the 

new code rate R' will be lower than the old one: R' < R. So. the tolerable noise variance 

for error-bee communication of the lossy representation will be higher than the tolerable 

noise variance for error-6.ee communication of the information vector. 

We would like to use a representation that is as short as possible, so that R' will be 

as low as possible and the tolerable noise variance will be as large as possible. However. 
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shorter representations are also more lossy and will lead to higher BER'S. What is the 
minimum ratio between the lengt h of the representat ion and the Iength of the idormation 

vector, such that the error rate does not rise above the specified BER? It turns out that the 

minimum ratio is just the mutual information between a uniformiy random bit and its noisy 

duplicate, wbere the probability that the value of the duplicate is flipped is BER. (This can 

be viewed as a result of rate-distortion theory applied to a Bernouili source [Cover and 

Thomas 19911 .) This mutual information is 

1 + BER log2(BER) + ( 1 - BER) iog2 (1 - BER). (5.16) 

The new code rate is 

R' = ~ [ 1  + BER log,(BER) + (1 - BER) log,(l - BER)]. (5.17) 

For a specified R and BER, we can compute R', determine the maximum tolerable noise 

variance a2 = Ad-' (R'), and compute the minimum Eb/No = 1/(202 R )  (note that to 

compute Eb/No,  we use the original R, not R'). Figure 5.2b shows the achievable BER as 

a function of Eb/& for several different rates. For e u h  rate, the value for &/No at which 

the BER converges to zero is the same as the d u e  shown in Figure 5.2a. These achievable 

BER c w e s  are used as guides for ascertaining the performances of codes and decoders 

later in this chapter. 

5.2 Bayesian networks for channel coding 

A critical component of a channel coding system is the decoder. Even if the code gives 

excellent performance when optimal decoding is used, if there is no way to implement a 

practical decoder that gives simiiar performance. it is not clear that the code is of any use. 

Channel decoders can be broken into two classes: algebraic and probabilistic. Algebraic 

decoders for binary cades usually quaiitize the diannel output to two or three levels. The 

received vector y is interpreted as a copy of the binary codeword vector x, wit h some of the 

bits flipped. Alternatively, received values that are highly ambiguous (e-g., the value 0.1 

when +1/ - 1 signalling is used) are considered as emsures - a. e.: the corresponding bit 

in y is assumed to be unknown. In both cases, decoding is a matter of using linear algebra 

(in a finite field) to find the binary codeword vector x that is closest to y in H;tmming 

distance (dimensions that are erased are ignored). There are many techniques for algebraic 

decoding [Lin and Costeilo 1983; Blahut 1990; Wicker 1995) and algebraic decoders usually 

take advantage of special structure that is built into the code to make decoding easier. 
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However, it is obvious that by using such a coarsely quantized form of the channe1 output. 

these decoders are suboptimd (e-3-, the value 0.1 from above does provide some evidence 

t hat a signal value of + I was sent). 

Probabilistic decoders are designed to make as much use as is practically possible of 

the real-vdued unquantized channel output. The goal of probabilistic decoding is either 

maximum likelihood (ML) information sequence detection. or rnacimum a posteriori (MAP) 
information bit detection: 

Obviously, ML sequence detection minimizes the word error rate (we usually assume that 

al1 words are equally likely n priori). while MAP bit detection minimizes the BER. So, by 

definition, optimal probabilistic decoders are superior to optimal algebraic decoders. How- 

ever. can we implement useful probabilistic decoders? The success of algebraic decoders is 

due to the way they take advantage of the algebraic stnicture of a code. 1s there an anal- 

ogous structure that probabilistic decoders can use? In this section, 1 show how Bayesian 

networks can be used to describe probabilistic structure for channel codes and how the 

inference algorithms that make use of t his structure can be used for probabilistic decoding. 

See [Frey et al. 19981 for a monograph on the applications of graphical models to chanoel 

coding. 

5.2.1 Hamming codes 

Hamming codes are an extension of the notion of adding a single parity-check bit to a vector 

of information bits. Instead of adding a single bit, multiple bits are added and each of t hese 

parity-check bits depends on a different subset of the information bits. Hamming developed 

these codes with a special algebraic structure in mind. Consequently. they are really meaot 

for binary channels where the noise consists of randomly flipping bits. However. Hamming 

codes are short and easy to describe, so they make a nice toy example for the purpose of 

illustrating probabilistic decoding. 

An (N. K) Hamming code takes a binary information vector of length K and produces 

a binary codeword of lengt h N. For an integer rn 2 2. N and K must satisfy N = 2m - 1 

and K = 2* - m - 1. The Bayesian network for a K = 4, iV = 7 rate 4/7 Hamming code 

is shown in Figure 5.3a. The algebraic structure of this code c m  be cast in the form of the 

conditional probabilities that specify the Bayesian network. Assuming the information bits 
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Figure 5.3: (a) The Bayesian network for a K = 4, iV = 7 Harnming code. (b) BER pexformance 
for the maximum Iikelihood decoder, the iterative probability propagation decoder, and an algebraic 
decoder. (The key lists the curves in the order in which they appear from left to right at BER = 
le-6.) 

are uniformly random. we have P(uk  = 1) = P(uk = 0) = 0.5, k = 0.1,2.3. Codeword 

bits O to 3 are direct copies of the information bits: P ( x k ( u t )  = b ( x k ,  uk)-  k = 0.1.2.3. 

Codeword bits 4 to 6 are parity-check bits: 

Assuming binary antipodal signalling with power P over an AWGN channel. the conditional 

channel probabilities p(yi lxi), i = 0.1,2,3,4,5.6 are given by (5.9)- where O* is related to 

Eb/No by (5.11). 

This code is small enough that we can compute the MAP bit values in (5.18) exactly 

using Bayes rule. The BER-Eb/No cuve  for MAP bit decoding and the achievable BER 
(see Section 5.1.7) at rate 4/7 are shown in Figure 5.3b. Although there is an 8 dB gap 

between these curves at a BER of 10-~, the MAP decoder gives a significant improvement 

of 2 dB over uncoded transmission (whose corresponding cuve is also shown). 

By making hard decisions for the channel outputs (calling a value below O a "0" and 

cdling a value above O a "1"), an algebraic decoder can be used. This decoder applies a 
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pan'ty-check n z a t k  to the received binary word in order to try to iocate any errors. (See 

Lin and Costello [1983] for details.) In this fashioo, it can correct up  to oiie bit error 

per codeword. The curve for algebraic decoding is also shown in Figure 5.3b. Algebraic 

decoding gives m improvement of only 0.5 dB over uncoded transmission at a BER of 

10-~. Although this may seem surprising, keep in mind that the receiver for the uncoded 

transmission is allowed to average the channe1 output to reduce the effective noise (see 

Section 5.1.4) 7/4 times Ionger than the receiver for the algebraic decoder. 

One way to approxirnate the probabilities P(ukly)  used for MAP bit decoding is to 

apply the probability propagation inference algorithm (Section 2.1) to the Bayesian network 

shown in Figure 5.3a. Probability propagation is only approximate in this case because the 

network is multiply-connected or -'loopy2 ( e-g.. u ~ - x , ~ - u ~ - ~ ~ - ~ u ~ ) .  Once a channel output 

vector y is observed. propagation begins by sending a message kom yk to xr; for k = 

0.1.2 .3 .4 ,5 .6 .  Then. a message is sent fkom zk to ul; for k = 0.1.2,3. An iteration now 

begins by sending messages hom the information variables uo. i r l ,  u ~ ,  uz to the parity- 

check variables z,!. xs. LG in paraiIei. The iteration finishes by sending messages from the 

parity-check variables back to the information variables in parallel. Each time an iteration is 

completed. new estirnates of P(uk[y)  for k = 0. 1.2 .3  are obtained. The curve for probability 

propagation decoding using 5 iterations is shown in Figure 5.3b. It is quite close to the 

MAP decoder. and significantly superior to the algebrak decoder. The interactive software 

package BNC (Bayesian Networks for Coding) that was used to obtain these results is 

described in Appendix B. 

For this simple Hamming code. the complexities of the probability propagation decoder 

and the MAP decoder are comparable. However, the similarity in performance between 

these two decoders raises the question: T a n  probability propagation decoders give per- 

formances comparable to MAP decoding in cases where MAP decoding is computation- 

ally intractable?" Before exploring a variety of systems w here probability propagation 

in multiply-connected networks gives surprisingly good results. 1 will review convolutionai 

codes, whose Bayesian networks are essentidly singly-connected chains. For these networks. 

the probability propagation algorithm is exact and it reduces to the well-known forward- 

backward algorithm [Baum and Petrie 19661 (a.k.s. BCJR algorithm [Bahl et al. 19741). 

5.2.2 Convolutional codes 

Convolutional codes are produced by driving a finite state machine with information bits. 

The outputs of the finite state machine (which may include copies of the inputs) are then 

used as codeword bits. A code for which each information bit appears as a codeword bit is 

c d e d  systematic. Typically. linear convolutional codes are used, and any code in this class 
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can be represented by a h e u r  feedback shift register (LFSR). An example of a systematic 

code of this type with a memory of 7 bits is shown in Figure 5 . 4 ~ ~ .  Each box represents a 

1-bit memory element and D is a delay operator: Dnuk = Uk-n- In this example, there 

is no feedback from the shift register to its input; a convolutional code of this type is 

called nonrecursive. An output is produced by adding (rnodulo 2) values "tapped" from 

the memory chain. The output taps for this rate 112 systematic nonrecursive convolutional 

code were chosen to maximize the minimum distance dmin between codewords [Lin and 

Costello 19831. For this code, dmin = 7: meaning that the codeword vectors for any two 

information vectors will d8e r  in at least 7 places. Using the delay operator, this code can 

be described by the foliowing two equations: 

where G ( D )  is called the genemtor polgnomial. This po1ynomia.l is often expressed in octal 

form by letting the coefficient of Do be the least significant bit and the coefficient of D~ be 

the most significant bit. In this case the octal representation is 3538. 

Since dmin plays the central role in determining the error-correcting capabilities of a code 

at high signal-to-noise ratio Eb/&, we would like to use codes that have large dmin- One way 

to obtain a greater dmin for convolutional codes is to use a larger rnemory. However, it turns 

out that decoding complexity increases exponentially with the size of the memory In fact, 

it is possible to increase the minimum distance of aay systematic nonrecursive convolutional 

code without using more memory. Figure 5.4b shows a rate 1/2 nonsystematic nonrecursive 

convolutional code that has dmin = IO. (The two sets of output taps that maximize dmin 

were found using a method described in [Lin and Costello 19831.) This code can be described 

as follows: 

For a nonsystematic convolutional code, there are two generator polynomials corresponding 

to the two sets of output taps. For this code, the octal representation is (2478. 371s). 

Although the performance of the nonsystematic code described above is better than the 

systematic one at high Eb/No, it is the other way around for values of Eb/No near the 

Shannon limit. Berrou and Glaview [1996] have argued that a nice compromise between 

these codes is a systematic recursive convolutional code. The code in Figure 5.4b can be 

converted to a systematic code by taking one set of the output taps (either one wiU do) 

and using them as feedback to the input of the shift register, making a LFSR. If we do this 
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Figure 5.4: The linear feedback shift register (LFSR) configurations for rate 1/2 convdutional 
codes with maximum dmin. (a) .II systematic nonrecursive convoIutional code (dmin = 7). (b)  X 
nonsystematic nonrecursive convolutiond code (dmi, = IO). (c) -4 systematic recursive convolutional 
code (dmin = 10). 

with the upper set of taps. we obtain the rate 1/2 systematic recursive convo1utiona.l code 

shown in Figure 5.4~. This code can  be described by the following two equations: 

The second equation is to be interpreted as 
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which can be derived hom the figure1. The former expression allows us to retain the G(D) 
notation. which in this case is 24Ts/37l8. From the point of view of linear algebra. we 

have obtained this new code simply by dividing Gi(D)  and G 2 ( D )  from above by G i ( D ) .  

It can be shown that this operation does not change the algebraic structure of the code. 

For example. the new code has dmin = LO as before. However. as we saw in the previous 

section. there is more to channel coding than algebraic stnicture. Et turns out that this 

systemat ic cecursive code performs bet ter than the above nonsystematic nonreciirsive code 

at tow &/&. 

5.2.3 Decoding convolutional codes by probability propagation 

Bayesian networks for nonsystematic and systematic convoIutional codes are shown in Fig- 

ures 5.5a and 5.5d. In the former case. both codeword bits at stage k depend on the encocier 

state as well as the information bit. whereas in the latter case. one codeword bit is simply 

a direct copy of the information bit. Notice that because of the dependency of at l e s t  

one codeword bit at stage k on the ençoder state and the information bit. these networks 

axe not singly-connected. However, they can be converted to singly-connected networks in 

the following way. By duplzcatiny the information bits, we obtain the networks shown in 

Figures 5.5b and 5.5e (see Section 2.1.4). By grouping each state variable with one of thcse 

duplicates as shown by dashed Ioops, we obtain the singly-connected networks shown in 

Figures 5 . 5 ~  and 5.5f (see Section 2.1.4). 

In the new networks, each state variable actually contains a copy of the current infor- 

mation bit. We can interpret each state variable as a binrtry number whose Ieast significant 

bit (LSB) is a copy of the current information bit and whose most significant bit (MSB) 
is the oldest value in the LFSR (i. e.. the value in the memory element that appears on 

the far right in the LFSRs shown in F i y e  5.4). Let sk.2 be the binary number obtained 

by cutting off the LSB of s k .  and let sk%2 be the value of the LSB of s k .  Let j ( s k -  1) be 

the binary number obtained by cutting off the MSB of sk -1  and replacing the LSB of sk-1 

with the value of the LFSR feedback bit obtained by adding (modulo 2) the values of the 

bits in skW1/2 that correspond to the LFSR feedback taps. So. f ( sk-1)  is the value of the 

new state at stage k. excluding information bit q. Findy.  let g(sk )  be the bit obtained by 

adding (modulo 2) the values of the bits in sk that correspond to the LFSR output taps. If 

there are two sets of taps, then there will be two output functions gl(sk) and q2(sk)- 

Now, we can specify the conditional probabilities for the convolut ional code Bayesian 

k t ,  this representation is algebraically consistent. We cm, for e~ample, multiply the numerator 
and the denominator in (5.22) by a polynomial in D without changing the set of output sequences that the 
LFSR can producc. See picker  19951 for a textbook treatment. 



5.2 Bayesian networks for channel coding 131 

Figure 5.5: The multiply-connected Bayesian network (aj for a nonsystematic convolutionai code 
can be converted to a singly-connected network by duplicating the information variables (b) and then 
grouping together information variables and state variables (ci. The multiply-connected network for 
a systematic convolutional code can be converted to a singly connected one (d) - (f). 

networks. For the sake of brevity, 1 wiil consider only the systematic code shown in Fig- 

ure 5.5f. Assiming the information bits are iiniformly ranciom. we have P(uk = L) = 

P(uk = 0) = 0.5. k = 0:. . . : K - 1. The state transition probabilities are 

where we assume s- 1 = O to initialize the chain. The codeword bit probabilities are 

Assuming binary antipodal signalling with power P over an AWGN channel. the conditional 

channel probabilities p ( y i ( x i ) ,  i = 0,. . . ,2K - 1 are given by (5.9). where o' is related ta 

Eb/No by (5.11). 
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Figure 5.6: The computation of P(ukIy),  P ( s k ( y ) ,  and P ( z i l y )  by probability propagation using the 
fornard-bacbard message-pussang schedule, which minimizes the total number of messages passed. 
Xrrows represent messages in transit, whereas solid dots represent messages waiting to be cem. 

Using the singly-connected Bayesian networks for convolutional codes. probabihty propa- 

gation can be used to compute the a posteriori bit probabilities P(ukly) exactly. The MAP 
values ai1"' can be obtained by applying a threshold of 0.5 to these probabilities. Although 

the probability messages can be passed in any order. the fornard-backward message-passing 

schedule gives the lowest number of total messages passed, and so it is most appropriate 

for decoding on a serial machine. Figure 5.6 shows how messages are passed according to 

this schedule in the Bayesian network for a simple systernatic convolutional code. First, 

probability messages are propagated £rom the obsemed channel output miables (crossed 

vertices) to the "backbone" of the chah (the state variables). Then, the messages are 

buffered as shown. (See Section 2.1.3 for an explanation of bdered  messages in probability 

propagation.) Pictorially. when a message arrives at a vertex on an edge, but is buffered 

and not propagated on to the other neighbors, 1 draw a small dot adjacent to each of the 

other edges. Each of these dots can be tumed into an arrow (indicating a message is being 

passed) at any time. Next messages are passed forward dong the chain, and then back- 

ward dong the chah. Findy,  messages are propagated to the information bits and to the 

codeword bits. (It is not necessary to propagate probabilities to the observeci variables, 

since P ( y i [ y )  is trivial to compute.) Notice that this algorithm computes P(uk [y), P(skly),  

and P ( x i J y ) .  If al1 we need are the information bit probabilities P(ucly), then it is not 
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Figure 5.7: Performances of 7-bit memory LFSR convolutional codes with maximum dmin. 

necessary to propagate the last set of messages shown in the figure. 

Figure 5.7 shows the performances of the three convolutionai codes described above. The 

systematic nonrecursive convolutional code has a BER that is significantly higher than the 

BER's for the other two codes at reasonably high Eb/No. The nonsystematic nonrecursive 

convolutional code and the systematic recursive convolutional codes have similar BER's. 

except for low Ea/No, wliere the systematic code has a significantly lower BER. The software 

package BNC was used to obtain these results. 

5.2.4 Turbo-codes: parallel concatenated convolutional codes 

Although the convolutional codes and decoder described above give roughiy a 5.7 dB im- 

provernent over uncoded transmission at  a BER of 10-5! they are still roughly 3.7 dB from 

Shannon's limit at this BER. Up until the last few years, a serially-concatenated Reed- 

Solomon convolutional code [Lin and Costello 19831 was considered to be the state of the 

art. At a BER of  IO-^, this system is roughly 2.3 dB from Shannon's Limit . However, in 

1993, Berrou, Glavieux, and Thitimajshima introduced the turbo-code and the practical it- 

erative turbo-decoding algorithm. Their system was roughly 0.5 dB from Shannonk Limit at  

a BER of 10-~. Also, these binary codes have b e n  successfully combined with mdti-level 

coding to obtain bandwidth-efficient coding within 0.7 dB of Shannon's b i t  [Wachsma~  

and Huber 19951. 

The original presentation of turbo-codes lacked a principled fkamework. For example, it 
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Figure 5.8: (a) The Bayesian network for a K = 6. Ji = 12 rate 1/2 tubecode.  (b) The 
performance of a K = 63,536 rate 1/2 turbo-code using 18 iterations of turbo-decoding. 

was not at d l  clear how decoding shouid proceed when there were three or more constituent 

convolutional codes instead of two [Divsalar and Pollara 19951. However. it turns out that 

the turbo-code can be concisely described as a rnultiply-connected Bayesian network, and 

that the turbc~decoding algorithm is just probability propagation in this network [Frey 

and Kschischang 1996; Kschischang and Ftey 1997; MacKay, McEliece and Cheng 19971. 

This general graphical mode1 kamework makes it easier to describe new codes and their 

corresponding iterative decoding a l g o r i t h .  For example. decoding a turbo-code that has 

three constituent convolutional codes is just a mâtter of propagating probabilities in the 

corresponding Bayesian network. 

Figure 5.8a shows the Bayesian network for a rate 1/2 turbo-code. For a given infor- 

mation vector, the codeword consists of the concatenation of two constituent convolutional 

codewords, each of whicb is based based on a different permutation in the order of the 

information bits. The subnetwork indicated by a dashed Ioop is essentiaily the same as the 

network for the systematic convolutional code described above. The only dxerence is that 

every secorid LFSR output is left off, for a reason given below. The information bits are 

also fed into the upper convolutional encoder, but in permuted order. Every second LFSR 
output of the upper code is also left off By leaving off every second LFSR output in both 

constituent codes, the total number of codeword bits is twice the number of information 

bits, so the rate is 112. 

Once the Channel output y for an encoded information vector is observed, probability 
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propagation can be used to approximate P(ukJy)  and perform approximate MAP bit de- 

coding. Figure 5.8b shows the performance of the probability propagation decoder for a 

K = 65,536 rate 1/2 turbo-code with a randomly drawn permuter. The scripts used with 

the BNC software package to obtain these results are given in Appendix 3.3.  

Each (identical) constituent convolutionai code uses a 4-bit LFSR wit h polynornids 

(21/37)8. Although at low Eb/No the turbo-code gives a BER that is sigpficantly higher 

than the BER for uncoded transmission, the turbo-code c w e  drops below a BER of 10-' 

at less than 0.5 dB frorn Shannon's iimit. Berrou and Glavieux suggest that for very low 

BER performance (say 10-'O), the permuter should be designed to maximize dmin [Berrou 

and Giavieux 19961. 1 have found that for BER'S at or above IO-'. a randomly drawn 

permuter typically works fine. 

Since the turbecode network is multiply-connected, we must specifjr a message-passing 

schedule in order to decode by probability propagation. That is, the order in which messages 

are passed can affect the final result as well as  the rate of convergence to a good decoding 

solution. Since the network is multiply-connected, we must also speciw when to stop passing 

messages, since otherwise they ~ ~ o u l d  propagate indefinitely. Figure 5.9 shows how messages 

are passed up to the end of the first iteration of turbdecoding. First , messages are passed 

fkom the channel output variables (crossed vertices) to the state variables of bot h constituent 
codes. Assuming we are only interested in estimating P(ukly), we can now ignore the 

channel output variables and the codeword variables. The simplified network with buffered 

messages waiting to be sent is shown in the upper-right picture in Figure 5.9 

Next, messages are passed £rom the information variables to the state variables of one of 

the constituent codes. This c h i n  is processed in the forward-backward manner and then 

messages are propagated to the information variables. Messages are then passed to the state 

variables of the ot her constituent code. T hese messages are called "ext rinsic informat ion" 

in [Berrou and Glavieux 19961. Once the second chain has been processed in the forward- 

backward manner, messages are propagated back to the information variables, as shown in 

the lower-right picture in Figure 5.9. This completes the first itemtion of turbo-decoding. 

Messages are t hen propagated from the informat ion variables back to the first constituent 

code chain, and so on. The series of 16 pictures outlined by a dashed rectangle in Figure 5.9 

shows how messages are passed during one complete iteration of turbedecoding. (Note that 

after the &st iteration, there aren't any buffered messages in the first picture within the 

dashed rectangle. The buffered messages in this picture are due to the initial observations.) 
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Figure 5.9: The message-passing schedule corresponding to the standard turbo-decoding algorithm. 

5.2.5 Seridy-concatenated convolutional codes, low-density parity-check 
codes, and product codes 

It turns out that many of the iterative decoding algorithms for a variety of codes can be 

viewed as probability propagation in the corresponding Bayesian networks For the codes 

[Frey and Kschischang 19961. Figure 5.10a shows the Bayesian network for a serially- 

concatenated convoiut ional code [Benedetto and Montorsi 1996bI. The information bits 

are 6rst encoded using the upper convolutional code. The generated codeword bits xL 

are then permuted and fed into a second convolutional encoder, whose output bits x2 are 

transmitted over the channel. The iterative decoding algorithm introduced in [Benedetto 

and Montorsi 1996aI was presented without reference to any of the Literature on probabiiity 

propagation. However, their iterative decoding algorithm is in fact probability propagation 

in the corresponding Bayesian network. After observing the channel output y, the decoder 
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propagates messages hom y to the lower c h a h  Then. messages are propagated forward 

and backward along the lower chain before being passed to the upper chain. The upper 

chah is processed and then messages are passed back to the lower chain, and so on. 

The t heoret icd ML-decoding upper bounds on BER-Eb/No for seridy-concatenated 

convolutional codes are superior to those for turbcxodes [Benedetto et al. 19973. However. 

it is not dear that t hese theoreticai bounds are of any pract i d  value. First of all. the bounds 

are bzsed on the average performance over al1 possible permuters. Suppose t hat on average 

1 in every 1000 permuters gives a very poor code that when ML-decoded gives a BER of 0.1. 

Further, suppose that the ot her permuters give codes that when ML-decoded give BER'S of 

10-'O. If we randomly pi& a permuter. we are very iikely to get a code that gives a BER of 

10-Io. However, the average performance over all permuters is 0.001 - 0.1 + 0.999 IO-'' = 
IO-'. In this way. the average perfomaoce over permuters can be misleading. Second of 

d l ,  since ML àecoding is intractable. in practice we m u t  use a suboptimal decoder. such as 

probability propagation. Even if the ML-curve for one code is superior to that of another 

code, the performance of the practicd iterative decoder may be inferior. 

It is suggested in [Benedetto et al. 19971 that for short block lengths (say, K = 200) 

serialy-concatenated convolut iond codes give bet ter performance t han t urbo-codes. when 

iterative decoding is used. However. for short block lengths. it is not at all clear that either 

of these codes performs better than sequentiai decoding [Lin and CosteHo 19833 with a 

convolutional code wit h large memory. 

Figure 5.10b shows the Bayesian network for a low-density parity-check code [Gallager 

1963; Tanner 1981; MacKay and Neal 1996]. These codes were largely forgotten in the 

channel coding cornmunity for roughly 35 years. probably due to the computationally in- 

tensive encoder and decoder that GaIlager proposed. However, it turns out that they have 

excellent t heoret ical performance [MacKay 19971 and t hat the iterat ive decoder proposed 

by Gallager is in fact equivalent to probability propagation in the network shown above. In 
these codes, each parity-check vertex q, requires that the codeword bits { x ~ ) ~ ~ ~ ,  to which 

qi is connected have even parity: 

where q is clamped (observed) to O to ensure even parity. The term "low-density" refers to 

the fact that each parity-check variable is connected to very few codeword bits (a vanishing 

Baction, as N -t CE). (Notice t hat since t his network is parity-check oriented and does not 

show how an information vector is mapped to a codeword, it appears an encoder must use 

a pre-derived generator matrix and encode the K information bits in 0(K2) time.) The 



5.2 Bayesian networks for channe1 coding 138 

Figure 5.10: The Bayesian networks for (a) a K = 3, !V = 9 rate 1/3 seridy-concatenated 
convolutional code; (b) a(nonsystematic) K = 2, :V = 6 rate 113 low-density parity-check code; and 
( c )  a (nonsystematic) K = 3, -V = 9 rate 1/3 product code. 

iterat ive decoder passes messages between the parity-check variables and the codeword bit 

variabIes. Due t o  the simplicity of the codeword constraints (parity-checks), the decoder is 

simpler than the iterative decoder for turbo-codes. However. it appears they do not corne 

as close to Shannon's Lmit as do turbo-codes for rates of 1/3 and 1/2 [MacKay and Neai 

l996]. 

Figure 5 . 1 0 ~  shows the Bayesian network for a product code. In this network, each 

variable qi is a generahed parity-check variable - for example. qi may require t hat { z, ), cQ, 

be a codeword in a convolutional code. Recently proposed iterative decoders for product 

codes [Lodge et al. 1993; Hagenauer. Offer and Papke 19961 can be viewed as probability 

propagation in the corresponding networks. As wit h the low-density parity-check code, the 

decoder iteratively passes messages between the generalized parity-check variables and the 

codeword bit variables. 
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5.3 Trellis-constraint codes (TCC4s) 

In the previous section. E presented the Bayesian networks for a varie@ of codes whose 

iterative decoding algorithms can be viewed as probability propagation in corresponding 

Bayesian networks. Can we use th% perspective to propose new codes and derive new 

iterative decoders? Partly, the answer is "yes" . However, we cannot expect to obtain good 

results simply by tossing the ingredients of a Bayesian network into a bag and shaking. 

Firsi of dl. we want the resulting code to give excellent performance if ML decoding is used. 

Second of all, we want the resulting code to give good results when decoded by probability 

propagation, which is only an approximation to maximum Iikelihood decoding. Keeping 

these issues in rnind. a wise approach to proposing new code networks is to incrementally 

generaiize previous work. In this section. 1 present a code that can be viewed as a trellis- 

based generalization of turbo-codes. seridy-concatenated convolut ionai codes. low-density 

parity-check codes. and product codes. 

5.3.1 Constraint codes 

A binary (N. K) code is a set of 2 codewords. that is a subset of a ( u s u d y  much larger) 

set of 2" binary vectors of length N. So. one way to view a code is as the set of N-vectors 

that sa t i se  a set of constraints. I will refer to a code that is described in this way as a 

constraint code. For example. any (.M. K) linear binary code c m  be described by a set of 

N - linearly independent parity-check equations. A more complex example is an (N. K )  
binary convolutional code whose codewords are derived kom the 2 K  allowed configurations 

of the Markov chain that describes the code ( e . g . .  see Figure 5 . 6 ) .  This view of codes is 

similar to the systems approach of Wiberg [1996]. 

We can construct a Bayesian network that describes the parity-check equations for a 

code by creating one vertex qi for each parity-check equation i. and one vertex Xj for each 

codeword bit. The parents of parity-check variable qi are the codeword variables { z j }  jEq ,  

which appear in equation i. Tlie conditional probabilïty for pa-ity-check variable i is 

Finally, clamping q = O defines the allowed configurations of the graphical model. If there 

are N codeword bits and N - K parity-check variables whose parity-check equations are 

linearly independent, then the number of allowed configurations is 2 K .  A code that is 

described in this way can be iteratively decoded by propagating probabilities back and 
forth between the set of parity-check vertices and the set of codeword bit vertices. (The 
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Figure 5.1 1: (a) The constraint network for the turbo-code shown in Figure 5.8a. (b) Each of the 
upper and lower subnetworks in (a) can be made singly-connected by grouping parity-check vertices. 

Bayesian networks and iterative decoders for low-density parity-check codes and product 

codes fit into this framework - see Section 5.2.5.) 

For example. Figure 5. Lla shows the parity-check network for the simple turbo-code 

shown in Figure 5.8a. The channel output variables have been left out for the sake of 

graphical simplicity. As usuai. the parity-check variables are clamped to O. The 6 systematic 

codeword bits are in the center row of unclarnped vertices. The two sets of 3 nonsystematic 

codeword bits are in the upper and lower rows of unclamped vertices. Notice that each 

parie-check vertex checks a single nonsystematic bit as w d  as al1 systematic bits to its 

Left (up to the permutation). One way to decode this network is to propagate probabilities 

from the systematic bits to the upper row of pari@-check bits, back down aU the way to 

the lower row of parity-check bits. and so on. Notice that each systematic-parity-systemat ic 

sweep of propagation is not exact, since both the upper and lower subnetworks (obtained 

by a horizontal cut across the systematic bits) are multiply-connected. 

5 - 3 2  A code by any other network would not decode as sweetly 

Since any linear binary code can be described by a set of parity-check equations, it may 

seem that a kuitful approach to getting closer to capacity is to simply find a good code (e.g., 

a random linear code), mi te  down its parity-check equations, construct the corresponding 

Bayesian network. and then decode it using probability propagation. However, in general 

the parity-check network will be multiply-connected. Since probability propagation is only 

approximate in such networks, the performance of the decoder will depend heavily on which 

set of Linearly independent equations is w d .  Operations such as grouping parity-check 
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variables together (creating generalized check variables that have more than 1 degree of 

constraint) , will also heavily iduence the decoder's performance. 

For example, after grouping e x h  set of 6 parity-check vertices into one check vertex 

with 6 degrees of constraint. we obtain the network shown in Figure 5.llb. In this case. 

both the upper and lower subnetworks are singly-connected, so each systematic-parity- 

systematic sweep of propagation is exact. Obviously. iterative decoding in this network 

will give different resuits than iterative decoding in the original network. Notice that by 

grouping several parity-check variables. we obtained a check vertex with greater complexity 

than a single parity-check. In general. this wiil lead to a check vertex for which exact 

propagation is intractable. However. with judicious design. even a very high-order check 

vertex can still be processed in a tractable way. In the above example. each check vertex 

can be processed using the forward-backward algorithm. 

In order to obtain a good coding system. we need to simultaneously find a good code and 

a corresponding Bayesian network that gives good performance when decoded by probability 

propagation. 

5.3.3 Trellis-constraint codes 

The term trellzs was introduced by Forney [Forney 19731 and refers to a diagram that 

explicitly shows the values of a discrete state variable at each time step and the allowed state 

transitions. A treilis is more general than a LFSR. since in a treKs the state transitions and 

even the nurnber of states may Vary with time. (Also. a treiiis can represent a nonlinear 

code.) Figure 5.12a shows the trellis for the first 4 time steps of a rate 1/2 systematic 

recursive convolutional code with LFSR polynomiais (5/7)s. Le.. 52k = u k  and z s k + ~  = 

(1 + D Z ) u k / ( l  + D + D2). The leveis of the state variable (black discs) corresponds to the 

memory of the LFSR. and in this case there are 2 bits of memory. Each branch in the 

t r e h  indicates an allowed state transition, and the corresponding branch variable values 

(in this case the LFSR outputs x 2 k i x 2 k + l )  are written beside each branch. Figure 5.12b 

shows the corresponding Bayesian network. In the Bayesian network. the branch variab les 

are functions of the state done, and so each state variable must have 8 levels instead of the 

4 levels used in the trellis. 

A trellis-constraint code (TCC) is a constraint cade whose dowed configurations are 

defined by the interleaved interactions between the branch variables of two or more trel- 

lises. Because of the permuters, the branch variable interactions can lead to a TCC whose 

equivalent single t r e b  is very complex, even if the constituent trellises in the TCC aie 

simple (e.g., 16 states in the experiments below). The permuters (interleavers) may be 
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Figure 5.12: (a) shows the creliis for a simple rate 1/2 systernatic recursive convolutionai code. 
Each branch indicates an ailowed state transition, and the corresponding pair of output bits are 
written beside the branch. (b) shows the corresponding Bayesian network. which requires one e-xtra 
bit of state so that the outputs c m  be determined directly from the state variabies. 

structured or random. and theïe is no restriction on which branch variables are allowed to 

interact. For example. the systematic bits. the nonsystematic bits! or a mixture of both 

may interact with the other trellises. Also, there is no restriction on which variables are 

used as codeword symbols. For example, in a TCC with two trellises? the codeword bits 

rnay be the nonsystematic bits of one trellis. the nonsystematic bits of both trellises, the 

systematic bits of one trellis and the nonsystematic bits of the other trellis. etc .  

Figure 5.13a shows the Bayesian network for a general TCC with nt trellises and a vector 

of constraint satisfaction indicator variables c. (Each double-track arrow represents paralle1 

directed edges corresponding to the branch variables that participate in the constraints.) 

Let n, be the number of branch variables participating in the ith constraint. and let the 

corresponding branch variables be x , , ~ , .  . . , xi,ni. (E.g., if each treliis contributes one branch 

variable to each constraint, we have ni = nt for all  i, and Xi, is the branch variable that 

trellis j contributes to constraint i.) Let ci be the constraint satisfaction indicator for the 

ith eonstra.int. That is, = 1 if and only if {xij};Li is a valid configuration for constra.int i; 

otherwise, ci = O. For example, we may require that the labels participating in constra.int i 

have even parity, be equal, or form the codeword of a short code. For the equality-constraint 
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Treliis nt (3 
Figure 5.13: (a) The Bayesian network for a generai tre!lis-constra.int code (TCC). The networks 
for TCC's corresponding to turbo-codes. serially-concatenated codes. low-density parity-check codes. 
a d  product codes are shown in (b) - ( e ) .  "Sv = systematic coupling; "YS" = nonsystematic 
coupling. 

interaction. the conditional probability for constraint indicator i is 

where xiJ E {O. 1). Xotice that the conditional distribution for the constraint vector vari- 

able c factors: 

(This couid of course be shown graphically in the Bayesian network. but the figure woiild 

become much too cliittered. ) The constraints arc enforced by clarnping c = 1. 

Viewed as a generalization of turbo-codes and serially-concatcnüted convohtional codes. 

TCC's retain the graphical structure of two or more long chains that interact through a 

permuter. As with other iterative decoders. 1 have found that the decoding complexity of 

the probability propagation decoder for TCC's scaies Lnearly with block length. However. 

the encoding complexity for a TCC is not guaranteed to be linear, as i t  is for turbo-codes 

and seriaily-concatenated convolutional codes. Later in this section, 1 give an example 

of a TCC whose BER-Eb/No performance is cornpetitive with a turbo-code's, but whose 

encoding time is superlinear (possibly quadratic) in the block length. However, it sliould 

be kept in mind that the encoder can use binary operationso whereas iterative decoders 

use floating point or fixed (integer) point operations. So, it is often the complexity of 

the iterative decoder that is most important for practical block lengths (e.g., in broadcast 

applications, where an expensive encoder can be used, but the decoder must be higbly 
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affordable) . 

5.3.4 TCC7s with equality constraints 

The equality constraint is the most severe constraint. If there are ni branch variables 

participating in comtra.int i! then an equality constraint has nt - 1 degrees of constraint. 

(1 exclude constraints with ni degrees of constraint fiom consideration. since they do not 

act ually couple the trellises.) 

Figures 5.13b to 5.13e show the TCC's corresponding to a simple turbo-code. a serially- 

concatenated convolut ional code. a low-density parity-check code. and a product code. Each 

elongated ellipse corresponds to a constraint trellis. and each horizontal row of vertices 

corresponds to the constraint vertices. Each group of edges leaving a trellis is Iabeled -'NS" 

(nonsystematic) if the corresponding set of branch variables is constrained by the trellis. 

Each group of edges leaving a trellis is labeled "S7 (systematic) if the corresponding set 

of branch variables is not constrained by the treliis (ie.. the set of branch variables is a 

subset of a possible set of systematic branch variables). In al1 four cases. the constraints 

are equality constraints. The TCC corresponding to a turbo-code consists of two or more 

trellises that have equal (up to an interleaving) systematic bits. The TCC corresponding 

to a seriaUy-concatenôted convolutiond code consists of two trellises, where the systematic 

bits of one trellis are equal to the permuted nonsystematic bits of another trellis. The 

TCC corresponding to a low-density parity-check code consists of a large number of simple 

parity-check trellises. where each constraint ensures that one nonsystematic branch variable 

fiom each of a very srnall number of trellises are equal (two or three treEses are used in 

[MacKay and Ned 19963). Interestingly. the standard iterative decoders for low-density 

parity-check codes [Gallager 1963: MacKay and Neal 19961 process the soft decisions for 

each pari ty-check equat ion by apply ing the forward- backward algori t hm t O a pari ty-check 

trellis. The TCC corresponding to a product code consists of one parity-check trellis for 

each row and column of a rectangular mangement of the constraints. where each constraint 

ensures that the nonsystematic branch variables from the 'iow trellis" and " c o l m  trellis" 

are equal. 

The networks discussed above do not show which variables are used as codeword symbols. 

Although the graphical structure of an TCC may be well-suited to decoding by probability 

propagation, the quality of the code will depend on which symbols are used as codeword 

symbols, among other things. For example, if the nonsystematic bits for only one of the 

turbo-code treUises are sent, the double-trellis TCC degenerates into a single-trellis 'TCCn 

that is equivalent to a convolutional code. 
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Figure 5.14: (aj The Bayesian network for a new TCC, c d e d  a nonsystematic TCC. (b) The 
performance of a Ii' = 65.536. A- = 131.072 rate 112 nonsystematic TCC cornpared to a standard 
turbecode and a low-density parity-check code. The 95% confidence in te rds  were cornputed using 
the method described in Section 5.1.5. 

5.3.5 Nonsystematic TCC's 

In this section. 1 present a new type of TCC that fills a gap in the spectrum of TCC's shown 

in Figure 5.13. and give resdts that show this new TCC is cornpetitive with turbo-codes 

and low-density parity-check codes. The TCC's in Figure 5.13 v q  in both their number 

of constituent trellises and in which type of brmch variables (systematic or nonsystematic) 

they couple. TCC's of the type shown in Figures 5.13b and 5 .13~ have a small number of 

very long trellises. whereas TCC7s of the type shown in Figures 5.13d and 5.13e have a large 

number of reIatively short treliises. In contrast, TCC's of the type shown in Figure 5.13b 

emphy a systematic-systematic coupling, whereas TCC's of the type shown in Figure 5 . 1 3 ~  

ernploy a systematic-nonsystenatic coupling. Figure 5.14a shows a new type of TCC that 

has very long trellises and employs a nonsysternatzc-nonsgstematic coupling. 1 will refer to 

this type of TCC as a nonsysternatzc TCC [Fkey and MacKay 19971. in order to emphasize 

h~7w it differs from the TCC's for t urbo-codes and seridy-concatenated convolutional codes. 

Consider a TCC of this type, where the nonsystematic branch variables (which are 
constrained to be the equd) are transmitted as codeword bits. Let N be the number of 

codeword bits and let RJ be the rate of treliis j (2-e.' trellis j imposes N(1- RJ) degrees of 

constra.int on the codeword). Assuming that the constraints for al1 nt trellises are linearly 

independent, the degrees of freedom left over after all trellises are coupled is K = N - 
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C;:, N(l - Rj) .  So. the overall rate of the code is 

R >_ 1 - C(1 - R,). 

For each constraint that is linearly dependent on the other constraints. R is increased by 

1/N. 

Figure 5.14b shows the perfarrnance of a K = 65,536. N = 131.072 rate 1/2 nonsys- 

tematic TCC. with two trellises (nt = 2). Each treliis was obtained by puncturing every 

fifth nonsystematic bit of a rate 4/5 nonsystematic convolutional code with maximum dmin. 

(The generators for this code were obtained from [Daut. Modestino and Wismer 19821 and 

are (32.4,22.15. .) After puncturing, each convoliitional code had rate 3/4. so that the 

overall rate of the TCC was 1/2. The BNC software package was used to obtain these results. 

Although this nonsystematic TCC does not perform as well as a turbo-code with the same 

K and N o  it does perform significantly better than the best rate 1/2 low-density parity- 

check code published to date [MacKay and Neal 19961 with K = 32.621 and N = 65.389. 

(1 have observed that for long block lengths ( N  > 50.000). the only significant effect that 

increasing the block Length has is to steepen the dope of the BER-Z$/N~J c w e  ta the right 

of the point of high curvature.) 

The three iterative decoders used to produce the curves shown in Figure 5.14b iterated 

either until a valid codeword was found or until a large niimber (200 for the turbo-code and 

nonsystematic TCC. f O0 for the low-density parity-check code) iterations were complete. 

The 95% confidence intervals were computed iising the method described in Section A.5. 
The turbo-decoder kequently produced low-weight error patterns and much less kequently 

produced high-weight error patterns. so 1 used the larger of the two confidence intervals 

produced by ignoring the low-weight error patterns and by ignoring the high-weight error 

patterns. 

5.4 Decoding complexity of iterative decoders 

The decoding complexities per iteration for low-density parity-check codes, turbo-codes, and 

nonsystematic TCC's Vary as sigrilficantly as do their proximities to Shannon's limit. The 

decoding complexity for a low-density parity-check code is roughly ncL = 61t multiplies 

per codeword bit, where I is the average number of iterations required to find the correct 

codeword, and t is the average number of checks with which each codeword bit participates 
[MacKay and Neal 19961. 
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For turbo-codes and nonsystematic TCC's, most of the computations are spent process- 

ing the constituent trellises. Each section of a bi-proper trellis requires roughly 6 x 2" 

multiplies to process, where 2" is the number of states in the regular trellis. For a turbo- 

code with rate R and nt constituent convolutional codes, there are L V R ~ E ~  trellis sections in 

d l ,  so that the decoding complexity for a turbo-code is roughly QTc = 6 R l r ~ ~ 2 ~  multiples 

per codeword bit. For a nonsystematic TCC. there are iVnt trellis sections in all. so that 

the decoding complexity is roughly ClNsTcc = 61nt2" multiples per codeword bit. 

For example. at &/No = 1.3 dB, the t 3 low-density parity-check code discussed in 

the previous section has I = 11 -2 (David MacKay, personal communication). so fiGL = 202 

multiplies per codeword bit. The R = 1/2. nt = 2, u = 4 turbo-code has 1 = 5.3. so 

ilTc = 509 multiplies per codeword bit. The R = 1/2. nt = 2, v = 4 nonsystematic TCC 
has 1 = 10.5, so QNSTCC = 2016 multiplies per codeword bit. Although the iterative decoder 

for the low-density parity-check code clearly requires the fewest computations. it should be 

kept in mind that the turbo-code and the nonsystematic TCC wiU yield signikantly lower 

BER'S. 

5.5 Speeding up iterative decoding by early-detection 

The excellent bit error rate performance of iterative probability propagation decoders is 

achieved a t  the expense of a computationally burdensome decoding procedure. In this sec- 

tion? 1 present a method cailed earlg-drtection that can be used to reduce the computationd 

complexity of a variety of iterative decoders. Using a confidence criterion. some informa- 

tion symbols, state variables and codeword symbols are detected early on in the iterstive 

decoding procedure. In this way. the complexity of fùrther processing is reduced with a 

controllable increase in BER. 1 present an eczsily implemented instance of this dgorithm, 

called trellis spla'czng, that c m  be used with turbo-decoding. For a simdated system of this 

type, 1 obtain a reduction in computational complexity of up to a factor of four. relative to 

a turbo-decoder that performs the fewest iterations needed to achieve the same BER. 

One way to view early-detection is as a refmement of a block-oriented stopping criterioo 

used to terminate the iterative process in iterative decoders. For example, Hagenauer et al. 

[Hagenauer, Offer and Papke 19961 proposed monitoring the relative entropy between the set 

of soft information bit decisions for the current iteration and the previous iteration. When 

the change in this relative entropy falls below some threshold. the iterative decoding process 
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Figure 5.15: A plot of the log-odds ratio versus iteration number, for the correct value of each 
information bit in a randornly selected set of 100 bits within the same block of 10 000 bits. 

is terminated. The basic idea is that iterative decoding should stop when the decoder's 

soft decisions are stable. Block-oriented stopping criteria lead to iterative decoders t hat are 

more efficient t han fixed-complexity iterative decoders, since the s topping criteria effect ively 

allows the decoder to spend more iterations on "tough" blocks, a d  fewer iterations on 

L'easy" blocks. 

Taking this reasoning one step further, 1 believe that in some cases, parts of the codecuord 

may be more easily decoded than other parts. Although different parts of a codeword are 

usuaily inter-dependent, for particular noise patterns the coupling between parts may be 

weak. In these cases, it makes sense that the decoder should spend more computations 

on "tough" parts, and fewer computations on "easy" parts. During decoding, those parts 

that are deemed to be successfuily decoded are clâmped. Decoding computations are then 

focussed on the remaining parts. 

For example, Figure 5.15 shows how the soft decisions for a randornly selected subset of 

information bits { u r }  wzthin the same block evolve during iterative decoding of a turbo-code. 

The all-zero codeword was transmitted, so a large positive value of Li(uk = O) indicates 

that the decoder is quite confident of the value for ur , and that this value is correct. Large 

negative values (nooe shown) of Li(ur = O) indicate that the decoder is quite confident of 

the value for uk, and that this value is wrong. 
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These curves were produced by sirnulating the transmission of a single binary block over a 

0.2 dB AWGN channel, for a rate 1/3 unpunctured turbo-code that had 10 000 information 

bits, identical constituent encoders (21, 37)0ctd, and a randomly drawn permuter. Clearly, 

the decoder is correctly confident of many information bits long before it has sorted out 

the values of other information bits. By detecting some of the well-determined bits early, 

computat ions can be refocussed on decoding the less well-determined bits. 

The notion of revisiting a decoding operation after "pinning" some of the variables 

has been used before to improve BER performance. The most cornmon application is 

for decoding the serial concatenation of a Reed-Solomon outer code with a convolutional 

inner code. For practicd purposes, the Reed-Solomon decoder either outputs aa error-free 

codeword segment or flags the segment as a decoding failure. After the convolutional code 

has been decoded and its output decoded by the Reed-Solomon decoder, the codeword 

segments that are practically known to be error-free can be fed back to the convolutional 

decoder and used to pin certain treUis states for a second round of improved decoding. By 

using this approach, substantial coding gains have been reported by Lee [Lee 19771, Collins 

[Collins 19931, and Hagenauer et al. [Hagenauer, Offer and Papke 19931. 

The present application of "pinning" . called eurly-detection, is meant to decrease the 

computational complexity of decoding, but not improve BER performance or improve coding 

gain. For example, turbo-codes do not have component decoders that can flag decoding 

failures, so there is no way to be practically certain that an early-detected variable is 

correct. When applied to some types of iterative decoders such as turbo-decoders. early- 

detection actually worsens the BER performance. However, if the main concern in a system 

is the computational complexity of the decoder. early-detection can be used to reduce the 

complexity of an iterative decoder in a way that leads to a smaller increase in BER compared 

to other techniques, such as performing fewer decoding iterations. 

5.5.2 Early-detection criteria 

As discussed in the next section, the computation time of an iteration decreases with the 

number of early-detected variables. So, in order to obtain the greatest speed-up, the de- 
coder should early-detect as many variables as possible. However, an ovcrly aggressive 

early-detection criterion will lead to a high rate of erroneous decisions, spoiling the BER 
performance. In addition to this constraint, the early-detection criterion should be relatively 

simple, so t bat the overhead of ascertainhg which miables ought to be early-detected does 

not overshadow the reduction in the computational complexity of subsequent iterative de- 
coding. In this section, I explore criteria that use the soft decision reliabilities in order to 

ascertain whet her or not an early-detection should occur. 
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The soft decisions used for iterative decoding can be represented as log-odds ratios that 

approximate the true a postenon' log-odds ratios. The Iog-odds ratio for an information 

symbol, state variable, or codeword symbol z at iteration i given the channel output y is 

PI(* = z l ! y )  
L'(Z = 2) = log ,, , 

P ( z  # z'ly) : 

where j>'(zly) is the approximation to the a postenon distribution P(rly) produced at 

iteration i. 1 will let i be fractionai when the meaning is clear. For exampIe. in a turbo- 

decoder with two constituent codes. i = 0.5 refers to quantities produced by processing the 

first constituent code for the k t  time. 

In order to determine an appropriate early-detection criterion. 1 simulated the transmis- 

sion of 100 blocks fiom a rate 1/3 unpunctured tubecode that had 10 000 information bits, 

identicai constituent encoders (21. 3?)octd, and a randomly drawn permuter. I used binary 

signalling over an additive white Gaussian noise (AWGN) channel with &/& = 0.2 dB. 
To speed up decoding. our fornard-backward dgorithm was implemented using a Iinear 

interpolation approximation to the function log(1 + exp(-)). Also, our decoder did not 

weight the "extrinsic informat ion3 by the reliability variznces as was originally suggested 

by Berrou et al. [Berrou and Glavieux 19961. (1 found that this weighting operation is not 

necessary at BER greater than 10-~.)  Figure 5.16 shows a plot of the log-odds ratio versus 

iteration number for the correct d u e  of a randomly positioned information bit in each of 

the 100 blocks. In contrast to Figure 5.15. this figure shows the diversity of log-odds ratio 

convergence rates between blocks. 

It appears from Figure 5.16 that the only simple criterion that a decoder can use witbout 

introducing too many early-detection errors is a simple threshold. Higher order criteria. such 

as  the change in L ( U ~ ) ?  would produce too many erroneous eady-detections. Although the 

relative entropy hom one iteration to the next was successfully used in [Hagenauer, Offer 

and Papke 1996) as a block-oriented termination criterion, the same d e  wouid not work at 

the more refined symbol-oriented level of early-detection. The decoder rem& undecided 

on some variables for many iterations (up to i = 8.5 for one curve in Figure 5-16), and 

consequently L(,,) does not change mu& for those variables. However. eventually the 

decoder finds a consistent codeword segment and then the log-odds ratios for the related 

information bits change drastically. 

For the turbcxode system described above, Figure 5.17 shows 25 randomly selected 

cases (each from a different block) for which the log-odds ratios drap behw -10.0 during 

decoding. These traces show that the decoder can becorne incorrectly coddent of the value 

of an information bit, but then with fûrther iterations become correctly confident. By using 
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Figure 5.16: A plot of the log-odds ratio versus iteration number. for the correct value of a randomly 
positioned information bit in each of 100 decoded turbo-code blocks. 
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Figure 5.17: A plot of the log-odds ratio versus iteration number, for the correct value of 25 
information bit,s (from different blocks) for which the log-odds ratio dropped below -10.0 during 
decoding . 
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a threshold of 15.0 for early-detection, al1 of the bits that the decoder correctly decodes as 

i -t m can be detected early and correctly (the four curves t hat are between -5.0 and 10.0 

a t  i = 12 eventually rise above 15.0). On the other hand, if the change in the log-odds 

ratio is used for early-detection. many of the bits that the decoder correctiy decodes as 

i + x would be incorrectly detected early at the d u e s  for i where the c m e s  stop falling 

and begin to rise. That is. the change in L ' ( U ~ )  is close to zero at the iteratioo where 

the decoder begins to correct the bit. Higher order criteria may actually help in this case 

(by detecting that a cunre is turning around), but it appears the data is too noisy for this 

approach to be successful- Also. higher-order criteria increase the computational overhead 

of eariy-detection- 

5.5.3 Reduction in decoding time due to early-detection 

The Bayesian networks for a variety of codes are shown in the first coliimn of pictiires in 

Figure 5.18. (The channel output variables are not shown - their likelihoods are to be 

included as "bias" effects on the state variables. codeword bits. and information bits (where 

applicable) during decoding.) 

Let IP(zil+)I be the number of configurations of a discrete vaxiable z, and its discrete 

parents a, for which P(zi 1%) # 0: and let 1% 1 be the number of parents for q. (If zi has 
no parents, let l&l = 1.) In general. the time needed for an iteration of iterative decoding 

scdes as 

For example, if the constituent convolutional code for a turbo-code has memory v. then 

1 P(s,'lsf- ,. q) 1 = 2"+' and the state variable s i  contributes a complexity of 1 P(sf I S ~ - ~ ,  ui ) l -  

2' = 4.2"1L. A notable exception to the above formula is the time needed to proçess one set 

of parents for a parity check in a iow-density parity-check code. In t his case, 1 P (qi 1 {x ) jcQs ) 1 
is exponential in the number of parents (see Section 5.2.5). However, the time needed to 

process each such paxity-check vertex qi is h e a r  in the number of parents. 

An early-detection can reduce the computational complexity given in (5.32) both directly 

and indirectly. The first three pictures in Figure 5.18a show how the early-detection of 

information bit up directly simplifies the Bayesian network, thereby decreasing Q. The 

modified sum in (5.32) no longer includes the term IP(uî)l - 1 (= 2) for us: and in each of 

the terrns for the children sk and sz of U.Z, the number of configurations is reduced by a 

factor of 2 and the number of parents is decreased by 1. In the case of the turbo-code, the 
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Figure 5-18: Early-detection effectively modifies the Bayesian network for (a) a turbwcode. (b) a 
seridy-concatenated convolutionai code. (c) a product code. (d) a low-density parity-check code. 

former reduction decreases the complexity contributed by sf from 4 - 2"+' to Z Y .  

The indirect effect of detecting uz early is showri by the fourt h picture in Figure 5. Ma. 

Since the objective of the decoder is to make decisions for the information bits. the two 

states si and s: can ac tudy  be removed kom the network. Suppose ùz is the early-detected 
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value of us Then. the new conditional distributions for si, after si has been removed. is 

where LV is a normalization operator, which ensures that C,i P'(s:ls:. us) = 1 YS:. un. 

Notice that each of the terms in this sum includes a channel liieiihood. The computation 

of these new conditionai probabilities is actually performed as a normal part of iterative 

decoding. So, in practice al1 that is needed is a srnaJi integer lookup table to relate the 

codgurations of si and UJ to the proper values of si. 

Figs. 5.18b to 518d show how the networks for other compound codes are simplified by 

detecting variables. In the serially-concatenated convolutional code, detecting information 

bits (not shown) early leads to relatively little reduction in fi. Instead, the intermediate 

codeword bits can be early-detected to obtain a significant reduction in the complexity of 

decoding. Notice that oniy one trellis is simplified by a single early-detection. Each section 

of the upper trellis requires that bot h its outputs be early-detected. as shown by the lower 

two pictures in Figure 5.18b. For the product code and the low-density parity-check code. 

detecting codeword bits early simplifies the relevant constituent parity check equations. 

5.5.4 Early-detection for turbo-codes: Trellis splicing 

In this section. 1 illustrate how early-detection applied to turbo-codes can  be used to reduce 

the overail decoding compiexity. For turbo-codes. the Bayesian network consists of two or 

more chains that are processed using a speciai case of the probability propagation algorithm. 

c d e d  the fonvard-backward (a.k.a. .'BCJRn) algorithm [Baum and Petrie 1966; Bah1 et al. 

19741. This aigorithm cornputes the a posterion information bit probabilities using the 

channe1 output and a priori information bit probabilities. The forward-backward algorit hm 

ca. be viewed simply as a combination of probabilistic *80ws3 [McEliece 19961 computed 

in the forward direction and in the backward direction. Alternatively, a soft-output Viterbi 

algorithm (SOVA) [Hagenauer, Offer and Papke 19961 can be used. Here. 1 consider early- 

detection for information symbols only. As discussed earlier, early-detection of a single 

information symbol reduces the complexity of both constituent codes. 

Consider the simple two-state trellis shown in Figure 5.19~~. Let uk be the random 

variable for the information bit in the kth section of the trellis, and let s k  be the random 

variable for the state at  the beginning of the kth section of the trellis. The edge in the 

kth section of the trellis that leaves state s k  E {O, 1) in response to information bit ur; E 
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Figure 5.19: Treilis splicing. (a) shows a two-state trellis with edges accompanied by information bit 
labels and metrics and with nodes accompanied by flows. (b) and (c): If we know that information 
bit k + 1 has a value of 1, we can cut the corresponding section out of the treUis and splice the trellis 
back together, introducing new information bit labels and new metrics for the connecting edges. 

{O, 1) has an associated brandi metric. y;* (sk). These metrics are determined kom the 

received signals and the a priori probabilities regarding the transmitted information bit 

values. (In a systematic code, the iïkelihoods for the noisy received information bits can 

be included in the a priori probabilities.) If p(yk[ukr sk )  is the likelihood function for 

the kth received signai and P(uk)  is the a priori probability for information bit uk, then 

( y k )  = P ( U ~ ) P ( I J ~ ~ U ~ ,  s k )  The forward pass cousists of computing the flows from these 

metrics in the forward direction. This results in a fiow value ak ( sk )  for each state sk a t  each 
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section k,k = O . .  . K - io computed as c rk+ , (~)  = $ ( o ) ~ & ( o )  + +( l )ak( l ) ,  and crk+l( l )  = 

-y: (0)ak(O)  + 7; (l)<rk (1). The backward pass simply consists of a flow computatioo in 

the reverse direction in order to obtain a flow d u e  gk (sk) for each state a t  each section: 

ok(o) = Y:(o)~+,(o> +$(o)a+l(i), and j î kw = ~ : ( l ) f i + d ~ )  + $ ( l ) h c i ( l ) -  These two 
types of flow are cornbined to obtain the a posteriori log-odds ratio that each information 

bit is I versus O! given the received signal sequence y: 

The computat ional cost of each section in the forward-backward algorit hm t hus consists 

of the time spent cornputing the 0:s and B's for each state: as  well as the time spent 

computing the a posteriori Iog-odds ratios. Although there are various useful techniques 

and approximations for decreasing t his cost [Hagenauer, Offer and Papke 1996: Benedetto 

et al. 19961, such as the SOVA [Hagenauer. Offer and Papke 19961, I will define it as a basic 

computational unit. and refer to it as a treliis section operation. 

Suppose that according to some early-detection criterion, we decide that the value of 

information bit U ~ + I  is 1. (Here, 1 will consider early-detection for information bits only.) 

As a consequence. the treilis simplifies to the one shown in Figure 5.19b. The treliis can 

be simplified hrther by multiplying out the path metrics, giving the trellis shown in Fig- 

ure 5.19~. Note that not only have the path metrics changed, but also the transitions 

now correspond to different information bit d u e s .  In general, portions of the trellis cone- 

sponding to early-detected information bits can be cut away, and the remaining segments 

spliced together with new path metrics and new information bit edge labels. If the values 

of b information bits are known. the spliced trellis will be b sections shorter, leading to a 

computational savings of b section operations for each future forward-backward sweep. 

In order to implement trellis spiicing, an integer array must be used to determine the 

state transitions, (sk: uk) -+ sk+l. Whereas in the original trellis this mapping is very 

regular, after t r e h  splicing it is usuaily not. (E.g., the information bits associated with 

the outgoing edges of the kt h state in Figure 5.lSc have opposite values compared to those 

in Figure 5. Na.) The use of this array slightly increases the computational complexity of 

each section operation. Also, the array must be rnodified each time a section is cut away. 

However, both of these computational costs are insipifkant compared to the cost of the 

basic section operation. In the implementation of trellis splicing used for the experiments 

presented in Section 5.5.5, 1 found that the percentage of cpu time spent on trellis splicing 

was less thaa 6%. The integer artay also requires extra memory. However, the total memory 

used ac tudy  decreases during decoding while using trellis splicing. When a single section 
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Figure 5 -20: BER performance of turbo-decoding with and without early-detection, for Eb /No = 0.1 
dB. for thresholds of 6.  8. 10. 12, 14. 16. 18. 

is cut away, the memory liberated by the elimination of 7s. o s  and as more t h m  rnakes up 

for the extra integer array memory introduced. Moreover. if sections adjacent to the first 

are crit away. the transition m a y  is simply modified. so that the memory (associated with 

the 7s. (YS and fis of the adjacent sections is completeiy recovered. 

5.5.5 Experimental results 

1 have simulated treUis splicing results at Eb/Na = 0.1.0.2 and 0.3 dB. for the turbo- 

decoding system described in Section 5.5.2. At the end of each half-iteration of turbo- 

decoding, the log-odds ratio of each information bit was cornpared with a threshold in order 

to decide whether or not the bit should he early-detected. In order to average out the effects 

of block failure modes (i. e.. failure modes where a large &action of the information block 

is incorrectly decoded), I simulated the transmission of 20 000 information blocks for each 

value of the threshold. The resulting number of errors and number of section operations 

were then averaged over block transmissions. Figs. 5.20, 5.21 and 5.22 show plots of BER 
versus average number of section operations per information bit decoded, for a variety of 

thresholds. The curves for turbo-decoding withou t early-detection are aJso shown. For these 

simulations, a fixed number of decoding iterations were performed for each biock. 

For a given BER. the computational complexity of decoding can be reduced the most 

cornpared to standard turbo-decoding by using the threshold that corresponds to the cunre 
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Figure 5.21: BER performance of tur bedecoding with and without earIy-detection, for Eb/lVo = 0.2 
dB, for thresholds of 6, 8, 10, 12, 14, 16. 18, 20, 22. 
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Figure 5.22: BER performance of turbo-decoding with and without early-detection, for Eb/No = 0.3 
dB, for thresholds of 6, 8, 10, 12, 14, 16, 18, 20. 

in each figure that bottoms out a t  the prespecified BER. Thus, the locus of points corre- 

sponding t o  the knees of the curves gives the optimal achievable BER-complexity perfor- 

mance. Using these c w e s ,  we can answer the question, "At a specified Eb/No aod for 
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Figure 5.23: The computational gain for turbo-decoding with early-detection compared to turbo- 
decoding without early-detection as a function of BER, for Eb/:\iO = 0.1. 0.2. and 0.3 dB. 

different BER, what is the computational gain obtained by using early detection compared 

to using fewer decoding iterations without early detection?" The locus of points described 

above is interpolated in Figure 5.23 which shows the computational gain as a function of 

BER for the different values of Eb/No- For al1 three values of Eb/No, the greatest compu- 

tat ional gain is obtained near the minimal BER. 

5.6 Parallel it erat ive decoding 

The decoding algorithm for low-density parity-check codes proposed by Gallager [1963] 

and later by MacKay and Neai [1996] is inherently a pa rde l  algorithm. As described in 

Section 5 -2.5. probability propagation in the Bayesian network for a low-density parity-check 

code consists of passing sets of messages ba.ck and forth between the codeword bits and the 

clamped parity-check variables. It turns out that the standard decoders for turbo-codes and 

seridy-concatenated convolutional codes are inherently serial. In this section, 1 consider a 

pardel  message-passing scheduk for turbo-decoding. 
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5.6.1 Concurrent turbo-decoding 

If each chain in a turbo-code is viewed as a single unrefined vertex (e-g. ,  Figure 5. l l b ) ,  t hen 

turbo-decoding can also be viewed as a "parallei" algorithm2. However, if each chain in a 

turbo-code is viewed at a refined level (e.g., Figure 5.8): then the standard turbedecoding 

algorithm is inherently serid. That is. when messages are passed as s h o m  in Figrue 5.9. 

most of the computations are used to compute messages that cannot be propagated in 

pardel.  

Here, I consider concurrent turbo-decoding in wbich messages are passed in a parallel 

fashion. One time step of concurrent t urbedecoding consists of simultaneously passing 

messages in both directions on al1 graph edges in the Bayesian network for the code. (Al- 
though "concurrentn is not quite the right term for such a pardlel algorithm. the term 

"parallel" is used in the other name for turbo-codes, "parallel concatenated convolutional 

codes".) Notice that concurrent turbedecoding is not just a parailel implementation of 

standard turbo-decoding. It is a different algorithm which may have different properties. 

A naive approach to a hardware implementation of concurrent turbedecoding would 

be to build one simple processor for each vertex in the Bayesian aetwork for a code. Of 

course, for reasonably long block lengths, a prohibitively large number of these processors 

would be needed for a fully parailel VLSI implementation of concurrent turbPdecoding. 

In the following section, 1 empiricdly compare the time complexity of standard decoding 

with concurrent decoding, while ignoring practical irnplementation issues such as wiring 

complexity. In practice, a more space-efficient irnplementation ( e - g . ,  time-shared processors) 

would be used at some detriment to the cornputational efficiency. 

5.6.2 Results 

The code used for the simulations was a rate 1/2 K = 5: 000, N = 10,000 turbecode with 

two constituent convolut iond codes. each with generator polynomials (21/37)octd. The 

constituent chains were connected by a randomly selected permuter. Every second output 

of each constituent chain was punctured to get a rate of 1/2. For each of three values of 

Eb/No7 the transmission of 107 information bits was simulated, and the resdts  are shown 

in Figures 5.24 and 5.25. Interestingly, for a given Eb/No it appears that both algorithrns 

converge to the same BER. 

Figure 5.24 shows the BER versus the number of messages passed in the constituent 

'When there is more than one chain in a turbo-code, messages may be passed between chains in either 
a serial or parallel rnanner. 
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Figure 5.24: Performance of standard (S) and concurrent (C) turbedecoding when implemented 
on a serial computer, for 3 values of Eb/NO. 
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Figure 5.25: Performance of standard (S) and concurrent (C) turbo-decoding when implemented 
on a parailel computer, for 3 values of Eb/No.  

chahs, for standard and concurrent turb~decoding. (The computation of the messages 

passed in the constituent chah dominates the decoding time). The number of messages 

passed gives a good indication of decoding complexity on a serial computer. Not surprisingly, 

it is apparent that the standard algorithm is better suited to serial implementation. It is 

interesting that for a given BER, the concurrent decoding algorithm is roughly 3,000 times 

slower than the standard algorithm when implemented ou a serial computer. 

Figure 5.25 shows the BER versus the number of time steps for the case where 10,000 
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processors are available for concurrent turbo-decoding. We assume that pipelining is not 

used for standard turbo-decoding. For a given BER, the concurrent decoding algorithm 

is roughly 550 times faster than the standard algorithm when implemented on a parade1 

computer. If one processor is used for each half iteration of 5 iterations of standard turbo- 

decoding in a pipeline fashion. standard decoding can be sped up by a factor of onIy 10 

(extra pipeline stages do not irnprove the BER). Concurrent turbwAecoding is still85 times 

fast er . 



Chapter 6 

Summary and Future Research 

My goal in this thesis bas been to present to the reader a unified graphical mode1 frame- 
work for describing problems and deveIoping inference algorithms in the areas of pattern 

classification, data compression, and channel coding. The previous three chapters have 

shown how Bayesian networks and various inference algorithms can be applied to problems 

in these areas. A major theme of this work is that probabilistic structure can be exploited 

to corne up with eficient algorithms. 1 conclude by highhghting the contributions made in 

this thesis and the importance of these contributions. 

6.1 A statistically valid comparison of Bayesian network pat- 

tern classifiers 

Recent research papers on new learning met hods for parameterized Bayesian networks have 

suggested t bat the new algorit hms could produce good density est imators. These met hods 

include parameter estimation by Markov chah Monte Carlo, wake-sleep leuning in the 

Helmholtz machine, and variational estimation. One outcome of my research (Section 3.5) 
is a statistically valid comparison of the performance of these methods and other stan- 

dard algorit hms using the DELVE (data for evaluating learning in valid experirnents) test 

system. The Bayesian network classiners perform very well compared to other standard 

methods, such as the k-nearest neighbor classifier. One surprise is that the simple logistic 

autoregressive network (which does not have any latent variables) performs very well. 
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6.2 Wake-sleep learning in the Helmholtz machine 

The wake-sleep algorithm is only an approximate form of the generalized expectation max- 

irnization algorithm. As such, experimental confirmation t hat the wake-sleep algorit hm 

works at aU is important. In Section 3.6, 1 presented original results showing that the wake- 

sleep algorithm can extract high-order structure £rom noisy images that were produced by 

a hierarchical graphics rnodel. After estimation, the Helmholtz machine can be used to 

non-linearly filter a test image and recover i ts hierarchical description. 

6.3 Multi-valued source codes 

Aside fiom pattern classification, another use for parameterized Bayesian networks is data 

compression. Bayesian networks that have many "unmixable" latent variables naturally 

lead to multi-valued source codes in which there are a very large number of codewords 

for each input pattern. Previous research on source coding has focussed on single-mlued 

source codes, since at  first glance it seems that a multi-valued code must irrevocably waste 

codeword space. Another outcorne of my research (Chapter 4) is a practical bits-back 

encoder that is &en able to use multi-valued source codes to communicate in a highly 

efficient manner, even when the codewords are unmixable. The compression rate for bits- 

back coding is identical to the cost function for the generalized expectation maximization 

algorithm. It follows t hat pararneterized Bayesian networks that are estimated using the 

generalized expectat ion maximizat ion algorithm (or an approximation to it, such as the 

wake-sleep algorit hm) are well-suited to bits-back coding. 

The results 1 obtained for bits-back coding indicate that for the source models 1 explored, 

the method is currently not a strong contender in the data compression practice. The main 

reason for this is that the underlying source models were not good enough. However, bits- 

back coding does provide an extra degree of source model design freedom, and so it leaves 

open a door for further research into models that produce multi-valued source codes. 

6.4 Integrating out model parameters using bits-back coding 

The work on bits-back coding described above leads to a practical coding method for inte 

grating over continuous parameter spaces. Suppose we are interested in encoding blocks of 

patterns and that the source changes fiom block to block, but not within any single block. 

Given a block of patterns, a parameterized model can be estimated. Then, the parameters 

can be quantized to some precision and communicated. The block of patterns is then en- 
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coded using the quantized parameters. According to the principies of Bayesian analysis, we 

ought to integrate out the mode1 parameters and use an ensemble of models to communicat e 

the block of patterns. It turns out that bits-back coding can be used to communicate each 

block of patterns using the ensemble of models, as long as a good approximation to the 

posterior distribution over the parameters given the bIock of patterns is available. In this 

case, the ensemble of modeis corresponds to the multi-valued source code. 1 am currently 

exploring the use of bits-back coding for integating over continuous parameter spaces. 

6.5 A graphical model framework for iterative channel de- 
coding 

A recent class of iterative error-correct ing decoding algorit hms are show ing great promise 

in closing the gap between practical chamel coding and S hannonYs 50-year-old t heoret ical 

limit. In Chapter 5, 1 showed that this class of algoritbms can be viewed as probability 

propagation in Bayesian networks that describe different types of error-correcting code. This 

overarching fiamework is important, since prior to this work. iterative decoders have been 

proposed in an ad. hoc. way with only a limited exposition of the similarities between the 

algorithms. This framework also lead to a contribution in the area of reduced-complexity 

iterative decoding, both for serial implementations and for pa rde l  implementations. 

6.6 Trellis-constraint codes 

In Section 5.3, 1 proposed a general class of "treilis-constraint codes" ? which have a graphical 

structure consisting of two or more finite-state chahs t hat interact t hrough permuted state 

transition labels. This class of codes includes turbo-codes. serially-concatenated convolu- 

tional codes, low-density parity-check codes, and product codes, al1 of which have recently 

been shown to give good performance. The generalization shows that this spectrum of codes 

has several gaps, one of which 1 refer to as a "nonsystematic trellis-constrajnt code". An  

instance of this new code performs nearly as well as a standard turbecode, and significantly 

better than the best known Iow-density parity-check code with the same communication 

rate. I believe the Bayesian network and probability propagation frameworks cernent a 

broad foundation for understanding a variety of new decoders and for developing new de- 

coding algorit hrns. 



Appendix A 

Proofs and Derivations 

A. 1 Probability propagation in Bayesian Networks 

In order to prove that the probability propagation algorithm described in Section 2.1.3 

computes P(zi I V )  i = 1. . . . . lé/ exactly. I will show that the propagation rules implement a 

locally consistent form of probabilistic inference. After some arguments regarding the unim- 

portance of the order in which messages are passedo the global validity of the algorithm will 

fotlow by induction. The definition of dependency-separation and the rules for determining 

dependency-separation (Section L.2.4) are used extensively in the following derivations. 

Recail that in probability propagation, there are two types of messages. R-rnessuges are 

probability vectors that are passed Bom parents to chilcireri in the direction of the edges. 

A-messages are likelihood vectors that are passed from children to parents in the opposite 

direction of the edges. Both types of vector have lengths that are equal to the number of 

values the puent variable can take on. Consider the network fragment shown in Figure 2.1~. 

where x is the set of parents of y, and z is the set of children of y. I d e j n e  the incoming 

A-messages as follows: 

where V ' J - ~  C v is the set of observations that are connected directly or indirectly to Z j  

through paths that do not go through y. Associated with each child z j .  there is a constant 

Pj that does not depend on the value of y. That is, each A-message need only be proportional 

to the appropriate likelihood vector. 



A.l ProbabiIity propagation in Bayesian Networks 167 

1 define the incoming R-messages as follows: 

where ~ ~ s - ~  C v is the set of observations that are connected directly or indirectly to xi 

through paths that do not go through y. Associated with each pazent xi, there is a constant 

pi that does not depend on the value of xi. Notice that regarding the unobserved variables in 

the network, n-messages axe pro bability vectors w hereas X-messages are likelihood vec t ors. 

A. 1.1 Comput ing P (y I V )  from the incoming messages 

Consider the fusion formula (2.11) that is used to compute P(ylv) for an unobserved variable 

y. (If y is observed, the couiputation of P(y lv )  is trivial.) Substituting the above definitions 

and the definition for PZ (2.1) into the final fusion formula (2.11) (and renaming the 

function computed by the fusion formula F ( y ) ) ,  we get 

a! is an axbitraq constant used to normalize F ( Y )  later on, so the first term in braces can 

be replaced by a new constant a'' which will be computed to normalize F(y) .  

Since the network is singly-connected, the observations connected to the children of y by 

paths that do not go through y are dependency-separated fkom each other by y (condition 

2 in Section 1.2.4), and thus n f ' l ~ ( v z k - u l y )  = p(vz-YIy). Since the network is singly- 

connected, the parents of y are connected to each other only through y. Consequently, 

the parents of y are dependency-separated fiom each other by the observations that are 

connected to the parents of y by pat hs t hat do not go through y (condition 3 in Section 1.2.4). 

Thus, nE, l'(xi ~v~ t - ' ' )  = P(X(V~-') .  The parents of y dependency-separate y fkom vx-Y 

(condition 1), so P ( ~ ~ X ) P ( X ( V ~ - ' )  = P(y, xlvX-'). Making these substitutions, we get 

However, vZ-Y is dependency-separated from v ~ - ~  by y (condition l), and as a result we 

have P ( v ~ - ~  lY) = P ( V ~ - ~ ( ~ ,  v ~ - ~ ) ,  and 
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After computing the n' that normalizes F ( y )  with respect to y. we get 

which just3e.s the final fusion equation (2.11). 

A.1.2 Outgoing ir-messages 

1. y observed: If y has the observed value y*. then P(~~V'-~J) = d(y.yO). since iyO) 2 
v Y d Z ~ .  From (2.7): it follows that 

2. y unobsented: Fur unobserved y. the formula for for an outgoing pi-message (2.5) after 

substitut ing the definitions for the incoming messages. is 

where the product of the constants has been replaced by cl. According to the same type of 

arguments as presented in the previous szction. the Grst term equals p({vZ, -' }!! l ,kfj  l Y ) .  
and the second term equals P(TJ~V~-")~ so we get 

(A. 10) 

Y I Z I  ~ v X - ~ , w e g e t  Noting that vY-'1 = {v J -  }k=l ,kW 

YZJ rY = c ~ P ( ~ ~ v ~ - ~ J ) -  (A. I l )  

(A.7) and (A.11) show that probability propagation is locally consistent in the outgoing 

n-messages; i. e.. the outgoing T-messages are proport ional to the appropriate probability 
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vectors. 

A. 1.3 Outgoing A-messages 

1. y obserued: After substituting the definitions for the incoming messages into the formula 

(2.10) for computing outgoing A-messages when y is observed to have the value y". we get 

where the product of the constants has been replaced by cl. Using the same type of 
arguments as were used in Section A.1.1. it can be shown that the summand equals 

P(yO. { x ; } f ~ l . k + i l ~ i .  { v x k A y  )rJi.k#i). - After summing over x' we get 

Notice that this formula does not include the observations vZ-Y connected to 9's children. 

This makes seuse. since if y is observed? the iikelihood of vZ-' does not depend on x,. (It 
wouid if y was not observed.) However. I now include the likelihood of vZ-' for the sake 

of notational clarity later on. Since P(V'-~ lgO) is just a constant (with respect to xi). we 

can write 

Of course. zi and { v ~ * - ~ } ~ ~ ~ , ~ ~ ~  are dependency-separated (by nothing) (condition 3) so 

that P ( { V " L - ~  }k=l,kgilxi) lx' - - P ( { ~ X *  -'}!XI k= 1 , k f  i > 
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2. y unobserued: After substituting the definitions for the incoming messages into the 

formula (2.5) for computing outgoing A-messages when y is unobserved, we get 

X ~ K  = c i ~ [ n ~ ~ l ~ ( Y ~ l - ~ ~ g ) ] [  C P ( ~ I ~ O ~ : L ~ P ( X ~ I ~ ~ ~ - ~ ) ] '  
x' -da =XI k # i Y (A. 18) 

where the product of the constants has been repiaced by c 1. According to the same type 

of arguments as presented in Section A. 1.1. the fint term in braces equals p ( v Z a Y  jy) . The 
summand of the inner s u m  equals ~ ( g .  {si}rLl.kFi ili. }t=i,t+i)l lx' but after sumrning 

over d the second term in braces equals P ( y ( s i ?  {vdYk -' } k = L , k t i / :  lx'  and thus 
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(A.17) and (A.22) show that probability propagation is locaily consistent in the o u t p  

ing A-messages. That is. the outgoing A-messages are proportional to the right likelihood 

vectors. 

A. 1.4 Global consistency 

Sections A.1.1, A. 1.2 and A.1.3 show that if the incoming messages to vertex y are propor- 

tional to the appropriate likelihood vectors (A.1) and probability vectors (A-2), then the 

propagation equations compute P(y(v) as well as outgoing messages that are proportionai 

to the right probability vectors and likelihood vectors. Zn this sense. probability propaga- 

tion is locally consistent. In this section. 1 show that if the propagation rules described in 

Section 2.1.3 are foilowed until there are no more buffered messages, then each vertex will 

have available ail incoming messages as defined in ( A . l )  and (A.2). 

First: note the the message passing formulas accumulate the effects of observations. That 

is. if a message is passed from t, to z, in response tu the observation of -1: then when a 
message is passed korn r, to 3 in response to the observation of 22, the latter message will 

include the effects of 21 and 2 2 .  Second. note that the rules for probability propagation 

ensure that once propagation is complete. the final message passed kom zi to z, is computed 

from the final messages passed to ri from d l  other neighbors of zi. Combining the above 

two comments. it follows tliat the final message passed fkom z, to z, will contain the effects 

of al1 observations o Z t - Z ~  connecteci both directly and indirectly to zi by paths that do 

not go through 2,. (Notice thac network initialization is required in order to propagate the 

effects of nul1 observations.) In other words. once propagation is cornplete each vertex has 

available the incoming messages as defined in (Al) and (A.2). 

A.2 Grouping variables in Bayesian networks 

As described in Section 2.1.4' two variables tj and may be grouped into a single vertex. 

as long as Zj is not an indirect descendent of zk and vice versa. Here. I show that this 

grouping operation preserves the representational capacity of the network. That is. the new 

network can represent at least ail those distributions that the old network could represent. 

Grouping introduces new conditional probabilities for the variables that are grouped and 

for variables whose set of parents includes one or both of the variables that are grouped. 
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The new joint distribution is 

Now. set 

For all i such that i # j -  i # k. z, G, and z k  g &, set 

For dl i such that i # j ,  i # k. and also such that z, 6 a, and/or zk E G? set 

Substituting these into (A.23). we see that 

In this way. the joint distribution of the old network can be represented by the new network. 

A.3 Proof of condition for inference by ancestral simulation 

Here, I show that if the parents of the visible variables in a Bayesian network are dependency- 

separated Born the hidden variables of interest h1 by the visible variables v, then ancestral 

simulation can be used to obtain a sample fiom ~ ( h ' l v ) .  If the condition holds, then ev- 

ery path connecting each m i a b l e  in h1 to the parents of each visible variable is blocked. 

This means that dasconnecting each visible variable fiom its parents will not change the 

distribution p(hllv). Since each visible variable wiu then have no parents, its value can be 

included as h e d  constant in the conditional probability functions for its children. We are 

then left with a new Bayesian network that describes a distribution P t ( h )  over the tariables 

h that were not observed in the original network. Although in general P1(h) # P(hlv), as 

shown above we have p t (h l )  = ~ ( h ' l v ) .  So, we may simply use ancestral simulation in the 
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new network to obtain samples fÏom ~ ( h ' l v ) .  Notice that ancestral simulation in the new 

network is equivalent to ancestral simulation for the unobsewed variables in the original 

network. 

A.4 Proof of detailed balance for slice sampling 

In order to show that the slice sampiing Markov chain Monte Carlo procedure for p ( z )  de- 

scribed in Section 2.2.1 has p ( z )  bas a stationary distribution, 1 will show that the procedure 

satisfies detailed balance: 

where q(gj tj is the p.d.f. that the procedure chooses the new value y = znP" h m  the old 

value z = zold. Factor this transition probability using the two steps taken by the procedure: 

choosing a slice at height s given z and then choosing 9 @en the slice and z: 

The equation for detailed balance c m  be written 

In order to prove detailed balance I show that 

q j s ( z ) p ( z )  = q ( s l y ) p ( y )  and q ( y J s .  z )  = q(z!s.  I/). (A.31) 

Let f ( 2 )  = <rp(z). The p.d.t for s given z is uniform over the interval [O.  f (z)] ,  so 

q ( s l z )  = i / I ( z )  = l / ( n p ( z ) ) .  and q ( s l r ) p ( z )  = p ( z ) / ( a p ( z ) )  = l /a .  Similarly the p.d.f. 
for s given y is uniform over the interval [O, f ( y ) ] ,  so q ( s 1 ~ )  = l /  f ( y )  = l / (ap(y)  ). and 

q(sIy)p(y ) = p(y! / b p ( y )  = va .  Threfore. q(slz)p(4 = < I ( ~ M P ( ' J ) *  
To prove q ( y l s , z )  = q ( ~ 1 s . y ) ~  first consider the case where y  and i are in the sarne 

segment of the slice. Given that y and z are in the same segment of the slice. the procedure 

for picking y does not depend on z, and vice versa. It follows trivially that q ( y l s ,  z )  = 

q(zls, y). Reasoning by symmetry, it can be shown that q ( y ( s ,  z )  = q ( z l s .  y )  in the case 
where y  and z are in different segments. 
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A.5 Bayesian confidence intervals for bit error rates 

When analytic methods are not available for computing bit error rates in error-correcting 

coding systerns, we must resort to simulation. Estimated BER'S can Vary significantly fiom 

experiment to experiment. and so it is often desirable to include confidence intervals. This is 

especiaily important for the long block Iength codes discussed in Chapter 5. since significant 

variability can be introduced by our inability to simulate enough blocks to pin down the 

word error rate. Also. for low bit error rates (e-g.. 1 0 - ~ )  we may not be able to rneasiire 

the distribution of bit errors within erronmusly decoded words. In this section. 1 present 

a Monte Carlo approach for estirnating the median and a 2.5% / 97.5% confidence interval 

for the BER. 

The error model contains two parameters: the probability p,, of word error, and the 

probability pb of bit error within erroneous words. This is a rather crude approximation. 

since in practice we expect there to be more than one failure mode. Le.. there ought to be 

several ph's corresponding to different failure modes- 

Let -44 be the number of worcis transmitted and let n, be the number of rneastrred word 

errors. Let K be the number of information bits per word. and let nb be the total number 

of bit errors measured while transmitting d l  M biocks. I wiil refer to the measured vahies 

as the data. D = {n,. nb}. From the Bayesian perspective. before observing D. we place 

a prior distribution p ( p W l p b )  on the error model parameters. Xfter observing 'D. ive draw 

conclusions ( e .g . .  compute a confidence interval) fkom the posterior distribution p(p, .  pblD)? 

w here 

In this equation. the constant of proportionality does not depend on p ,  or ph. The last 

factor P ( P ( p , , p b )  is called the Iikelihood. 

1 let p, and pb be independent beta-distributed random variables under the prior: 

P ~ W :  ~ b )  = P ~ W  ) P ( P ~ ) ,  

In bequentist terms. a, and 0, have the effect of shrinking our measurements toward a 

word error rate of a,/(u, + 13,). where the influence of this shrinkage grows with a, + 
4,. Typically, 1 choose a, = P, = 1. which gives a uniform prior over p,  as shown in 

Figure A.la. 

As for the prior over pb, it should be chosen while keeping in mind the behavior of the 
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Figure A.1: (a) The prior distribution over the probability of word error p,,. (b) The prior distri- 
bution over the probability of bit error pb within erroneous words. This distribution is designed JO 

that its median is equal to the probabiiity of bit error for uncoded transmission. 

decoder. If the main mode of decoding error is a failure to decode. and if we beiieve that 

for failures the decoder will produce a probability of bit error that is roughly equal to the 

probability pu of bit error for uncoded transmission. then the prior should place weight on 

pb = pu. In this case. 1 choose ab = 2 and Pb = l / p u .  which ensures that the mode of the 

prior occurs at pu and that the prior is relatively broad. For example. b r  Eb/iVo = 1 dB 

we have pu = 0.0563. and so 1 choose alJ = 2 and Pb = 1/0.0563 = 17.76. giving the prior 

distribution for ph shown in Figure A.lb. 

It is straightforward to show that the 1ikeLihood is 

This distribution is the product of a binomial distribution for the number of word errors 

and a binomial distribution for the number of bit errors. Combining this Likelihood with 

the prior, we obtain the posterior. 

which is just the product of a beta distribution over p, and a separate beta distribution 

over pb. Of course' we are actually interested in the posterior distribution p(p,pbl'D) over 

the total probability of a bit error p,pb. A sample is obtained from p@,pblD) by drawing 
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Figure A.2: (a) A 1000-point sample froni p(pw,pblV) for M = 332, n, = 14, K = 65,536 and 
nb = 34,225. for the prior described in the main text.  (b) -4 1000-point sarnpIe from p(p,, pblV) for 
M = 10,216, n, = O, K = 65,536 and nb = 0, for the sarne prior. 

p, - pb pairs from the posterior in (A.35) and taking the product of p ,  and pb in each pair. 

This sample is sorted in ascending order, and the value of p,pb occuring half-way through 

the sorted Iist is taken as an estirnate of the median of p ( p , p b l V ) .  Similarly, the d u e s  

of p,pb occuring 2.5% and 97.5% through the sorted list are taken as the 95% confidence 

interval. 

For the nonsystematic trelIis-constraint code presented in Section 5.3 -5: 1 simulated the 

transmission of M = 332 blocks at Eb/No = 0.95 dB using a block iengtb of K = 65,536 

information bits. 1 measured n, = 14 and nb = 3.1: 225. Using the prior presented above 

for the slightly higher value of Eb/& = I dB, a sample of ZOO0 points h m  the posterior 

over p ,  and pb was obtained and is shown in Figure A.2a. As described above, for -1 = 

0.025, 0.5 and 0.975. 1 found the values for p, such that @@,pb < p,JD) = y? where p is 

the sample distribution. The corresponding three curves of the form p,pb = p, are shown 

in Figure A.2a, and the corresponding values of p, give a median of 1.7 x 1 0 - ~  and a 95% 
confidence interval of (9.9 x  IO-^, 2.6 x lod3). Clearly, in this case it is the values for p ,  

that determine the p,'s for these curves, whereas the values for pb are webdetermined by 

the measurements. We could have assumed that pb took on its measured value instead of 

sampling fkom the posterior. 

For the nonsystematic trellis-constraint code described above, 1 &O simulated the trans- 

mission of M = 10,216 blocks at Eb/& = 1.0 dB. In this case, I measured n, = O and 

n b  = O. Using naive methods, we might conclude that the bit error rate is O and that there 

isn't any variation in this value. However, the Bayesian technique gives the sample fiom 
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the posterior shown in Figure A.2b. ln this case, the d u e s  of both p ,  and pb play a role 

in determining the p,'s for the three curves. The median is 5.1 x 10-~ and the confidence 

interval is (1.6 x IO-'. 1.8 x 10-~). 
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The BNC Software Package 

BNC (Bayesian Networks for coding) is a Tcl-based interactive program that performs 

probability propagation. The package is tailored to coding applications. but can be used 

to propagate probabilities in any Bayesian network where the real-valued variables are 

O bserved and where the conditional pro babilities for the real-valued variables are mixtures 

of Gaussians. BNC uses vectors. so for example a group of information variables can 

be handled quite easily. Also. instead of defining one conditional distribution (link) for 

each variable in the network. BNC uses prototypical links that can be reused for different 

variables. Some of the commands that BNC uses are 

0 crvars: creates a vector of discrete or red variables 

crlink: creates a prototypical link 

addtolink: adds to a prototypical Link a parent-chdd configuration that has non-zero 

probabihty 

ïinkVars: links a variable to its parents 

srnet: shows the network connectivity 

clVal: clamps a variable to a given value 

sndrcvMsg: passes a probability message from one variable to another 

shProb: shows the curent estimate of the marginal probability for a variable 

After describing where to find the software and how tcr i n s t d  it. 1 give a simple example 

of how BNC c m  be used to propagate probabilities in the burglar alarm network £rom 

Section 2.1.2. Then, I give the BNC scripts that 1 used to obtain the turbo-code results 

described in Chapter 5. 
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B. 1 Installing the software 

BNC makes use of the Tc1 and extended Tc1 iibraries, which can be downloaded from 

The BNC tar file bnc. tar can be obtained from my web page, 

http: //vuw/cs .utoront0 .ca/-frey 

Untar this file with a command like tar xf bnc-tar, and you will get a directory c d e d  

. /bnc which will contain the source for BNC and some helpful scripts (e.g.. copies of 

the commands given in the following tutorials). You should see the following files in the 

directory . /bnc: berrou. tcl. bnc. c, If sr. tcl. Makef i l e .  man.ps. r sc .  t c l .  and sr . t c l .  

man. ps contains a tutorial and a BNC command reference. 

Before making bnc, you'll need to know which version of Tcl you have instailed on 

your machine. Change into the directory . /bric' and edit Makef ile in order to set the 

B N C J N C L U D E M I N  flag as described in Makefile. You may &O need to edit the include 

directory and library links to get the Tcl and extended Tc1 Iibraries working right. 

B.2 An example: The burglar alarm problem 

The burglar alarrn network described in Section 2.1.2 consists of three variables b (burglar), 

e (eart hquake) and a (alarrn) , and the following conditional probabilit ies: 

In this section, 1 show how BNC can be used to propagate probabilities in response to the 

observation a = 1. 

1 suggest that bnc be run with fep so that command lines can he easily modi£ied: 

> fep bnc 
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Next , create t hree biuary vector variables containing one element each: 

With the option d. the command crVars d u m n creates a vector called v of n discrete 

variables, each of which can take on the values {O,. . . , m - 1). The elements of a vector 

are referred to with a hyphen. For example, to find out about variable b-O, type 

bnc>shVax b-O 

Variable name: b-O 

Real-vaiued : No 

Observed: No 

Number of states : 2 

Value: 32320 

Currently unlinked 

Note that the value of b-O is uridefined since b-O has not been observed. 

Now create the prototypical conditional probability links, using the values given in (B.l): 

BNC interprets P (b) as a string representing the name of the Iink, and does not parse 

characters such as (, ), and 1 .  In particular, at this point BNC does not relate the link 

P(b) to the burglar variable vector b created above. In the command crLink P(b) d 2, d 

indicates the child variable for the link is discrete, and 2 indicates the child can take on two 

values, {0,1}. The command addtoLink P(b) 0.1 1 adds to the link P(b) a probability 

mass of 0.1 for the child having the value 1. Note that i t  is only necessary to speci& the 

parent-child configurations that have non-zero probability. addtoLink P (a l b , e) 0.368 1 
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1 O specifies a probability of 0.368 that the child has the d u e  1 given that the first parent 

has the value 1 and the second parent has t be value 0. 

Now that the prototypical Links have been defined, link together the network and take a 

look at it: 

bnc>linkVars P (b) b-O 

bnc>linkVars P (el e-O 

bnc>linkVars P ( a l b , e )  a-O b-O e-O 

bnc>sh.Net 

NULL -> b-O 

NüLL -> e-O 

b-O e-O -> a-O 

Here, NULL indicates that the variable does not have any parents. This completes the 

specification of the Bayesian network. 

The next series of commands clamps the values of a-O to 1 and propagates messages 

across the network in the fashion shown in Figure 2.2: 

The flag v in the comrnand sndrcvMsg means "verbose", and causes the command to print 

out the probability message. Note that these messages are normalized versions of the ones 

shown in Figure 2.2. 

Finally, examine the marginal probabilities for b-O and e-O given that a-O is clamped 

to 1: 

bnc>shProb b-O 

(O. 2485, O. 7515) 

bnc>shProb a-O 

(O. 6506, O. 3494) 
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In general, it is rip to the user to decide in what order the probability messages shodd 

be passed. 

See man. ps for a complete BNC cammand reference. 

B.3 Scripts used to decode a turbo-code 

Before listing the main BNC script be r rou - t c l  used to simulate a turbo-code. I list the 

script l f s r .  t c l  that is used to build the conditional probability Links for linear feedback 

shift registers. given the feedforward and feedback delay taps. 

B.3.1 If sr. tcl 

# usage: buildLFSR <num> <den> Cu-%> <us->s> Cs->x> [es->s> [<s->u>]] 

# 

# Copyright 1996 Brendan J .  Frey. 

# 

# This bnc s c r i p t  defines a procedure f o r  building a binary I/O 

# LFSR given the  coefficients  of the  z-transform numerator and 

# denominator polynomials. n u  and den a r e  lists of b i t s .  This 

# procedure re tu ras  -1 i f  there  is an e r ro r  and othemise  

# re tu rns  the number of Sta tes  f o r  the s t a t e  variable.  Note 

# t h a t  t he  2-0 coeff ic ients  i n  n u  and den (right-most b i t s )  

# must be 1. Also, outputs are a function of the s t a t e  *alone*, 

# so  t he  input i s  included a s  p a r t  of the s t a t e ;  this approach 

# d i f f e r s  from the  t re l l i s -based approach (where outputs are 

# associa ted with s ta te  * t rans i t ions*) ,  but gives a Bayesian 

# network t h a t  is singly-connected and so can be processed 

# using probabi l i ty  propagation, So, the current  s t a t e  contains 

# the  t r u e  s t a t e  of the LFSR plus the input b i t  t o  be used in  

# d e t e m i n h g  the next s t a t e .  The procedure creates  tbree  

# l i n k s  and tuo more optional ones. The link names are 

# passed t o  buildLFSR by the user.  utos links the f i r s t  input 

# t o  the LFSR. I n  contrast ,  ustos l inks  an input and a previous 

# s t a t e  t o  the  next s t a t e .  s tox links the s t a t e  t o  the output .  
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# The op t iona l  l i nk  stos l i n k s  a previous s t a t e  t o  t h e  next 

# s t a t e  s o  t h a t  the s t a t e  v i l 1  eventually reach O .  (E.g. , 
# i n  coding appl ica t ions ,  t h i s  l i n k  can be used t o  implement 

# t r e l l i s  termination.)  The second optional  l i n k  s tou  de temines  

# which input  b i t  is stored i n  the  s t a t e .  (E.g., if systematic 

# t r e l l i s  termination is being used, t h i s  l i n k  can be used t o  

# obta in  t h e  input bit t h a t  uas needed t o  help terminate the 

# t r e l l i s  .) 

proc buildLFSR {num den utos ustos s tox {stos llNüLL1l) {stou 1'NULL81)) ( 

set lnum [ l length $numl ; s e t  lden [ l length $den] 

s e t  stmem $lden; s e t  s t s z  [expr 1 CC $stmem] 

# Check t h a t  coeff ic ients  make sense. 

i f  ( [expr $Iden != $hum] ) ( re tu rn  -1 3 

if { [expr [lindex $num [expr $Inun - l]] != 11 ) { re tu rn  -1 3 
if { [expr [lindex $den [expr $Iden - 111 != 11 ) { re tu rn  -1 ) 

# Build the l i nk  used f o r  the f i r s t  s t a t e .  

crLinlc $utos d $s tsz  2 

addtoLink $utos 1 .O O O ;  addtoLink $utos 1 . O  1 1 

# Make t h e  o ther  links, by examining the LFSR t r a n s f e r  function. 

crLink $ustos d $stsz 2 $s t sz ;  crLink $stox d 2 $ s t s z  

if ([expr ("NULL" != "$stosn)]) { crLink $s tos  d $ s t s z  $s t sz  ) 

if { [expr ("MILL" != "$stouN)]) ( crLink $stou d 2 $s t sz  ) 

laop s t  O $ s t s z  ( 

# Get the  input b i t  from the  s t a t e .  

s e t  u [expr $ s t  â 11 

i f  ([expr {"NULLM != "$stouU)]) { addtoLink $stou 1.0 $w $ s t  ) 

# XOR t h e  input b i t  u i t h  the  feedback bit. 

loop i 1 $stmem { 

i f  { [expr [lindex $den [expr 8lden - $i - 11 1 == 11) ( 

set w [expr $w + ( ( $ s t  >> $ i )  8 111 

> 
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s e t  v Cexpr $u % 21 

# Compute the  next s t a t e  and add to the  ustos l ink ,  f o r  each 

# possible input b i t  (b t )  a t  the next time s tep .  

loop b t  O 2 { 

s e t  ns t  [expr ( ( ( ( $ s t  >> 1) << 1) + Sv) C< 1) % $s t s z  + $bt] 

addtoLink $ustos 1 .0  $nst $bt $ s t  

> 

# Compute the  next state for  the s tos  link and add t o  the l i n k .  

i f  {[expr {"NULL" != "$stosU)3) { 

set ns t  [expr ( ( ( ($ s t  >> 1) << 1) + $VI << 1) % $stszJ  

se t  b t  O 

loop i 1 $stmem ( 

i f  < [expr [lindex $den [expr Olden - $i - 11 1 == 1 3  1 { 
set b t  [expr $bt + (($nst >> $i) & l)]  

I 

set bt [expr $bt % 21 ; se t  ns t  [expr $nst + $bt] 

addt oLink 

1 

# Compute the  

# stox l ink.  

$s tos  1.0 $nst $s t  

output b i t  from u and the s t a t e ,  and add t o  the 

i f  { [expr [lindex $num [expr $hum-11 1 ==II 3 { 
se t  x $V e l s e  C se t  x O 1 

loop i 1 $stmem < 
if {[expr [lindex $num [expr $Inum - $i - 133 == 11) { 

s e t  x [expr $x + ( ($s t  >> $ i >  & 111 

3 
> 
s e t  x Cexpr $x % 23 

addtoLink $stox  1.0 $x $st 
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The following BNC script is for a specific Eb/-No (0.6 dB) and for a specific number of 

transmitted blocks (530). The value of Eb/& was varied to obtain BER-Eb/No curves. 

# Results  f o r  a punctured r a t e  1/2 turbo-code. Since the al l -zero 

# codeuord is always s e n t ,  a decoder network is b u i l t ,  p lus  a noise  

# vector  network (independent Gaussian u n i t s )  . 

# Set up t h e  constants  

s e t  LOGFILE berrou0.6. log 

s e t  SNR 0.6  

s e t  K 65536 

s e t  NBLOCKS 530 

s e t  NITERS 18 

s e t  NüM Ci O O O 1) 

s e t  DEN (1 1 1 1 1) 

s e t  K 2  [expr 2*$K] ; s e t  Km1 [expr $K-l] 

s e t  RATE [expr 1.0*$K/$K2] ; set VAR [expr pov(l0.  O ,  -($SNR/10 .O) ) /2.0/$RATE] 

# Build t h e  recurs ive  convolut ional  encoder l i n k .  

source I f s r - t c l  

s e t  S [buildLFSR $NUM $DEN u->s us->s s->x] 

if { [ex-pr $S == -11 ) { puts "Error :  Could not b u i l d  encoder l i n k . " ;  exit ) 

# Create information b i t  v a r i a b l e s ,  s t a t e  va r i ab les ,  codeword bit var i ab les ,  

# and rece ived s i g n a l  var iables  f o r  cons t i tuen t  codes 1 and 2.  

crVars d du 2 $K;  crVars d d s l  $S $K;  crVars d ds2 $S $ K ;  crVars d dx 2 $K2 

crVars r dy $K2 

# Create t h e  noise vector  v a r i a b l e s .  

crVars r ns $K2 

# Create a 50/SO prior l i n k  for t h e  info  b i t s  

crLink u d 2;  addtoLink u 0 . 5  0;  addtoLink u 0 .5  1 
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# Create a link used for the systematic codevord bits .  

crLink u->x d 2 2; addtoLink u->x 1 . 0  O 0; addtolink u->x 1.0 1 1 

# Create the charnel link (Gaussian distribution). 

crLink x->y r 2 

addtoLink x->y 1 . 0  -1.0 $VAR O; addtoLink x->y 1 . 0  1.0 $VAR 1 

# Create the noise vector link (Gaussian distribution). 

crLink ns r; addtoLink ns 1.0 -1.0 $VAR 

# Build the interleaver. 

set P [permute $KI 

# Connect up the noise links to the noise variables. 

loop i O $K2 { linkvas ns ns-$i ) 

# Comect up the variables for the decoder netvork. (Don't forget to 

# puncture the two constituent convolutional codes.) 
loop i O $K { linkVars u du-$i; linkvars u->x dx-[eqr 2*$i] du-$i ) 

loop i O $K2 { linkvars x->y dy-$i dx-$i ) 

linkVars u->s dsl-0 du-O; 

linkVars u->s ds2-0 du- [lindex $P 01 

loop i 1 $K 1 
linkVars us-% dsl-$i du-Si dsl-[expr $i-11 

linkVars us->s ds2-$i du- [lindex $P $il ds2-[expr $i-11 

loop i O $K { 

set i p l  [expr $i+l]; set i2pl [expr (2*$i)+l] 

if C [expr ($iX2) == O] ) { linkVars s->x dx-$i2pl dsl-Sipl 

) e lse  { linkVars s->x dx-$12~1 ds2-$i ) 

> 

# Define vhich var iables  are clamped in the decodex. 

loop j O $K2 { clVal dy-$j 3 
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# Define the  transmit  procedure. 

proc transmit €3 i &Val ns; t ransfer  ns dy ) 

# Define the  schedule and procedure f o r  i n i t i a l i z i n g  the  decoder. 

loop j O $K2 { addtosched i n i t  sndrcv dy-$j dx-$j ) 

loop i O $K { 

set i p l  [expr $i+13 ; s e t  i 2  [expr 2*$i] ; s e t  i2pl  [expr $i2+13 

i f  1 [expr ($i%2) == 01 ) addtosched i n i t  sndrcv dx-$i2pl ds l -$ ip l  

) e l s e  ( addtosched i n i t  sndrcv dx-$i2pl ds2-$i ) 

1 
loop j O $K { addtosched i n i t  sndrcv dx- [expr 2*$j] du-$j 3 
proc initDecoder C) { 

initMsgs du; initMsgs d s i ;  initMsgs ds2;  initMsgs d x ;  initMsgs dy 

exSched i n i t  

1 

# Define the  fb1 and fb2 schedules. 

loop j O $K < addtosched fbl sndrcv du-$j dsl-$j  ) 

loop j O $Km1 { addtosched f b l  sndrcv dsl-$j  dsl-[expr $j+1] ) 

loop j $Km1 O -1 { addtosched f b i  sndrcv dsl-$j  dsl-[expr $j- l]  ) 

loop j O $K { addtoSched fbl sndrcv dsl-$j du-$j ) 

loop j O $K { addtosched fb2 sndrcv du-Clindex $P $j]  ds2-$j 

loop j O $ h l  { addtosched fb2 sndrcv ds2-$j ds2- [expr $j+1] ) 

loop j $Km1 O -1 ( addtosched fb2 sndrcv ds2-$j ds2-[expr $ j-11 ) 

h o p  j O $K { addtosched fb2 sndrcv ds2-$j du-Clindex $P $j] 

# Simulate many block transmissions, p r in t ing  the  c u r e n t  BER es t imate  out 

# as ve go. Also, Save the noise patterns t h a t  cause problems. 

set f I D  [open SLOGFILE v] ; seed O 

s e t  n e n  € 1 ;  loop k O [expr $NITERS+l] < lappend nerr  O ) 

loop i O 8NBLOCKS 

transmit; initDecoder; detMAP du; set d s t  [sWom du] 

s e t  ne r r  Clreplace $nerr O O [expr $ds t  + Clindex $nerr 0331 

s e t  a [format "X8.21e " [expr 1 .O * [lindex $nerr O] /$K/($i+l)]] 

puts -nonevline $ f I D  $a 
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loop k 1 [expr $NITERS+II { 

exSched fbi; exSched fb2; detMAP du; set dst [shNorm du] 

set nerr Clreplace $nerr $k $k Cexpr $dst + [liadex $nerr $k]]] 

set a [format "X8 -21e " [expr 1 .O * [lindex $ne= $kJ /$K/($i+l)] ] 

puts -nonewline $ f I D  $a 

puts $fID ""; flush 

J 

c lose  $ f I D  
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