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Abstract

Pattern classification, data compression, and channel coding are tasks that usually must
deal with complex but structured natural or artificial systems. Patterns that we wish to
classify are a consequence of a causal physical process. Images that we wish to compress
are also a consequence of a causal physical process. Noisy outputs from a telephone line
are corrupted versions of a signal produced by a structured man-made telephone modem.
Not only are these tasks characterized by complex structure, but they also contain ran-
dom elements. Graphical models such as Bayesian networks provide a way to describe the

relationships between random variables in a stochastic system.

In this thesis, I use Bayesian networks as an overarching framework to describe and
solve problems in the areas of pattern classification, data compression. and channel coding.
Results on the classification of handwritten digits show that Bayesian network pattern
classifiers outperform other standard methods, such as the k-nearest neighbor method.
When Bayesian networks are used as source models for data compression, an exponentially
large number of codewords are associated with each input pattern. It turns out that the
code can still be used efficiently, if a new technique called -bits-back coding” is used.
Several new error-correcting decoding algorithms are instances of “probability propagation”
in various Bayesian networks. These new schemes are rapidly closing the gap between
the performances of practical channel coding systems and Shannon’s 50-year-old channel
coding limit. The Bayesian network framework exposes the similarities between these codes
and leads the way to a new class of “trellis-constraint codes” which also operate close to

Shannon'’s limit.
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Nomenclature

Vectors, matrices, high-dimensional matrices and sets of variables are written in boidface
Roman type. (Vectors are usually written in lower-case type.) Sets are quite different from
vectors. but this abuse of notation permits set operations (e.g.. “C”. *\”) while at the same
time permitting cardinal access to the set members (e.g., weighted sum of the elements via
indexing). [ use curly braces {...} to write the elements in a set or vector of variables.
{zx} is the set containing a singleton variable z;, whereas {z; },’le = {z1,... .zg}. Extra
labels on variables usually appear as upper-case Roman in superscripts (e.g.. 8¥). whereas
vector. matrix, and high-dimensional matrix indices usually appear as subscripts (e.g..
BXE). For example. we can write the following with respect to the set of parameters 8:
BV}  =8Y Cco¥Ch.and 3 jOi‘;hj. Some types of index (notably training case indices)

appear as superscripts in braces (e.g.. v{!).

Probability mass functions are usually written in upper-case Roman italics type (e.g.
P(-), Q(-)) whereas probability density functions are usually written in lower-case Roman
italics type (e.g. p(-). q(-)). The distribution is identified by the random variable. so the
distribution P(v) is different from P{x). Also. to keep the formulas short. the symbols
for a random variable and its value are usually the same. So, P(ukly) sometimes refers
to the probability that the random variable Uy takes on the value ui. and at other times
refers to the set of probabilities corresponding to the values that Uy can take on. In cases
where a random variable and its value must be distinguishable. I write an assignment.
So. P(ux = ul|y) means Py, y(uily). A distribution subscripted with “r” refers to the
correct, or “real” distribution. For example, if P(v) is a model distribution. we hope that
P(v) = P.(v).

Here is a list of symbols:

a represents the binary “alarm” variable in the burglar alarm problem: or
represents an entire signalling waveform definedon 0 <t < T

a(:) signalling (channel input) waveform for channel coding

ax set of variables containing the parents of z

b represents the binary “burglar” variable in the burglar alarm problem

BER bit error rate

Boyp lower bound on log P(D|8), Bgyp = —Fgp =log P(v) - Dgp

C communication capacity of a channel in bits/second or bits/usage

Ck set of variables containing the children of z;

D delay buffer in an LFSR; or mathematical delay operator

D collection of data

Dgyp Kullback-Leibler divergence (relative entropy) between Q(-) and P(:)
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set of variables containing the descendents of zi

Hamming distance between the closest two codewords in a channel code
expectation with respect to the stated distribution

&(v) is the expected length of the codeword for v. in a multi-valued source
code

the energy transmitted per information bit in channel coding

represents the binary “earthquake” variable in the burglar alarm problem
F{v) is the theoretical bits-back codeword length for input pattern v

free energy between Q(-) and P(:). Fgp = Dqp — log P(v)

G(D) is the generator polynomial in the delay operator D, for a convolutional
code

logistic function: g(x) = 1/(1 + exp[—xz]): or output bit generating function for
an LFSR

entropy measured in bits

binary entropy function. H(p) = —plogp — (1 — p) log(1 — p)

set of hidden (unobserved) variables: or codeword index in a multi-valued
source code

vector of hidden variables for training case ¢

number of hidden variables: or number of information variables
log-likelihood ratio for a random variable given some observations

—e.gq.. L(z = 2') = log[P(z = Z'|y)/P(z # Z'|y)]

approximation to L(-) produced at iteration i of iterative decoding

¢(v) is the length of the source codeword for v

¢(v.h) is the length of the hth codeword for v. in a multi-valued source code
natural logarithm

logarithm to the base x

number of variables in a network; or number of visible variables: or number of
codeword variables

number of constituent trellises in an interleaved trellis-constraint code
single-sided spectral density for a white Gaussian process

set of variables containing the nondescendents of z; (excluding z)
transmitter power for channel coding

set of all distributions that can be represented by a Bayesian network
probability mass function for a Bayesian network; or the probability
function for a mixed (discrete and continuous) set of variables

estimate of P(-)

conditional probability matrix for variable z;, PA:Z = P(z;|a;)
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probability density function for a Bayesian network

general variational distribution: or general recognition network distribution
vector of parity-check variables

variational probability density: or recognition network probability density
rate of a binary channel code in information bits / codeword bits

state transition function for a LFSR: sy = S(sg—. ux)

set of discrete LFSR state variables, where s; is the state at time ¢
training case index, 1 <t < T

vector of binary information variables

an estimate of the true information vector u

vector of visible (observed) variables

vector of visible (observed) variables for training case ¢

vector of binary codeword variables: or dummy vector variable

the jth branch variable that participates in constraint : of an interleaved
trellis-constraint code

vector of real channel output variables:; or dummy vector variable
channel output waveform for channel coding

observed value of a variable y € v in a Bayesian network

set of variables used to discuss properties of Bayesian networks in general

normalization constant

delta function: d(z.y) =1 if £ = y and 0 otherwise

learning rate for steepest descent parameter estimation

set of all parameters for a parameterized Bayesian network

set of parameters associated with variable 1

parameter associated with the connection from variable j to variable ¢
constant (bias) parameter associated with variable i

set of parameters associated with the set of hidden variables h

set of parameters associated with the set of visible variables v
child-parent message sent from 2| to zo — has |z3| elements
variational parameters

permutation function that maps integers in {1, N] to [1, V], for some integer N
parent-child message sent from z; to zo — has |z;| elements

time in a Markov chain Monte Carlo simulation

cumulative distribution for a standard normal p.d.f.

recognition network parameters (see 8; and 8;; for refined details)
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x':xi=z1,

|z| = number of variables in z; or |2} = number of values z; can take on

summation over all possible configurations of x
summation over the configurations of x’ for which element z} = r,

set or vector of variables. {z;} means the set containing zx alone

addition modulo 2



Acknowledgements

During my Ph.D. program here at the University of Toronto. I have been fortunate
to benefit from interactions with several excellent researchers. I thank my thesis advisor
Geoffrey Hinton for his guidance. I greatly value his open-mindedness. his inspirational
discussions, and his honest criticisms. I also thank Radford Neal, whose creativity and
persistent pursnit of precision has certainly enhanced my research and this dissertation. I
am grateful to Frank Kschischang for valuable discussions on error-correcting coding and for
introducing me to some of the premier communications researchers. Glenn Gulak was very
helpful in pointing out connections between my work and other areas, especially between my
early research on machine learning and the turbo-decoding algorithm for error-correcting
codes. [ also greatly appreciate recent energetic collaborations with David MacKay. who
I find is lots of fun to work with. In addition. I thank the other members of my thesis
committee: Michael Jordan. Subbarayan Pasupathy, and Tas Venetsanopoulos.

Thanks also go to the following former and present members of the Neural Networks
Research Group for valuable conversations: Peter Dayan. Zoubin Ghahramani, Carl Ras-
mussen, Virginia de Sa. Brian Sallans, and Chris Williams.

My love goes to my wife Utpala Purohit-Frey and my son Shardul Frey. for being sup-

portive of my interest in research and indeed for motivating me to get some work done!

I was financially supported by a Natural Sciences and Engineering Research Council
1967 Science and Engineering Scholarship. a Walter C. Sumner Memorial Fellowship, and a
University of Toronto Open Fellowship. My work was financially supported by grants from
the Natural Sciences and Engineering Research Council and the Institute for Robotics and

Intelligent Systems.



Contents

1 Introduction

1.1

1.2

A probabilistic perspective . . . . . . ... .. Lo

1.1.1
1.1.2
1.1.3
1.1.4

Pattern classification . . . . . . .. ... .. ...
Data compression . . . . . ... .. ...
Channelcoding . . . . . . . .. ... ... ... ... ... ......

Probabilistic inference . . . . . . . . . . .. ... ...

Bayesian networks . . . . . . . . . .. ...

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7

Probabilistic structure . . . . . . .. .. . ... ...
Definition of a Bayesian network . . . . . ... .. .. .. ... ...
Ancestral simulation . . . . ... ... L L
Dependency separation . . . .. .. ... ... .. ... ... ....
Example 1: Recursive convolutional codes and turbo-codes . . . . .
Parameterized Bayesian networks . . . . . . . . . . ... ... .. ..

Example 2: The bars problem . . . . . . . . . ... ... .. ... ..

1.3 Organization of thisthesis . . . . . . .. . . ... ... ... ..... ...

2.1

2.2

Probabilistic Inference in Bayesian Networks

Exact inference in singly-connected Bayesian networks . . . . . .. . .. ..

2.1.1 The generalized forward-backward algorithm . . . ... ... . ...
2.1.2  The burglar alarm problem . . . .. .. .. ... 000 L.
2.1.3 Probability propagation . . .. ... ... ... ..o oL
2.1.4  Grouping variables and duplicating variables . . . ... ... . ...
2.1.5 Exact inference in multiply-connected networks is NP-hard . . . . .
Monte Carlo inference . . . . . . . . . . ... Lo oL
2.2.1 Inference by ancestral simulation . . . . . . ... ... ... L.

viii

(SR

-

~N oo Wi



Contents ix

3

222 Gibbssampling . . . . .. ... L 34
2.2.3 Gibbs sampling for the burglar alarm problem . ... ... ... . 35
2.2.4 Slicesampling . . . ... ... ... ... 37
2.3 Variational inference . . . . . . . ... Lo Lo L 38
2.3.1 Choosing the distance measure . . . . . . .. .. ... ........ 39
2.3.2 Choosing the form of Q(h(€) . . ... . . .. .. ... ... ... .. 40
2.3.3 Variational inference for the burglar alarm problem . . . . . . . . . . 41
2.3.4 Bounds and extended representations . . . . .. ... ...... .. 43
2.4 Helmholtz machines . . . . . . ... ... ... ... ... 43
2.4.1 Factorial recognition networks . . . . . . ... .. ... ... .. 44
2.4.2 Nonfactorial recognition networks . . . . . . .. ... ..o 45
2.4.3 The stochastic Helmholtz machine . . . . . . . ... ... ... ... 46
2.4.4 A nonfactorial recognition network for the burglar alarm problem . . 47
Pattern Classification 48
3.1 DBayesian networks for pattern classification . . . . . . .. ... ... . a1
3.2 Autoregressive networks . . . . .. . ... ... Lo 32
3.2.1 The logistic autoregressive network . . . . . . . . ... ... ... a3
3.2.2 MAP estimation for autoregressive networks . . . . . .. .. ... .. 54
3.2.3 Scaled priors in logistic autoregressive networks . . . . . .. . . ... 55
3.2.4 Ensembles of autoregressive networks . . . . . . ... ... 0L L. 56
3.3 [Estimation of models with unobserved variables . . . . . . ... ... .. .. 57
3.3.1 ML estimation by expectation-maximization (EM) . . . .. ... .. 59
3.3.2 Maximum likelihood-bound (MLB) estimation . . ... .. .. ... 59
3.4 Multiple-causenetworks . . . . . . . ... Lo o 61
3.4.1 Estimation by Gibbs sampling . . . . . . ... ... ... .. ..., 63
3.4.2 MLB estimation by variational inference . . . . . . .. ... ... .. 64
3.4.3 The stochastic Helmholtz machine . . . . . .. .. ... ... .... 66
3.4.4 Hierarchicalnetworks . . .. .. .. ... ... ... ... .. 71
3.4.5 Ensemblesofnetworks . . . . ... ... ... o0 oL 72
3.5 Classification of hand-written digits . . . . . . . . .. .. ... ... ..., 73
3.5.1 Logistic autoregressive classifiers (LARC-1,ELARC-1) ... ... .. 73
3.5.2 The Gibbs Machine (GM-1) . . . . . ... .. .. ... ... ..... 74

3.5.3 The mean field (variational) Bayesian network (MFBN-1) . . . . .. 74



Contents

x
3.5.4 Stochastic Helmholtz machines (SHM-1,SHM-2, ESHM-1) .. .. .. 75
3.5.5 The classification and regression tree (CART-1) . . . . . . .. . ... 76
3.5.6 The naive Bayes classifier (NBAYESC-1) . . ... ... .... ... 76
3.5.7 The k-nearest neighbor classifier (KNN-CLASS-1) . ... ... ... 77
3.5.8 Results . . . . . . . . L 78

3.6 Extracting structure from noisy binary images . . .. .. ... ... . ... 81
3.6.1 Wake-sleep parameter estimation . . . . . . ... ... ... . .... 81

3.6.2 Automatic clean-up of noisy images . . . . .. ... ... ... ... 85
3.6.3 Wake-sleep estimation without positive parameter constraints . . . . 85
3.6.4 How hard is the bars problem? . . . . . .. .. .. ... ... ..., 86

3.7 Simultaneous extraction of continuous and categorical structure . . . . . . . 86
3.7.1 An adaptive random variable . . . . . . .. ... ..o 0L 88

3.7.2 Inference using slice sampling . . . . . . ... ... ... ... ... 90

3.7.3 Parameter estimation using slice sampling . . . . . ... ... .. .. 91

4 Data Compression 94
4.1 Fast compression with Bayesian networks . . . . . . . . . ... ... . ... 95
4.2 Communicating extra information through the choice of codeword . . . . . 96
4.2.1 Example: A simple mixturemodel . . . . . ... ... ... .. 97
4.2.2 The optimal bits-back codingrate . . . . . . ... ... ... .... 99
4.2.3 Suboptimal bits-back coding . . . . .. .. ..o 101

4.3 Relationship to maximum likelihood estimation . . . . . . ... ... . ... 102
4.4 The bits-back coding algorithm . . . . . . . ... ... .. ... ..., 104
4.4.1 The bits-back coding algorithm with feedback . . . ... ... .. .. 106
4.4.2 Queue drought in feedback encoders . . . . . . .. ... oL 107

4.5 Experimentalresults . . . . . . ... ... ... oo 108
4.5.1 Bits-back coding with a multiple-cause model . . . . . . .. ... .. 108
4.5.2 A Bayesian network that compresses images of handwritten digits 111

4.6 Integrating out model parameters using bits-back coding . . . . . . . . . .. 112
5 Channel coding 114
5.1 Simplifying the playing field . . . . .. .. ... ... ... .. ... 116
5.1.1 Additive white Gaussian noise (AWGN) . . . . .. ... ... . ... 116

5.1.2 Capacity of an AWGN channel . . . ... ... ... ... ... ... 117



Contents xi

5.1.3 Signal constellations . . . . . . .. .. ... ... ... 118
5.1.4 Linear binary codes are all weneed! . . . . ... .. ... ..... 119
5.1.5 Bit error rate (BER) and signal-to-noise ratio (Ep/Ng) . . . . . . . . 121
3.1.6 Capacity of an AWGN channel with +1/ — i signalling . . . . ... 121
5.1.7 Achievable BER for an AWGN channel with +1/-1 signalling . . . . 123
5.2 Bayesian networks for channel coding. . . . . . . ... ... .00 0oL 124
52.1 Hammingcodes. . . .. ... ... ... ... ... ..., 125
5.2.2 Convolutionalcodes .. . .. . ... ... ... ... 127
5.2.3 Decoding convolutional codes by probability propagation . . . ... 130
5.2.4 Turbo-codes: parallel concatenated convolutional codes . . . . . . . 133
5.2.5 Serially-concatenated convoiutional codes. low-density parity-check
codes. and productcodes . . . . . . . .. ... oL 136
5.3 Trellis-constraint codes (TCC'’s) . . . . . . . . ... .. ... ... ...... 139
53.1 Constraintcodes . . . . . . ... Lo 139
5.3.2 A code by any other network would not decode as sweetly . . . . . . 140
5.3.3 Trellis-constraint codes. . . . . . .. ... ... ... ... ... . 141
5.3.4 TCC’s with equality constraints . . . . . . ... ... . ... .... 144
5.3.5 Nomsystematic TCC’s . . . .. . . .. ... ... ... .. ..... 145
5.4 Decoding complexity of iterative decoders . . . . . . . .. .. .. ... .. 146
5.5 Speeding up iterative decoding by early-detection . . . . . . . . . . ... .. 147
5.5.1 Early-detection . . . . . . . ... ... Lo 147
3.5.2 Early-detection criteria . . . . . . . .. ... ... ... ... 149
5.5.3 Reduction in decoding time due to early-detection . . . . . . .. .. 152
5.5.4 Early-detection for turbo-codes: Trellis splicing . . . . . . . ... .. 154
5.5.5 Experimentalresults . . . .. ... ... ... ... ..., 157
5.6 Parallel iterative decoding . . . . . . . . .. .. Lo oL 159
5.6.1 Concurrent turbo-decoding . . . . . . . ... ... ... 160
56.2 Results . . . . . . . ... . e 160
6 Summary and Future Research 163
6.1 A statistically valid comparison of Bayesian network pattern classifiers . . . 163
6.2 Wake-sleep learning in the Helmholtz machine . . . . . . . . . . .. ... .. 164
6.3 Multi-valued sourcecodes . . . . . . . . ... ... 164
6.4 Integrating out model parameters using bits-back coding . . . . . . . . . .. 164




Contents xii

6.5 A graphical model framework for iterative channel decoding . . . . . . . .. 165
6.6 Trellis-constraint codes . . . . . . . . . . .. .. Lo 165

A Proofs and Derivations 166
A.l Probability propagation in Bayesian Networks . . . . . . ... .. ... ... 166
A.1.1 Computing P(y|v) from the incoming messages . . . . . . . ... .. 167

A.1.2 Outgoing m-messages . . . . . . . . . . ... ... 168

A.Ll.3 Outgoing A\-messages . . . . . . . . . . .. ... 169

A.1.4 Global comsistency . . . . . . . . .. ... 171

A.2 Grouping variables in Bayesian networks . . . . . . ... ... ... ... 171
A.3 Proof of condition for inference by ancestral simulaticn. . . . . . ... ... 172
A.4 Proof of detailed balance for slice sampling . . . . ... . ... ....... 173
A.5 Bayesian confidence intervals for bit error rates . . . . . . .. ... ... .. 174

B The BNC Software Package 178
B.l Installing the software . . . . . .. ... ... ... ... ........... 179
B.2 An example: The burglar alarm problem . . . . . . ... ... . ... .. .. 179
B.3 Scripts used to decode a turbo-code . . . .. ... ..o oL 182
B.3.1 1fsr.tcl . . . . . e e 182

B.3.2 berrou.tcl . . . . . o e e e e e e 185



Chapter 1

Introduction

In this thesis. I explore algorithms for pattern classification. data compression. and channel
coding. At first. it may be hard to imagine how three so different research areas can be
brought into focus under a single theme that is both novel and of practical value. My hope
is to convince the reader that these three problems can be attacked in an interesting and
fruitful manner using a recently developed class of algorithms that make use of probabilistic
structure. These algorithms take advantage of a graphical description of the dependencies
between random variables in order to compute. or estimate, probabilities derived from a
joint distribution. As simple and well-known examples, the forward-backward algorithm
[Baum and Petrie 1966] and the Viterbi algorithm [Forney 1973] make use of a chain-like

Markovian relationship between random variables.

The roots of probabilistic structure reach far back to the beginning of the 20th century. In
1921. Sewall Wright developed “path analysis” as a means to study statistical relationships
in biological data. Few new developments were made until the 1960’s when statisticians
began using graphs to describe restrictions in statistical models called “log-linear models”
(Vorobev 1962: Goadman 1970]. In 1963. the idea of hierarchical probabilistic structure
briefly reared its head in the engineering research community when Gallager invented an
error-correcting decoding algorithm based on a graphical description of the probabilistic
relationships between variables involved in channel coding. Most likely because of the
primitive computers available at the time. his algorithm was quickly overlooked by his
peers, only to be rediscovered nearly 35 years later independently by at least three research
groups, and to be shown to yield unprecedented performance in error-correcting coding
applications [Berrou, Glavieux and Thitimajshima 1993;: Wiberg, Loeliger and Kotter 1995:
MacKay and Neal 1995]. A simpler chain-type Markovian graphical structure later became

popular and very useful in the engineering community, largely due to an excellent tutorial
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paper by Forney [1973], in which the notion of a “trellis” was introduced. Probabilistic
structure has been most extensively developed in the artificial intelligence literature. with
applications ranging from taxonomic hierarchies [Woods 1975; Schubert 1976} to medical
diagnosis [Spiegelhalter 1990]. In the late 1980’s, Pearl [1986] and Lauritzen and Spiegelhal-
ter [1988] independently published a general algorithm for computing probabilities based
on a graphical representation of probabilistic structure. This algorithm is practical and
exact for only a special type of probabilistic structure. Over the last decade, there has also
been a tremendous increase in interest in estimating the parameters of models with fixed
graphical structure. In the mid 1980’s, Hinton and Sejnowski {1986] introduced a maximum
likelihood algorithm for learning the parameters of a graph-based log-linear model called a
“Markov random field”. More recently. approximate algorithms for general models based on
directed graphs have been introduced. These include Markov chain Monte Carlo methods
[Pearl 1987; Neal 1992]. “Helmholtz machines” [Hinton et al. 1995; Dayan et al. 1995]. and
variational techniques [Saul. Jaakkola and Jordan 1996; Jaakkola. Saul and Jordan 1996:
Frey 1997D].

1.1 A probabilistic perspective

Offhand. it is not obvious that sophisticated probability models are needed to solve problems
in pattern classification. data compression, and channel coding. Given a segment of speech.
a classifier outputs a decision. say. as to whether or not the speaker has security clearance.
[t appears there are no random variables in this model. The classifier may also output
a measure of reliability regarding the decision it makes. In this case. it appears there is
just one binary random variable that captures the variability in the decision. The mean of
this Bernoulli random variable must somehow be related to the input, and this task can be
viewed as some sort of function approximation. Similarly, given a highly-redundant image,
a data compression algorithm usually produces a unique sequence of codeword symbols.
Given the output of a noisy telephone line, a channel decoder (telephone modem) makes a

deterministic decision about the contents of the transmitted data file.

While the above modelling approaches either require only very low-dimensional prob-
ability models or do not use random variables at all, in doing so. they are clearly not
representing the true causal structure in each problem. For example, in reality each speaker
has a unique glottis that interacts in a random way with a unique shape of vocal tract and
a unique random style of articulation to produce a speech segment. It seems like a fruitful
approach to speaker identification would involve representing these random variables and
the probabilistic relationships between them. In the following three sections, [ attempt to
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reveal some of the probabilistic structure present in pattern classification. data compression,
and channel coding problems.

1.1.1 Pattern classification

A soft-decision classifier estimates the probability that a given pattern v belongs to each
class 7 € {0,... .J — 1}. That is, the classifier estimates

Pr(5tv). (1.1)

where the subscript “r” in P indicates a true (real) probability (as opposed to one produced
by a model). If these probabilities can be accurately estimated, Bayes decision theory tells
us that a minimum rate of error can be achieved by choosing the class j that maximizes
P.(j]v) [Chow 1957: Duda and Hart 1973].

We could use a logistic regression model to estimate F,(j7|v). For example. regression
using a flexible model has been successfully used to classify individual digits extracted from
handwritten United States ZIP codes [Le Cun et al. 1989]. However, this approach ignores
the causal structure of the physical process of producing handwritten digits.

In order to faithfully capture the actual physical process that produces each digit. we
first ought to specify an a priori distribution P({j)} over the digit classes j € {0.... .9} —
maybe some digits are more common than others. Next, for a given class of digit j, we
expect there to be a distribution P(h|j) over a set of digit attributes h. These attributes are
called “hidden variables”. because they are not part of the classifier inputs or outputs. Each
element of h might specify the presence or absence of a particular line segment or flourish.
Given a set of features h, we expect there to be a distribution P(v|h) over possible images
— this distribution models the way in which features combine to make an image, as well as
noise such as ink spots. The joint distribution given by this model of the real world can be

written
P(j,h.v) = P(5)P(h}j)P(v|h), (1.2)

and the distribution over classes given a pattern can be obtained by marginalizing out h

and using Bayes’ rule:

P(jiv) = ZZ}h:h J';‘ ; E 13

So, it appears that to properly model the structure of the problem, we need a more sophis-
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ticated probabilistic description than (1.1). In general, a correct model of this sort. where

P(jlv) = P.(j|v) will perform optimally in terms of classification error.

1.1.2 Data compression

A source code maps each input pattern v to a codeword u, such that for each valid u
there is a unique pattern. [ will consider sources where the patterns are i.i.d. (independent
and identically drawn) from P.(v). The purpose of noiseless source coding, or lossless
data compression, is to losslessly represent the source patterns by codewords. so that the
expected codeword length is as low as possible. Shannon’s noiseless source coding theorem
{Shannon 1948] states that the average codeword length per source pattern cannot be less
than the entropy of the source:

E[e(v)] > H. (L4)

where ¢(v) is the length of the codeword for v in bits, and H is the entropy of the source

in bits:

H=-) P(v)logs P(v). (1.5)

Arithmetic coding [Rissanen and Langdon 1976: Witten, Neal and Cleary 1987] is a
practical algorithm for producing near-optimal codewords when the source distribution
P.(v) is known. Sometimes. e.g.. if v is binary-valued. these probabilities can be easily
estimated from the source. Often. however, the distribution is too complex. and so a more
sophisticated parametric model or fiexible model must be used to estimate the probabilities.
For example, consider a high-dimensional binary image v that is produced by the physical

process described above. so that
P(j.h.v) = P(j)P(h|j}P(vl|h), (1.6)

The probabilities used by the arithmetic encoder are obtained by marginalizing out j and
h:

P(v) = ZZP(j,h,v). (1.7)
J h

We see that a probabilistic description can also be very useful for source coding.
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1.1.3 Channel coding

A block channel code maps a vector of information symbols u to a vector of codeword
symbols x. This mapping adds redundancy to u in order to protect the block against
channel noise. (As a simple example. the codeword might consist of three repetitions of
the information vector.) After x is transmitted across the channel. the decoder receives a
noise~corrupted version y and produces an estimate of the information block 1. We say that
a block error or a word error has occurred if @ # u. In it's simplest form, Shannon’s channel
coding theorem {Shannon 1948] states that for any given channel. there erists' a code that
can achieve an arbitrarily low probability of block error when the signal-to-noise ratio is
greater than a channel-dependent threshold called the Shannon limit. Roughly speaking,
the codewords are kept far apart in codeword symbol space. so that when a moderately
noise-corrupted codeword is received. it is still possible to determine with high probability

which codeword was transmitted.

From a probabilistic perspective. the decoder can minimize the word error rate by choos-
ing an estimate G that maximizes P.(aly). or minimize the symbol error rate by choosing
an estimate @ that maximizes [], P(dxly). A probabilistic model can be constructed by
examining the encoding process and the channel. We first specify a (usually uniform) dis-
tribution for the information blocks. P(u). Often. the encoder uses a set of state variables.
s. in order to produce the codeword. These variables are determined from the information
block using a distribution P(slu) — although this relationship is usually deterministic. this
probabilistic description will come in handy later on when we study probabilistic decoding.
The transmitted codeword is determined from the information block and state variables by
P(x]u.s). Finally. the real-valued channel outputs are related to the transmitted codeword
by a probability density function p(y|x) that models the channel. The joint distribution

given by the model is
P(u.s.x.y) = P(u)P(s|u) P(x|u.s)p(y|x). (1.8)

and the distribution over information symbol u; given the channel output can be obtained

by marginalizing out s. x and u;. for all j # k. and using Bayes™ rule:

P _ Zu,\'/j#k Zs Zx P(U,S,X, y)
) = o S P sy

Although this probabilistic formulation may seem strange compared to many of the strongly

(1.9)

'Shannon was quite the tease. He proved the code exists, but did not show us a practical way to encode
or decode it.
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algebraic traditional approaches, it is this formulation that I view as the foundation of the
recently proposed high-performance turbo-codes [Berrou and Glavieux 1996].

1.1.4 Probabilistic inference

As presented above, pattern classification, data compression, and channel coding are all
similar in that some type of marginal {and possibly conditioned) distribution is sought for
a given joint distribution. Consider a set of random variables z = {z;,25,...,2x} that
co-vary according to a joint distribution P(z), z3,... ,25). For any two subsets of variables
z! C z and 2z? C z, I will refer to the computation or estimation of P(z!|z?), or a decision

based on P(z!|z?), as probabilistic inference.

Examples of probabilistic inference include the computation of the class probabilities for
pattern classification (1.3), the computation of the input probability for data compression
(1.7), and the information symbol decisions based on the information symbol probabilities
for channel coding (1.9). Notice that in these different cases of probabilistic inference, the
joint distributions can be decomposed in different ways. In fact, if we decompose the joint
distributions at the level of individual variables instead of vector variables, we can envision
a wide variety of rich structures. In the next section, I describe Bayesian networks, which

can be used to describe this structure.

1.2 Bayesian networks

Often, the joint distribution associated with a probabilistic inference problem can be de-
composed into locally interacting factors. For example, the joint distributions involved in
the applications of Bayes’ rule in (1.3), (1.7), and (1.9) can be expressed in the forms given
in (1.2), (1.6), and (1.8). By taking advantage of such probabilistic structure, we can design
inference algorithms that are more efficient than the blind application of Bayes’ rule.

1.2.1 Probabilistic structure

Probabilistic structure can be characterized by a set of conditional independence relation-
ships. (This structural description does not fix the values of the probabilities.) For example,
in the case of channel coding, we can use the chain rule of probability to write out the joint

distribution:

P(u,s,x,y) = P(u)P(s|u) P(x|u,s)p(ylu,s, x). (1.10)
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The probability density function (the last factor) can be simplified. since the received vector
y is conditionally independent of the information vector u and the state vector s. given the
transmitted codeword x:

p(ylu.s.x) = p(y[x). (L.11)

By substituting this conditional independency relationship into (1.10). we obtain the more

structured form of the joint distribution given in (1.8).

The general idea is to express the joint distribution as a product of factors, where each
factor depends on a subset of the random variables. In the simplest case, each factor depends
on a single random variable. making marginalization easy. Most distributions that describe
practical problems cannot be broken up in this way, and the subsets overlap. Within this
richer set of models, some structures lead to highly efficient exact algorithms (e.g.. the
forward-backward algorithm for a chain-type structure). Other structures are not tractable

and lead to approximate algorithms.

[t turns out that graph theory provides a succinct way to represent probabilistic struc-
ture. A graphical representation for probabilistic structure, along with functions that can
be used to derive the joint distribution. is called a graphical model. Examples of graphi-
cal models include Markov random fields [Kinderman and Snell 1980], Bayesian networks
(Pearl 1988]. chain graphs [Lauritzen and Wermuth 1989]. and factor graphs [Frey et al.

1998]. Here. I consider Bayesian networks.

1.2.2 Definition of a Bayesian network

The conditional independency relationships for a distribution can be described graphically.
Not only does the graphical representation concisely capture probabilistic structure, but it
forms a framework for computing useful probabilities. Bayesian networks are specified in
terms of directed acyclic graphs. in which all edges are directed and in which there are no
closed paths when edge directions are followed. A Bayesian network for a set of random
variables z = (21, z2.... . zn) consists of a directed acyclic graph with one vertex for each
variable, and a set of probability functions P(zx|ag), k = 1.... . N, where the parents ay of
2x are the variabies that have directed edges connecting to z¢. (For simplicity of prose, [ will
often refer to a vertex by its variable name.) If z; has no parents, then a = ©. For now,
we can think of each function P(zx]ax) as an exhaustive list of probabilities corresponding
to the possible configurations of z; and ag. (In the case of a density p(zx|ax), the entire
density function must be specified.) Together, the graph and the probability functions are

referred to as the network specification.
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Figure 1.1: (a) An example of a Bayesian network. (b) The parents a5 of z5 are shown by a solid
loop; the children cs are shown by a sparse dotted loop; the descendents ds are shown by a dense
dotted loop; the nondescendents ns are shown by a dashed loop.

Several definitions will help to understand how a Bayesian network describes the prob-
abilistic structure for a joint distribution P(z). The children ci of z; are the variables
that have directed edges connecting from z;. The descendents d; of z; are its children, its
children’s children, etc. The nondescendents ng of zx are the variables in {z;,22,... , 2k,
Zk4ls--- -2x ) that are not in dg, i.e., ng =2\ (dg U {2¢}). Note that n; # z \ di, since z
is not included in the nondescendents. From these definitions, it follows that a; C ng.

Figure 1.1 shows an example of a Bayesian network. along with the parents. children,

descendents and nondescendents of variable z5.

The meaning of a Bayesian network is that given the parents of z, the distribution over

z;. will not change if any combination of the nondescendents of z; are also given:
P(zi|ag, w) = P(zlar), VwCng (1.12)

In other words, z; is conditionally independent of any combination of its nondescendents,
given its parents. To take the family hierarchy (not necessarily a tree) analogy further,
given the genetic code of Susan’s parents, determining the genes of her siblings, her grand-
parents, her grandparents’ children, her children’s other parents or any combination of the
above does not influence our prediction of Susan’s genetic make-up. This is not true for
descendents. For example, determining the genes of Susan’s grandchildren does influence
our prediction of her genetic make-up, even though determining the genes of those parents
of Susan’s grandchildren who are not Susan'’s children does not (notice that the latter are
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2

nondescendents)

The joint distribution for a Bayesian network can be written in a structured form simply
by writing out the product of the distributions for individual variables. where each variable

is conditioned on its parents:

N
P(z) = [[ P(ziian). (1.13)

k=i

This form follows from (1.12) in the following way. Since a Bayesian network contains no
directed cycles, it is always possible tc choose an ancestral ordering z;(1y, Zz(2): - - - « Zx(V):
where 7(-) is a permutation map. so that the descendents of each variable come later in the
ordering: d. ) € {Zz(k+1):--- - Zx(N)}- For example. the variables in the network shown in
Figure 1.1 were assigned so that 2. 22,... .23 is an ancestral ordering. Using the general

chain rule of probability applied to the ancestral ordering, we have

N
P(z) = H P(zzkylza(1)s - - -« Zm(h—1))- (1.14)

k=1
From the definition of the ancestral ordering, it follows that the set of variables that precede
Zz(k) 18 a subset of its nondescendents and that the parents of z;() are a subset of the

variables that precede z ):

Ak C© {Zx): - - Zxe—) b S iy (1.15)
For this reason. {z(1):--- - Sx(k=1)} = &) U ({Zx1)s -+ - Zrik—) b\ @iiy)- and taking w =
{Z,r(l),.. . -37r(k—l)} \ Ar(k) in (1.12). we have
P(zaylzaqy - - Zxti—1)) = Plrgglanys {2=1) - - Zege—1) } \ @iy
= P(zp()|an(k))- (1.16)

Inserting this result into (1.14), we obtain the form given in (1.13).

If the probability functions for a Bayesian network are not specified, the network is
meant to represent all distributions that can be written in the form given in (1.13). For

the network with ancestral ordering z, z2,. .. . 213 shown in Figure 1.1, (1.13) gives a joint

2Interestingly, if we have previously determined the genes of Susan’s grandchildren, then determining the
genes of those parents of Susan’s grandchildren who are not Susan’s children does influence our prediction
of Susan’s genetic make-up. See Section 1.2.4 for more details.
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Figure 1.2: An example of a chain-type Bayesian network. or a Markov chain.

distribution

P(z) = P(21)P(z2121)P(23) P(z4]|2y. 22) P(25]|22, 23) P26 ) P(z7|23)
- P{zg|z4, 25) P (29|25, 26) P(210) P{211| 28} P(212|28. 29) P(z13]29. 210)-
(1.17)

This product could have been written in any order. but using an ancestral ordering helps
clarify the dependencies. In this equation. each variable z; is conditioned on variables whose
distributions appear to the left of the distribution for z;. Note that a Bayesian network
may have more than one ancestral ordering. In this case. zyq, 26, 23.27. 21.22.24. 25, 28,

Zi1. 29, 213. 212 1S also an ancestral ordering.

An interesting special case of a Bayesian network is the chain-type network shown in
Figure 1.2, also known as a first-order Markov chain. Applying (1.13) to this network. we

obtain
P(z) = P(z1)P(z2]21) P(23|22) P(z4}23) P(25]24). (1.18)

This type of structure is frequently used to model time series data. where it is often assumed
that the next state of a physical system depends only on the previous state. Comparing
this network to the more complex networks that appear later in this thesis, the Bayesian

network can be thought of as a generalization of the Markov chain.

1.2.3 Ancestral simulation

It is often practically impossible to simulate vectors z that are distributed according to P(z).
However, if the joint distribution can be described by a Bayesian network, and if a value
for each z; can be drawn from its conditional probability P(zx|ax) in a practical manner.
then the ancestral ordering can be used to draw an entire vector. Starting with k£ = 1. we
draw z,(,) from P(zx(;)). We continue to draw zp() from P(zr)lar@)) for k =2,... . N
until an entire vector z has been drawn. In this way, the probabilistic structure implied by

the graph allows us to decompose the simulation problem into local pieces.
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(a) (6) (c)

z is in 2°

S

Zpisin z
neither z¢ nor any '
of dg are in z° ~ . -

Figure 1.3: The three ways in which a path may be blocked. If all paths from all variables in z*
to all variables in zB are blocked, then z* and zP are dependency-separated by z°.

1.2.4 Dependency separation

In Section 1.2.2. [ used the notion of conditional independence to define a Bayesian network.
In particular, a Bayesian network implies that variable z; is conditionally independent of
any subset of its nondescendents, given its parents. This is expressed mathematically by
(1.12). A convenient way to describe this scenario is to say that “z; is dependency-separated

from any combination of its nondescendents by its parents™.

Consider the uncountable set of distributions P that can be described by a given Bayesian
network. In general, I will say that z* is dependency-separated from z® by z° (“S” for

separation), if and only if

P(z}1z°.2B) = P(z*|2°). or. equivalently P(z*.2B|z%) = P(z}{2°) P(2P|25).
(1.19)

for all P € P. (See [Pear! 1988] for an extensive discussion of dependency-separation.)
Notice that dependency-separation is symmetric with respect to z* and zB. The case of
dependency-separation that I used to define a Bayesian network is special, in that z° was
the set of parents of the single variable z*. and zB was a subset of the nondescendents of
zd.

It is possible to ascertain dependency separation in the general case simply by inspecting
the Bayesian network. If z*, zB, and z5 are three disjoint subsets of z. then z° dependency-
separates z* from zB if. in every path connecting any variable in z* to any variable in 28,

there is at least one variable z; that satisfies one or more of the following three conditions:

1. zx acts as both a parent and a child in the path and z; € z5 (Figure 1.3a), or
2. z acts as the parent of two variables in the path and z; € z5 (Figure 1.3b). or

3. z acts as the child of two variables in the path and neither z; nor any of its descendents
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are in 25 (Figure 1.3c).

(Note that the identification of a path does not depend on edge directions.) A path for
which one of these conditions is met is said to be blocked. In order to ascertain dependency-
separation, we need to consider only paths that do not intersect themselves. since those
conditions that hold for any given path will also hold for the path when extra variables that

form a loop are considered.

For example. in Figure l.1a we have the following dependency separation relationships.
z¢ is dependency-separated from zjy (by nothing), since the sole path zg,zq, 213,21 is
blocked by z;3 in condition 3. What if zg is observed? Then, zg is still dependency-
separated from z;g, by condition 1 applied to the sole path zg.zg, 213, z1g. In contrast, if
only zi3 is observed. then zg is not dependency-separated from z;g. since there exists a path
25, 29, 213, 219 for which none of the three conditions can be met. This means that once 23
is observed. z¢ and z;9 may become dependent. Note that there may exist a distribution
in P where z5 and zjg are independent given z;3. but there exists at least one distribution

in P where zg and z;9 are dependent given z,3.

Here are some more complicated examples. z; is dependency-separated from zg by zs.
since path z, z5. zg is blocked by 25 in condition 1, paths z;, z4. z8, 212. 29 and zy, 1, 24, 28,
Z12, 29 are blocked by zi» in condition 3, paths 29, z4. 28, 25. 29 and z», 2;, 24, 28, 25, 29 are
blocked by z5 in condition 2 and by zg in condition 3. path 22, 25,28, 212,29 is blocked
by z5 in condition 1 and by z2 in condition 3. 2, is dependency-separated from {z3, z7}
(by nothing), since the paths 29, z5. 23 and 2z», 5. z3. 27 are blocked by z5 in condition 3.
This means that in the absence of observations zy and {z3,z7} are independent. z; is not
dependency-separated from {z3, 27} by 212, since there exists a path z3, z5. z3 for which none
of the conditions can be met. Condition 3 applied to z5 fails. because zj» is a descendent

of z5. This means that once z|2 is observed. z9 and {z3, 27} may become dependent.

1.2.5 Example 1: Recursive convolutional codes and turbo-codes

Recall from Section [.1.3 that the purpose of channel coding is to communicate over a
noisy channel in an error-free (or nearly error-free) fashion. To do this, we encode a given
binary information vector u as a longer codeword vector x, which contains extra bits whose
purpose is to “protect” the information from the channel noise. (An example is a repetition
code, where each information bit is simply transmitted several times.) The codeword is
converted to a physical form (e.g., radio waves) and then sent over a channel. A vector of
noisy signals y is received at the output of the channel. Given y, the decoder must make a
guess 1 at what the original u was.
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’% !\ — L2k+1

Figure 1.4: The LFSR for a systematic recursive convolutional code that has a minimum distance
of 10.

One very popular class of channel codes (you probably have one of these in your telephone
modem) can be described using Bayesian networks. The encoder for a recursive convolu-
tional code is simply a linear feedback shift register (LFSR) that takes in information bits
and generates codeword bits. See [Lin and Costello 1983] for an extensive treatment of con-
volutional codes. Figure 1.4 shows the LFSR for the convolutional code that is described
below. Each box represents a 1-bit memory element and D indicates a delay buffer. The
discs represent addition modulo 2 (XOR). For this particular convolutional code. every sec-
ond output is actually just a copy of the input bit. This type of code is called systematic.
Notice that for each input bit. two output bits are produced, so this is a rate 1/2 code. If
there are K information bits. then there will be N = 2K codeword bits. The device shown
in Figure 1.4 is called a linear feedback shift register because the output sequence gener-
ated by the sum of two input sequences is equal to the sum of the two output sequences
that are generated by the individual input sequences (where summation is modulo 2). The
details of how to choose the feedback delay taps and the output taps in order to produce
a good code can be found in [Lin and Costello 1983; Berrou and Glavieux 1996]. However.
the operation of an encoder of this type is quite simple. The LFSR is initialized so that
all memory elements contain (’s. Then, the information bits u; are fed into the LFSR.
producing codeword bits . Signals that represent the codeword bits are then transmitted
over the channel. For example. on a twisted pair of wires, we might apply +1 volts if zx = 1

and —1 volts if z; = 0.

Figure 1.5a shows the Bayesian network for a recursive systematic convolutional code.
Normally, the number of information bits K is much larger than 6 (typical numbers range
from 100 to 100,000 bits). si is the state of the LFSR at time k, extended to include the
input bit (this makes the network simpler). To fully specify the Bayesian network, we must
also provide the conditional distributions. Assuming the information bits are uniformly
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distributed,
P(ux) = 0.5, forug € {0,1}. (1.20)

Let S(sg-1,ux) be a function (determined from the LFSR) that maps the previous state
and current input to the next state, and let g(s) be a function that maps the state to the
nonsystematic output bit. Then, the deterministic conditional distributions for the states
and state outputs are

P{sgluo) = 8(sae,S(0,ug))
P(sklug, sk~1) = (s, S(sk-1, ux))
P(zok|uk) = 6(w2k, ux)
P(zok+1lsk) = 8(zak+1.9(sk)), (1.21)

where d(a,b) = 1 if @ = b and 0 otherwise. Assuming that the channel simply adds
independent Gaussian noise with variance ¢ to the +1/-1 signals described above, the
conditional distributions for the received channel output signals are

L_e—(m—100/20° i — 1
e It
plylze) = § V2re ot (1.22)
e-(yk+l- )-/20 if I = 0.

2wa-

Given an information vector u, encoding and channel transmission can be simulated by one
sweep of ancestral simulation. For example, we first directly copy g into g, which is then
used to draw a noisy channel output value yo. Then, we use ug to determine sg, which is
then used to determine z;, which is then used to draw a noisy channel output value y;.
Then, we directly copy u; into z, and so on until the entire channel output vector y has
been obtained.

The decoder sees only the vector y, and ideally would infer the most likely value of each
information bit, i.e., determine for each k the u; that maximizes P(utly). In general such
a probabilistic inference is very difficult, but if we take advantage of the graphical structure
of the code it turns out it can be done quite easily. In fact, it is possible to compute
P(urly) £ = 0,... , K ~ 1 ezactly using the forward-backward (a.k.a. BCJR) algorithm
[Baum and Petrie 1966; Bahl et al. 1974], which is just a special case of the general
probability propagation algorithm discussed in Section 2.1. Once the block is decoded,
we can compare the decoded information bit values with the true ones to determine the
number of bit errors made for the block transmission. If we simulate the transmission of
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Figure 1.5: (a) The Bayesian network for a recursive systematic convolutional code. (b) The
Bayesian network for an example of the recently proposed turbo-code. (c¢) The bit error rate (BER)
performance for instances of these two codes.

many blocks. we can obtain an estimate of the bit error rate (BER).

This procedure was carried out using the convolutional code shown in Figure 1.4. This
recursive systematic convolutional code was designed to maximize the minimum Hamming
distance between all pairs of codewords [Viterbi and Omura 1979; Lin and Costello 1983]
(dmin = 10). The information vector length was K = 5000 (giving a codeword length of
N = 10000), and 5000 vectors (25 x 10° information bits in all) were transmitted for a fixed
noise variance. [t is common practice to give BER. results as a function of the noise level
measured by a signal-to-noise ratio £y/Np in decibels. For any system with N = 2K and
transmission power (variance) of unity, E;/Np is related to o2 by Ey/Ng = —10logq 0.
Figure 1.5c shows the BER as a function of Ej/Ng for this recursive systematic convolutional
code3. Notice that as /Ny increases (o? decreases), the BER drops.

3A technical detail: Trellis termination was used to improve the performance of the code.
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In the same figure. [ also give the BER curve for a simple repetition code. where each
information bit is transmitted twice, maintaining N = 2K. If the information bit is 0. a
pair of -1's are sent; if the information bit is 1. a pair of +1’s are sent. Each pair of received
noisy signals is then averaged before a threshold of 0.0 is applied to detect the information
bit. The curve on the far left shows Shannon’s limit; for a given E,/Ny, it is impossible to
communicate with a BER below this curve. (See Sections 5.1.6 and 5.1.7 for a derivation of
this curve.) So. systems of practical interest give performance points that lie between the
Shannon limit curve and the curve for the repetition code. Performance points to the left
of the Shannon limit are impossible, and performance poiuts to the right of the curve for
the repetition code are not of practical interest.

Recently. a code and decoding algorithm were discovered that give unprecedented BER
performance. It turns out that the turbo-decoding algorithm for these turbo-codes [Berrou
and Glavieux 1996] is just the probability propagation algorithm discussed in Section 2.1
applied to a code network like the one shown in Figure 1.5b [Frey and Kschischang 1996:
Kschischang and Frey 1997: MacKay, McEliece and Cheng 1997|. This Bayesian network
contains two recursive convolutional code networks that are connected to the information
bits in different ways. The information bits feed directly into one of the chains (s!), but
feed into the second chain (s?) in a permuted order as shown. In order to produce the same
number of codeword bits per codeword as would be produced by the recursive systematic
convolutional encoder described above. every second output of each LFSR is alternately not

transmitted (a procedure called puncturing).

Figure 1.5¢ shows the BER performance for a turbo-code system with K = 65.336 and
N = 131.072. 530 vectors (~ 35 x 10° information bits} were transmitted to determine
the BER for each noise level. Each of the two LFSRs had 4 bits of memory and used
identical feedback and output delay taps. All four delayed bits were fed back to the input
of the LFSR. Only the bit entering the first delay element and the most-delayed bit were fed
forward to the output. (This block length and these constituent LFSR’s were proposed in
[Berrou, Glavieux and Thitimajshima 1993]). The decoding complexity per information bit
for the turbo-code was roughly twice that for the convolutional code described above. The
information bit permuter was chosen at random. The turbo-code system clearly outperforms
the computationally comparable single convolutional code system. At a BER of 1073, the
turbo-code system is tolerant to 3.3 dB more noise than the single convolutional code system.
and is only 0.5 dB from the Shannon limit. Also shown on this graph is the performance
of a concatenated Reed-Solomon convolutional code described in [Lin and Costello 1983},
which had been considered to be the best practical code until the proposal of turbo-codes.

The turbo-code system is tolerant to 1.5 dB more noise than the concatenated system.
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In Chapter 5. I explore some of the exciting new applications of Bayesian networks
to channel coding problems. with a focus on using the probability propagation algorithm
discussed in Section 2.1 for inference.

1.2.6 Parameterized Bayesian networks

[t is sometimes convenient to represent the conditional distributions P({zi|a) in parametric
form. That is. the distribution over z; given its parents a is specified not by an exhaustive
list of probability masses. but by a function of 2z, ak. and a set of parameters @,. (The sub-
script k indicates that 6y is a set of parameters associated with zx.) In this case. we write the
conditional distribution as P(zglak,8k). The total set of parameters is @ = {8;,... .0~}
and the parameterized joint distribution is expressed as P(z|@). Such a parametric form
can be useful in applications such as density estimation. pattern classification. and data
compression. where the distribution P(z}0) is to be estimated from a data set. In this case,
the parametric form can act as a regularizer. Since the number of possible configurations of
each z; and ay is usually quite large. we would need an extremely large data set to estimate
all probabilities accurately. Using the parametric form. however. we need only estimate each
parameter. As described in Section 2.3. a parametric form is also useful when formulating

variational inference algorithms.

A common parametric Bayesian network is the sigmoidal Bayesian network [Neal 1992:
Jordan 1995: Saul. Jaakkola and Jordan 1996]. whose random variables are all binary. The
conditional probability function P(zi|ai,8%) can be viewed as a regression model that is
meant to predict z; from a set of attributes a;. A standard statistical method for predicting
a binary-valued variable is logistic regression [McCullagh and Nelder 1983]. in which the

conditional probability tor z; given ag is

1/(1 + exp{~0ko — Xvj.z ca, Okszi]) if 2 = L.

P(zcjag.6k) = ,
1 - 1/(1 +exp[~bko = 2v;.: ca, Iks21])  if 2k =0 (1.23)

where the parameter 6 represents a constant bias in the exponent. The logistic function
g(z) = 1/(1 + exp[—z]) is used to restrict the probability to lie between 0 and 1. (This
function is shown in Figure 1.6.) In terms of log-odds,

Pz, = lag, 0k)
= g + E 7] \ 1.24
log P(zy = 0lag, ) k0 k1% (124)

Vj:z;€a

which shows how each parent z, € ax independently increases or decreases the log-odds for

2k, depending on the sign of fy;.
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Figure 1.6: The logistic function g(z) = 1/(1 + exp[—uz]).

Sometimes, for the sake of notational simplicity, [ will assume that the set of parents
for each variable z; is specified by some parameter constraints. Assume without loss of
generality that for a given network., the random variables z have an ancestral ordering
21,22,... .zn. [ take P(zclag. k) = Pzkl{z; };‘;f.ﬂk), where in the second expression the
parameters are constrained so that the function does not depend on nonparents. Also, in
order to succinctly account for the bias. I will usvally assume that there is a dummy variable
zp that is set to zg = 1. (Thus the notation g for the bias in the summations above.)
Using these notational simplifications and using g(-) for the logistic function. the sigmoidal

model described above can be written
k-1 k-1 . k-1
P(zel{z;}721. k) = zeg(3-7 200k, 2) + (1 = ) (1 — 922720 6%52))- (1.25)

where 6y, is set to 0 for each nonparent z;.

1.2.7 Example 2: The bars problem

Bayesian networks provide a useful framework for specifying generative models. A gener-
ative model can be used to generate data vectors that exhibit interesting structure. The
generative models discussed in this thesis can also be used for pattern classification and data
compression, in the fashion described in Sections 1.1.1 and 1.1.2. If the Bayesian network
is parameterized, we can estimate the parameters of the network from a training set by
making the generative distribution “close” (say, in the Kullback-Leibler pseudo-distance)
to the training set distribution. We hope that in this fashion, we can extract the “true”

underlying generative process. or at least one that is equally efficient at describing the data.

For example, the 4 x 4 binary images shown in Figure 1.7a were generated by first
selecting an orientation (horizontal or vertical) with equal probability, and then randomly
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(a)

Figure 1.7: (a) Examples of training images typical of the “bars problem”. (b) The graph for
a parameterized Bayesian network that was estimated from a large training set using the wake-
sleep algorithm. Edges that terminate on the box are connected to all vertices within the box. (c)
The parameters of the Bayesian network clearly show that the network has learned the notion of
horizontal and vertical bars (see the main text for a more compiete description).

instantiating each of the four possible bars with that orientation with probability 0.5. (The
all-on images were removed from the training set. since the orientation of the bars in an
all-on image is ambiguous.) Using the Helmholtz machine and the wake-sleep algorithm
(described in Sections 2.4 and 3.4.3). I fit the parameterized network shown in Figure 1.7b
to a large training set of 2 x [0 images produced in this way. The network has three
layers of binary variables: 1 in the top layer. 8 in the middle layer. and 16 in the visible
layer (the image). The variables in adjacent layers are fully-connected, and the conditional
distributions are modelled using logistic regression, as described in the previous section.
After parameter estimation (see [Hinton et al. 1995] for details), ancestral simulation of the

network produces output images that are indistinguishable from the training images.

After learning, the bias for the top-layer variable is nearly zero. so that under the joint
distribution it has the value I as often as it has the value 0. The values of the other param-
eters are depicted in Figure 1.7c. The eight large blocks on the left show the parameters
associated with the connections that feed into and out of the middle-layer variables. The
bias for a variable is shown by the small black or white square on the top right of the block

for each middle-layer variable. Positive parameters are white, negative parameters are black,
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and the area of the square is proportional to the magnitude of the parameter. (The largest
parameter shown in the figure is 14.1.) The parameter associated with the connection from
the top-layer variable to a middle-layer variable is shown by the small square on the top
left of the block for each middie-layer variable. Finally, the parameters associated with the
connections from a middle-layer variable to the visible variables are shown by the 4 x 4 grid
of squares in the block for each middle-layer variable. The biases for the 16 visible variables
are shown by the 4 x 4 grid of squares on the far right of Figure 1.7c.

It is clear from these parameters that each middle-layer variable represents the presence
(value of 1) or absence (value of 0) of a particular horizontal or vertical bar. If the top-layer
variable is 1. the probability that a horizontal bar is present is nearly zero, since the biases
for these variables are nearly zero and the parameters that connect these variables to the
top-layer variable are large and negative. On the other hand, if the top-layer variable is 0.
the probability that a horizontal bar is present is 0.5. In this way, the network captures the

true generative model that produced the training data.

In Chapters 3 and 4. I show how Monte Carlo inference, variational inference. and
Helmholtz machines can be used to fit Bayesian networks to training data for the purposes

of pattern classification. unsupervised learning, and data compression.

1.3 Organization of this thesis

In the remainder of this thesis. I use Bayesian networks as a platform to develop algorithms
for pattern classification. data compression. and channel coding. The last of these problems
is quite different from the former two, since we will usually design an error-correcting code
using a Bayesian network and then use probabilistic inference to perform decoding. On the
other hand, for pattern classification and data compression. we will usually estimate a pa-
rameterized Bayesian network from some training data and then use probabilistic inference

to classify a new pattern or produce a source codeword for a new pattern.

In Chapter 2, [ discuss different ways to perform probabilistic inference, including proba-
bility propagation, Markov chain Monte Carlo. variational optimization, and the Helmholtz
machine.

Several types of Bayesian networks that are suitable for pattern classification are pre-
sented in Chapter 3. I show how Markov chain Monte Carlo, variational optimization, and
the Helmholtz machine wake-sleep algorithm can be used for probabilistic inference and
parameter estimation in these networks. Based on a digit classification problem, [ compare
the performances of these systems with several standard algorithms, including the k-nearest

neighbor method and classification and regression trees (CART). Learning to extract struc-
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ture from data without using a supervised signal such as class identity is another interesting
parameter estimation problem. At the end of this chapter. | examine unsupervised learning
in Bayesian networks that have binary-valued and real-valued variables.

In Chapter 4, I consider the problem of how to efficiently compress data using Bayesian
networks with hidden variables. When there are hidden variables, a Bayesian network may
assign many source codewords of similar length to a particular input pattern. I present the
“bits-back™ coding algorithm that can be used to efficiently communicate patterns. despite
this redundancy in the source code.

In Chapter 3, I present several published error-correcting codes in terms of Bayesian
networks and show that their corresponding iterative decoding algorithms can be derived
as special cases of probability propagation. In particular, the recently proposed turbo-
decoding algorithm. which brought researchers a leap closer to (and almost up against) the
Shannon limit, is an instance of probability propagation. Motivated by these results and the
breadth in perspective offered by Bayesian networks, I present a new class of “interleaved
trellis-constraint codes”™, which when iteratively decoded are competitive with iteratively
decoded turbo-codes. [ also present two approaches for speeding up a popular class of

computationally burdensome iterative decoding algorithms.




Chapter 2

Probabilistic Inference in Bayesian
Networks

In this chapter. I discuss methods for probabilistic inference that make use of the Bayesian
network description of the joint distribution. Many readers may be aware of how prob-
abilistic inference in a Markov chain is simplified by a chain-type graphical structure. A
generalized form of this simplification holds for those Bayesian networks that have only a
single path (when edge directions are ignored) between any two vertices. In Section 2.1.
[ review an algorithm for “probability propagation™. which can be used to infer the eract
distributions over individual variables or small groups of variables in such networks. For
networks that have multiple paths between one or more pairs of vertices, this algorithm is
not exact. Although there are procedures for attempting to convert an original network
to one that is appropriate for probability propagation [Spiegelhalter 1986: Lauritzen and
Spiegelhalter 1988], these procedures are not practically fruitful when the number of multiple
paths is large. In these cases. approximate inference methods must be used. In Section 2.2,
[ discuss a Monte Carlo approach to inference, where we attempt to produce a sample from
the desired distribution. Histograms based on the sample can then be used to approximate
the true marginal distributions of interest. In Section 2.3, I present a variational method
for approximate inference. Here. we construct a parameterized approximation to the true
distribution and then attempt to optimize the parameters of this variational approximation
in order to make it as close as possible to the true distribution. This technique requires
that the distribution specified by the Bayesian network can be expressed in a form suit-
able for mathematical analysis. Finally, in Section 2.4 I present the Helmholtz machine.
This method can be very efficient. and is tailored to inference in Bayesian networks whose

parameters are estimated from data.
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2.1 Exact inference in singly-connected Bayesian networks

In the late 1980’s. Pearl [1986: 1988] and Lauritzen and Spiegelhalter [Spiegelhalter 1986;
Lauritzen and Spiegelhalter 1988; Lauritzen 1996] independently published an exact prob-
ability propagation algorithm for inferring the distributions over individual variables in
singly-connected Bayesian networks. A singly-connected network has only a single path
(ignoring edge directions) connecting any two vertices (see Figure 2.1a for an example).
Not only does the algorithm make use of the probabilistic structure implied by a Bayesian
network, but it also uses the network as a circuit that specifies message passing channels for
inference computations. [n a singly-connected network. cutting an edge breaks the network
into two pieces. So. each edge acts as a message passing bottle-neck for communicating

information regarding one side of the network to the other.

By passing short real-valued vectors between neighboring vertices in the singly-connected
Bayesian network for a set of variables z = {z.... .z}, the probability propagation
algorithm computes P(z;{v) i = 1.... .|z| for an arbitrary subset v of observed elements
in z. One flavor of probability propagation is the generalized forward-backward algorithm.
in which messages are passed in a highly regular way. Since this regularity simplifies the
description of the algorithm. [ will present the generalized forward-backward algorithm first.
The more general probability propagation algorithm can then quite easily be described by
relaxing the regularity in the way messages are passed. A proof that probability propagation
computes P(z;|v). i = l.....{z| can be found in Appendix A.l. A simple Tcl-based
probability propagation software package is described in Appendix B.

2.1.1 The generalized forward-backward algorithm

To begin with. the singly-connected Bayesian network is arranged as a horizontal tree with
an arbitrarily chosen “root” vertex on the far right. For example, if the circled vertex zq
in Figure 2.1a is chosen as the root, we obtain the tree shown in Figure 2.1b. (Imagine the
network sits in a viscous fluid and we grasp the root vertex and pull it down and then to
the right.) Beginning with the leaves of the tree (i.e., the vertices on the left), messages
are passed level by level forward to the root. Each vertex “fuses” its incoming messages in
order to produce an outgoing message, and also stores the incoming messages for later use.
Then. messages are passed level by level backward from the root to the leaves. The total
number of messages passed in this fashion is 2(|z| — 1), since each edge passes a message
in both directions. Once both passes are complete, each vertex z; fuses all stored incoming
messages to obtain P(z;|v). This algorithm differs from the standard forward-backward
(a.k.a. “BCJR”) algorithm [Baum and Petrie 1966; Bahl et al. 1974] in two ways. First, the
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Figure 2.1: (a) shows a singly-connected Bayesian network. A tree is obtained by choosing zg as
a root vertex, as shown in (b). (c) shows a network fragment with the \- and #-messages that are
passed to and from the parents x and the children z of y, during the two passes of the generalized
forward-backward algorithm.

underlying graph is a tree, not a chain. Second. some edges may be directed forward while
others may be directed backward. whereas in the standard forward-backward algorithm. all

edges are directed forward.

During each of the forward and backward passes, two types of vector messages are passed.
A m-message is passed from a parent to a child in the direction of the edge, and represents
the probability distribution over the parent given the observed variables connected to the
parent through all paths that do not go through the child. A A-message is passed from
a child to a parent in the opposite direction of the edge, and represents the likelihood for
the observed variables connected to the child through all paths that do not go through the
parent, given the parent variable. Both types of vector have lengths that are equal to the
number of values the parent variable can take on. In fact. since a normalization operation
can be applied at a later stage, one fewer elements may be passed by assuming that the
first element is always 1. For example, in a Bayesian network with binary variables, each

message may consist of just a single real value, since all parent variables are binary.

Consider the network fragment shown in Figure 2.1c, where x is the set of parents of y.
and z is the set of children of y. Let |y| be the number of discrete values that y can take
on. Without loss of generality, [ assume y € {1,... .|yl}. (The following equations hold
for real-valued variables as well, if summations are replaced by integrals.) In this case, the
conditional probability P(y|x) can be viewed as a high-dimensional matrix PXY.

PXY = P(ylx). (2.1)




2.1 Exact inference in singly-connected Bayesian networks 25

In this section I use capitalized variable names in superscripts to label vectors and matrices.
and lower-case variable names in subscripts to index the elements of vectors and matrices.
If y has no parents, then we take x = @ so that

PZ) = P(y|@) = P(y). (2.2)

To compute an outgoing message. a vertex must take into account the incoming messages
on all other edges. Let jx| be the number of parents of y (number of variables in x) and let
|z;| be the number of values that parent z, can take on. Variable y may receive a vector

message from each parent z; 71 = 1.... .|x]:
XY _ X.Y X.¥
T =(m{ ) (2.3)
and a vector message from each child z; j = 1.... .|z
ALY = (BT AET), (2.4)

To compute an outgoing w-message (e.g.. in Figure 2.1b, from zy to zs in the forward
pass. and from zg to zig in the backward pass), a variable must fuse the incoming A- and
m-messages on the other edges. For example, in the network fragment shown in Figure 2.1c,

y computes the elements of a m-message sent to z; in the following way:

,'Z H - . - -
%= [ [ AL ET] v=t il (25
) x

(The sum is over all possible configurations of the parents, x.} If y has no parents, |x| =0
and the second term in (2.5) evaluates to PZ, . which is equal to the probability P(y) given
in the network specification. In the special case that y is connected by only one edge. the
first term in (2.5) evaluates to 1. so that

w2 =Ply). y=1l....lyl. (2.6)

If y is not a free variable, but has the observed value y°. it computes the elements of the
m-message in a different way:

fr;'z’ =dy.y°), y=1,....lyl, (2.7)

where é(y,y°) = 1 if y = 4° and 0 otherwise.

To compute an outgoing A-message (e.g., in Figure 2.1b, from 2)¢ to z¢ in the forward
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pass, and from zg to z4 in the backward pass), a variable must again fuse the incoming
A- and m-messages on the other edges. For example. in the network fragment shown in

Figure 2.1c. y computes the elements of a A-message sent to z; in the following way:

iyl
YX, _ 1Zi (2 il XY ;
zY —E:[H Ay ][ > PXY ‘,f:‘i%nzf ] zi= k... .|z (2.8)

y=1 x':zl =z,

If y has no children, |[z| = 0 and the first term in the summation in (2.8) evaluates to i. In
the special case that y is connected by only one edge. the second term in the summation
evaluates to P;Y;IY = P(y|zi). so that

)\;"Xn =1, r;=1,....]¢d (2.9)
If y is observed and has the value °, the elements of the A-message are

3y .
ALY = Z ,;‘_'1 e (2.10)

—.’E|

After the forward pass and the backward pass are complete. each unobserved vertex y

computes P(y|v) by fusing the stored incoming messages as follows:
Plylv) = a[r["‘ ,\zk’] [z PXY TR 2 ] y=1... |y (2.11)

where « is a normalizing constant. which is computed to ensure that Zi}il P(y|v) = L

2.1.2 The burglar alarm problem

In order to illustrate how the generalized forward-backward algorithm works, I now in-
troduce a variant of the simple “burglar alarm” network described by Pearl [1988]. The
network describes a shoddy burglar alarm that is sensitive not ouly to burglars, but also to
earthquakes. The three binary random variables in the network are b for “burglary”. e for
“earthquake™, and e for “alarm”. A value of 0 for one of these variables indicates that the
correspounding event has not occurred, whereas a value of 1 indicates that the correspond-
ing event has occurred. Figure 2.2a shows the network. which has the following conditional
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(a) o (b) x84 = (0.9,0.1) (c) A1E = (0.0377.0.1822)
e —
O——(D)—) ‘—'.'—‘ (—(e)
e (d) rf4 = (09,01) (&) 482 (0 0144. 0.3919)

Fz%'ure 2.2: (a) The Bayesian network for the burglar alarm problem, with variables b (“burglary”),
arthquake™) and e (“alarm”). (b) to (e) show the messages passed during the generalized
forward-backward algorithm.

probability relationships:
P(b=1) =0.1. Ple=1) =0.1.
Pla=1|b=0.e=0) =0.001. P(a=l1lb=1.e=0) = 0.368.

Pla=1b=0.e=1) =0.135. Pla=llb=1.e=1) = 0.607. (2.12)

Suppose that while you are away at a conference. the burgiar alarm contacts you by
cell phone and informs you that the alarm is ringing (¢ = 1). We would like to infer the
distribution over the two causes to make a well-informed decision about whether or not you
should be concerned about a burglary. Since this network is quite simple. we can apply
Bayes rule P(b.ela) = P(alb.e)P(b)P(e)/ >, .« Plalb’.e')P(V')P(e') to obtain the exact

solution.
P(b=0.e=0la=1) =0.016. Pl{b=l.e=0la=1) = 0.635,

P(b=0.e=lla=1) =0.233, P(b=l.e=lla=1) = 0.116. (2.13)

The most likely explanation for the ringing alarm is that a burglary took place. Notice.
however, that although an earthquake is also a likely explanation. it is relatively unlikely
that both a burglar and an earthquake were simultaneously the cause of the alarm.

Now, consider using probability propagation for probabilistic inference in this network.
(See Appendix B.2 for a description of how this network can be processed using the BNC
software package). After we arbitrarily select e as the root. the generalized forward-
backward algorithm proceeds by sending a message from the leaf b to ¢, as shown in Fig-
ure 2.2b. Since b is a parent of a, this vector will be a m-message, and since b is connected
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by only one edge, we use (2.6):
w84 = (P(b=0). P(b=1)) = (0.9,0.1). (2.14)

Next, a sends a message to the root e, as shown in Figure 2.2c. Since a is a child of e. this
vector will be a A-message, and since a is observed (e¥ = 1), we use (2.10):

AAE = ([Z,}:np(a = llb.e=0)rf1]. [T4_oPla= 1|b.e=1)7:,?-4])
= (0.001- 0.9 +0.368 -0.1. 0.135 - 0.9 + 0.607 - 0.1) = (0.0377.0.1822).  (2.15)

Next, e sends a message to a. as shown in Figure 2.2d. Since e is a parent of a. this vector

will be a m-message. and since e is connected by only one edge. we use (2.6):
7E4 = (P(e = 0), P(e = 1)) = (0.9,0.1). (2.16)

Finally, a sends a message to b. as shown in Figure 2.2e. Since a is a child of b. this vector
will be a A-message, and since e is observed, we use (2.10):

2B = ([Zgzop(a = 1|b=0,e)rE4], [l Pla= 11b=1.e)1rf-4])

= (0.001-0.9+0.135-0.1. 0.368 - 0.9 + 0.607 - 0.1) = (0.0144,0.3919).  (2.17)

Now, b and e can compute their marginal distributions using (2.11):
(P(b=0ja=1). P(b=1la=1)) = (aX'PP(h = 0).ar{BP(b = 1))
= (0.01296c.0.03919¢) = (0.249.0.751). and
(P(e=0la=1), Ple=1la=1)) = (aN}EP(e =0).ar{FP(e = 1))
= (0.03393cx, 0.01822c) = (0.651, 0.349). (2.18)

These distributions are exactly equal to the marginal posterior distributions computed from
(2.13).

2.1.3 Probability propagation

The highly regular way in which messages are passed in the generalized forward-backward
algorithm can be relaxed to obtain a more general probability propegetion algorithm. It
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turns out that as long as a few simple rules are followed, messages may be passed in
any order (even in parallel) to obtain the probabilities P(z;{v) ¢ = L,... ,|z|. These rules
prescribe how the network is to be initialized for propagation. and how messages are created.
propagated, absorbed, and buffered. Aside from these rules. the formulas for propagating
messages are identical to those in (2.5) to (2.10).

Before propagation begins, the network must be initialized. This procedure computes
the a priori incoming messages for each vertex. and corresponds to a generalized forward-
backward pass without any observations. It is easy to show that in this case all A-messages
will be equal to 1, and so initialization consists of passing w-messages using an ancestral
ordering. (To see this, imagine performing a forward-backward pass on the network in
Figure 2.1a. without any observations.} After initialization. each vertex z; has available its
a priori probability P(z;). In some networks (such as those used for channel coding) these
probabilities are uniform and so the initialization procedure can be skipped.

Messages are now created in response to observations. If variable y is abserved to have
the value y°, then a message must be sent out on each of the edges connected to y. using
(2.7) for y’s children and (2.10) for y’s parents.

Messages are propagated in response to other messages. If variable y receives a message

on an edge. y must send out messages on all other edges.

Messages are absorbed by vertices that are connected by only a single edge. This rule
follows naturally from the propagation rule. since if such a vertex receives a message on its

only edge, the vertex is not required to propagate it back.

It is not necessary that messages be propagated without delay. In fact. a vertex may
buffer one or more outgoing messages and pass them at any time. (It is usually most
convenient to compute them at a later time, too.) For example. if a vertex has just received
a message and is about to receive another one. computations can often be saved by waiting

for the second message before computing and sending out a set of messages.

At any time during propagation, vertex y can compute a current estimate P(ylv) of
P(y|v) using (2.11). If the above rules are followed and propagation continues until there
are no buffered messages remaining in the network. then the estimates will equal the exact
probabilities: P(y|v) = P(y|v).

Instead of a complete initialization, it is possible to simply buffer the initial messages
leaving each parentless vertex. Since these messages will be propagated eventually. this has
the same final result as the initialization procedure described above, although the interme-

diate probabilities may differ.

The generalized forward-backward algorithm described in the previous section can be
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viewed as a special case of probability propagation. First, the network is arranged as a tree.
Then, the m-messages leaving each parentless vertex in response to network initialization are
buffered. Next, the messages created in response to observations are all buffered. (At this
point, no computations have been performed.) During the forward pass, each right-going
message induces a set of buffered left-going messages and a single right-going message. The
latter right-going message is passed to the next level, where it too induces a set of buffered
left-going messages and a single right-going message. So, once the forward pass is complete,
there are no more buffered right-going messages in the network. During the backward pass,
each vertex receives a left-going message from its only right-hand edge. Since an incoming
message to a vertex never induces an outgoing message on the same edge, the left-going
message will induce only a set of buffered left-going messages. So, there will be no buffered
messages remaining in the network once the backward pass is complete. Finally, each vertex

z; can compute the exact value for P(z]v).

2.1.4 Grouping variables and duplicating variables

Often, it is possible to convert a multiply-connected Bayesian network to a singly-connected
Bayesian network, so that probability propagation can then be applied in a practical manner.
To do this, we group variables, until there are no more multiple paths in the network.
Graphically, two variables z; and z; are grouped by removing from the graph z; and 2z, as
well as the edges to which they are connected, and then introducing a new vector variable
{zj, zx}- The set of parents of the new vector variable is the union of the sets of parents of
the two old variables. The set of parents of each child of z; and z; is extended to include
both z; and z,. New edges are introduced to reflect these relationships. This grouping
operation will produce a valid Bayesian network as long as z; is not an indirect descendent
of z; and vice versa. Otherwise, a directed cycle will result from the grouping, violating
the requirement that a Bayesian network have no directed cycles. Note that if zx is a child
of z;, and at the same time not an indirect descendent, the grouping is still valid, since no

directed cycles are produced.

As shown in Appendix A.2, this grouping operation also preserves the representational
capacity of the network. Any distribution represented by the old network can be represented
by the new one. In fact, all of the conditional probabilities P(zx|ax) in the new network
will be the same as in the old network, except the ones that involve either of the grouped
variables. The latter conditional probabilities can quite easily be derived from the old ones.

Note that although grouping variables may help to produce a singly-connected network
to which probability propagation can be applied. the grouping operation also hides the
structure that makes probability propagation an attractive inference method in the first
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Figure 2.3: Transforming the multiply-connected Bayesian network for a recursive convolutional
code (a) into a singly-connected network (c), involves variable duplication (a)-(b) and grouping

(b)-(c).

place. So, it is important to produce minimal groupings and retain as much of the structure
as possible. Not surprisingly, by grouping variables. any network can be made singly-
connected — simply group all variables together into a single vertex. However. extreme
groupings of this sort usually eliminate too much structure. *“Probability propagation™ for
the single vertex is equivalent to manipulating the full joint distribution. which in most
practical cases is unwieldy.

Another useful operation is duplicating variables. A variable z; can be duplicated by
adding an extra variable zy+ to the network. and creating the following new parent-child

old

relationships: ayy; = a} new

and af®™ = {zw.i}. This procedure is especially useful in
combination with grouping, since although we may wish to group z; and z¢ in order to
make the network singly-connected. we may also wish to graphically distinguish z; from the

vector variable {z;.z}.

For example. the recursive convolutional code network shown in Figure 1.5a can be
derived from the more natural recursive convolutional code network shown in Figure 2.3a.
The latter network explicitly shows the dependence of the encoder state variable sx on the
previous information symbol ug-; and the previous state sx_;, as well as the dependence
of the encoder output z; on uj and sg. This network is multiply-connected, so probability
propagation cannot be used to compute P(utly) for maximum a posteriori information
symbol decoding. To convert the network to a singly-connected one. we first duplicate the
information symbols (so that they are graphically distinguished in the final network) as
shown in Figure 2.3b. Then, we group pairs of information symbols and state variables as
shown by the dashed loop, producing the singly-connected network shown in Figure 2.3c.
Note that by grouping variables in this way, the number of values that each new state s
can take on is increased by a factor of two.

Although in many cases grouping can be used to produce a tractable network, there are

cases where it is impossible to find an appropriate grouping. In fact, it turns out that in
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general, inference in multiply-connected networks is a very difficult problem.

2.1.5 Exact inference in multiply-connected networks is NP-hard

Probability propagation is an exact method of inference for singly-connected Bayesian net-
works. Cooper [1990] has shown that probabilistic inference in Bayesian networks is in gen-
eral NP-hard. Summations relevant to inference, such as the ones in {1.3), (1.7), and (1.9).
contain an exponential number of terms and it appears that in general these summations
cannot be simplified. Researchers have thus focused on developing exact inference algo-
rithms for restricted classes of networks {e.g., probability propagation for singly-connected
networks), and on developing approximate inference algorithms for networks that are in-
tractable (assuming P # NP). In fact. Dagum [1993] (see also [Dagum and Chavez 1993])
has shown that for general Bayesian networks. approximate inference to a desired number
of digits of precision is NP-hard. {le.. the time needed to obtain an approximate inference
that is accurate to n digits is believed to be exponential in n.)

One obvious approach to approximate inference in a multiply-connected Bayesian net-
work is to use the probability propagation algorithm while ignoring the fact that the network
is multiply-connected. Each vertex propagates messages as if the network were singly-
connected. In this case, the propagation procedure will never terminate, because there will
be loops in which messages will endlessly circulate. Although this method has provided
excellent results in the area of channel coding, it is frowned upon in other areas (such as
medical diagnosis) because there is little theoretical understanding of the behavior of this

iterative procedure.

Another disadvantage of the probability propagation algorithm is that it is cumbersome
for inferring the joint distribution over several variables (e.g.. v and uy in Figure 2.3c). This
inference is accomplished by first computing the distribution over u; given the observations,
using one forward-backward sweep. Then, the distribution over u4 given the observations
and each of the possible values for u; is computed using one forward-backward sweep for
each possible value for u;. (Notice that these sweeps may be partial. since they need only
take into account the effects of clamping u; to different values.) If the variables of interest
have n possible configurations. roughly n (possibly partial) forward-backward sweeps are
needed. If we cannot afford the time to perform all of these sweeps. a faster approximate

algorithm may be more appropriate.

In the following sections, [ describe several more principled approaches to approximate
probabilistic inference, including Monte Carlo, variational inference, and Helmholtz ma-

chines.
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2.2 Monte Carlo inference

The Monte Carlo method [Hammersley and Handscomb 1964: Kalos and Whitlock 1986;
Ripley 1987] makes use of pseudo-random numbers in order to perform computations.
Monte Carlo inference uses random numbers in order to perform inference in a Bayesian
network that describes a joint distribution P(z). If we can somehow obtain a reasonably
large sample from the distribution P(h|v) over some unobserved hidden variables h C z in
a Bayesian network, given some observed visible variables v C z then relative frequencies
can be used for approximate inference.

2.2.1 Inference by ancestral simulation

One brute force Monte Carlo approach is to simply simulate the network using the ancestral
ordering. Then, we extract from the sample all those vectors that have the desired value
for the component v. Next, we compile a frequency histogram for the different values that
h can take on. Although this approach is sometimes useful (notably, when using a small
network to verify that a more sophisticated inference method works), in general it is not
computationally efficient. The problem is that the value of v that we wish to condition
on may occur eztremely rarely, so that an inordinate sample size must be used in order to

obtain results.

If we are interested in a subset h! C h of the hidden variables, it so happens that in
some cases ancestral simulation can be used to obtain a sample from P{hf|v) in an efficient
manner. In general, if the parents of the visible variables are dependency-separated (see
Section 1.2.4) from the hidden variables of interest by the visible variables, then ancestral
simulation can be used to obtain a sample from P(h!|v). (See Appendix A.3 for a proof.)
If the visible variables have no parents, then it follows trivially that the variables in this
null set are dependency-separated from the hidden variables. Using the ancestral ordering,
a value is drawn for each hidden variable given its parents. After one complete sweep, the

value for h! will be an unbiased draw from P(h![v).

For example, suppose that in the multiply-connected network with ancestral ordering
21, 22, 23, 24, %5, 26, 27 shown in Figure 2.4, the set of visible variables is {z,z4}. Suppose
also that we would like to infer the distribution over the subset of hidden variables {zg, z7}.
Since {26, 27} is dependency-separated by {21, z4} from the parents {22} of {z1, 24}, we can
estimate P(zg. 27|21, 24) by ancestral simulation. We draw a value for z7, then for z3 given
z1, then for z5, then for zs given z3 and z4, then for 27 given z4 and z5. We can estimate

P(zg, 27|21, 24) by repeating this procedure over and over while building up a histogram for

{26, Z’(}.
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Figure 2.4: An example of a Bayesian network.

Notice that in the above example, it was not really necessary to draw a value for z»,
since for the ancestral simulation method to work, it was required that z; be dependency-
separated from {zg,z7} by {21.24}; i.e.. given {z|.24}. 22 does not influence {zs,27}. In
general. values need only be drawn for those variables in the ancestral ordering that are
not dependency-separated from h! by v. If these can be easily isolated. then simulation

computations can be saved.

2.2.2 Gibbs sampling

When inference by ancestral simulation is not possible, Markov chain Monte Carlo is often
used (see an excellent review of these methods by Neal [1993]). Given v, a temporal sequence
hV.h(® ... of the hidden variable values is produced by simulating a Markov chain whose
stationary distribution is carefully constructed (e.g., as described below) to be equal to
P(h|v). By collecting these values over time. an approximate sample is obtained. Ideally.
the chain is run long enough so that equilibrium is reached. In practice. the Markov chain
may be terminated before equilibrium is reached. so that the simulation time can be kept
within a reasonable limit. Once collected. the sample can be used to produce a frequency
histogram of the variables of interest in h.

The Gibbs sampling algorithm is the simplest of the Markov chain Monte Carlo methods.
and has been successfully applied to Bayesian networks [Pearl 1987; Pearl 1988; Neal 1992]
as well as other graphical models [Geman and Geman 1984; Hinton and Sejnowski 1986].
In this algorithm. each successive state h!”) is chosen by modifying only a single variable
in the previous state h("~!). The variables are usually modified in sequence. If at time 7.

we have decided to modify z; € h. then we draw a value z,(:) from

Plzkl{z; = 27V} ) (2.19)

Usually, we cannot obtain this distribution directly, but instead must first compute the joint
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Figure 2.5: (a) The Bayesian network for the burglar alarm problem, with variables b (“burglary”).
e (“earthquake”) and a (“alarm™). (b) 400 steps of Gibbs sampling for the variables b and e when
the alarm is observed to be ringing (a = 1).

probability which is proportional to the conditional probability:
r—-1 . T h
P(z|{z;, = zﬁ )}}V=|.J¢k) x P(zg. {z; = ";(T 1)}3\;1.1;‘1;)’ (2.20)

where the constant of proportionality does not depend on zx. The joint probability can
usually be computed easily from (1.13). If z; is discrete, we compute the joint probability
for each value that it can take on. normalize these values. and then randomly draw a value
2™ from this normalized distribution. When Zr i a continuous random variable, it can
be quite difficult to draw a value from its distribution. Efficient sampling methods for
several special types of continuous parametric distribution are given in [Devroye 1986] and
[Ripley 1987]. In order to draw values from other types of distribution. more sophisticated

techniques such as adaptive rejection sampling [Gilks and Wild 1992] must be used.

2.2.3 Gibbs sampling for the burglar alarm problem

In order to illustrate how Gibbs sampling works, I use the simple burglar alarm problem

presented in Section 2.1.2, whose Bayesian network is shown in Figure 2.5a.

In order to perform Gibbs sampling, we need the probabilities for each of the hidden
variables conditioned on all the other variables. Since these conditional probabilities are

proportional to the joint probabilities, we can compute them in the following way, using
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P(b=1le=0,a=1) as an example:

P(b=1,e=0,a=1)

Plo=lle=0.a=1) = —gr—r——7;

P(b=1l,e=0.a=1)
P(b=0.e=0.a=1) + P(b=1l.e=0.a=1)

B 0.03312
~ 0.00081 + 0.03312

= 0.976. (2.21)

where P(b,e.a) = P(alb.e)P(b)P(e) is the joint distribution determined from the network
specification in (2.12). Similarly,

0.00607 _
Pl=lle=1l.a=1) = oo s+ 000607 ~ >3
0.01215
Ple=1lb=0.a=1) = 55a58T + 001215 ~ 0 3%
.00
Ple=lb=1.a=1) = 0.00607 = 0.155. (2.22)

~ 0.03312 + 0.00607

Gibbs sampling proceeds by alternately visiting & and e, while sampling from P(ble.a=1)
and P(e{b,a=1) using the above formulas. Figure 2.5b shows the values of b and e for 400
steps of Gibbs sampling, starting from an initial configuration (6=0.e=0). (In each step.
one variable is updated.) The Markov chain shows that the configurations (b= 0.e =)
and (b= 1.e = 1) are unlikely compared to (b =1.e =0) and (b =0.e =1). The correct
probabilities in (2.13) can be approximated using the relative frequencies computed from
this chain:

-

P(b=0.e=0ja=1) = 0.010,

~

P(b=1,e=0la=1) = 0.674,
P(b=0.e=1lla=1) = 0.228
Pb=1l.e=1la=1) = 0.088. (2.23)

These are quite close to the correct values given in (2.13). Usually, an initial segment
of the Markov chain is discarded when computing these statistics. The motivation for
this procedure is that we would like to have samples that are typical of the equilibrium
distribution, not the initial configuration.
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Figure 2.6: Slice sampling. After obtaining a random slice from the density (a), random values are
drawn until one is accepted. (b) and (c) show two such sequences.

2.2.4 Slice sampling

In networks with continuous variables, it is often not an easy task to sample from the
conditional distribution of each hidden variable, as Gibbs sampling requires. Unlike the
case for discrete variables, it is usually not possible to compute the joint distribution for
every configuration of a hidden variable. There are infinitely many configurations, and it is
often practically impossible to determine an effective discretization. Methods for sampling
from continuous distributions include the Metropolis algorithm [Metropolis et al. 1953: Neal
1993] and hybrid methods that use “momentum” in order to help search the configuration
space [Duane et al. 1987: Neal 1993]. In this section, I review a technique called slice
sampling [Neal 1997; Frey 1997a], that can be used for drawing a value z from a univariate
probability density p(z) -— in the context of inference, p(z) is the conditional distribution
plzkl{z; = zﬁf_l)}lev j#k). Slice sampling does not directly produce values distributed
according to p(z), but instead produces a Markov chain that is guaranteed to converge to

old i5 used as a guide for where to pick

p(z). At each step in the sequence, the old value z
the new value z"". When used in a system with many variables, these updates may be

interleaved for greatly improved efficiency.

To perform slice sampling, all that is needed is an efficient way to evaluate a function
f(z) that is proportional to p(z) — in this application, the easily computed joint probability
p(zk, {zj = zgf-")};v:l‘#k) is appropriate. Figure 2.6a shows an example of a univariate
distribution, p(z). The version of slice sampling discussed here requires that all of the prob-
ability mass lies within a bounded interval as shown. To obtain z"*¥ from 2"V, f(z"V) is
first computed and then a uniform random value is drawn from [0, f(z"®%)]. The distribu-
tion is then horizontally “sliced” at this value, as shown in Figure 2.6a. Any z for which
f(z) is greater than this value is considered to be part of the slice, as indicated by the
bold line segments in the picture shown at the top of Figure 2.6b. Ideally, z"*¥ would now
be drawn uniformly from the slice. However, determining the line segments that comprise

the slice is not easy, for although it is easy to determine whether a particular z is in the



2.3 Variational inference 38

slice, it is much more difficult to determine the line segment boundaries, especially if the
distribution is multimodal. Instead, a uniform value is drawn from the original interval as
shown in the second picture of Figure 2.6b. If this value is in the slice it is accepted as
z"¥ (note that this decision requires an evaluation of f(z)). Otherwise either the left or
the right interval boundary is moved to this new value, while keeping z"¢¥ in the interval.
This procedure is repeated until a value is accepted. For the sequence in Figure 2.6b. the
new value is in the same mode as the old one, whereas for the sequence in Figure 2.6c, the
new value is in the other mode. Once z"*¥ is obtained, it is used as 2™ for the next step.
As shown in Appendix A.4, this procedure satisfies detailed balance and therefore gives the
desired stationary distribution p(z).

2.3 Variational inference

In contrast to both the rather unprincipled approach of applying probability propagation
to multiply-connected networks, and the computationally intensive stochastic approach of
Monte Carlo, variational inference is a nonstochastic technique that directly addresses the
quality of inference. In the Bayesian network literature, variational inference methods [Saul,
Jaakkola and Jordan 1996; Ghahramani and Jordan 1997; Jaakkola, Saul and Jordan 1996)
were introduced as an alternative variation on the central theme of Helmholtz machines
[Hinton et al. 1995; Dayan et al. 1995, which are described in Section 2.4. However, I will

present variational inference first, because it is simpler to understand.

Suppose we are given a set of visible variables v C z. (This set may includes different
variables on different occasions.) In order to solve the inference problem of estimating
P(h|v), we introduce a parameterized variational distribution @Q{(h|¢) that is meant to
approximate P(h|v). The most appropriate form of this distribution will depend on many
factors, including the network specification and the quality of inference desired. Next, the
distance between P(h|v) and Q(h|€) (e.g., Euclidean, relative entropy) is minimized with
respect to £, either directly or by using an optimization technique such as a Newton-like
method or a conjugate gradient method [Fletcher 1987]. Once optimized, the distribution
Q(h|€) is used as an approximation to P(h|v).

The main advantage of variational inference over probability propagation in multiply-
connected networks is the explicit choice of a distance measure that is minimized. Al-
though probability propagation is optimal for singly-connected networks, there is very little
known theoretically about the quality of inference that results when the network is multiply-
connected. On the other hand, there is no general guarantee that in multiply-connected
networks, variational methods will perform better than probability propagation. An ex-
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ample where probability propagation in multiply-connected networks works very well for
practical purposes is the celebrated turbo-decoding algorithm for error-correcting coding
{Berrou, Glavieux and Thitimajshima 1993: Frey and Kschischang 1996].

Compared to Monte Carlo, variational inference may provide the designer with a more
structured approach to choosing a computationally tolerable approximation to P(h|v).
However, variational methods do not usually provide a means to obtain exact inference.
Also, variational inference can only be applied when the network is well-tailored to a sen-
sible distance measure along with a fruitful form of variational distribution. (For example,
the majority of work on variational methods for Bayesian networks to date has focussed
on networks that are parameterized.) In contrast., Monte Carlo methods can be applied to
any Bayesian network. and can be designed so that they are guaranteed to converge to the

correct solution.

2.3.1 Choosing the distance measure

Depending on the particular problem. different measures of distance may be appropriate.
For example. in the case of hard-decision classification and hard-decision channel coding, a
binary distance is ideal. Under this distance, the distributions are identical if they lead to
the same decisions. Otherwise, the distance is incremented for each incorrect decision. In

practice. this distance must be softened in order to use continuous optimization methods.

As another example. we will see in Chapters 3 and 4 that for pattern classification and
data compression. the appropriate “distance” is the Kullback-Leibler divergence, or relative
entropy, between Q(hj€) and P(h|v):

Q(hig)
P(hl|v)’

o
o
-
£

Dgyp =) _ Q(hJ€) log
h

Notice that this is not a true distance since it is not symmetric: Dgp # Dpyg. where

P(hiv)

Q(BIE) (2.25)

Dpyg = »_ P(hiv)log
h

(For density functions, the summations are replaced by integrals.)

The choice of whether to use Dgp or Dpjo depends on our objective. The former
places emphasis on not inferring unlikely values of h at the cost of not inferring some of
the likely values, whereas the latter places emphasis on inferring all likely values of h at the
cost of inferring some of the unlikely values. For example, consider a real-valued univariate
probability density p(z) over z that has two modes, as shown in Figure 2.7. Suppose the
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Figure 2.7: The effect of using (a) D, versus (b) Dy, when fitting a variational distribution
q(z|€) that is unimodel to a bimodal distribution p(z).

variational distribution g(z|€) is a Gaussian with £ consisting of a mean and a variance.
Figure 2.7a shows the optimum variational distribution that is obtained by minimizing
Dgjp: whereas Figure 2.7b shows the optimum variational distribution that is obtained by
minimizing Dp|q-

Notice that in order to compute Dgyp in (2.24). we need P(h|v), which is what we
were after in the first place. So. in practice, we usually minimize the following free energy

function:

h
Fgip = Doyp — log P(v Z Q(hi€) lo g((hm) (2.26)

Notice that minimizing Fgyp with respect to § gives the same set of parameters as minimiz-
ing D p- since log P(v) does not depend on §. In order to compute Fg p. we only need
P(h.v), which is readily available in Bayesian networks. (P(h.v) is not easy to compute
in other types of graphical models. such as Markov random fields.)

2.3.2 Choosing the form of Q(h|§)

The form of Q(h|€) will strongly influence the quality of the variational inference as well as
the tractability of computing the distance and its derivatives (which may be needed for the
optimization procedure). Exact inference can be achieved in principle by associating one
parameter &, with each state of the hidden variables h, where &y, is meant to be an estimate
of P(h|v). However, computing the distance will require an explicit summation over all
possible states of the hidden variables. The number of terms in this sum equals the number
of possible configurations of the hidden variables, so this approach will only be tractable
when there are not many configurations of the hidden variables. In fact, in most cases the
above procedure will not be any more computationally efficient than directly computing

P(h|v) using Bayes rule.
We would like to choose Q(h|€) so that the effect of the hidden variables h in the distance
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measure can be integrated out either analytically or using a reasonably small number of
computations. In this way, the distance and its gradients can be determined without having

to numerically examine each possible state of the hidden variables h.

2.3.3 Variational inference for the burglar alarm problem

In this section, [ illustrate variational inference using the burglar alarm network described
in Section 2.2.3. One type of variational distribution that is often used is the product form
distribution. Under this variational distribution. the hidden variables are independent. For
continuous variables. further assumptions may be needed regarding the distributions for
each hidden variable (e.g.. see Section 3.7). For the binary burglar b and earthquake e vari-
ables in the burglar alarm network. we can specify an arbitrary product-form distribution
using the parameters £ and &, for the probabilities that b=1 and e=1 respectively. That

is.

Q(b.el€) = Q(blE)Q(el€) = EN(L — &) 7751 — &)~ (2.27)

Inserting this variational distribution into (2.26). and using the simple binary entropy func-
tion H() = =& log& — (1 — &) log(1l — &), we get

b,
Faip = Y Qb.e|€)log P_(Qb%
py |

Y Qb.elg)[blog &1 + (1 — b) log(l = &1) + elog & + (1 —e) log(L = £2)]

=0.1
e=0.1
= > Q(b.e|§)log P(b.e.a=1)
b=90,1
e=0,1
= —H(&) - H(&) — ), Qb-el§)log P(b.e.a=1). (2.28)
b=0.1
e=0,1

Notice that the product form of Q(b.e|€) was used to simplify the first term of the second
equality.

At this point, without any further restrictions, we have not gained any computational
advantage by using the variational approach. To compute Fg p and its derivatives, we must
still examine all possible configurations of the hidden variables to compute the expectation
of log P(b,e,a=1). In order to make profitable use of variational inference, log P(b,e,a=1)




2.3 Variational inference 42

o oo
S N> R Vo]

£, (earthquake)

QO v o o oo
= N W s oY

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.3
&1 (burglar)

Figure 2.8: The contours of Fg p for a variational technique applied to the burglar alarm problem.
The global minimum occurs at & = 0.951. & = 0.186.

must have a form that makes the computation of F) p easy. [t turns out that the conditional
probabilities (2.12) for the burglar alarm network were obtained from

P(a=1]b.e) = exp[6b + 5e — 4.5be — 7|. (2.29)
So. the joint distribution P(b.e.a=1) can be written

P(b.e.a=1) = P(a=1|b.e)P(b)P(e) = exp[6b + 5e — 4.5be — 7]0.1°0.9'7%0.1°0.9' =,
(2.30)

Substituting this into {2.28). we get

Foup = ~H(&1) - H(&2)

= )" Q(b.ef€)[6b + 5e ~ 1.5be — 7 +blog 0.1 + (1 — b) log 0.9 + elog 0.1 + (1 — €) log 0.9]
b=0,1

e={0.}

= —H(&;) — H(&) ~ 3.8§ — 2.863 + 4.5§,&§ + 7.21. (2.31)

Notice that the hidden variables b and e do not appear in this final expression. Because
of the product form of Q(b, el€) and the exponential form of P(b.e.a=1), we were able to

integrate them out.

Figure 2.8 shows a plot of the contours of Fgyp as a function of & and &§. The global
minimum occurs at £§; = 0.951. & = 0.186, which means the inference estimates are Pb=
lia=1) = 0.951 and P(e = lja=1) = 0.186. These estimates clearly favor a burglar as the
cause of the alarm. Recall that Gibbs sampling allowed us to estimate covariance statistics
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between the two hidden variables. Variational inference does not readily produce those
estimates. However. compared to the marginal probabilities P(b= lla = 1) = 0.751 and
P(e=1la=1) = 0.349 produced by the probability propagation algorithm. the variational
method places more emphasis on the more likely cause b. In this sense, the variational
technique produces a product form distribution that reveals covariance better than the
marginals, produced. say. by probability propagation. For example. using only the marginal
probabilities produced by propagation. we might conclude that the probability that both
a burglar and an earthquake occurred is 0.751 x (0.349 = 0.262. [n contrast. using the
probabilities produced by the variational method gives 0.951 x 0.186 = 0.177. which is
closer to the correct value of 0.116 given in (2.13).

In this case. because the burglar alarm network is so small, the analytic form of Fgp
in (2.31) is not much simpler than the expression that would be obtained if (2.27) were
substituted into (2.28) and explicit summation over all values of 5 and e were performed.
However, for larger networks. expouential computational savings may be achieved by using
conditional distributions that lead to simple forms of log P(h.v).

2.3.4 Bounds and extended representations

In practice. the form of log P(h. v) is often not simple. so that a straight-forward variational
approach cannot be attempted. In these cases. it may be possible to derive an upper bound
on the distance that does not depend on h. and then try to minimize the bound instead of the
distance itseif {Saul. Jaakkola and Jordan 1996]. Effectively, we approximate log 1/ P(h.v)
with an upper bound that can be integrated analytically.

Alternatively. we may express each conditional distribution P(zx|at) in terms of condi-
tional distributions over an extended set of variables [Jaakkola. Saul and Jordan 1996]. For
example, P(zx|a;x) might be the marginal distribution of P(zy,yx|ar), where yi is part of
the extended representation. Let yH be the extension variables associated with the variables
in h. [t is sometimes possible to introduce a variational distribution Q(h, yH|€) over the

extended representation for which h and y® can be integrated out in the distance measure.

2.4 Helmholtz machines

One of the main drawbacks of Markov chain Monte Carlo inference and variational inference
is that for complex networks. each time a set of variables is observed, either a computation-
ally taxing Markov chain must be simulated. or a high-dimensional optimization must be
performed to find the best variational distribution. The essential problem, of course, is that
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the optimal distribution over h is different for different values v of the visible variables. A
Helmholtz machine [Dayan et al. 1995; Hinton et al. 1995] tackles this problem by coupling
the original generative network with a recognition Bayesian network that is meant to be
capable of quickly producing an estimate of. or an approximate sample from, P(h|v). This
recognition network essentially replaces the variational optimization needed for variational
inference. It is called a “recognition” network because it is meant to recognize the hidden

variable values, or “causes”. that are responsible for the values of the visible variables.

As described above. the job of the recognition network is to quickly produce an approxi-
mation to P(h|v). Obviously. the recognition network must be different from the generative
network. or the inference could be done directly on the generative network. [ will highlight
this difference by labeling the recognition distribution with Q. So, the recognition network
is used to compute Q(h|v), which is an approximation to P(h|v) as given by the generative
network. Various types of recognition network are described below. but they all share a
common property. Since the recognition network is a Bayesian network. we cannot expect
to be able to quickly compute Q(h|v) for arbitrary sets h and v. In fact, I will usually
assume that the set of visible variables is the same for each inference case. although. of
course, the values for the visible variables may differ from case to case. This restriction is
the main disadvantage of the Helmholtz machine compared to Monte Carlo inference and
variational inference. which usually place no restrictions on which variables are observed.

2.4.1 Factorial recognition networks

To ensure that the inference process is fast. we ought to design the recognition network
so that the computation of Q(h|v) can be carried out efficiently. The simplest recognition
network in this sense is one for which each variable in h is dependency-separated from each
other variable in h by the visible variables v. In other words. given the visible variables, the
hidden variables are independent. [ will refer to such a network as a factorial recognition
network, since given the visible variables, the distribution over the hidden variables can be

factored into a product of probabilities:

Q(hlv) = ] @(zlv)- (2.32)

kEh

A factorial recognition network with h = {zy, z2, 23} is shown in Figure 2.9a. Note that by

condition 2 in Section 1.2.4, variables in h are dependency-separated by v = {24, 25, ¢, 27}.

In many cases, the product form approximation given in (2.32) is not very close to P(h|v).
However, it is the easiest network to design or estimate, and because the hidden variables
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Figure 2.9: (a) An example of a factorial recognition network. (b) A factorial recognition network
for the burglar alarm problem.

are independent given the visible variables. it is computationally efficient for inference.

Figure 2.9b shows a factorial recognition network for the burglar alarm problem. The
recognition distribution is given by Q(b.eja) = Q(bla)Q(ela). and so is limited to the sane
inference estimates as the variational technique described in Section 2.3.3. Namely, the
factorial recognition network cannot capture the covariance between the two causes. Can
we design a recognition network that can give better estimates? The answer is “yes”. by

using a nonfactorial recognition network.

2.4.2 Nonfactorial recognition networks

Although it is easy to imagine situations where a factorial recognition network will suffice.
for the burglar alarm problem discussed above we saw that a factorial recognition network
could not capture the covariance between the two causes of the alarm. In this section. I

describe nonfactorial recognition networks that are more powerful than factorial ones.

A nonfactorial recognition network can represent a distribution where at least one vari-
able in h is not dependency-separated from at least one other variable in h by the visible
variables v. Of course. there are many ways to make a network nonfactorial. For example,
a nonfactorial recognition network is obtained by making some hidden variables depend
on other ones in addition to the visible variables. Figure 2.10a shows a fully-connected
nonfactorial recognition network, which can be contrasted with the factorial network in

Figure 2.9a.

Another way to produce a nonfactorial recognition network is through the use of auriliary
variables or dangling units [Dayan and Hinton 1996]. These variables do not influence the
output of the generative model, but help facilitate inference in the recognition network. For
example, an auxiliary variable in the recognition network can be used to choose between

two or more modes.
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(a) (b)

Figure 2.10: (a) An example of 2 nonfactorial recognition network. (b) A nonfactorial recognition
network for the burglar alarm problem.

2.4.3 The stochastic Helmholtz machine

Suppose we are interested in only one of the hidden variables. and we would like to obtain its
distribution given the visible variables, after marginalizing out the other hidden variables.
For a factorial recognition network. each hidden variable is independent given the visible
variables. So, the marginal distribution is obtained simply by ignoring the other hidden
variables. In fact. the marginal distribution for zx € h in this case is Q(z¢|v). which is part

of the recognition network specification.

Such a simple procedure for marginalization is not in general available for nonfactorial
recognition networks. In these networks, the hidden variables are not independent given
the visible variables. However, Monte Carlo provides an easy way to estimate marginal
statistics. If we can obtain a sufficiently large sample from the recognition network. the
distribution for z; can be approximated by constructing a histogram for z; alone. Of course.
we could directly apply Monte Carlo methods such as Gibbs sampling (Section 2.2.2) to
the generative network. However. the hope is that we can carefully design the nonfactorial
recognition network so that it is better suited to Monte Carlo than the generative network.
In fact, we can avoid complicated Markov chain Monte Carlo by using a recognition network
for which ancestral simulation (see Section 1.2.3) can be used.

In general, recognition networks can be either factorial or nonfactorial and stochastic or
nonstochastic. Here, “nonstochastic” refers to the way the recognition network is used, not
to what the network represents. All Bayesian networks represent a stochastic phenomena,
but not all networks are used with Monte Carlo. A factorial recognition network can easily
be operated stochastically, simply by choosing each hidden variable z; from its distribution
Q(zk|h). A nonfactorial recognition network is operated stochastically using 2 Monte Carlo
method (preferably ancestral simulation). A factorial recognition network can easily be
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operated nonstochastically, since the joint distribution over the hidden variables factors
and the marginal distribution for each hidden variable is readily available. However. a
nonfactorial recognition network usually cannot be operated nonstochastically. As described
above, the dependencies between the hidden variables makes this difficult. However, there
are special cases where nonfactorial recognition networks can be operated nonstochastically.
In particular. recognition networks that can be viewed as a mixture of factorial networks

can be operated nonstochastically with relative ease.

2.4.4 A nonfactorial recognition network for the burglar alarm problem

In many cases. a simple nonfactorial recognition network can be used to represent covari-
ances between hidden variables. A nonfactorial recognition network for the burglar alarm
problem is shown in Figure 2.10b. The difference between this network and the factorial
one in Figure 2.9b. is that e now depends on b as well as a. The conditional distributions

for a recognition network that performs exact inference are

0.154 ifb=1.
Qb=lla=1) =06.751.  Q(elb.a=1) = (2.33)
0.936 ifb=0.

Sampling hidden variables using ancestral simulation in this network is actually more effi-
cient than using Gibbs sampling in the generative network. as described in Section 2.2.3.
(The computational savings are quite low in this case. because there are only two hidden

variables.)

The joint distribution over the hidden variables given a = 1 can be computed from

Q(b.ela=1) = Q(ejb.a=1)Q(bla=1):
Q(b=0.e=0la=1) = 0.016,
Q(b=1.e=0la=1) = 0.635,
Q(b=0.e=1la=1) = 0.233.
Qb=1l.e=lja=1) = 0.116. (2.34)

These probabilities are identical to the probabilities in (2.13) for exact inference.




Chapter 3

Pattern Classification

Automated methods for making decisions based on inputs play a very important role both
in engineering applications and in helping us understand how biological systems respond
to their environments. As many engineers and cognitive scientists will attest. the terms
“input” and “decision” for this pattern classification problem are not clearly defined in
theory. In practice. the problem is usually decomposed through design and analysis. The
input to the classifier is provided by a preprocessor that transcribes part of the physical state
of the world. Different preprocessors are appropriate for different classifiers, and often an
iterative process is used to find the optimal preprocessor-classifier pair for a given problem.
[n general. the preprocessor uses simple statistical and signal processing techniques. whereas

the classifier is left with the *hard” problem of coming up with decisions.

A very simple method for making hard decisions is the nearest neighbor classifier. This
classifier keeps a database of labeled training patterns. Given a test pattern, the nearest
neighbor classifier outputs the class of the pattern in its database that is “closest” to the
test pattern. Any distance metric may be used, but typically Euclidean distance or one
of its generalizations are used. Figure 3.1 shows a selection of normalized and quantized
8 x 8 binary images of hand-written digits made available by the US Postal Service Office of
Advanced Technology. A database with a total of 7000 patterns was constructed with 700
patterns from each digit class. Using nearest neighbor classification, a misclassification rate
of 6.7% was obtained on a test set of 4000 patterns. Slightly better results can be achieved
by using the k-nearest neighbor method. This method picks the most common class of the

k training patterns that are closest to the test pattern.

One interesting property of the k-nearest neighbor method is that it is a consistent
classifier. That is, as the number of training cases T tends to infinity, the decisions produced
by the k-nearest neighbor method (with, e.g., k = VT) become Bayes optimal. However,

48
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Figure 3.1: 450 examples of 8 x 8 binary images of hand-written digits.

although k-nearest neighbor classification works quite well when a large training set is
available, it performs poorly when training data is limited. Figure 3.2 shows a training set
consisting of two classes with 30 2-dimensional real-valued patterns in each class. Suppose
we wish to classify the indicated test point. The nearest neighbor method will choose class
A. In fact, just as our intuition tells us. the test point was drawn from class B. If a k-nearest
neighbor classifier is used. class A will consistently be erroneously chosen for sensible values
of k.

The above example illustrates a fundamental flaw with the nearest neighbor approach
— namely, that it does not use global structure. Viewing the data from class B with a
local (narrow) “window”. the test pattern seems very unlikely. However. a more global
examination of the data from class B leads us to believe that the data comes from a roughiy
sinusoidal manifold, and that just by chance there isn’t any training data for this class in
the central region of the figure. Under this view, the test pattern is much more likely. An
even more global examination indicates that the two classes of data are probably similar,
except for the fact that they lie on manifolds that are relatively inverted. As a result,
by inverting one class of data, we actually have 60 points available for estimating the
prototypical manifold. In this way, we obtain even more evidence that the test point is
from class B.

One way to endow methods with the ability to extract global structure is to use param-
eterized models that can generalize in nontrivial ways. In Bayesian terms, we have prior
expectations about certain properties of the data. For example, we expect the probability
density function for the data within a given class to be smooth on some scale. The class of
distributions that our model can represent should reflect these prior expectations. By fitting
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Figure 3.2: Two classes of 2-dimensional training data and a test point.

the model to the data. this prior knowledge is then modified to obtain a more data-driven
set of posterior expectations. In the above example, we decide that a sinusoidal manifold
is a reasonable compromise between our prior expectations regarding continuity and the
observed data within class B.

Simple parametric models, such as multidimensional Gaussian density functions. can
be used to obtain some degree of generalization. However, overly simple models of this
sort are inflexible in that they cannot generalize in complex ways. Also, for real-world
problems. such inflexible models are often inconsistent, since they often cannot represent
the complexity in natural data sets. In this chapter. I examine the use of more flexible

Bayesian network models for pattern classification.

I begin this chapter with a description of how Bayesian networks can be used for pattern
classification. Then, in Section 3.2, [ present the “autoregressive” network which is quite
simple, but performs surprisingly well as a pattern classifier. In Section 3.3, I describe
maximum likelihood estimation and “maximum likelihood-bound” estimation for models
with latent (hidden) variables. Latent variables are not part of the input pattern, but
are meant to represent higher-order structure in the data (e.g.. handwriting style). In
Section 3.4, I review three techniques for estimating the parameters of sigmoidal Bayesian
networks with latent variables: Gibbs sampling, variational inference, and the wake-sleep
algorithm. Then, in Section 3.5, ail of these models are compared with the k-nearest
neighbor classifier and a tree-based classifier when classifying handwritten digits.

An area which is closely related to estimating probability models for pattern classifica-

tion is unsupervised learning. I view unsupervised learning as the process of estimating
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a probability model for a class of data. The hope is that some of the latent variables in
the model will come to represent interesting features. and that these features can then be
automatically extracted for novel input patterns. In Section 3.6 I present results for the
Helmholtz machine, when it is given the task of trying to extract structure from noisy
16 x 16 images of horizontal and vertical bars. Finally, in Section 3.7. I present a new type
of parameterized Bayesian network that can be used to simultaneously extract continuous

and categorical structure in an unsupervised manner.

3.1 Bayesian networks for pattern classification

Bayesian networks provide 2 means of producing structured probabilistic models with ar-
bitrary complexity. In this sense, they are flexible models. The majority of this chapter is
devoted to using Bayesian networks to produce one model for each class of training data.
A new test pattern is classified by choosing the class of the model that is best suited to the
test pattern. In contrast, it is certainly possible to construct a Bayesian network that has
one set of pattern variables v. a variable that represents the class j. plus other variables
that represent important physical effects. An inference method can then be used to com-
pute P(jlv) using the network. An advantage of this approach is that the model may make
efficient use of the similarities and differences between all of the classes. For example. if
each class of data in Figure 3.2 is modelled separately, then the similarity between the two
classes cannot be exploited as described above. In practice, however, a parameter estima-
tion algorithm may fail to find such similarities and in the process of trying to model both
classes fail to properly extract the features from any one class. Another disadvantage of the
single-model approach is that a new class of data cannot be introduced without refitting the
model. Despite these disadvantages. the single-model approach is seductively interesting.
In Sections 3.6 and 3.7. I study networks that are estimated from unlabeled data, where
the hidden variables automatically come to represent data classes. Although estimation
methods for this unsupervised learning problem are currently not highly competitive with
other practical engineering techniques, they are potentially very powerful and help shed
light on how natural neural systems might work.

The multiple-model approach to pattern classification consists of estimating one model
for each of the J classes of data. In this sense. each model is conditioned on a class
number. For the sake of generality, I will assume that the jth model has a set of features
or hidden attributes h; that help model the pattern variables v. Network j thus represents
a distribution P(v,h;|j). Finally, the class probabilities P(;j) must be specified; these are
simply determined from the relative sizes of the classes of data and any prior knowledge we
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have at hand. (For example, even though a training set contains 10 patterns from class 0
and 14 patterns from class 1. if we know ahead of time that the classes are equally likely
then we set P(j =0) = P(5j =1).)

Ideally, the model estimate for class j will yield a distribution that is close to the true
distribution P(v|j) of the data from class j:

P(vlj) = > P(v.hjlj) = P(v]3). (3.1)
h,

However, even if the approximation is good. the sum in the above expression is exponential
in the number of feature variables, and so cannaot be computed directly. Instead. for a given
test pattern v. one of the inference methods described in Chapter | can be used to produce
class likelihood estimates.

P(v|j), jefo.....J-1}. (3.2)

Finally, Bayes rule is used to produce soft classification decisions.

P(vlj) P(j)
=y PV PG)

P(jlv) = . je{0.... . T =1} (3.3)

and a hard decision j* can be made by choosing the best class.
j* = argmax; P(j|v). (3.4)

The technique used to estimate the class models and the inference method used to
estimate P(j|v) depend on the structure of the networks. Before examining intractable
models for which inference and parameter estimation must be approximated. I discuss an
interesting class of tractable systems. For the sake of notational simplicity. the following
sections present models and algorithms for estimating P(v), with the class index j left off.
It should be kept in mind that one such density model must be estimated for each class.

3.2 Autoregressive networks

There are a variety of Bayesian network architectures for which inference and parameter
estimation can be performed exactly within a reasonable amount of time. An architecture
of this type that I discuss here is easy to implement and works surprisingly well on some
problems. I define an autoregressive network as a fully-connected parameterized Bayesian
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Figure 3.3: An autoregressive network with ancestral ordering v, v2, v3, g, Us.

network without any latent variables. The graph for the network is thus specified com-
pletely by an ancestral ordering. Unless I am considering different ancestral orderings of
the variables, I will usually assume that the variables are labeled in the ancestral order.
Then, the parameterized distribution P(v|@) for the data can be written

P(v|6) = HP(v.t{vk}k i (3-5)

where 8 is the entire set of parameters, and 8, is the set of parameters associated with input
v;. Each of the conditional probability distributions in this expression is represented using
some sort of parametric or flexible model. Figure 3.3 shows an example of an autoregressive
network with five variables.

3.2.1 The logistic autoregressive network

If the pattern consists of binary variables (v; € {0, 1}) logistic regression [McCullagh and
Nelder 1983] (see Section 1.2.6) may be used:

P(oil{ve 124 0) = mig(TichBucve])) + (1 — v:)(1 — g(TiZhfuevr)) (3.6)

where g(z) = 1/(1 + exp[~z]) is the logistic function, and a dummy variable vg = 1 is used

to account for a constant in the arguments of the exponent.

For this logistic autoregressive network, P(v|@) can be computed in O(N?) time in the
following way. For each variable v;, the sum E;:lo wive Uk 15 determined from the values
of v1,... ,v;_1, and then P(v,—l{vk},c 1»0y;) is determined from the value of v; using (3.6).
P(v|0) is then computed using (3.5).




3.2 Autoregressive networks 54

3.2.2 MAP estimation for autoregressive networks

An autoregressive network can be fit to a class of training patterns v{V, ... . v(T} using
MAP parameter estimation. To do so, we need to specify both a prior distribution over
the parameters @, and also the training set likelihood given the parameters. Assuming that
each training case is independent and identically drawn (i.i.d.), the log-likelihood of the

training set is

T T T N
log P({v\"},10) = log [] P(v[8) = Y " log P(v*|8) = Y log [H PO (o e, 0)]
t=1 =1

t=1 t=1

N T
- Z[Z 1ogp(u§"[{v,ﬁ"};;ll,a] ZlogLHP(v(”]{ wiye- 11,9] (3.7)
=1 ~t=1

If the parameters are independent under the prior, then given a training set, the ith term
in the sum of the last expression depends on a set of parameters ; = {6,;,... .0;;_1} that
are independent of all the other sets of parameters 8. i # i. So. MAP estimation can be
broken down into N subproblems. where subproblem 1 is to estimate the parameters 8; for

the model that predicts v; from {ug }iZ}

Here, I derive a gradient-based MAP estimation method for the logistic regression model
used in the logistic autoregressive network. Let the data for subproblem i be denoted
D; = {{v(t)}k___l};il. Up to a constant of proportionality that does not depend on 8;, the
likelihood of the training data for subproblem 1 is

T
P(Di16:) x [] P 1{of i\ 8)

t=1

T
= [Je! o(Zizh8uvD) + (1 = wi) (1 = g(Tizbbixvy”))]. (3.8)
t=1

where the last expression is obtained from (3.6).

I use a prior distribution under which the parameters in 6; are independent and normally

distributed with mean 0 and a fixed variance o2

-1
P(8) = [] e /2. (3.9)

2
k=0 2wo;

Up to a constant of proportionality that is independent of 8;, the posterior distribution
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over the model parameters 6; given the data D, is

(8:|D;) x P(6;:,D;) = P(D;|6;)P(0;)

T i~1
t i— 1 - 2
x [T o(SizhOuvl) + (1 = o)1 — g(Tizbbuv N [T Soge o5/
t=1 £=0 V2L (3 19)

Taking the logarithm of this expression and leaving out constants that do not effect the
optimization procedure, MAP estimation for subproblem i entails maximizing

T =1

. _ 1

=3 [l log g(TiZoburry”) + (1 = o) log(l - g(TiZeburi ] — 53D b
t=1 i (

k
k=0 3_11)

I use the conjugate gradient optimization method [Fletcher 1987] which requires the
derivatives of L£*:

c* T ‘
Z W — g(Ti L) — /o, (3.12)

°’l

Both £* and its derivatives can be computed in O(:T) time.

3.2.3 Scaled priors in logistic autoregressive networks

In the prior distribution over the parameters (3.9), how should the variance o2 of the
parameters for the ith input depend on i? That is. before seeing any training data, how do
we expect the variance of the parameters for a variable to depend on how many inputs that

variable receives?

Assume we don’t have prior knowledge of a preferred ordering of the variables. By
symmetry, it makes sense to assume a uniform prior distribution over the variables: i.e.,
under the prior each variable is equally likely to have each of the values 0 and 1. The
dummy variable vg = | is exempt from this prior, of course. Now, consider the prior
probability predictions made for v;. This prior distribution has two sources of variability: a
Gaussian prior over the parameters 6;, and a uniform distribution over the inputs {vk};c':ll
By symmetry, this prior distribution over the probability predictions made for v; should not
depend on i. As shown below, this restriction determines how to set the variance for the
parameters @; for each variable v,.

Since the probability prediction for v; is determined by its total input Z;:;l() Bipvg, 1
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will enforce the above restriction on the total inputs. Averaging over the two sources of
variability, we get a mean value of the total input for v; of

E[Efa—:lagik”k] P ZoE@ixvi] = S isoElbik] Elue] = 0. (3.13)

We can take E[fixvi] = E[6ix] E[vk], since the parameters and the inputs are independent
under the prior. The final step holds since the parameters have mean 0.

Since the mean total input is 0, the variance of the total input for v; is

i— 2
E[( k‘—"i]eikvk) ] = E{ k"o E] Oglkgljvlcv]]
Zk—o Zl:BE[B:thJ]E[Uka] (3.14)

Now, since ;¢ and 6;;, k # j are independent under the prior, E{f;x8;;] is nonzero only if
Jj = k. So, the variance of the total input for v; is

Z 0%E uk] =0l + Zk_l : é —(z +1)o2. (3.19)

Under the prior, the probability predictions for v; should not depend on i. So, the
variances of the total inputs for v; and v; should not differ:

1,. 2 .
0% = 5@+ 1)o?, and so o7 = ?az (3.16)

Note that crf is the variance of the total input for v, which has no input variables. All of
the variances can be set by picking a reasonable value for o?. In my simulations, I chose
0? = 4. This value allows for probabilities near 0 and 1 at the output of the logistic function,

without favoring them too much (see Figure 1.6 on page 18).

It may be a good idea to let the biases in the network have a separate Gaussian prior,

although I have not yet explored this possibility experimentally.

3.2.4 Ensembles of autoregressive networks

An autoregressive network is specified by chosing an order for the variables vy,... ,vn.
Leaving computational considerations aside, if the subproblem models P(v;|{vx} k_l] are
consistent (i.e., they converge to the correct distribution as the number of training ex-
amples tends to infinity) and there is a sufficiently large training set, then the particular
ordering chosen is not important. The model for subproblem ¢ will correctly represent the
real conditional distribution P;(v;|{v}i=}), and so the product of the subproblem distri-




3.3 Estimation of models with unobserved variables 57

butions will give the true joint distribution. However. the data sets considered here are
small, and the parametric subproblem models considered here (e.g., logistic regression) are
inconsistent for many distributions of data. In this case, the order of the variables is impor-
tant in two contrasting ways. Certain orderings may give rise to simpler true conditional
distributions P,(v.-!{uk};;ll) that can be more accurately represented by the model distri-
butions P(v;[{vg };;Il ,8;). In contrast. for a given training set. different orderings may lead

to different amounts of overfitting.

I do not address here the difficult issue of how to select an ordering that optimally
balances these two effects. This problem is difficult both because the discrete ordering
cannot be optimized by a gradient-based method and because for the training sets [ will
consider here, there is not enough data available to get a reliable estimate of which ordering
is best. Instead of searching for an optimal ordering, I estimate an ensemble of autoregressive
networks. where each network uses a randomly selected ordering of the variables. The
probability prediction for a given vector v is then taken to be the average of the predictions

over the ensemble of networks.

3.3 Estimation of models with unobserved variables

The notion of unobserved or hidden variables arises in many model estimation contexts.
For example. due to mechanical failure, training data derived from physical measurements
may sometimes lack values for some variables in some cases. In contrast, it is often useful
to build hidden variables into a model by design. These variables are meant to represent
latent causes that influence the visible variables. Several of the Bayesian network models
discussed in the remainder of this chapter are latent variable models (e.g.. see Section 3.4).
For the sake of notational simplicity, I will use v to refer to the observed variables and h
to refer to the unobserved variables. This is a slight abuse of notation, since it can happen
that some visible variables are unobserved. For example, several of the photo-sensors in a
digital camera may be burned out, so that some of the variables in the image pattern v are
unobserved.

We would like to estimate a probabilistic model P(z) for a training set consisting of T
patterns v{1) v{?) _ v(T) where each pattern specifies the values of an observed subset v
of the variables in z. In general, each training case may specify a different subset of visible

variables.

Let h{¥) = z\v{*) be the set of hidden (unobserved) variables for training case ¢t. Assuming
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that the training cases are i.i.d., the log-likelihood of the training data is

T
log P(D|6) = IogH P(vi|g) = ZIOgP(V“)lO ZIOgl:ZP (vt h|9) }
t=1 t=1 1 h(o (3.17)

To maximize this log-likelihood. we set its derivative with respect to each parameter 8 in 8

to zero:

T
=1 Lpo PV, n('|g) 36 ht)

~

-y ! P( CRACIP)
S e P(v(9.0(6)]0) 89

t=1 R(e)

T
P(v® . nMjg) 9
DI ® l(t) ag o8 P(v. 1)
t=k R Zh“)' P(vit.h [0)
T d \
= 33 P(ROIVY.0) 2 log P(v® . h]9) = 0. ¥o €.
t=1 p(&) (3.18)

The relation 9dlog f(8)/08 = (1/6)df(6)/06 was used in the first and third line of the
derivation. Even though 8log P{v(t). h(")|8)/88 is quite often easy to compute. in many
cases of practical interest the system of equations obtained by setting Olog P(D8)/d8 to
zero for each 6 is highly nonlinear and cannot be solved in closed-form. One approach is
to perform gradient descent in log P(v(*/. h{*)|8). while sampling from P(h{*|v{*).8) using
Markov chain Monte Carlo. This gives a Monte Carlo approximation to gradient descent in
log P(D|) as given in (3.18). Another approach is to solve the system of nonlinear equations
iteratively. Although in principle any method for solving a nonlinear system of equations
can be used (e.g., Newton's method [Fletcher 1987]), the structure of (3.18) gives rise to a
particularly simple two-phase iterative method, called the ezpectation-marimization (EM)
algorithm [Baum and Petrie 1966; Dempster. Laird and Rubin 1977].
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3.3.1 ML estimation by expectation-maximization (EM)

Often, we have available an efficient method for estimating the model when all of the

variables are visible. That is, the system of equations obtained by setting

M~

585 log P(v) . h{®9) =0. vhc@ (3.19)

t=1

for arbitrary h® can be solved quite easily. Notice that it is essentially this system of
equations that is obtained if the dependence of P(h(®!v(*) @) on 8 in (3.18) is ignored.
The summation over h¥ in (3.18) has the effect of replicating training case ¢ once for
each configuration of the hidden variables for that case, and weighting each replication by
P(h®)|v{*) 8). This observation leads to the following iterative two-phase EM algorithm:

1. E-step: Compute P(h{®|v{t)_8) for each configuration h(*) of the hidden variables for
each training case. and set Q(h*)) « P(h|v(®) @).

2. M-step: Solve the following system of equations for .

T
> Q(hm);—g log P(viY h"|8) =0. vH<8. (3.20)
t=1 Kte)

Stop if a convergence criterion is satisfied: otherwise go to 1.

In practice. the values of Q(h(®)) for each training case are usually not stored during the E-
step. Instead. statistics that are sufficient for the M-step are accumulated while processing
the training set. There are several proofs that each EM iteration is guaranteed to increase
the likelihood of the training data [Baum and Petrie 1966: Dempster. Laird and Rubin 1977:
Meng and Rubin 1992; Neal and Hinton 1993]. After presenting a more general algorithm
for maximizing lower bounds on the data likelihood P(D|@). [ will show that each iteration
of EM is guaranteed to increase the data likelihood.

3.3.2 Maximum likelihood-bound (MLB) estimation

Neal and Hinton [1993] introduced a new view of the EM algorithm as a method for max-
imizing a lower bound on the likelihood of a training set. This interpretation opened the
door to tractable approximations to EM for models that were clearly intractable. I will refer
to the new approach as maximum likelihood-bound (MLB) estimation in order to highlight
its relationship to ML estimation. MLB estimation is an approximation to ML estimation
that follows from using the wrong distribution Q(h*)) in the E-step of the EM algorithm;
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i.e., Q(hY) # P(h(®)|v(¥) ). There are practical reasons for using a suboptimal distribu-
tion Q(h{®)), the most obvious being that in some cases it is computationally infeasible to
compute Q(h(*)) for every configuration of the hidden variables h(*) for each training case.
For example, some of the Bayesian network models discussed below have over one million

configurations per training case.

The bound used in MLB estimation is obtained using the following form of Jensen's
inequality [Cover and Thomas 1991]:

log Z gia; > Z q; log a;, (3.21)

where Y. q; = 1. and q, are arbitrary scalars. Applying this inequality to the log-likelihood
of the training data (3.17), we get

T

vitl Rt
log P(D16) = 3 ‘Og[z P, h“’lo)] Z 10g[z o) P it ull P(v*).h9|6)
t=1 h(t) =1 oS
T .
P(v(t) hltg)
2 Z‘: %Q(h(n) log —omy = Boyp- (3.22)

The goal of MLB estimation is to jointly estimate a distribution Q(h(*’) (which may or may
not be parameterized) and a distribution P(v(*). h(*|8). so as to maximize this lower bound
on the likelihood. This leads to the following generalized EM algorithm:

1. Generalized E-step: Increase the bound By p with respect to a distribution Q(h®).

2. Generalized M-step: Increase the bound By p with respect to 6.

Note that unlike the E-step of the EM algorithm. the generalized E-step may produce a
Q-distribution for which Q(h®)) # P(h)|v(t @).

The EM algorithm can be viewed as a special case of the generalized EM algorithm. where
we alternately maximize the bound Bgjp with respect to an unconstrained distribution
Q(h{), and then with respect to P(v(¥) h(*|8) via 6. If the bound is maximized with
respect to Q(h(!)) during the generalized E-step, while enforcing 3 ;) @(h{*) = 1 using a
Lagrange multiplier, we obtain Q(h(*)) = P(h{)|v(*),9). This form of the generalized EM
algorithm is identical to the standard EM algorithm presented in the previous section. Also,
in this case the inequality in (3.22) becomes an equality: Bgyp = log P(D|6). It follows
that the EM algorithm is a maximum likelihood estimation method.

Note that in general, MLB estimation does not give the same estimates as ML esti-
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mation. As a degenerate example. imagine that we use ML estimation to obtain a model
P(v{®) h(¥)|g) from a training set. and that we then apply MLB estimation with Q(h()) fixed
at a uniform distribution. In this case. the bound can be increased by moving P(v{®). h(*}|9)
away from the ML estimate (unless P(v(!){h(¢). @) happens to be uniform. in which case a
uniform Q(h{") makes the bound tight so that P(v{®) h(*)|8) will not change). However,
as long as we are able produce estimates of Q(h{®)) that are “close” to P(h(*){v(!) @), MLB
estimation will be close to ML estimation. Of course. in most cases. if we have the compu-
tational resources available to obtain an ML estimate, MLB estimation should not be used.
In Section 3.4. I introduce a class of Bayesian networks that have many latent (hidden)
variables. For these networks. it is computationally intractable to perforin ML estimation,

and so MLB estimation is used.

3.4 Multiple-cause networks

In many cases. it makes sense to postulate that a data vector v naturally arises from the
consequences of a set of hidden causes h. For example, an image may be nicely described
as a two-dimensional rendition of a combination of objects. If hy is a binary variable
indicating the presence of object k£ in the image, then the model distribution P(vih.8V)
is the distribution nver images given which objects are present. {8V is a set of parameters
associated with the distribution over v). This distribution is meant to capture the way in

which the objects interact to form the image as well as any inexplicable noise.

The model P(v|h.8v) may be simplified by assuming that the K causes dependency-
separate the image pixels. That is. once we know which causes are present. each pixel
is independent of the others. In this case, P(v|h,0Y) = [[\L, P(v;|h.8Y). If the visible
variables are binary, each conditional distribution can be implemented using, for example,
logistic regression. In contrast to the logistic autoregressive network where each visible
variable is regressed on a subset of the other visible variables (see (3.5)), in the multiple-

cause network each visible variable is regressed on the hidden cause variables h:
P(uilh.8Y) = vig(T i o8i%hi) + (1 = vi)(1 — g(Ziobikhi)). (3.23)

where 9?’ = {91-\{,, . ,6;-",(}, and we take hg = 1 in order to account for a constant in the
summations. Binary Bayesian networks which use logistic regression for the conditional
distributions are often called binary sigmoidal networks [Neal 1992] and are sometimes
called stachastic multi-layer perceptrons.

To complete the model, we provide a distribution P(hIBH) over the set of causes. Al-
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Figure 3.4: A multiple-cause network with five visible variabies v and four hidden cause variables

though it seems natural that in many cases the hidden variables i might be interdependent.
for the sake of simplicity. [ will assume for now that they are not:

K

P(h|6") = ] P(hel6i). (3.24)
k=1
where 8 = {61, ... 6%}, These probabilities can be nicely parameterized using the logistic
function:
P(hel6y) = heg(65) + (1 — ) (1 = g(6F)). (3.25)

An example of this type of multiple-cause Bayesian network is shown in Figure 3.4.
Notice that the dependency-separation of the variables v by the set of hidden variables h

is ensured by condition 2 described in Section 1.2.4.

Supposing that we have somehow obtained an accurate model of the true causal process
for each class of data (e.g., using a method described below). in order to perform classifica-
tion we would like to compute the marginal probability P(v|@) for each class model. This

can be computed exactly using

P(vi8) =Y P(vh,8")P(h|6%), (3.26)
h

where @ = {6%.8V} is the entire set of parameters. However. this sum is exponential in
the number of causes K and so in practice. we must use another approach. It is obvious
from Figure 3.4 that probability propagation cannot be used to obtain an exact result. since
the Bayesian network contains many cycles. In fact, we must use an approximate inference
method.
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Since exact probabilistic inference is needed for ML and MAP parameter estimation,
these estimation methods are also intractable. For example. in order to perform the E-step
of the EM algorithm. we must compute P(h|v.8), which has an exponential number (2%)

of terms.

In the next three sections. I show how Gibbs sampling, variational inference, and the
stochastic Helmholtz machine can be used to approximate P(v|@) and perform maximum
likelihood-bound (MLB) parameter estimation in multiple-cause networks.

3.4.1 Estimation by Gibbs sampling

In order to estimate a muitiple-cause network from a set of training examples v(!) ... . +{7),
we can perform on-line gradient descent in log P(v.h|#) while sampling from P(h|v.8) us-
ing the Gibbs sampling method described in Section 2.2.2. For the current training case
vit). we simulate a Markov chain to obtain a configuration h(*) of the hidden variables.
(Notice that in general h(®) will be different each time v(¢) is processed — ideally, h(®
will have a distribution P(h|v(®),8).) In order to perform Gibbs sampling for the logistic
multiple-cause network described above. we need to be able to sample from the distribu-
tion for each hidden variable h; given the other cause variables and the visible variables.
Since the cause variables are binary, we only need to compute a function that is pro-
portional to P(hg|{h; }j‘;l_j¢k,v.0). The two values can then be normalized to obtain
P(hl{h; }j{:1._,¢k="'~0)- Since the total joint probability for h and v can be easily com-
puted in O(KN) time using the ancestral ordering, the joint probability can be used to

compute the conditional distribution as follows:

P(hp =L {h;}10) k- vI0)
Pl = 0. h; 1y g v10) + Plhe = LTy FC i vIB),

P(h’k = ll{h'] };‘,—_-[‘J#k, V.B) =

For a given training case v()_ the latent variables are visited in a specified order while
drawing a new value for each variable from its conditional distribution. The entire set of
latent variables h is processed in this fashion for a specified number of times before the

Markov chain is terminated and some configuration h‘!) of the latent variables is produced.

The hidden variable biases and the parameters connecting the hidden variables to the
visible variables are adjusted by following the derivatives of log P(v(), h(!|8) as follows:

A6 = n(nl) - g(6f)], (3.28)
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and

A8y, =nhP® - o(K 8%ni), (3.29)

where 7 is a learning rate.

In order to perform classification. we would like to compute P(v|8) for a given visible
vector:

P(v|8) = Z P(v.h|8). (3.30)
h

This problem can be viewed as a form of free energy estimation [Sheykhet and Simkin 1990;
Neal 1993]. I use a very simple approximation that is quite fast and works well in practice
for classification purposes. Since the number of terms in the above sum is exponential in the
number of causes. I approximate it by assuming that the majority of the total probability
mass is contributed by a small number of clusters in h-space. These clusters are found
by simulating a Markov chain as described above. At multiple points in the chain. the
configuration of h and all neighboring configurations (i.e.. those configurations within a
Hamming distance of 1) are added to a list of “significant terms”. Only the neighboring
states of h are considered because once P(v,h|@) has been computed, it is easy to compute
the probabilities for configurations that differ from h by only one bit. After a specified
number of clusters have been visited in this manner, the above sum is approximated by
adding up the terms for the tabulated configurations. This method for estimating P(v!8)
will not work well when there is a large number of clusters in h-space that contribute
significantly to the sum. However. [ have found that in practice the Gibbs sampling learning

algorithm tends to favor a small number of clusters. making this approximation reasonable.

3.4.2 MLB estimation by variational inference

In this section, I review the variational method developed by Saul et al. [1996] for MLB
estimation in sigmoidal Bayesian networks. It turns out that a product-form variational
distribution leads to an intractable bound. and so the bound itself must be bounded by a
tractable function.

For MLB estimation by variational inference, the Q-distribution in the likelihood bound
(3.22) depends on some variational parameters £. For the sake of simplicity. consider the
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bound for omne training case v:

log P(D|6) > Bgyp = Z Q(h|§) log =

hig)1 VIOl
Q(h|§) + ;Q( 1€) log P(h.v|0)

(3.31)

MLB estimation entails iteratively maximizing this bound., first by varying £ (the generalized
E-step), and second by adjusting the model parameters @ (the generalized M-step). The
first term in this bound is the entropy of the variational distribution @Q(h|£). and the second
term is the expected log-probability of h and v under the variational distribution.

Here, I consider a product-form variational distribution over the K latent variables

hi.....hg (notice that hg is not included since it is fixed to hg = 1):
Q(hl¢) = HQ(hkm) Hf &) 7R, (3.32)
k=1

where & is the probability under the variational distribution that hy = 1. Using this
variational distribution. the entropy term in Bgy» simplifies to

Zths Q(hI€ Z{mo & + (1 - &) log(1 — &)}. (3.33)

k=1

The second term in (3.31) is

S Q(hl€) log P(h.vI8) = > Q(hl€) log{ [T, P(hel6 )[T.L, Pluiib.0))}
h h

R l N
=> Z Q(hel€e) log P(Rel6F) + Y > Q(hI€) log P(v;[h.8Y). (3.34)
k=1 h=0

t=1l h

Since the conditional probabilities are given by logistic regression. this term contains many
expectations of nonlinear functions. The first step to simplifying these expectations is to
express the conditional probability P(hkleg) given in (3.25) in the following way:

exp(hefy) .
P(h|0f) = ——% . 3.35
(helO) 1+exp(9,§) ( )
The expectation of log P(h.kle,g) is then
1
3" QUhxlée) log P(hel6F) = &k — log{L + exp(6F)}. (3.36)

h,=0
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Similarly. the conditional probability P(v;{h.8)) can be written

exp(vi 3 g—oBikht)
L+ exp(Ti—obikhe)

P(v;|h,8)) = (3.37)

The expectation of log P(v;/h.8)) is then
. K
> Q(hig) log Pu:|h.8Y) = v; Y _O%&k — > Q(h|€) log{1 + exp(T ofikhe) }.  (3.38)
h k=0 h

The overall bound for v is

K K K
Boyp = Y {&log& + (1 — &) log(l — &)} + D _ &b = log{1 +exp(6i)}

k=1 k=1 k=1

N K

+5 5> 6%E - D Q(hl€) log{1 +exp (T 0% ) }. (3.39)
= k=0 h

=1 =

Except for the last term, the values of these terms and their derivatives (with respect to the
variational parameters) can quite easily be computed. The explicit summation over h in the
last term cannot be reduced to a tractable form. However, the last term can be bounded by
introducing some extra variational parameters v. (See [Saul, Jaakkola and Jordan 1996] for
details.) MLB estimation for the new bound B’Q!| p < Bgyp entails iteratively maximizing
this bound. first by varying £ and v (the generalized E-step). and second by adjusting the
model parameters 8 (the generalized M-step).

3.4.3 The stochastic Helmholtz machine

A stochastic Helmholtz machine consists of a pair of Bayesian networks that are fit to
training data using an algorithm that approximates MLB parameter estimation, where the
bound on the likelihood may be very complex. In addition to the multiple-cause network
that describes P{v,h|@) (the generative network), there is a recognition network that de-
scribes Q(h|v, ¢). The stochastic Helmholtz machine requires that the recognition network
have an ancestral ordering such that it is easy to draw samples from Q(h|v, ¢). The ad-
vantage of the stochastic Helmholtz machine over Markov chain Monte Carlo is that each
sample from the recognition network is independent, as opposed to dependent on the last
sample. The advantage of the stochastic Helmholtz machine over variational inference is
that more complicated (e.g., nonfactorial) distributions can be represented by the inference
process used for MLB estimation. The main disadvantage of the stochastic Helmholtz ma-
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chine is that a recognition network that is compatible with the generative network must
somehow be estimated, and this can be a very difficult task when a complex recognition
network is used. An example of inference in the stochastic Helmholtz machine is described
in Section 2.4.4. Here, I describe the wake-sleep algorithm for on-line estimation of both
the generative and recognition parameters (8 and ¢) [Hinton et al. 1995].

Suppose we have a current generative network (which may or may not be a good model
of the data) and a current recognition network. For a parameterized recognition network,
the likelihood bound in (3.22) is

4 h. vt

—_— (3.40)
L2 Qhlv@®, )

This bound can be estimated by averaging log P(h, v(!!|8)/Q(h|v(!), ¢) over multiple recog-
nition sweeps for each input pattern. In each recognition sweep, the recognition network is
stochastically simulated to obtain a configuration h of the latent variables.

We would like to maximize Bg)p with respect to the recognition network parameters ¢
for all v, if possible. As discussed in Section 3.3.2, the unconstrained recognition distribution
that maximizes this likelihood bound is

Q(h|v,¢) = P(h|v.6). (3.41)

However, except for very simple recognition networks, this optimization is intractable for
the same reason that exact inference is intractable. Instead, we optimize a different function
whose global maxima give identical recognition networks in certain limits to those produced
by maximizing Bgp. The limits may not apply in practice, so that the recognition network
may be slightly suboptimal.

Assume for the moment that the recognition network is consistent with the distribution
P(h|v,8). In this case, the parameters ¢ that maximize

Q(b|v, ¢)

BP"Q = ZP(h,Vle) log P(h,V|0)

h,v

(3.42)

will also maximize Bgp in (3.40). (Note the reversed order of the distributions). So, for
a given generative network, the optimum recognition network can be found by maximizing

Bp @ with respect to the recognition parameters ¢. The derivative of Bpyg with respect
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to a recognition network parameter ¢ is

9Bpiq _ 310gQ(h|V ?)
5% d)ZP(hv[G)l P(h !0) ZP 3%

(3.43)

So, the recognition network can be estimated using stochastic gradient descent by sampling
h and v from P{h,vi@)} using ancestral simulation, and then adjusting the recognition
network parameters so as to increase the log-likelihood of the hidden variables given the
visible variables. This procedure is called sleep-phase learning, since the recognition network
is adjusted to be better suited to the “fantasies™ produced by the generative network.

In practice, sleep-phase learning is only an approximation to the generalized E-step
of iterative MLB estimation (Section 3.3.2) for one main reason. An ideal recognition
network produces a good approximation to P(h(|v,8) even for a vector v that has a very
small probability under P(h, v|8). (This corresponds to a plausible real-world pattern that
the generative network has not yet learned.) For sleep-phase learning to produce such
a recognition network. an extremely large sample size must be drawn from P(h.v|6) in
order to get an example of the unlikely vector. For the sake of tractability, a relatively
small sample size must be used, which implies that the ideal recognition network cannot be
found. This means that in practice, maximizing Bpg does not give the same recognition
network as would be obtained by maximizing By p. [n fact. in order to prevent overfitting
of the recognition network, an inconsistent parametric recognition network is used. so that

the global maxima of the two functions may not even coincide.

For a given recognition network. the generative network is adjusted in the wake-phase
using a2 Monte Carlo implementation of the generalized M-step of iterative MLB estimation.
That is. on-line stochastic gradient descent in the likelihood bound Bgp is performed with
respect to the generative network parameters 8. The derivative of the bound with respect

to a generative network parameter 6 is

96 Q(h|v(t). ¢)

t=1

dB T vit)
o = 9 55 Q(hivi®. 0) log L v_19)
h

,vithig
3" Qv ¢) alogpg;v 19), (3.44)
h

M'ﬂ

t=1

For a training vector v(t), the recognition network is used to sample values for the latent
variables h. Then, the generative parameters are adjusted so as to increase the log-likelihood

of the latent variables and the visible variables.
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The two phases of learning are usually applied in alternation. A training pattern is
presented; the recognition network is used to obtain a random h; and the generative network
is adjusted. Next, the generative network is used to obtain a random h and then a random
v; and the recognition network is adjusted. The result of this constant mixing of the two
phases is that the generative network becomes better at modelling the training data and at
the same time tries to produce causes for the training data that can be properly inferred
by the restricted recognition network. This can be seen mathematically by breaking Bgp
into two pieces:

Q(h|v"). ¢)

T
Boyp = log P(DI6) = 3> _ Q(bIv?.¢)log T o

t=1l h

(3.45)

The first term encourages the generative network to model the data, whereas the second
term (a negative Kullback-Leibler pseudo-distance) encourages it to be compatible with the
recognition network. As a result of the latter, for a generative network that is estimated

using the wake-sleep algorithm, the global maxima of Bg|p and Bpyq often do coincide.

Assuming that under the recognition distribution, the latent variables are independent
given the visible variables, we have:

K
Q(afv, ¢) = [ QUAclv. ¢x), (3.46)

k=1

Also. consider modelling each of these components using logistic regression:

Q(hilv. dr) = heg(E N obrive) + (1 — hi)(1 = g(E L prsvi)), (3.47)

where we take vy = 1 in order to account for a constant in the exponents. This recognition

network is shown in Figure 3.5.

For this logistic recognition network, the recognition parameters are adjusted as follows
during the sleep phase, in order to increase log Q(hjv, ¢):

Adi: = vilhie — g3 1L oriv5). (3.48)

It turns out that in many practical cases this recognition network is sufficient for produc-
ing good density estimates. However, if it is estimated in conjunction with a fixed generative
network that describes the simple burglar alarm problem (see Section 2.2.3), the likelihood
bound By p may actually decrease. Consider how the recognition network is modified for
fantasies where the burglar alarm is ringing. We simulate the generative network, obtaining
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Eigure 3.9: A recognition network that implements @Q(h|v.¢) for the generative network shown in
igure 3.4.

values for b. e. and a. and discard those samples for which a # 1. For the recognition net-
work parameters 8 and ¢£ that connect the common consequence a to the two causes
b and e. the expected learning updates become

E[A¢P4] = E[b — g(¢°" + %)) = P(b=lia = 1) - g(¢""* + )

E[A¢"] = Ele — g(¢F* +950)] = Ple = lia = 1) - g("* + 95°).
(3.49)

where ¢80 and ¢£0 are the recognition biases for b and e. Each connection is modified so
as to predict as closely as possible the marginal posterior distributions P(b = 1|la = 1) and
P(e = lja = 1) over the corresponding causes b and e. After training, the recognition distri-
bution over b and e given a = 1 will be the product of the marginals. For the configuration

b=1.a=1.

Qb=1le=1lla=1.¢) =P(b=1lla=1)Ple=lla=1) =0.751 x 0.349 = 0.262.
(3.50)

where the values for P(b = 1|a = 1) and P(e = l|a = 1) were computed from (2.13). This
value is quite a bit higher than the correct value of P(b = l.e = lla = 1) = 0.116. In
fact, if we assume that b and e are independent given @ = 1. the recognition distribution
that maximizes the likelihood bound Bgp bas P(b = l.e = lja = 1) = 0.177. This is an
example where maximizing Bpjg is a poor approximation to maximizing Bgyp. Notice.

however, that the problem arises because we are using an inconsistent recognition network.
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Figure 3.6: (a) A hierarchical network with three extra “meta-cause” variables which produce
correlations between the cause variables (middle layer). (b) A similarly layered recognition network.

3.4.4 Hierarchical networks

Earlier in this section. [ presented multiple-cause networks with the assumption that the
causes were independent in the generative network (see (3.24) on page 62). Even with the
assumption that the causes are independent. it is still possible to represent quite complex
correlations in the visible variables v. However. in many cases the causes are certainly
interdependent. For example. if the causes variables represent the presence or absence of
various objects in facial images. we expect that both a toque and a top-hat are not present
simultaneously.

In order to model interdependent causes. we can simply add another layer of “meta-
causes” at a higher level in the network. Even if we assume that the “meta-causes” are
independent. the network can still represent fairly complex relationships between the causes.
Such a hierarchical network is shown in Figure 3.6a. We have already seen examples of

hierarchical networks. such as the network used in the bars problem example (Figure 1.7).

The parameter estimation methods already described in this chapter are applicable to
hierarchical networks with any reasonable depth. Of particular interest, however. is the
recognition model for the Helmholtz machine. Figure 3.6b shows a recognition model that
is appropriate for the network in Figure 3.6a. Note that the top layer of hidden variables
could receive input from the bottom layer of visible variables. not just the middle layer of
hidden variables. However. this introduces extra parameters into the Helmholtz machine,
which may worsen the effect of overfitting. In my experiments. [ use layered generative
and recognition networks like the ones shown in Figure 3.6. I[n some cases, adding extra




3.4 Multiple-cause networks 72

connections may help.

3.4.5 Ensembles of networks

According to the Bayesian doctrine for prediction, when using a density model P(v|8) to
estimate the probability of v, we ought to integrate out the model parameters 8. If we
specify a prior P(8) and measure the likelihood P(D|0) of the training data D. Bayesian
inference uses the posterior P(8|D) x P(8)P(D|@) (where the constant of proportionality
does not depend on 8) to obtain a probability

P(v|D) = /8 P(v|68)P(8]|D)d6. (3.51)

For example, this integral can be approximated using Laplace’s approximation {Spiegelhal-
ter and Lauritzen 1990], Markov chain Monte Carlo methods [Neal 1993; Neal 1996] or
variational techniques [Jaakkola and Jordan 1997). Here. I consider the ensemble method.
which is less sophisticated than the above approaches, but is also easier to implement and
and in practice usually gives a significant improvement over MAP parameter estimation.

Suppose we perform MAP parameter estimation using multiple restarts (different random
initial parameters) so that we have an ensemble of M models. where model m has parameters
0,.. Each model may correspond to a different local maximum of the posterior P(6{D),
and we assume that each model is equally likely in the posterior. We then approximate the

above integral by

Ar
P(vID) = Ili S P(vm). (3.52)

m=1

If P(v|@) does not change much over the width of each mode in the posterior. then as
long as the modes are properly represented by the ensemble of models, P(v|D) will be very
close to the correct value P(v|D) given by integration. On the other hand. if there is a mode
in the posterior that is so wide that P(v|@) does vary significantly across the mode. then
P(v|D) may be quite different from P(v|D). This is because only a peak in the posterior
is being included in the sum, while the mass surrounding the peak is being ignored, even

though the corresponding predictions are quite variable.

Since the Bayesian networks described above are flexible models, we expect that with
limited training data they may have multiple data likelihood optima (corresponding to
multiple peaks in the posterior, if we assume a uniform prior over network parameters). For
this reason, when time permits, a significant classification rate improvement can be obtained
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by using an ensemble of networks for each class of data. The classification decision is then

based on the average probabilities computed from the ensemble for each class.

3.5 Classification of hand-written digits

An interesting and useful pattern classification problem is the classification of hand-written
digits. In this section. [ present results on the classification of 8 x 8 binary images of hand-
written digits made available by the US Postal Service Office of Advanced Technology. I
compare the following Bayesian network methods: logistic autoregressive classifier (LARC-
1), a stochastic Helmholtz machine with one hidden layer (SHM-1). a stochastic Helmholtz
machine with two hidden layers (SHM-2), and an ensemble of stochastic Helmholtz machines
with one hidden layer (ESHM-1). In order to place the performance of these networks in
context, I include the following methods: classification and regression trees (CART-1). the
naive Bayes classifier (NBAYESC-1). and the k-nearest neighbor method (KNN-CLASS-1).
The performances of these classifiers are assessed using 5 different training set sizes (120,
240. 480. 960 and 1920 cases) so that the effect of the number of training cases on each
method can be studied. After describing the classifiers and the methods used to estimate

them, [ present and discuss the performance results.

3.5.1 Logistic autoregressive classifiers (LARC-1,ELARC-1)

LARC-1 models each of the 10 classes of data using a logistic autoregressive network (see
Section 3.2), where the variables are ordered in a raster-scan fashion. Once each of the
10 networks have been estimated from the training data. a test pattern is classified by
outputing the class corresponding to the network that gives the greatest likelihood to the

pattern.

Before estimating each network from its respective class of training patterns, the double
precision parameters # were initialized to uniformly random values on [—0.01.0.01). Over-
fitting was prevented by using MAP estimation with a scaled Gaussian parameter prior.
The prior variance of the first input was set to o7 = 4.0. A conjugate gradient algorithm
was used for MAP estimation.

ELARC-1 uses an ensemble of 8 logistic autoregressive networks, where each element
in the ensemble uses a different ordering of the variables in v. One of the elements uses
the raster-scan ordering, whereas the other 7 elements use a randomly selected ordering.
The probability of a test pattern for a given class is estimated by averaging the probability

estimates from each of the 8 networks in the ensemble for that class.
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3.5.2 The Gibbs Machine (GM-1)

GM-1 models the distribution of each of the 10 classes of data using a logistic multiple-
cause network of the type shown in Figures 3.4, that is trained using Gibbs sampling. Each
network has 64 visible binary (0/1) variables (8 x 8) and one hidden layer of 16 binary
(0/1) variables. Once the 10 networks have been estimated, classification of a test pattern
proceeds by estimating the probability of the pattern under each network. using the method
described in Section 3.4.1. The class corresponding to the network that gives the highest
probability is output as the prediction.

Before estimating a network using Gibbs sampling, all of its double precision parameters
() were initialized to uniformly random values on {—0.01.0.01). For each training pattern.
a single configuration of the hidden variables was obtained by performing 10 sweeps of Gibbs
sampling, while annealing the network from a temperature of 5.0 to 1.0 using a 1/ schedule.
where 7 is the sweep count. Then. the network parameters were adjusted using a learning
rate of 0.01. For a training set of T patterns, a randomly chosen set of {T/3] cases were
set aside as a “validation” set. By monitoring the probability estimate for this validation
data, early-stopping was used to prevent overfitting. After every 10 epochs of learning
(1 epoch = one sweep through the remaining [27/3] training cases), for each validation
pattern. 10 sweeps of Gibbs sampling with annealing were performed as described above,
and then 20 sweeps of Gibbs sampling at unity temperature were performed to obtain 20
configurations. Then, the probability of the validation pattern was estimated by computing
the probability mass associated with each configuration and its l-nearest neighbors. Each
network was trained for a minimum of 100 epochs (the validation probability estimate was
still computed every 10 epochs in this interval). Then, learning was stopped after the current
epoch n, if the epoch nqax at which the maximum validation probability estimate occurred
took place no less than n/3 epochs ago. Also, in order to terminate learning runs where
the validation probability estimate continued to increase asymptotically towards a limit. a
maximum of 2000 training epochs were performed. In summary. learning was stopped at
epoch n if n > 2000 or if nmax < 2n/3 and n > 100. (A similar early stopping technique
has been used with regression models [Rasmussen 1996].)

3.5.3 The mean field (variational) Bayesian network (MFBN-1)

MFBN-1 models the distribution of each of the 10 classes of data using a logistic multiple-
cause network of the type shown in Figures 3.4. Each network is fit using the variational
technique described in Section 3.4.2. Each network has 64 visible binary (0/1) variables
(8 x 8) and one hidden layer of 16 binary (0/1) variables. Once the 10 networks have been
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estimated, classification of a test pattern proceeds by computing the likelihood bound for
each network, using the method described in Section 3.4.2. The class corresponding to the
network that gives the highest bound is output as the prediction.

Before estimating a network using the variational method. all of its double precision pa-
rameters (@) were initialized to uniformly random values on [-0.01,0.01). For each training
case, the variational parameters were initialized to uniformly random values on [-0.01.0.01).
The variational bound was increased at each generalized E-step using the following itera-
tive method {Saul, Jaakkola and Jordan 1996]. After each iteration. if the bound did not
increase by more than 1% then no more iterations were performed for the current train-
ing case. A maximum of 10 iterations was performed. These algorithm parameters were
suggested by Jaakkola (personal communication). The variational bound was increased at
each generalized M-step using batch gradient descent with a learning rate of 0.01.

The validation procedure used to train each network was identical to the one used for
GM-1, except that the variational bound was used instead of an estimate of the validation
case probability. The validation bound was computed every 5 epochs. No fewer than 100
epochs were performed. and no more than 1000 epochs were performed.

3.5.4 Stochastic Helmholtz machines (SHM-1,SHM-2,ESHM-1)

SHM-1 models the distribution of each of the 10 classes of data using a stochastic Helmholtz
machine with 64 visible binary (0/1) variables (8 x8) and one hidden layer of 16 binary (0/1)
variables. The generative and recognition networks are of the form shown in Figures 3.4
and 3.5. and logistic regression is used to implement the conditional relationships. The
likelihood bound for a given input pattern is estimated using 20 recognition sweeps. Once
the 10 machines have been estimated, classification of a test pattern proceeds by estimating
the likelihood bound for each machine. The class corresponding to the machine that gives
the highest likelihood bound estimate is output as the prediction.

Before estimating a Helmholtz machine using the wake-sleep algorithm, all of its double
precision parameters (8 and ¢) were initialized to uniformly random values on [—0.01,0.01).
A learning rate of 0.01 was used for both phases of learning. The validation procedure
used to train each machine was identical to the one used for GM-1, except that instead
of obtaining an estimate of the validation set probability as described above, 20 epochs
of recognition passes were performed on the validation set to obtain an estimate of the
likelihood bound for the validation data.

SHM-2 is similar to SHM-1, except that it uses stochastic Helmholtz machines with a
visible layer of 64 binary variables, a middle hidden layer of 16 binary variables, and a top
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hidden layer of 8 binary variables. The generative and recognition networks are of the form

shown in Figure 3.6.

ESHM-1 uses an ensemble of 8 SHM-1 networks to model each class of patterns. Each
network in an ensemble is estimated using the above procedure, where a different randomiy
chosen validation set of {T/3| patterns is set aside for each network. Also, different initial
random parameters are chosen for each network. Once 8 networks have been estimated for
each of the 10 classes of data. a test pattern is processed by approximating 8 likelihood
bounds for each data class. These are averaged together within each class to obtain 10
average likelihood bounds. The final class decision for the test pattern is based on these

averages.

3.5.5 The classification and regression tree (CART-1)

This tree-based classifier has previously been run on several classification tasks in DELVE
[Rasmussen et al. 1996]. CART-1 uses a binary decision tree to classify the test patterns.
where each node in the tree makes a binary decision based on an axis-aligned decision
surface in the input space, and each leaf in the tree has a class label. A test pattern is
classified by traversing the tree from the root to a leaf. while following the decisions at each
node. That is, decision node d; looks at a particular input variable v;, and compares it to
a threshold t;. If v; , >t the right child is chosen. and otherwise the left child is chosen.
When a leaf is reached, the class of the leaf node is output by the classifier.

The tree is constructed from a training set using 10-fold cross validation. The details of

how the tree is produced can be found in [Breiman et al. 1984]'.

3.5.6 The naive Bayes classifier (NBAYESC-1)

The naive Bayes method of modelling can be viewed as a multiple-cause Bayesian network
where there aren’t any hidden cause variables. That is. we assume that each of the inputs
is independent given the class identity. For the binary input case, this model becomes very

simple. The naive Bayes model for each class of data is

N
P(v|9) = []6:(1 - 6:)' ™, (3.53)
=1

'I used Version 1.1 of the CART software provided by California Statistical Software Inc., 961 Yorkshire
Ct. Lafayette, California 94549, Tel: +1 415 283 3392.
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where 6; € [0.1] is the probability that v; = 1 under the model. For a given class of
training data, [ use the Bayesian method to obtain a minimum squared-loss estimate of

P(v), assuming a uniform prior for 8:

N

o - [T

=1

Once one such estimate is obtained for each of the 10 classes of training data. a test pattern
is classified by choosing the class that gives the probability to the pattern. Notice that if
fi =0 or T. the probability P(v) is not 0 or 1. This prevents overfitting.

3.5.7 The k-nearest neighbor classifier (KNN-CLASS-1)

This is the only nonparametric classifier studied in this section. The software [ used was
contributed to DELVE by Michael Revow [Rasmussen et al. 1996). In order to guess the
class of an input pattern v. the k-nearest neighbor classifier considers the classes of the &
training patterns that are nearest to v in Euclidean distance. Let n; j = 0,... .. J — 1 be
the number of such training patterns in class j. so that Z},;ol n; = k. Then. the k-nearest
neighbor classifier outputs the most frequent class:

J° = argmax;, n,. (3.55)

[f two or more classes have the maximum number of k-nearest neighbor training patterns.
then the classifier chooses the class whose training patterns are closest to v on average in

Euclidean distance.

k is chosen using leave-one-out cross validation. If there are T training patterns, T new
training sets with T — 1 patterns each are produced by leaving each pattern out once. &
is set to 1, and the misclassification rate on the left out patterns is computed using the k-
nearest neighbor classifier. Then, k is increased and this process is repeated untilk = T — L.
The value for k that gives the lowest leave-one-out cross-validation error is used to make

predictions for the test patterns.

In order to estimate the probability that v comes from each class. the k-nearest neighbor

method uses

In this case, the squared difference between the predicted probability vector and the true
class identity vector (a vectors of (’s with a single 1) is used as the cross-validation metric




3.5 Classification of hand-written digits 78

to determine k. See the DELVE manual [Rasmussen et al. 1996} for more information.

3.5.8 Results

The performances of the classification methods described above were assessed using the
DELVE (data for evaluating learning in valid experiments) system [Rasmussen et al. 1996].
Under this system, the digit classification problem that [ am interested in is called a proto-
task. A particular choice of training set size (e.g., 120 training patterns) is called a task. In
order to get an accurate measure of the performances of the methods (with error bars), each
method was trained and tested at least 4 times using disjoint training set - test set pairs
(each of which is called a task instance). An original data set consisting of 10,960 patterns
(1096 of each class) was partitioned into a training collection of 7680 patterns and a test
collection of 3280 patterns. For each of the tasks with training set sizes 120, 240, 480. and
960, the training collection was partitioned into 8 disjoint training sets: for the task with
training set size 1920. the training collection was partitioned into 4 disjoint training sets.
Notice that for the tasks with training set sizes 960 and 1920, all of the training partition
cases were used. whereas for the tasks with training set sizes 120. 240. and 480. not all of
the training partition cases were used. For each of the tasks with training set sizes 120. 240.
480, and 960, the test collection was partitioned into 8 disjoint test sets with 410 patterns
each; for the task with training set size 1920. the test collection was partitioned into 4
disjoint test sets with 820 patterns each. This way of partitioning the data eliminates the
dependence between each of the 8 experiments performed to assess the performance of each

method on each task instance.

Figure 3.7 shows the losses (fraction of patterns misclassified) for each of the tasks (five
boxes). Each horizontal bar gives an estimate of the expected loss for a particular method
on a particular task. The methods are ordered (from left to right within each box): CART-
1. NBAYESC-1. KNN-CLASS-1. MFBN-1. SHM-1. SHM-2. GM-1. ESHM-1, LARC-1 —
this is the same ordering as is given top to bottom in the lower-left hand region of the
figure. Each vertical bar gives an estimate of the error (one standard deviation) for the
corresponding estimate of the expected loss. Numbers in the boxes lying beneath the x-
axis are p-values (in percent) for a paired t-test. Choose your favorite method from the
list in the lower left-hand corner of the figure and scan from left to right. Whenever you
see a number. that means that another method has performed better than your favorite
method, with the given statistical significance. A low p-value indicates the difference in the
misclassification rates is very significant. More precisely. a p-value is an estimate of the
probability of obtaining a difference in performance that is equal to or greater than the
observed difference. given that we assume the two methods actually perform equally well
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Figure 3.7: Estimates of expected fractions of misclassified patterns for nine methods trained on
five different sizes of training sets.

(the null hypothesis).

The ESHM-1 and LARC-1 methods clearly outperform all other methods for all tasks.
If we scan the p-values for these two methods from left to right. we see that there is only a
single method that performs significantly better than ESHM-1, and that is LARC-1 on the
task with the smallest training set size (120). I found that the performance of ELARC-1
(ensemble of logistic autoregressive networks, not shown) was indistinguishable from plain
LARC-1 with respect to classification error. In contrast. ESHM-1 performs significantly
better than SHM-1. It is of particular interest that LARC-1. which contains no latent
variables, performs slightly better than the methods that contain latent variables.

GM-1 performs the best out of all approximate maximum likelihood methods, inciuding
MFBN-1, SHM-1, and SHM-2. However, GM-1 required an order of magnitude more train-
ing and validation time than SHM-1. For this reason, an ensemble of logistic multiple cause
networks was not considered for the Gibbs sampling estimation method. Table 3.1 shows
the average time taken to train and test each method for each training set size on a 195
MHz MIPS R4400 processor. MFBN-1 also required an order of magnitude more training
and validation time than SHM-1, and so an ensemble of mean field Bayesian networks was
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Figure 3.8: Estimates of expected negative log-probability of the true digit identity given by each
of eight methods trained on five different sizes of training sets.

Table 3.1: Average time in minutes required to train and test the methods from Figure 3.7 for each
of the training set sizes.

Training set size
Method 120 240 480 960 1920
CART-1 06 1.1 1.9 4.7 5.1
NBAYESC-1 0.0 0.0 0.0 0.0 0.0
KNN-CLASS-1 02 1.0 4.6 25.7 1929

MFBN-1 19.8 644 1305 216.9 344.6
SHM-1 23 54 11.8 21.8 46.0
SHM-2 3.7 7.8 223 417 776
GM-1 41.7 85.8 176.8 238.0 396.3
ESHM-1 19.4 44.7 95.5 186.7 358.9
LARC-1 02 05 1.2 3.0 6.5

not considered.

Figure 3.8 shows the performance results for soft decisions (the loss is the negative
log-probability of the true class under each model}. The methods are: NBAYESC-1, KNN-
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CLASS-1. MFBN-1. SHM-1, SHM-2. GM-1, ESHM-1. LARC-1, ELARC-1. In this case
ELARC-1 performs significantly better than LARC-1. Also, in this case ESHM-1 performns
slightly better than LARC-1 and ELARC-1.

3.6 Extracting structure from noisy binary images

The Bayesian networks described so far in this chapter have been supervised, in the sense
that they are trained with pattern - class label pairs. Can we come up with algorithms that
can organize the training data into meaningful classes. without the help of class labels?
This section and the following one give examples of Bayesian network models that exhibit
this emergent classification behavior. In this section, I show how a network can learn to
recognize vertical and horizontal lines in synthetic images, and even learn to recognize the
orientation of those lines. In the following section. I show how a network can learn to extract

both categorical and continuous structure simultaneously.

An interesting problem relevant to vision is that of extracting independent horizontal and
vertical bars from an image [Foldiak 1990: Saund 1995; Zemel 1993: Dayan and Zemel 1995;
Hinton et al. 1995]. Figure 3.9 shows 48 examples of the binary images [ am interested in.
Each image is produced by randomly choosing between horizontal and vertical orientations
with equal probability. Then, each of the 16 possible bars of the chosen orientation is
independently instantiated with probability 0.25. Finally, additive noise is introduced by
randomly turning on with a probability of 0.25 each pixel that was previously off. So.
the production of these images involves three levels of hierarchy: the first and lowest level
represents pixel noise. the second represents bars that consist of groups of 16 pixels each.

and the third represents the overall orientation of the bars in the image.

3.6.1 Wake-sleep parameter estimation

Using the wake-sleep algorithm. [ trained a stochastic binary Helmholtz machine that has 4
top-layer (“meta-cause”) variables. 36 middle-layer variables, and 256 bottom-layer image
variables. Each conditional distribution is modelled using logistic regression. Learning
is performed through a series of iterations, where each iteration consists of one bottom-up
wake phase sweep used to adjust the generative network parameters and one top-down sleep
phase sweep used to adjust the recognition network parameters. Every 5000 iterations, the
recognition network is used to obtain an estimate (with error bars) of the lower bound on the
data log-likelihood under the generative network. To do this, 1000 recognition sweeps are
performed without learning. During each recognition sweep, binary values for the hidden
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Figure 3.9: Exampies of training images whose production involved three levels of hierarchy. First,
an orientation (i.e.. horizontal or vertical) is randomly chosen with fair odds. Second, each bar
of the chosen orientation is randomly instantiated with probability 0.25. Third, additive noise is
introduced by randomly turning on with a probability of 0.25 each pixel that was previously off.

variables are obtained for the given training image. The log-likelihood of the values of all
the variables under the generative network minus the log-likelihood of the hidden variable
values under the recognition network gives an unbiased estimate of the log-likelihood bound
(3.40). In this way, [ obtain 1000 i.i.d. noisy unbiased estimates of the log-likelihood bound.
The average of these values gives a less noisy unbiased estimate. Also. the variance of this

estimate is estimated by dividing the sample variance by 999.

I am interested in solutions where the generative network can construct the image by
adding features, but cannot remove previously instantiated features. If the network pa-
rameters are in no way constrained to favor this type of solution, perceptually unattractive
solutions are found (see Section 3.6.3). So, I constrain the parameters of the logistic re-
gression model that connects the middle layer to the bottom layer to be positive by setting
to zero any negative weights every 20th learning iteration. In order to encourage a so-
lution where each image can be succinctly described by the minimum possible number of
causes in the middle layer, I initialize the middle-layer generative biases to -4.0 which favors
most middle-layer variables being inactive (value of () on average. All other parameters
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Figure 3.10: Variation of the lower log-likelihood bound with the number of wake-sleep learning
iterations for the stochastic Helmholtz machine.

are initialized to 0.0. For the first 100,000 iterations, a learning rate of 0.1 is used for the
generative parameters of the model feeding into the bottom layer and for the recognition
parameters of the model feeding into the middle layer: the remaining learning rates are set
to 0.001. After this. learning is accelerated by setting all learning rates to 0.01.

Figure 3.10 shows the learning curve for the first 300,000 iterations of a simulation
consisting of a total of 1.000.000 iterations. Aside from several minor fluctuations. the
wake-sleep algorithm maximizes the log-likelihood bound in this case. Eventually, the bound
converges to the optimum value (-170 bits) shown by the solid line. This value is computed
by estimating the average log-likelihood of the data under the method that was used to
produce the data. i.e., the negative entropy of the training data.

By examining the generative parameters after learning, we see that the wake-sleep al-
gorithm has extracted the correct 3-level hierarchical structure. Figure 3.11 shows the
parameters for the generative logistic regression models feeding into and out of the middle
layer in the network. A black blob indicates a negative parameter and a white blob indi-
cates a positive parameter; the area of each blob is proportional to the magnitude of the
parameter (the largest value shown is 7.77 and the smallest value shown is -7.21). There
are 36 blocks arranged in a 6 x 6 grid and each block corresponds to a middle-layer vari-
able. The 4 blobs at the upper-left of a block show the parameters that connect each of
the top-layer variables to the corresponding middle-layer variable. The single blob at the
upper-right of a block shows the bias for the corresponding middle-layer variable. The
16 x 16 matrix that forms the bulk of a particular block shows the parameters that connect
the corresponding middle-layer variable to the bottom-layer image. These matrices clearly
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Figure 3.11: Parameters for connections that feed into and out of the middle-layer variables in
the generative network. A black blob indicates a negative parameter and a white blob indicates a
positive parameter; the area of each blob is proportional to the parameter’s magnitude (the largest
value shown is 7.77 and the smallest value shown is -7.21).

indicate that 32 of the 36 middle-layer variables are used by the network as “feature vari-
ables” to represent the 32 possible bars. These feature variables are controlled mainly by
the right-most top-layer “orientation” variable — the parameters connecting all the other
top-layer variables to the feature variables are nearly zero. If the orientation variable is off,
the probability of each feature variable is determined mainly by its bias. Vertical feature
variables have significantly negative biases, causing them to remain off if the orientation
neuron is off. Horizontal feature variables have only slightly negative biases, causing them
to turn on roughly 25% of the time if the orientation variable is off. The parameters con-
necting the orientation variable to the vertical feature variables are significantly positive, so
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that when the orientation variable is on the total input to each vertical feature variable is
slightly negative, causing the vertical feature variables to turn on roughly 25% of the time.
The parameters connecting the orientation variable to the horizontal feature variables are
significantly negative, so that when the orientation variable is on the total input to each
horizontal feature variable is significantly negative, causing the horizontal feature variables
to remain off. Since the parameters connecting the top-layer variable to the 4 middle-layer
nonfeature variables are negative, and since the nonfeature variables have large negative
biases, the nonfeature variables are usually inactive. Because the bottom-layer biases (not
shown) are only slightly negative, a pixel that is not turned on by a feature variable still
has a probability of 0.25 of being turned on. This accounts for the additive noise.

3.6.2 Automatic clean-up of noisy images

Once learned, the recognition network can nonlinearly filter the noise from a given image,
detect the underlying bars, and determine the orientation of these bars. To clean up each
of the training images shown in Figure 3.9, I apply the learned recognition network to
the image and obtain middle-layer variable values which reveal an estimate of which bars
are on. The results of this procedure are shown in Figure 3.12 and clearly show that the
recognition network is capable of filtering out the noise. Usually, the recognition network
correctly identifies which bars were instantiated in the original image. Occasionally, a bar
is not successfully detected. In two cases a bar is detected that has an orientation that is
the opposite of the dominant orientation; however, usually the recognition network chooses
a single orientation. Inspection of the original noisy training images for the two incorrect
cases shows that aside from the single-orientation constraint, there is significant evidence
that the mistakenly detected bars should be on. Further training reduces the chance of

misdetection.

3.6.3 Wake-sleep estimation without positive parameter constraints

If all the parameters are initialized to 0.0, the parameters that connect the middle layer to
the bottom layer are not constrained to be positive, and all the learning rates are set to 0.01,
the estimated generative network does not properly extract the bar structure. Figure 3.13
shows the generative network parameters that connect the middle layer to the bottom layer,
after 5,000,000 learning iterations. The black bars indicate that some middle-layer variables
are capable of “uninstantiating” bars that may be instantiated by other variables. Although
it is imaginable that such a complex scheme is still capable of modelling the training images,
the log-likelihood bound for this trained Helmholtz machine is -190 bits - significantly lower
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Figure 3.12: Filtered versions of the training examples from Figure 3.9 extracted using the estimated
recognition network.

than the optimum value of -170 bits.

3.6.4 How hard is the bars problem?

Although this bar extraction problem may seem simple, it must be kept in mind that the
network is not given a priort topology information — a fixed random rearrangement of the
pixels in the training images would not change the learning performance of the network. So,
insofar as the network is concerned, the actual training examples look like those shown in
Figure 3.14 which were produced by applying a fixed random rearrangement to the pixels
in the images from Figure 3.9.

3.7 Simultaneous extraction of continuous and categorical
structure

The Bayesian networks presented so far in this chapter have contained discrete variables.
However, some hidden variables, such as translation or scaling in images of shapes, are best
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Figure 3.13: Parameters for generative connections that feed out of the middle-layer variables after
estimation without special initialization of the weights, without different learning rates between
layers, and without positive weight constraints in the generative network.

represented using continuous values. Work done on continuous-valued Bayesian networks
has focussed mainly on Gaussian random variables that are linked linearly such that the
joint distribution over all variables is also Gaussian [Pearl 1988; Heckerman and Geiger
1995]. Lauritzen et al. [1990] have included discrete random variables within the linear
Gaussian framework. They consider networks that are singly-connected, so that probability
propagation can be used. Most work on continuous-valued Bayesian networks requires that
all the conditional distributions represented by the network can be easily derived using
information elicited from experts. Hofmann and Tresp [1996] consider estimating continuous
Bayesian networks that may be richly connected, but they assume that all variables are
observed. As far as nonlinear continuous networks with latent variables are concerned,
continuous-valued Boltzmann machines have been developed [Movellan and McClelland
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Figure 3.14: Training examples from Figure 3.9 after a fixed random rearrangement of the pixels
has been applied. These are indicative of the difficulty of the bars problem in the absence of a
topological prior that favors local intensity coherence.

1992], but these suffer from long simulation settling times and the requirement of a “negative
phase” during learning. Tibshirani [1992], MacKay [1995] and Bishop et al. [1997] consider
estimating mappings from a continuous latent variable space to a higher-dimensional input
space, effectively using multiple-cause type networks of the form shown in Figure 3.4 on
page 62. In this section, I consider a hierarchical Bayesian network with variables that can
adapt to be continuous or categorical, as needed by the training data [Frey 1997a; Frey
1997b).

3.7.1 An adaptive random variable

The proposed random variable is shown schematically in Figure 3.15a®. The parents a;
effect z; via a total input,

pi = Xiso6i2), (3.57)

2Geoffrey Hinton suggested this unit as a way to make factor analysis nonlinear.
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Figure 3.15: (a) schematically shows the dependence of the proposed variable on its parents. (b)
to (e) illustrate four quite different modes of behavior: (b} deterministic mode; (c) stochastic linear
mode; (d) stochastic nonlinear mode; and (e) stochastic binary mode (note the different horizontal
scale). For the sake of graphical clarity, the density functions are normalized to have equal maxima
and the subscripts are left off the variables.

where we constrain 6;; = 0.0 if z; € a,. The probability density over the presigmoid activity

z; for variable z; is

p(z:lpi. oF) = exp(—(z; — p)*/207]/ V 2707, (3.58)
where o2 is a parameter associated with variable z; (formally, part of 8). The value of z

(its postsigmoid activity) is obtained by passing the presigmoid activity through a sigmoidal
cumulative Gaussian squashing function:

T
zi = P(r;) = / —;;e_"-/‘lda. {3.59)
-

Networks of these variables can represent a broad range of structures. including deter-
ministic multilayer perceptrons [Bishop 1995|, binary sigmoidal Bayesian networks [Neal
1992] (see Section 3.4). mixture models, mixture of expert models [Jacobs et al. 1991],
hierarchical mixture of expert models [Jordan and Jacobs 1994], and factor analysis models
{Everitt 1984]|. This versatility is brought about by a range of significantly different modes
of behavior available to each variable.

2
i

will be a practically deterministic sigmoidal function of the mean (see Figure 3.15b). This

Deterministic mode: If the noise variance o is very small. the postsigmoid activity y;
mode is useful for representing deterministic nonlinear mappings such as those found in
deterministic multilayer perceptrons and mixture of expert models.

Stochastic linear mode: For a given mean, if the squashing function is approximately
linear over the span of the added noise, the postsigmoid distribution will be approximately
Gaussian with the mean and standard deviation linearly transformed (see Figure 3.15c).
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This mode is useful for representing Gaussian noise effects such as those found in mixture
models, the outputs of mixture of expert models, and factor analysis models.

Stochastic nonlinear mode: If the variance of a variable in the stochastic linear mode
is increased so that the squashing function is used in its nonlinear region, a variety of
distributions are producible that range from skewed Gaussian to uniform to bimodal (see
Figure 3.15d).

Stochastic binary mode: This is an extreme case of the stochastic nonlinear mode. If the
2

variance o7 is very large, then nearly all of the postsigmoid probability mass will lie near
the ends of the interval (0, 1) (see Figure 3.15e). E.g., for a standard deviation of 150, less
than 1% of the mass lies in (0.1,0.9). In this mode. the postsigmoid activity z; appears to

be binary with probability of being “on” (i.e.. z; > 0.5 or, equivalently, z; > 0):

. ) > exp(—(z — p:)%/207] /’ # exp[—z?/207] P
i on|y,, 07) = . dz = — " Ldr =®(—).
P( l# ) «/O. 271_0:; —oc 271,0.':2 (dl)

(3.60)

This sort of stochastic activation is found in binary sigmoidal belief networks [Jaakkola.
Saul and Jordan 1996] and in the decision-making components of mixture of expert models
and hierarchical mixture of expert models.

3.7.2 Inference using slice sampling

Assuming the variables are labeled in ancestral order. the joint distribution can be written

Y N
p({z: L) = [[ plail{z; 1i2h) or p({z}ly) = [[ p(=il{z}i20). (3.61)
=1

=1

where N is the number of variables. p(z;|{z; }3;})) and p(zi{{z; };;})) are the presigmoid
and postsigmoid conditional densities for variable z;. (Recall that the set of parents is
represented by parameter constraints.) As usual, I define zg = 1 to allow for a constant

bias.

Even for small networks of these variables, probabilistic inference can be very difficult.
Not only is the inference problem combinatorial, but it involves continuous hidden variables
whose distribution when conditioned on visible variables may be multimodal with peaks
that are broad in some dimensions but narrow in others. [ use a Markov chain Monte carlo
procedure, which consists of sweeping a prespecified number of times through the set of
hidden variables. A new value is obtained for each hidden variable using slice sampling
[Neal 1997} (see Section 2.2.4), based on the distribution for the variable conditioned on all
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other variables. If an infinite number of slice samples are drawn for each hidden variable
before passing on to the next hidden variable, this procedure is equivalent to Gibbs sampling
(see Section 2.2.2). In fact, detailed balance still holds if only a fixed number of slice samples
are drawn for each variable before passing on to the next variable. In most cases, drawing
only one slice sample for each variable before continuing on will be most efficient.

If the parent-child inﬁuences cause there to be two very narrow peaks in the conditional
distribution p(z{{z;};_ —o {z 1Y j=i+1) for a hidden variable (corresponding to a variable in
the stochastic binary mode), the slices will almost always consist of two very short line
segments and it will be very difficult for the above procedure to switch from one mode to
another. To fix this problem, slice sampling is performed in a new domain, y; = ®({z; —
pi}/oi). In this domain the parent-child distribution p(y:|{z; }j—:},) is uniform on (0. 1), so

p(uil{z Y520 {5 }'2ii1) = p(wil{z;}?,11). So. I can use the following function for slice
sampling:

Flyi) = exp[~ SN {2 = o = 022, B (0@ ™ (wa) + 1) } /203, (3.62)
where u,'c" = -_0 J#i 8-,z 2. Since z;, y; and z; are all deterministically related, sampling

from the distribution of y; will give appropriately distributed values for the other two®.

3.7.3 Parameter estimation using slice sampling

I use on-line stochastic gradient ascent to perform MLB parameter estimation. This consists
of sweeping through the training set and for each training case following the gradient of
logp({zi};~,). while sampling hidden unit values as described above. The parameters are
changed as follows.

Abj = 1 0log p{{z: L1)/08jk = (25 ~ 3125 81w ye/ 7

Alogo? = ndlogp({z:})/dlogo? = n[(z; ~ 12 0um)’/o? — 1] /2.
(3.63)

where 7 is the learning rate.

[ designed two experiments meant to elicit the four modes of operation described above.
Both experiments were based on a simpie network with one hidden layer h containing two
variables and one visible layer v containing two variables. Training data was obtained
by carefully selecting model parameters so as to induce various modes of operation and

3Both () and $~'() do not have closed-form expressions, so [ use the C-library erf() function to imple-
ment &() and table lookup with quadratic interpolation to implement &~ ().
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Figure 3.16: For each experiment (a) and (b), contours show the distribution of the 2-dimensional
training cases. The inferred mean postsigmoid activity of the two hidden units after learning are
shown in braces for several training cases, marked by x.

then generating 10.000 two-dimensional examples. Before training, the log-variances were
initialized to 10.0. and the other parameters were initialized to uniformly random values
between -0.1 and 0.1. Training consisted of 100 epochs using a learning rate of 0.001 and
20 sweeps of slice sampling to complete each training case. Each task required roughly five
minutes on a 195 MHz MIPS R4400 processor.

The distribution of the training cases in visible unit space (v; —~v2) for the first experiment
is shown by the contours in Figure 3.16a. After training the network, I ran the inference
algorithm for each of ten representative training cases. The mean postsigmoid activities
of the two hidden units are shown beside the cases in Figure 3.16a; clearly, the network
has identified four classes that it labels (0.0), (0, 1). (1,0). and (1.1). Based on a 30 x 30
histogram. the relative entropy between the training set and data generated from the trained
network is 0.02 bits. Figure 3.16b shows a similar picture for the second experiment, using
different training data. In this case. the network has identified two categories that it labels
using the first postsigmoid activity. The second postsigmoid activity indicates how far along
the respective “ridge” the data point lies. The relative entropy in this case is 0.04 bits.

The above experiments illustrate how the same network can be used to model two quite
different types of data. In contrast. a Gaussian mixture model would require many more
components for the second task as compared to the first. Although the methods due to
Tibshirani and Bishop et al. would nicely model each submanifold in the second task. they
would not properly distinguish between categories of data in either task. MacKay’s method
may be capable of extracting both the submanifolds and the categories, but [ am not aware

of any results on such a dual problem.

It is not difficult to conceive of models for which naive Markov chain Monte Carlo
procedures will become fruitlessly slow. In particular, if two variables are highly correlated.
the procedure of sampling one variable at a time will converge extremely slowly. Also, the
Markov chain method may be prohibitive for larger networks. One approach to avoiding
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these problems is to use the Helmhoitz machine or variational methods.




Chapter 4

Data Compression

The goal of data compression is to exploit the redundancy in input patterns so as to rep-
resent individual patterns concisely on average. In this thesis. I focus on lossless data
compression. in which the original pattern can be completely recovered from the concise
representation. A source code maps each input pattern v to a codeword, such that for each
valid codeword there is a unique input pattern. I will consider sources where the patterns
are i.i.d. (independent and identically drawn) from a distribution P(v}.

Shannon’s noiseless source coding theorem [Shannon 1948] states that the average code-

word length cannot be less than the entropy of the source:
E{{(v)] > H. (4.1)

where £(v) is the length in bits of the codeword for input pattern v. and H is the entropy

of the source:
H == P(v)logy P(v). (4.2)
v

Traditional approaches to data compression have focussed on producing source codes whose
codeword lengths are nearly optimal, where the optimal length of the codeword for v is
logy Pr(v).

Arithmetic coding [Rissanen and Langdon 1976; Witten, Neal and Cleary 1987] is a
practical algorithm for producing near-optimal codewords when the source distribution
P,(v) is known. If v is binary-valued, P,(v) can be easily estimated and arithmetic coding
can be used to produce near-optimal “fractional bit” codewords. If v is high-dimensional
and the distribution is quite complex (e.g., images of faces), it may be desirable to estimate

94
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a more sophisticated flexible probability model P(v). Unfortunately, even if such a model
can be estimated so that P(v) = P.(v), there may not be a practical way to encode v using
the model. For example. an arithmetic encoder requires a table of the probabilities for all
possible inputs. For a 16 x 16 binary image. this table would have 2256 entries! So. not
only do we need a2 model that provides a probability P(v), but we also need a model that
somehow decomposes P(v) in a way that allows the encoder to encode the variables one at

a time (or in small groups).

Graphical models provide a structured description of P{v). and so they seem like a good
place to look for the source models described above. However, it turns out that undirected
graphical models do not provide the right type of structure. For example, the Boltzmann
machine [Hinton and Sejnowski 1986] (a Markov random field that learns) is poorly suited
to data compression. because it does not decompose P{v) in a way that is suitable for
efficient piece-wise compression. (A method such as Markov chain Monte Carlo must be
used to estimate the partition function, which normalizes the probabilities.) On the other

hand, Bayesian networks do provide an ideal structure for data compression.

In Section 4.1, I show how Bayesian network source models that do not have latent
variables can be used very efficiently to compress data. Then, in Section 4.2, I go on
to discuss source models that have many latent variables. Values can be chosen for the
latent variables and the entire configuration can be encoded. In this way, a “multi-valued
source code” with many codewords for each input pattern is obtained. In many cases.
these codewords cannot be mixed together in a tractable way. To remedy this problem:.
[ show how extra information can ride “piggyback” on the choice of codeword and derive
the communication rate for this “bits-back” procedure. In Section 1.3, we see that a broad
class of approximations to maximum likelihood parameter estimation actually minimizes
this communication rate. In Section 4.4, [ outline the “bits-back coding” algorithm. which is
a practical implementation of the “bits-back” idea. It turns out that by using an arithmetic
decoder in the bits-back encoder and an arithmetic encoder in the bits-back decoder. we
can achieve a practical communication rate that is nearly optimal. Finally, in Section 4.5.
T present compression results for Helmholtz machine source models that are adapted using
the wake-sleep algorithm.

4.1 Fast compression with Bayesian networks

Suppose we have at hand a Bayesian network for the binary variables in v, such that
P(v) = P.(v). As discussed in Section 1.2.2, the joint distribution for a Bayesian network
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can be written
N
P(v) = [] P(velae). (4.3)
k=1

where N is the number of variables in v, and a; are the parents of v,. This decomposition
is very well-suited to arithmetic coding.

In order to encode v, we pick an ancestral order for the variables. [ will assume without
loss of generality that vy,... ,uyx is such an ordering. Compression begins with v,, whose
observed value is fed into the arithmetic encoder. along with its distribution {P(v; =
0), P(v; = 1)}, which is part of the network specification. Next, we compute {P(vy =
Olaz), P(vs = 1ljaz)} using the conditional probability given in the network specification as
well as the values of vy’s parents (i.e.. either {v,} or @) which have already been encoded.
We feed the observed value of v, into the arithmetic encoder. along with its distribution.

Encoding continues in this fashion until all network variables have been encoded.

For this procedure to work as described, the Bayesian network must be fully visible.
That is, all network variables are part of the input pattern. Suppose there are some latent
variables h that are not part of the input. Then, the Bayesian network models P(v. h).
These variables may be important for representing higher-order structure in the input v,
as discussed extensively in Chapter 3. Now, the decomposition in (4.3) cannot be used.

If there aren’t many latent variables, we can use a procedure that is similar to the one
described above. We pick an ancestral order and proceed as described above, encoding only
the observed variables. Whenever we encounter an observed variable that is not dependency-
separated from an unobserved variable by the variables that have been encoded so far. the
unobserved variable must be integrated out, by summing over its values. The complexity
of this encoding procedure is usually exponential in the number of unobserved variables.
Sometimes, the graphical structure of the network permits this procedure to be done in a
very efficient way. For example, the latent variables in a hidden Markov model [Rabiner
1989] with a fixed state space size can be integrated out in a way so that the encoding
complexity is linear in the number of latent variables (number of time steps).

4.2 Communicating extra information through the choice of

codeword

In general, when the latent variables in a Bayesian network cannot summed away to compute
P(v) in a tractable way, we are left with the option of picking values for them. Then, the
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Figure 4.1: A scheme in which auxiliary data is communicated along with the symbol in order to
achieve optimal compression when the source code is multi-valued.

entire set of variables {v.h} can be encoded using the procedure described above. as if
all values were observed. This can be viewed as a multi-valued source code, where there
are many codewords for each input v. The codeword depends on which values are chosen
for the latent variables. Often. as with the hidden Markov model, these codewords can be
mixed in an efficient way. However. there is an interesting class of multi-valued source codes
(e.g.. Bayesian networks with latent variables) for which the multiple codewords cannot be

mixed in a tractable manner.

The approach I take to solve this problem [Frey and Hinton 1996: Frey and Hinton
1997] is motivated by the “bits-back” argument of Hinton and Zemel [1994], which they
used to develop a Lyapunov function for machine learning. It turns out that Wallace
[1990] devised a similar argument to construct minimum-length integer-length messages
for use in minimum-message-length inference. By selecting codewords through the use of
extra auziliary data. the auxiliary data can ride “piggyback” on the codewords for the
symbols that we are encoding. Compared to the optimal single-valued source code obtained
by mixing together the codewords for an input pattern. the bits communicated in the
auxiliary data will make up for the lengths of the suboptimal codewords that are sent. In
particular, the communication rate will be less than the rate that would be obtained by
always picking the shortest codeword. A block diagram for this communication scheme is

shown in Figure 1.1. A simple example will help illustrate this procedure.

4.2.1 Example: A simple mixture model

Consider a source that outputs real numbers that are distributed according to a mixture
of two Gaussians. These numbers are rounded to some precision to form a set of symbols.
The component distributions and the output distribution are shown in Figure 4.2a, where
the rounding effect is left out for the sake of graphical simplicity.

The most natural source code to use in this case is one that requires one bit to specify
from which Gaussian a given symbol was produced plus however many bits are needed to
code the symbol using that Gaussian. However, the identity of the Gaussian that produced

a given symbol is often ambiguous. In particular, a number near vy could well have come
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Figure 4.2: The most natural source model may produce multiple codewords for a given symbol. (a)
shows a source with a single binary hidden variable which identifies from which Gaussian, G, or G,
the symbol value v is sampled. Values of v near vg are likely to have come from either Gaussian. (b)
shows the resulting coding density effectively used if we were to always pick the shorter codeword.
This density wastes coding space because it is wrongly shaped and has an area significantly less than
unity.

from either Gaussian. In these cases the source model maps each symbol to two codewords
— one for each Gaussian — producing a multi-valued source code. If we were to always
pick the shorter of the two codewords, we would effectively be assuming the symbols were
distributed as in Figure 4.2b. However, this distribution is obviously incorrect — it is not

even normalized — and will lead to suboptimal compression.

The obvious way around this problem is to use a single-valued code that is based on a
summation of the mixture component probabilities. That is, we assign a new codeword to
each symbol based on its total probability mass, obtained by summing the contributions
from each Gaussian. Although this procedure is obviously computationally feasible for this
example, there are more complicated models where it is not (see Section 4.5). In fact, the
same rate can be achieved by using the original multi-valued source code and communicating
extra information through the choice of codeword. This may seem surprising, since for a
given symbol both codewords in the multi-valued source code are longer than the codeword

in the single-valued source code.

Consider a sender that wishes to encode a rounded value v’ that requires 2 bits if encoded
using G and requires 3 bits if encoded using G2 (i.e., v’ is twice as likely under G, as it
is under G3). Including the single bit required to specify which Gaussian is being used, an
optimal source code (where the Gaussian identity is explicit) will thus have codewords with
lengths ¢; = 3 bits and ¢, = 4 bits. If the sender always picks the shorter codeword, the
average codeword length is 3 bits.

Suppose instead that whenever the sender must communicate the particular symbol
v/, the sender chooses between the two codewords with equal probability. (In general,
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the ratio of choices will depend on v’.) It appears the average codeword length in this
case is (€1 + €2)/2 = 3.5 bits, which is higher than that obtained by always choosing the
shortest codeword. However, this cost is effectively lowered because the receiver can recover
information from the choice of codeword in the following manner. Say the sender has high-
entropy auxiliary data available in the form of a queued bit stream with 0 and 1 having
equal frequency. When encoding v’, the sender uses the next bit in the auxiliary data queue
to choose between G| and G3. The sender then produces a codeword that will have an
average length of 3.5 bits (it is important to note that this codeword specifies which of G,
and G is being used).

When decoding, the receiver reads off the bit that says which Gaussian was used and
then determines the rounded value v’ from the codeword. Given the decoded value, the
receiver can run the same encoding algorithm that the sender used, and determine that a
choice of equal probability was made between G| and G;. Since the receiver also knows
which Gaussian was selected, the receiver can recover the queued auxiliary data bit that was
used to make the choice. In this way, on average 1 bit of the auxiliary data is communicated
at no extra cost. [ refer to these recovered bits as bits-back.

If the auxiliary data is useful, the average effective codeword length is reduced by 1 bit
due to the savings, giving an effective average length of 2.5 bits — less than the 3 bits
required by the shortest codeword. I refer to this method of source coding as bits-back
coding. It is important to note that the ratio of choices between G| and G2 depends on
the symbol being encoded. For example, if the rounded value is far to the right of vy in
Figure 4.2a, then picking the codewords equally often would be very inefficient, since the
codeword under G, would be extremely long, making the benefit of the single recovered
bit negligible. In this case the sender should pick G| much less often and as a result the
sender will read off only “part” of a bit from the auxiliary data queue to determine which
codeword to use. As we will see below, choosing between the two codewords with equal

probability is not optimal in the above example.

4.2.2 The optimal bits-back coding rate

The rate for bits-back coding can be determined by defining a distribution that is used to
select codewords for a given input symbol (pattern), v:

Q(hlv), (4.4)

where h is a binary vector representing the index of the selected codeword for input v. (It
is represented as a vector, since it too must be encoded.) Letting £(v,h) be the length of
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the hth codeword! for a specific pattern v, the expected length of the two-part codeword

for v is
E(v) =) Q(hlv)e(v.h). (4.5)
h

The expected bits-back for v is the information content (entropy) of the distribution used
to select codewords:

H(v)= - Q(hlv)log, Q(hlv). (4.6)
h
The difference between (4.5) and (4.6) gives the communication cost for v:

Q(h|v) -

F(v) = E(v) - Hv) ZQ hv) logs 5=y 5y (4.7)

The overall rate F for bits-back coding is given by averaging this cost over the source
distribution, P (v):

F= Y PWFW) = ¥ B0 Y Qblv) log, o). (48)
v v h

It is easily proven from (4.8) that for each v the codeword selection distribution which

minimizes the bits-back coding rate is the Boltzmann distribution:

Q"(hjv) = 27Vl )" 9= v, (4.9)
hl

I denote by * those quantities determined from the Boltzmann distribution. Note that
this distribution depends on the input symbol. v. The optimal rate for a given multi-
valued source code is achieved if for each input symbol a codeword is selected using the
corresponding Boltzmann distribution. By substituting (4.9) into (4.8), we find that the
optimal bits-back coding rate is

Fr= =3 Py logy[ Y27 (4.10)
v h

This rate is the same as the rate for a single-valued source code that has codeword lengths

which properly reflect the total codeword space associated with each symbol in the multi-

valued source code.

!The codewords may have fractional lengths produced, say, by arithmetic coding
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In the mixture of Gaussians example, where for symbol v we had ¢, = 3 bits and > = 4
bits,

Q*(Gijv") =273/(273 +27) = 2/3,

QY (Gal') =274/(273 + 27%) = 1/3,

2 1
£°(') = 3(3 bits) + (4 bits) = 3.333 bits.

H (") = —% Iogg(%) - %logz(%) = 0.918 bits.

F*(v') = 3.333 bits — 0.918 bits = 2.415 bits. (4.11)

This is the minimum F(v') for the given example. A slightly higher than optimal F(v') of
2.5 bits was obtained above using Q(G\[v') = Q(G1[v') = 0.5.

4.2.3 Suboptimal bits-back coding

For complex source models, the summation in the denominator of (4.9) is usually intractable;
in these cases, it is not possible to obtain the exact Boltzmann distribution. When it s
possible to obtain the exact Boltzmann distribution, the denominator in (4.9) can often be
directly used to create a single-valued source code. The advantage of bits-back coding is
that when the multi-valued source code is unmixable. ar approximation to the Boltzmann
distribution can be used. There are a variety of practical algorithms for obtaining such an
approximation. including Markov chain Monte Carlo methods [Geman and Geman 1984:
Hinton and Sejnowski 1986: Ripley 1987; Potamianos and Goutsias 1993], mean field meth-
ods [Chandler 1987; Peterson and Anderson 1987: Zhang 1993: Saul. Jaakkola and Jordan
1996], and inverse model methods [Hinton et al. 1995; Dayan et al. 1995] (see Section 4.5).
The rate for an arbitrary codeword selection distribution Q(h|v) can be compared to the
optimal rate given by the Boltzmann distribution:
Q(h|v)

F-F = Z Pi(v) Zhj Q(hiv)log, 7 - (4.12)

This is the information divergence (a.k.a. relative entropy) between the codeword selection
distribution and the Boltzmann distribution, averaged over the source distribution. It is
always non-negative and yields the increase in coding rate caused by the approximation to

the Boltzmann codeword selection distribution.

A suboptimal codeword selection distribution of particular interest is Q*"*"(h|v), which
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always picks the shortest codeword, h*"°™(v). (This is analogous to the two-part codes
discussed by Rissanen (1989].) In this case. the rate increase compared to the optimal rate
is

1
Q* (hshurt. (VBLVI);})

short
j:'short —F = z Pr(V) Z Qshon(hlv) 10g2 Q (h'v) - Z Pr(V) 10g2
v h v

Q*(h|v)

Bits-back coding makes gains over shortest codeword selection by approximately taking into
account the entire codeword space associated with an input symbol, as opposed to just the
codeword space associated with the shortest codeword. If several of the shortest codewords
have roughly equal lengths, or if there are a large number of codewords with lengths some-
what larger than the shortest, then Q*(h%"°"*(h)|v) is significantly less than unity indicating
that picking the shortest codeword is far from optimal. Relative to Rissanen’s work. bits-
back coding provides a tractable way to approximate the stochastic complexity [Rissanen

1989] and furthermore communicate at this rate.

4.3 Relationship to maximum likelihood estimation

The whole idea of a multi-valued source code may seem absurd. Why waste codeword space
by associating multiple codewords with each symbol? An answer to this question must be
closely related to the structure of the source model. In addition to the input pattern being
encoded, it is often useful and natural to consider extra latent variables whose purpose is
to capture high-order structure. For example, when modelling grey-scale images, it may
help to create a latent variable that measures overall image contrast. The codeword for a
particular image will include a binary representation of this contrast value. However. there
may be several quite different contrast values that are equally plausible, leading to several

different codewords.

A generative model of the type described above typically provides a parameterized dis-
tribution P(h{@®) that can be used for encoding the set of latent variables h, as well as
a distribution P(v|h,8V) to be used for encoding the input symbol v for a given setting
of the latent variables. Such a codeword will have an optimal length (e.g., obtained using

arithmetic coding) given by
¢(v.h) = ~ log, P(h|0%) — log, P(v|h,8"). (4.14)

Note that the generative structure implies that P(v|h,8") is easy to compute. (Rissanen
[1989] refers to this type of code as a two-part code.)
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The set of parameters 8 = {8H ,GV} must be fixed by hand, estimated using a stored
data set, or adapted on-line. Estimating these parameters is a difficult task when there are
latent variables. The popular technique of maximum likelihood estimation minimizes the
following cost:

C =~ P(v)logy P(v8) = =3 Pi(v)log, [Z P(h|6%)P(v]h. oV)]
v v b (4.15)

Combining (4.14) and (4.15), we find that maximum likelihood estimation minimizes
C=-3 P(v)log [Z 2-‘("'*”] , (4.16)
v h

which is equal to the optimal bits-back coding rate (4.10). In contrast, maximum likeli-
hood estimation does not minimize the rate for an encoder that always picks the shortest

codeword.

Often, maximum likelihood estimation is not tractable when the generative model is
overly complex. In these cases. it is possible to use various approximations to maximum
likelihood estimation. A common approach [Peterson and Anderson 1987; Neal and Hinton
1993; Zhang 1993; Hinton et al. 1995: Dayan et al. 1995; Saul. Jaakkola and Jordan
1996] is to minimize an upper bound on C, thus guaranteeing that the cost is lower than
a certain value. (This is described in Section 3.3, where it is called mazimum likelihood-
bound estimation.) The logarithmic term in (4.16) is first bounded by introducing an extra
distribution Q(h{v) and using Jensen's inequality:

v h z—l(v h) 2—€(v.h)
log, | Y~ 27| = log; [Z QbIv) 5] 2 3 Q(BIv) logy 5——-
- Qhv) ] = & Qmlv)"
(4.17)
Inserting this bound into (4.16), we get an upper bound on C:
Q(hlv) /
C<ZP V)ZQ hiv) logs 5—gru 5y (4.18)

which is equal to the suboptimal bits-back coding rate (4.8). So. these methods — including
the algorithms presented in Section 3.4 — minimize the suboptimal bits-back coding rate.
As with exact maximum likelihood estimation, these methods do not minimize the rate for

an encoder that always picks the shortest codeword.



4.4 The bits-back coding algorithm 104

The probability for each
codeword is given by the
-<—  partition height

02
$oae
X

20l
II~
2,

> 4

Part of the auxiliary
data defines a finite 5
precision random

number BRI i
% X X
v_4

SRS A

0203 \

The auxiliary data selects
a codeword

NIII X
.

Figure 4.3: Feeding a random number into an arithmetic decoder with appropriate probabilities
(shown by the partition heights within a column) selects codewords (shaded partitions), while at
the same time conserving information.

4.4 The bits-back coding algorithm

To implement the communication scheme shown in Figure 4.1. we need a general method of
recovering the auxiliary data bits from the codeword choices. In the mixture of Gaussians
example, we considered a specific input symbol for which there were two codewords. These
codewords were selected equally often so that a single bit could be used for bits-back. If the
codeword selection distribution is dyadic’, Huffman decoding [Huffman 1952] can be used
to pick codewords. In this section. [ consider the case of an arbitrary codeword selection
distribution. Software that implements the bits-back coding algorithm described in this

section can be found at http://www.cs.utoronto.ca/"frey.

In the case of an arbitrary codeword selection distribution. it is not obvious how random
codeword choices can be made without losing auxiliary data information. To address this
problem, consider the operation of an arithmetic decoder [Rissanen and Langdon 1976:
Witten, Neal and Cleary 1987]. It receives a finite-precision number on [0, 1) and extracts
from it a series of decisions according to a table of probabilities. If a collection of uniformly
distributed finite-precision numbers on [0, 1) is decoded in parallel, we will obtain a collection
of decisions whose distribution exactly matches the table of probabilities. Figure 4.3 shows
how an arithmetic decoder can be used to conserve the information in the auxiliary data
when making random codeword choices. The probabilities associated with the decisions
form the table of the arithmetic decoder. while the auxiliary data defines a random number

2i.e., each probability is an integral power of 2.
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Figure 4.4: The block diagrams for (a) the bits-back encoder and (b) the bits-back decoder.

to be decoded. Each column of the figure corresponds to a single codeword choice and is
partitioned into several possible outcomes with the height of each partition proportional to
the probability of the corresponding outcome. It is easy to see that if the random number
defined by the auxiliary data is uniform, codeword choices will be made according to the
codeword selection distribution (as shown for a particular case by the shaded partitions).
It is also easy to see that by applying an arithmetic encoder to the sequence of decisions.

we can regenerate the random number.

Figures 4.4a and 4.4b show block diagrams for the bits-back encoder and decoder re-
spectively. When the bits-back encoder acquires a symbol v, it uses the codeword selection
distribution Q(h|v) with an arithmetic decoder to choose codeword h, while consuming
some auxiliary data bits. The multi-valued source code is then used to produce a codeword
of length é(v, h). (For the experiments described in the next section, the multi-valued source
code is implemented using an arithmetic encoder in conjunction with a source model distri-
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Figure 4.5: The need for extra auxiliary data is eliminated by feeding the codeword bits back into
the bits-back encoder as auxiliary data.

bution P{h|@)P(v]h.8) as described in Section 4.3). When the bits-back decoder receives
the codeword, it first decodes v and h using the multi-valued source code. It then uses

the codeword selection distribution @Q(h|v) with an arithmetic encoder to recover auxiliary
data bits back from the codeword choice h.

Insofar as algorithm complexity goes, for an arbitrary codeword selection distribution,
the codeword selection procedure described above requires an arithmetic encoder/decoder
pair. If codewords are produced using arithmetic coding, the incremental cost of the code-
word selection procedure is not overwhelming. In a hardware implementation (e.g.. [Feygin

1995]), the codeword selection procedure can run in parallel with codeword production.

4.4.1 The bits-back coding algorithm with feedback

In practice. when encoding a block of symbols. extra auxiliary data is often not readily
available. One solution to this problem is to use the binary form of a portion of the block
of symbols for auxiliary data. However. so that the bits-back are efficiently utilized. this
portion of symbols should first be source coded. Figure 4.5 shows a scheme for using the
same multi-valued source code for doing just this. when the codewords have integer lengths.
In order to encode a block of symbols, some initial primer bits (e.g., a few unencoded source
symbols) are first placed in the queue. When the next symbol is bits-back encoded, some
of the bits in the storage queue are used for auxiliary data. The resulting codeword is
fed back into the storage queue so that it can (possibly) be used as auxiliary data later
on. Once the entire block of symbols is encoded. the bits-back decoder proceeds to remove
the codewords from the storage queue in reverse order. Since the decoder has no way of
knowing a priori how long each codeword is, it is essential that the encoder reverse the
bits within each codeword before feeding the codeword into the storage queue. The source
symbols are decoded in reverse order compared to the order in which they were encoded.
As decoding proceeds, the recovered bits-back are fed into the opposite end of the storage
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queue and will later be used as codeword bits or primer.

This method is inherently block-oriented. since each block must be decoded in the op-
posite order in which it was encoded. As a consequence, a block delay is introduced, which
is often undesirable. Shorter block lengths will lead to extra overhead due to the primer
and also due to framing information (such as a codeword used to indicate the end of the
block). However, if the block delay is tolerable, this scheme nicely eliminates the need for
extra auxiliary data.

When the multi-valued source code is implemented using arithmetic coding, the above
feedback procedure cannot be used as defined. An arithmetic encoder produces a sequence
of codeword bits and in general there is no way to break apart this sequence into pieces of
integer length such that each piece corresponds to one symbol. This problem is easily solved
by dividing the block of symbols into sub-blocks. The arithmetic encoder used to produce
codeword bits is halted after each sub-block of symbols is processed. The resulting series
of codeword bits is reversed and fed into the storage queue as described above. Practical
arithmetic encoders usually waste only a few bits (2 in the implementation described in
[Witten. Neal and Cleary 1987]) when encoding is terminated. The sub-block size should
be chosen so as to minimize the effect of this wastage. For example, if the optimal bits-back
coding rate is 1 bit/symbol, then choosing a sub-block size of 1000 symbols/sub-block will
lead to a rate increase of only 0.2%. On the other hand, if the optimal bits-back coding
rate is 1000 bits/symbol, arithmetic encoding can be terminated after each symbol (i.e..
the sub-block size is 1 symbol/sub-block) and the rate will increase by only 0.2%.

4.4.2 Queue drought in feedback encoders

At first sight, it may appear that queue drought is a serious problem. This can occur if the
arithmetic decoder in the bits-back encoder uses up all of the bits in the storage queue and
still can’t make a codeword choice. In fact, this is usually not a problem because practical
arithmetic decoders/encoders {Witten, Neal and Cleary 1987} use a coding value with a
restricted size (32 bits in my implementation). Consequently, in my implementation no
more than 32 auxiliary data bits will ever be drawn from the storage queue when making
a codeword choice. In degenerate cases where the codeword selection distribution places
very little mass on one or more short codewords, it is possible for a queue drought to occur
when a sequence of very short codewords are chosen that consistently draw a large number
of bits each from the storage queue. However, even in such degenerate cases, the sequence
of events that leads to a queue drought is highly atypical. I have found that in practice
queue drought is not a problem, as long as a reasonable amount of primer (say 20 patterns)

is used.
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4.5 Experimental results

In this section, I present two sets of results for bits-back data compression. The source
models are Helmholtz machines trained using the wake-sleep algorithm (see Section 3.4).
The first data set consists of simple patterns of horizontal and vertical bars. The second
data set consists of binary images of handwritten digits.

4.5.1 Bits-back coding with a multiple-cause model

In this section, I describe how bits-back coding can be applied to a binary Bayesian network
source model, that has one layer of hidden binary variables. Then. [ present compression
results when the model is fit to images of horizontal and vertical bars using the wake-sleep
algorithm described in Section 3.4.3. [ compare the compression efficiency of the one-to-
many bits-back source coding algorithm with the one-to-one source code obtained using
approximate shortest codeword selection, and also with the UNIX gzip utility. The multi-
valued source code has over 68 billion codewords for each input symbol. and there is no
tractable way to mix them, as there is with a hidden Markov model. For a given symbol.
most of these codewords are extremely long and therefore play a negligible role in the source
code. However. it turns out that the rate for an algorithm that uses a tractable approxi-
mation to shortest codeword selection is significantly higher than the suboptimal bits-back

coding rate. This indicates that multiple codewords should in some way be accounted for.

[t turns out that there isn’t an efficient way to convert the multi-valued source code
for the sigmoidal Bayesian network into a single-valued source code that achieves a rate
that is comparable to the bits-back coding rate. To perform such a conversion, we must
compute most of the probability mass corresponding to the codewords for a given data
vector. Because of the combinatorial way in which the latent variables h interact to produce
P(v|h), the marginal probability mass P(v) cannot be computed in a tractable manner.
v could be encoded bit by bit using Gibbs sampling to collect statistics. However. this
procedure would require the computationally taxing simulation of a Markov chain for each

element in v.

In order to use bits-back coding, we need a codeword selection distribution that is close
to P(h|v,8). The Helmholtz machine with the wake-sleep learning algorithm provides an
estimate of the optimal codeword selection distribution. The learning algorithm jointly es-
timates the generative network P(v,hj@) and a recognition network Q(h|v, ¢) =~ P(h|v.9).
So, an input pattern can be encoded as follows. The sender first uses an ancestral order
for the recognition network to compute the probability for the first latent variable (in the
ancestral order). This probability and some auxiliary data are then fed into an arithmetic
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decoder which outputs a value for the first latent variable. Given the input pattern and the
value for the first latent variable. the sender then computes the probability for the second
latent variable, and so on. Once h has been chosen in this manner. the entire configuration

for {v.h} is arithmetically encoded using the method described in Section 4.1.

The receiver decodes the entire configuration for {v,h} and then computes the prob-
ability for the first latent variable using the same ancestral order that was used by the
sender. This probability and the value for the variable are fed into an arithmetic encoder.
While this process is repeated for the remaining latent variables, the arithmetic encoder
will output auxiliary data bits.

So that we can compare the performance of bits-back coding with the actual entropy
rate of the source. [ used a synthetic source to produce 6 x 6 binary images. The images
are iid., and each image is produced by turning on each of the 12 possible horizontal and
vertical bars with probability 0.2. (Both types of bars may appear in the same image.) The
entropy rate of this source is 8.6 bits/image.

The multiple-cause network had a single hidden layer containing 36 binary variables.
in addition to the visible layer containing 36 binary variables. In order to avoid the need
for extra auxiliary data. bits-back coding with feedback was used (see Section 4.4.1). The
images were grouped into sub-blocks of size 20 images/sub-block and a block size of 200
sub-blocks/block was used. Before each block was encoded, the first sub-block of binary
images was used to prime the storage queue. After each block of images was communi-
cated, both the encoding model and the decoding model were adapted using the wake-sleep
algorithm with a gradient descent step size of 0.01. The parameters for both the gener-
ative network and the recognition network were initialized to 0.0 before any images were
processed. I also approximated shortest codeword selection by picking for each image v the
configuration h that maximized Q(h|v, ¢). (The quality of this approximation is discussed
below.) Choosing the configuration h that maximizes Q(h|v, ¢) can be done efficiently by
considering one latent variable at a time. Figure 4.6 shows the number of codeword bits
communicated as a function of the number of blocks encoded for both of these methods.
The curves for the uncoded binary image data and the Shannon limit given by the entropy
rate of the source are also given. The curve for the UNIX gzip utility with the “-best”
option is shown for comparison. (Although the UNIX gzip utility is not really meant for
image compression, I include it as a reference point for the reader.) It is evident that if we
were to compare the Helmholtz machine with gzip, we would arrive at different conclusions
depending on whether we used approximate shortest codeword selection or bits-back cod-
ing. The bits-back coding curve is clearly superior to the curve for approximate shortest

codeword selection.



4.5 Experimental resulits

110

I-6€+07 L] T Ll T T - L
Shortest codeword coding (Helmholtz machine) ------
1.4e+07 UNIX gzip utility (with -best option) -~ i
32 Bits-back coding (Helmholtz machine) ——
S 1.2e+07 | P
2 Do
g A%
E \‘c,o ’__7-'
3 les07 N ;
2 8e+06 [ L T J
7} -
B 6e+06 | L g
£ des06 | ’ ]
20406 | T - T ghanpon VT ]
() == o L L 1 ) L 1
0 50 100 150 200 250 300 350 400

Number of biocks encoded

Figure 4.6: Experimental results for a Helmholtz machine with one hidden layer of binary units
applied to binary synthetic images.

Table 4.1: Rate comparisons of software-implemented codes for synthetic images.

Rate (bits/image)

Uncoded binary images 36.0
UNIX gzip utility (with “-best™ option) 22.7
Approximate shortest codeword selection (Helmholtz machine) 21.0
Bits-back coding (Helmholtz machine) 12.3
Logistic autoregressive network 10.7
Shannon limit 8.6

Table 4.1 gives a comparison of the rates obtained for the next block after 400 blocks of
images were processed. The rate for approximate shortest codeword selection is significantly
higher than the rate for bits-back coding, indicating that a significant practical savings can
be made by using the new algorithm as opposed to shortest codeword selection. However,
the communication rate for a logistic autoregressive network that was trained on-line (using
a learning rate of 0.01) is also given in Table 4.1, and is significantly lower than the rate
for the Helmholtz machine. It appears that although bits-back coding opens the door to
new multi-valued source codes, the ones studied in this section are not yet competitive with

simpler compression methods.
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How close does the approximation to shortest codeword selection come to actually picking
the shortest codeword for each data vector? Since there are over 68 billion codewords for
each image in the above example. we cannot make a direct comparison by actually searching
for the shortest codeword. However. consider the same type of multiple-cause network.
except with 9 hidden variables and 9 visible variables, applied to similar synthetic data.
except with an image size of 3 x 3 and a bar probability of 0.1. This network is small
enough that an exhaustive codeword search is possible. After processing 400 blocks of 1000
images each, I found that the approximation to shortest codeword selection gave a rate of
5.92 bits/image and exact shortest codeword selection gave a rate of 5.87 bits/image. These
two rates are indistinguishable in the first decimal place. I expect that the results for the
approximation used for the larger network are also close to the results that would have been

obtained if an exhaustive search had been performed.

4.5.2 A Bayesian network that compresses images of handwritten digits

Figure 4.7 shows 50 examples of the binary images that were fed into an adaptive hierarchi-
cal Helmholtz machine source model and compressed using bits-back coding. The binary
Bayesian network that we use as a source model had three hidden layers of binary vari-
ables and one bottom layer of 64 visible variables. From top to bottom, the three layers of
causes had 16 variables. 20 variables, and 24 variables, giving a total of 60 latent variables
(280 codewords for each input pattern). Both the top-down and the bottom-up networks
were fully-connected from layer to layer, but had no connections within each layer. The
Helmholtz machine was fit to a training set consisting of 100,000 images, using the wake-
sleep algorithm.
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Table 4.2: Rate comparisons for software-implemented source codes on the binary digit data.

Rate (bits/image)

Original binary file 64
Shortest codeword selection using the Helmholtz machine 60
gzip -best 39
Bits-back coding using the Helmholtz machine 33

A comparison of the average rates obtained on the training set using approximate shortest
codeword selection and bits-back coding with the estimated binary Bayesian network, as
well as the rates obtained by the UNIX gzip utility with the -best option. are given in
Table 4.2. The rate for shortest codeword selection is again significantly higher than the
rate for bits-back coding, indicating that a significant practical savings can be made by
using bits-back coding.

4.6 Integrating out model parameters using bits-back coding

As noted in Section 4.3. bits-back coding is closely related to statistical inference. In fact,
the optimal bits-back coding rate is equivalent to Rissanen’s stochastic complezity [Rissanen
1989] if we interpret the choice of codeword as a model parameter. Also, if the codewords
are constructed by choosing a prior over codeword identities (P(h|6%) in (4.14)), bits-back

coding effectively integrates over a discrete set of models.

Both of these relationships lead to an interesting application for bits-back coding. Sup-
pose we are interested in encoding blocks of source symbols and that the source changes
from block to block. but not within any single block. Given a model with a continuous
parameter vector @, there is a single block codeword with length —log, P(D!|8) for each
block of source symbols, D. According to the principles of Bayesian analysis. we ought to
encode D by integrating over the entire continuum of models, giving a codeword of length
—log, P(D)} = - log, fa P(D|6)P(6)d6. In practice. this integral is usually impossible to
compute and an approximation must be used. One approximation is to use the maximum
a posteriori (MAP) model (i.e., 8 = argmaxgP(D|8)P(8)), for which the parameters 6 are

communicated using some (hard to determine) precision.

In fact, bits-back coding can be used to communicate each block of symbols using the
entire continuum of models, as long as a good approximation to the posterior distribution,
Q(8|D), is available. This distribution is used as the model selection distribution (in place
of the codeword selection distribution) and the model parameters are communicated to an
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arbitrary precision. Whereas with the MAP approach. greater precision eventually leads to
an increase in coding rate. with the bits-back coding approach. greater precision usually
leads to a decrease in coding rate. Intuitively, this can be seenr as an interaction of two
processes. First. the extra codeword length caused by greater precision is partly recovered
as bits-back. Second. greater precision usually leads to a more accurate approximation to
the posterior distribution, and therefore shorter codewords on average. The latter process
dominates except in the unusual case when the quantized version of Q(8|D) has a lower
entropy relative to P(#|D) than the unquantized version. I am currently exploring the use

of bits-back coding for integrating over continuous parameter spaces.




Chapter 5

Channel coding

Our increasingly wired world demands efficient methods for communicating discrete mes-
sages over physical channels that introduce errors. Examples of real-world channels include
twisted-pair telephone wires, shielded cable-TV wire, fibre-optic cable, deep-space radio, ter-
restrial radio, and indoor radio. Each of these channels is subject to information-theoretic
limitations, physical degradation, and governmental regulation. The prime information-
theoretic limitation is Shannon’s limit, which gives the maximum average number of infor-
mation bits that can be communicated per second over a specific channel for a given set
of transmitter constraints (e.g., transmission power). Examples of physical degradation in-
clude attenuation, thermal noise, self-interference (inter-symbol-interference), multiple-user
interference, multiple-path radio reflections, and power limitations in practical circuits. Ex-
amples of governmental regulations include transmission power limits, bandwidth usage,
and information packet sizes. Together, all of these restrictions and many more define the

practical channe! coding problem of how to communicate discrete messages reliably.

Despite the multi-faceted nature of the practical channel coding problem, the bottom
line is nonetheless quite straightforward. (See [MacKay 1998] for an excellent introduc-
tion to information theory and its connections with probabilistic inference.) In order to
communicate, the transmitter sends a finite-duration real-valued signalling waveform. This
waveform is determined by a binary information sequence, which we usually assume is uni-
formly distributed over all possible information sequences. The duration of this waveform
may correspond to a relatively short block of information or an infinite-length limiting-case
block of information. Once the transmitter has produced a signalling waveform, it is trans-
formed stochastically by the channel and a received waveform or channel output waveform
is obtained at the output of the channel. The receiver then uses the received waveform to

make a guess at the information sequence.
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Physical channels are usually band-limited, meaning that for practical purposes the chan-
nel output waveform will not have any frequency components above some limit W Hz. Many
channels are also linear (or we assume they are). so that the frequency components of the
signalling waveform that are above W Hz will not influence the channel output. Because
of this, we need only consider signalling waveforms that are also band-limited to W Hz.
Using Nyquist sampling at a rate of 1/At = 2W samples/second, a signalling waveform
defined on [0. VAt] can be represented ezactly by the discrete-time sequence a = {ai};";'ol.
The transmission of each sample a; is called a channel usage. Similarly, the channel output

waveform can be represented exactly by the discrete-time sequence y = {y,-}:ial.

Since the information sequence is effectively random, for multiple trials different sig-
nalling sequences will be produced according to some (usually discrete} distribution p(a).

The channel output sequence is probabilistically related to this sequence by a channel model
p(yla).

For a fixed level of additive noise, the transmitter can communicate in an error-free fash-
ion simply by using a very powerful signalling waveform. However, this is an uninteresting
and practically expensive solution to the channel coding problem. In practice. a limit is

placed on the average transmission power:

e [FEstetaa < P (5.1)

It turns out that the information rate (in bits/channel usage) that can be communicated
with arbitrarily low probability of bit error. is bounded from above by the capacity C of

the channel:

1 plyla)

C= ,ub,Eng_“ N, p(a)p(y|a) log, —;m-dady, (5.2)
where the power constraint in (5.1) is enforced during the maximization. This optimal
information rate was introduced by Shannon [1948]. and is just the mutual information
between the channel input sequence and the channel output sequence. {As a practical note,
to lower the bit error rate or to use an information rate that is closer to C, we must generally

use longer signalling waveforms.)

The channel coding design game essentially consists of devising encoders (ways to map
information sequences to signalling sequences) and decoders (ways to guess at what the
information sequence is for a given received sequence). In this thesis, I am mainly inter-
ested in conveying to the reader the insight and breadth of application offered by describing
channel coding problems using Bayesian networks and using the probabilistic inference al-
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gorithms presented in Chapter 2 to perform decoding. For this reason, I begin this chapter
by distilling out the essence of the channel coding problem and presenting a simple proto-
typical problem that will be the focus for the remainder of the chapter. In the prototypical
problem, the transmitter sends a discrete-time binary sequence of +1's and —1's. and each
of these values is corrupted by additive Gaussian noise. So. the encoder maps each infor-
mation sequence to a binary signalling sequence, and given a received noisy sequence. the
decoder makes a guess at the binary information sequence. It turns out that the solution
to this problem has far-reaching consequences in multi-level (nonbinary) coding [Imai and
Hirakawa 1977], mainly due to recent proofs by Wachsmann and Huber [1995] and Forney
[1997].

In Section 5.2, I show how Bayesian networks and probability propagation can be
used to describe and decode Hamming codes. convolutional codes. turbo-codes. serially-
concatenated convolutional codes. and low-density parity-check codes. In Section 35.3. I
introduce “trellis-constraint codes”. which are a trellis-based generalization of all of the
above codes. In Section 5.5, I present a method for speeding up iterative decoders that are

implemented on serial machines.

5.1 Simplifying the playing field

The real-valued signalling sequences described above are the price to pay for an efficient
description of digital communication in the real world. where signal amplitudes are usually
real-valued. The channel coding problem would be much simpler to pose and implement if
(1) signal levels were discrete. (2) the channel model was simple. and (3) the mapping from
information sequences to channel inputs was assumed to be of a relatively simple form.
While this approach can simplify the problem, it can also lead to a communication rate
that is far below the general capacity given in (5.2). In this section, I simplify the coding
problem in the ways described above, while attempting to argue that if done properly, the
simplification will lead to a communication rate that is practically very close to capacity.

5.1.1 Additive white Gaussian noise (AWGN)

A channel model that is simple and works well in practice is the AWGN channel. Additive
white Gaussian noise with single-sided spectral density Ny is added to the signalling wave-
form to obtain the channel output waveform. Assuming the channel is bandlimited to W
Hz (as described above). the decoder can apply a low-pass filter with bandwidth W Hz and

sample the noisy waveform at the Nyquist rate to get a discrete-time sequence {y; ;i‘ol. It
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turns out that an AWGN channel simply adds independent Gaussian noise to each input
value a;, where the variance of the noise is related to Ny by 0? = Np/2:

N-1 N-1
p(yla) = [] p(wla) = [] p(uila:)
=0 i=0

e_(yi -al)2/202

> , 1=0,1,... , N—-1. (5.3)

p(yilai) =
o

If the decoder applies a low-pass filter with a higher bandwidth, then frequency components

of the AWGN that are above W Hz will increase the effective noise on the sequence {y; ;\‘;31.

The AWGN channel leads to an appealing formulation of maximum likelihood (ML)
signal detection. The log-probability density of the received sequence given the signalling

sequence is

N-1 N-1

1 2 3 .

logp(yla) = log I=I0 P(yilas) = -5 ;‘)(yi - a;)* = Nlog V2o, (54)

So. ML signal detection for the AWGN channel consists of finding the allowed signalling

sequence a that is closest to y in Euclidean distance.

5.1.2 Capacity of an AWGN channel

For the AWGN channel, each channel output y; depends only on a;, and not any a;, j # ¢
Consequently, the signalling distribution p(a) that will give the highest mutual information
is of product form:

N-1

pa) = [] pla)- (5.5)

=0

(This distribution allows us to stuff as much information into each a; as possible.) In this

case, the capacity in (5.2) simplifies to

la.
C = max p(a:)p(yila;) log, p———-(yff I)daid'yi (5.6)
pla;) aq ¥ p(yi)
VAR[q;]<P

bits per channel usage. Note that for a product-form signalling distribution, the power limit
in (5.1) becomes VAR[a;] = [ p(ai)a’da; < P.

It turns out that the maximum in (5.6) is obtained by a Gaussian signalling distribution
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with variance P (see [Cover and Thomas 1991]), and the capacity is
P
log, (1 + ;5). (5.7)

For example, if P = 302, then C = 1 bit/channel usage. For reasonable power levels, it is
not possible to deterministically map C bits of information to a value a; that will have a
Gaussian distribution (or one that is even close to Gaussian). For example, try mapping 1
bit of information to a variable whose distribution close to Gaussian!

The optimality of a Gaussian signalling distribution leads to a new type of coding concept
called shaping. A signalling technique has good shape if the marginal signalling distributions
are nearly Gaussian. If the signalling shape is poor. then the capacity given in (5.7) cannot
be achieved no matter how good a code is used. For example, if binary signalling is used (a; €
{~VP, +VP}), then the channel capacity cannot be achieved, as shown in Section 5.1.6
and Figure 5.2.

The interplay between shaping and coding is very important. As another example, here
is a method that has an excellent signalling shape, but uses a poor code. We first construct
a table that maps each information vector u to a real value ¢y in a way so that a uniform
distribution over information vectors induces a nearly Gaussian distribution over ¢,. For
a given information vector u, the transmitter simply sends a constant waveform. a; = ¢y,
i=0,....N ~1. Using this method, each marginal distribution p(a;} can be made to be as
close to Gaussian as desired, by increasing /N and refining the map from u to ¢,. However.
because the waveform is constant there is no way to introduce a good code. A fruitful

structure that leads to a nice mix between coding and shaping is the signal constellation.

5.1.3 Signal constellations

Since the information sequence is discrete and the signalling sequence is determined from the
information sequence, the allowable set of signalling sequences is also discrete. How should
we specify the set of allowed signalling sequences? One way is to require that the signalling
variable at each time step be a member of a fixed signal set. Figure 5.1a shows the signalling
points for two signalling variables ag and e, where each variable can take on one of eight
values. Even if a good code is used with these signalling points, the marginal signalling
distributions are quite far from Gaussian and so the rate will be below capacity. Instead,
consider breaking the signalling sequence into a series of groups (i.e., subspaces) containing
n values each. A discrete set of values (called a constellation) is then judiciously chosen
within each n-dimensional subspace in a way that leads to marginal signalling distributions

that are close to Gaussian.
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Figure 5.1: Signal constellations can be used to increase the Euclidean distance between signalling
points (indicated by crosses). (a) A naive constellation for an n = 2 signalling set with 64 points.
(b) The same 64 points can be rearranged in order to reduce the transmission power. (c) The
constellation from (b) scaled up so that its transmission power is the same as the power for (a) —
notice that the nearest-neighbor distance has increased.

Another way to understand the benefit of using signal constellations is through a sphere-
packing argument. Consider the 2-dimensional constellation shown in Figure 5.1a that
corresponds to the naive approach described above. For a fixed noise level in an AWGN
channel, detection error falls off with distance between nearest-neighbor signals. Imagine
centering a 2-dimensional sphere on each signal point as shown. Now. by trying to pack the
spheres as tightly as possible, we obtain the constellation shown in Figure 5.1b. The nearest-
neighbor distance has not changed. but the transmission power has decreased (since the sum
of squared distances to signalling points is lower). In order to use the same power as the naive
approach uses. we can now increase the Euclidean distance between nearest-neighbors as
shown in Figure 5.1c. This will increase the noise-tolerance of the system. and so increase the
communication rate relative to the naive approach. For higher-dimensional constellations.
this sphere-packing gain becomes more valuable. (This simple example ignores the increase
in the number of nearest neighbors from 4 to 6. See Lee and Messerschmitt [1994] for more
details.)

5.1.4 Linear binary codes are all we need!

Although the design of optimal high-dimensional constellations is straightforward in theory.
it is very difficult to implement practical encoders and decoders that use these constellations.
Consequently, we must approximate optimal constellations by practical ones. Ways of
doing this include trellis codes (a.k.a. coset codes) [Ungerboeck 1982: Calderbank and
Sloane 1987: Forney 1988]. which your telephone modem probably uses. Alternatively.
Wachsmann and Huber [1995] and Forney [1997] have shown that by using a technique
called multilevel coding [Imai and Hirakawa 1977}, we can achieve the capacity in (5.2) by
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combining several relatively simple linear binary codes. That is, optimal constellations can
be well approximated if we can design appropriate linear binary codes. I refer to these new
proofs to justify my focus on linear binary codes in this thesis.

A binary code maps each binary information vector u of length K to a binary codeword
vector x of length V. The rate R of such a binary code is defined as

R =K/N. {5.8)

[ will sometimes highlight the mapping by writing the codeword for u as x(u). A binary
code is linear if for any u; and us, x(u; & we) = x(u;) = x(uz)., where, “+” indicates
component-wise modulo 2 addition (0:£20=0,0-21=1,150=1.and 1< 1 =0). Note
that this form of linearity is highly nonlinear in the sense of continuous algebra (where
1 + 1 =2). In general, linear codes are easier to analyze than nonlinear ones.

Each bit in the codeword can be transmitted using binary signalling, also called hinary
antipodal signalling. (If the binary signal is modulated by a carrier so that it is a passband
signal, it is sometimes called binary phase-shift keying (BPSK).) For z; = 1 we transmit
a; = VP and for z; = 0 we transmit a; = —V'P.

power is P. For an AWGN channel. we can write the probability density of channel output

[n this way, the average transmitted

y; directly in terms of z; (bypassing a;):

1 —(.’I:—\/f—’-)gf"za;" ifc, =1
=€ if o; =
pyile) = { Vo o l (5.9)
__l_.e"(.’li"i'\/ﬁ)-/?(f' if L; = 0.
2o
A simple linear binary code is the repetition code. Each information bit is transmitted m
times, so that R = K/mK = 1/m. Using (5.9). the probability density of channel outputs

Yo, --- «Ym—1 given zg is

m-1 (LS VB2 f2(a? )

e 'm ifrg=1

m—1i TSN oy 2
= e~ 2amo wrVPIASIM g gy =0, (010,
where the constant of proportionality does not depend on zy. By basing the decoding
decision on —;;Z:’;Blyi, the receiver effectively reduces the noise variance by a factor of
1/m. It turns out that this is a very poor code. because the suppression of noise comes at

too high a cost in terms of decreasing the code rate.
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5.1.5 Bit error rate (BER) and signal-to-noise ratio (E,/Np)

For many engineering applications, the distortion value of interest is the probability p, that
an information bit will be guessed incorrectly by the decoder. When analytic methods
are not available for computing p,, we must resort to simulation. Often the simulation
results are summarized as a point estimate called the bit error rate (BER). The BER is
usually simply the observed fraction of information bit errors. When it is not possible
to simulate the transmission of enough words to accurately pin down the probability of
bit error, techniques such as the one described in Section A.5 can be used to produce a
confidence interval.

To compare the BER's of different coding schemes, we need a relatively robust measure
of the noise level that eacn system is being exposed to. Simply stating the noise variance
for an AWGN channel is not sufficient, since one system may be transmitting at a much
higher power than another. Also, as shown above. performance can be improved in a trivial

fashion simply by repeating signals. A reasonably robust measure of the noise level is

P P

Ep/No = NoR _ 202R’

(5.11)
where P is the transmitter power, Ny is the single-sided spectral density of the AWGN, o2
is the AWGN variance, and R is the rate of the code. Ey/Ny is the ratio between the power
that is transmitted per information bit, and the AWGN power. It is usually given in units
of decibels (dB),

10 log,q Es/No- (5.12)

Notice that although dividing by R in (5.11) does cancel the effect of the improvement
obtained trivially by repeating signals. it does not take into account the increased bandwidth
needed for lower rate codes. In fact, in the next section we see that the minimum Fj/Ng
needed for error-free communication depends on the rate. So, when comparing one coding
system to another that uses a lower rate, we must keep in mind that there is usually some
way to modify the former system so as to lower its rate and at the same time lower the
Ey/Ny it needs to achieve error-free communication at that rate.

5.1.6 Capacity of an AWGN channel with +1/ — 1 signalling

Engineering bandwidth restrictions aside, what are the communication limits for an AWGN
channel when we use +1/ — | signalling (i.e., binary antipodal signalling with P = 1)?
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(Without loss of generality, we will assume that P = 1.) The answer to this question depends
on whether we are willing to tolerate a certain non-vanishing BER. Before considering the
non-vanishing BER case in the next section, I will address the simpler case of a vanishing
BER. More specifically, what is the minimum E3/Ng needed to communicate error-free
using a rate R code on an AWGN channel with +1/ — 1 signalling?

The mutual information between the channel input @; and the channel output y; at time
step i gives the number of bits that can be communicated per channel usage on average.
For an AWGN channel with +1/ — 1 signalling, the mutual information as a function of the

noise variance is

M(o?) = / a;.u:) lo p(ai, yi) dyi
) a.e{—ZlH} 'J'p( g 52 p(a)p(w:)

I

> f plai. yi) loga p(yilai)daidy; — / p(y:} log p(y:)dy:
ae{-1,+1} 7Y w (5.13)

The first term is the entropy of y; given a;, which is just the entropy of a Gaussian distri-
bution, 0.5 logy(2mo2e). Since p(y;) is a mixture of two Gaussians. the second term is

e—wi—1)2/20% o ~(yi+1)*/20% e~ n=17%1207  ~(n+1)%/20°
/ [ :! 0g2 [ ] dyl!
Y

+ = + -
2V 2ro? 2V2ro? 2V 2ma? 2V 2mo? (5.14)
which can be approximated quite well using a Monte Carlo method. In this fashion. it is
possible to obtain a good estimate of M (a?).

To communicate error-free, the rate of the code must be less than the mutual information
between the channel input and the channel output: R < M(oc?) [Shannon 1948). Insert-
ing 62 = 1/(2RE,/Ny) (see (5.11)) into this inequality, we get R < A/I(-QR—E:JW). After

rearrangement, we have

Ey/Ng > (5.15)

1
2RM-Y(R)’

This bound (based on an interpolated inverse of a Monte Carlo estimate of M (c?)) is shown
in Figure 5.2a, along with the minimum FE},/Np required by optimal (Gaussian) signalling
(see Section 5.1.2).

For example, an R = 1/2 code requires Ey/Ng > 0.2 dB. To communicate error-free
without coding (R = 1), an infinite Ey/Nj is needed.

A standard result from information theory is that regardless of rate, an E,/Ny of at least
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Figure 5.2: (a) The minimum £} /Ny needed for error-free communication with a rate R code. over
an AWGN channel using +1/ — 1 signalling and optimal (Gaussian) signalling. (b) The minimum
achievable BER as a function of Ej /Ny for several different code rates using +1/ — [ signalling.

log,2 = —1.5917 dB) is required for error-free communication {Cover and Thomas 1991].

This limit is apparent from the convergence of the curve as R — 0.

5.1.7 Achievable BER for an AWGN channel with +1/-1 signalling

If we are willing to tolerate a certain non-vanishing BER while using a rate A code. it
turns out we can use a lower Ep/Ng than described in the previous section. One way to
pose the problem for this scenario is: For an optimal code with rate R and a specified
BER, what is the minimum required Ey/Ny? We can think of this as a two-stage problem.
First, we find a shorter representation for the information vector. This representation
will obviously be lossy, since a uniformly random vector of information bits cannot be
represented losslessly on average by a shorter binary vector. Second, we use a new optimal
code to communicate this shorter representation error-free over the channel with the largest
tolerable noise variance. Since the representation is shorter than the information vector, the
new code rate R’ will be lower than the old one: R’ < R. So, the tolerable noise variance
for error-free communication of the lossy representation will be higher than the tolerable

noise variance for error-free communication of the information vector.

We would like to use a representation that is as short as possible, so that R’ will be

as low as possible and the tolerable noise variance will be as large as possible. However.



5.2 Bayesian networks for channel coding 124

shorter representations are also more lossy and will lead to higher BER's. What is the
minimum ratio between the length of the representation and the length of the information
vector, such that the error rate does not rise above the specified BER? It turns out that the
minimum ratio is just the mutual information between a uniformly random bit and its noisy
duplicate, where the probability that the value of the duplicate is flipped is BER. (This can
be viewed as a result of rate-distortion theory applied to a Bernoulli source [Cover and
Thomas 1991].) This mutual information is

1 + BER log,(BER) + (1 — BER) log,(1 — BER). (5.16)
The new code rate is
R' = R[1 + BERlog,(BER) + (1 — BER) log,(1 — BER)]. (5.17)

For a specified R and BER, we can compute R’, determine the maximum tolerable noise
variance 0?2 = M~!}(R’), and compute the minimum E,/Ny = 1/(20%R) (note that to
compute E},/Ng, we use the original R, not R’). Figure 5.2b shows the achievable BER as
a function of E, /N for several different rates. For each rate. the value for £,/Ny at which
the BER converges to zero is the same as the value shown in Figure 5.2a. These achievable
BER curves are used as guides for ascertaining the performances of codes and decoders

later in this chapter.

5.2 Bayesian networks for channel coding

A critical component of a channel coding system is the decoder. Even if the code gives
excellent performance when optimal decoding is used, if there is no way to implement a
practical decoder that gives similar performance. it is not clear that the code is of any use.
Channel decoders can be broken into two classes: algebraic and probabilistic. Algebraic
decoders for binary codes usually quantize the channel output to two or three levels. The
received vector y is interpreted as a copy of the binary codeword vector x, with some of the
bits flipped. Alternatively, received values that are highly ambiguous (e.g., the value 0.1
when +1/ — 1 signalling is used) are considered as erasures — i.e., the corresponding bit
in y is assumed to be unknown. In both cases, decoding is a matter of using linear algebra
(in a finite field) to find the binary codeword vector x that is closest to y in Hamming
distance (dimensions that are erased are ignored). There are many techniques for algebraic
decoding [Lin and Costello 1983; Blahut 1990; Wicker 1995] and algebraic decoders usually
take advantage of special structure that is built into the code to make decoding easier.
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However, it is obvious that by using such a coarsely quantized form of the channel output.
these decoders are suboptimal (e.g., the value 0.1 from above does provide some evidence
that a signal value of +1 was sent).

Probabilistic decoders are designed to make as much use as is practically possible of
the real-valued unquantized channel output. The goal of probabilistic decoding is either
maximum likelihood (ML)} information sequence detection. or maximum ¢ posteriori (MAP)
information bit detection:

uMt = argmax p(y|u),
u
uplAP = argmax p(urly) 0< k< K — 1. (5.18)
UL

Obviously, ML sequence detection minimizes the word error rate (we usually assume that
all words are equally likely a priort). while MAP bit detection minimizes the BER. So. by
definition, optimal probabilistic decoders are superior to optimal algebraic decoders. How-
ever, can we implement useful probabilistic decoders? The success of algebraic decoders is
due to the way they take advantage of the algebraic structure of a code. Is there an anal-
ogous structure that probabilistic decoders can use? In this section, [ show how Bayesian
networks can be used to describe probabilistic structure for channel codes and how the
inference algorithms that make use of this structure can be used for probabilistic decoding.
See [Frey et al. 1998] for a monograph on the applications of graphical models to channel

coding.

5.2.1 Hamming codes

Hamming codes are an extension of the notion of adding a single parity-check bit to a vector
of information bits. Instead of adding a single bit, multiple bits are added and each of these
parity-check bits depends on a different subset of the information bits. Hamming developed
these codes with a special algebraic structure in mind. Consequently, they are really meant
for binary channels where the noise consists of randomly flipping bits. However. Hamming
codes are short and easy to describe, so they make a nice toy example for the purpose of
illustrating probabilistic decoding.

An (N.K) Hamming code takes a binary information vector of length K and produces
a binary codeword of length N. For an integer m > 2, N and K must satisfy N = 2™ -1
and K = 2™ — m — 1. The Bayesian network for a K =4, NV = 7 rate 4/7 Hamming code
is shown in Figure 5.3a. The algebraic structure of this code can be cast in the form of the
conditional probabilities that specify the Bayesian network. Assuming the information bits




5.2 Bayesian networks for channel coding 126
a
( ) (b) de-i [T T v T . .
Foead v
L " Achievable BER ——1
BENN MAP bit decoder -----
RS Prob. prop. decoder -
“x..  Algebraic decoder —-
le-2 I =i - Uncoded -
N \\'\.\
g ..
g le-3 + R i
led . . ‘ . i
le-5 - - N B \:";: -“.\ ) i
le-6 L A 1 L 4 “. o
-2 0 2 4 6 3 10 12
Ey/Nq (dB)

Figure 5.3: (a) The Bayesian network for a K = 4, ¥ = 7 Hamming code. (b) BER performance
for the maximum likelihood decoder, the iterative probability propagation decoder, and an algebraic
decoc)ier. (The key lists the curves in the order in which they appear from left to right at BER =
le-6.

are uniformly random, we have P(ux = 1) = P{ux = 0) = 0.5, £ = 0.1,2,3. Codeword
bits 0 to 3 are direct copies of the information bits: P(zilug) = 8(zk,ux), & = 0.1.2,3.
Codeword bits 4 to 6 are parity-check bits:

P(I4|U0, up. ll2) = 6(:54'”0 = uy 'E‘UZ),
P(zs|ug, ui, uz) = 6(zs,up + uy = us),

P(zglu1, ug, u3) = 6(z6,uy -+ u2 + ua). (5.19)

Assuming binary antipodal signalling with power P over an AWGN channel, the conditional
channel probabilities p(y:|zi), i = 0,1,2,3,4,5,6 are given by (5.9), where o? is related to
Ey/Ny by (5.11).

This code is small enough that we can compute the MAP bit values in (5.18) exactly
using Bayes rule. The BER-E;/Np curve for MAP bit decoding and the achievable BER
(see Section 5.1.7) at rate 4/7 are shown in Figure 5.3b. Although there is an 8 dB gap
between these curves at a BER of 1075, the MAP decoder gives a significant improvement
of 2 dB over uncoded transmission (whose corresponding curve is also shown).

By making hard decisions for the channel outputs (calling a value below 0 a “0” and
calling a value above 0 a “17), an algebraic decoder can be used. This decoder applies a
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parity-check matriz to the received binary word in order to try to locate any errors. (See
Lin and Costello [1983] for details.) In this fashion, it can correct up to one bit error
per codeword. The curve for algebraic decoding is also shown in Figure 5.3b. Algebraic
decoding gives an improvement of only 0.5 dB over uncoded transmission at a BER of
1075 Although this may seem surprising, keep in mind that the receiver for the uncoded
transmission is allowed to average the channel output to reduce the effective noise (see
Section 5.1.4) 7/4 times longer than the receiver for the algebraic decoder.

One way to approximate the probabilities P(ug|y) used for MAP bit decoding is to
apply the probability propagation inference algorithm (Section 2.1) to the Bayesian network
shown in Figure 5.3a. Probability propagation is only approximate in this case because the
network is multiply-connected or “loopy” (e.g.. up-z4-ui-rs-ug). Once a channel output
vector y is observed. propagation begins by sending a message from yx to i for £ =
0.1.2,3.4,5.6. Then. a message is sent from zi to ug for £ = 0.1.2,3. An iteration now
begins by sending messages from the information variables ug, u;, uz, uz to the parity-
check variables x4, £5. z¢ in parallel. The iteration finishes by sending messages from the
parity-check variables back to the information variables in parallel. Each time an iteration is
completed. new estimates of P(uify) for £ = 0. 1. 2. 3 are obtained. The curve for probability
propagation decoding using 5 iterations is shown in Figure 5.3b. It is quite close to the
MAP decoder. and significantly superior to the algebraic decoder. The interactive software
package BNC (Bayesian Networks for Coding) that was used to obtain these results is
described in Appendix B.

For this simple Hamming code. the complexities of the probability propagation decoder
and the MAP decoder are comparable. However. the similarity in performance between
these two decoders raises the question: “Can probability propagation decoders give per-
formances comparable to MAP decoding in cases where MAP decoding is computation-
ally intractable?” Before exploring a variety of systems where probability propagation
in multiply-connected networks gives surprisingly good results. I will review convolutional
codes, whose Bayesian networks are essentially singly-connected chains. For these networks.
the probability propagation algorithm is exact and it reduces to the well-known forward-
backward algorithm [Baum and Petrie 1966] (a.k.a. BCJR algorithm [Bahl et al. 1974]).

5.2.2 Convolutional codes

Convolutional codes are produced by driving a finite state machine with information bits.
The outputs of the finite state machine (which may include copies of the inputs) are then
used as codeword bits. A code for which each information bit appears as a codeword bit is
called systematic. Typically, linear convolutional codes are used, and any code in this class
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can be represented by a linear feedback shift register (LFSR). An example of a systematic
code of this type with a memory of 7 bits is shown in Figure 5.4a. Each box represents a
1-bit memory element and D is a delay operator: D™ur = ug_,. In this example, there
is no feedback from the shift register to its input; a convolutional code of this type is
called nonrecursive. An output is produced by adding (modulo 2) values “tapped” from
the memory chain. The output taps for this rate 1/2 systematic nonrecursive convolutional
code were chosen to maximize the minimum distance dni, between codewords [Lin and
Costello 1983]. For this code, dnin = 7, meaning that the codeword vectors for any two
information vectors will differ in at least 7 places. Using the delay operator, this code can
be described by the following two equations:

Tok = Uk, ZToksl = G(D)ur =(1+ D+ D*+ D3 + DS + D")u, (5.20)

where G(D) is called the generator polynomial. This polynomial is often expressed in octal
form by letting the coefficient of D be the least significant bit and the coefficient of D" be
the most significant bit. In this case the octal representation is 353s.

Since dn;, plays the central role in determining the error-correcting capabilities of a code
at high signal-to-noise ratio E;/Ng, we would like to use codes that have large dp,j,. One way
to obtain a greater dmin for convolutional codes is to use a larger memory. However, it turns
out that decoding complexity increases exponentially with the size of the memory. In fact,
it is possible to increase the minimum distance of any systematic nonrecursive convolutional
code without using more memory. Figure 5.4b shows a rate 1/2 nonsystematic nonrecursive
convolutional code that has dpnjn = 10. (The two sets of output taps that maximize dmin
were found using a method described in [Lin and Costello 1983].) This code can be described

as follows:

zo = Gi(D)ug = (1 + D+ D* + D* + D")uy,
Toks1 = Ga(DYug = (1 + D* + D* + D° + D® + D')uy. (5.21)

For a nonsystematic convolutional code, there are two generator polynomials corresponding
to the two sets of output taps. For this code, the octal representation is (247g.371g).

Although the performance of the nonsystematic code described above is better than the
systematic one at high E,/Np, it is the other way around for values of E,/Np near the
Shannon limit. Berrou and Glavieux [1996] have argued that a nice compromise between
these codes is a systematic recursive convolutional code. The code in Figure 5.4b can be
converted to a systematic code by taking one set of the output taps (either one will do)
and using them as feedback to the input of the shift register, making a LFSR. If we do this
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Figure 5.4: The linear feedback shift register (LFSR) configurations for rate 1/2 convelutional
coggg with maximum dgi,. (a) A systematic nonrecursive convolutional code (dyin = 7). (b) A
nonsystematic nonrecursive convolutional code (dmin = 10). (c) A systematic recursive convolutional
code (dpin = 10).

with the upper set of taps. we obtain the rate 1/2 systematic recursive convolutional code
shown in Figure 5.4c. This code can be described by the following two equations:
Ik = Uk,

1+ D3+ D*+ D%+ D6+ D7
1+ D+ D2+ D5+ D7

Zok+1 = G(D)ug = Uk- (5.22)
The second equation is to be interpreted as

(1+ D+ D?+ D%+ D'jzgeqr = (1 + D+ D* + D* + D° + D),
(5.23)
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which can be derived from the figure!. The former expression allows us to retain the G(D)
notation. which in this case is 2473/3715. From the point of view of linear algebra, we
have obtained this new code simply by dividing G,(D) and G2(D) from above by G(D).
It can be shown that this operation does not change the algebraic structure of the code.
For example, the new code has dyj, = 10 as before. However. as we saw in the previous
section. there is more to channel coding than algebraic structure. It turns out that this

systematic recursive code performs better than the above nonsystematic nonrecursive code
at low Ep/Ny.

5.2.3 Decoding convolutional codes by probability propagation

Bayesian networks for nonsystematic and systematic convolutional codes are shown in Fig-
ures 5.5a and 5.5d. In the former case. both codeword bits at stage £ depend on the encoder
state as well as the information bit, whereas in the latter case, one codeword bit is simply
a direct copy of the information bit. Notice that because of the dependency of at least
one codeword bit at stage k£ on the encoder state and the information bit, these networks
are not singly-connected. However. they can be converted to singly-connected networks in
the following way. By duplicating the information bits, we obtain the networks shown in
Figures 5.5b and 5.5e (see Section 2.1.4). By grouping each state variable with one of these
duplicates as shown by dashed loops, we obtain the singly-connected networks shown in
Figures 5.5¢ and 5.5f (see Section 2.1.4).

In the new networks, each state variable actually contains a copy of the current infor-
mation bit. We can interpret each state variable as a binary number whose least significant
bit (LSB) is a copy of the current information bit and whose most significant bit (MSB)
is the oldest value in the LFSR (i.e.. the value in the memory element that appears on
the far right in the LFSRs shown in Figure 5.4). Let s;/2 be the binary number obtained
by cutting off the LSB of si. and let s,%2 be the value of the LSB of s¢. Let f(sx—;) be
the binary number obtained by cutting off the MSB of s;_; and replacing the LSB of sg_,
with the value of the LFSR feedback bit obtained by adding (modulo 2) the values of the
bits in s¢_;/2 that correspond to the LFSR feedback taps. So, f(sg—1) is the value of the
new state at stage k. ezcluding information bit u;. Finally, let g(si) be the bit obtained by
adding (modulo 2) the values of the bits in s; that correspond to the LFSR output taps. If
there are two sets of taps. then there will be two output functions ¢;(sx) and ga(sg)-

Now, we can specify the conditional probabilities for the convolutional code Bayesian

'In fact, this representation is algebraically consistent. We can, for example, multiply the numerator
and the denominator in (5.22) by a polynomial in D without changing the set of output sequences that the
LFSR can produce. See [Wicker 1995] for a textbook treatment.
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Figure 5.5: The multiply-connected Bayesian network (a) for a nonsystematic convolutional code
can be converted to a singly-connected network by duplicating the information variables (b) and then
grouping together information variables and state variables (c). The multiply-connected network for
a systematic convolutional code can be converted to a singly connected one (d) — (f).

networks. For the sake of brevity, I will consider only the systematic code shown in Fig-

ure 5.5f. Assuming the information bits are uniformly random, we have P{uy = L} =
Plup =0) =0.5. k=0,... ,K — 1. The state transition probabilities are
P(sklsk—1,ug) = 0(sk/2. fsk—1))0(sx%2,ux)., k=0.... . K —-1, (5.24)

where we assume s_; = O to initialize the chain. The codeword bit probabilities are

P(zog|uk) = d(zok, uk). P(Toks1lsk) = 8(Tok+1.9(sk)), £=0,... K- 1L
(5.25)

Assuming binary antipodal signalling with power P over an AWGN channel, the conditional

channel probabilities p(yilz;), ¢ = 0,... ,2K — 1 are given by (5.9). where o2 is related to

E,/Ng by (5.11).
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Figure 5.6: The computation of P(uk|y), P(s«|y). and P(z:|y) by probability propagation using the
forward-backward message-passing schedule, which minimizes the total number of messages passed.
Arrows represent messages in transit, whereas solid dots represent messages waiting to be sent.

Using the singly-connected Bayesian networks for convolutional codes. probability propa-
gation can be used to compute the a posteriori bit probabilities P(ug|y) exactly. The MAP
values u\’mp can be obtained by applying a threshold of 0.5 to these probabilities. Althcugh
the probability messages can be passed in any order. the forward-backward message-passing
schedule gives the lowest number of total messages passed, and so it is most appropriate
for decoding on a serial machine. Figure 5.6 shows how messages are passed according to
this schedule in the Bayesian network for a simple systematic convolutional code. First,
probability messages are propagated from the observed channel output variables (crossed
vertices) to the “backbone” of the chain (the state variables). Then, the messages are
buffered as shown. (See Section 2.1.3 for an explanation of buffered messages in probability
propagation.) Pictorially, when a message arrives at a vertex on an edge, but is buffered
and not propagated on to the other neighbors, I draw a small dot adjacent to each of the
other edges. Each of these dots can be turned into an arrow (indicating a message is being
passed) at any time. Next messages are passed forward along the chain, and then back-
ward along the chain. Finally, messages are propagated to the information bits and to the
codeword bits. (It is not necessary to propagate probabilities to the observed variables,
since P(y;|y) is trivial to compute.) Notice that this algorithm computes P(ukl|y), P(stly),
and P(z;ly). If all we need are the information bit probabilities P{uk|y), then it is not
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Figure 5.7: Performances of 7-bit memory LFSR convolutional codes with maximum dmiq.

necessary to propagate the last set of messages shown in the figure.

Figure 5.7 shows the performances of the three convolutional codes described above. The
systematic nonrecursive convolutional code has a BER that is significantly higher than the
BER’s for the other two codes at reasonably high Ej/Ny. The nonsystematic nonrecursive
convolutional code and the systematic recursive convolutional codes have similar BER's,
except for low By /Ny, where the systematic code has a significantly lower BER. The software
package BNC was used to obtain these results.

5.2.4 Turbo-codes: parallel concatenated convolutional codes

Although the convolutional codes and decoder described above give roughly a 5.7 dB im-
provement over uncoded transmission at a BER of 1073, they are still roughly 3.7 dB from
Shannon’s limit at this BER. Up until the last few years, a serially-concatenated Reed-
Solomon convolutional code [Lin and Costello 1983] was considered to be the state of the
art. At a BER of 1073, this system is roughly 2.3 dB from Shannon’s limit. However, in
1993, Berrou, Glavieux, and Thitimajshima introduced the turbo-code and the practical it-
erative turbo-decoding algorithm. Their system was roughly 0.5 dB from Shannon’s limit at
a BER of 1075. Also, these binary codes have been successfully combined with multi-level
coding to obtain bandwidth-efficient coding within 0.7 dB of Shannon’s limit [Wachsmann
and Huber 1995].

The original presentation of turbo-codes lacked a principled framework. For example, it
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Figure 5.8: (a) The Bayesian network for a K = 6, ¥ = 12 rate 1/2 turbo-code. (b) The
performance of a K = 65,336 rate 1/2 turbo-code using 18 iterations of turbo-decoding.

was not at all clear how decoding should proceed when there were three or more constituent
convolutional codes instead of two [Divsalar and Pollara 1995]. However, it turns out that
the turbo-code can be concisely described as a multiply-connected Bayesian network, and
that the turbo-decoding algorithm is just probability propagation in this network [Frey
and Kschischang 1996; Kschischang and Frey 1997; MacKay, McEliece and Cheng 1997].
This general graphical model framework makes it easier to describe new codes and their
corresponding iterative decoding algorithms. For example, decoding a turbo-code that has
three constituent convolutional codes is just a matter of propagating probabilities in the

corresponding Bayesian network.

Figure 5.8a shows the Bayesian network for a rate 1/2 turbo-code. For a given infor-
mation vector, the codeword consists of the concatenation of two constituent convolutional
codewords, each of which is based based on a different permutation in the order of the
information bits. The subnetwork indicated by a dashed loop is essentially the same as the
network for the systematic convolutional code described above. The only difference is that
every second LFSR output is left off, for a reason given below. The information bits are
also fed into the upper convolutional encoder, but in permuted order. Every second LFSR
output of the upper code is also left off. By leaving off every second LFSR output in both
constituent codes, the total number of codeword bits is twice the number of information
bits, so the rate is 1/2.

Once the channel output y for an encoded information vector is observed, probability
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propagation can be used to approximate P(u;|y) and perform approximate MAP bit de-
coding. Figure 5.8b shows the performance of the probability propagation decoder for a
K = 65,536 rate 1/2 turbo-code with a randomly drawn permuter. The scripts used with
the BNC software package to obtain these results are given in Appendix B.3.

Each (identical) constituent convolutional code uses a 4-bit LFSR with polynomials
(21/37)s. Although at low E3/Np the turbo-code gives a BER that is significantly higher
than the BER for uncoded transmission, the turbo-code curve drops below a BER of 1073
at less than 0.5 dB from Shannon’s limit. Berrou and Glavieux suggest that for very low
BER performance (say 10~!0), the permuter should be designed to maximize dm;, [Berrou
and Glavieux 1996]. I have found that for BER's at or above 1073. a randomly drawn
permuter typically works fine.

Since the turbo-code network is multiply-connected, we must specify a message-passing
schedule in order to decode by probability propagation. That is, the order in which messages
are passed can affect the final result as well as the rate of convergence to a good decoding
solution. Since the network is multiply-connected, we must also specify when to stop passing
messages, since otherwise they would propagate indefinitely. Figure 5.9 shows how messages
are passed up to the end of the first iteration of turbo-decoding. First, messages are passed
from the channel output variables (crossed vertices) to the state variables of both constituent
codes. Assuming we are only interested in estimating P(ut|y), we can now ignore the
channel output variables and the codeword variables. The simplified network with buffered

messages waiting to be sent is shown in the upper-right picture in Figure 5.9

Next, messages are passed from the information variables to the state variables of one of
the constituent codes. This chain is processed in the forward-backward manner and then
messages are propagated to the information variables. Messages are then passed to the state
variables of the other constituent code. These messages are called “extrinsic information”
in [Berrou and Glavieux 1996]). Once the second chain has been processed in the forward-
backward manner, messages are propagated back to the information variables, as shown in
the lower-right picture in Figure 5.9. This completes the first iteration of turbo-decoding.
Messages are then propagated from the information variables back to the first constituent
code chain, and so on. The series of 16 pictures outlined by a dashed rectangle in Figure 5.9
shows how messages are passed during one complete iteration of turbo-decoding. (Note that
after the first iteration, there aren’t any buffered messages in the first picture within the
dashed rectangle. The buffered messages in this picture are due to the initial observations.)
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Figure 5.9: The message-passing schedule corresponding to the standard turbo-decoding algorithm.

5.2.5 Serially-concatenated convolutional codes, low-density parity-check
codes, and product codes

It turns out that many of the iterative decoding algorithms for a variety of codes can be
viewed as probability propagation in the corresponding Bayesian networks for the codes
[Frey and Kschischang 1996]. Figure 5.10a shows the Bayesian network for a serially-
concatenated convolutional code [Benedetto and Montorsi 1996b]. The information bits
are first encoded using the upper convolutional code. The generated codeword bits x!
are then permuted and fed into a second convolutional encoder, whose output bits x? are
transmitted over the channel. The iterative decoding algorithm introduced in [Benedetto
and Montorsi 1996a] was presented without reference to any of the literature on probability
propagation. However, their iterative decoding algorithm is in fact probability propagation
in the corresponding Bayesian network. After observing the channel output y, the decoder
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propagates messages from y to the lower chain. Then, messages are propagated forward
and backward along the lower chain before being passed to the upper chain. The upper
chain is processed and then messages are passed back to the lower chain, and so on.

The theoretical ML-decoding upper bounds on BER-E}/Ny for serially-concatenated
convolutional codes are superior to those for turbo-codes [Benedetto et al. 1997]. However,
it is not clear that these theoretical bounds are of any practical value. First of all, the bounds
are based on the average performance over all possible permuters. Suppose that on average
1 in every 1000 permuters gives a very poor code that when ML-decoded gives a BER of 0.1.
Further, suppose that the other permuters give codes that when ML-decoded give BER's of
10~ 10, If we randomly pick a permuter, we are very likely to get a code that gives a BER of
10719, However, the average performance over all permuters is 0.001 - 0.1 + 0.999 - 10710 =~
10~*. In this way, the average performance over permuters can be misleading. Second of
all, since ML decoding is intractable, in practice we must use a suboptimal decoder, such as
probability propagation. Even if the ML-curve for one code is superior to that of another

code, the performance of the practical iterative decoder may be inferior.

It is suggested in {Benedetto et al. 1997] that for short block lengths (say, K = 200)
serially-concatenated convolutional codes give better performance than turbo-codes, when
iterative decoding is used. However, for short block lengths. it is not at all clear that either
of these codes performs better than sequential decoding [Lin and Costello 1983] with a

convolutional code with large memory.

Figure 5.10b shows the Bayesian network for a low-density parity-check code [Gallager
1963; Tanner 1981; MacKay and Neal 1996]. These codes were largely forgotten in the
channel coding community for roughly 35 years. probably due to the computationally in-
tensive encoder and decoder that Gallager proposed. However, it turns out that they have
excellent theoretical performance [MacKay 1997] and that the iterative decoder proposed
by Gallager is in fact equivalent to probability propagation in the network shown above. In
these codes, each parity-check vertex g¢; requires that the codeword bits {z;};cq, to which

g; is connected have even parity:

P(gil{z;}ieq.) = 8(ai, B =,). (5.26)

JEQ

where q is clamped (observed) to 0 to ensure even parity. The term “low-density” refers to
the fact that each parity-check variable is connected to very few codeword bits (a vanishing
fraction, as N — oc). (Notice that since this network is parity-check oriented and does not
show how an information vector is mapped to a codeword, it appears an encoder must use
a pre-derived generator matrix and encode the K information bits in O(K?) time.) The
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Figure 5.10: The Bayesian networks for (a) a K = 3, N = 9 rate 1/3 serially-concatenated
convolutional code; (b) a(nonsystematic) K = 2, N = 6 rate 1/3 low-density parity-check code; and
c)a (nonsystematic) K=3 N=9ratel/3 product code.

iterative decoder passes messages between the parity-check variables and the codeword bit
variables. Due to the simplicity of the codeword constraints {parity-checks), the decoder is
simpler than the iterative decoder for turbo-codes. However, it appears they do not come
as close to Shannon’s limit as do turbo-codes for rates of 1/3 and 1/2 [MacKay and Neal
1996].

Figure 5.10c shows the Bayesian network for a product code. In this network, each
variable g; is a generalized parity-check variable — for example. ¢; may require that {z;},c0q,
be a codeword in a convolutional code. Recently proposed iterative decoders for product
codes {Lodge et al. 1993; Hagenauer. Offer and Papke 1996] can be viewed as probability
propagation in the corresponding networks. As with the low-density parity-check code, the
decoder iteratively passes messages between the generalized parity-check variables and the

codeword bit variables.
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5.3 Trellis-constraint codes (TCC’s)

In the previous section. I presented the Bayesian networks for a variety of codes whose
iterative decoding algorithms can be viewed as probability propagation in corresponding
Bayesian networks. Can we use this perspective to propose new codes and derive new
iterative decoders? Partly, the answer is “yes”’. However, we cannot expect to obtain good
results simply by tossing the ingredients of a Bayesian network into a bag and shaking.
First of all. we want the resulting code to give excellent performance if ML decoding is used.
Second of all. we want the resulting code to give good results when decoded by probability
propagation, which is only an approximation to maximum likelihood decoding. Keeping
these issues in mind. a wise approach to proposing new code networks is to incrementally
generalize previous work. In this section, I present a code that can be viewed as a trellis-
based generalization of turbo-codes, serially-concatenated convolutional codes, low-density

parity-check codes. and product codes.

5.3.1 Constraint codes

A binary (N. K) code is a set of 2% codewords, that is a subset of a (usually much larger)
set of 2V binary vectors of length N. So, one way to view a code is as the set of N-vectors
that satisfy a set of constraints. [ will refer to a code that is described in this way as a
constraint code. For example, any (N, K) linear binary code can be described by a set of
N - K linearly independent parity-check equations. A more complex example is an (N. K)
binary convolutional code whose codewords are derived from the 2K allowed configurations
of the Markov chain that describes the code (e.g.. see Figure 5.6). This view of codes is
similar to the systems approach of Wiberg [1996].

We can construct a Bayesian network that describes the parity-check equations for a
code by creating one vertex g; for each parity-check equation . and one vertex z; for each
codeword bit. The parents of parity-check variable ¢; are the codeword variables {z;};cq,
which appear in equation i. The conditional probability for parity-check variable 1 is

P(qil{z;}jeq.) = 6(a: €D =;)- (5.27)

J€Q:
Finally, clamping q = 0 defines the allowed configurations of the graphical model. If there
are N codeword bits and N — K parity-check variables whose parity-check equations are
linearly independent, then the number of allowed configurations is 2K A code that is
described in this way can be iteratively decoded by propagating probabilities back and
forth between the set of parity-check vertices and the set of codeword bit vertices. (The
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Figure 5.11: (a) The constraint network for the turbo-code shown in Figure 5.8a. (b) Each of the
upper and lower subnetworks in (a) can be made singly-connected by grouping parity-check vertices.

Bayesian networks and iterative decoders for low-density parity-check codes and product

codes fit into this framework — see Section 5.2.5.)

For example, Figure 5.11a shows the parity-check network for the simple turbo-code
shown in Figure 5.8a. The channel output variables have been left out for the sake of
graphical simplicity. As usual, the parity-check variables are clamped to 0. The 6 systematic
codeword bits are in the center row of unclamped vertices. The two sets of 3 nonsystematic
codeword bits are in the upper and lower rows of unclamped vertices. Notice that each
parity-check vertex checks a single nonsystematic bit as well as all systematic bits to its
left (up to the permutation). One way to decode this network is to propagate probabilities
from the systematic bits to the upper row of parity-check bits, back down all the way to
the lower row of parity-check bits. and so on. Notice that each systematic-parity-systematic
sweep of propagation is not exact, since both the upper and lower subnetworks (obtained

by a horizontal cut across the systematic bits) are multiply-connected.

5.3.2 A code by any other network would not decode as sweetly

Since any linear binary code can be described by a set of parity-check equations. it may
seem that a fruitful approach to getting closer to capacity is to simply find a good code (e.g.,
a random linear code), write down its parity-check equations, construct the corresponding
Bayesian network, and then decode it using probability propagation. However, in general
the parity-check network will be multiply-connected. Since probability propagation is only
approximate in such networks, the performance of the decoder will depend heavily on which
set of linearly independent equations is used. Operations such as grouping parity-check
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variables together (creating generalized check variables that have more than 1 degree of
constraint), will also heavily influence the decoder’s performance.

For example, after grouping each set of 6 parity-check vertices into one check vertex
with 6 degrees of constraint. we obtain the network shown in Figure 5.11b. In this case,
both the upper and lower subnetworks are singly-connected, so each systematic-parity-
systematic sweep of propagation is exact. Obviously. iterative decoding in this network
will give different results than iterative decoding in the original network. Notice that by
grouping several parity-check variables. we obtained a check vertex with greater complexity
than a single parity-check. In general. this will lead to a check vertex for which exact
propagation is intractable. However, with judicious design. even a very high-order check
vertex can still be processed in a tractable way. In the above example, each check vertex
can be processed using the forward-backward algorithm.

In order to obtain a good coding system, we need to simultaneously find a good code and
a corresponding Bayesian network that gives good performance when decoded by probability

propagation.

5.3.3 Trellis-constraint codes

The term frellis was introduced by Forney [Forney 1973] and refers to a diagram that
explicitly shows the values of a discrete state variable at each time step and the allowed state
transitions. A trellis is more general than a LFSR. since in a trellis the state transitions and
even the number of states may vary with time. (Also. a trellis can represent a nonlinear
code.) Figure 5.12a shows the trellis for the first 4 time steps of a rate 1/2 systematic
recursive convolutional code with LFSR polynomials (5/7)g. le.. Top = up and ropy =
(1 + D*)ug /(1 + D + D*). The levels of the state variable (black discs) corresponds to the
memory of the LFSR. and in this case there are 2 bits of memory. Each branch in the
trellis indicates an allowed state transition, and the corresponding branch variable values
(in this case the LFSR outputs Ik, I3k+1) are written beside each branch. Figure 5.12b
shows the corresponding Bayesian network. In the Bayesian network. the branch variables
are functions of the state alone, and so each state variable must have 8 levels instead of the

4 levels used in the trellis.

A trellis-constraint code (TCC) is a constraint code whose allowed configurations are
defined by the interleaved interactions between the branch variables of two or more trel-
lises. Because of the permuters, the branch variable interactions can lead to a TCC whose
equivalent single trellis is very complex, even if the constituent trellises in the TCC are
simple (e.g., 16 states in the experiments below). The permuters (interleavers) may be
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Figure 5.12: (a) shows the trellis for a simple rate 1/2 systematic recursive convolutional code.
Each branch indicates an allowed state transition, and the corresponding pair of cutput bits are
written beside the branch. (b) shows the corresponding Bayesian network, which requires one extra
bit of state so that the outputs can be determined directly from the state variables.

structured or random. and there is no restriction on which branch variables are allowed to
interact. For example, the systematic bits, the nonsystematic bits, or a mixture of both
may interact with the other trellises. Also, there is no restriction on which variables are
used as codeword symbols. For example, in a TCC with two trellises, the codeword bits
may be the nonsystematic bits of one trellis. the nonsystematic bits of both trellises, the
systematic bits of one trellis and the nonsystematic bits of the other trellis, etc.

Figure 5.13a shows the Bayesian network for a general TCC with n, trellises and a vector
of constraint satisfaction indicator variables ¢. (Each double-track arrow represents parallel
directed edges corresponding to the branch variables that participate in the constraints.)
Let n; be the number of branch variables participating in the ith constraint, and let the
corresponding branch variables be z; 1, ... , Tin;. (E.g., if each trellis contributes one branch
variable to each constraint, we have n; = n, for all 4, and z;; is the branch variable that
trellis j contributes to constraint ¢.) Let ¢; be the constraint satisfaction indicator for the
ith constraint. That is, ¢; = 1 if and only if {z; ; }?;1 is a valid configuration for constraint i;
otherwise, ¢; = 0. For example, we may require that the labels participating in constraint 7
have even parity, be equal, or form the codeword of a short code. For the equality-constraint
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Figure 5.13: (a) The Bayesian network for a general trellis-constraint code {TCC). The networks
for TCC’s corresponding to turbo-codes, serially-concatenated codes, low-density parity-check codes.
and product codes are shown in (b) — (e). “S” = systematic coupling; *NS” = nonsystematic
coupling.

interaction. the conditional probability for constraint indicator ¢ is
P(cil{z:, };‘=1) = ‘S(Ci: H?_'__l;l:,_) + l_[?:—_[[l - 1':'.1])- (5.28)

where z; ; € {0.1}. Notice that the conditional distribution for the constraint vector vari-

able ¢ factors:

Plel{{zi, Vi i) =[] Pleilizis sy (5.29)

=1

(This could of course be shown graphically in the Bayesian network. but the figure would

become much too cluttered.) The constraints are enforced by clamping ¢ = 1.

Viewed as a generalization of turbo-codes and serially-concatenated convolutional codes,
TCC'’s retain the graphical structure of two or more long chains that interact through a
permuter. As with other iterative decoders. I have found that the decoding complexity of
the probability propagation decoder for TCC's scales linearly with block length. However.
the encoding complexity for a TCC is not guaranteed to be linear, as it is for turbo-codes
and serially-concatenated convolutional codes. Later in this section, I give an example
of a TCC whose BER-E, /Ny performance is competitive with a turbo-code’s, but whose
encoding time is superlinear (possibly quadratic) in the block length. However, it should
be kept in mind that the encoder can use binary operations, whereas iterative decoders
use floating point or fixed (integer) point operations. So, it is often the complexity of
the iterative decoder that is most important for practical block lengths (e.g., in broadcast

applications, where an expensive encoder can be used, but the decoder must be highly
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affordable).

5.3.4 TCC’s with equality constraints

The equality constraint is the most severe constraint. If there are n; branch variables
participating in constraint i, then an equality constraint has n, — 1 degrees of constraint.
(I exclude constraints with n; degrees of constraint from consideration. since they do not

actually couple the trellises.)

Figures 5.13b to 5.13e show the TCC's corresponding to a simple turbo-code, a serially-
concatenated convolutional code, a low-density parity-check code, and a product code. Each
elongated ellipse corresponds to a constraint trellis, and each horizontal row of vertices
corresponds to the constraint vertices. Each group of edges leaving a trellis is labeled “NS”
(nonsystematic) if the corresponding set of branch variables is constrained by the trellis.
Each group of edges leaving a trellis is labeled “S” (systematic) if the corresponding set
of branch variables is not constrained by the trellis (i.e.. the set of branch variables is a
subset of a possible set of systematic branch variables). In all four cases. the constraints
are equality constraints. The TCC corresponding to a turbo-code consists of two or more
trellises that have equal (up to an interleaving) systematic bits. The TCC corresponding
to a serially-concatenated convolutional code consists of two trellises, where the systematic
bits of one trellis are equal to the permuted nonsystematic bits of another trellis. The
TCC corresponding to a low-density parity-check code consists of a large number of simple
parity-check trellises. where each constraint ensures that one nonsystematic branch variable
from each of a very small number of trellises are equal (two or three trellises are used in
[MacKay and Neal 1996}). Interestingly, the standard iterative decoders for low-density
parity-check codes [Gallager 1963: MacKay and Neal 1996] process the soft decisions for
each parity-check equation by applying the forward-backward algorithm to a parity-check
trellis. The TCC corresponding to a product code consists of one parity-check trellis for
each row and column of a rectangular arrangement of the constraints, where each constraint

ensures that the nonsystematic branch variables from the “row trellis” and “column treilis”

are equal.

The networks discussed above do not show which variables are used as codeword symbols.
Although the graphical structure of an TCC may be well-suited to decoding by probability
propagation, the quality of the code will depend on which symbols are used as codeword
symbols, among other things. For example, if the nonsystematic bits for only one of the
turbo-code trellises are sent, the double-trellis TCC degenerates into a single-trellis “TCC”

that is equivalent to a convolutional code.
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Figure 5.14: (a) The Bayesian network for a new TCC, called a nonsystematic TCC. (b) The
performance of a K = 63,536, N = 131.072 rate 1/2 nonsystematic TCC compared to a standard
turbo-code and a low-density parity-check code. The 95% confidence intervals were computed using
the methed described in Section 3.1.5.

5.3.5 Nonsystematic TCC’s

In this section. I present a new type of TCC that fills a gap in the spectrum of TCC's shown
in Figure 5.13. and give results that show this new TCC is competitive with turbo-codes
and low-density parity-check codes. The TCC's in Figure 5.13 vary in both their number
of constituent trellises and in which type of branch variables (systematic or nonsystematic)
they couple. TCC’s of the type shown in Figures 5.13b and 5.13c have a small number of
very long trellises, whereas TCC'’s of the type shown in Figures 5.13d and 5.13e have a large
number of relatively short trellises. In contrast, TCC’s of the type shown in Figure 5.13b
employ a systematic-systematic coupling, whereas TCC'’s of the type shown in Figure 5.13c
employ a systematic-nonsystematic coupling. Figure 5.14a shows a new type of TCC that
has very long trellises and employs a nonsystematic-nonsystematic coupling. I will refer to
this type of TCC as a nonsystematic TCC [Frey and MacKay 1997, in order to emphasize
how it differs from the TCC’s for turbo-codes and serially-concatenated convolutional codes.

Consider a TCC of this type, where the nonsystematic branch variables (which are
constrained to be the equal) are transmitted as codeword bits. Let N be the number of
codeword bits and let R; be the rate of trellis j (i.e., trellis j imposes N(1 — R;) degrees of
constraint on the codeword). Assuming that the constraints for all n, trellises are linearly
independent, the degrees of freedom left over after all trellises are coupled is K = N —
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721 N(1 = R;). So. the overall rate of the code is

R>1-) (1-R). (5.30)

=1

For each constraint that is linearly dependent on the other constraints. R is increased by
I/N.

Figure 5.14b shows the performance of a K = 65.536, N = 131,072 rate 1/2 nonsys-
tematic TCC, with two trellises (n, = 2). Each trellis was obtained by puncturing every
fifth nonsystematic bit of a rate 4/5 nonsystematic convolutional code with maximum dpn.
(The generators for this code were obtained from [Daut, Modestino and Wismer 1982] and
are (32,4,22.15.17)g.) After puncturing, each convolutional code had rate 3/4, so that the
overall rate of the TCC was 1/2. The BNC software package was used to obtain these results.
Although this nonsystematic TCC does not perform as well as a turbo-code with the same
K and N, it does perform significantly better than the best rate 1/2 low-density parity-
check code published to date [MacKay and Neal 1996] with K = 32,621 and N = 65. 389.
(I have observed that for long block lengths (N > 50,000), the only significant effect that
increasing the block length has is to steepen the slope of the BER-E} /Ny curve to the right
of the point of high curvature.)

The three iterative decoders used to produce the curves shown in Figure 5.14b iterated
either until a valid codeword was found or until a large number (200 for the turbo-code and
nonsystematic TCC. 100 for the low-density parity-check code) iterations were complete.
The 95% confidence intervals were computed using the method described in Section A.3.
The turbo-decoder frequently produced low-weight error patterns and much less frequently
produced high-weight error patterns. so I used the larger of the two confidence intervals
produced by ignoring the low-weight error patterns and by ignoring the high-weight error
patterns.

5.4 Decoding complexity of iterative decoders

The decoding complexities per iteration for low-density parity-check codes, turbo-codes, and
nonsystematic TCC’s vary as significantly as do their proximities to Shannon’s limit. The
decoding complexity for a low-density parity-check code is roughly Qg = 6/t multiplies
per codeword bit, where I is the average number of iterations required to find the correct
codeword, and ¢ is the average number of checks with which each codeword bit participates
[MacKay and Neal 1996}.
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For turbo-codes and nonsystematic TCC's, most of the computations are spent process-
ing the constituent trellises. Each section of a bi-proper trellis requires roughly 6 x 2
multiplies to process, where 2¥ is the number of states in the regular trellis. For a turbo-
code with rate R and n, constituent convolutional codes, there are N Rn, trellis sections in
all, so that the decoding complexity for a turbo-code is roughly Qrc = 6 RIn.2¥ multiples
per codeword bit. For a nonsystematic TCC. there are Nn, trellis sections in all. so that

the decoding complexity is roughly Q2nstcc = 612 multiples per codeword bit.

For example. at E,/Ny = 1.3 dB, the ¢t = 3 low-density parity-check code discussed in
the previous section has I = 11.2 (David MacKay, personal communication). so QgL = 202
multiplies per codeword bit. The R = 1/2, n, = 2, v = 4 turbo-code has I = 5.3. so
Qrc = 509 multiplies per codeword bit. The R = 1/2. n, = 2, v = 4 nonsystematic TCC
has I = 10.5, so QngsTcc = 2016 multiplies per codeword bit. Although the iterative decoder
for the low-density parity-check code clearly requires the fewest computations, it should be
kept in mind that the turbo-code and the nonsystematic TCC will yield significantly lower
BER's.

5.5 Speeding up iterative decoding by early-detection

The excellent bit error rate performance of iterative probability propagation decoders is
achieved at the expense of a computationally burdensome decoding procedure. In this sec-
tion, I present a method called early-detection that can be used to reduce the computational
complexity of a variety of iterative decoders. Using a confidence criterion. some informa-
tion symbols, state variables and codeword symbols are detected early on in the iterative
decoding procedure. In this way, the complexity of further processing is reduced with a
controllable increase in BER. [ present an easily implemented instance of this algorithm,
called trellis splicing, that can be used with turbo-decoding. For a simulated system of this
type, I obtain a reduction in computational complexity of up to a factor of four, relative to

a turbo-decoder that performs the fewest iterations needed to achieve the same BER.

5.5.1 Early-detection

One way to view early-detection is as a refinement of a block-oriented stopping criterion
used to terminate the iterative process in iterative decoders. For example, Hagenauer et al.
[Hagenauer, Offer and Papke 1996] proposed monitoring the relative entropy between the set
of soft information bit decisions for the current iteration and the previous iteration. When
the change in this relative entropy falls below some threshold, the iterative decoding process
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Figure 5.15: A plot of the log-odds ratio versus iteration number, for the correct value of each
information bit in a randomly selected set of 100 bits within the same block of 10 000 bits.

is terminated. The basic idea is that iterative decoding should stop when the decoder’s
soft decisions are stable. Block-oriented stopping criteria lead to iterative decoders that are
more efficient than fixed-complexity iterative decoders, since the stopping criteria effectively
allows the decoder to spend more iterations on “tough” blocks, and fewer iterations on

“easy” blocks.

Taking this reasoning one step further, I believe that in some cases, parts of the codeword
may be more easily decoded than other parts. Although different parts of a codeword are
usually inter-dependent, for particular noise patterns the coupling between parts may be
weak. In these cases, it makes sense that the decoder should spend more computations
on “tough” parts, and fewer computations on “easy” parts. During decoding, those parts
that are deemed to be successfully decoded are clamped. Decoding computations are then

focussed on the remaining parts.

For example, Figure 5.15 shows how the soft decisions for a randomly selected subset of
information bits {u} within the same block evolve during iterative decoding of a turbo-code.
The all-zero codeword was transmitted, so a large positive value of Li(ux = 0) indicates
that the decoder is quite confident of the value for ug, and that this value is correct. Large
negative values (none shown) of Li(ux = 0) indicate that the decoder is quite confident of

the value for uj, and that this value is wrong.
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These curves were produced by simulating the transmission of a single binary block over a
0.2 dB AWGN channel, for a rate 1/3 unpunctured turbo-code that had 10 000 information
bits, identical constituent encoders (21, 37)gctal, and a randomly drawn permuter. Clearly,
the decoder is correctly confident of many information bits long before it has sorted out
the values of other information bits. By detecting some of the well-determined bits early,
computations can be refocussed on decoding the less well-determined bits.

The notion of revisiting a decoding operation after “pinning” some of the variables
has been used before to improve BER performance. The most common application is
for decoding the serial concatenation of a Reed-Solomon outer code with a convolutional
inner code. For practical purposes, the Reed-Solomon decoder either outputs an error-free
codeword segment or flags the segment as a decoding failure. After the convolutional code
has been decoded and its output decoded by the Reed-Solomon decoder, the codeword
segments that are practically known to be error-free can be fed back to the convolutional
decoder and used to pin certain trellis states for a second round of improved decoding. By
using this approach, substantial coding gains have been reported by Lee {Lee 1977}, Collins
[Collins 1993], and Hagenauer et al. [Hagenauer, Offer and Papke 1993].

The present application of “pinning”. called early-detection, is meant to decrease the
computational complezity of decoding, but not improve BER performance or improve coding
gain. For example, turbo-codes do not have component decoders that can flag decoding
failures, so there is no way to be practically certain that an early-detected variable is
correct. When applied to some types of iterative decoders such as turbo-decoders. early-
detection actually worsens the BER performance. However, if the main concern in a system
is the computational complexity of the decoder, early-detection can be used to reduce the
complexity of an iterative decoder in a way that leads to a smaller increase in BER compared

to other techniques, such as performing fewer decoding iterations.

5.5.2 Early-detection criteria

As discussed in the next section, the computation time of an iteration decreases with the
number of early-detected variables. So, in order to obtain the greatest speed-up, the de-
coder should early-detect as many variables as possible. However, an overly aggressive
early-detection criterion will lead to a high rate of erroneous decisions, spoiling the BER
performance. In addition to this constraint, the early-detection criterion should be relatively
simple, so that the overhead of ascertaining which variables ought to be early-detected does
not overshadow the reduction in the computational complexity of subsequent iterative de-
coding. In this section, I explore criteria that use the soft decision reliabilities in order to
ascertain whether or not an early-detection should occur.
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The soft decisions used for iterative decoding can be represented as log-odds ratios that
approximate the true a posteriori log-odds ratios. The log-odds ratio for an information

symbol, state variable, or codeword symbol z at iteration ¢ given the channel output y is

Pi(z = 2'ly)

LYz = ') = log — .
=) = B A )

(5.31)
where Pi(z]y) is the approximation to the a posteriori distribution P(z|y) produced at
iteration ¢. I will let ¢ be fractional when the meaning is clear. For example. in a turbo-
decoder with two constituent codes. i = 0.5 refers to quantities produced by processing the
first constituent code for the first time.

In order to determine an appropriate early-detection criterion, I simulated the transmis-
sion of 100 blocks from a rate 1/3 unpunctured turbo-code that had 10 000 information bits,
identical constituent encoders {21.37)4ctal. and a randomly drawn permuter. I used binary
signalling over an additive white Gaussian noise (AWGN) channel with E, /Ny = 0.2 dB.
To speed up decoding, our forward-backward algorithm was implemented using a linear
interpolation approximation to the function log(l + exp(-)}. Also, our decoder did not
weight the “extrinsic information” by the reliability variances as was originally suggested
by Berrou et al. [Berrou and Glavieux 1996]. (I found that this weighting operation is not
necessary at BER greater than 107%.) Figure 5.16 shows a plot of the log-odds ratio versus
iteration number for the correct value of a randomly positioned information bit in each of
the 100 blocks. In contrast to Figure 5.15. this figure shows the diversity of log-odds ratio
convergence rates between blocks.

It appears from Figure 5.16 that the only simple criterion that a decoder can use without
introducing too many early-detection errors is a simple threshold. Higher order criteria, such
as the change in L(ug). would produce too many erroneous early-detections. Although the
relative entropy from one iteration to the next was successfully used in [Hagenauer, Offer
and Papke 1996] as a block-oriented termination criterion, the same rule wouid not work at
the more refined symbol-oriented level of early-detection. The decoder remains undecided
on some variables for many iterations (up to ¢ = 8.5 for one curve in Figure 5.16), and
consequently fl(,,k) does not change much for those variables. However. eventually the
decoder finds a consistent codeword segment and then the log-odds ratios for the related
information bits change drastically.

For the turbo-code system described above, Figure 5.17 shows 25 randomly selected
cases (each from a different block) for which the log-odds ratios drop below -10.0 during
decoding. These traces show that the decoder can become incorrectly confident of the value
of an information bit, but then with further iterations become correctly confident. By using
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Figure 5.16: A plot of the log-odds ratio versus iteration number, for the correct value of a randomly
positioned information bit in each of 100 decoded turbo-code blocks.
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Figure 5.17: A plot of the log-odds ratio versus iteration number, for the correct value of 2§

information bits (from different blocks) for which the log-odds ratio dropped below -10.0 during
decoding.
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a threshold of 15.0 for early-detection, all of the bits that the decoder correctly decodes as
i — oo can be detected early and correctly (the four curves that are between -5.0 and 10.0
at 1 = 12 eventually rise above 15.0). On the other hand, if the change in the log-odds
ratio is used for early-detection. many of the bits that the decoder correctly decodes as
i — > would be incorrectly detected early at the values for : where the curves stop falling
and begin to rise. That is, the change in L*(uy) is close to zero at the iteration where
the decoder begins to correct the bit. Higher order criteria may actually help in this case
{by detecting that a curve is turning around), but it appears the data is too noisy for this
approach to be successful. Also. higher-order criteria increase the computational overhead
of early-detection.

5.5.3 Reduction in decoding time due to early-detection

The Bayesian networks for a variety of codes are shown in the first column of pictures in
Figure 5.18. (The channel output variables are not shown — their likelihoods are to be
included as “bias” effects on the state variables, codeword bits. and information bits (where

applicable) during decoding.)

Let |P(z;|a;)| be the number of configurations of a discrete variable z, and its discrete
parents a; for which P(z;|a;) # 0, and let |a;| be the number of parents for z;. (If z; has
no parents, let |a;| = 1.) In general. the time needed for an iteration of iterative decoding

scales as
A"
Q=" |Pzla)al. (5.32)
=1

For example, if the constituent convolutional code for a turbo-code has memory v. then
|P(s!|s!_,.u:)| = 2! and the state variable s! contributes a complexity of |P(s}|s;_,u:){-
22 = 4.2¥*! A notable exception to the above formula is the time needed to process one set
of parents for a parity check in a low-density parity-check code. In this case, |P(qi|{z,};c0,)l
is exponential in the number of parents (see Section 5.2.5). However, the time needed to
process each such parity-check vertex g; is linear in the number of parents.

An early-detection can reduce the computational complexity given in (5.32) both directly
and indirectly. The first three pictures in Figure 5.18a show how the early-detection of
information bit uo directly simplifies the Bayesian network, thereby decreasing Q2. The
modified sum in (5.32) no longer includes the term |P(u2)| -1 (= 2) for us, and in each of
the terms for the children sé and s% of uy, the number of configurations is reduced by a
factor of 2 and the number of parents is decreased by 1. In the case of the turbo-code, the
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Figure 5.18: Early-detection effectively modifies the Bayesian network for (a) a turbo-code. (b) a
serially-concatenated convolutional code. (¢) a product code, (d) a low-density parity-check code.

former reduction decreases the complexity contributed by s! from 4 - 2v*! to 2¥.

The indirect effect of detecting us early is shown by the fourth picture in Figure 5.18a.
Since the objective of the decoder is to make decisions for the information bits, the two

states s and s3 can actually be removed from the network. Suppose i, is the early-detected
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value of uy. Then, the new conditional distributions for si, after s has been removed. is

BYPN! 1 7
P'(s})sh,ug) = P(s}}s}, us, iz, yl)

= N ) P(s}|s3, u3)P(s3|s}. iio)p(ys|s}). (5.33)

53

where V is a normalization operator, which ensures that 3=, P'(sjls].uz) = 1 Vsi,us.
Notice that each of the terms in this sum includes a channel likelihood. The computation
of these new conditional probabilities is actually performed as a normal part of iterative
decoding. So, in practice all that is needed is a small integer lookup table to relate the
configurations of s} and u3 to the proper values of si.

Figs. 5.18b to 5.18d show how the networks for other compound codes are simplified by
detecting variables. In the serially-concatenated convolutional code. detecting information
bits (not shown) early leads to relatively little reduction in 2. Instead, the intermediate
codeword bits can be early-detected to obtain a significant reduction in the complexity of
decoding. Notice that only one trellis is simplified by a single early-detection. Each section
of the upper trellis requires that both its outputs be early-detected. as shown by the lower
two pictures in Figure 5.18b. For the product code and the low-density parity-check code.
detecting codeword bits early simplifies the relevant constituent parity check equations.

5.5.4 Early-detection for turbo-codes: Trellis splicing

In this section. I illustrate how early-detection applied to turbo-codes can be used to reduce
the overall decoding complexity. For turbo-codes. the Bayesian network consists of two or
more chains that are processed using a special case of the probability propagation algorithm,
called the forward-backward (a.k.a. “BCJR”) algorithm [Baum and Petrie 1966; Bahl et al.
1974). This algorithm computes the a posterior: information bit probabilities using the
channel output and a priori information bit probabilities. The forward-backward algorithm
can be viewed simply as a combination of probabilistic “flows” [McEliece 1996] computed
in the forward direction and in the backward direction. Alternatively, a soft-output Viterbi
algorithm (SOVA) [Hagenauer, Offer and Papke 1996] can be used. Here, I consider early-
detection for information symbols only. As discussed earlier, early-detection of a single

information symbol reduces the complexity of both constituent codes.

Consider the simple two-state trellis shown in Figure 5.19a. Let ug be the random
variable for the information bit in the kth section of the trellis, and let s, be the random
variable for the state at the beginning of the kth section of the trellis. The edge in the
kth section of the trellis that leaves state sz € {0,1} in response to information bit u; €
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Figure 5.19: Trellis splicing. (a) shows a two-state trellis with edges accompanied by information bit
labels and metrics and with nodes accompanied by flows. (b) and (c): If we know that information
bit k£ 4 1 has a value of 1, we can cut the corresponding section out of the trellis and splice the trellis
back together, introducing new information bit labels and new metrics for the connecting edges.

{0,1} has an associated branch metric, ‘7;:”(3;:}. These metrics are determined from the
received signals and the a priort probabilities regarding the transmitted information bit
values. (In a systematic code, the likelihoods for the noisy received information bits can
be included in the a priori probabilities.) If p(ygluk,sk) is the likelihood function for
the kth received signal and P(ug) is the a priori probability for information bit wug, then
e
metrics in the forward direction. This results in a flow value ag(sg) for each state si at each

(sk) = P(uk)p(yk|uk, sk).- The forward pass cousists of computing the flows from these
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section k,k =0... K — 1, computed as g (0) = v2(0)ak(0) + v{(1)ak(1), and akyi(1) =
Y£(0)ak(0) + v2(1)ak(1). The backward pass simply consists of a flow computation in
the reverse direction in order to obtain a flow value 5 (sx) for each state at each section:
B (0) = 72(0)Br+1(0) + 74 (0)Br+1(1), and Bi(1) = ¥} (1)Bi+1(0) + 79{1)Be+1(1). These two
types of flow are combined to obtain the a posteriori log-odds ratio that each information

bit is 1 versus 0, given the received signal sequence y:

Plup = 1ly) _ ar(0)74(0) Br+1(1) + ak(1)74(1)Bi+1(0)
P(ur = 0ly) ak(0)72(0)Be+1(0) + ar(1)¥3(1)Br+1 (1)

log (5.34)

The computational cost of each section in the forward-backward algorithm thus consists
of the time spent computing the a’s and 3’s for each state, as well as the time spent
computing the a posteriori log-odds ratios. Although there are various useful techniques
and approximations for decreasing this cost [Hagenauer, Offer and Papke 1996: Benedetto
et al. 1996], such as the SOVA [Hagenauer, Offer and Papke 1996], I will define it as a basic

computational unit, and refer to it as a trellis section operation.

Suppose that according to some early-detection criterion, we decide that the value of
information bit ug, is 1. (Here, I will consider early-detection for information bits only.)
As a consequence, the trellis simplifies to the one shown in Figure 5.19b. The trellis can
be simplified further by multiplying out the path metrics, giving the trellis shown in Fig-
ure 5.19c. Note that not only have the path metrics changed, but also the transitions
now correspond to different information bit values. In general, portions of the trellis corre-
sponding to early-detected information bits can be cut away, and the remaining segments
spliced together with new path metrics and new information bit edge labels. If the values
of b information bits are known. the spliced trellis will be b sectious shorter, leading to a

computational savings of b section operations for each future forward-backward sweep.

In order to implement trellis splicing. an integer array must be used to determine the
state transitions, (sg,ux) —> Sg4+1- Whereas in the original trellis this mapping is very
regular, after trellis splicing it is usually not. (E.g., the information bits associated with
the outgoing edges of the kth state in Figure 5.19c have opposite values compared to those
in Figure 5.19a.) The use of this array slightly increases the computational complexity of
each section operation. Also, the array must be modified each time a section is cut away.
However, both of these computational costs are insignificant compared to the cost of the
basic section operation. In the implementation of trellis splicing used for the experiments
presented in Section 5.5.5, I found that the percentage of cpu time spent on trellis splicing
was less than 6%. The integer array also requires extra memory. However, the total memory
used actually decreases during decoding while using trellis splicing. When a single section
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Figure 5.20: BER performance of turbo-decoding with and without early-detection, for E,/Ng = 0.1
dB. for thresholds of 6. 8. 10. 12, 14, 16. 18.

is cut away, the memory liberated by the elimination of vs. as and s more than makes up
for the extra integer array memory introduced. Moreover. if sections adjacent to the first
are cut away. the transition array is simply modified. so that the memory associated with

the s, as and s of the adjacent sections is completely recovered.

5.5.5 Experimental results

I have simulated trellis splicing results at Ey/Ny = 0.1.0.2 and 0.3 dB. for the turbo-
decoding system described in Section 5.5.2. At the end of each half-iteration of turbo-
decoding, the log-odds ratio of each information bit was compared with a threshold in order
to decide whether or not the bit should be early-detected. In order to average out the effects
of block failure modes (i.e.. failure modes where a large fraction of the information block
is incorrectly decoded), I simulated the transmission of 20 000 information blocks for each
value of the threshold. The resulting number of errors and number of section operations
were then averaged over block transmissions. Figs. 5.20, 5.21 and 5.22 show plots of BER
versus average number of section operations per information bit decoded. for a variety of
thresholds. The curves for turbo-decoding without early-detection are also shown. For these
simulations, a fixed number of decoding iterations were performed for each block.

For a given BER, the computational complexity of decoding can be reduced the most
compared to standard turbo-decoding by using the threshold that corresponds to the curve



5.5 Speeding up iterative decoding by early-detection 158

le-1 T T T T
With early-detection ——
BER Without early-detection ----—-
le-2 5
le-3 \\ : i
i
led | - - - - - o
—22 .
5 6 78910 20 30 40 50 60

Section operations per information bit decoded

Figure 5.21: BER performance of turbo-decoding with and without early-detection, for £4/Nog = 0.2
dB, for thresholds of 6, 8, 10, 12, 14, 16, 18, 20, 22.
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Figure 5.22: BER performance of turbo-decoding with and without early-detection, for E/No = 0.3
dB, for thresholds of 6, 8, 10, 12, 14, 16, 18, 20.

in each figure that bottoms out at the prespecified BER. Thus, the locus of points corre-
sponding to the knees of the curves gives the optimal achievable BER-complexity perfor-
mance. Using these curves, we can answer the question, “At a specified E,/Np and for
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Figure 5.23: The computational gain for turbo-decoding with early-detection compared to turbo-
decoding without early-detection as a function of BER, for £,/Ng = 0.1, 0.2, and 0.3 dB.

different BER, what is the computational gain obtained by using early detection compared
to using fewer decoding iterations without early detection?” The locus of points described
above is interpolated in Figure 5.23 which shows the computational gain as a function of
BER for the different values of Ep/Ny. For all three values of Ey/Ny, the greatest compu-
tational gain is obtained near the minimal BER.

5.6 Parallel iterative decoding

The decoding algorithm for low-density parity-check codes proposed by Gallager [1963]
and later by MacKay and Neal [1996] is inherently a parallel algorithm. As described in
Section 5.2.5, probability propagation in the Bayesian network for a low-density parity-check
code consists of passing sets of messages back and forth between the codeword bits and the
clamped parity-check variables. It turns out that the standard decoders for turbo-codes and
serially-concatenated convolutional codes are inherently serial In this section, I consider a

parallel message-passing schedule for turbo-decoding.
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5.6.1 Concurrent turbo-decoding

If each chain in a turbo-code is viewed as a single unrefined vertex (e.g., Figure 5.11b}, then
turbo-decoding can also be viewed as a “parallel” algorithm®. However, if each chain in a
turbo-code is viewed at a refined level (e.g., Figure 5.8), then the standard turbo-decoding
algorithm is inherently serial. That is, when messages are passed as shown in Figure 5.9,
most of the computations are used to compute messages that cannot be propagated in
parallel.

Here, I consider concurrent turbo-decoding in which messages are passed in a parallel
fashion. One time step of concurrent turbo-decoding comnsists of simultaneously passing
messages in both directions on all graph edges in the Bayesian network for the code. (Al-
though *“concurrent” is not quite the right term for such a parallel algorithm, the term
“parallel” is used in the other name for turbo-codes, “parallel concatenated convolutional
codes”.) Natice that concurrent turbo-decoding is not just a parallel implementation of
standard turbo-decoding. It is a different algorithm which may have different properties.

A naive approach to a hardware implementation of concurrent turbo-decoding would
be to build one simple processor for each vertex in the Bayesian network for a code. Of
course, for reasonably long block lengths, a prohibitively large number of these processors
would be needed for a fully parallel VLSI implementation of concurrent turbo-decoding.
In the following section, I empirically compare the time complexity of standard decoding
with concurrent decoding, while ignoring practical implementation issues such as wiring
complexity. In practice, a more space-efficient implementation (e.g., time-shared processors)

would be used at some detriment to the computational efficiency.

5.6.2 Results

The code used for the simulations was a rate 1/2 K = 5,000, N = 10,000 turbo-code with
two constituent convolutional codes, each with generator polynomials (21/37)octal- The
constituent chains were connected by a randomly selected permuter. Every second output
of each constituent chain was punctured to get a rate of 1/2. For each of three values of
Ey/Ny, the transmission of 107 information bits was simulated, and the results are shown
in Figures 5.24 and 5.25. Interestingly, for a given E,/Np it appears that both algorithms
converge to the same BER.

Figure 5.24 shows the BER versus the number of messages passed in the constituent

?When there is more than one chain in a turbo-code, messages may be passed between chains in either
a serial or parallel manner.
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Figure 5.24: Performance of standard (S} and concurreat (C) turbo-decoding when implemented
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Figure 5.25: Performance of standard (S) and concurrent (C) turbo-decoding when implemented
on a parallel computer, for 3 values of Ey/Np.

chains, for standard and concurrent turbo-decoding. (The computation of the messages
passed in the constituent chain dominates the decoding time). The number of messages
passed gives a good indication of decoding complexity on a serial computer. Not surprisingly,
it is apparent that the standard algorithm is better suited to serial implementation. It is
interesting that for a given BER, the concurrent decoding algorithm is roughly 3,000 times
slower than the standard algorithm when implemented on a serial computer.

Figure 5.25 shows the BER versus the number of time steps for the case where 10, 000
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processors are available for concurrent turbo-decoding. We assume that pipelining is not
used for standard turbo-decoding. For a given BER, the concurrent decoding algorithm
is roughly 850 times faster than the standard algorithm when implemented on a parallel
computer. If one processor is used for each half iteration of 5 iterations of standard turbo-
decoding in a pipeline fashion. standard decoding can be sped up by a factor of only 10
(extra pipeline stages do not improve the BER). Concurrent turbo-decoding is still 85 times

faster.



Chapter 6

Summary and Future Research

My goal in this thesis has been to present to the reader a unified graphical model frame-
work for describing problems and developing inference algorithms in the areas of pattern
classification, data compression, and channel coding. The previous three chapters have
shown how Bayesian networks and various inference algorithms can be applied to problems
in these areas. A major theme of this work is that probabilistic structure can be exploited
to come up with efficient algorithms. I conclude by highlighting the contributions made in

this thesis and the importance of these contributions.

6.1 A statistically valid comparison of Bayesian network pat-

tern classifiers

Recent research papers on new learning methods for parameterized Bayesian networks have
suggested that the new algorithms could produce good density estimators. These methods
include parameter estimation by Markov chain Monte Carlo, wake-sleep learning in the
Helmholtz machine, and variational estimation. One outcome of my research (Section 3.5)
is a statistically valid comparison of the performance of these methods and other stan-
dard algorithms using the DELVE (data for evaluating learning in valid experiments) test
system. The Bayesian network classifiers perform very well compared to other standard
methods, such as the k-nearest neighbor classifier. One surprise is that the simple logistic
autoregressive network (which does not have any latent variables) performs very well.
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6.2 Wake-sleep learning in the Helmholtz machine

The wake-sleep algorithm is only an approximate form of the generalized expectation max-
imization algorithm. As such, experimental confirmation that the wake-sleep algorithm
works at all is important. In Section 3.6, I presented original results showing that the wake-
sleep algorithm can extract high-order structure from noisy images that were produced by
a hierarchical graphics model. After estimation, the Helmholtz machine can be used to
non-linearly filter a test image and recover its hierarchical description.

6.3 Multi-valued source codes

Aside from pattern classification, another use for parameterized Bayesian networks is data
compression. Bayesian networks that have many “unmixable” latent variables naturally
lead to multi-valued source codes in which there are a very large number of codewords
for each input pattern. Previous research on source coding has focussed on single-valued
source codes, since at first glance it seems that a multi-valued code must irrevocably waste
codeword space. Another outcome of my research (Chapter 4) is a practical bits-back
encoder that is often able to use multi-valued source codes to communicate in a highly
efficient manner, even when the codewords are unmixable. The compression rate for bits-
back coding is identical to the cost function for the generalized expectation maximization
algorithm. It follows that parameterized Bayesian networks that are estimated using the
generalized expectation maximization algorithm (or an approximation to it, such as the
wake-sleep algorithm) are well-suited to bits-back coding.

The results I obtained for bits-back coding indicate that for the source models I explored,
the method is currently not a strong contender in the data compression practice. The main
reason for this is that the underlying source models were not good enough. However, bits-
back coding does provide an extra degree of source model design freedom, and so it leaves

open a door for further research into models that produce multi-valued source codes.

6.4 Integrating out model parameters using bits-back coding

The work on bits-back coding described above leads to a practical coding method for inte-
grating over continuous parameter spaces. Suppose we are interested in encoding blocks of
patterns and that the source changes from block to block, but not within any single block.
Given a block of patterns, a parameterized model can be estimated. Then, the parameters
can be quantized to some precision and communicated. The block of patterns is then en-
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coded using the quantized parameters. According to the principles of Bayesian analysis, we
ought to integrate out the model parameters and use an ensemble of models to communicate
the block of patterns. It turns out that bits-back coding can be used to communicate each
block of patterns using the ensemble of models, as long as a good approximation to the
posterior distribution over the parameters given the block of patterns is available. In this
case, the ensemble of models corresponds to the multi-valued source code. I am currently
exploring the use of bits-back coding for integrating over continuous parameter spaces.

6.5 A graphical model framework for iterative channel de-
coding

A recent class of iterative error-correcting decoding algorithms are showing great promise
in closing the gap between practical channel coding and Shannon’s 50-year-old theoretical
limit. In Chapter 5, I showed that this class of algorithms can be viewed as probability
propagation in Bayesian networks that describe different types of error-correcting code. This
overarching framework is important, since prior to this work, iterative decoders have been
proposed in an ad. hoc. way with only a limited exposition of the similarities between the
algorithms. This framework also lead to a contribution in the area of reduced-complexity

iterative decoding, both for serial implementations and for parallel implementations.

6.6 Trellis-constraint codes

In Section 5.3, I proposed a general class of “trellis-constraint codes”, which have a graphical
structure consisting of two or more finite-state chains that interact through permuted state
transition labels. This class of codes includes turbo-codes, serially-concatenated convolu-
tional codes, low-density parity-check codes, and product codes, all of which have recently
been shown to give good performance. The generalization shows that this spectrum of codes
has several gaps, one of which I refer to as a “nonsystematic trellis-constraint code”. An
instance of this new code performs nearly as well as a standard turbo-code, and significantly
better than the best known low-density parity-check code with the same communication
rate. I believe the Bayesian network and probability propagation frameworks cement a
broad foundation for understanding a variety of new decoders and for developing new de-

coding algorithms.




Appendix A

Proofs and Derivations

A.1 Probability propagation in Bayesian Networks

In order to prove that the probability propagation algorithm described in Section 2.1.3
computes P(zjv) i = 1,... .|z| exactly. I will show that the propagation rules implement a
locally consistent form of probabilistic inference. Afier some arguments regarding the unim-
portance of the order in which messages are passed, the global validity of the algorithm will
follow by induction. The definition of dependency-separation and the rules for determining

dependency-separation (Section 1.2.4) are used extensively in the following derivations.

Recall that in probability propagation, there are two types of messages. m-messages are
probability vectors that are passed from parents to children in the direction of the edges.
A-messages are likelihood vectors that are passed from children to parents in the opposite
direction of the edges. Both types of vector have lengths that are equal to the number of
values the parent variable can take on. Consider the network fragment shown in Figure 2.1c.
where x is the set of parents of y, and z is the set of children of y. I define the incoming

A-messages as follows:
Z,Y Z,-Y

where vZ:~Y C v is the set of observations that are connected directly or indirectly to z;
through paths that do not go through y. Associated with each child z;. there is a constant
B; that does not depend on the value of y. That is, each A-message need only be proportional
to the appropriate likelihood vector.
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I define the incoming w-messages as follows:
oY = i P(zifv ), m=1 |z, (A.2)

where vX+~Y C v is the set of observations that are connected directly or indirectly to z;
through paths that do not go through y. Associated with each parent z;, there is a constant
pi that does not depend on the value of ;. Notice that regarding the unobserved variables in

the network, w-messages are probability vectors whereas A-messages are likelihood vectors.

A.1.1 Computing P(y|v) from the incoming messages

Consider the fusion formula (2.11) that is used to compute P(y|v) for an unobserved variable
y. (If y is observed, the computation of P(y|v) is trivial.) Substituting the above definitions
and the definition for P,Z;Y (2.1) into the final fusion formula (2.11) (and renaming the
function computed by the fusion formula F(y)), we get

Fly) = [aIT2L BT 0] [TTEL P2 )] [ X PUOTTE, Plaiv™ )] (A3)

a is an arbitrary constant used to normalize F(y) later on, so the first term in braces can

be replaced by a new constant o', which will be computed to normalize F(y).

Since the network is singly-connected, the observations connected to the children of y by
paths that do not go through y are dependency-separated from each other by y (condition
2 in Section 1.2.4), and thus I_[lkzilP(vZk‘Yly) = P(vZ~Y|y). Since the network is singly-
connected, the parents of y are connected to each other only through y. Consequently,
the parents of y are dependency-separated from each other by the observations that are
connected to the parents of y by paths that do not go through y (condition 3 in Section 1.2.4).
Thus, H?&P (zifv¥Y) = P(x|vX~Y). The parents of y dependency-separate y from vX-Y

(condition 1), so P(y|x)P(x|vX-Y) = P(y, x|vX~Y). Making these substitutions, we get

Fly) = dP(vEY]y) > Ply,xv*Y) = o' P(v2 Y |y) Py |v*7Y). (A.4)

However, vZ~Y is dependency-separated from vX=Y by y (condition 1), and as a result we
have P(vZ~Y|y) = P(vZY|y,v*-Y), and

F(y) = o P(vZ Y |y, vX V) P(yvX~Y) = o' P(vE7Y y|vXY), (A.5)
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After computing the o’ that normalizes F(y) with respect to y, we get
F(y) = Pyv® Y v*7Y) = P(ylv). (A.6)

which justifies the final fusion equation (2.11).

A.1.2 Outgoing T-messages

1. y observed: If y has the observed value y°, then P(y{v¥ %) = §(y.y°). since {y°} C
vY=Z:  From (2.7). it follows that

np % = 5(y,1°) = Plylvy ~%). (A7)

2. y unobserved: For unobserved y. the formula for for an outgoing pi-message (2.5) after

substituting the definitions for the incoming messages. is
-z .
" LI {[‘[‘ P(vZ “Yly) ] [z P(yx) [T, P ifv¥ Y )], (A.8)

where the product of the constants has been replaced by c¢;. According to the same type of

arguments as presented in the previous section. the first term equals P( {(vZ4 Y} I:l_l'k 2 J.|y),

and the second term equals P(y|vX~Y), so we get
m = o P(vEYYE L) PV A9
y k=1k2;1Y) P (Yl )- (A.9)

The observations {vZ ~V} Lz Ly k=j aT€ dependency-separated from vX-Y by y (condition 1).

and so PUVE VY L ly) = PU{vZ ¥}y vEY), and
my % = e PUVE TNl PGV = e PP L e wV )
= o PvH VYA L VPOV T e V)
= e Pyl{vZ "} e V). (A.10)

Noting that v¥=% = {vZJ'Y}inu#J- uvX-Y, we get

my 2 = e PylvY =) (A.11)

(A.7) and (A.11) show that probability propagation is locally consistent in the outgoing
T-messages; i.e.. the outgoing w-messages are proportional to the appropriate probability
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vectors.

A.1.3 Outgoing \-messages

1. y observed: After substituting the definitions for the incoming messages into the formula
(2.10} for computing outgoing A-messages when y is observed to have the value yV. we get

MY =ca Y Py !x)H':' Pz [veY), (A.12)

x’ :I/‘ =z, =

where the product of the constants has been replaced by ¢;. Using the same type of
arguments as were used in Section A.l.l, it can be shown that the summand equals
P(y°. {zk}:(_l_l kil Tie {v¥e— Y}Ikx_'L k). After summing over x’ we get

AY% = e Pyl (v Y L) (A.13)

Z-Y connected to y’s children.

Notice that this formula does not include the observations v
This makes sense. since if y is observed. the likelihood of vZ~Y does not depend on z,. (It
would if y was not observed.}) However. [ now include the likelihood of vZ=Y for the sake
of notational clarity later on. Since P(vZ~Y|y°) is just a constant (with respect to ;). we

can write
A = P ) PlPlm (VTR ) (A.14)

Since y dependency-separates vZ~Y from z; and {V‘\’k—y}'l(',xr‘l_Lk#i (condition 1). we have

P(vZYyP) = P(vEY |yo zy (v V) ). and so
AVS = o P(VETY Iy, (v Y R )PP e (v T R )
= oP(vEY 0z, (VXY ) (4-13)

Of course, z; and {v¥«~Y }k_l ety AT dependency—separated (by nothing) (condition 3) so

that P({v¥%~ Y}I,:_l_l'k#l.'ri = P({v¥+"Y }k Lk=:) and
) » _ Ne-vyxl
Ney P(vEY g0 (v¥e-Vi ) POy A T b i)
5, =C2 _ | =2 ~Y IX'
P({vXe-Y 1| 1z P hs k)

= CSP(VZ_Yv yaﬁ {VXI‘—Y}LX—i[‘k;ﬁzlmi)- (A-lﬁ)
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Noting that vV =% = vZ=Y | {y°} U {vXe- Y}k_‘ kit We get

A = PV =y, (A.17)

2. y unobserved: After substituting the definitions for the incoming messages into the

formula (2.8) for computing outgoing A-messages when y is unobserved, we get

z “—ciz[n'f_'l A |[ 30 PO, Plav )

x' T, =z, (A.18)

where the product of the constants has been replaced by c¢;. According to the same type
of arguments as presented in Section A.l.1. the first term in braces equals P(vZ~Y|y). The
summand of the inner sum equals P(y. {1:,““,;‘_'l kil Tis {vx“_y}‘kx' | k), but after summing

over x' the second term in braces equals P(y|z;, {v¥<~V }‘x' Lkzi)» and thus

A% =S PE Y ) Plylze v T HE es)- (A.19)

Since y dependency-separates vZ~Y from r; and {v+~Y }' k=1.k=: (condition 1). we have
i Ve Cp - }
P(vZ¥ly) = PvE Y|y, i (v }‘kx | k=i): and so

. s v ] , Ne—¥qlx
AN = 3 PWE gz (VYR POl (VYT )
e X =¥ 02
=C E P(vz ~;U|Ii? {V « }ll:ztl.k;-‘z)

= e P(vE Yz, (v VR L) (A.20)

Of course, r; and {vxk‘Y}";:‘_'L kei AT dependency-separated (by nothing) (condition 3) so

that P({VX”—Y }inl,k¢1|‘xl = {V g }}cxt l,k#t) and
Rey P2 Y {vXe ¥y ) IP( VIV AR )
= - v lxi
P({VX"—Y}L:—I_IJ:iiIIi) P({vXe=Y} ) ki)
= e P(vEY vV ). (A.21)

Noting that v¥ =¥ =vZ-Y u {vx"'y}',:i[_k;él, we get

MY =6 P(vY M), (A.22)

T
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(A.17) and (A.22) show that probability propagation is locally consistent in the outgo-
ing A-messages. That is. the outgoing A-messages are proportional to the right likelihood
vectors.

A.14 Global consistency

Sections A.1.1, A.1.2 and A.L.3 show that if the incoming messages to vertex y are propor-
tional to the appropriate likelihood vectors (A.l) and probability vectors (A.2), then the
propagation equations compute P(y|v) as well as outgoing messages that are proportional
to the right probability vectors and likelihood vectors. In this sense, probability propaga-
tion is locally consistent. [n this section, I show that if the propagation rules described in
Section 2.1.3 are followed until there are no more buffered messages, then each vertex will
have available all incoming messages as defined in (A.1) and (A.2).

First, note the the message passing formulas accumulate the effects of observations. That
is. if a message is passed from 2; to z; in response to the observation of z;, then when a
message is passed from 2; to z; in response to the observation of 23, the latter message will
include the effects of z; and 2. Second. note that the rules for probability propagation
ensure that once propagation is complete, the final message passed from z; to z; is computed
from the final messages passed to z; from all other neighbors of z;. Combining the above
two comments. it follows that the final message passed from z; to z; will contain the effects

%.=2; connected both directly and indirectly to z; by paths that do

of all observations o
not go through z;. (Notice that network initialization is required in order to propagate the
effects of null observations.) In other words. once propagation is complete each vertex has

available the incoming messages as defined in (A.1l) and (A.2).

A.2 Grouping variables in Bayesian networks

As described in Section 2.1.4, two variables z; and z; may be grouped into a single vertex.
as long as z; is not an indirect descendent of z; and vice versa. Here, I show that this
grouping operation preserves the representational capacity of the network. That is. the new
network can represent at least all those distributions that the old network could represent.

Grouping introduces new conditional probabilities for the variables that are grouped and
for variables whose set of parents includes one or both of the variables that are grouped.
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The new joint distribution is

P'(z) = P'(z;. zelay.ae) [[P'(zla) [ Plaila 2. 2. (A.23)

IRESRES t1E 7,1k
z, €a, .z ga, z,€a; and/or z.€a,

Now, set
P'(zj.z¢c|a;, ax) = P(z;|a;)P(2k|ax). (A.24)
For all 7 such that 1 # 7.1 # k. z; € a;, and z € a;, set
P'(zi{a;) = P(zla;). (A.25)
For all 7 such that 7 # 7, ¢ # k. and also such that z; € a; and/or z € a,, set
P'(z;|a,, 2;. 2) = P(zi]a;). (A.26)
Substituting these into (A.23). we see that

P'(z) = P(z)a;)P(zlap) [[P(zla) [ Plzlas)
LrEjazk viFEjLFk
:,€a; .z fa;  : €a, and/or €a,

= HP(z,-|ai) = P(z). (A.27)

In this way. the joint distribution of the old network can be represented by the new network.

A.3 Proof of condition for inference by ancestral simulation

Here, I show that if the parents of the visible variables in a Bayesian network are dependency-
separated from the hidden variables of interest h! by the visible variables v, then ancestral
simulation can be used to obtain a sample from P(h!jv). If the condition holds, then ev-
ery path connecting each variable in h! to the parents of each visible variable is blocked.
This means that disconnecting each visible variable from its parents will not change the
distribution P(h!|v). Since each visible variable will then have no parents, its value can be
included as fixed constant in the conditional probability functions for its children. We are
then left with a new Bayesian network that describes a distribution P’(h) over the variables
h that were not observed in the original network. Although in general P/(h) # P(h|v), as
shown above we have P'(h!) = P(h!|v). So, we may simply use ancestral simulation in the
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new network to obtain samples from P(h!|v). Notice that ancestral simulation in the new
network is equivalent to ancestral simulation for the unobserved variables in the original
network.

A.4 Proof of detailed balance for slice sampling

In order to show that the slice sampling Markov chain Monte Carlo procedure for p(z) de-
scribed in Section 2.2.4 has p(z) has a stationary distribution. [ will show that the procedure

satisfies detailed balance:
p(z)q(ylz) = p(y)a(zly), (A.28)

where q(y{z) is the p.d.f. that the procedure chooses the new value y = z"*¥ from the old
value z = z°4. Factor this transition probability using the two steps taken by the procedure:

choosing a slice at height s given z and then choosing y given the slice and =z:

q(ylz) = /q(yIS-Z)q(SIZ)dS- (A.29)

The equation for detailed balance can be written

/ alyls. 2)q(s)z)p(=)ds = / alzls. 9)q(sly)p(y)ds. (A.30)

s

In order to prove detailed balance I show that
q(slz)p(z) = q(sly)p(y) and q(yls.z) = q(zls.y). (A.31)

Let f(z) = ap(z). The p.d.f. for s given z is uniform over the interval [0, f(z)], so
q(siz) = 1/f(z) = 1/(ap(z)). and q(s|z)p(z) = p(z)/(ap(z)) = l/a. Similarly the p.d.f.
for s given y is uniform over the interval [0, f(y)], so q(sly) = 1/f(y) = 1/(ap(y)). and
qa(sly)p(y) = p(y)/(ap(y)) = 1/a. Therefore, q(s{z)p(z) = q(sly)p(y)-

To prove q(yls,z) = q(z[s.y). first consider the case where y and z are in the same
segment of the slice. Given that y and z are in the same segment of the slice, the procedure
for picking y does not depend on z, and vice versa. It follows trivially that q(y[s,z) =
q(z|s,y). Reasoning by symmetry, it can be shown that q(yls,z) = q(z|s,y) in the case

where y and z are in different segments.
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A.5 Bayesian confidence intervals for bit error rates

When analytic methods are not available for computing bit error rates in error-correcting
coding systems, we must resort to simulation. Estimated BER's can vary significantly from
experiment to experiment. and so it is often desirable to include confidence intervals. This is
especially important for the long block length codes discussed in Chapter 5. since significant
variability can be introduced by our inability to simulate enough blocks to pin down the
word error rate. Also. for low bit error rates (e.g.. 10~%) we may not be able to measure
the distribution of bit errors within erroneously decoded words. In this section. I present
a Monte Carlo approach for estimating the median and a 2.5% / 97.5% confidence interval
for the BER.

The error model contains two parameters: the probability p,, of word error, and the
probability p, of bit error within erroneous words. This is a rather crude approximation.
since in practice we expect there to be more than one failure mode, i.e.. there ought to be

several p,’s corresponding to different failure modes.

Let M be the number of words transmitted and let n,, be the number of measured word
errors. Let K be the number of information bits per word. and let n, be the total number
of bit errors measured while transmitting all M blocks. [ will refer to the measured values
as the data, D = {ny.np}. From the Bayesian perspective. before observing D. we place
a prior distribution p(py.ps) on the error model parameters. After observing D. we draw
conclusions (e.g.. compute a confidence interval) from the posterior distribution p(pw. ps|D).

where

P(Pw: Pl D) X p(Pw. pe) P(Dlpw. ps)- (A.32)

I[n this equation, the constant of proportionality does not depend on p,, or ps. The last
factor P(D|py.ps) is called the likelihood.

I let py and p, be independent beta-distributed random variables under the prior:

p(Pw. Pb) = p(Pw)p(ps), where
p(pw) X P:},w_l(l —Pw)ﬁw—l. and p(pb) ’xp:b—l(]_ _pb)db—l_ (A.33)

In frequentist terms. o, and 3, have the effect of shrinking our measurements toward a
word error rate of ay/(qy + Bw), where the influence of this shrinkage grows with a,, +
Bw. Typically, I choose a,, = By = 1, which gives a uniform prior over p, as shown in

Figure A.la.

As for the prior over p, it should be chosen while keeping in mind the behavior of the
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Figure A.1: (a) The prior distribution over the probability of word error p,,. (b) The prior distri-
bution over the probability of bit error p, within erroneous words. This distribution is designed so
that its median is equal to the probability of bit error for uncoded transmission.

decoder. If the main mode of decoding error is a failure to decode, and if we believe that
for failures the decoder will produce a probability of bit error that is roughly equal to the
probability p, of bit error for uncoded transmission. then the prior should place weight on
Py = pu. In this case. [ choose ap = 2 and 3, = 1/p,, which ensures that the mode of the
prior occurs at p, and that the prior is relatively broad. For example. for Ey/Ng = 1 dB
we have p, = 0.0563. and so I choose oy, = 2 and B, = 1/0.0563 = 17.76. giving the prior
distribution for p, shown in Figure A.1b.

It is straightforward to show that the likelihood is

P(D|pw.pp) = P(nw.np|pw-ps) x pp* (1 — Pw)‘w—"“’pgb(l - pb)nwK—nb.
(A.34)

This distribution is the product of a binomial distribution for the number of word errors
and a binomial distribution for the number of bit errors. Combining this likelihood with

the prior, we obtain the posterior,

P(Puw» Py D) x plr T T (1 = pyy)Pum it M mnupe () _ g g lene Koo
(A.35)

which is just the product of a beta distribution over p,, and a separate beta distribution
over pp. Of course, we are actually interested in the posterior distribution p(pwps|D) over
the total probability of a bit error p,pp. A sample is obtained from p(pwpy|D) by drawing
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Figure A.2: (a) A 1000-point sample from p(pw,ps|D) for M = 332, n,, = 14, K = 65,536 and
ny = 34,225, for the prior described in the main text. (b) A 1000-point sample from p(p., ps|D) for
M = 10,216, n, =0, K = 65,536 and n, = 0, for the same prior.

Pw — pp pairs from the posterior in (A.35) and taking the product of p,, and p; in each pair.
This sample is sorted in ascending order, and the value of p,,p, occuring half-way through
the sorted list is taken as an estimate of the median of p(p,ps|D). Similarly, the values
of pwpp occuring 2.5% and 97.5% through the sorted list are taken as the 95% confidence

interval.

For the nonsystematic trellis-constraint code presented in Section 5.3.5, I simulated the
transmission of M = 332 blocks at E;/Ny = 0.95 dB using a block length of K = 65,536
information bits. [ measured n,, = 14 and n, = 34,225. Using the prior presented above
for the slightly higher value of E,/Ng = 1 dB, a sample of 1000 points from the posterior
over p,, and p, was obtained and is shown in Figure A.2a. As described above, for v =
0.025, 0.5 and 0.975. I found the values for p, such that p(pyps < p4{D) = v, where p is
the sample distribution. The corresponding three curves of the form p,p, = p, are shown
in Figure A.2a, and the corresponding values of p., give a median of 1.7 x 10~ and a 95%
confidence interval of (9.9 x 10~%,2.6 x 10~3). Clearly, in this case it is the values for p,
that determine the p,’s for these curves, whereas the values for p, are well-determined by
the measurements. We could have assumed that p, took on its measured value instead of

sampling from the posterior.

For the nonsystematic trellis-constraint code described above, I also simulated the trans-
mission of M = 10,216 blocks at E,/Ng = 1.0 dB. In this case, [ measured n,, = 0 and
n, = 0. Using naive methods, we might conclude that the bit error rate is 0 and that there
isn’t any variation in this value. However, the Bayesian technique gives the sample from
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the posterior shown in Figure A.2b. In this case, the values of both p,, and p, play a role
in determining the p,'s for the three curves. The median is 5.1 x 107® and the confidence
interval is (1.6 x 1077, 4.8 x 107%).



Appendix B

The BNC Software Package

BNC (Bayesian Networks for coding) is a Tcl-based interactive program that performs

probability propagation. The package is tailored to coding applications. but can be used

to propagate probabilities in any Bayesian network where the real-valued variables are

observed and where the conditional probabilities for the real-valued variables are mixtures

of Gaussians. BNC uses vectors. so for example a group of information variables can
be handled quite easily. Also, instead of defining one conditional distribution (link) for
each variable in the network, BNC uses prototypical links that can be reused for different

variables. Some of the commands that BNC uses are

crVars: creates a vector of discrete or real variables
crLink: creates a prototypical link

addtoLink: adds to a prototypical link a parent-child configuration that has non-zero
probability

linkVars: links a variable to its parents

shNet: shows the network connectivity

clVal: clamps a variable to a given value

sndrcvMsg: passes a probability message from one variable to another

shProb: shows the current estimate of the marginal probability for a variable

After describing where to find the software and how to install it, [ give a simple example

of how BNC can be used to propagate probabilities in the burglar alarm network from
Section 2.1.2. Then, [ give the BNC scripts that I used to obtain the turbo-code results
described in Chapter 5.
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B.1 Installing the software

BNC makes use of the Tcl and extended Tcl libraries, which can be downloaded from

http://sunscript.sun.com

The BNC tar file bnc. tar can be obtained from my web page,

http://www/cs.utoronto.ca/~frey

Untar this file with a command like tar xf bnc.tar. and you will get a directory called
./bnc which will contain the source for BNC and some helpful scripts (e.g.. copies of
the commands given in the following tutorials). You should see the following files in the
directory ./bnc: berrou.tcl, bnc.c, 1fsr.tcl, Makefile, man.ps, rsc.tcl. and sr.tcl.

man.ps contains a tutorial and a BNC command reference.

Before making bnc, you’ll need to know which version of Tcl you have installed on
your machine. Change into the directory ./bnc, and edit Makefile in order to set the
BNC_INCLUDE MAIN flag as described in Makefile. You may also need to edit the include
directory and library links to get the Tcl and extended Tcl libraries working right.

B.2 An example: The burglar alarm problem

The burglar alarm network described in Section 2.1.2 consists of three variables b (burglar),
e (earthquake) and a (alarm), and the following conditional probabilities:

P(b=1)=0.1. Ple=1)=0.1,
Pla=1[b=0,e=0) =0.001, P(a=1b=1,e=0) = 0.368,
Pla=1b=0,e=1) =0.135, P(a=1jb=1,e=1) = 0.607. (B.1)

In this section, I show how BNC can be used to propagate probabilities in response to the

observation a = 1.

I suggest that bnc be run with fep so that command lines can be easily modified:

> fep bnc

H-- -——- --- bnc ittt H
Bayesian Networks for Coding. Type ‘cmds’ for a list of commands.
Copyright (c) 1996 Brendan J. Frey.
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Next, create three binary vector variables containing one element each:

bnc>crVars d b 2 1
bnc>crVars d e 2 1
bnc>crVars d a 2 1

With the option d. the command crVars d v m n creates a vector called v of n discrete
variables, each of which can take on the values {0,... ,m — 1}. The elements of a vector
are referred to with a hyphen. For example, to find out about variable b-0, type

bnc>shVar b-0
Variable name: b-0
Real-valued: No
Observed: No

Number of states: 2
Value: 32320
Currently unlinked

Note that the value of b-0 is undefined since b-0 has not been observed.

Now create the prototypical conditional probability links, using the values given in (B.1}:

bnc>crLink P(b) d 2; addtoLink P(b) 0.9 0; addtoLink P(b) 0.1 1
bnc>

bnec>crLink P(e) d 2; addtoLink P(e) 0.9 0; addtoLink P(e) 0.1 1
bne>

bnc>crLink P(alb,e) d 2 2 2

bnc>addtoLink P(alb,e) 0.999 0 0 0; addtoLink P(a|b,e) 0.001 1 0 O
bnc>addtoLink P(al|b,e) 0.865 0 0 1; addtoLink P(alb,e) 0.135 1 0 1
bnc>addtoLink P(alb,e) 0.632 0 1 0; addtoLink P(alb,e) 0.368 1 1 0
bnc>addtoLink P(alb,e) 0.393 0 1 1; addtoLink P(alb,e) 0.607 1 1 1

BNC interprets P(b) as a string representing the name of the link, and does not parse
characters such as (, ), and |. In particular, at this point BNC does not relate the link
P(b) to the burglar variable vector b created above. In the command crLink P(b) d 2,d
indicates the child variable for the link is discrete, and 2 indicates the child can take on two
values, {0,1}. The command addtoLink P(b) 0.1 1 adds to the link P(b) a probability
mass of 0.1 for the child having the value 1. Note that it is only necessary to specify the
parent-child configurations that have non-zero probability. addtoLink P(alb,e) 0.368 1
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1 0 specifies a probability of 0.368 that the child has the value 1 given that the first parent
has the value 1 and the second parent has the value 0.

Now that the prototypical links have been defined, link together the network and take a
look at it:

bnc>linkVars P(b) b-0
bnc>linkVars P(e) e-0
bnc>linkVars P(alb,e) a-0 b-0 e-0
bnc>shNet

NULL -> b-0

NULL -> e-0

b-0 e-0 -> a-0

Here, NULL indicates that the variable does not have any parents. This completes the
specification of the Bayesian network.

The next series of commands clamps the values of a-0 to 1 and propagates messages

across the network in the fashion shown in Figure 2.2:

bnc>clVal a-0 1
bnc>sndrcvMsg b-0 a-0
(0.9000,0.1000)
bnc>sndrcvMsg a-0 e-0 v
(0.1714,0.8286)
bnc>sndrcvMsg e-0 a-0
(0.9000,0.1000)
bnc>sndrcvMsg a-0 b-0 v
(0.0354,0.9646)

<

<

The flag v in the command sndrcvMsg means “verbose”, and causes the command to print
out the probability message. Note that these messages are normalized versions of the ones

shown in Figure 2.2.

Finally, examine the marginal probabilities for b-0 and e-0 given that a-0 is clamped
to 1:

bnc>shProb b-0
(0.2485,0.7515)
bnc>shProb e-0
(0.6506,0.3494)
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bnc>

bnc>exit

In general, it is up to the user to decide in what order the probability messages should
be passed.

See man.ps for a complete BNC command reference.

B.3 Scripts used to decode a turbo-code

Before listing the main BNC script berrou.tcl used to simulate a turbo-code. I list the
script 1fsr.tcl that is used to build the conditional probability links for linear feedback
shift registers. given the feedforward and feedback delay taps.

B.3.1 1lfsr.tcl

usage: buildLFSR <anum> <den> <u->s> <us->s> <s->x> [<s->s> [<s->u>]]
Copyright 1996 Brendan J. Frey.

This bnc script defines a procedure for building a binary I/0
LFSR given the coefficients of the z-transform numerator and
denominator polynomials. num and den are lists of bits. This
procedure returns -1 if there is an error and otherwise
returns the number of states for the state variable. Note
that the z°0 coefficients in num and den (right-most bits)

must be 1. Also, outputs are a function of the state *alonex,

#
#
#
#
#
#
#
#
#
#
#
# so the input is included as part of the state; this approach
# differs from the trellis-based approach (where outputs are

# associated with state *transitions*), but gives a Bayesian

# network that is singly-connected and so can be processed

# using probability propagation. So, the current state contains
# the true state of the LFSR plus the input bit to be used in

# determining the next state. The procedure creates three

# links and two more optional ones. The link names are

# passed to buildLFSR by the user. utos links the first input

# to the LFSR. In contrast, ustos links an input and a previous
#

state to the next state. stox links the state to the output.



B.3 Scripts used to decode a turbo-code 183

The optional link stos links a previous state to the next
state so that the state will eventually reach 0. (E.g.,

in coding applications, this link can be used to implement
trellis termination.) The second optional link stou determines
which input bit is stored in the state. (E.g., if systematic
trellis termination is being used, this link can be used to
obtain the input bit that was needed to help terminate the

#+ H#H H H B K H

trellis.)

proc buildLFSR {num den utos ustos stox {stos "NULL"} {stou "NULL"}} {
set lnum [1llength $num]; set lden (llength $denl
set stmem $1lden; set stsz [expr 1 << $stmem]

# Check that coefficients make sense.

if { [expr $lden !'= $lnum] } { return -1}

if { [expr [lindex $num [expr $lnum - 1]] != 1] } { return -1}
if { [expr [lindex $den [expr $lden - 1]] != 1] } { return -1 }

# Build the link used for the first state.
crLink $utos d $stsz 2
addtoLink $utos 1.0 0 0; addtoLink $utos 1.0 1 1

# Make the other links, by examining the LFSR transfer function.
crLink $ustos d $stsz 2 $stsz; crLink $stox d 2 $stsz
if {[expr {"NULL" != "$stos"}]} { crlLink $stos d $stsz Pstsz }
if {[expr {"NULL" != "$stou"}]} { crLink $stou d 2 $stsz }
loop st O $stsz {
# Get the input bit from the state.
set w [expr $st & 1]
if {[expr {"NULL" '= “$stou"}]} { addtoLink $stou 1.0 $w $st }

# XOR the input bit with the feedback bit.
loop i 1 $stmem {
if {[expr [lindex $den [expr $lden - $i - 1]] == 1]} {
set w [expr $w + (($st >> $i) & 1)]
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set v [expr $w % 2]

# Compute the next state and add to the ustos link, for each

# possible input bit (bt) at the next time step.

loop bt 0 2 {
set nst [expr (((($st >> 1) << 1) + 3w) << 1) % $stsz + $bt]
addtoLink $ustos 1.0 $nst $bt 3Pst

# Compute the next state for the stos link and add to the link.

if {[expr {"NULL" !'= "$stos"}]} {
set nst [expr (((($st >> 1) << 1) + $w) << 1) % $stsz]
set bt O

loop i 1 $stmem {
if {[expr [lindex $den [expr $lden - $i - 1]] == 11} {
set bt [expr $bt + (($nst >> $i) & 1)]

}
set bt [expr $bt % 2]; set nst [expr $mst + $bt]
addtoLink $stos 1.0 $nst $st

# Compute the output bit from w and the state, and add to the
# stox link.
if {[expr [lindex $num [expr $lnum-1]]==1]} {
set x 3w } else { set x 0 }
loop i 1 $stmem {
if {[expr [lindex $num [expr $lnum - $i - 1]] == 11} {
set x [expr $x + (($st >> $i) & 1)]

}

set x [expr $x % 2]
addtoLink $stox 1.0 $x $st

return $stsz
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B.3.2 berrou.tcl

The following BNC script is for a specific £,/Ny (0.6 dB) and for a specific number of
transmitted blocks (530). The value of Ej/Np was varied to obtain BER-E}, /Ny curves.

# Results for a punctured rate 1/2 turbo-code. Since the all-zero
# codeword is always sent, a decoder network is built, plus a noise

# vector network (independent Gaussian units).

# Set up the comnstants
set LOGFILE berrou0.6.log
set SNR 0.6

set K 65536

set NBLOCKS 530

set NITERS 18

set NUM {1 0 0 0 1}

set DEN {111 1 1}

set K2 [expr 2+*8$K]; set Kmi [expr $K-1]
set RATE [expr 1.0*$K/$K2]; set VAR {expr pow(10.0,-($SNR/10.0))/2.0/$RATE]

# Build the recursive convolutional encoder link.

source lfsr.tcl

set S [buildLFSR $NUM $DEN u->s us->s s->x]

if { [expr $S == -11 } { puts "Error: Could not build encoder link."; exit }

# Create information bit variables, state variables, codeword bit variables,
# and received signal variables for constituent codes 1 and 2.

crVars d du 2 $K; crVars d dsl $S $K; crVars d ds2 $S $K; crVars d dx 2 $K2
crVars r dy $K2

# Create the noise vector variables.

crVars r ns $K2

# Create a 50/50 prior link for the info bits
crlink u d 2; addtoLink u 0.5 O; addtolink u 0.5 1
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# Create a link used for the systematic codeword bits.
crLink u~->x d 2 2; addtoLink u->x 1.0 0 0; addtoLink u->x 1.0 1 1

# Create the channel link (Gaussian distribution).
crLink z->y r 2
addtoLink x->y 1.0 -1.0 $VAR 0; addtoLink x->y 1.0 1.0 $VAR 1

# Create the noise vector link (Gaussian distributiom).
crlink ns r; addtoLink ns 1.0 -1.0 $VAR

# Build the interleaver.
set P [permute $K]

# Connect up the noise links to the noise variables.
loop i O $X2 { linkVars ns ns-3%i }

# Connect up the variables for the decoder network. (Dom’t forget to
# puncture the twe constituent convolutional codes.)

loop i O $K { linkVars u du-$i; linkVars u->x dx-[expr 2#$i] du-$i }
loop i O $K2 { linkVars x->y dy-$i dx-$i }

linkVars u->s dsi1-0 du-0;
linkVars u->s ds2-0 du-[lindex $P 0]
loop i 1 $K {
linkVars us->s ds1-$i du-$i dsi-[expr $i-1]
linkVars us->s ds2-$i du-[lindex $P $i] ds2-[expr $i-1]

loop i 0 $K {
set ipl [expr $i+1]; set i2pl [expr (2*$i)+1]
if { [expr ($i%2) == 0] } { linkVars s->x dx-$i2pl ds1-$ipl
} else { linkVars s->x dx-$i2pl ds2-$i }

# Define which variables are clamped in the decoder.
loop j O $K2 { clval dy-$j }
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# Define the transmit procedure.
proc transmit {} { drVal ns; transfer ns dy }

# Define the schedule and procedure for initializing the decoder.
loop j O $K2 { addtoSched init sndrcv dy-$j dx-$j }
loop i 0 $K {
set ipl [expr $i+1]; set i2 [expr 2+$i]; set i2pl [expr $i2+1]
if { [expr ($i%2) == 0] } { addtoSched init sndrcv dx-$i2p1 ds1-$ipil
} else { addtoSched init sndrcv dx-$i2pl ds2-$i }
}
loop j 0 $K { addtoSched init sndrcv dx-[expr 2*$j] du-3$j }
proc initDecoder {} {
initMsgs du; initMsgs dsl; initMsgs ds2; initMsgs dx; initMsgs dy

exSched init

# Define the fbl and fb2 schedules.
loop j 0 $K { addtoSched fbl sndrcv du-$j dsi-3$j }

loop j 0 $Kmi { addtoSched fbl sndrcv dsi-$j dsi-[expr §j+1] }
loop j $Kmi 0 -1 { addtoSched fbl sndrcv dsi-$j dsi-[expr $j-1] }
loop j 0 $K { addtoSched fbl sndrcv dsi-$j du-$j }

loop j 0 $K { addtoSched fb2 sndrcv du-[lindex $P $j] ds2-8%j }
loop j 0 $Kmi { addtoSched fb2 sndrcv ds2-$j ds2-lexpr $j+1] }
loop j $Km1 0 -1 { addtoSched fb2 sndrcv ds2-$j ds2-[expr $j-1] }
loop j 0 $K { addtoSched fb2 sndrcv ds2-$j du-[lindex $P $j] }

# Simulate many block transmissions, printing the current BER estimate out
# as we go. Also, save the noise patterns that cause problems.
set fID [open $LOGFILE w]; seed 0
set nerr {}; loop k O [expr $NITERS+1] { lappend nerr O }
loop i 0 $NBLOCKS {
transmit; initDecoder; detMAP du; set dst [shNorm du]
set nerr [lreplace $nerr 0 O [expr $dst + [lindex $nerr 01]]
set a [format "%8.2le " [expr 1.0 * {lindex $nerr 0]/$K/($i+1)]]

puts -nonewline $£fID $a
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loop k 1 [expr $NITERS+1] {
exSched fbl; exSched fb2; detMAP du; set dst [shNorm du]
set nerr [lreplace $nerr $k $k [expr $dst + [lindex $nmerr $k]]]
set a [format "%8.2le " [expr 1.0 * [lindex $nerr $k]/$K/($i+1)]]
puts -nonewline $£fID $a
}
puts $£fID ""; flush $£fID
}
close $£ID
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