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ABSTRACT

Radar is a useful way to observe the sporadic meteor complex, but it suffers from
some biases. The attenuation due to destructive interference within meteor trails of
finite width. or initial trail radius effect. is a significant correction factor and is poorly
defined. This effect reduces the height to which meteors can be observed with radar
and affects observations with higher frequencies more than lower frequencies.

Observations of meteors at three frequencies. 17.45, 29.85 and 38.15 MHz, are used
as the basis for a new model of initial trail radius. A model has been constructed
which includes fragmentation, the effect of which is more important to the initial
radius than the spreading of electrons. The model is shown to explain Geminid
observations. and to fit sporadic observations well. The model is used to derive a
correction factor for radar meteor fluxes at any wavelength. limiting magnitude and
velocity of meteoroid. The correction factor is significantly different from any derived
in previous studies. Fluxes of sporadic meteors from five major sporadic sources
are calculated for 2000 and 2001 using the new correction factor: significant annual
variations are seen in most of the sources indicating differences in the distribution of

sporadic radiants around the Earth’s orbit.

Keywords: Sporadic meteor flux, initial trail radius. radar observations. meteoroid

fragmentation, height ceiling effect, observing biases.
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Chapter 1

Introduction

1.1 Fluxes of Sporadic Meteors

[t is important to determine accurately the flux of sporadic meteoroids that strike the
Earth. Sporadic meteoroids make up the largest part, in numbers and in mass, of solid
particles which strike the Earth every day. Roughly three billion of these meteoroids
1078 kg or larger collide with the Earth each day, approximately one over any square
kilometer per hour. Observing the meteors, or ionized and luminous trails of these
meteoroids in the atmosphere, is a good way to study actual physical components of
our solar system on a daily basis without costly space missions. Determination of the
spatial density of these particles is vital for spacecraft and satellite design, where the
risks of being hit by a particle must be calculated. Even more fundamentally, knowing
the flux of these particles at the Earth can provide both a check and a calibration for
a model of meteoroids throughout the solar system. Once the model can successfully
reproduce the observed distribution, it can be used with confidence to predict spatial
densities of meteoroids throughout the solar system. This will provide information
on the formation and evolution of our solar system, and help in the planning of

interplanetary missions.



1.2 Sporadic Sources

Determination of the flux, direction and velocity of sporadic meteors has always been
much more difficult than for shower meteors. Meteor showers are concentrated over
a few days or weeks, come from a well-defined radiant, or direction from which the
meteors originate. They have a small range of velocities, so that relatively few obser-
vations are needed to characterize flux, radiant and velocity of the stream members.
Sporadic meteor radiants are much more diffuse, with a broad spectrum of velocities
and relatively low numbers from any given radiant on a day to day basis, so it has
historically been much more difficult to define sporadic sources.

The positions of the sporadic sources are usually given in heliocentric ecliptic
coordinates. This coordinate system uses two angles: the angle in the plane of the
ecliptic between a given azimuth and the sun, and the elevation of the point above
the ecliptic plane. The helion point is the sunward direction; the antihelion point is
the direction opposite the sun. The apex of the Earth’s way is in the plane of the
ecliptic, at 90 degrees from the helion point, and the antapex is opposite to the apex
direction. The apex crosses the meridian at 0600 local time, the antapex at 1800. The
right ascensions and declinations of the sporadic sources are therefore not constant
through the year, but change both because of the Earth’s motion around the sun and
the inclination of the Earth’s axis with respect to the ecliptic.

There are six diffuse sporadic sources: the helion and antihelion sources are ap-
proximately 20° from the helion and antihelion points, slightly toward the apex point,
in the ecliptic plane (Figure 1.1). The north and south apex sources are in the apex
direction, roughly 15° above and below the ecliptic. The north and south toroidal

sources are also at the longitude of the apex, 60° above and below the ecliptic plane.

1.2.1 Historical observations of the sporadic complex

Initial studies of meteor rates indicated that rates were higher in the latter half
of the year compared to the first half in the Northern Hemisphere (Olivier, 1925;
Denning, 1886). Since the apex source is higher during the fall and lower during the



Figure 1.1: Directions of the major sporadic sources
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spring for observers in the Northern Hemisphere, this indicated that more meteors
came from the apex direction than the antapex. Variation over the course of a night
also showed an increase in numbers when the apex source is high in the sky, and a
minimum when it is below the horizon. Hoffmeister (1929) used the daily variation
of meteor rates to calculate meteoric velocity, and found that a uniform distribution
of radiants could not explain the observed rates if all meteors have parabolic or
elliptical orbits. One had either to give up the random distribution of radiants, or
to allow meteors to have hyperbolic velocities; in other words, to allow a significant
fraction of interstellar meteors. Hoffmeister determined that of order seventy percent
of meteors should be interstellar. Velocity measurements, however, failed to detect
significant numbers of hyperbolic meteors. The work of Hawkins & Prentice (1957)
who collected two-station visual data to determine radiants, showed that there is a
peak in the antihelion direction, in the plane of the ecliptic, which is stronger than the
apex peak. These observations demonstrated that meteor radiants were not uniformly
distributed (Lovell, 1954). No increase in meteor radiants was noticed in the direction
of the motion of the solar apex through the galaxy, which was also taken as evidence
by some (Olivier, 1925) that meteoroids are not interstellar.

The first extensive radiant survey, done with the Jodrell Bank radar, showed that
meteor radiants are concentrated in the plane of the ecliptic, meaning that they are
part of the solar system (Hawkins, 1956a). While there is a concentration of radiants
in the apex direction, the largest concentrations are 60 to 70 degrees from the apex,
close to helion and antihelion points. The equipment used had two receiving antennas
with long, narrow beams oriented roughly 50 degrees apart: from the rates recorded
on each receiver the position of a source could be approximately calculated.

A similar survey in the Southern Hemisphere by Weiss & Smith (1960) found the
same concentration of radiants in the ecliptic, and they proposed that there are two
distinct populations of sporadic meteors. One is composed of a random distribution
of radiants, and therefore is observed to come from the apex direction because of the
relative motion of the Earth; the other forms the helion and antihelion sources.

Elford & Hawkins (1964) first identified a source 60 degrees north of the apex,



Figure 1.2: Six source sporadic model, in heliocentric ecliptic coordinates

using data from the Harvard Meteor Radar. Sekanina (1976) examined the radiants
of radar meteors in heliocentric coordinates. Plotting these radiants showed that
the apex source could be resolved into a northern and southern component, with an
additional concentration of radiants 60 degrees above the apex. This is the north
toroidal source, so named because the orbits apparently form a toroid about the sun.
Jones & Brown (1993) showed from an extensive survey of radar and photographic
data from both hemispheres that the apex source is split into a northern and south-
ern component, placed roughly 20 degrees above and below the ecliptic. They also
demonstrated the existence of the south toroidal source, the counterpart of the north

toroidal, placed 60 degrees below the ecliptic (Figure 1.2).

1.2.2 Strengths of the sporadic sources

Of these six sporadic sources, the helion and antihelion are the strongest by a sig-
nificant margin (Keay, 1963; Brown & Jones, 1995). The apex sources tend to show
up strongly because of the higher average velocity of the meteoroids, which produces
greater luminosity and ionization, but have about 25% of the strength. The north
and south toroidal sources are the weakest.

Another issue of interest for sporadic meteors is the change in flux of each source

over the course of a year, corresponding to different radiant densities around the



Earth’s orbit. Hawkins (1956b) found a higher total flux of meteors in the summer
months, but did not correct extensively for observational selection effects and used
only Northern Hemisphere data. Stohl (1967) studied the change in flux of the helion,
antihelion and apex sources over the course of a year, and found that the apex source
has significant variation at the same time in the Northern and Southern Hemispheres.
The toroidal source was found to be the weakest and to have a slight maximum
in the first part of the year. The helion and antihelion sources show a significant
difference between the northern and southern profiles, indicating that the elevation
of the sources is more significant than azimuthal asymmetries in orbital distribution.
Keay (1963) found a significant change in total rates through the year, even when
observing effects had been accounted for. The change in rates through the year is
not large, however; Jones et al (1994) found from forward scatter radar data that
observations could be fit assuming constant source strengths. Poole (1997) studied
the change in source strength of the helion and antihelion sources over a total of 10
years using radar observations, correcting for observing geometry. He found that the
helion source peaks in April and May, while the antihelion source peaks in the middle

of the year (Figure 1.3).

1.3 Radar Observations

Radar is a convenient way to study the sporadic background. A radar system can
detect meteors day and night regardless of cloud conditions. It is also well suited to
automated data collection and analysis, necessary if the tens of thousands of sporadic
meteors needed to define sources are to be efficiently recorded. The main difficulty is
the observational biases of the radar, which must be removed from the data before
meaningful fluxes can be calculated.

To find a flux, both a corrected rate of detection and a collecting area must be
known. The collecting area of a radar system is a fairly straightforward calculation,
and measures the physical area of sky over which meteoroids can be detected. Un-

derdense meteors only produce an echo if they are perpendicular to the radar beam.
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For a particular radiant, echoes will be received from a plane perpendicular to the
radiant direction. The echo region would be an infinitely thin line if all meteor echoes
occurred at the same height; in reality the echoes are spread over a range of heights.
The meteors from a given radiant therefore occur on an echo surface, the area of
which can be calculated from a known meteor height distribution by integrating over
the part of the plane above the horizon. This is combined with the gain pattern of
the transmitting and receiving antennas of the system, which determine how well a
given location in the sky can be observed, to obtain a weighted collecting area.

[n order to determine the rate of meteors from a particular source, it is necessary
to be able to identify which radiant is associated with each meteor. If this cannot be
done directly using observations at multiple stations (as is the case with most radars),
a statistical measure must be obtained for each radiant (see Chapter 7 for details of
this procedure). A correction factor is then applied to this rate.

The correction factor is not well defined. It includes a correction for the size of
the Fresnel zone, which depends on the wavelength of the system, on the transmitter
power, the gain of the antennas, and on several observing effects, including the ini-
tial radius effect, the finite velocity effect, and Faraday rotation (see Chapter 2 and
Chapter 5).

The initial radius effect, or attenuation of echoes from trails with significant width,
is the least well understood of the correction factors. The fact that meteors detected
by radar have a significantly different height distribution from optical meteors has
long been known, as has the fact that the radar height distribution depends on the
radar frequency. The fact that radar meteors are found in lower numbers than ex-
pected from dust and optical measurements was originally (Hughes, 1978) attributed
to a large population of low velocity meteors which did not produce enough ionization
to be observed by radar reflection. The major reason for the small numbers is actually
the height ceiling effect, which affects all radars, but in particular those with frequen-
cies above 10 MHz. This initial radius effect imposes a limit, or ceiling, on the height
of meteors that can be detected with radar systems: the height limit is lower for ob-

servations at higher frequencies. Many studies have been done showing the variation



in meteor rates with radar frequency (Thomas et al, 1986; Olsson-Steel & Elford,
1986, 1987; Elford & Steel, 1988; Steel & Elford, 1991). In particular, observations
at 2 MHz and 6 MHz have shown that the peak in meteor ionization heights is much
higher than that observed with conventional meteor radars. Unfortunately, observing
at low frequencies where the height ceiling is high enough to capture most meteors

is not practical due to interference and ionospheric effects at frequencies lower than

~20 MHz.

1.4 The Initial Radius Effect

1.4.1 Reflection of radar signal from a meteor trail

A meteor echo is received when a meteor trail forms perpendicular to the radar beam.
Most of the reflected intensity comes from the first Fresnel zone, a segment of trail
roughly a kilometer long (see Chapter 2). The amplitude of the echo rises during the
fraction of a second needed for the meteor to cross this region. Even at this time,
the column of ijonization already has a significant width, of order of meters at an
altitude of 100 km. As the meteor ablates, both melting and vaporizing, electrons
and ions thrown off from it collide with atmospheric atoms until they reach the
thermal velocity of the surrounding gas. This will take only a fraction of a second,
so the signal received is from this distribution of electrons. The trail then diffuses
outward, causing the underdense echo to decay.

An underdense meteor trail is one where the ionized trail is less than critically
dense at the frequency of observation. One therefore receives reflections from elec-
trons throughout the underdense trail: each one scatters radiation independently and
coherently. Since the radiation from the near and far parts of the trail will have a
phase difference upon reaching the receiver, destructive interference will occur if the
trail is of order A/2 in width. This will not happen in overdense echoes, which have
an electron density greater than the critical plasma density; in other words, these

trails are radiatively thick. In this case, reflection happens essentially entirely at the
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surface of the column, and the amplitude of the echo is not reduced for larger trail
radii. A transition echo has an intermediate density, and will have characteristics of
both types of echo.

The initial radius of a trail will increase with height, since the atmospheric density,
and therefore resistance to the expansion of the trail, decreases exponentially with
increasing height. This fact is responsible for the observed wavelength-dependent echo
height ceiling effect: at any frequency there is a height above which few underdense
echoes can be seen, because the attenuation due to destructive interference from the
large radii of the trails is too great. This ceiling is lower for shorter wavelengths, as
one would expect. The attenuation of the return pulse will also be affected by how
much the trail expands in the time the meteoroid takes to cross the first Fresnel zone
(see Chapter 2), and on the actual density profile of the electrons in the trail.

Essentially there are four functions involved in the simplest case of initial radius
attenuation. The radial dependence of the electron density of the trail is related to
the attenuation of received power with wavelength and initial radius. The variation
of attenuated amplitude with height is connected to the third function, the change in
initial radius of the trail with height. The attenuated amplitude of the echo power
with wavelength and initial radius is found from the Fourier-Bessel transform of the
radial electron density function, a cylindrical integral of the radiation scattered by
each electron in the trail. A Gaussian electron density function produces a Gaussian
decrease in signal strength with increasing initial radius. If one of either the radial
electron density or attenuation with wavelength and initial radius are known, it is a
relatively straightforward matter to find the other. The attenuated amplitude as a
function of height is easily obtained from the variation of initial radius with height
and the attenuation with initial radius. These basic functions can be complicated by
fragmentation of the meteoroid, by dependence of the initial radius on the velocity
of the meteoroid, and by structural differences between meteoroids, for example me-
teoroids with different parent objects. The radial electron density function may vary
from meteor to meteor or along a meteor’s trail.

Since the initial radius can be assumed to depend on the mean free path (and
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therefore inversely on atmospheric density), the initial radius can be written as

i oc £ (1.1)

where £ is the mean free path (or equivalently ; o< p™"). One can similarly define

the exponent b as

r; o< V° (1.2)

where V' is the meteoroid’s speed.

1.4.2 Observations of initial radius

Hawkins & Whipple (1958) and Cook et al (1962) attempted to calculate the initial
radius of meteor trails from photographic records of meteors, by comparing the width
of the meteor trails on film with those of stars. Both used data from the Schmidt
camera at Mount Palomar, and accounted for focal corrections, atmospheric effects,
photographic diffusion and camera aberration. Hawkins and Whipple found that all
the trails had diameters less than 4 meters, and most were around | meter. Since
no precise heights were measured, no height dependence could be found. Cook et al
(1962} also found most trails to be of order 1 meter, with the possibility of widths
up to 6 meters. Hawkins and Whipple found the average radius to be 0.79 m at an
average height of 104 km for Perseids and Orionids, and 1.20 m at 94 km for several
other showers. Cook et al (1962) found r; =0.97 m at 100 km for Geminids for their
whole sample (Hawkins, 1963). To apply these results to radar data, one must also
assume that the luminous trail and ionized trails coincide spatially: in principle the
ions and excited atoms will have different mean free paths. The neutral part of the
trail could extend past the ionized part, so optical observations provide an upper
limit to initial radii of the ion trails. More recently, higher resolution video studies of
meteor trains have given much larger initial radii (Hawkes, 2002), of order 10 meters.

Initial radius can also be calculated using radar observations. By observing echoes

at different frequencies and comparing them, amplitude and number ratios can be cal-
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culated. In these multifrequency studies, the amplitude or number ratios can be used
to determine the attenuation. The ratio of the amplitudes of an echo as seen on two
different radars at a particular height should be nearly the same as the ratio of the
numbers of echoes seen by the radars at that height. If the radial distribution of elec-
trons in the trail is known (allowing the attenuated amplitude as a function of initial
radius and wavelength to be calculated) then the initial radius can be calculated for
each observed height. To do this, the radar transmitter powers and receiver sensi-
tivity must be very well calibrated, at least relative to one another, and heights and
amplitudes must be measured precisely. [deally, the radars should be identical apart
from their frequencies and operate simultaneously. Velocity dependence is difficult
to calculate from most radar data: some meteors show Fresnel oscillations and the
velocity can be calculated from these, but many do not.

The first radar studies of initial radius were done by Greenhow & Hall (1960).
They observed echoes at radar wavelengths of 17 m (17 MHz) and 8.3 m (36 MHz)
with similar radar systems, using overdense echoes (which are not affected by initial
radius attenuation) to calibrate the sensitivities. Decay times were used to estimate
heights, and the electron density profile was assumed to be Gaussian. The amplitudes
of simultaneous echoes on the two systems were compared, and the ratios used to
calculate initial radius. Another data set taken at 4.3 m (70 MHz), which was not
coincident with the other two wavelengths, was used to obtain a relation between
wavelength and attenuated amplitude in numbers. They found that the exponent n
of mean free path dependence (equation 1.1) was 0.35, much less than expected. The
initial radius at 90 km was 1 meter. They also found no significant dependence of
initial radius on velocity, as calculated using Fresnel oscillations; fitting the standard
velocity equation gives b=0 (equation 1.2). Since most meteoroids fragment, and a
fragmenting meteoroid will tend to have no Fresnel oscillations, less than ten percent
of echoes can be used for this type of velocity calculation. There may be a systematic
bias in the results due to the exclusion of fragmenting meteoroids. They also used
overdense echoes to estimate initial radius and found a value exceeding 1.8 m.

Kashcheyev & Lebedinets (1963) used two frequencies (75 MHz and 37.5 MHz).
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They were not able to find a meaningful dependence of initial radius with height
because of the limited useful height range of the higher frequency system, but found
an average initial radius of 80 cm at heights around 92 km. They also used Fresnel
oscillations to calculate meteor velocities, and found a significant variation of initial
radius with velocity, with b=0.4. The authors suggested that the inclusion of a large
number of transition echoes in Greenhow and Hall’s study might have been responsible
for the disagreement in the velocity exponents.

Using frequencies of 31.26 MHz and 46.2 MHz, Bayrachenko (1963) obtained
n=0.82. Diffusion coeflicients were used to determine the heights of meteors, and
the average initial radius around 97 km was of order 1 meter. A velocity relation was
derived using 34 meteors, velocities calculated using Fresnel oscillations, and gave
b=0.33.

Baggaley (1970) used radar observations at 10 MHz and 28 MHz, calibrated with
overdense echoes, to calculate initial radius. He took into account magnetic field ef-
fects, and used decay times to obtain heights. Velocities were measured using the rate
at which the amplitude increases to maximum, the rise-time method. He found a ve-
locity exponent of 5=0.57+0.16, and a dependence on mean free path of n=0.4530.03,
with 7,=1.06 m at 100 km.

Overdense echoes can also be used to investigate initial radius. An overdense echo
normally has an electron line density along the trail in excess of 10'* electrons per
meter; however, if the initial radius is large the density of the trail can be reduced to
the point where the echo behaves as a transition or underdense echo. By observing
the same echo on different frequencies, one can find limits on the initial radius of
meteors at those heights. This method was proposed by Delov (1976) and used by
Baggaley & Fisher (1980), who used multi-frequency observations of both under and
overdense echoes, and found n= 0.63. Baggaley (1980) also investigated the relation
between velocity and initial radius, using sporadic meteors and Geminids. With no
directional information, he separated the echoes into bins of high Geminid activity
and little or no Geminid activity, and compared the initial radius for the Geminid set

(with V=35 km/s) with the sporadic set (the sporadic velocity was assumed to be 50
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km/s). He found b=1%0.3 and n=0.42+0.07.

Moysya (1969) investigated the relationship between initial radius and velocity,
using the data of Kashcheyev and Lebedinets. He constructed two models, one with
a strong velocity dependence and one with no velocity dependence, and found that

the one with the strong velocity dependence matched the data better.

1.4.3 Modelling trail formation

Manning (1958) was the first to model initial radius on a theoretical basis, using
collisional cross sections worked out by Massey & Sida (1955). Manning found that
the initial radius should be 14 cm at 93 kilometers altitude and should have n=1
and b=0.09. He also found that the distribution of electrons in the trail should be
Gaussian. Dokuchaev (1960) also found that the distribution of electrons should
be Gaussian, provided the trail was below 100 km. Grusha (1991) modeled the
formation of a meteor trail including random variations in atmospheric density and
fragmentation of the meteor itself. Grusha assumed that the density of fragments
of the meteor has a Gaussian dependence, and that the radius of the fragmented
group of particles decreases exponentially with height. He used n=1, =0.65 for
individual fragments, but obtained an initial radius which reached a minimum at
approximately 90 km, increasing rapidly as height is increased and slowly as height
is decreased. When the functions were fit to the theoretical data, n=0.13 and 6=0.12
were obtained.

Jones (1995) treated all atoms as hard spheres undergoing elastic collisions, and
used a Monte Carlo simulation technique to find a theoretical initial distribution.
He used the scattering cross-sections of Bronshten (1983) (after Portnyagin and
Tokhtas’yev (1974)), which are proportional to V=8, and obtained an initial radius
which goes exactly as mean free path. The radial distribution of electrons generated
by this model is not Gaussian: it more closely resembles an exponential.

Since the experimental studies show a much smaller dependence of initial radius
on height than expected with conventional theory (Table 1.1, Figure 1.4), Hawkes &
Jones (1978) proposed a modified model, which included fragmentation of spinning



%3]

Table 1.1: Summary of results of previous studies of initial radius dependence with

height (r; oc €*) and velocity (r; o< V?)

Study n b
Greenhow and Hall (1960) 0.35 0
Kashcheyev and Lebedinets (1963) - 0.4
Bayrachenko (1965) 0.82 0.33
Baggaley (1970) 0.45+0.03 0.57+0.16
Baggaley (1980) 0.4240.07 14+0.3
Baggaley and Fisher (1980) 0.63+10% -
Baggaley (1981) 0.26 -
Manning (1958) (model) 1 0.09
Grusha (1991) (model) 0.13 0.12
Jones (1995) (model) L 0.8

bodies to explain this. As a meteoroid fragments, the pieces would be thrown off at
the rotational velocity of the surface and give the meteor a larger initial radius than
it would otherwise have.

In the dustball model, meteoroids are composed of a large number of small, solid
grains, held together with some sort of low boiling point “glue” (Hawkes & Jones,
1975). When the particle enters the atmosphere, the volatile component boils away
without producing any light, releasing the component grains. These grains eventually
heat and ablate, producing the light and ionization. This model explains the short
duration and odd profiles of light curves of faint meteors (Campbell et al, 2000), which
cannot be explained by the classical single-body theory which assumes a single, solid,
uniform object. Most small meteors also appear to have fragmented prior to the
onset of luminous ablation, since continuing fragmentation would produce flares and
flares are only seen on brighter meteors. Larger meteors will not heat uniformly, so

the volatile component may remain unevaporated in the core until the meteoroid has

begun to ablate.
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Figure 1.4: Initial radius as a function of height, assuming rg = ¢*

If the meteor has fragmented or is fragmenting, the trail of electrons that it pro-
duces will not be a simple shape determined only by the ablation process. The echo
power will be the sum of the returns off the trails left by each fragment. There are
limits on the lag between fragments (Fisher et al, 2000; McCrosky, 1958), which set
limits on the radial width of the group of fragments. Most meteors do not show lags
of more than 200 m. The radial separation will be much smaller than this, since lag
along the trail is caused mainly by deceleration of the smaller fragments.

All experimental studies have assumed the distribution of electrons in the trail to
be Gaussian. However. this is not the predicted distribution in all models of meteoroid
ablation, and certainly need not be the case for fragmenting meteoroids. Because of
this, measures of initial radius will be uncertain.

Complications in the calculation of initial radius may also arise if the electron
density profile is different for different meteors. For example, a very fragile dustball

meteor may have separated into constituent grains long before it begins to ablate,
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while a denser meteoroid will take longer to fragment, and may still be fragmenting
while it ablates. To look for these sorts of differences, it would be useful to study
shower meteors whose properties have been determined to see if they have different
dependencies of initial radius on height. There may be magnetic field effects in the
expansion of the trail, as investigated by Oppenheim et al (2000). Finally, the electron
density profile could change with height.

1.4.4 Correcting radar amplitudes and rates

The correction factor of radar amplitude for initial radius, assuming the radial electron

density in a meteor trail is Gaussian, is

A —4n2rd
Z-;-exp( 32 ) (1.3)

Assuming the number seen is proportional to the amplitude, and given a reason-

able height distribution, we can find the percent of echoes seen at any wavelength.
There are significant differences in initial radius as a function of height as deter-
mined from all experimental and theoretical studies of the problem (Figure 1.4). In
particular, there is no agreement on the dependence of initial radius on mean free
path and on velocity (Table 1.1). The percentage of echoes seen by a radar operating
at a particular frequency varies by at least factor of four from one model to another

(Figure 1.5). To calculate accurate fluxes, it is necessary to determine which if any

of these is correct.

1.5 Statement of Problem

Determining the sporadic meteor flux is important not only for astronomical rea-

sons, but also to evaluate the risk to spacecraft. Radar observations are useful for

monitoring the sporadic background, but they suffer from a number of limitations.
The initial radius attenuation produces a large uncertainty in flux measurements.

Previous measures of the correction factor vary widely from study to study, and as a
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Figure 1.5: Percentage of meteors detected as a function of wavelength for results of

different initial radius surveys
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result the absolute flux from radar measurements is uncertain by up to a factor of ten.
The present study undertakes to determine the correction factor for any frequency,
and to use this correction factor to obtain fluxes.

To accomplish this, we will use data from a three frequency radar system. Am-
plitude ratios between pairs of frequencies at different heights will be determined. A
model of initial radius will be constructed which explains the observations. The model
will then be used to find the total number of meteors observed at any frequency.

The most important aspect of the model to be developed is the addition of the
effects of fragmentation of meteoroids on the attenuation of meteor echoes. The
initial radius caused by fragmentation was found to be more important than the size
or shape of the trails of individual fragments, so the correction factor depends most
strongly on the way the meteoroids fragment. By determining this, some information

can be determined about the internal structure of meteoroids.



Chapter 2

Theory

2.1 Attenuation Due to the Initial Trail Radius

To obtain a reliable estimate of the meteor lux from radar observations, we need
to know the attenuation of each echo as a function of wavelength and height. This
attenuation of radar returns due to initial radius can be calculated, but it requires
that the details of the reflection process and the structure of the trail be known. These
can be examined both with modelling based on theory, and optical observations. The
distribution of electrons in the trail of an individual object must be known, and

provision made for the possibility of fragmentation.

2.2 Reflection of Radio Waves from an Infinitely
Thin Trail

In monostatic backscatter radar observations, the transmitter and receiver are located
in the same place. Backscatter observations are well suited to monitoring sporadic
sources, since the geometry is relatively simple and the echo directions can be mea-
sured easily: the geometry is more complex in the forward scatter case when the
transmitter and receiver are located up to 2000 kilometers apart. However, backscat-

ter observations must be corrected for initial radius effects. Forward scatter systems
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are not affected by the initial radius of the trail, since the difference in path length
of waves scattered from points through the trail’s width are small compared to the
wavelengths used. In the backscatter case the difference in path length is of order the
size of the trail, so initial radius has a significant effect.

Radar echoes occur because of the scattering of radio waves by individual electrons
in the plasma of the meteor trail. Two broad categories of echo can be distinguished:
underdense and overdense. In the underdense case, the trail is thin so that there
is little secondary scattering of radio waves: the trail is transparent to the radar
beam and all electrons around the reflection point contribute to the total returned
power. In the overdense case, the electrons have a density that is sufficiently high to
prevent radio waves from penetrating into the trail: the echo consists essentially of
reflections from the outermost electrons only. Only underdense echoes are affected
by attenuation due to initial radius.

Meteor trails diffuse outward rapidly because of the low atmospheric density, and
therefore long mean free paths between collisions, at meteor heights. Underdense
echoes decay in an exponential fashion as their radius increases; they can no longer be
detected when their radius becomes of order the wavelength of observation. Overdense
trails persist much longer than underdense trails, since they cease to be visible only
when the density at the trail axis drops sufficiently and the echo becomes underdense.
They are quickly twisted by atmospheric winds: reflection can then occur from any
part of the trail with an axis perpendicular to the radar direction, and the amplitude
profile of these echoes tends to be irregular. Underdense echoes can only be detected
when the axis of the forming trail is perpendicular to the line of sight of the radar.
This specular, or mirror-like, reflection means that echoes from a given radiant lie on
a plane perpendicular to the radiant direction. Likewise, if the echo direction but not
the radiant is known, the radiant point must lie on a plane perpendicular to the echo
direction (Figure 2.1).

Most of the echoes considered in this study are underdense. The reflection process
is a problem in diffractive optics, since the wavelengths involved are so long. The

reflected echo comes mainly from the specular point, the point on the trail closest to



great circle of possible

radiant directions acha point

metaor

Figure 2.1: Reflection of radar beam from specular meteor trail

the radar, which has a range Ry. As one moves along the trail away from this point.
the phase of the return will change as the distance to the source increases. with the

phase angle of the form

_ 47d

¢=— (2.1)

where d is the extra distance from the reflection point to the receiver: the radar pulse
travels twice this distance. When the distance to the source reaches Ry + A\/4 the
phase difference will be = and there will be destructive interference. The length of

the region between these two points is

Le=2 (Ro + Z) - R} (2.2)
or
A a2\ 2
Ly =2 (R% + E) i (2.3)

A is much smaller than Ry, so the length of the first Fresnel zone is approximately
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Figure 2.2: Fresnel zones in radio wave reflection from a meteor

Lr = (2RoM\)'? (2.4)

which is of order one kilometer for a typical range of 150 km and a wavelength of
10 m. The region inside these points is called the first Fresnel zone. and most of the
scattered radiation comes from within this region. The other. progressively smaller
Fresnel zones will make diminishing contributions to the total amplitude (Figure 2.2).

The amplitude will reach a maximum just after the meteor passes through the first
Fresnel zone.

The simplest calculation of power returned from a meteor assumes that the trail
is an infinitely thin line (e.g. McKinley (1961)). One can therefore sum the contribu-
tions from each electron in the trail to find the total reflected power. The contribution
of a single electron can be found by multiplying the transmitted power per unit area
by the scattering area of one electron and the effective area of the receiving antenna.
The transmitted power at the location of the meteor trail is (PrGr)/(4mR?), where
Pr is the transmitter power, G is the transmitting antenna gain, and R is the range
to a particular point on the trail (Figure 2.3). The gain of the antenna is a measure of

how the antenna’s radiation pattern differs from an isotropic radiator. The power per
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meteor trail

radar
Figure 2.3: Geometry of meteor path relative to radar

unit area scattered by one electron measured at the radar will be o./(47R*) times the
transmitted power per unit area at the meteor trail, where o, is the scattering cross
section of the electron. The effective area of the receiving antenna is (GgpA2)/4w,
where G is the receiving antenna gain in the appropriate direction and A is the

wavelength. The total power received from one electron is therefore:

i PTGTG R/\zo’e
APr=—gimRi

To find the total received power, the contribution of each electron must be summed

(2.5)

taking into account that the phase will be different for electrons at different points
on the trail. The total voltage amplitude will change with time as the meteor trail
forms; it will rise rapidly as the meteor passes the specular or ¢y point, and oscillate
as it passes through each subsequent Fresnel zone (Figure 2.2). We must therefore
add the amplitudes of the returns from each electron, keeping track of the phases.

The voltage at the receiver is simply (2R,-APR)%, where R; is the receiver input
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impedance. There are two terms in the phase angle ¢: 27 ft is the phase of the radio
wave with frequency f at time ¢, and — (4w R) /) is the change after the wave travels
a distance R. R changes as the meteor moves along its path. The in-phase amplitude
will be Acos ¢, and the quadrature component A sin ¢.

Assuming the meteor trail has an electron line density g, in electrons per meter,

we have the amplitude due to a small element of trail:

dAg = (2R:APR)? gsin (271' ft— %‘i) ds (2.6)

where ds is a small distance interval along the trail at range R (Figure 2.3). If s, is

the initial position of the meteor, and s the current position, the total radiation at

time ¢ will be:

Ar= (2R:APR)E g [ sin (2 ft - f’f\—R) ds 2.7)
s

here we have assumed g to be constant over the region of integration, and removed
it from the integral. This integral is not easy to evaluate, but becomes easier if the
following substitutions are made, after McKinley (1961). Since s is much smaller than
Ry in the desired interval. we can use R ~ Rg+s2/2Ry, from the Pythagorean theorem
and the series expansion of (1 + 52/ Ro2)%, We can also use the transformations

X =2rft — (4rRy) /X and 2s ==z (Ro/\)%. We then have:

_ (2RAPRRN)? = 772
Ap = 5 q/xl Sin { X — — dz. (2.8)
Expanding the sine function, we have:
. 3 T 2 2
Ap = (2R‘A}:RR°/\)2 q/ (sinxcos E;:— — cos x sin %) dr. (2.9)
Z F 31

Since x does not vary with s or z, those terms can be removed from the integral.

If we then introduce the substitutions:

C=fcos %dx (2.10)

and
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r  gr?
= fin o 9
S /Il sin — dz (2.11)

which are the conventional Fresnel integrals, arising in optical theory. we have:

_ (2R:APRRoM)?
- 2

Ar q(Csinx — Scosx). (2.12)

This will be the quadrature amplitude. The echo amplitude increases rapidly
through the ¢y point, then oscillates while it decays. The amplitude can be determined
graphically by plotting S against C (Figure 2.4). The meteor begins at —oc. The
relative amplitude is the magnitude of a vector joining this point to a point on the
curve, and the phase at that point is given by the vector’s orientation.

To find the returned power, the amplitude must be squared:

_AR®  APgrRoA . . 2 9 1¢
=5 = 54 (Csinx — Scosx) (2.13)

“

Pr
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_ APgRo)
==

Of the two terms in Y, only one varies: 2r ft varies with time at the frequency of

Pr q° (C2 sin® x — 2CS sin x cos x + S cos® x) . (2.14)

the radar signal. Because the frequency is large, we can take a time average over a

short interval. We then have:

Pr

2 2
_ AP,?RO)\qz(C +S ) (2.15)

2 2
The term in the bracket, (C2? + S2) /2, is roughly equal to unity when taken over the
first few Fresnel zones of the meteor (McKinley, 1961):
A

3
Pr =25 x ].0—32PTGTGR(E) q2. (2.16)

The amplitude of the echo will be

A=cV (2.17)

where c is some constant determined from the hardware and V' is the voltage output

by the receiver, and the voltage is given by

V2 =2R; Py (2.18)

where R;=50 Ohms is the impedance at the receiver. The amplitude is therefore

proportional to the square root of power.

2.3 Trail Formation Models

In the simple case described above, there is no attenuation of radar echoes with
height. Since this attenuation is observed, the simple model of an infinitely thin line
of meteor plasma is not complete. In order to calculate the echo attenuation, the
internal structure of the trail must be known: in particular, the trail’s radial electron
density. This problem can be addressed by modelling the formation of the trail.
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2.3.1 Collisional models

In the simplest model of trail formation, each ablating atom is modelled as a hard
sphere with a radius equal to the radius of its scattering cross section. The me-
teor trail is formed as ablated atoms of the meteor are slowed by collisions with air
molecules to thermal velocities. According to Manning (1958), this process will take
between 14 and 20 collisions; each collision will tend to reduce the forward momen-
tum of the ablated atom. Since all meteors travel faster than 10 km/s, there will be
enough kinetic energy in the collision between an ablated atom and a molecule in the
atmosphere to ionize the meteor atom. The probability of ionization increases as the
velocity to the third or fourth power (Bronshten, 1983; Jones, 1997), and approaches
unity as the velocity approaches 70 km/s. It is therefore very probable that when the
atom reaches thermal equilibrium, it will be ionized.

The electrons are much more mobile than the ions, but will tend to remain with
the ions, preserving quasi-neutrality: the expansion of the trail is therefore determined
by the motion of the ions. The distance travelled by each atom between collisions
depends on its scattering cross section and on the atmospheric density. Manning
(1958) assumes the scattering cross section to be that of ions at thermal velocities,
but Massey & Sida (1955) argued that at meteoric velocities the fact that the atom
is ionized makes little difference, and the scattering cross section should be that of
neutral atoms. From Bronshten (1983), after Portnyagin and Tokhtas'yev (1974),
Jones (1995) uses a scattering cross section proportional to v=%8 and the atomic
rather than ionic scattering cross section. Since by this model atoms with higher
velocities will have smaller scattering cross sections, they will tend to travel farther
between collisions. This implies that faster meteors produce wider trails, so that
faster meteors not only ablate higher than slower meteors, but will also have wider
trails at a given height, further biasing radar observations against them.

The most important role of modelling is to determine the radial distribution of
electrons, and hence how attenuation depends on wavelength (see section 2.4). The

density of electrons (following the density of ions) is expected to be greatest at the
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trail axis, and to taper off with increasing distance from the axis, but the form of
the radial density function must be determined. Manning (1958) assumed that the
electrons in a trail would have a Gaussian distribution. The simulation code of Jones
(1995), on the other hand, gives a distribution closer to exponential, having a sharper
central peak. In both models, the initial radius is defined as the root mean squared
value of the radial distance of each electron from the trail axis.

The process of trail formation is considered complete when ablated atoms have
reached thermal velocities. If the models of Manning (1958) and Jones (1995) are
correct, this will require at most 20 collisions, after which the atom will have slowed
from a speed of tens of kilometers a second to hundreds of meters a second. A simple
simulation of hard spheres undergoing elastic collisions with stationary particles finds
that on average | millisecond is needed for a meteoritic atom with a speed of 30 km/s
to reach thermal velocities at 95 kilometers altitude: faster meteors reach equilibrium

more quickly since they take less time for 20 collisions.

2.3.2 Plasma models

The hard sphere model is not exact for several reasons. It assumes that all molecules
are spherical (which is not the case for many diatomic atmospheric gases) and it
ignores any interatomic forces other than during collisions. It also ignores electric and
magnetic forces on the ions from external fields. Magnetic effects will be important
above 95 km, when the motion of electrons perpendicular to magnetic field lines will
be retarded (Kaiser, 1968; Kaiser et al, 1969; Jones, 1991; Ceplecha et al, 1998).
This will tend to produce trains with an elliptical rather than a circular cross section.
Meteor trains should properly be treated as plasmas (Jones, 1991), with full account
taken of the electromagnetic interactions between electrons and ions. The simulation
in this case becomes much more complex than the hard sphere approximation.
Only simplified plasma simulations have been done; Oppenheim et al (2000) have
modelled trails as two dimensional plasmas, using kinetic theory for the ions and
a fluid model for the electrons. They predicted that the diffusion process will be
turbulent on small time scales, producing a highly irregular electron density after 1.5
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ms. The initial distribution of ionization had a Gaussian cross section and initial
radius of approximately 1 meter. The simulation thus does not apply to the actual
formation of the trail, but to its time development; even so, the simulation may
provide useful information since the highest part of the trail will begin the diffusion
process before the lowest part has finished forming. The meteor plasma modelled
was only fifteen times the background density, and therefore similar to the faintest
radar echoes at the maximum level of the E region. At typical meteor heights, the
background ionization varies from 10® m~3 to 10'® m~3: meteor trails can vary from
ten to ten thousand times the background electron density. The numerical solution
was less accurate at higher densities. Because the model uses only two dimensions,
uses a fluid model for the electrons and simulates a trail less dense than those being
studied, the results were not used in our models, but further research along these
lines may yield important insights into the final structure of the trail.

Turbulence in the trail (Dyrud et al, 2002) may act to oppose the magnetic field,
allowing trails to diffuse uniformly even at heights greater than 95 km. Jones (1991)
suggested that even where magnetic fields strongly affect diffusion, the initial dis-
tribution will be roughly circular since the atoms will be ionized only after several

collisions. Before ionization, their motion will be unaffected by the magnetic feld.

2.3.3 [Initial radius as a function of height

Initial radius varies with height. The collisional models predict that the initial radius
should increase directly as the mean free path; this would mean that it increases
exponentially with height. Most attempts to describe the height dependence of initial

radius use mean free path to some exponent with a value between 0 and 1, of the

form:

;o " (2.19)

where £ is the mean free path and n the exponent. The theories of the trail formation

of non-fragmenting meteors of Manning (1958) and Jones (1995) predict that the
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value of n should be 1.

2.4 Reflection from a Trail of Finite Width

When a radar beam is reflected from a trail with a nonzero initial width, different
electrons will be at slightly different distances to the radar, and the returns will not
be in phase. The attenuation of an echo due to initial radius effects can be calculated
by summing the reflection from each electron. The contributions from each electron
will be equal in amplitude, but will have different phases depending on the position
of the scattering electron. The attenuation will depend on the sum of the phases of

the reflection from each electron. We obtain an integral for amplitude of the form:

a (k) = ao / n (7) ¥ 77 (2.20)
for a thin slice of cylindrical column of ionization (Figure 2.5). Here & is the wave
vector, 7 is the position vector of the electron relative to the axis of the cylinder, and
ap is the amplitude of the same trail with no width.

If the trail has cylindrical symmetry, the density of electrons n () depends only

on the distance from the trail axis, so n (r,8) = n(r). The equation reduces to:

a (k) :ao/w

=

/:; rn () (cos (kr cos 8) + usin (kr cos 8)) drdé. (221)

The integral over § can be split into cosine and sine components. The sine function

is antisymmetric about 7 in 4, so that integral is 0. We are left with:

a(k) = ag /Oo ™ (r) /(; 2‘” cos (kr cos 0) drd@. (2.22)

A Bessel function of the first kind is defined as:

Jo (z) = % [ cos (@sing) do. (2.23)

In order to make the integral in equation 2.22 analogous to that in equation 2.23,

we substitute §' = 6 + 7 into equation 2.22. Since the integrand is symmetric about
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Figure 2.5: Reflection of radar signal from an electron in a meteor trail

7. we can also change the upper integration limit from 27 to =, taking out a factor
of 2:

a (k) = 2aq /0 Zrn(r) /0 " cos (krsin ') drdd'. (2.24)

Substituting equation 2.23, the definition of a Bessel function. in equation 2.24,

we have:

a (k) = 2maq /0 = (r) Jo (k) dr (2.25)
so the amplitude is proportional to the Fourier-Bessel transform of the electron density
function. The attenuation depends both on the wavelength of the radar and on
the radius of the trail. If the electron density function is Gaussian. the Fourier-
Bessel transform is also Gaussian; and according to Jones (1995) the transform is
approximately Gaussian if k%(r?) < 1. Otherwise we must solve equation 2.25 exactly
to obtain the relation between amplitude and wavelength/initial radius. Figure 2.6

shows the Fourier-Bessel transforms of a Gaussian and an exponential.



33

10
— Gaussian
08 08 |
g i
=3
3 5
06 0.6
= .
£ 3
- 13 "
7]
P 04 g G4 |
= ; i
2 :
£ !
02 02 !
1
y
0.0 - T 0.0 :
X 05 10 15 20 25 30 0.0 o5 10 18 20 25

Radius Initial radius x wavenumber

Figure 2.6: Fourier-Bessel transforms of an exponential and a Gaussian function

2.5 Determining Initial Radius from Radar Obser-

vations

The first attempt at determining the attenuation of echoes as a function of height
was made with the radial distribution generated with the code of W. Jones (Jones,
1995). The method used was similar to that of Greenhow & Hall (1960). using the
exponential radial distribution instead of a Gaussian. The number of echoes seen
on each frequency in a given height interval are plotted. The number at the longer
wavelength is assumed to be correct, and the number at the shorter wavelength is
corrected by that amount. If the trail is assumed to be Gaussian. the amplitude after

attenuation will be:

& = ag exp (- (Q’LT“)Q) (2.26)

where ag is the amplitude without attenuation, rg is the initial radius and X is the
wavelength. If one takes the ratio of the amplitudes at two different wavelengths. one

has:

ay 2 1 1
—_ = — (27 —_— — —3 . 27
% —exp (- 2 (22 - 1)) (2.27)

The number of meteors seen can be related to the smallest mass detectable by

the system with the mass distribution index of the meteoroid population. We assume
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that the masses of particles follow a power law of the form:

dn oc m™° (2.28)

where dn is the number of particles falling inside the mass range m to m +dm, and s
is the mass distribution index. For any positive s, the number of particles at a given
small mass will be larger than at a large mass. The higher the value of s, the greater
the excess of small particles will be. Showers typically have s values of around 1.7;
sporadic meteors have an s between 2 and 2.3.

[ntegrating this equation from the smallest mass, we have a cumulative number

of meteoroids N¢

Ne o / m=*dm (2.29)

or

Ng =Cm!~* (2.30)

larger than mass m. C is a constant.
Since the amplitude of an echo is proportional to the mass of the meteor, and the
number of echoes seen is related to the smallest detectable mass of the system, the

ratio of the numbers of echoes seen on each radar at a particular height is related to

the amplitude ratio at that height as:

a _ (Nl)l_s (2.31)

a3 N;
where s is the mass distribution index. If s is assumed to be 2, the amplitude ratio
will be equal to the number ratio.
Starting with the ratio of numbers of echoes at two different wavelengths, one
can calculate the initial radius, and then calculate the absolute number of echoes.
Greenhow & Hall (1960) used both number ratios and amplitude ratios to find their

relation of attenuation and height. To find the percentage of meteors detected at any
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frequency, they plotted three points for the three radars and fitted a spline curve to
them.

There are several difficulties with each approach. The attenuation as a function of
wavelength must be known: if the meteor trails do not have a Gaussian distribution,
the attenuation function will not be Gaussian. When comparing numbers of echoes,
the two radars used must have a well known limiting magnitude and no differences
in the selection criteria for echoes. When comparing amplitudes, factors like the
transmitted power, receiver calibrations and gain patterns of the antenna must be
taken into account. A systematic shift of 1% in the amplitude ratios was found to
have little effect on the results. The amplitudes must therefore be measured to within
1%, and the transmitter powers to 2%.

Number comparisons on different frequencies were not practical for our systems
because of the interference that affected the 17.45 MHz observations daily and occa-
sionally the 29.85 MHz observations. Instead, amplitude ratios were used to calculate
the initial radius assuming the electron density function was exponential.

With this method, the initial radius was calculated at all heights with sufficient
numbers (Figure 2.7). The radius shows a slight increase and then a decrease with
height on both pairs of frequencies, with significant error on most of the points, and
the values obtained with different systems do not agree.

Using different functional forms gave no better results, and no simple solution
could be found. The results depended on the day the data were taken, and often
no solution could be found. Plotting individual amplitude ratios (see Figure 4.5)
showed that the source of the problem was the large scatter in the points, which is
not predicted by the simple theory.

From these results, it was apparent that a more detailed analysis of the problem
was required. The amplitudes and heights had to be measured very precisely, to
remove as much measurement error as possible. It also was unlikely that a simple

model could explain the results, so a more detailed model had to be constructed along

with a more detailed examination of the data.
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2.6 Further Attenuation Due to Fragmentation

2.6.1 Fragmentation

There are a number of reasons for including fragmentation in the model. All ex-
perimental studies of initial radius seem to indicate that the initial radius increases
more slowly with height than expected from theory (e.g. Greenhow & Hall (1960),
Baggaley (1970)). Hawkes & Jones (1978) proposed fragmentation as an explanation
of this phenomena. The fragmentation theory is supported by many observations
(McCrosky, 1955; Jacchia, 1955; Hawkins & Whipple, 1958; Opik, 1958; Campbell
et al, 1998). Hawkes and Jones argue that, in the process of colliding randomly with
other meteoroids in space, most particles will acquire a net spin. When the object
fragments in the atmosphere, the smaller fragments will therefore be thrown away
from the axis of rotation with some initial velocity. This may produce a distribution
of fragments with a large lateral scatter.

Fragmentation can be added to an attenuation model in a fairly straightforward
manner. Since all echoes under consideration are underdense, the trail of electrons
from each individual fragment can be treated independently of all the others. The
resulting radar echoes can be summed, taking into account that the phases of the
echoes from each will be slightly different due to lateral separation of the grains.
The grains can be assumed to have some distribution with respect to the axis of the
meteor’s path; they will also have some size distribution and a total radius which
may depend on height.

There is currently no way to determine the radial distribution of the fragments. A
few likely candidates are Gaussian, radially uniform, and exponential distributions:
also, a hollow trail where few of the fragments lie on the trail axis is possible (Fig-
ure 2.8). The distribution will depend on the circumstances of fragmentation and on

the dynamic flight of each fragment after separation from the main body.



38

1.2

1.0 frmeme e e g e e e e
0.8 {
0.6

0.4 -

Relative density of fragments

0.2 A —— Gaussian
'_/ ....... Exponemial \ "
v —~ Radially Uniform -
—-- Hollow trail \.,
0'0 . ; r e .,
0.0 0.2 04 0.8 0.8 1.0

Relative radial distance from meteor axis

Figure 2.8: Possible radial density functions of fragments

2.6.2 Height dependence of fragmentation radius

The height dependence of the fragmentation radius, or radial spread of the fragments,
must also be experimentally determined. The meteor fragments may spread out
during the luminous portion of its trajectory, increasing the fragmentation radius
with decreasing height. Alternatively, if larger fragments stay closer to the axis than
smaller fragments, the fragmentation radius may decrease with height as the small
outer fragments are ablated and only the large fragments remain (Figure 2.9). The

simplest model assumes a linear dependence of fragmentation radius on height, with

two coeflicients to be determined, a and b.

rr=ah+b (2.32)

These coeflicients can be found by fitting multi-frequency radar observations to

theory, assuming that each fragment produces a particular distribution of electrons,

the radius of which is proportional to the mean free path.
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Figure 2.9: Possible development of fragmented meteor. At a), the meteor is still a

single object. At b), it has just broken apart; at c) it has travelled some distance.
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2.7 Summary

The important functions in calculating the effects of initial trail radius are: the radial
dependence of the electron density in a trail, the radial dependence of fragment density
of a meteor, the height dependence of the initial radius of a single trail, and the
radial dependence of fragments from the meteor axis. For each of these, a functional
form must be chosen and the coefficients can then be found. In addition, the mass
distribution index of the fragments must be determined. Some can be found by

modelling and comparing video data: the others must be found with multi-frequency

radar data.
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Chapter 3

Equipment

3.1 Tavistock Radar

As discussed in the previous chapter, we planned to use accurate amplitude ratios
of meteor echoes observed on several frequencies to determine the attenuation due
to initial radius. This requires that the radar systems be very well calibrated, so
that differences in amplitudes are not caused by differences in transmitter power or
receiver calibrations. The errors on these two quantities should be no more than 2%.

A triple frequency SKiYMET HF/VHF radar was constructed both as a meteor
patrol radar and to investigate the initial radius effect. The radar is a joint product
between Mardoc Inc. of Canada and Genesis Software of Australia. The hardware
was built by Tomco Electronics, operating software and computer hardware provided
by Genesis Software of Adelaide Australia, and Mardoc Inc. supplied the scientific
analysis software and the antennas. Except for the frequencies, each radar system was
constructed identically. The systems were designed to be operated simultaneously and
for real-time detection and analysis of meteors. The detection software was designed
for investigation of atmospheric winds with meteor trails, but was used in this case
for the detection of all meteors. The three radars operated at 17.45 MHz, 29.85 MHz
and 38.15MHz (referred to hereafter as 17, 29 and 38 MHz), and had peak powers of
6 kW. They were located in Tavistock, Ontario (43.264N, 80.772W).
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Figure 3.1: Dimensions of receiver antennas

3.2 Antenna Layout

3.2.1 Antennas

The antennas for the Tavistock system were designed to detect meteors over most of
the sky. This broad radiation pattern provided the best possible coverage for sporadic
sources at all times. The transmitting antennas were simple three element Yagi an-
tennas. The receiving antennas were two element Yagis (Figure 3.1, Figure 3.2). The
sensitivity varied slightly azimuthally, the maximum sensitivity on each system being
toward the east and west; it also varied with elevation and had the greatest gain at
an elevation of 35°. The gain patterns were calculated using the NEC software pack-
age (Figures 3.3 and 3.4). The software takes as input the dimensions and physical
parameters of the antennas, and uses assumptions about the properties of the ground
(conductivity o = 0.03 Siemens/m and dielectric constant €, = 20) to calculate the
gain pattern. The patterns calculated were used in all analysis and simulations.

The maximum gain of the transmitting antennas was roughly 7.5 dBi for all three
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Figure 3.2: Dimensions of transmitter antennas

Figure 3.3: Gain of Tindal2 receiving antenna at 0° and 90° azimuth in linear units
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Figure 3.4: Gain of Tindal2 transmitting antenna

systems. or 3.6 x that of an isotropic radiator. The receiver antennas had a maximum
gain of 6.3 dBi, or 4.3x isotropic. Each system had one transmitting antenna and
seven receiving antennas. The antennas were connected to the radar trailer with RG-
213 coaxial cable. which had an impedence of 50 Ohms. The phase shift of each cable

was measured and accounted for in the analysis software.

3.2.2 Interferometer

In principle. only two antennas are needed in a particular direction to specify the
angle to the echo in that direction (Figure 3.5). Since the phase difference between

the two antennas, caused by the difference in path length, will be

, 27As )
v=-— (3.1)

and As = dsin @. where ¢ is the zenith angle. the zenith angle can be found as:

sine = ——— 9
Sme=Tord (32)

If the antenna spacing is less than A\/2, there will be a unique solution. If the
spacing is greater than A/2, there will be many possible solutions all separated by 2.

However, antennas with spacings less than A/2 suffer from mutual coupling which can
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introduce large errors in the phases measured at each (Hocking et al, 1997: Jones et al.

1998). Jones et al (1998) proposed a three element design to remove the ambiguities

while keeping the antennas far enough apart to ensure that no significant coupling

took place between the antennas. The two outer antennas are spaced at 2 A\ and

2.5\ from the center. reference antenna. The phase on each of the outer antennas is

determined relative to the phase of the center antenna, giving two equations for the

zenith angle:

X A
sing = ———
¢ 2wd 1
and
ino M2
s = —
' 27l'd')

The zenith angle can calculated using two values:

the two phases.

s Al — )
S = T 1 + o)
oo A+ )
S0 =~ —dy)

the sum

(3.3)

(3.4)

and the difference of

(3.5)

(3.6)

Equation 3.6 has a “virtual separation” of antennas d; — da of \/2, so there is a

unique solution. This solution will not be very precise, however: even small phase

errors give a large uncertainty in angle. Equation 3.5 will give a much more precise
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answer, but will be ambiguous. The answer to equation 3.6 can be used to choose
the correct solution to equation 3.5, provided the phase errors are not too great.

The angle can be refined further with another antenna at a still greater distance.
This will give even more solutions, closely spaced: the correct solution can be chosen
from the solution to the first two equations. In principle, provided the signal to noise
ratio of the echo is high enough to yield sufficiently accurate phase measurements,
the baseline could be increased further and more accurate angles could be obtained,
but using a total baseline of 7\ is sufficient for most purposes.

By using two orthogonal arrays, the eclevation and azimuth can be uniquely deter-
mined to better than 2° (Jones et al, 1998). By comparing angles measured on two
of the systems for the same meteors, one can obtain an estimate of the actual error.
The standard deviation in zenith angle is roughly 1° and in azimuth it is 0.4°, as
estimated from comparison of 29 MHz and 38 MHz observations of identical meteors.

Each radar system has seven receiving antennas laid out in the manner described
above (Figure 3.6). The three arrays were arranged with a minimum of overlap in the
field (Figure 3.7). The antenna arrays were aligned and their orientations measured
by sighting astronomical objects and calculating azimuths. All arrays had their main
axis 16° West of North. The terrain was very level, making differences in heights for
the antennas negligible. The only significant irregularities were present in the 17 MHz
array, which covered the greatest area; no attempt was made to correct for these.

The design of the interferometer is due to Jones et al (1998).

3.3 Transmitter and Receivers

The transmitter consists of six solid-state units, each of which is capable of producing
1 kW of power. The transmitter unit is capable of generating 6 kW, but the exact
power level can change over time due to failed modules and other technical malfunc-
tions. The power output of the transmitter must be known accurately for meaningful
comparison between frequencies: for this purpose a power monitoring system has

been installed and calibrated. The power monitoring system measures the power ev-
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ery 30 minutes and writes the values to a text file. The system was calibrated using
a calorimeter power meter.

The receiver unit consists of seven identical receivers, one for each antenna. Each
produces a voltage which is translated into amplitude, a 16 bit binary value. The
receivers must be calibrated to determine the relation between voltage and amplitude
in order to calculate the received power. This is done by replacing the antenna by a
signal generator and measuring the amplitude from the receiver; knowing the input
power it is possible to calculate the voltage and, by altering the generated power, to

calculate the proportionality between power and voltage.

3.4 Basic Radar Parameters

The most basic radar can determine range, time and amplitude of a signal. A pulse
is produced in the transmitter, sent from the transmitting antenna, reflects off the
observed object and is received at the receiving antenna. The time the pulse takes
between being transmitted and received can be used to calculate the distance. Since

the pulse travels at the speed of light ¢, and covers twice the range in a time At, the

range can be found as:

Ry = %cAt. (3.7)

Problems may occur if the pulses are close together compared to the total region
to be sampled: there may be more than one possible range for a given echo. This
can be avoided by reducing the pulse repetition frequency (PRF), but this lowers the
total power output.

The total power output is the product of the peak power generated by the trans-
mitter and the duty cycle. The radar produces pulses of width d, at intervals of 1=

PRF
(Figure 3.8). The duty cycle describes the amount of time during each cycle where

the transmitter is active.
Ideally, if precise amplitudes are needed, the pulse is a perfect rectangle. Its width

determines how accurately range can be determined. In practice, because the pulse
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1
PRF

Figure 3.8: Transmitter pulses

a)

Figure 3.9: Rectangular pulses after passing through a bandwidth filter. a) with
Af =1/d; b) with Af <1/d; ¢) with Af > 1/d.

must be sent with a particular bandwidth A f, the shape will not be perfectly square.
The amount of distortion depends on the relative sizes of the pulse width and the
bandwidth: if Af is smaller than 1/d then the pulse will be spread significantly and
will not reach its maximum amplitude. If A f is larger than 1/d the pulse will be only
slightly distorted (Figure 3.9). If the pulse is not square, the amplitude cannot be
determined very precisely from a single sample, since that sample may fall anywhere
on the returned pulse and is not necessarily the peak amplitude (Figure 3.10). During
the data collection for this experiment, the pulse resolutions were either 4 or 8 kilo-
meters long, corresponding to temporal lengths of 26.6x 10~° seconds and 53.2 x 10~
seconds. A 50 kHz bandwidth was used, which is larger than 1/d for both modes.
The pulses were therefore only slightly distorted from their original shape.

Accurate ranges are essential, since they are needed to calculate accurate heights.
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Figure 3.10: Undersampling a pulse

Accurate amplitudes are also required, otherwise the ratio of amplitudes on different
frequencies is meaningless. We chose therefore to use a long pulse, a lower PRF
and to sample the returned pulse many times. Each sample will be offset from the
next by one range bin. If the shape of the pulse is known, each return can be fitted
to a curve and the maximum amplitude and corresponding range can be calculated
(Figure 3.11). The pulse shape can be determined by oversampling a long pulse and
plotting the returns (Figure 3.12).

We simulated echoes from meteors with various pulse lengths and sampling in-
tervals to determine the minimum number of samples per pulse required to obtain
an accurate estimate of the amplitude. Noise was added to each return in a random
way. We found that, using a shaped pulse of width T, having a sampling interval
between 0.3T and 0.4T was sufficient to find the maximum amplitude to within the
noise limits. This could be sampling every 1.5 km for a 4 km pulse or every 3 km
for a 8 km pulse. Not all meteors will be sampled the required 3 times, but because
the tapered edges of the pulse extend past the width, most meteors with significant

signal to noise ratios will.
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Figure 3.12: Actual 10 km pulse, sampled at 1.5 km intervals, on 29 MHz system
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Table 3.1: Sky noise temperatures for three frequency radar; daily minimum and

maximum

f (MHz) Tmin (K) Tmax (K)

17.45 30 000 500 000
29.85 15000 100 000
38.15 8 000 80 000

3.5 System Limits

3.5.1 Noise

[t is important to calculate the noise of each system in order to determine the limiting
magnitude, since the faintest meteor visible will depend on the background levels.
On the 29 and 38 MHz systems, the main source of noise is cosmic. On the 17 MHz
system, terrestrial interference is much larger than cosmic noise for parts of the day:

it has a large diurnal variation. Noise power P, in radio systems is usually defined as

P, = kT Af (3.8)

where k is the Boltzmann constant, A f is the bandwidth of the radar, and T, is an
effective temperature, which has nothing to do with the operating temperature of the
radar but is equivalent to the noise in a resistor which dissipates more energy when
warmer.

The cosmic noise temperature on the three systems varies between 10* K and 10°
K (Table 3.1). By contrast, the noise in the transmission lines and receiver has an
effective temperature of order 360K, several orders of magnitude less than the sky
temperature. The noise introduced by the equipment can therefore safely be ignored.

[t is interesting to note that the noise on each system follows a nearly sinusoidal
trend over the course of each day. If the noise level is plotted along with the elevation
of Casseiopeia A, a supernova remnant, it is clear that most of the noise on these

systems is due to radiation from that object (Figure 3.13). From the elevation of



53

80 H --@-- Elevalion of Cassiopeia A - -94
—a— Noise powaer al 38 MHz
w
2 - 95
o 60 1
) A
k-] A
~les E
8 ¢ g
8 N
2 4049 2
o L 97 5
5 <
=
S
(V) .
o 20 ‘o - 98
® .”.....
~ -89
0 T T r T
0 5 10 15 20

Local time (Hours)

Figure 3.13: Measured noise levels on 38 MHz system on 12/12/1999, and elevation

of Cassiopeia A supernova remnant for same day.

Cass A it is therefore possible to calculate the noise at any time of day on any day of

the year.

3.5.2 Limiting sensitivity

If the noise power is known, the limiting magnitude can be calculated in a straightfor-
ward manner. The minimum echo strength required for detection is set to five times
the noise power in the detection software. The electron line density of this meteor

can be calculated from equation 2.16, which can be rearranged as follows:

(R 3 5Py 3
1= ( A ) (2.5 X 10-32PTGTGR) (3.9)

where Py is the noise power. Knowing ¢, the radar magnitude is defined to be:

M, =42.4—265logq (3.10)

for non-shower meteors (McKinley, 1961). Radar magnitudes were developed using
simultaneous visual and radar observations (Lindblad, 1956; Millman & McKinley,
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1956), but do not necessarily correspond to optical magnitudes for meteors fainter
than magnitude 5¥.

The exact limiting magnitude will vary with the transmitter power, and is different
for different altitudes and azimuths. Using peak power values of 6 kW for each system,
and taking the most typical altitude, the limiting electron line density for all three
systems is approximately 10'3 electrons/meter, corresponding to a magnitude of +9.

This corresponds to a mass of 10~7 kg.

3.6 Detection Software

The detection software for the Tavistock radar was written for the SKYiMET meteor
radars (see Hocking et al (2001) for a complete treatment). [t uses a two-stage process
to detect the rapid increases in received power of meteor echoes, and applies filters
to remove signals caused by airplanes, lightning, E-region ionospheric echoes, RF
interference and other unwanted sources. In the first stage, broad filters are applied
to isolate signals which may belong to meteors. These fairly unrestrictive tests can
be done very quickly, so even at high echo rates the computing time is very small
for each detection and the first stage can be accomplished in real time. The in-
phase and quadrature amplitudes from each receiver are saved from a small interval
of time around the possible meteor and these files are stored on the disk. The second
detection stage operates in parallel, and for usual rates can finish the process within
seconds: it does not interfere with the collection of data since it only runs when the
processor has free time. If the load on the CPU is too high, it can wait and perform
the analysis on the stored event files when the processor has free time.

The first task of the detector is to find sudden increases in amplitude. In order to
do this efficiently, the in-phase and quadrature signals are averaged over four points,
reducing the temporal resolution for this test only (the complete data set is saved
and used in its entirety for the second stage of analysis). The amplitudes are then
incoherently averaged on all channels: since the phases are different depending on the

geometry, it is not possible to average them coherently in real time. If three points
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in a row are found which exceed the standard deviation of the previous points by an
amount greater than five standard deviations, the object is a possible meteor. If the
event does not stay high for three points in a row, it is likely to be a noise spike.

Underdense meteors have a rapid rise in amplitude, and generally last less than
three seconds. The next test then checks to see that the rise time is less than 0.3 s,
and that the amplitude has returned to the noise level within three seconds of the
peak. This will remove most aircraft, which generally take many seconds to pass
through the beam, E-region echoes, and most overdense meteors.

Some forms of interference, including lightning and RF interference, may have
significant amplitude variations and therefore not be discriminated against by the
previous test. The next test then checks to make sure the decay is fairly smooth. A
search is done for the place where the echo falls to 0.3 times the maximum amplitude.
[f the signal then rises again to 0.7 times the maximum, the event is rejected. This
will also reject some overdense meteors.

If a signal is not noise, the rate of change of phase should be similar on all antennas.
To enhance the signal, a complex cross correlation is done on each pair of antennas.
In a standard cross correlation, two waveforms covering the same time interval with
n points are compared. The time index, or relative start time, of one waveform is
varied from -n to n, and for each time lag the two waveforms are multiplied where
they overlap. The resulting values are summed and normalized, so that each lag has a
corresponding number. Plotting the correlation function against time lag gives a new

function which is a measure of how alike the waveforms are. The cross correlation is

defined as:

o0

Corr(t) = / g(T + t)h(T)dT (3.11)

where ¢ is the lag. A complex cross correlation works in the same way, using complex

amplitudes and yielding an in-phase and quadrature component to the correlation

function.

oo

N g(T +t)°h(7) (3.12)

CCorr(t) = /
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The rate of change of phase of this function at zero lag is found for each pair of
antennas, and the variance compared. If the standard deviation of these numbers is
high, then the signal is very noisy and is discarded. Meteors which have passed all
the above tests are saved in a file containing all the amplitude data from 1 second
before the peak to 3 seconds following it.

The initial detection algorithm removes most unwanted signals, but some may
remain. The second stage analysis applies more rigorous tests.

In the first test, the peak amplitude is required to exceed the amplitude at other
points by at least a factor of two. Three intervals are chosen for comparison: one
including the first quarter second of the saved file, well before the meteor, the second
just before the peak, and the third 0.7 s after the peak. Each 0.25 second interval is
averaged and the RMS value compared to the peak.

Assuming the peak is sufficiently high, the part of the file before the meteor is
examined. Since E-region echoes may have a sudden rise in amplitude which can
be mistaken for a meteor, the second before the signal’s occurrence is checked for
correlation. Cross correlations are done on all pairs of antennas on the second before
the signal appeared, and the rate of change of phase found for each. A true meteor
will show no correlation among the antennas prior to the signal, while an aircraft or
ionosphere echo suddenly increasing in strength will show correlation. If the standard
deviation of the change of phase on the cross correlation on each pair of antennas is
high in the second before the peak, the echo is rejected.

Finally, the same sort of test is applied to the region where the event occurred. If
the standard deviation of the change of phase values is small, then the noise in the
signal is low and the meteor is accepted. Most of the meteors which pass all these
tests will be underdense, but a few overdense and transition echoes may be included

if they have short durations due to wind or other disturbances.



3.7 Radiant Determination

In order to separate out meteors from a particular shower or sporadic source for flux
measurements or for initial radius investigations, some way of determining radiants is
necessary. It is not possible to find the radiant exactly for a particular echo without
more information, but a statistical treatment allows fluxes of meteors from a particular
radiant to be calculated. When a shower is very active, shower meteors can be
separated from the sporadics with relatively few erroneous meteors.

The basic procedure is the method of Jones (Jones & Morton, 1977; Jones, 1977,
Morton & Jones, 1982), described in detail in section 7.2. Specular meteor echoes
are detected ninety degrees from the radiant, so for an echo to belong to a particular
radiant it must lie on a great circle 90° away. The number of echoes which lie along
a band 90° from the radiant and with a width equal to the angular error of the
interferometer is roughly the number which come from that radiant. This basic
procedure can be used to find shower meteors for analysis, or as a starting point for
flux calculations.

Some of the echoes found by the above procedure will be from other radiants, the
echo lines of which cross the desired echo line at that point. In order to calculate
an accurate flux, these echoes must be statistically removed, since there is no way to
distinguish them individually. We therefore take an area on either side of the echo
band of area equal to the band itself, and subtract the number of echoes in that area.
This background subtraction will remove a number of echoes roughly equal to the

background, and the resulting rate should give a reasonable flux.

3.8 Measurement of Decay Times

While very precise heights can be calculated with the interferometer, it is of interest to
look at the heights as calculated from the decay of underdense echoes. In particular,
the heights calculated from the decay times can be used to filter out any overdense

echoes which may have passed the other tests in the echo detection software.
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Underdense meteors decay exponentially after their peak. The decay time is the
time for the echo to fall from the peak amplitude to 1/e of the peak. The amplitude

follows a function of the form:

A= Agexp (—é) (3.13)

where 7 is the decay time, Ao is the peak amplitude, and t is the time since the peak.
The graph of the natural logarithm of amplitude against time will be a straight line
with slope -1/7.

To improve the signal quality for the measurement, the in phase and quadrature
signals on all receiver channels are coherently integrated. An autocorrelation is then
performed on the data to further increase the quality; an autocorrelation is the same
as a cross correlation (Equation 3.11) but involves multiplying the function by itself.
The slope of the line of the natural log of amplitude against time is found with a
standard linear regression, and if the error in the slope calculation is not too high the
decay time is calculated from the result. The height of a meteor in kilometers can be

roughly calculated from the decay time by finding the diffusion coefficient, D, from

the decay time:

/\2
= 16ner

The height depends linearly on the ambipolar diffusion coefficient. The relation

(3.14)

has been determined experimentally by several groups: recently it has been calculated

by Jones & Jones (1990), using laboratory measurements and observations. They

found:

log D = 0.06h — 4.72. (3.15)

where the height A is measured in kilometers.
Since the heights are measured much more accurately with the interferometer,
the decay times are most useful in sorting out ambiguous echoes and eliminating the

few overdense and transition echoes which pass the detection tests. Transition and
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overdense echoes can pass the detection filters if the trains are suddenly twisted by
the wind in such a way that they are no longer specular. While they pass the filter
because they drop to the background level within three seconds in a fairly smooth
fashion, the decay profile will be a poor exponential and the decay time will not
necessarily correspond to the height at which the meteor occurs. A few transition
echoes may still pass this test, but most will be eliminated. The decay times can
also distinguish among ambiguous echoes. Although the decay time height may be
in error by several kilometers, it may still able to distinguish which of two possible

geometries is correct if there are more than one possible range or angle combination.

3.9 Summary

In order to gather useful observations for comparing echo amplitudes on more than
one frequency, the radars must be similar and well calibrated. Power measurements
were made close to the time of observations for all data used, and the power levels
were monitored carefully for the duration of the observations. The receivers were
calibrated close to the observing time as well. The echoes recorded by the radar
will be largely underdense, with a few transition and overdense meteors. Statistical

fluxes can be calculated from the data collected as long as care is taken to remove

the background flux.
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Chapter 4

Data Collection and Analysis

4.1 Amplitude Ratios

Once the data have been collected, they must be processed. Filters are applied to
remove any echoes with suspect heights or amplitudes, and simultaneous echoes on
two frequencies are found. The amplitude ratios of these meteors are calculated for
analysis.

To investigate the initial trail radius as a function of height, we need to compare
the amplitudes of underdense echoes recorded simultaneously on two frequencies. If
the initial radius and physical characteristics of the trail are the same for all meteors
at a given height, the points should fall on a curve such as those in Figure 4.1 in the
amplitude ratio/height graph.

[f there were no initial radius effect, the ratio of amplitudes at different frequencies
would be simple to calculate. From Equation 2.16 and Equation 2.18, the voltage in

the receiver for one system will be:

1
3 3
Vi =2R; |2.5 x 10‘32PT10TIGRI(%) q2:| . (4.1)

The amplitude will be (from Equation 2.17):

3
2
A =c¢32x 10716 [PTIGTIGRIPL (%) q. (4.2)
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Figure 4.1: Amplitude ratios for 29 and 38 MHz for overdense echoes, and underdense

with a simple model of initial trail radius

If the antennas are identical, the transmitter and receiver antenna gains G+ and
Gr will be the same on both systems. The impedance R; of both sets of cables is
the same, and the range R, and electron line density q are the same since the same

meteor is being observed. The amplitude ratio will therefore be:

Al _ o (if(ﬂ)% (4.3)

4 a\Pr/ \X
If the receiver calibration and the transmitted power are measured carefully and
the echo strengths adjusted, the amplitude ratio will depend only on the ratio of the
wavelengths of the systems raised to the power of 3/2.

Not all echoes are suitable for analysis. Transition and overdense echoes will be
unaffected by initial radius and will have constant amplitude ratios as described above.
The heights and amplitudes of underdense echoes must be accurately measured, or

scatter will be introduced. For this reason, extra filters are added to remove meteors
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Figure 4.2: Data files at each stage of processing

which are potentially overdense or transition, and which may have significant height
and amplitude errors. The amplitude of each echo is calculated by sampling the
returned pulse several times and fitting the known shape of the pulse. This will
eliminate errors due to sampling away from the peak of the pulse. (Figure 4.2)
Because the initjal radius attenuation may depend on fragmentation and therefore
the meteoroid structure, and because it may depend on velocity, the analysis was
initially done for Geminid meteors only. This will provide a test of the method on the
simplest case, where all meteors have identical velocities and similar compositions.
The Geminids are one of the most active showers on the radar. since they are lower in
velocity than many other streams and penetrate farther into the atmosphere. They
may, however, differ significantly from other, cometary meteoroids since their parent
object, 3200 Phaethon, appears to be an asteroid. Jacchia, Verniani & Briggs (1965).
however, found that although Geminids were denser than average meteors, they had

the same fragmentation index, so while our results will need to be scaled in height,
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the fragmentation factor derived from them should be universally applicable. The
fact that we have ignored the effects of velocity on initial radius may also affect the
accuracy of our results when applied to sporadic meteors, but it offers a valuable
test of the new method of calculating the fraction of echoes unobserved due to initial

radius which can be applied specifically to other meteors afterwards.

4.2 Collected Data

The data files from the radar contain a list of all meteor echoes which passed the
detection tests described in the previous chapter. The files produced by the radar
have names of the form mpYYYYMMDD .tindalx.mpd, the x being 1 for the 17 MHz
system, 2 for 29 and 3 for 38 MHz. These files contain headers listing information
about the radar’s location, antenna coordinates, and other information: these headers
were removed prior to analysis and the resulting files, called mp files, contain only
a single header line and the data for each meteor. They have names of the form
mpYYMMDD.dat, where only the last two digits of the year are used. For each
meteor, the date, time, range, height, positional angles, the amplitude and decay time
are stored, among other data. If more than one range or set of angles was possible, the
meteor was labeled ambiguous, and all possible geometries kept: a number in the file
listed the number of possible geometries. When long pulses are used, a single meteor
may have several records associated with it, each differing in range by one sampling
interval and having a different amplitude. Data files for each meteor were also saved
during shower observations and could be consulted later: these binary files contain
the in-phase and quadrature amplitude data for each antenna. These files had names
of the form MEYYYYMMDD.xxxxx, and the five-character extension was recorded
in the mpd file.

Table 4.1 is an example of an mp file, for December 13, 2001 from the 38 MHz

system.
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4.3 Amplitude Measurements

The first task in finding accurate amplitudes is to find the shape of the pulse. This can
be done by increasing the length of the pulse and sampling more frequently; a curve
can then be fit to the resulting shape. The returned shape will differ slightly from
the shape given to the transmitter because of the finite bandwidth, so it is necessary
to measure the returned pulse rather than the shape produced in the transmitter.
Shaped pulses, which are rectangular with tapered edges, were chosen since they
produced a function which was easy to fit. To determine the shape, ten kilometer
pulses were transmitted and sampled every 1.5 kilometers. The highest amplitude
meteors (with the maximum number of points) were chosen on each frequency and
curve fits done in TableCurve 2D v3. This package fits over 3000 functions to the
given points, calculates the error, and ranks them. The function which best described

the shape of the returned pulse was an asymmetric double sigmoidal curve, defined

as:

b 1

y=at [l+exp(—(z—c+‘-2‘-) /e)] [1- 1+exp(—(z:—c—%) /f) - 44

Here, y is the amplitude and z is the range bin. The coeflicients are a, b, ¢, d, e
and f. The vertical offset is a, and can be set to zero since all echoes can be assumed
to start at the zero level. b represents the peak of the curve, and corresponds to the
maximum amplitude of the meteor. The horizontal distance to the peak of the curve
is ¢, and will be the range at which the maximum amplitude occurred. The width
of the curve is d, and is known for any observing run. e and f are measures of the
steepness of the curve’s rise and fall, respectively. The quantity e or f scales with the
width of the pulse, and by calculating e/d and f/d from the curve fit one can find
the appropriate values for any pulse width.

Once a general pulse shape is known, the amplitude and range to maximum of any
echo with several samples can be calculated. The only two unknowns in Equation 4.4
will be b and c, corresponding to the amplitude and range of the peak. The curve

fit is done numerically rather than analytically, so each parameter is varied and the
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Figure 4.3: First approximation of pulse shape. varied to find the best range to the

centre.

one with the least error is chosen. Since the maximum amplitude and corresponding
range must be in the center of the curve, good starting approximations can be found.
The largest amplitude measurement is first used as the maximum amplitude, and the
range varied from the range of the largest measured amplitude to half the pulse width
on either side. (Figure 4.3) Once the best range offset is found, this is used as ¢ and
the amplitude value is stepped to 10% above and below the measured maximum to
find fit with the least error.

The pulse length and sampling interval cannot be altered arbitrarily. The duty
cycle must not be significantly increased, to avoid overloading the transmitter. This
means that if the pulse length is increased, the PRF must be dropped so that fewer
pulses are sent each second. The sampling interval must be at least 1.5 km, due
to software constraints. The number of data points sampled must not exceed the
capacity of the data bus: a maximum of 80 gates is allowed per pulse. The range to
be sampled after each pulse is the aliasing distance, or the distance a pulse can travel
and return to the radar from one pulse to the next. The time available is 1/PRF,

so the lower the PRF, the longer the aliasing distance, and the more points must be
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Table 4.2: Radar Data Collecting Modes

Mode Length of PRF (Hz) Alias Resolution Range Gates
Pulse(km) Range(km) (km) Sampled(km) Used
Standard 2 2144 70 2 ol a0
10 km 10 536 280 1.5 120 80
8 km 8 536 280 3 240 80
4km 4 1072 140 1.5 120 80

sampled to completely cover it. If the PRF is too low and the sampling rate too high,
there will be a blank space where echoes cannot be detected. A blank space of more
than twice the pulse length is left in any mode to ensure that the receivers do not
sample when the transmitter is on, to avoid saturating them. For example, in the
standard operating mode, the PRF is 2144 pulses per second. A pulse can travel (at
the speed of light) 140 km in the 13.3 microseconds between pulses, so the radar can
receive returns from anything within 70km. If the object is more distant, the return
will be received after the following pulse. The region from 0 to 60 km is sampled,
leaving a 10 km blank for the transmitted pulse.

The 10 km pulse mode was used only for determining the shape of the pulses: since
the range between 120 and 280 km could not be sampled in this mode, it was not
useful for data collection. Both the 8 km and 4 km pulse modes gave fairly complete
coverage of range.

The lowest sampling interval easily achieved was 1.5 km for a 4 km pulse, or
3 km for an 8 km pulse (Table 4.2). The longer pulses were needed for a velocity
experiment being run during the 2001 Geminids. A simulation routine was written
which generated amplitude measurements spaced 1.5 km apart on a 4 km pulse, with
randomly generated noise added to each amplitude sample. [t was found that for
echoes which were sampled at least three times, amplitudes could be measured to
better than 2%, with an average of 0.6% for echoes with signal-to-noise ratios of at
least 10 dB. For the faintest echoes, the errors were better than 5% for echoes down
to 5dB. By contrast, if the maximum of the measured amplitudes was taken to be the
true one, the errors were an average of 1.3% with individual errors greater than 3%

for echoes with a SNR greater than 10; and more than 10% for the faintest echoes.
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4.4 Echo Selection

Since only Geminid meteors were to be used in the preliminary analysis, the first step
in the data analysis was to sort out possible shower meteors. While there is no way
to uniquely identify Geminid meteors with the current system design, on the days
around the Geminid maximum the stream meteors wiil outnumber sporadics on the
echo line by nearly an order of magnitude.

Shower meteors were isolated using a C++ program. It generated a ground based
unit vector to the radiant at the time of each meteor, took the dot product with a
unit vector pointing to the meteor, and if the result was greater than cos(87°) the
meteor was accepted. Meteors passing this test were written to a new data file.

Several extra filters were applied to the data to remove unsuitable echoes, includ-
ing all echoes which might be overdense or transition, and those which had suspect
amplitudes or heights.

The first filter removed all echoes with a zenith angle more than 68°. Echoes
close to the horizon have a number of problems. They have potentially many range
ambiguities, since they pass through the region in the atmosphere where meteors
are seen (75 to 110 km) at a shallow angle. Any unevenness in the ground will cause
uncertainty in the gain pattern in that region, resulting in more uncertain amplitudes.
The height errors will also be greater since the ranges are larger and small errors in
the elevation angle will result in large errors in height. The echoes removed by this
filter will not bias the sample, since the constraint is geometric and is averaged out
over the course of a day.

The echoes were then tested to see if the measured decay time corresponded
roughly to the height, in a manner similar to that used by Hocking et al (2001).
The ambipolar diffusion coefficient was calculated from the decay time, and a height
determined from the diffusion coefficient. If this height was within 10 km of the
measured height, the echo was accepted: this is within the range of error on the
decay time and in the height. If it was more than 10 km from the measured height,
the echo was rejected. For ambiguous echoes, the height was calculated from the
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decay time, and if only one of the possible echo geometries had a height which was
close to it, the echo was accepted. If none of the heights matched or if more than one
were possible, the set was rejected.

All echoes occurring at the same time and place in adjacent range bins were kept
and used in the fitting procedure above. The amplitude fits were done with a third

C++ program, and the echoes stored in another data file for use in the last step.

4.5 Simultaneous Echoes

The final analysis task is to find the simultaneous echoes on pairs of frequencies.
While the specular geometry is the same for all three systems, echoes recorded on
one system are not necessarily recorded on the others. The height ceilings on the
three systems due to initial radius are very different: an echo seen on 17 MHz may
be too high for detection on 38 MHz. Also, an echo which appears overdense at
17 MHz and is therefore rejected by the analysis software may be underdense at
shorter wavelengths. Because of these effects, very few of the meteors will be seen
simultaneously on all three systems. However, by finding the simultaneous echoes on
29 and 38 MHz and on 17 and 29 MHz, significant numbers can be collected. Since
terrestrial interference on 17 MHz prevents the detection of meteors for more than
half of each day, the majority of the simultaneous echoes are found on 29 and 38
MHz.

Simultaneous echoes were found with a final C++ program. Each system has
a GPS receiver which recorded the time of each meteor detection. Finding meteors
occurring at the same time, at the same range (within the error margin), elevation and
azimuth, one will virtually guarantee that the observations are from the same meteor

trail. The power and receiver calibrations for each radar were used with equation 4.3

to find corrected amplitude ratios.
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Table 4.3: Numbers of underdense Geminid meteors collected on each radar frequency

and of simultaneous echoes on pairs of frequencies
Year Day 17 MHz 29 MHz 38 MHz 17/29 29/38

2001 10 143 130 105 3 50
2001 11 141 303 172 36 75
2001 12 176 596 249 62 136
2001 13 41 658 297 13 156

4.6 Results

Data were collected during the 2001 Geminid shower in December and the 2002
Quadrantid shower in January. Power levels were measured on all three systems on
December 10. Reception at 17 MHz suffered from heavy interference on all the shower
days, but 29 and 38 MHz operated smoothly from December 11 to December 14, and
all three operated on January 3 and 4. Because of a simultaneous experiment, 8
km pulses were used during the 2001-2002 campaign. Power levels were measured
before observations began and monitored on all three frequencies throughout. [t had
been found that the power levels from the transmitters occasionally fluctuate due
to hardware failure, but the power levels stayed constant over the five days of the
shower. The 17 MHz system suffered from interference on December 13, but had
approximately 10 hours with low noise on the other campaign days. The number
of echoes recorded on each system was reduced by each filter applied, and the final
number of Geminids passing all the tests on each date is given in Table 4.3. The
power levels on each system and receiver calibrations are given in Table 4.4.

The results for all days of data during the 2001 campaign are shown in Figure 4.4
and Figure 4.5. The expected ratio in the absence of initial radius effects is shown in
each plot, using the power measurements and receiver calibrations for each system.

The reason for the large uncertainty in initial radius calculations is apparent from

these plots. Particularly on the 17/29 MHz ratios, there is a very large scatter in
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Table 4.4: Power levels and receiver calibrations on radar systems during the 2001

Geminids and 2002 Quadrantids)

17 MHz 29 MHz 38 MHz
Power (W) 6530 6180 4680
Receiver calibration 13.27 x 10°19 12.82 x 10~ 12.61 x 10~10

(Volts / Amplitude Unit)

the data which is not predicted by the theory. [t is plain from these results that the
simple model of initial radius is inadequate, and much more work needs to be done
to quantify the effects.

In addition to the large scatter on both pairs of systems, there is another pop-
ulation of echoes which shows no height dependence in the amplitude ratios. This
population is more noticeable in the 2000 Geminid data, which was not used since
power measurements were not taken during the shower and the antennas had not been
calibrated (Figure 4.6). The data appears to follow two separate trends: one which
shows an increase in amplitude ratio around 95 km, and the other which is constant
and also shows significant scatter. The latter population is explained by overdense
and transition echoes which slipped through the analysis routines, and provides a
baseline to ensure the power measurements and receiver calibrations are correct.

Visual examination of some of the echoes in the suspected overdense population
confirmed that most of them had overdense characteristics: in particular most of them
had a constant amplitude for a brief period after their peak, before the amplitude
started to decline. To remove these echoes before any analysis was done, another
filter was applied. The time for the echo to fall to 95% of its maximum amplitude
was determined from the raw data file for each meteor. This was compared to the time
expected, given the expected decay time of the meteor, and if it was more than five
times as big as the expected time the echo was classified overdense (Figures 4.7, 4.8).

When these echoes were removed, there were very few echoes with small amplitude
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Figure 4.4: Observed amplitude ratios on 17 and 29 MHz for the 2001 Geminids
against height. The horizontal line represents the expected ratio for an infinitely thin

trail.
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Figure 4.9: Observed amplitude ratios on 29 and 38 MHz with overdense echoes

removed

ratios over 95 km (Figure 4.9). Very few overdense echoes were identified below 90
km: the overdense test is not as discriminating at lower heights since the expected
decay time is longer. These echoes will cause less error in the solution than those at
greater heights, however, since the difference in amplifude ratio between underdense
and overdense echoes is small at low heights.

The cause of the scatter is more difficult to identify and it will be investigated in
the following chapter. The cause of the scatter must be different on different wave-
lengths, in order to change the amplitude ratio, and different for different meteors to
produce scatter. It cannot be caused, for example, by poor absolute power measure-
ments, since that would produce a shift up or down in the diagram but would not
affect the scatter. The relative powers were monitored on each frequency through
the experiment, so no fluctuations took place during the measurements. Since the

numbers of simultaneous echoes on 17 and 29 MHz were low, these data were used as
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a check, and the model was developed using the ratios on 29 and 38 MHz.
The scatter in amplitude ratios explains the widely varying results found in other
radar studies of initial radius: the function describing initial radius as a function

of height will vary depending on how the average of amplitude ratio at a particular

height was taken.



Chapter 5

Computer Simulation of Radar

Echoes

5.1 Determination of Attenuation of Radar Echoes

Given the results of the multifrequency investigations, it is apparently impractical to
try to explain the results assuming each meteor trail is generated by a single particle.
There are many small effects which need to be considered, and the only practical way
to do this is to simulate the data.

For this purpose, a simulation program was written which generated meteors based
on known characteristics of height and velocity distributions. The received power was
then calculated for each echo for three radars at 17.45, 29.85 and 38.15 MHz. The
basic model used only the ordinary radar meteor equations; for the newer model, other
components, including Faraday rotation, initial radius effects and fragmentation were
added.

For generating random numbers, the ran0 routine from Numerical Recipes in C
(Press et al, 1992) was used. This routine is superior to standard random num-
ber generators in most compiler packages because it can generate a large number of

random values without repetition.
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5.2 Basic Simulation

5.2.1 Generating echoes

Meteor trails were generated with a height h, electron line density ¢, azimuth ¢
and zenith angle . The heights were generated according to the height distribution
of Jacchia, Verniani & Briggs (1965) for Geminids adjusted for the higher radar
sensitivity, as a Gaussian centered on 98 km with a 7 km rms deviation. The azimuthal
angle was chosen randomly between 0 and 360°. The elevation angle was calculated by
first finding the maximum horizontal range of an echo at the generated height. Since
meteors with elevation angles less than 20° were rejected, an echo with an angle less
than this would not be observed. Otherwise, echoes should be randomly distributed
in horizontal distance, so a random horizontal range was chosen. The elevation angle
was then calculated with simple geometrical considerations.

The range to the echo was calculated using curved-Earth geometry, since the

correction to flat Earth was found to be significant. The formula is:

Ro = Rgcos (m —0) + (R%cos? (r — 0) + A2 + 2hRg) (5.1)

where all variables are defined above.
The time delay between echoes was random, and the average delay between echoes
was varied to match the observed variation in echo rates. The echo rate was highest at
0600 local time and at a minimum at 1800 local time. This variation in rates ensured

that the Faraday rotation effects will apply to the appropriate fraction of meteors.

5.2.2 Sampling the generated meteors

The power at the receiver for each echo was then calculated. The gain patterns for
the transmitting and receiving antennas on each system were read in from a text file,
and the gains at the elevation and azimuth of the trail calculated. The transmitter
power for each system on the date being simulated was read from a file along with

the receiver calibration. It was necessary to simulate the date on which the data



81

was collected so that the properties of the ionosphere were correctly described by the
International Reference [onosphere. The received power was then determined using
equation 2.16.

Before calculating the amplitude, the echo was tested to see if it exceeded the
noise power on the system by 5 dB. The noise power for each system was calculated
using the measured daily minimum and maximum noise levels and assuming that it
varied sinusoidally with the elevation of Cassiopeia A (see Chapter 3).

If the echo passed this test, the amplitude was calculated using the receiver cal-
ibration and equation 2.17. The decay time was calculated using the relation of
equations 3.14 and 3.15; this was done so that the generated data would pass the
decay time test in the analysis routines. To simulate the effects of shaped pulse sam-
pling, which could introduce different errors on the different frequencies, the return
was spread over many range bins using the ADS fit of Chapter 4. At each range
bin, the amplitude was calculated, and noise was added to each sample. If the am-
plitude exceeded the threshold required for detection, it was sampled and the echo
was recorded in a file identical to the mp files produced with the radar. Because of
this, only echoes which were 5 dB above noise at three range bins were kept. For the
values in the mp file which are not used in our analysis, such as angular speed and
phase error, random values were entered as placeholders so the program which read

in meteor records could be used without alteration.

5.2.3 Results of basic simulation

As expected, with no initial radius effect the amplitude ratios were independent of
height. Noise in the amplitudes and the need to fit a curve to find the maximum

amplitude produced a small amount of scatter, but not nearly as large as that which

was observed (Figure 5.1).
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Figure 5.1: Amplitude ratios from simulation with only basic parameters
5.3 Faraday Rotation

One possible cause of scatter in meteor amplitudes is Faraday rotation, which affects
electromagnetic waves travelling though a plasma in the presence of a magnetic field
(see e.g. Elford & Taylor (1997)). During the day, the E-region and D-region of
the ionosphere have an electron density of 3 x 10° electrons/m®, and extend from
approximately 90 to 150 km altitude. As the EM wave passes through this region, its
polarization vector is rotated; on the return it is rotated by the same amount in the
same direction. If it returns to the polarized antenna with a rotation of 7/2, it will
be invisible to the radar, and if the rotation is more or less than this the echo will
be attenuated. This effect will be different at different times of day and at different
areas in the sky, and it is frequency dependent.

The equation for the angle of Faraday rotation (2 is (Elford & Taylor, 1997):
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Figure 5.2: Amplitude ratios from simulation with basic parameters and Faraday

rotation

Q =2.36 x 104PJ;2B [ Vs (5.2)

where pis a unit vector in the direction of travel of the EM wave, B is the Earth’s
magnetic field at the appropriate latitude and longitude, f is the frequency of the
wave, V. is the electron density and ds is a distance along the path of the radio wave.

The International Reference lonosphere model (Bilitza, 2001) was used to find the
density of electrons in the region from 60 to 130 km. The integral in equation 5.2
was evaluated numerically. The echo amplitude was attenuated as cos ().

Faraday rotation only affects echoes where the echo direction is close to the mag-
netic field direction, is more important on lower frequency systems and only while
the E-region has a high electron density, during the day. It hardly affects 38 MHz
at all, and 29 MHz is only affected at the time of maximum ionization. The effect is

very significant on 17 MHz.
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The result is more scatter below the line of constant amplitude ratio: since Faraday
rotation affects 29 more than 38 for every echo, it will tend to produce amplitude ratios

below this line (Figure 5.2).

5.4 Initial Trail Radius

Two functions are important for calculating the attenuation due to initial radius: the
initial radius itself as a function of height, and the attenuated amplitude as a function
of initial radius and wavelength. Based on the collisional models of trail formation
presented in Chapter 2, we expect initial radius to be proportional to the mean free
path in the atmosphere. We can therefore choose a number of mean free paths as the
initial radius. The attenuated amplitude of the echo as a function of initial radius
and wavelength is the Fourier-Bessel transform of the electron density function. Since
the form of this function is unknown, a Gaussian is usually assumed, but the Jones
model (Jones, 1995) predicts a distribution more like an exponential.

The initial radius was calculated for each generated meteor, based on its height
and the height dependence entered. The attenuated amplitude was then determined
from the Fourier-Bessel transform of the radial electron density function.

The point at which the amplitude ratios start to increase rapidly with height is
governed by the number of mean free paths in the initial radius. The scatter is much
larger than before: this is mainly due to errors in heights from the compounded
errors in elevation and range. The scatter is still not as large as the observed data,
particularly at lower heights. The Gaussian electron density distribution (Figure 5.3)
produced a sharper rise in the ratio of the amplitudes with height than the exponential
(Figure 5.4).

5.5 Finite Velocity Effect

The attenuation due to initial radius will be increased by the fact that the meteor

takes a finite time to cross the first Fresnel zone. When the meteor reaches maximum
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amplitude, the portion which was formed first will have expanded some distance,
causing additional attenuation of the echo.

The size of the first Fresnel zone is (2Ro/\)1/ 2 where Ry is the range and A the
wavelength. This size is of order 1 km at meteor altitudes, for radars operating in
the tens of MHz. The meteor crosses this length in (2R0A)1/ 2y-! seconds. When
the integration along the path is performed (Peregudov, 1958), the attenuation factor

will be:

o= [lL— exi(—A)l (5.3)
where
9.2 ; 1/2
A= 2D (i/ROI\) . (5.4)

This calculation is based on the assumption of a Gaussian initial electron density
profile, which may not be correct. However, even for relatively slow meteors this

effect was found to be small, so further corrections to it were deemed unnecessary.

5.6 Fragmentation

The evidence shows that fragmentation is present in meteors of the size detected by
the radar (McCrosky, 1955; Jacchia, 1955; Campbell et al, 1998). If the fragmented
grains have a lateral separation, reflections from different trails will interfere and cause
attenuation. Since there is no reason for the fragmentation of any two meteors to be
the same, even if those meteors belong to the same stream, this will cause scatter
in the amplitude ratios. The scatter will apply equally to underdense and overdense
meteors, since both will be made up of multiple trails.

The attenuation due to multiple trails is easy to calculate. The complex amplitude
can be added from each trail: each will have a slightly different phase depending on the
extra distance from the meteor trail axis. The total power is then a straightforward

calculation from the sum of the reflected fields.
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5.6.1 Optical determination of mass distribution index

The size distribution of the fragments can be determined, or at least narrowed down,
using video observations of meteors. The light curve of the meteor will be the sum
of radiation from all the fragments; by examining a large number and comparing
them to theoretically generated light curves some characteristics of the grains may
be determined.

To describe size distributions of particles, the mass distribution index, and the
related population index, can be calculated. We assume that the masses of particles

follow a power law of the form of equation 2.28:

dn c m™? (5.5)

where dn is the number of particles falling inside the mass range m to m +dm, and s
is the mass distribution index. For any positive s, the number of particles at a given
small mass will be larger than at a large mass. The higher the value of s, the greater
the excess of small particles will be.

In order to obtain a large number of light curves, single station observations of
sporadic meteors from the 1999 Leonid campaign in Israel were used. Since heights
could not be calculated from these observations, the light curves were plotted as
luminosity against time. The classical equations of meteor ablation (McKinley, 1961;
Campbell et al, 1998) can be used to generate light curves. For some angle of entry,
particle velocity and reasonable physical parameters, the light produced as a function
of time or of height can be generated. It has been shown (Campbell et al, 1998) that
a good fit to most video light curves is only possible if the meteor is assumed to be
a collection of fragments ablating individually.

The unmodified classical equations of ablation are too simplistic for simulating
meteor ablation. They assume that the kinetic energy received by the meteoroid
from collisions with air molecules initially goes into heating the body, until the object
reaches its boiling point. The energy is then used to ablate the meteor surface.

While it is true that meteoroids in the size range of interest will heat essentially
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uniformly, the boiling point is not very significant since the external pressure is so
small. The meteoroids should instead begin to produce light long before they reach
the temperature at which they would boil at standard atmospheric pressure. For
this reason the equations were modified slightly from the classical formulation. The
Clausius-Clapeyron equation was used to calculate the vapor pressure of the substance

based on its temperature, and this was used to derive the rate of mass loss, as in

Bronshten (1983).

dm m \*? exp e -
— = (-) Ay exp (K)P, (kBT)I - (5.6)
dt Pm (2rksT /1)
where
_ Le -
K= Ty (5.7)

Here p,, is the meteor density, A is the shape factor (1.2 for a sphere),y is the
condensation coefficient (1 for metals, 0.5 for other substances (Bronshten, 1983)),
P, is the atmospheric pressure, L the heat of ablation, kg the Boltzmann constant,
T the meteor temperature, and u the atomic mass of the substance.

The temperature equation is therefore used throughout the meteor’s flight, and is

modified to include the effect of energy lost with ablating meteor atoms.

dt 2 dt

dT A Ap.V3 dm
dt  cm!/3pY3
where c is specific heat, p, the atmospheric density, A the heat transfer coefficient

L - 4oe (T* - T:)) (5.8)

(usually taken as 0.5), o is the Stefan-Boltzmann constant, ¢ is the emissivity, and
T, the atmospheric temperature. The first term in the bracket is the kinetic energy
gained as a result of elastic collisions with air molecules; the second term is the energy
lost to ablation and the third is the energy radiated by the meteoroid, assuming it is
a blackbody.

The standard luminosity equation is then used to find the luminous intensity,

which is proportional to the kinetic energy of the mass lost:

[=——-1—V2 (5.9)
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To compare measured light curves to the models, we must define the shape of the
light curve. One significant parameter describing a light curve is the F value, which

measures the skewness of the curve, or degree to which the curve is not symmetrical.

[t is defined as:

tg — t
F=-B_ "M
tg —tp

(5.10)
where tg is the begin time, tg is the end time and £,y is the time of maximum lumi-
nosity. The begin and end times are obviously dependent on the limiting magnitude:
F values are usually calculated a predetermined number of magnitudes below the
maximum. Since most useful light curves are 3 magnitudes above noise, F' values
were calculated at every half magnitude down from the maximum up to three below
maximum. The average of these was used as the final value. F values can range
between 0 and L. A value less than 0.5 indicates that a light curve peaks in the first
half of its trajectory; greater than 0.5 indicates a curve skewed toward the later part
of the trajectory. An F of 0.5 describes a curve which is perfectly symmetric.

The sporadic light curves were found to have F values which varied depending on
magnitude. The brightest meteors had F values greater than 0.5, and usually close to
l. Fainter meteors had a much wider range of F values, which averaged roughly 0.5
(Figure 5.5). This is consistent with previous light curve studies (e.g. Murray et al
(2000)) which found that faint meteors have symmetric light curves on average.

Light curves were generated using individual fragments with a range of mass
distributions, and the intensities were added to produce a cumulative light curve.
Mass distribution indices between 1.5 and 2.5 were used for particle masses of 1075,
10" and 1078 kg. For each mass distribution and mass, a large number of light curves
were produced and an average F value calculated. The mass distribution index which
best fit the data was between 1.8 and 1.9 (Figure 5.6).

The fragments were generated with a mass distribution index s, close to that
calculated above. Since Geminid meteoroids probably have different physical charac-

teristics from sporadic meteoroids, some variation was allowed.
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Figure 5.5: Observed sporadic light curves

5.6.2 Effects of Fragmentation

Other variables for fragmentation are the number of fragments in an individual me-
teor, the root mean square lateral spread of the particles, the radial distribution
function and the height dependence of the fragmentation radius. The radial distri-
bution function is completely unknown, so several possible forms were attempted:
constant radial particle density, a Gaussian particle density function, a higher order
exponential power, which was somewhere between the constant and Gaussian distri-
butions, and a hollow distribution where the axial density was low, grew larger and
then tapered again (Figure 2.8). The x coordinates (see Figure 5.7) of the fragments
were generated randomly (the y component of the radial distance does not contribute
to the phase change), and the phase of the return from each fragment was calculated.
The electric fields were summed and the total returned power calculated.

The radius of fragmentation is the root mean square distance of the particles from

the trail axis. It strongly influences the amount of scatter. By changing the radius
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as a function of height, the amount of scatter at different heights can be adjusted.
Results are shown for a 1 meter radius of fragmentation, constant with height, for a

radially uniform (Figure 5.8) and Gaussian (Figure 5.9) distribution of fragments.

5.7 Solving for the coefficients

There are a large number of free parameters in determining the dependence of the
initial radius as a function of height. The functional form of the radial electron
density function for a single trail, the number of mean free paths to which the trail
expands, the number and mass distribution index of the fragments and the height
dependence of the radius of the fragments as a function of height may all be varied.
Since the scatter in the data is so large, it will not be useful to simply fit the mean
amplitude ratio as a function of height: the correct scatter must also be reproduced.

The procedure will be described in the next chapter.



96

Chapter 6

Initial Trail Radius Results

6.1 Selecting and Testing the Model

In the previous two chapters, we obtained experimental plots of amplitude ratio
against height, and developed a model to fit those observations. The task which
remains is to find the set of parameters which will best fit the observations, and
which can correctly predict other observations. Once the model with the least error
has been found, we will use it to predict the amplitude ratios on the 17 and 29 MHz
systems and the height distribution on different radar systems. If it describes the ob-

servations well, we can use the model with confidence to calculate a correction factor

for radar fAuxes.

6.2 Minimizing the Model Error

Since the observational data shows so much scatter, we cannot simply fit mean ampli-
tude ratios at each height to those produced by a model. We need to find a model that
describes not only the mean values, but also the scatter: for this reason we find the
residual between the theoretical and observed density of points in a two dimensional
grid. The data are divided into bins of 2 km height intervals and 0.25 amplitude ratio
units (Figure 6.1), and the number of echoes falling in each bin is calculated. The
values are normalized by dividing by the largest value. The square of the difference at
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Figure 6.1: Binned data for error calculation

each point between the model and the observed data is calculated and summed over
all the bins. The models are then ranked from least to most residual. This method
will determine which model fits best both in terms of height distribution and mean

amplitude ratio, and will take into account the scatter in both values.

6.3 Model Fitting

6.3.1 Model parameters

To find the best set of parameters of the meteor trail, we generate distributions of am-
plitude ratios for a large number of possible combinations and calculate the residual
with the observed data for each. The parameters include all necessary information
about the size and shape of individual trails, and the distribution of meteoroid frag-

ments.
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Table 6.1: Coefficients in simulation

Shape of n.(r) Exponential Gaussian

ro(h) = n (mfp) 10 15 20

Shape of n,(r) Radially constant Gaussian Hollow exp (—|z|%)

re(h) = 0.04h — 2.3 1.0 —0.0375h  —0.0143h
+4.625 +2.758

s value of fragments 1.6 1.8 2.0

Number of fragments 500 1000 2000

The quantities to be varied are:

Shape of the electron density function n.(r)

Height dependence of initial radius (number of mean free paths)

Shape of radial density of fragments ng(r)

Height dependence of radius of fragmentation: Assume r; = Ah + B

s value of fragments: range from video observations

Number of fragments

The simulation is time intensive: one simulation takes several minutes and 800
simulations take more than a day. For this reason, only three or four values in
the appropriate range were chosen for each of the numerical coefficients (Table 6.1).
The initial radius of the trail of a single fragment was taken to be 10, 15 or 20
times the mean free path, as implied by collisional models of the trail. For the
radius of fragmentation, four linear functions with height were simulated: one had a
fragmentation radius increasing with height, two with different slopes for which the
radius decreased with height, and one which was constant with height. The values of
the fragmentation radius for all the models were between 1 and 2 meters, as proposed

by Hawkes & Jones (1978) for rotating meteoroids. The number of fragments varies
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Table 6.2: Best fits

Model ny(r) shape 1.(h) = n.(r) shape 7rf(h) = svalue N; residual

001312 constant . ]%fp exponential —(_)*_g 1;1(;3h 1.8 2000 1.813
201312  Gaussian 15 exponential -—(_){_gl;léih 1.8 2000 1.819
321310 Hollow 20 exponential —2_31_;1&3/1, 1.8 500 1.822
201310 Gaussian 15 exponential —(_)}.8174(?1' 1.8 500 1.90
101311 Higher order 15 exponential —(_)*-gl_;lé!h 1.8 1000 1.93
221301  Gaussian 20 exponential _(-){-(2)1’;'163,L 1.6 1000  2.10

with the size of individual fragments, since the whole meteor mass is fixed and the
mass distribution index specified. For meteors in the radar mass range, generating
more than 2000 fragments will produce a large number of particles smaller than 103
kg, which is the smallest size which evaporates and produces ionization. Smaller
particles reradiate energy quickly because of their high surface area to volume ratio,
and never heat to the point of ablation. There is therefore no use in generating more

than 2000 particles, since the smallest particles will not contribute to the observed

trail.

6.3.2 Geminid data

Every combination of the six parameters was simulated and the data binned in sec-
tions; the density of points was then determined for each of the 864 models. The
residual between the simulated data and the Geminid data was calculated.

The best three models were selected by this procedure: the second and third
models had residuals within 1% of the best model. All three had an exponential
distribution of electrons in the trail, an s value of 1.8, and the same fragmentation
radius dependence with height (Table 6.2). For comparison, the next three models

are shown.

The results do not depend strongly on the shape of the fragmentation distribution,
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the number of particles, or the dependence of initial radius on height. This insen-
sitivity to the initial radius of ionization of individual fragments demonstrates that
the principal effect in the radar height ceiling is fragmentation, and not the radius of
individual trails. The initial radius is due more to the fragmentation of the meteoroid
than to the spreading of the trail of electrons.

As a test, the three models were used to find a correction factor for the three
frequencies. Each of them showed that 78% of echoes are seen on 17 MHz, 51% on
29 MHz, and 34% on 38 MHz. Since the models give the same correction factor,
the differences between them are not significant and any of the three can be used to
calculate fluxes.

Since the fragmentation radius is the strongest effect, an attempt was made to
further refine the value. All parameters in the models were the same as the best model
above, except the radius of fragmentation. The best model was found to have a radius
of fragmentation ry = —0.0lh + 2.4. The most important parameter was the average
radius of fragmentation; since the range of heights being studied is relatively small,
the slope is more uncertain. Figure 6.2 shows the residuals for models with different
average radii of fragmentation. Each model was simulated with a different random
seed ten times; the standard error on each measurement of the residual is shown by
the error bars. The best average radius is about 1.5 meters, and radii between 1.4
and 1.6 meters are possible.

This model does not necessarily apply to sporadic meteors as well: to determine

if it is a good model for all meteors, more data are needed.

6.3.3 Quadrantid data

Only 56 Quadrantid echoes were gathered on 29 and 38 MHz during the 2002 Quad-
rantids, on January 3 and 4. The Quadrantids are expected to resemble sporadic
meteors more closely than the Geminids, since their origin is more likely cometary;,
but with such small numbers the results of any simulation will be highly uncertain.
For this reason, it was assumed that all parameters except the radius of fragmentation

were identical. If the composition of Quadrantid meteoroids is significantly different
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Figure 6.2: Residuals for Geminid data, as a function of radius of fragmentation

from that of Geminid meteors, it will affect this quantity more than any of the others.
A fit was done varying just the slope and intercept of the radius of fragmentation as
a function of height.

The scatter on the Quadrantid data was smaller than that on the Geminid data,
which corresponds to a smaller radius of fragmentation. The best fit was ry =
—0.0015h 4+ 0.25 (h in kilometers), giving a fragmentation radius roughly ten times

smaller than that of the Geminid meteors.

6.3.4 Sporadic data

While there is a great deal of sporadic data, the conclusions reached from these
data are uncertain since no account has been taken of variation of initial radius with
velocity. Still, it is useful to fit some sporadic data to determine whether the correction
factor calculated from Geminid data can reasonably be applied to sporadics.

Data from December 12 and 13, 2001 were used, since the individual meteor files
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Figure 6.3: Residual between model and observed for sporadic meteor data, as a

function of radius of fragmentation

were available for those days. Geminid echoes were removed and the others used with
the above procedure. Simulating the data with the 864 original Geminid models,
the same three were found to fit the data best, so all variables except the radius of
fragmentation seem to apply equally to sporadics. The fragmentation radius was then
independently simulated, as with the Geminids and Quadrantids. The best fit was
Ty = —0.005h + 3.0, larger than even that of the Geminids. The extra scatter might
be due to velocity effects, or differing fragmentation mechanisms for sporadic meteors,
rather than to a physically wider distribution of fragments. A plot of residual against
average radius of fragmentation shows that the uncertainty is much greater in this
case (Figure 6.3). The best radius of fragmentation is approximately 2 meters, but
radii between 1.25 and 2.75 m are within the error bars on the residual. Because the
uncertainty is so large, the Geminid model fits as well as any we could derive for the

sporadics, and we will use that model for the calculation of correction factors.
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Figure 6.4: Observed and simulated Geminid amplitude ratios: 29 and 38 MHz

6.4 Testing the Model

6.4.1 Comparing with other data

As a test of the accuracy of the model which best fit the 29 and 38 MHz ratios, the
model was used to predict the amplitude ratios on 17 and 29 MHz. If the model
describes the physical situation reasonably well, it should work as well for different
frequency pairs.

Figure 6.4 shows the results of the 29/38 MHz simulation, and Figure 6.5 shows the
results for 17/29 MHz. The model-generated echoes have a very similar distribution
to the observed data, with a little more scatter toward higher amplitude ratios. This
may simply be due to the fact that the number of generated echoes was in both cases
slightly larger than the number of observed echoes.

As a further test of the model, we compare the height distributions on the three
radar systems with those predicted by the model. The model starts with photographic
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Figure 6.5: Observed and simulated Geminid amplitude ratios: 17 and 29 MHz

heights for Geminids, corrected to the radar limiting magnitude, and calculates the
number theoretically observed on each system. Figures 6.6, 6.7 and 6.8 show the re-
sults. The maximum heights for all three agree closely and the shapes of the observed
and modelled curves are very similar. This agreement is particularly remarkable since
the individual observed height distributions were not explicitly included in the original
model, and no 17 MHz data of any kind was included.

This model explains these aspects of the observations well. [t is not necessar-
ily unique: other combinations of parameters may exist which would also correctly
predict the observations. However, it is clear that this model is a much better descrip-
tion of the initial radius problem than has been previously available, simply because
it includes the effects of fragmentation. All physically likely combinations of parame-
ters were modelled: a more thorough search of the parameter space might find other

minima but the parameters would not be physically possible.
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Figure 6.6: Observed and simulated Geminid height distributions: 17 MHz

1.0
—@— Observed distribution \
—— Simulated distribution

1

70 80 90 100 110
Height (km)

Figure 6.7: Observed and simulated Geminid height distributions: 29 MHz
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Figure 6.8: Observed and simulated Geminid height distributions: 38 MHz

6.4.2 Implications for structure of meteoroids

The fragmentation radius is of particular interest because of the insight it provides
into the physical structure of meteoroids. The width of the fragmented trail is quite
large, varying between 1.8 meters at 70 km to 1.2 meters at 110 km for the best
model. The size of the trails implies that these faint meteors fragment high in the
atmosphere, and have some initial radial velocity component, which could be caused
by spinning of the meteoroid (Hawkes & Jones, 1978). Evidence of rotation of larger
Geminids is given in Beech & Brown (2000), where fireball flickering is linked to
rotation of the meteoroids. Since the objects considered in that study were much
larger than the ones considered here, the rotation rates will not be applicable, but
the fact that many large meteors display flickering is an indication that meteoroids do
rotate. Meteoroids may acquire angular momentum when they separate from their
parent bodies, through collisions with smaller particles (Hawkes & Jones, 1978) or by
radiation pressure on non-uniform surfaces (Paddack, 1969).
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There is an upper limit on the angular frequency of a meteoroid past which the
internal bonds of the meteoroid material are not strong enough to hold it together.
Opik (1958) derived the formula for rotational bursting, based on the size of the

meteoroid and its tensile strength:

1 (S.\"?
Wmazr = ﬁ (?t) (6'1)

where S, is the tensile strength. If the meteoroid spins faster than this, the outer
layers will break off. The tensile strength of meteoroids is very uncertain: for a
stone meteoroid the tensile strength might be 2 x 108 Nm~2; for a fragile cometary
meteoroid the value would be much lower, 2 x 10°® Nm~2 (Whipple, 1963). A cometary
meteoroid of mass 10~° kg could not spin faster than 103 rad/s; a meteoroid at the
radar’s detection limit of about 10~8 kg would have to spin slower than 10* rad/s.
The height of fragmentation can be found simply as the height at which the
fragmentation radius is zero, and the slope of the fragmentation radius function gives

the radial velocity. In meters per second, the radial velocity is

U = —AV cos z (6.2)

where z is the zenith angle of the meteor radiant, V is the velocity and A the slope
of the radius of fragmentation function. The negative sign compensates for the fact
that A is negative. If we assume that the radial spread of the meteoroid fragments
is due to rotation of the meteoroid, we can calculate the angular frequency. If the

particle is a sphere, the angular frequency can be found:

U 3m\ '?
W = E = Upr (H) (63)

where R is the meteoroid radius, m its mass and p its density. Here the radial velocity
of the particle away from the meteoroid is the tangential velocity of the particle when
attached to the main body. This assumes that the axis of rotation of the meteoroid
is parallel to its trajectory in the atmosphere: if it is not, the meteor trail formed by

the fragments will have an ellipsoidal cross-section.
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To find the angular frequency of the rotating meteoroid from the radial velocity
with equation 6.3, one needs to make assumptions about the mass, density and shape
of the meteoroid, none of which are well known for cometary meteoroids.

Assuming a zenith angle of 45°, the radial velocity of the Geminids is 0.24 m/s,
the Quadrantids 0.04 m/s, and sporadics 0.33 m/s. This will vary among meteoroids:
in particular, larger meteoroids have a smaller upper limit on radial velocity because
of rotational bursting.

The error on the height of fragmentation and angular frequency can be estimated
by simulating many heights and angular frequencies close to those found above. By
comparing the error on the different combinations, a range may be found which could
produce the observed results.

For the Geminids, the best height of fragmentation was 240 km; heights between
220 and 260 km produced results within 5% of the best results. Assuming a density of
1500 kg - m~2 and an average mass of 1072 kg, the angular frequency of the Geminid
meteors is 4500 rad/s, with an estimated error of 500 rad/s.

The height of fragmentation for Quadrantids was 170 km. Assuming the same
physical properties as above, the average angular frequency was found to be 700
rad/s. It is expected that the Quadrantids, being less dense and presumably more
fragile than the Geminids, would have a lower angular frequency, but there is too
little Quadrantid data to draw any firm conclusions about their structure based on
the available data.

For the sporadic group, the best height of fragmentation was 260 km, and the
average angular frequency 6000 rad/s. The fact that sporadic meteors spin faster than
Geminids is surprising, but given the large uncertainty in the radius of fragmentation
the uncertainty in the angular frequency must also be large. The fact that sporadics
are not a homogenous group makes it difficult to determine any specific quantity: a
more accurate result might be derived when sporadics can be divided by velocity and
radiant.

All the calculated rotation rates are under the bursting limit for meteoroids in this

size range. The error in these quantities is large, particularly in the heights: if these
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could be determined more accurately it might help to determine what the volatile
component of the meteoroids is. This is an area which merits further research.
Rotation of meteoroids is not the only explanation for the radial velocity com-
ponent of the meteoroid fragments. The fragments might also acquire energy when
the volatile component in which they are embedded evaporates, carrying them off the
meteoroid surface. If this mechanism is responsible, it will not change the height of

fragmentation or the correction factor for radar fluxes.

6.5 Correction to Radar Fluxes

The last step is to use the model developed to find a correction factor for any wave-
length at which meteors are observed. The simplest procedure to find this correction
factor is to simulate meteors with a height distribution identical to that of the radiant
being observed, as determined by optical methods, and record the number which have
sufficient amplitude to be observed. This is compared to the number which would be
observed if there were no fragmentation or initial radius effects.

This was done for several wavelengths in the meteor radar range, including the
three in our system. The results were plotted, and a curve fit through them (Fig-
ure 6.9).

To alter the height distribution, we used the dependence of height of maximum

luminosity on velocity of Jacchia, Verniani & Briggs (1965). They found the relation

— (6.4)

where pmqr is the density of the atmosphere at maximum luminosity. The new max-

imum of the height distribution can be found from the atmospheric density at the

new velocity:

Iy -1.7
Pmaez2 = Pmazxl <—2) . (65)
U

The new height can then be found with the scale height of the atmosphere in
the height range under consideration, from the fact that p oc exp (—h/H). The scale
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height H is 5.8 km, from the US Standard Atmosphere (1976).

-1.7
exp (— hmf;ﬂ) = exp (—i—h—"%) (%) (6.6)
or
hmazz = hmaz1 + L7TH In (Z—f) : (6.7)

Similarly, one can adjust to different limiting magnitudes. Smaller meteors ablate
higher than larger meteors: according to the faint video observations of Hawkes &
Jones (1980) and photographic observation of larger particles (Jacchia, Verniani &

Briggs, 1965), the height of maximum luminosity follows the relation

Pmaz < M3 (6.8)

where m is the limiting mass. This gives a height relation of

, 1/3
homasz = hmazt + H In [(ﬁ) ] (6.9)
my
or as a function of limiting magnitude:
H
h'rnaa:2 = h'ma::l - ?ln(2-5)(1\’[ﬁm2 - A’[liml)~ (610)
Putting equations 6.7 and 6.10 together, one has for the height of maximum
luminosity:
(0 H
hmaze = gzt + LTH 10 (2) = = 10(25)(Muma = Mum)- ~ (6:11)
1

Using values from Jacchia, Verniani & Briggs (1965), this is:

homaz = 99.6 — 1.77(Mm — 9) +9.86 In (3;’—7) : (6.12)

where Amg. is in kilometers and v in kilometers per second.
Equation 6.12 can be used to calculate the height distribution for any of the
sources, which can then be simulated and correction factors calculated for each fre-

quency. A function was then found which fit the data. We also require that the
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fraction observed approach unity as the wavelength becomes large, and zero as the
wavelength becomes small. Similarly, the number observed should be high when the
height distribution peaks at a low altitude; few echoes should be observed if the height
distribution peaks at a high altitude. The function which best fit all the data and

satisfied the above constraints was found to be:

h. In A !
C(hmazs A) = [1 +exp (ﬁ ~ 9563~ 6.90)} (6.13)

where C is the fraction of meteor echoes detected by the radar.

The velocities of the sporadic sources were taken from Jones & Brown (1993), with
a standard deviation of 5 km/s: the height probability for each meteor was obtained
by correcting that of Jacchia, Verniani & Briggs (1965) for sporadic meteors to the
correct limiting magnitude and velocity (Figure 6.10).

The correction factors for each of the sporadic sources are shown in Figure 6.11 as
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a function of radar frequency or wavelength. The apex source is the most undersam-
pled, as expected because of its high velocity. The correction factors are significantly
different from those of Greenhow & Hall (1960): for the 29 MHz system, the new
correction factors are smaller by a factor of four.

These correction factors are somewhat uncertain because of the scattered sporadic
measurements. They are still an improvement over previous studies since they take

into account fragmentation, which is the most significant effect.



Chapter 7

Sporadic Fluxes

7.1 Generalizing the Correction Factor

The primary object of calculating the effect of initial trail radius on radar observations
of meteors was to find the flux of sporadic meteors from each of the sporadic sources.
Having derived the correction factor to radar observations at any frequency and for
any velocity distribution, we can proceed to calculate fluxes.

The main issue we have not addressed in this study is velocity. We account only for
difference in height of maximum luminosity due to velocity, and not for any effect the
velocity might have on the correction factor independent of height. According to the
Jones (1995) model, the initial radius at any height for a single particle should vary
with the velocity, so our correction factor is optimized for meteors with an atmospheric
speed of 35 km/s like the Geminids. Without analysing many more echoes from other
showers or from sporadics for which velocities have been determined, it is not possible
to determine the velocity dependence of the attenuation, so we shall follow Greenhow

& Hall (1960) in assuming that there is no velocity dependence. The correction factor
obtained here will be valid for all sporadics, since the model has been shown not to
be significantly different from the sporadic one, but may be in error for particular
sources.

With these caveats, we can proceed to find the sporadic fluxes from each of the

sporadic sources. To calculate a flux from any source, we need the raw rate of observed
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meteors, which is divided by the collecting area of the observing system. We then

correct for observing effects to find the true flux.

7.2 Meteor rates

The first task is to isolate the echoes of meteors which come from particular sporadic
sources. A procedure similar to that for isolating shower meteors, as described in
Chapter 4, is used, but the situation is slightly more complicated. The radiant of
sporadic sources is much more diffuse than shower radiants, typically having a radius
of order 15° as opposed to 2° for the Geminids. Also, we wish to remove shower me-
teors and any meteors which do not belong to the sporadic source being investigated.
Since showers often occur in the same regicns as sporadic sources, removing them is
not trivial; also we must have a statistical way of removing echoes which fall on the

echo band of a sporadic source but come from a different radiant.

7.2.1 Removing shower meteors

The simplest way to remove shower meteors from the data is to use the inverse of
the procedure described in Chapter 4. All echoes with directions within 3° of 90°
of the radiant are counted as shower meteors. The difficulty in this case is that,
particularly when a shower radiant overlaps the radiant of a sporadic source, many
echoes due to that source will be removed at the same time. The matter is worse if
the shower being removed is a weak one: by removing all echoes on its echo line we
may lose more sporadic meteors than shower meteors. In general, only the strongest
showers show up at all in the sporadic fluxes, and only during the times of their peak
activity. Very weak showers can be counted with the sporadic background, since they
may contribute only of order 10 echoes per day. What is needed is a measure of a
shower’s activity compared to background: some percentage of the echoes falling on
the shower’s echo line are then removed. For example, we may need to remove 100%
of echoes falling on the Geminid radiant at the time of maximum, but only 5% of

echoes from the Ursid radiant at the time of maximum.
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Table 7.1: Showers removed for sporadic analysis

Shower Day of RA dec Sporadic Percent
Maximum ource Removed
Quadrantids J 233 49 NT 100
Lyrids 111 271 34 NT 5
Eta Aquarids 125 336 0 NA 10
Arietids 159 45 23 HE 70
Zeta Perseids 164 63 26 HE 5
Beta Taurids 180 79 21 HE 5
South Delta Aquarids 211 339 -17 AH 10
North Delta Aquarids 226 344 2 AH 10
Perseids 226 48 58 NA 70
South [ota Aquarids 219 337 -12 AH 10
North lota Aquarids 239 350 O AH 10
Giacobinids 281 262 54 NT 5
Orionids 295 95 16 SA 70
Leonids 322 155 22 NA 70
North Taurids 310 54 21 AH 10
South Taurids 307 53 12 AH 10
Geminids 348 113 33 AH 100
Ursids 357 217 76 NT 5

Activities were determined with two programs, one of which calculated the activity
in celestial coordinates (right ascension and declination) and the other in heliocentric
coordinates (solar longitude and latitude). Both use the method of Jones (1993).
Showers show up strongly in celestial coordinates when the resolution is set to 3°
(Figure 7.2); sporadic sources are clear in heliocentric coordinates with a resolution
of 15° (Figure 7.3). For each possible radiant, every echo was tested to see if it fell
at 90° from the radiant. To correct for echoes which belong to other radiants, every

echo is given a weight according to a function:

o=(-(2)) e (4(2))
where z is the dot product of the vector to the echo and the radiant vector and zg is
the resolution (Figure 7.1) (Jones, 1993).

Echoes at 90° from the radiant are weighted close to 1, and those within the
resolution have a positive weight. Echoes farther than the 15° resolution from per-
pendicular to the radiant are given a negative weight. Any source with a width greater

than the resolution will be removed entirely, while any source with a smaller width
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Figure 7.1: Weighting function applied to echoes at 15° resolution

will show strongly. Any uniform background will be removed from the sources, since
the integrated area under the weighting function is zero.

Maps were constructed of shower activity to determine the number of echoes to
be removed. The strongest showers were removed entirely on their peak day. For all
showers, the number removed depended on how close to the peak the observations
were taken: the width of each shower was found from examination of the data and
the percent removed was scaled accordingly (Table 7.1).

The maps are in the form of Mollner-Weidener plots, which can be easily converted
from right ascension and declination to chart coordinates and back. The plots of
sporadic sources are in heliocentric coordinates with the sun at (0,0). The line of 0
latitude corresponds to the plane of the ecliptic, and the apex of the Earth’s motion is
at (0,270), in the center of the plot. The resolution of the plots is 15°. Showers show
up very clearly on the peak days (Figure 7.4); when shower meteors are removed the

background is much clearer (Figure 7.5).
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7.2.2 Determining Rates of Sporadic Sources

Once the shower meteors have been removed, the number of meteors coming each day
from each of the sporadic sources can be calculated. Before performing the analysis,
we remove all echoes which are ambiguous and those with zenith angles larger than

70°, which will have large uncertainties in geometry.

7.3 Collecting Area of Radar

Dividing the rate of meteors by the collecting area will give the uncorrected flux.
The collecting area of the radar is the physical area of sky over which meteors from a
particular radiant can be seen: we add corrections to this to account for the difference
in sensitivity over this area and for the elevation of the radiant.

[f meteors occurred at only one height, echoes from a single radiant would occur
on a plane normal to the radiant. Since meteors ablate at a range of heights, this
is actually an echo strip. To find the area, one must calculate the width and useful
length of this strip. We also add a scaling factor to account for variation in sensitivity
of the radar over the area.

The width of the strip depends on the vertical distance dh covered by an average
meteor. This quantity depends on the mass distribution index: a larger index will
mean more small meteoroids, which will make the average trail length shorter. The
value of dh can be found with optical observations of meteors: from Flemming et al

(1993) we obtain dh as a function of s:

_ 7.88s% 4 56.252 — 1645 + 105

dh
12.2(s — 1)3

(7.2)

The width w is then

w =dhcscy (7.3)

where x is the zenith angle of the radiant (Figure 7.6).
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The length of the strip will extend in two directions from the minimum range out
to a range of 300km: at larger ranges than this the zenith angle will be greater than
70° and the echoes are rejected from the analysis. The number of echoes which can
be seen at a particular part of the echo strip depends on the limiting line density,

Qtim-

N o g~ (7.4)

where we have used the mass distribution equation 5.5 and the fact that q < m. The
minimum detectable amplitude is the same everywhere in the radar beam. but the

limiting electron line density will vary as (from equation 2.16):

A im -
Qlim = se['ns (7.0)
where
3/2
sens = K (G_ggl) (7.6)

where K is a constant which depends on the transmitter power and system wave-

length, but is constant over the radar beam.

The number of echoes visible depends on the sensitivity as:
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1

N « sens®” (7.7)

since the limiting electron line density is inversely proportional to the sensitivity.
To obtain a weighting factor, we divide the number of echoes visible at a given
area by the number visible at the region of maximum sensitivity on the echo line:
N seng®~!

F= N - sens, 3! (7:8)

where the subscript m refers to the quantity at maximum sensitivity. The weighting

factor is therefore

C.C 1/2 ROms 172751
i [( RRo”T) (GRmGTm) ’ it

The weighted length of the echo strip is:

| = / Fdk, (7.10)
where dk is a distance element along the echo surface.

There is one more correction to apply to the collecting area for the zenith angle of
the radiant, x. If the radiant is low, the meteors have a grazing incidence; they will

have longer paths and therefore a lower electron line density. The number correction

is as (secx)* ™'

The weighted collecting area for a particular radiant is then:

®=w [ Fdk (secx)”". (7.11)

The collecting area can be integrated over a whole day to correct daily rates.

7.4 Other Correction Factors

The rate of meteors over one day, divided by the integrated collecting area. over that

day, gives us a preliminary flux of meteors per unit time and area. This flux must
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Table 7.2: Source diffuseness correction factors

Source Width (degrees) Correction factor
Helion & Antihelion L7 0.638
North & South Apex 21 0.280
North & South Toroidal 17.5 0.577

be corrected for other observing factors, including the diffuseness of the radiant, the

limiting sensitivity and the initial radius and fragmentation factor.

7.4.1 Diffuseness of source

Since the sporadic sources are not point radiants, the rate measured at the peak of
the location of the sporadic source is not the true rate. To find the factor by which
the measured rate was reduced, simulations of diffuse radiants were constructed for
radiants of different widths. The rates measured for these simulated radiants were
compared to the generated number of meteors.

The widths of each source were taken from Jones & Brown (1993). Two thousand
meteors were generated from the appropriate heliocentric coordinates and the source

strength measured in the same way as the observed data. Table 7.2 gives the results.

7.4.2 Initial radius

The correction factor for initial radius which we calculated is useful for radars with a
limiting sensitivity of +9¥, and meteors with a velocity of 35km/s. We have obtained
a correction for each of the sporadic sources by adjusting the height distribution
according the mean velocity of the source. No attempt was made to correct for
variations in initial raidus with velocity other than this.

The sensitivity of the radar depends on the transmitter power. We can obtain
a more accurate correction by recalculating the coeflicient if the power of the radar
changes. This happened a number of times in 2000 and 2001 because of equipment

failures. The correction factor can be altered according to equation 6.13.
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7.4.3 Correction for limiting sensitivity

The flux we have calculated to this point is a real flux, to the limiting magnitude of
the system. To compare it with other results, we wish to change it to the flux at a
limiting magnitude of +6.5¥, corresponding to a limiting mass of 2.5 x 107¢ kg, or
2.5 mg.

When dealing with magnitudes, we use the population index r, which is related
to the mass distribution index as (McKinley, 1961):

s=1+4+25logr. (7.12)

The number of meteors seen at a particular magnitude goes as

so the ratio of the number of meteors seen at a limiting magnitude of +6.5 to the

number seen at another limiting magnitude is

Nes _ 6s-u
—_—=r . 7.14

Putting this in terms of the mass distribution index, we have

N6.5 — NM10(6.5—M)(3—I)/2.5 (715)

This gives the correction factor for flux observations at any magnitude M.

7.5 Results

The fluxes for each of the five sporadic sources was calculated for all available data
in 1999, 2000 and 2001. The fux, in meteoroids km~2day~!, was calculated for every
day for which data was taken, and is shown in Figures 7.7 through 7.11.

The helion and antihelion sources have a similar variation to that found by Poole

(1997) (Figure 1.3). The antihelion source shows a maximum in the summer months.
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The helion source variation is not as clear, but the data are consistent with a maximum
in first four months of the year.

The north apex source does not appear to vary by a large amount throughout the
year, though it is strongest in August and September and weakest in the last three
months of the year. The south apex source is too low to be observed at the latitude
of Tavistock for the first half of the year, so it is difficult to draw any conclusions
about the variation of this source. Both apex sources have high fluxes compared
to the helion and antihelion sources: this is in part due to the greater uncertainty
because of the large correction factor. The south apex source also suffers from a small
collecting area because of its low altitude: the error on the fluxes is even greater for
this source.

The north toroidal source, in addition to showing a significant annual variation
with a peak at the beginning of the year, shows a noticeable drop in the first few

weeks of the year. This is not an equipment failure, since it occurs both in 2000 and
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2001. The cause does not appear to be a matter of geometry, since both the elevation
of the source and the gain pattern of the radar are accounted for in the calculation.
There seems to be a real lack of Earth-intersecting orbits from the toroidal source in
February.

The total flux from the five sources, averaged over the course of a year, is 0.97 £
0.03 meteoroids km~2day~! to a limiting mass of 2.5 x 10~° kg for the year 2000, and
1.00 + 0.04 meteoroids km~2day~! to a limiting mass of 2.5 x 107® kg for the year
2001. This compares to the value of 0.21 meteoroids km~2day~! to a limiting mass
of 107% kg from combined results of spacecraft-borne dust detector measurements,
radar and optical observations of meteors (Ceplecha et al, 1998; Griin ef al, 1985).
The fact that these results, even without refining the velocity effect, agree to within a

factor of 5 with measurements independent of the initial radius factor is encouraging.

7.6 Discussion

7.6.1 Results of current study

The most significant result of this study of the initial radius effect is that it is frag-
mentation, and not the spread of electrons in a single trail, which is principally
responsible for the attenuation observed on all radar systems. Previous correction
factors based on the assumption that the initial radius of single trails is responsible
for the attenuation are therefore inaccurate.

A model has been developed which explains the observations on the Tavistock
three-frequency radar, both in terms of the magnitude of and scatter in amplitude
ratios and in terms of the height distributions on all systems. This model is the best
of all physically likely models. The model was developed with observation of Geminid
meteors to avoid any effects of velocity, as a first approximation: it was shown that
the model fits observations of sporadic meteors as well.

Equation 6.13 is currently the best estimate of the correction factor describing

the fraction of meteors observable on radar systems of any wavelength and limiting
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magnitude, for any velocity of meteoroid. Between 20 and 40% of the total number of
meteors are visible on the 29 MHz system, depending on the velocity of the meteoroids
being studied.

The derived correction factors were used to calculate the flux of meteoroids striking
the Earth from each of the five sporadic sources visible in the Northern Hemisphere
from observations with the Tavistock radar at 29 MHz. The total flux agrees with
other studies to within a factor of five. Annual variations in the helion and antihelion

sources agree with previous studies of change in activity.

7.6.2 Future work

The present study has presented a number of answers to longstanding problems in
radar observations of meteors: it also suggests possibilities for future work in this
area. The correction factor obtained here could be refined using a large number of
observations of sporadic meteors for which accurate velocities have been measured
and for which the source is unambiguous. This would allow the inclusion of velocity
effects not taken into account in the current study and would improve the fit to each
individual source. Other showers could also be observed and corrections could be
calculated for them. Obtaining even larger numbers of echoes on 17 MHz would allow
these data to be included in a refined model, which would raise the observable height
range and would give a more accurate measure of how the radius of fragmentation
changes with height. From such observations it might be possible to gain a more
accurate measure of the rate at which the meteor fragments spread, which would lead
to insights to their structure.

High resolution studies of meteors, some of which are currently under way (Hawkes,
2002), may provide an accurate measure of the width of the luminous portion of the
meteor trail, which could be compared to the width deduced here. High resolution
light curve studies might also provide more evidence as to the nature of the fragments.

The annual variation of the sporadic sources suggests anisotropies in the distri-
bution of orbits around the Earth’s orbit. Modelling could be done of the sporadic

background and some measure of the number of parent comets required to produce
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the observed irregularities could be obtained. Southern Hemisphere observations of
the south toroidal source would be particularly interesting, to see if that source shows
the same distinct change in strength over the course of a year as the north toroidal
source. The measures of the annual variations of Northern Hemisphere sources will be
improved with the new power monitoring system recently installed on the radar sys-

tems: continuous tracking of the transmitter power will make daily flux measurements

more accurate.
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