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Abstract

The control and communication in man and the machine has been an ac-
tive area of research since the early 1940’s and since then the usage of the
computing machine for the augmentation or rehabilitation of man has been
broadly investigated. One active area of such research is the interface of the
human brain to the computer; brain-computer-interfacing (BCI). The current
few successful examples of functional BCI control the computer screen cur-
sor movement, but require extensive subject training and significant, if not
full, cognitive focus. Our model proposed an alternative approach to imple-
menting the BCI for the application of controlling a digital hearing aid by
autonomously modifying the speech signal based on the identification of elec-
trophysiological response, or an affective state. The speech communication
channel was studied and the individual’s hearing threshold tested while the
brain activity measured using surface skin electrodes and the author’s designed
bioelectric amplifier. The subject acknowledgement was used as reference for
which a response had previously just occurred. Using the response from a
threshold 8-kHz audio tone a set of data samples is extracted for the training
of a statistical learning method; the support vector machine (SVM) classifier.
The SVM has the ability to produce a very high classification accuracy on
small training sets of data by mapping input attribute data to span across
a higher order feature space and using the features space to calculate a non-
linear soft decision boundary (hypersurface) for classification. The training
data output distribution was uncertain in the respect that a response had oc-
curred, but its precise time of occurrence and duration is a component of our
the investigation. The SVM is taught using several output approximations
and their results compared using an independent testing set of data. The re-
duction of data dimensionality was investigated using a Laplacian electrode
array for source density estimation and the 6, «, 3, and v frequency ranges
were also extracted from the Laplacian for model analysis. The results of our
model were very encouraging with successful binary classification greater than
90% for raw electroencephalographic, raw Laplacian, and filtered Laplacian
testing measurements. Our model successfully demonstrated the efficacy of
autonomous single trial identification of affective states as an alternative or
additional method of hearing prosthetic control at a communication transfer
rate of 240 bits/second.
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Chapter 1

Introduction

The improvement, augmentation, and rehabilitation of human attributes through
technology has ever been a primary goal of science and engineering. These en-
hancements must not only be scientifically and physically sound, they must
also achieve a social acceptance before being widely adopted. Notable exam-
ples of such assistive technologies are corrective eye wear and the hearing aid.
Both serve to compensate for deficiencies in these primary senses as a result

of maltreatment, ailment, age, or heredity.

Corrective eye wear use glass and plastic lenses to change the incident
angle of light as it enters the eye to strike the correct focal point (the retina).
With the exception of research to restore sight to the blind using a retinal
implant [1], this process remains analogue and it fully performs its task as

such.

Hearing assistive devices have traditionally amplified sound into the region
in which a subject can hear using analogue electronics. Hearing aid technology
has been analogue over the last hundred years [2]. However, it is believed that

the analogue method of hearing correction may have reached a rehabilitative



limit and that more advanced digital signal processing will be needed to im-
prove a user’s hearing. The digital hearing aid has matured to the point where
it offers greater computational complexity density [3] than its analogue pre-
decessor, but unfortunately, almost all except the most recent commercially
available digital hearing aids were no more than digital implementations of the
analogue device and provide little, if any, further processing.

The increased computational density of the digital hearing aid is represen-
tative of the decreasing physical size and increasing computational power of
electronic computers in general. For reference, a time-line of digital electronic
computing has been provided in Figure 1.1. From the first electronic com-
puters in the 1940’s, the Anastoff-Berry Computer! (ABC) and the Electronic
Numeric Integrator and Calculator? (ENIAC), that filled entire buildings to
the present, where devices of similar and greater computational ability may
be carried on our person.

As the benefits and abilities of these early computers were explored, their

implications were met with some trepidation. In his 1947 treatise of Cyber-

!The ABC was developed at Iowa State University for solving large numbers of simulta-
neous equations

2The ENIAC was developed by the United States military to compute World War II
ballistic firing tables

increasing
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Figure 1.1: A Time Line of Digital Electronic Computing



netics: or Communication and Control in the Animal and Machine [4] Norbert
Wiener described the use of the computer as the modern industrial revolution
that would “devalue the human brain”. Although Wiener’s comments were
meant to underscore the social implications of the technology, his prediction
has seen some truth today.

The application of electronic computing machines was initially very spe-
cialized because of fixed pathways for data and instructions; these pathways
were hardwired. The proposals of the mathematician John von Neumann
to use the computer’s own memory to create these pathways (making them
“softwired”) and the fundamental computer architecture® of how memory, the
central processing unit, and input/output were interconnected and organized
electronic computing machines for endless possible applications.

As a young engineer, Douglas Engelbart came to the realization that man’s
ability to process large and/or complex volumes of information was falling
behind the ever increasing rate of new information. In 1963, Engelbart [6]
proposed a conceptual model for the computer augmentation of man’s intellect
to enhance or extend his innate capabilities. His system divided augmentation

into four basic categories:

1. Artifacts - physical objects designed to provide for human comfort, and

the manipulation of both physical objects and symbolic information.

2. Language - the way in which the individual classifies the picture of their
world into the concepts that their mind uses to model that world, and

the symbols they attach to those concepts and uses in consciously ma-

31t is of interest to note that von Neumann studied in the workings of the human brain in
comparison to digital electronic computers [5]. It is this author’s belief that von Neumann’s
computer architecture was derived from his research into the organization and operation of
the human brain.



nipulating the concepts (“thinking”).

3. Methodology - the methods, procedures and strategies with which an

individual organizes thier goal-centered activity.

4. Training - the conditioning needed by the individual to refine thier skills

to the point where they are operationally effective.

Engelbart’s proposal foreshadowed much of his future research [7-9] in the
augmentation of the human intellect by organizing shared information across
computer communications systems (“Bootstrapping”). By present technolog-
ical and communication standards, this concept may appear rudimentary, but
Engelbart’s demonstration of this work, the NLS (oN-Line System), pre-dates
the United States Defense Advanced Research Projects Agency’s (DARPA)
similar initiative; the ARPANET, or the “internet” predecessor. In fact En-
glebart’s NLS (also known as AUGMENT) was the precursor to ARPANET
and was its second host computer [10]. Many of our modern computer inter-
faces such as the mouse and WYSIWYG word processing [11] can be traced
back to Engelbart’s research.

The computer interface has been an active area of research for as long as
there have been computing devices. One such interface research path has been
the direct coupling of the human brain to a computer; the brain computer in-
terface (BCI). In 1973, Vidal published a “modest experimental program” [12]
that outlined a systematic attempt on direct brain-computer communication
using the electroencephalogram (EEG) and the theory of both voluntary and
event related potentials (ERP). Vidal outlined three basic assumptions funda-

mental to the program’s success:

1. Mental decisions can be probed using observable bioelectric signals, in



particular using the fluctuations of electroencephalographic potentials

from the human scalp.

2. All meaningful electroencephalographic phenomena should be viewed as
a complex structure of elementary wavelets that sequentially represent

individual cortical events that create a stream of neuroelectric messages.

3. Operant conditioning procedures can increase the reliability and stability

of these time signatures and patterns.

Vidal noted that these assumptions did not completely agree with the
then contemporary literature, but that extensive experimental data supported
his assumptions. Vidal concluded his program would require several years of
maturity before suitable computational electronics would become available.
Referring to Figure 1.1, the reader may observe that it was not until about
1975 that general purpose digital computers were becoming more prevalent. In
1977 Vidal presented his work on detecting and classifying individual evoked
responses ( “a single epoch”) in real-time by using the computer as an impartial
observer to classify the evoked response [13]. Most research at this time was
focussed on averaging the ERPs from repeated evoking stimulus of a single
electrode site because of technical limitations. Although averaging is a valid
and efficient method of signal recovery from noise, it can also mask short
or singular events of relevant data. Under experimental conditions, Vidal’s
system had a correct classification of greater than 90%.

Vidal described the early work presented by H. Berger’s 1929 demonstra-
tion of the possibility of recording the electrical activity of the brain from the
surface of the skull. The brain is a complex chemical and electrical structure

composed of nerve cells (neurons). Each neuron consists of a body (soma),
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Figure 1.2: The Neuron and Synaptic Structure

several short input channels (dendrites) and a long output channel (axon).
Neurons may be interconnected one-to-one, one-to-many, many-to-many, and
many-to-one. This array of connections function similarly to digital logic AND-
OR circuitry. The neuronal connection interface is electrically unidirectional

and the transmission of the nerve impulse may be described in three parts:

1. Presynaptic - Dendritic input potentials sum at the presynaptic mem-
brane neuron interface. When the threshold potential (approximately
-70 mV) is reached the nerve excitation begins a change (depolariza-
tion) in membrane permeability producing an ionic exchange across the
synaptic junction. This initiates the action potential output along the

axon

2. Action potential - The action potential propagates along the axon caus-
ing the nerve to become negative to adjacent regions and to “sink” cur-

rent from adjacent nerves. This in turn causes the adjacent nerves to



become negative relative to their surrounding regions and propagating

their self-excitation. Duration of the action potential is typically 1 ms.

3. Postsynaptic - After the action potential the nerve must reestablish ionic
equilibrium. This is a prolonged period of positive potential (repolariza-

tion). Duration is typically 15 to 200+ ms.

Previously, it was believed that the action potential was being measured on the
scalp, but in fact its duration and penetration are small relative to the postsy-
naptic potentials that are summed at the surface of the brain (pyramidal cell
membrane) and measured on the scalp surface with the electroencephalogram
(EEG). One might expect that the measurement of these alternating polar-
ization and depolarization of such a complex and interwoven structure would
produce a Gaussian white noise, however, this is not the case. This “spon-
taneous” activity contains low frequency rhythmic potentials [14-18]. The
correlation of these rhythms to physical or emotional properties is an ongoing
research area, but it has been well established that there are distinct rhythms;
this agrees with Vidal’s second assumption.

From the time of Vidal’s work researchers have attempted to utilize var-
ious properties of the EEG [19-38] to implement a brain-computer interface
using surface electrodes. Although successful research exists on subdural and
surface-cortical brain-computer interfaces, it is considered too invasive for most
applications.

Wolpaw et al. [20] presented work on an EEG-based brain-computer inter-
face for cursor control. Their research was intended to be used by individuals
with motor deficits as a neural prosthesis. Wolpaw et al. trained subjects to
voluntarily change the amplitude of a specific frequency range of brain rhythm

(mu) for control of a one-dimensional cursor. This result was significant be-



cause it demonstrated the ability of a subject to quickly and accurately change
the amplitude of a specific frequency range of their brain current. This research
was further extended to two-dimensional cursor control [21,23,24, 31, 35] and
binary (yes/no) responses to spoken questions [25].

Birbaumer et al. [27-29, 39] have focussed on subjects that are completely
locked-in with amyotrophic lateral sclerosis (ALS). These subjects suffer com-
plete paralysis while maintaining completely intact cognitive and sensory func-
tions. These researchers have successfully implemented a spelling interface(SI)
for the paralyzed using voluntary control of slow cortical potentials (SCP) to
control a two-dimensional cursor or a binary selection using a modified Huff-
man’s algorithm. This research was further extended to the “Thought Trans-
lation Device” (TTD) where instead of continually selecting letters the subject
could select common words or icons to increase the communication bandwidth.
Birbaumer et al. [40] published research on the psychophysiological structure
of emotion with some clinical perspectives. They present their case against a
basic set, or a fundamental set, of emotions (e.g. joy, anger, fear, etc.) be-
cause their classification was subjective; however, the use of positron-emission
tomography (PET) for the visualization of neural activity of the functioning
awake human brain combined with measurement of the electrical (EEG) and
magnetic (MEG) activity demonstrated a clear cortical separation between
emotional responses from non-emotional “cold” cognitive operations. The im-
plicit implication here is that although classification into a fundamental set of
emotions is not tractable, the electrical or magnetic emotional response within
the brain is measurable. This agrees with Vidal’s first assumption.

However, measurement of emotional response is not restricted to brain
current. Heart rate, respiration, skin conduction, muscular contraction, a focus

of gaze, an angry frown, and/or joyful gesture are all examples of measurable



reactions with physiological properties that reflect emotional states. Picard et
al. [41-46] proposed an alternative computer interface which employs affective
patterns. The interface does not identify general basic emotions, but instead
classifies emotional, or affective, responses incorporating both physical and
cognitive aspects of emotion. The classification of emotional response is not
limited to a single physical or cognitive characteristic; it may combine several.
As a simple example, consider the two characteristics of arousal/attention
(high and low) and valence (positive and negative) that may be mapped to a

vector in two-dimensional space:

1. High arousal and positive valence - e.g. successful completion of a Ph.D.

dissertation,
2. High arousal and negative valence - e.g. news of a local disaster,
3. Low arousal and positive valence - e.g. stopping to smell the roses,

4. Low arousal and negative valence - e.g. visiting a local cemetery.

The use of affective states provides a powerful interface for medical mon-
itoring, assistive, and/or personal electronics. These types of electronics are
normally smaller, more personal devices adorned about the user’s body and
commonly referred to was wearable computing. Two specific examples of an af-
fective interface to a wearable computer are the “Startlecam” [41] that records
an image of user’s environment upon sudden emotional stress (“startle”) and
the quantification of stress during the operation of an automobile [46)].

Research into wearable computing has matured quickly, accelerated by the
increased computational density of digital electronics. Two of the more promi-
nent researchers in the field of wearables, Starner {47-54] and Mann [55-57],

have developed functional systems which they employ for both personal and
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professional augmentation with interfaces that are more conventional based.
Concurrent with the interface research are the practical computing aspects
of generation of power [58,59], thermoregulation [60], and communications
through the skin (Personal Area Network - PAN) [59, 61].

The Wright Patterson Air Force Base’s Research Laboratory (AFRL) in
Dayton, Ohio, researches and evaluates alternative methods of man-to-machine
interface and control [62-64]. These researchers’ objective was to provide al-
ternative control of “hands-busy” applications by using wearable computing
devices. They have found success in both voluntary and evoked EEG control.
As of 2000, the US military started incorporating wearable computing into a
soldiers combat gear [65].

Wearable computing is finding application in more mainstream commer-
cial and medical areas. An example of such an application was demonstrated
with IBM’s prototype Wearable PC [66] which has the power of a Thinkpad*
laptop in the size of a portable personal stereo. The incorporation of elec-
tronics into textiles (e-broidery) is producing wearable motherboards, physi-
ologically aware “SmartShirts”, and even electronic wallpaper with thermally
sensitive inks [67]. Ambulatory medical applications include wireless heart-
rate stress monitoring [68], electroencephalography for epilepsy patients [69],
and dynamic suppression of upper-limb tremor in Parkinson’s patients [70].
The immediate benefit of wearable computing to medicine is the ability to
remotely monitor, record, and analyze the patient in their natural and more
familiar environment. The real benefit of wearables to medicine will be their

integration into augmentative and rehabilitative prosthetics.

The range of wearable computer assisted applications and implementations

“In early 2005, IBM sold its personal computer division, including the Thinkpad laptop
line, to Lenova.
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is truly an exciting and expanding field. From excitation for posture con-
trol [71] to electroocular wheelchair guidance [72], to implanted functional elec-
tric stimulators (FES) to restore standing and walking for the paraplegic [73]
and to aid in corrective walking [74].

Researchers have employed electrophysiological signals in an effort to en-
hance, augment or regain subsystems of the body [12,20,28,75,76]. Others have
attempted to replicate natural electrophysiological subsystem inputs [77,78].

The hearing aid is perhaps one of the most common prosthetic today;
however, it has benefitted relatively little from the advances in brain-computer
interfaces and wearable computing. Given its programmability, processing
capability, and normal proximity to a wide array of electrophysiological signals,

it would appear to be an ideal candidate.

1.1 Scope of Research

Most, if not all, forms of rehabilitative or assistive devices attempt to aid the
user by replacing a damaged attribute with a corrective prosthetic. If this
augmentation attempts any processing, it normally reduces the attribute to
a simplified transfer function with feedback for stability. This leaves the user
out of the loop, so to speak. Traditionally, the prosthetic or augmentation is
a technological crutch that acquires little, if any, input from it’s user. For the
individual that has experienced a post-”learned” loss of a normal or innate
attribute, this is often ineffectual and frustrating.

Rather than replacing an attribute, we propose to employ the post- “learned”
and innate characteristics that remain from the damaged attribute or are as-
sociated with it. Our proposed prosthetic could then aid in the user’s self-

regulation, or internal feedback and at the same time use those characteristics
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in its own feedback. In effect, we have two systems, each using the other for

stability of its own feedback as illustrated in figure 1.3.

external
stimuli
—_—D
Human
Prosthetic
—
external
stimuli

Figure 1.3: Dual Feedback for Autonomous Augmentation

The challenge is to monitor, or observe, the post-"learned” and innate
characteristics with as little conscious intrusion as possible. In most cases it
would be preferable to perform the observations in vivo, however this is not
practical for most ambulatory in situ measurements. As a result, in vitro
methods of measurement are necessary. These external measurements are
predominantly of the mechanical and electrical subsystem characteristics.

Mechanical subsystem measurements can be restrictive and cumbersome
and result in the measurement not being from the natural, original, or appro-

priate position. However, by placing electrodes on the skin’s surface observa-
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tion of the electrical subsystem may be performed with minimal obtrusiveness
by measurement of the present electrophysiological signals.

Electrophysiological signals are electrical phenomena related to a physi-
ological event, such as a heart beat or muscular contraction. These signals
can be divided into voluntary and involuntary. Depending on the signal
or event of interest, there are several types of measurements which may be
taken. Some of these measurement types are the Electrocardiogram (ECG
or EKG), Electroencephalogram (EEG), Electromyogram (EMG), and Elec-
trooculogram (EOG).

The author’s research is focused on an alternative computing interface
that incorporates an affective response into the double feedback mechanism to
provide an “awareness” of its users internal electrophysiological environment.
By looking inward, we have a device which is more responsive to its user, thus
creating a truly personal computing device.

Our research proposes a system to augment a hearing impaired subject’s
audio perception by using the electrophysiological signals related to hearing
physiology and affective state of healthy adults. Our application is restricted
to the loss of hearing condition called presbycusis. Presbycusis is the gradual
hearing loss normally associated with aging; typically the higher frequencies
are more effected. Presbycusis is usually a sensorineural hearing disorder, but
as with any hearing loss it is a unique combination of damage which is the
cause [79]. Independent of the cause, this particular hearing damage effects an
increase of the hearing threshold. To reduce the variability in subject hearing
damage, our research will approximate the hearing damage on normal hearing
and healthy adults by measuring their hearing threshold and presenting the
audio of interest below that threshold. The processing, or augmentation, of

the audio data shall be to determine when a change to the audio amplification
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should occur such that it will be increased above the hearing threshold.

To better understand the problem we will investigate the communication
channel from speech production to perception. With the hearing aid normally
worn about the ear, our research will focus on the collection and observation
of slow cortical potentials and their affective properties. The collection of
these signals require the development of a multichannel bioelectric amplifier
and data acquisition system suitable for both micro- and milli-volt amplifica-
tion. Although analysis of this work will be done off-line, our focus is on data
processing methods and algorithms for a class of less power computing devices
(e.g. a digital hearing aid). This required the use of efficient signal processing,
but also reduction of data complexity.

Similar to Vidal’s assumptions, this research has three assumptions to its

success based upon literature review:

1. Emotional responses, or affective patterns, can be probed using observ-
able bioelectric signals, in particular using the fluctuations of electroen-

cephalographic potentials from the human scalp.

2. All meaningful electroencephalographic phenomena should be viewed as
a complex structure of elementary rhythms that have correlation with

underlying processes.

3. Although operant conditioning procedures could increase the reliability
and stability of these time signatures and patterns, the loss of a normal or

innate attribute would invoke a reliable and measurable affective pattern.

This research seeks to prove the efficacy of such a system as an alternative
or additional method of hearing prosthetic control. Thus audio processing

algorithms based on such control is beyond the scope of this thesis.
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Wiener [4] presented a treatise on Cybernetics; the study of control and
communication in the animal and the machine. This thesis aims to present
the ground work for the area of study of control and communication between

the animal and the machine; Cybranetics.

1.2 Overview

Chapter 1 provides an introduction and rationale for our research. This chap-
ter describes the intersection of several diffuse areas of study and how we
propose their union. This chapter concludes the scope of research and an
overview of this document.

Chapter 2 presents the theoretical framework and background material.
Chapter 3 is the experimental work and observations.

Chapter 4 employs the experimental data and presents the result of our off-line
processing model.

Chapter 5 is the discussion, conclusion and recommendations.
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Chapter 2

Theoretical Section

The theoretical section will provide the framework and background material

related to the proposed research. This section will address:

1. the communication channel from the point of speech production to the

physiological process of perception,
2. hearing impairment and classical methods of correction,
3. the measure of the electrophysiological signals in general,
4. specific properties of the electrophysiological signals of interest,
5. data processing, and

6. data attributes and classification.

2.1 The communication channel

The human communications system consists of speech, sound, and hearing

and as with any communication system, it can be divided into a transmitter,
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a transmission medium, and a receiver. The physical and physiological process
of human communication is well understood, but the mechanisms that control

the speech articulators and hearing comprehension are somewhat of a mystery.

2.1.1 Production

Speech is composed of a collection of sequential complex sounds. The syntax
and protocol of these sounds are governed by the rules of grammar that form
symbols to convey information based on a cognitive lexicon. The formulation of
these sounds is beyond the scope of this research; however, it has been proposed
that we are born with the ability to rapidly acquire a meaning for innate
concepts and that we use those meanings to develop a lexicon to communicate,
using a universal grammar [80]. Rabiner states that the production of these
sounds may be modeled with a time-varying linear system [81] that according
to Parsons can be divided into two functions; excitation and modulation [82].
Production of speech requires energy. Speech energy is supplied from the
expiratory phase of the breathing mechanism. Air flowing out of the lungs gen-
erates a steady flow of energy in one direction causing, initially, the vocal cords
to oscillate, and then the air particles surrounding them. Fry best describes
this as the vibration of a musician’s lips on a brass wind instrument [83].
Referring to figure 2.1 we describe the physical flow of air used to produce
speech. Air is forced out of the lungs into the trachea. The vocal cords block
the passage of air from the trachea to the pharynx. Air pressure (subglottal
pressure) increases behind the vocal cords until it overcomes the opposing
muscular and elastic forces holding them together. Once open, the ligaments
and muscles that make up this region attempt to return to their initial position

and do so rapidly, with the aid of the Bernoulli effect, and the pressure building
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Figure 2.1: Speech Articulators

cycle begins again. This pressure cycle results in continuous pulses of air
being released into the space above the larynx which is the basis for sound
production, or excitation.

However, the excitation function does not explain the means by which we
are able to control the frequency of the sound produced. By manipulating the
mass, length, and tension of the vocal cords and the larynx, there are infinite
possible configurations and modes of vibration, or modulation.

The pulsed sound waves from the larynx have still to travel outward through

the pharynx, oral cavity, past the teeth and lips (vocal tract) and into the air.
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The path of nasal cavity through to the nostrils is opened by the lowering of
the soft palette, or velum. This segment of the vocal tract is forced into vibra-
tion because of the pulsed sound waves from the larynx. The radiated sounds
from the lips and nostrils are a result of the changes to the larynx sound wave
imposed by the configuration of the remaining pathway(s). The tongue plays
the most significant role in acoustically filtering the pulsed sound waves.

The vocal tract may be modeled as a column of air that has a resonant,
or fundamental, frequency. The column will have harmonic frequencies that
are integer multiples of the fundamental frequency. By manipulating the vocal
tract the fundamental frequency is also changed. For speech the average fun-
damental frequency for men is 120 Hz, for women is 225 Hz, and for children
is 265 Hz, with a range from 60 Hz to 500 Hz [83].

The description of speech production becomes more complex because it

can be described on three different levels:

1. Linguistic: study of the structure and nature of human speech (i.e. mor-

phology, syntax, dialectology, phonology, etc.).

2. Acoustic: differences in the acoustic levels are due to dialect, physiolog-
ical characteristics, and speaker mannerisms. These differences may be
so great that it is not practical, or possible, to record the actual sounds.
So instead, speech is characterized in terms of articulatory gestures. Al-

ternatively, a spectrogram is used.

3. Articulatory: removes the physical characteristics, which cause the dif-
ferences in acoustic levels, and allows the representation of speech to

be done using a formal set of symbols (IPA - International Phonetic

Alphabet).
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A further confusion is the terminology relating these levels. At the lin-
guistics level, a speech unit is called a phoneme, which is translated by an
articulatory gesture into a phone at the acoustic level. The phoneme is the

intended unit of language and the phone is the sound produced.

2.1.2 Transmission: sound and vibration

The propagation of speech sound waves is analogous to the sound produced
when a tuning fork is struck. The vibration of the tuning fork produces a
displacement of the immediate air particles forcing them into vibration. How-
ever the tuning fork will emit a single pure tone, or single frequency, while
the human voice is composed of an infinitely possible combination of “tuning
forks” producing complex tones, or mixture of frequencies.

There are two types of vibratory wave motion a particle can assume: trans-
verse and longitudinal.

The transmission of sound through air is often compared to the ripple effect
a pebble would produce on a still pond. If we consider the pebble in the pond
effect along a radial line we see that the individual particle moves up and
down, perpendicular to the outward motion of the wave; this is a transverse
wave. This type of vibratory motion appears at first to resemble that of a
tuning fork as shown in figure 2.2. However, this type of vibration can only
occur on the surface of a liquid or in a solid, but it cannot occur in a gas, thus
it cannot create sound waves (audible vibration) in air.

The vibration of the tuning fork causes compression and rarefaction of the
contiguous air particles, causing them to oscillate along the line of travel; this
is a longitudinal wave.

The compression and rarefaction motion of a single particle in a longitu-
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Figure 2.2: Motion of a Tuning Fork

dinal wave causing the rise and fall of air pressure will produce a sinusoidal
waveform. However, sound travels omni-directionally from the source; expand-
ing radially.

Any sound that reaches the ear drum is the result of compression and

rarefaction of the air particles of a longitudinal waveform.

2.1.3 Reception and Perception

The information contained in human speech comes from more than the words
that are used to convey our thoughts. Our auditory system must process
speech by translating sound pressure waves into a sequence of electrical im-
pulses that are passed through the nervous system into the brain. Different
sounds in our language produce different frequencies of vibration in the ear
and these vibrations contain information. The processing of this information
is so automatic that we can not consciously be aware of the different vibrations
and the information they contain.

The human ear consists of three main parts as illustrated in figure 2.3:
1. Quter ear: the visible part, the auditory canal and the eardrum,
2. Middle ear: the hammer, the anvil, and the stirrup bones, and

3. Inner ear: the cochlea, and auditory nerves.
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Sound (compression and rarefaction) enters the auditory canal and strikes
the eardrum. The hammer, anvil and stirrup bones convey eardrum vibrations
to the cochlea in the inner ear. These vibrations cause pressure waves to
travel down the cochlea making the cochlea’s tiny hair cells bend creating
action potentials. The hair cells are attached to the auditory nerves and this

information is transmitted to the brain.

Malleus

Auditory Nerve

Pinna

External auditory
meatus

Figure 2.3: Components of the human ear
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2.2 Hearing impairment

Simply stated, hearing impairment can be described as a spectrum analyzer
with a damaged channel [3]. Admittedly, this definition does not provide a
sense of the many types and forms of hearing impairment, but it does give us
insight to the resultant problem. The most common form of hearing loss is the
mixed type of conductive and sensorineural damage. The degree of hearing
impairment varies according to the division of the mix and by the method

which the damage occurred.

Types of Loss

Hearing loss can be divided into three general types [84):

1. Conductive: damage to the outer or middle ear,
2. Sensorineural: impairment to the inner ear or nerves of hearing, and

3. Mixed: a combination of conductive and sensorineural.

If we restrict our impairment definition to presbycusis, then it is the pro-
gressive increase of upper frequency threshold of hearing. As the threshold
floor rises, the intelligibility of high frequency speech components is reduced.
However, it has been suggested that presbycusis is actually the result of long
term exposure to our modern environmental noise. A study of an isolated and
relatively noise free tribe in the Sudan revealed almost no signs of presbycu-

sis [85]. Presbycusis is primarily a sensorineural impairment.

Determining Loss

Once the physical factors are ruled out, there are a basic set of audiometric

tests to determine the type and degree of hearing impairment [79]:
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Air Conduction Test evaluates the air conduction pathways because a

problem in the pathway could restrict sound waves entering the ear canal.

Weber Tuning Fork Test evaluates lateralization using a 250 or 500 Hz
tuning fork tapped into vibration and its stem placed on the frontal
bone. It is then determined which ear perceives the sound: right, left,
or midline. Based on perception, a clinician can better focus further
diagnostic tests based on an preliminary diagnosis of normal, conductive,

sensorineural, or mixed loss.

Rinne Tuning Fork Test evaluates intensity using a 250 or 500 Hz tuning
fork tapped into vibration and places it on the mastoid process (bone
behind the ear at the base of the skull) or near the external auditory
meatus. Depending which location sound is more intense the clinician
can better focus further diagnostic tests based on a preliminary diagnosis

of normal, conductive, sensorineural, or mixed loss.

Audiogram is a graph of hearing threshold values. There is some disagree-
ment in the field as to the order of frequency testing, but consistency
is considered the optimum standard. It is common to start with the
better ear at 1000 Hz and then present higher frequencies up to 8000
Hz (1000, 2000, 3000, 4000, 6000, and 8000 Hz) and then return to 1000
Hz and evaluate the lower frequencies (1000, 500, and 250 Hz). The pa-
tient responds to pure tone audiometry by pressing a button or raising
a hand on a positive response. The tone presentation should range from
500 ms to 1000 ms and the time span between stimuli should be varied,
but not shorter than the test tone duration. Figure 2.4 is the author’s

audiogram [86].
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Bone Conduction evaluates the bone conduction pathways by direct me-
chanical vibration to the mastoid process or frontal bone that will send
the vibration directly to the cochlea where the energy is converted to

fluid vibration.

The method of testing for an audiogram is fairly coarse when the variabil-
ity of hearing impairment is considered. More individualized response curves
would obviously be advantageous, but the increased time and subjectiveness
of user responses makes it clinically impractical. However, by employing in-
voluntary electrophysiological response we can achieve an objective analysis.
It has also been proposed that the usage of neural networks for individualized

responses could produce an improved audiological fit [87].
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Figure 2.4: Author’s audiogram
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Psychological Affect of Hearing Loss

The type, method, severity, and age of onset of hearing loss has both psycho-
logical and social implications. The limited empirical literature finds hearing
loss is associated with elevated rates of depression and anxiety [88]. Clinical
study and experience suggest that because loss of hearing effects the uncon-
scious and primitive level of hearing [89] and appeared to cause increased
stress [90]; especially in adults with acquired hearing loss, in comparison to
prelingually deaf. Also, the author’s own observations indicate a strong corre-
lation between a hearing impaired individual’s increased emotional stress and
an instance of miscommunication; often this increased stress goes unnoticed

by the impaired.

2.2.1 Methods of correction

The goal of a hearing aid is to increase discrimination between speech sounds
by pushing the input signal into the hearing range of the user. A users hearing
range is the difference between a lower threshold and an upper limit of hearing
for a particular frequency.

Hearing aid technology has a long history [79,91] and the analogue model
has been predominant. Although early model analogue hearing aids did little
for speech sound discrimination, due to clipped sound input and high fre-
quency distortion, the technology has progressed to offer a number of styles
and categories.

There are six main styles of hearing aids, ordered most to least used [79]: in-
the-ear (ITE), behind-the-ear (BTE), in-the-canal (ITC), completely-in-the-
canal (CIC), eyeglass, and body worn. The CIC is the fastest growing style,

while collectively the eyeglass and body worn account for less than 1% of
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hearing aids currently worn.
Hearing aid technology also falls into several categories. However, since
there is no standardization of these categories, the author has chosen to define

three main categories of hearing aids:

1. Analogue: considered the traditional hearing aid which are mainly fixed

frequency gain and selective amplification,

2. Digitally Programmable Analogue: perform more advanced analogue sig-
nal processing than the analogue category, but has digitally program-

mable parameters, and
3. Digital: programmable and fully digital signal processing?.

It has been questioned whether analogue hearing aid technology is suitable
for all sound environments and if it has reached its limit of benefit. It is
believed that in order to improve the quality of these devices, they will have
to perform further processing on board, which only the digital category can
provide [3,93, 94].

Figure 2.5 illustrates how each category functions by showing a generalized
flow diagram. Part a) shows the Analogue category flow diagram. Sound
enters the microphone (MIC) and is amplified (Amp) and/or filtered, then
the signal is processed using analogue circuitry (such as filter banks), then it
is recombined, amplified and/or filtered again, and then output through the
receiver (REC). Part b) shows the Digitally Programmable Analogue category
flow diagram. This category functions the same as part a); however, it has

more complex signal processing and digitally programmable parameters (i.e.

1The Cochlear Implant is a hearing assistive device which would fall under the category
of a Digital hearing aid, however, this device is far more invasive and perhaps requires it’s
own category. For a review of cochlear implants, refer to Loizou [92].
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amplifier gain). Part c¢) shows the digital flow diagram. Sound enters the
microphone (MIC) and is then is converted to a digital representation using
the analogue-to-digital converter (ADC), then the digitized signal is processed
using the digital signal processor (DSP) and then converted back to analogue
by the digital-to-analogue converter (DAC) before being output through the
receiver (REC).

2.3 Electrophysiology

An electrophysiological signal is an electrical phenomena related to a physio-
logical event, such as a heart beat or muscular contraction. These signals can
be divided into voluntary and involuntary. Depending on the signal, or event

of interest there are several types of measurements which may be taken:

1. Electrocardiogram (ECG or EKG): measures electrical impulses that are

triggered by the heart beat,
2. Electroencephalogram (EEG): measures electrical impulse of the brain,

3. Electromyogram (EMG): measures electrical impulses that are triggered

from muscular contraction, and

4. Electrooculogram (EOG): measures electrical impulses generated by eye

movement.

2.4 Electrophysiological Signals of Interest

We have restricted our scope to electrophysiological signals that are in close

proximity to where a modern hearing aid would be worn. Specifically, we
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investigated the usage of electrical waveforms generated by the human eye
(electrooculography) and the human brain (electroencephalography). All sig-
nals were measured using surface electrodes. Surface electrodes were chosen
because they are the least invasive method of measuring the electroocular and

electroencephalographic signals.

2.4.1 The eye and electrooculography (EOG)

The human retina consists of an electrically-charged nerve membrane [95].
As a result, the measured potential between the cornea and the optic nerve
is between 2 to 20 millivolts. This potential is constant value for a given
adaptation without stimulation; it is the retinal resting potential. The retinal
resting potential causes an electric field around the eyeball, centered on the
optical axis, which can be measured by placing electrodes near to the eye.
As a result, the motion of the eye causes a measurable change of DC voltage

amplitude between the electrodes.

Electrooculography

Electrooculography (EOG) is the technique of using electrodes to measure the
electrical potential generated by the motion of the eye. Figure 2.6 illustrates
the EOG measurement as a result of eye movement and Figure 2.7 shows a
common electrode arrangement for the EOG. The EOG can be used to record
eye movements up to £70° with a typical accuracy of 1.5° to 2.0° [96]. The
EOG provides an advantage over other measurements of eye movement because
head movements do not hinder recording.

Typical applications of the EOG include the measure of saccadic eye move-

ments, smooth pursuit eye movements, nystagmus, and blinking [97]. Uenoyama
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et al. [98] used the vector-EOG to control the z and y deflection of an electron-
gun in a cathode-ray-tube (CRT) to clinically study the motion of the eye.

Vector Positioning

Eye movement measured using the EOG provides an electrical vector along
the horizontal H =< z1,y1 > and vertical V =< 22, y2 > axis. The resultant

vector

R=H+V (2.1)

where,

R=<zl,y2>.

As illustrated in figure 2.8, the resultant vector (R) provides the eye’s

position from the axial center.

2.4.2 The brain and electroencephalography (EEG)
The human brain

Brain current research has five well defined frequency bands, or rhythms [14,
17,99,100]: «, B,7,9,and 8. Table 2.1 shows these frequency ranges and their

associated cognitive and emotional attributes.
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Table 2.1: Brain Rhythm Frequency Ranges

Rhythm Frequency [Hz] Attribute
Delta (9) 05-4 Deep Sleep
Theta (6) 4-8 Emotional Stress
Alpha/Mu (a/p) 8-13 Focus of Attention
Beta () 13- 22 Increased Mental Activity
Gamma () 22-30 Attentional States and consciousness
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The research into brain activity may be broadly classified into spontaneous
and event related. Event related can be considered to have been invoked or
evoked, and each of those may be further defined as shown in figure 2.9 and

described below.

Expectation (CNV) - contingent negative variation, is the electrical activ-
ity of the brain prior to motor action. It is named descriptively CNV
based on the negative voltage shift associated with an anticipated re-

sponse to an expected stimulus.

Preparation (BP) - Bereitschaftspotential, a readiness potential associated

with motor action.

Exogenous (VEP) - visual evoked potential, a reflex action associated with

a stimulus.

Endogenous (P300) - positive peak 300 ms after stimulus, is a voltage
peak associated with the cognitive processing of a stimulus event. Also

referred to as slow cortical potential.
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Standard electrode placement

Using scalp electrodes, past attempts to isolate brain current for singular cog-
nitive functions has proven difficult, if not impossible. This is due to the
diffuse nature of the brain’s electrical signals through the organic medium of
the scalp. More recent research takes a generalized approach (affective pat-
terns) to classifying electrophysiological patterns, perhaps taking it’s cue from
the classification of the rhythms.

The measurement of brain current is done mostly in the study of epilepsy
and seizures to try to isolate both temporal and spatial abnormal electrical
activity. The 10-20 system is an international standard of scalp electrode
placement {18, 101] which is used to perform consistent recording of the elec-
troencephalogram. The name 10-20 refers to the 10% and 20% inter-electrode
distance of the individual’s skull measurement.

However, the 10-20 is not the only system used in the measurement of
brain current. Although not internationally standardized, there are alternative
placements for measurement during sleep and ambulatory needs [102].

It should be noted that the EEG being examined is of an adult, or at least
considered adult. The EEG is different for children through stages of their
development, and it is not until approximately thirteen years of age that an

EEG has all the “adult” characteristics.

Alternative electrode placement

However, the 10-20 system is not the only method of placing electrodes. For
systems that require ambulatory monitoring there are various electrode mon-
tages that may be selected based external sympathetic restrictions, such as

placement outside the hairline [69,102]. Typically these montages are config-
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ured for spatial and temporal observation of brain current anomalies.

The design of a brain-computer-interface (BCI) does not require the high-
est spatial and temporal resolution, but rather an educated placement using
as few electrodes permissable to collect the signal(s) of interest. Figure 2.12
illustrates the alternate electrode placement used by Vidal et al for their func-
tional BCI used for a single dimension cursor control based on the subject’s
control of their a\p rhythm. The montage was selected such that four of the
electrodes were situated about the occipital-parietal areas of the brain which
is primarily responsible for visual system, while the fifth electrode is placed
over the frontal lobe for the removal of facial muscular artifacts. The elec-
trode montage selected for our research was based upon the success of Vidal’s
approach and is shown in figure 2.13. Our electrode locations conform to the
10-20 system of positioning and we have expanded the horizontal range of the
montage to reduce the influence by the occipital region (visual subsystem) and
to increase the influence of the somatosensory (sensation) region of the brain.

Regions of the brain are shown in figure 2.10.

2.5 Data processing

Processing of data was performed off-line using Intel-CPU class computers.
Processing was primarily performed on a laptop with Intel Pentium-M 1.1 GHz
(ULV), 2 MB cache, with 1.2 GB of primary memory and a desktop Intel
Pentium-III 733 Mhz, 512 kB cache, with 1.2GB of primary memory. How-
ever, the proposed application of this research was for much less powerful plat-
forms such as the Motorola digital signal processor DSP56300 or the Motorola

microcontroller HC9S12.
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2.5.1 Filter design

The designer is faced with a task of choosing the best filter for the applica-
tion. The well established field of analogue electronic filter design and imple-
mentation has direct use in the digital domain and is often chosen because
the designer has experience with the subject. The choice of analogue de-
sign methodology may also have to do with the focus of modern literature
on these methods based on the primary criterion of obtaining the narrowest
filter transition band. The current computational capability of the general
desktop computer makes a filter’s transition band the primary and a prior:
concern. However, for a slower and/or less powerful system, the computational

efficiency must take precedence.

Analogue design methods offer recursion as a more efficient means of im-
plementation; however, this comes at the expense of the filtered signal having
non-linear phase and infinite impulse response (IIR). It is perhaps inferred
by the designer from current literature that the only method of achieving a
resultant linear phase and finite impulse response (FIR) is by non-recursive
means. Although it is true that all FIR filters can be realized non-recursively,
there exists a class of filters that are recursive FIR filters which can be more

eflicient than traditional analogue design.

Figure 2.14 illustrates a traditional N-tap non-recursive FIR filter struc-

ture.

Employing digital domain principles of the comb filter and digital res-
onator an equivalent, but completely digital, filter structure may be realized.
Figure 2.15 illustrates this combination with the comb filter driving a bank
of parallel resonators to make an equivalent filter to figure 2.14. This is the

principle of the frequency sampling filter (FSF).



Figure 2.14: Traditional N-tap non-recursive FIR filter structure

> Resonator
> Resonator
X(n)
—» Comb
> Resonator
> Resonator

Figure 2.15:

N-section frequency sampling filter structure
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Frequency sampling filter

The frequency sampling/selection filter is composed of two stages: 1) the
digital comb filter, and 2) an N-section bank of parallel digital resonators.
Each stage will be described individually and then combined.
Comb filter

The non-recursive comb filter is given by the time-domain difference equa-

tion

v(n) = z(n) — z(n — N), (2.2)

V(z) = X(2) — X(2)=~", (2.3)

which may be used to determine the z-domain transfer function of the comb

filter,

HG) = 3o (2.4)
H(z) = X(z)é{l(;)zN) 25)

Thus the comb filter z-domain transfer function is

V(z)

mzl—z‘ . (2.6)

Hcomb(z) =

This places N equally spaced zeros around the z-domain’s unit circle.
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For the frequency response of equations 2.6 we substitute e for z because

re’ defines the unit circle when 7 = 1 in the z-domain. The substitution
yields,
Heomp(2)|smeie = 1 — 78, (2.7)

We factor out the exponential term e=*™/2 to employ the Euler’s identity

i9_—if

of sinf = € 5
j

H_omp(€*) = 2je7 N2 sin (WN/2). (2.8)

Combining the imaginary portion into exponential term (j = /%) pro-

duces the frequency response,

Heomp(€) = 267N =7/2gin (uN/2). (2.9)

The real magnitude response of the comb filter is,

| Heomp(€™)| = 2| sin (WN/2)]|. (2.10)

Complex resonator

The complex resonator’s time domain difference equation is,

y(n) = v(n) +e“ry(n — 1), where — 7 < w, < 7. (2.11)

The angle w, determines the resonant frequency.

The z-domain transform of the difference equation is given by,

Y(2) =V(2) +e“Y(2)z7! (2.12)
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The z-domain transfer function for the complex resonator is,

(2.13)

Frequency sampling filter using single section complex resonator

The combination of comb filter and single resonator forms the basis for
the frequency sampling filter. The z-domain transfer function of the frequency
sampling filter (FSF) is the product of the individual transfer functions and a
gain coefficient H (k).

H(z) = Hcomb(Z)Hresn(z)H(k), (2.14)
H(z) = ——ll__ejirz_lH(k). (2.15)

In order to align the resonator poles and the comb zeros for their cancela-

tion the resonant frequency must be restricted by,

where k =0,1,2,..N — 1. (2.16)

Using this restriction, the the single section complex resonator’s z-domain

transfer function becomes,

(1—2"")H(k)

H(z) = 1 — ei2nk/N -1

(2.17)

By combining multiple resonators in parallel we may sum their individual z-
domain transfer functions using the principle of super-position to create easily

customizable filters with little extra effort.
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Stability

The FSF description to this point has assumed pole/zero cancelation on
the z-domain unit circle. In practice, base representational error and finite
precision errors may result in poles poles located outside the unit circle causing
instability. Unless implemented on an integer based machine the poles and
zeros should be moved slightly inside the unit circle to a radius r. A value of
r < 1 causes a decayed/damped impulse response, widens the filter transition
band, and cause non-linearity in the phase response. For these reasons stability
must be balanced against performance.

In general, the damping factor is incorporated by substituting the product
rz for each occurrence of z.
Frequency Sampling Filter Using Multiple (N) Section Real Res-
onator

Expanding upon the case of the single section complex resonator into a
parallel bank of single section complex resonators the bank of resonators has
a z-domain transfer function of the sum of their individual transfer functions.

This is given by,

N-1
H(z)=(1-2" Z 1_ 27rk/NI—1 (2.18)
=0

From equation 2.18 it is noted that there may be up to N parallel resonators
in the bank, but in practice only a few are required for a narrow-band filter.

It is possible to obtain real valued coeflicients by requiring the complex
multi-section resonator to have complex conjugate poles at all non-zero gain
factors H(k) and H(N — k) where H(k) = H*N — k. This requires complex
conjugate poles at +27k/N radians.

Incorporating the stability damping factor, the complex multisection FSF
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is

H(z) = (1 — V2 ) Z_ — (Tg gf/)N)z_l (2.19)

The summation is split into two parts; one for each half of the conjugate
pair. Assuming N is even?, the 2 cases of H(0) and H(N/2) must be addressed
separately. If N were odd then the cases of H(/N/2) would not exist and a high-

pass filter could not be realized.

Dividing up the summation produces

H() | H(N/2)
1—rz7}  1—rz!

H(z) = (1—er‘”)[

Nfl H(k) + Nz_jl B — (2.20)
1 — [rel27/N]zT 1= [re2"/N|z-1 |’ :
k=1 k=N/2+1

Using the symmetry of the z-domain unit circle the summations may be com-
bined by changing the second summation’s index from & to (N — k). Forming
a common denominator between the two summation expressions and then ex-

panding them out produces (focussing on just the summations),

Nj2-1 . _ B _ -
Hk)(1 - re2n(N=k)/N , Y4+ H(N —k)(1 — rei2mk/N 1)
Hsumm(z) - Z

1 — rei2m(N—k)/N 5—1 _ paj2rk/N 5—1 + r2gi2m(k+N—k)/N ,—2 °

(2.21)

k=1

Defining H(N — k) = H*(k) requires all poles to have conjugate pairs. This
requirement produces a frequency sampling filter with real coefficients. Col-

lecting common terms gives us,

2The case were N is even will be explored as the author’s FSF design uses an even N.
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< H(k) + H*(k) — (H(k)re 27/N 4 H*(k)ref2mk/N) ;-1
Houimm(2) = Z 1 — r(e—32nk/N 4 i2nk/NYo—1 4 y2;-2

(2.22)

Converting each complex H (k) to polar form and adding their polar form

H(k) = |H(k)|[cos ¢k + jsin ¢y] and
H*(k) = [H(k)|[cos ¢i — jsin ¢

to produce

H(k)+ H*(k) = |H(k)| cos .. (2.23)

Substituting equation 2.23 and Euler’s identity

e 4 el
2

coSox =

results in the frequency sampling filter transfer function

H(0) H(N/2)
1—rz7!1 + 1—rz?

~ |H(k)|[cos ¢x — 7 cos (¢ — 2mk/N)z™1)
2 Z 1 — [2rcos (2mk/N)]z~1 +r2z—2

(2.24)

This is referred to as a Type-I real frequency sampling filter.

The Type-I FSF resonator structure can be simplified by setting all ¢
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phase angle offset of each non-zero gain coefficient to 0 and moving the gain
factor within the resonator. The transfer function man be further simplified
by setting all non-zero gain factors H(k) = 1; however, as will be shown, this
gain factor can improve the performance of stop-band attenuation. Instead
of defining the phase angle for each non-zero gain factor, a linear phase mul-
tisection FSF can be realized by using just the magnitude |H (k)| values and
incorporating a (—1)* alternating term. This alternating term makes each
single section m-radians out of phase with its adjacent sections. These simpli-
fications result in the Type-II frequency sampling filter with z-domain transfer

function

H(0) | H(N/2)
1—rz7! 1 —rz1

Hrype_11(2) = (1—er*N)[

" (CLHH(K)[2 = 2r cos (2mk/N)" |

1 —[2rcos (2mk/N)|z71 + 12272

(2.25)
k=1

Transition band coefficients

To this stage, it has been assumed that any non-zero gain coefficient of
the frequency sampling filter has a value of 1. Although a convenient approx-
imation, it has the effects of decreasing stop-band attenuation and injecting
high-frequency elements into the original signal’s spectrum due to Gibbs phe-
nomenon. By defining gain coefficient(s) in the transition band these effects
can be significantly reduced. The cost of this improvement is a widening of
the filter transition band and the extra computation of an additional FSF sec-
tion for each coefficient. The transition band coefficients may be calculated

empirically or referenced from design tables [103-105].
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Figure 2.16: Type-II frequency sampling filter magnitude response (3 filter)

Phase (degrees)
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Figure 2.17: Type-1I frequency sampling filter phase response (3 filter)
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2.5.2 Data reduction

The choice of electrode site to focus upon, whether montages should be bipolar
or monopolar, and the selection of a reference all add to the complexity of
measuring brain current. An obvious approach may be to collect measurements
with as high an electrode resolution possible; however, this only serves to
increase the complexity and time of interpretation.

For practical purposes, a brain-computer-interface require as few electrode
sites possible and method(s) of data reduction. One method of analysis and

reduction [106] is an approximation based on the Poisson’s theorem.

Source density analysis

If we consider the electrode arrangement AS and apply Gauss’s law, where
the electric flux passing through any closed surface is equal to the total charge

enclosed by that surface, then the total flux passing through AS is,

AV = Dg-AS (2.26)
v = / av
= }{ Ds-dS=Q charge enclosed. (2.27)

Total charge enclosed assumes the skull to be volume conductor. If we

wish to evaluate the flux density we may consider it per unit volume,

§Ds-dS _ Q

- (2.28)
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As the volume shrinks to infinitesimally small,

. §Dg-dS . Q
AT A A A >:29)

we observe Maxwell’s first equation, that states that the electric flux per unit
volume leaving a vanishingly small volume unit is exactly equal to the vol-
ume charge density there. This is illustrated in figure 2.18. Equation 2.30 is

Maxwell’s first equation:

V-D = p,. (2.30)
The definition of D is
D =¢E (2.31)
and the gradient relationship
E=-VV (2.32)

By substituting equations 2.31 and 2.32 into equation 2.30 we produce

V:-D = V.- (eVV)=p, (2.33)

V.V o= P where € is constant (2.34)
€

Equation 2.34 is Poisson’s equation which states that the source density of an

potential field distribution is proportional (e.g. %) to V2V.
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Expanding 2.34 in cartesian coordinates provides

v 0V v
++

2y —
viv= ox? + 0y? 022

(2.35)

Normally V? is expressed in orthogonal coordinates, but as an approxi-
mation to scalp current density it has found application in EEG analysis and
evoked potential research. The source density analysis provides several advan-

tages:
1. the measurements may be more easily visualized,
2. may provide a higher spatial resolution,
3. has less vulnerability to common-mode interference, and
4. solves the problem of choosing a reference electrode.

Conceptually, the Laplacian may be understood as an operator that sub-
tracts from the infinitesimally small volume potential the average potential of
its adjacent electrodes. The conventional Laplacian electrode array, shown in
figure 2.19a), uses a rectangular grid, but in principle the adjacent electrodes
are not required to be orthogonally arranged. Figure 2.19b) illustrates a tri-
angular grid which is more economical and has reported effective [107-109].

Applying this concept and a triangular grid electrode array to analogue
electronics, the current from each adjacent electrode is converted to a voltage
and then summed and averaged across a resistor network. The average of the
adjacent electrodes is subtracted through the negative feedback path and the

result amplified,

sum of adjacent electrodes
n

VLaplacian et n(‘/a - )) (236)
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Figure 2.18: Source density approximation using a vanishingly small volume
unit

a) b)

Figure 2.19: Source density analysis: unit Laplacian electrode arrays
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Figure 2.20: Analogue source density computation
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where n is the number of adjacent electrodes. Figure 2.20 illustrates the cir-
cuitry.

Analogue implementation is preferred because it reduces analog to digi-
tal conversion overhead, but post-processing computation is achieved using

equation 2.36.

2.6 Data attributes and classification

The choice of data attribute(s) on which to focus is an active and broad area
of brain-computer-interface research. There are however, some well defined
frequency bands that have been associated with cognitive and emotional at-
tributes.

These defined frequency ranges will be referred to in general as narrow-
band (e.g narrow-band-a) and contiguous combinations will be wide-band (e.g.

wide-band-«g). These defined frequency ranges had their power spectral den-
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sity calculated and results recorded.

Researchers have achieved functional BCI using purely frequency domain
data by training the subject to accurately manipulate the p-band (Vidal and
Wolpaw et al.). However, as noted by Mensh [110], this ignores the available
time domain data of slow-cortical potential (P300) that researchers have also
exhibited BCI success (Birbaumer et al.).

Regardless of the attribute(s) selected, the visualization and classification
of such data becomes an increasing challenge that may be considered pro-
portional to dimensionality. Fundamental to the classification problem is the
unknown distribution of the data, which is further complicated with the fact
that real-world, experimental data of this nature are often not linearly sepa-

rable without significant misclassification error.

2.6.1 Support vector machine classification

Often data is inseparable using a linear classifier. This may be overcome
by permitting some data to be misclassified, or by the use of a nonlinear
classifier. A support vector machine (SVM) may be used to create nonlinear
classification boundaries (hypersurfaces) by using a mapping (®) from input
(attribute) space (x) to feature space (z) and creating hypersurfaces in feature
space.

Generally, for an n-dimension input vector (x) an SVM classifier will apply
a mapping to calculate an f-dimension feature vector and then generate a non-
linear separating hypersurface in feature space. This separating hypersurface
is used to determine classification.

To design of a nonlinear SVM will begin with a linear SVM for classifi-

cation. Given the data generator R¢, where d is the dimension, the input
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vectors

x e R"

are mapped into vector z of a higher dimensional feature space

F(z) = ®(x) (2.37)

where ® represents the fixed and chosen mapping ®" — R/. For our classifi-
cation we assign two output states: y € {—1,1}. To produce the mapping in

this feature space:

x € R - z(x) = [¢1(X), ¢2(%), ..., du(x)]T € RS
The mapping ® objective is to produce linearly separable images of x in
feature space. Once mapped, we use the decision hyperplane
d(x) =wiz +b, (2.38)

where w is a weighting vector and b is a bias in feature space. The calculation
of weighting vector w is performed during the learning stage and will be further
described shortly. After evaluating the decision function, an indicator function
is applied to determine the set in which the decision lies. For the case of output

states y € {—1,1}:

ir(x) = sign(d(x))) (2.39)

The indicator function is a linear classifier in feature space (z) and creates
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a nonlinear separating hypersurface in the original input space (x).

Consider a case of system with input attribute vector x = [z12223] (n = 3)

with mapping ®. Based on the mapping, the feature vector is

2(x) = [61(x)$a(x)...09(x)]" € R,

The mapping order is determined by

~ n(n+3)

f=— (2.40)

with the feature space mapping set as

21 =1, . Zp=2Ty

2 2

Znp1 = (21)%, o 220 = (Tn)
Zon+1 = T1T2, ... Zf = Tpdp—1-

Thus for our system ¢;(x) is given as

Referring to equation 2.38 the decision function produces a second order poly-
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nomial hypersurface given by

d(x) = [w; wy w3 wy ws W Wy W Wy| X
[$1 X9 T3 ($C1)2 ((L‘Q)2 (.’173)1 X1Z9 T1XT3 l‘g(Eg]T +b
= W11 + WaT2 + U)3£L‘3U)4(.’L'1)2 + ’U)5(ZL'2)2 + ’LU6($3)2 +

WrX1Ty + WeLaZs + WoT1Z3 + b.

The mapping from three-dimensional input space to nine-dimensional feature
space (N3 +— R%) tich is shown in figure 2.21. To calculate a value from
the decision function, the weighting vector (w) and bias b need to be solved.
The goal when calculating an SVM decision boundary (hypersurface) is to
maximize the margin M between boundary adjacent training data (support
vectors). First consider the point P in feature space, the distance D from P

to a hyperplane is given by:

D (2.41)

|w1T1p + WaTop + ... + WyTnp £ b
Vw? +wE 4.+ w? ‘

Now, consider that the maximum hyperplane margin lies exactly halfway be-
tween the projected normal of data points from different output sets. Thus
having equal projected distances from the plane,
M = 7—(-9) (2.42)
o]

2q
= — 2.43
Tl (2.43)

The distance from either of the two points to the plane would be half of the
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Figure 2.21: SVM diagram
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value calculated in equation 2.43.

D = % (2.44)
wx +b
= -—l ol | (2.45)
q
= m (2.46)

Thus observing equation 2.46 it is noted that to maximize the distance between

the hyperplane and the boundary data points that w must be minimized.

In defining the hyperplane, it is necessary to impose the restriction
min [w’x; + b/ =1 (2.47)
T,€X

to ensure the use of a canonical plane. This requirement restricts how a hyper-
plane can be defined to ensure its description is unique. Given equation 2.47’s

restriction, equation 2.46 may be rewritten as

1

D:m.

(2.48)

This defines the optimal canonical separating hyperplane (OCSH) with the
largest margin M and the adjacent training data (support vectors) specified
by y;lw'x; +b] = 1, where j = 1,...,nsv. Thus all remaining training data
must satisfy

yilwix; +8 > 1, i=1,.., (2.49)

where [ is the number of training data and nsv is the number of support

vectors.

Therefore the decision equation is a nonlinear function in feature space
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that requires optimization of its parameters to determine the optimal canonical
separating hyperplane. The learning machine must minimize ||w|| to maximize
M based on the restrictions stated. This problem is a nonlinear optimization
with inequality constraints that may be solved using the Lagrangian saddle

point. The Legrange function is given as

WTW

L(w,b,a) = 5

!

=3 (v xi + 8 — 1), (2.50)
=1

where o; are the Lagrangian multipliers. The «; values will be used as weight-

ing values in feature space. The Lagrangian must be minimized with respect

to w and b, and maximized with respect to o; (a; > 0). The partial derivatives

with respect to w and b will be zero when the saddle point it found. Thus,

oL !

Ows =0, orw, = gaiyixi, (2.51)
!
oL
8_bo = 0, or ;aiyi =0. (252)

Classical Lagrangian duality permits transformation of the primal space (w
and b) into Lagrangian space (o;) which is more easily solved. The Lagrangian

dual is:
]

!
Ly(a) = Z ; — % Z Z yiyjaiaijx. (2.53)
=1

i=1 j=1
The Legrangian dual is significant because it is expressed in terms of training

data (x), but perhaps most importantly, the result of x* x is a scalar product.

Reviewing equation 2.38 and incorporating the necessary condition of de-

termining the Legrangian saddle point from equation 2.52, the decision func-
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tion may be rewritten for feature space (z) as:

d(x) = Z ozt (x)z(x;) + b. (2.54)

It is clear that given the mapping function ® and its dimensionality, the
amount data can quickly become unmanageable, even considering the scalar
product term. However, the feature space F' may be expressed using a kernel
function K, defined in input space as,

K(x;,%;) = 27 2; = ®7 (%) ®(x;). (2.55)

i

The use of a kernel function to define the feature space avoids the poten-
tially unmanageable computation required of a high dimension problem. The
choice and application of the kernel function remains an active research area in
many diverse fields. Researchers currently use empirical methods to evaluate
kernel performance. A popular kernel function that is considered suitable for

noisy experimental data is the Gaussian Radial Basis function, defined as:

Ix;—x;|2

K(x;,x;) = e T (2.56)

The use of a Gaussian kernel removes the equality constraint of equa-
tion 2.52 because Gaussian basis functions do not require a bias term. Thus

the Legrangian may be rewritten with the kernel function as

l l

l
1
La(o) = > o — 3 > > wiyioias K (xi,x;), (2.57)
i=1

i=1 j=1
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subject to the condition

;>0,i=1,...,1,
where [ is the number of data points.

Maximizing Ly requires solving for «; which may be done using standard
quadratic numerical programming methods [111,112]. The result will be an o
for i =1,...,1, where I is the total number of data points. Fortunately, only
the data points used as support vectors will be nonzero values and in practical
application the number of support vectors should be small percentage of the

total data set.

To this point, a “hard” margin hypersurface classifier has been defined.
In practice, particularly on noisy data, a degree of acceptable misclassification
permits a better generalization of the data, producing & better classifier; this is
called a “soft” margin (C). The only change that results from the soft margin

is a limit on the upper bound of the a;:

C>a; >0, wherei =1,...,1L (2.58)

The final result is a nonlinear hypersurface that describes the soft margin
division between sets of linearly nonseparable data. The primary advantages
of such a system are that it may be used for the classification of data where the
distribution of this data is unknown and/or the dimensionality of the attribute

(x) space is too large for classical visualization methods.

The decision hypersurface function is now defined as,

l
d(x) = Z v K (x,%;) + b, (2.59)
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and the indicator function is
!
i(x) = sign(d(x)) = sign() _ g K (%, %) +b). (2.60)

i=1

Using a Gaussian kernel function reduces the constraints on the calculation of

Legrangian multipliers (o), feature space weights, to

The values of upper weighting bound C' and Gaussian kernel ¢ parameters are

empirically chosen.
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Chapter 3

Experimental Section

This chapter will present the general experimental setup, an overview of the
relevant hardware and software design, and the two primary investigative ex-
periments.

The same setup was used for both experiments. These experiments were
run sequentially. The set up will be described in three sections: 1) subject
preparation, 2) subject positioning, and 3) the experimental data acquisition
system.

The battery operated bioelectric amplifier was designed and built by the
author for the future implementation of a portable BCI with online, realtime
processing. All software for control, experimental operation, data acquisition,

and measurement were designed and written by the author.

3.1 Subject preparation

The experiments require a total of ten surface electrodes to be placed on the

subject. This includes the earlobe reference and bias current sink locations.
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The placement of the electrodes are done in accordance with the skin prepara-
tion and equipment decontamination procedures of the College of Physicians
and Surgeons of Ontario [113]. All electrode locations are first cleansed with
alcohol swabs to remove oils, abraded to lower site impedance, and cleaned
again with an alcohol swab. The electrodes are affixed using a small ball of
conductive electrode paste, covered with a 1 inch? gauze pad, and secured
with several strips of surgical tape (the subject’s hair may also be used to help

secure the EEG electrodes).

A set of five electrodes, with one shared reference electrode, are attached
for the measurement of eye motion; the electrooculogram (EOG). The chosen
electrode arrangement is illustrated in figure 2.7. While seated and focussed on
point that both vertically and horizontally centers the eye pupil, the electrode

are placed as near they as possible aligned with the centering axes.

A set of six electrodes, with one shared reference electrode, are attached
for the measurement of brain activity; the electroencephalogram (EEG). The
chosen electrode arrangement is illustrated in figure 2.13. Although not a stan-
dard montage, the individual electrode locations conform to the international
10-20 system. The standardized names for the chosen locations are: Inion,
Pz, P7, and P8. The method of measuring individual subject’s for the 10-20

system of electrode placement is explained in Fisch’s EEG primer [17].

The subject was presented with both visual and audio instructions. The
visual instructions were presented on the computer screen and provided an
introduction to the experiments, requested identification information, and re-
quired approval for the publication of results. Audio information proceeded

each experiment and was presented using a closed circumaural headphone.

Apparatus required for subject preparation:
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1. surface skin electrode discs (Rochester Electro-Medical EverLast 9 mm

gold-plated cup electrodes and reference ear clip),
2. general purpose alcohol swabs,
3. gauze padding,
4. surgical tape,
5. abrasion tape (3M Red Dot Trace Prep),
6. electrode paste (Grass-Telefactor electrode paste, type EC2),
7. cloth measuring tape,
8. distilled water and soft toothbrush for electrode washing, and

9. a closed circumaural pair of headphones.

3.2 Subject positioning

The subject was seated in a high-back computer arm chair which was well
cushioned. The chair was inclined to a fixed position and the height of the
chair was adjusted such that the subject’s forward gaze is aligned level with the
center of the computer monitor. The subject’s feet were rested on a elevated
platform approximately 20 cm off of the floor. Arms were placed relaxed on
the chair arm rests and an acknowledgement button was placed in the left
hand. A relaxed and comfortable seating position was necessary to reduce
any extraneous movement that may have created signal artifacts in our data
recording.

The positioning of a subject is illustrated in figure 3.1.
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3.3 Data acquisition

The data acquisition system was designed, built, and programmed by the
author. Each component was modular and could be tested independently.
An overview of the system is illustrated in figure 3.2, however, only data
connections are included; ground, reference, and control connections have been
omitted for clarity.

The data acquisition system is built around the 8 channel electrophysi-
ological amplifier which is described further in section 3.4. Each channel is
reconfigurable for the amplification of either microvolts or millivolts to volts.
The amplification may be fine adjusted to the appropriate voltage level for the
data capture microcontroller’s analog to digital converters (ADC). The sam-
pled data and user acknowledgement data are (9 channels) streamed serially
to the electrophysiological measurement capture computer. This computer’s
purpose is the collection and storage of the experimentally measured EEG and

EOG data.

The EOG difference amplifier performs the difference between single axis
electrodes. The differential of horizontal and vertical motion are output to the
electrophysiological amplifier for scaling and recording. Referring to figure 3.2,
the radio transmitter (TX) and receiver (RX) were employed for independent
testing of the electroocular component.

A critical component of human feedback experiments is the choice and im-
plementation of an acknowledgement system for a non-technical subject. A
verbal and motion response are not an option as they are possible contami-
nants to EEG data. Fixed position buttons on control panels create confusion
and physical discomfort. The use of a computer keyboard can potentially

disrupt the software operating the experiment. The final choice was a momen-
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tary push button housed in a cylindrical case that was comfortably held and
easily actuated. The acknowledgement button was attached to the subject
feedback microcontroller that was serially connected to the personal computer
executing the series of stimuli. The feedback microcontroller also forwards the
acknowledgement response to the data capture microcontroller for inclusion in
the measurements. This acknowledgement response is used to synchronize the
independently collected data.

The overall system was designed to perform the parallel tasks of presenting
experiment stimuli, recording of the subject responses, and recording of the
associated measurement data with no communication or control conflict.

Each set of experiments was video recorded for a complete record of the

event.

3.4 Hardware

This section will describe the design of electrophysiological amplifier and the

usage of the peripheral microcontrollers.

3.4.1 Electrophysiological Amplifier

The 8-channel electrophysiological amplifier was designed to allow each channel
to be quickly reconfigured between an expected input of microvolt range (5 uV)
and millivolt range (10 mV). These two ranges correspond well with the EEG
(#V) and EOG or EKG (mV).

The design of the amplifier is divided into three components: 1) interface,
2) filtering and amplification, and 3) output and isolation. The related issues

of shielding and grounding will be described as it relates to each component.
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Figure 3.1: Subject positioning
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Figure 3.2: Data acquisition system overview
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Interface

The interface begins at the surface electrode locations. Each electrode is at-
tached to the skin using a conductive electrode cream, as described in section
3.1. The site is prepared this way to lower electrode-skin impedance. The
electrode material is chosen such that it will not interact chemically with elec-
trolytes of the skin. Common choices of material for the electrode coatings are
gold, silver-chloride, tin, or platinum. Each coating will produce a slightly dif-
ferent electrical reaction to the electrode cream, making it important to use the
same electrode material for all electrodes. Based on communication with the
London Health Sciences Centre’s [114] epilepsy unit, gold-plated electrodes
were chosen. The electrodes are connected to a shielded cable that carries
their signal into one of eight channels of the electrophysiological amplifier.
Each electrode measurement is referenced to an electrode clip placed on the
left earlobe of the subject. The earlobe is a commonly used reference site
because it is in the same region as the other EEG/EOG electrodes, but it is

relatively isolated electrically from the signals of interest.

For each channel, the reference electrode voltage is subtracted from one
signal electrode voltage using a precision instrumentation amplifier. The hard-
ware chosen was the Burr-Brown (Texas Instrument) INA114, primarily for
its operating range (minimum =+ 2.25 V), common-mode rejection ratio (min-
imum 115 dB), and its very small input bias current (2 nA). The output of
this amplifier presents the amplified voltage difference to the next stage. The

output of this stage is referenced to an isolated signal ground.
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Filtering and amplification

The signal is notch filtered to remove 60 Hz noise and then low pass filtered
with a second order Butterworth filter. The hardware chosen is a general
purpose, single-supply amplifier. The filtered signal is presented to the next

and final stage.

Output and isolation

The final output stage electrically isolates the data acquisition electronics of
microcontrollers and personal computers from the filtering and amplification
stage. This isolation allows the internal signal voltages to float independent
of the hardware to which it is connected. The hardware chosen was the Burr-

Brown isolation amplifier ISO122.

3.4.2 Microcontrollers

The microcontroller selected was the Motorola 16-bit H9S12C32. The selection

of this micro was based on three attributes:
1. speed - 25 MHz,
2. memory - 2 kB RAM and 32 kB flash, and
3. 8-channel with 10-bit resolution analog to digital converters (ADC).

The highest frequency of interest for these experiments is 30 Hz. Based on

the Nyquist Sampling Theorem [115],

Qs > 20y (3.1)
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where €y is the maximum frequency contained in our signal of interest (Nyquist
frequency) and Qg is the Nyquist rate which must be at least twice Qy, our
Nyquist rate must be greater-than or equal to 60 Hz. Our chosen sampling
rate is 100 Hz. The maximum ADC input voltage is configurable, and chosen
to be 2.56 V. Given that the ADC has a precision of 8-bits, this results in a
resolution of 0.01 V.

To facilitate the timely transfer of recorded data measurements the micro-
controller communicates serially (RS232) with the personal computer at rate

of 115.2 kbps.

3.5 An electroocular computing interface

3.5.1 Objective

To investigate the suitability of the electrophysiological measurement of eye

motion for the application of computer interfacing and/or control.

3.5.2 Background

In order to use the electrooculogram for our system, we need to characterize
its parameters. According to Stern et al., our system must be capable of
amplifying signals in the range of 15 to 200 uV and be able to reproduce

signals of up to 15 Hz for the accurate measurement of eye position.

3.5.3 Procedure

We performed two single-axis (z and y) experiments to verify the efficacy of

the system concept.
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The electrode positions, as illustrated in figure 2.7, were prepared according
to section 3.1. The EOG amplifier block was then calibrated to the subject’s
range of eye motion.

The experiment required the subject to focus on the center of the computer
screen from a distance of 1 m, then follow a horizontal line to the subject’s
left edge of the computer screen, then follow the line back to the center and
on to the subject’s right edge of the screen (screen width of 32.5 cm). This
was repeated for the vertical axis.

Rather than directly connecting the microcontroller to the personal-computer,
it was observed that the operation of a common computer mouse was based
on the same 2-D vector principle as our electroocular device. The advan-
tage of using standard hardware was the availability of software and drivers
which are widely supported. We chose to employ a common and inexpen-
sive 3-button computer mouse that used optical encoders to determine it’s
z- and y-axis vectors. Once the internal operation of the computer mouse
was reverse-engineered, its usage for this experiment was the matter of replac-
ing the outputs of the optical encoders with output from the microcontroller
to mimic “mickeys”. A single “mickey” represents the smallest increment of

movement along an axis for the mouse.

3.5.4 Observation

A partial record of the DC horizontal (z-axis) eye movement is shown in
figure 3.5. The vertical (y-axis) movement was similar, but with a smaller
amplitude. The position of the eye is easily observed in figure 3.5, however
the range of values are less than desirable for a 2.5-V ADC range.

Based on the geometric arrangement of the experiment, the range of motion
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of the eye on the z-axis was +9.2° causing a voltage difference of 0.45 V. This
resulted in a resolution of 24.5 mV/°.

Longer duration data records reveal a non-periodic oscillation, or shift, of
the signal average. Although calibrated, this shifting results in a saturation of

amplifier inputs causing outputs to vary beyond the power supply capability.

3.5.5 Discussion

The efficacy of the interface is confirmed, however, the longer duration data
measurements show a non-periodic average shift of the measured signal causing
amplifier saturation. Initial troubleshooting investigated the appearance of
a floating electrical ground reference, however, the testing the system with
an isolated electrical model eye of the human eye produced the correct and
expected results which were within the limits of the amplifier design.

The exclusion of the amplifier from the source of oscillation indicates the
recorded data is the result of a real electrical response from the eye. The
cause of this is believed a combination of the eye responding to changes in
light intensity and focus (“adaptation”).

Although the use of eye motion is an intuitive method of control, the issue
of adaptation is not easily overcome. As a result, implementation of this

control method was suspended for future research.
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Figure 3.5: Horizontal (z-axis) DC record of eye movement

3.6 Electrophysiological Response to Auditory
Tones: Threshold

3.6.1 Objective

To investigate if audiological threshold detection generates a consistent and
measurable response in the subject’s electroencephalogram and can this re-
sponse be used as a binary state indicator for the control of an assistive com-

puting device.

3.6.2 Background

When a hearing test is performed, one of the audiologist’s measurements is
the subject’s hearing threshold. The threshold is determined by the subject’s
acknowledgement (or lack of) to series of short tones. The tones span the

frequency range of human hearing and vary in amplitude. If a subject is
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deficient in any portion of their threshold response then they generally require
a hearing assistive device.

A hearing assistive device, such as a hearing aid, will amplify the incoming
sound signals of the deficient frequency range beyond the subject threshold

and into the subject’s hearing range. There are two primary concerns here:

1. An individual with hearing impairment, that does not use a hearing
assistive device has difficulty in communication because of corruption of

incoming sound information; loss of intelligibility.

2. A common complaint among subjects with hearing aids is the lack of
discrimination of the amplified sound information. Many users claim
not to wear their aid as a result. Subjects that must wear their aid for
prolonged periods will eventually further damage their hearing due to

the constant amplification.

From observation, an individual experiencing difficulty in communication
due to a loss of audiological intelligibility exhibits an unconscious emotional
response; an affective state.

The electroencephalogram is a measure of brain current. A synchrony of
oscillating brain currents have been correlated various brain activity. Several

of those correlated oscillations have well defined frequencies in brain research.

3.6.3 Procedure

The electrode positions, as illustrated in figure 2.7, were prepared according
to section 3.1.
The experiment required the subject sit back in a reclined chair and to

close their eyes. All instruction and stimili would be presented though the
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headphones. Audio instruction explains the format of the experiment, the
method of acknowledgement, and the anticipated duration of the experiment.
The subject pressed the acknowledgement button to begin and is presented
with an initial ten seconds of silence. The subject is presented with 3 sets
audio tones. Each set presents the series of 100 Hz, 250 Hz, 500 Hz, 1 kHz,
2 kHz, 3 kHz, 4 kHz, 5 kHz, 8 kHz, 10 kHz, 12.5 kHz, and 15 kHz. The
order of presentation, intra-, and inter-tone durations are varied. Each tone
is presented in discrete, but increasing steps of amplification. When a tone is
detected, the user presses the acknowledgement button. The EEG data and

acknowledgement responses are collected by the data acquisition system.

3.6.4 Observation

Each experiment produced several mega-bytes of electrophysiological data.
The frequency- and time-domain results of one subject and his/her threshold
response to selected audio tones (8 kHz, 10 kHz, 12.5 kHz, 15 kHz) is included
in Appendix A. Each set of figures examines the data for the two second

duration preceding the subject’s threshold acknowledgement.

3.6.5 Discussion

The visual inspection of EEG data may be performed by trained doctors and
clinicians, but it is generally for the identification of abnormalities. With
repeated response to the same stimulus, an averaged result may provide a
consistent wave form. However, the identification of single trial response is
not tractable using these methods, nor can they be effectively implemented in

a personal computing device.
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Chapter 4

Model and Analysis

A successful system requires the application of a rule set that has good gen-
eralization properties and permits some error, but can be specific enough for
selective activation; in our case binary classification. These requirements are

not without conflict of each other.

The selection of data attributes to formulate a good rule set can be at-
tempted using various methods of visualization, but this method is generally
not well suited for data sets that have a dimensionality beyond three. Formu-
lation of a rule set for data sets of high dimension is further complicated if the

distribution of that data is the object of study; the distribution is unknown.

One method of handling such data sets is the use of an approximation
to reduce the dimensionality. For our EEG data set (Inion, Pz, P7, P8) we
have chosen to employ a Laplacian electrode array to estimate the source
density current. The result was a reduction to a single dimension from four. If
sufficient, this approximation will allow for visualization, reduce the effect(s)
of non-common interference, and relax the difficulty in choosing a reference

electrode location.
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The post-processing and/or off-line processing of signal data filtering has
an associated high computational cost; however, if the selection of specific
components of the data can help improve the formulation or success of a clas-
sification rule set then that filtering may be implemented in analog electronics
or possibly online processing. The choice of what to filter presented a more
difficult question. The act of comprehension is performed unconsciously and
is achieved, in part, by the redundancy in our speech [79]. It is only when
this process fails that we begin to become aware of it, or rather, its failure.
Before exhibiting a response externally, we respond internally; invoking an
emotional state. By observation and introspection, a loss of comprehension
will be followed by confusion (emotional stress), a focus of attention, and in-
creased mental activity. There are a number of electrophysiological processes
which may be correlated to these reactions, however, in the measure of brain

current there are four frequencies that are well correlated:

alpha () - emotional stress,
alpha (a) - focus of attention,
beta () - increased mental activity, and

gamma () - attentional states.

There has been success using a wide band of a3 in a functional brain-computer-
interface [32]. Our off-line filtering was designed using a frequency sampling
method that significantly reduced the computational cost of filtering making
it suitable for online processing with smaller, less powerful processors.

For our model we have chosen to investigate:

1. the raw EEG measurements from the four electrodes (Inion, Pz, P7, P8),
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2. the raw EEG Laplacian source density approximation,

3. the filtered Laplacian source density analysis (6 vs. «)

4. the filtered Laplacian source density analysis (« vs. 3), and
5. the filtered Laplacian source density analysis (a8 vs. ).

The investigation requires knowledge of when a response is evoked. Our
hearing threshold experiments prepared and positioned a subject to acknowl-
edge when an audio tone was detected. What must be considered is that in-
herent in a subject’s acknowledgement is the latency of human reaction time.
This presents an uncertainty that cannot easily be overcome in the study of
perception. Rather than attempt to define when a response is evoked, we
chose to use the subject acknowledgement as the fixed reference and examine
the preceding (2 seconds or 200 samples) data that prompted the acknowl-
edgement. Unfortunately, even with a fixed reference the distribution of data
relevant to the event was not sufficiently evident by visual inspection. An
example of this data is provided in Appendix A. Developing a rule set based
on visual inspection proved an unreliable method of classification and posed
significant difficulties for individual subject implementation.

Support vector machines (SVM) have the capability of classifying nonlin-
early separable data by “learning” from training data sets. The SVM takes
the selected data attributes and spans them across a higher dimension feature
space. The mapping from attribute space to feature space is performed us-
ing a kernel function. Based on the training output values, the SVM forms a
decision, or classifier, boundary(ies) in feature space. This decision boundary
is “soft”, such that it permits misclassification in order to allow for better

generalization. SVMs are well suited to our needs for two primary reasons.
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First, training of the SVM may be performed with small data sets and yield
high classification success, and second, the distribution of the output need not
be known prior to training.

The implementation of the SVM requires the selection of several parame-
ters: kernel function, associated kernel parameters, and a permissible margin
of error. Each parameter is selected empirically and currently there are no
better methods of selection. Our model used a Gaussian kernel because it
has been accepted in machine learning theory literature [116-118] to be well
suited to noisy experimental data and also because of the nature of a Gaussian
function it relaxes the boundary restrictions of the SVM design.

The training data is extracted from the 8 kHz hearing threshold experiment
in the first trail. This is illustrated in figure 4.1. The selected window of
observation is two seconds, or 200 sampling points. To “teach” the SVM we
require both input and output training data. However, we do not know the
distribution of the output, but given the subject’s acknowledgement we know
that a response has just occurred. The subject is presented with several hearing
threshold trials, of which we have labeled two such trails in figure 4.1. From the
first trail the training input is extracted and for our training output we have
partitioned it into fifteen possible segments as shown in figure 4.2. Training
output partitions numbered 1 - 7 were used to investigate a response duration
of 500 ms, and partitions 8-15 were investigated a refined response duration of
250 ms. The SVM is trained using all fifteen possible outputs. The training
will formulate the decision boundary (hypersurface) using a small number of
training data points; support vectors. With the assertion that a response has
occurred and that its occurrence is measurable, we evaluate a testing set of
data. As illustrated in figure 4.2 the testing set of data is the entire second

trial which is independent of the first trial. Each subject acknowledgement in
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Table 4.1: Minimum and maximum correct SVM classification
Subject | Duration (ms) | o | C | NSV | Classifications | Correct(%)

A 250 0.25 | 10 | b7 14501 86.23
Ao 250 1.00¢f 5 | 113 14501 98.79
Biin 500 0.25 | 10| 141 2688 76.30
Bz 250 0.50 | 10| 77 2688 93.49
Crin 500 0.25 | 10 | 158 1673 66.53
Cmaz 250 1.00 | 1 77 1673 90.79

Table 4.2: Best classification for least computational cost

Subject | Duration (ms) | o | C | Correct(%) | NSV (%) ngf’r;‘;‘"‘;u‘;}f?f cation
A 250 0.50 |1 98.79 26.5 3.73
B 250 0.50 | 5 92.93 37.0 2.51
C 250 05015 90.32 36.0 2.51

the testing data is extended back in time (P) to accommodate subject reaction
latency. If our training data created a good general classifier (binary classifier
or dichotomization) then we may expect that the testing data would have had

very high percentage of correct classification.

Using the four electrode locations (Inion, Pz, P7, P8) raw EEG measure-
ment, our parametric search examined all combinations of outputs data (1-15),
subject reaction latency (P: 500 and 250 ms), upper limit on classification er-
ror (C: 1, 5, and 10), and the Gaussian kernel radial bias function (o: 0.25,
0.50, and 1.00). Table 4.1 presents the minimum and maximum classification
results. Note that NSV is the number of support vectors required for the SVM
classifier and that “Classifications” is the total number of points processed by

the SVM classifier. Plots of the parametric searches are shown in figures 4.3

to 4.8.

The SVM classification has an associated computational cost that is di-

rectly related to the number of support vectors the machine requires to form
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the decision boundary. The higher the percentage of support vectors, the
higher the computational cost and often a poorer generalization for the classi-
fier. Figures 4.3 to 4.8 were used to evaluate the classification results relative
to computational cost. Table 4.2 summarizes the best classification for the
relatively least computation cost.

Our model also investigated using the Laplacian source density approxi-
mation to reduce the data dimensionality. The SVM applied to this approxi-
mation using the above parameters for best classification results are presented
in table 4.3.

Specific frequency components of the Laplacian signal were also analyzed.
The # vs. « frequency bands, o vs. § frequency bands , and the af vs. ~
frequency bands were each used for set of attribute space inputs. The classi-

fication results are presented in tables 4.4, 4.5 and 4.6, respectively.



I:

o
e v ! 1
35 30 2B5\20 15

v X
v

o

—@®—— Sigma

........ O e pP=25C=1
—— % —— PpP=25C=5
—_———— P=25C=10
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Figure 4.4: Subject-A parametric plot using 500 ms classification window
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Table 4.3: Laplacian source density approximation minimum and maximum
correct SVM classification (250 ms, o = 0.5)

Subject | C | NSV(%) | Classifications | Correct(%) ng?r;‘g’czu‘;jl?iﬁ‘tﬁc‘,itc‘f;s
Ain 1 100.0 14501 79.1 0.79
Aas 1 95.5 14501 97.97 1.03
Boin 5 100.0 2688 54.28 0.54
Brge | O 66.0 2688 94.42 1.43
Cin 5] 100.0 1673 63.72 0.64
Craz 5 65.0 1673 92.29 1.42

Table 4.4: Filtered 6 vs. a Laplacian source density approximation minimum
and maximum correct SVM classification (250 ms, ¢ = 0.5)

Subject | C [ NSV(%) | Classifications | Correct(%) | e Casticaton
Az 1 98.5 14501 6.76 0.07
Avas 1 46.5 14501 98.97 2.12
Binin 5] 99.0 2688 13.39 0.14
Braz | 5 40.0 2688 94.42 2.36
Chnin | D 99.5 1673 39.39 0.40
Craz | D 36.0 1673 92.29 2.56
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Table 4.5; Filtered o vs. 8 Laplacian source density approximation minimum
and maximum correct SVM classification (250 ms, o = 0.5)

Subject | C | NSV(%) [ Classifications | Correct(%) | et cassiicaton
Ain 1 99.0 14501 6.43 0.06
Amer |1 43.5 14501 98.97 2.28
Biin ) 98.0 2688 24.22 0.25
Bra: | D 31.5 2688 94.42 3.00
Crin 5] 97.5 1673 24.33 0.25
Crmaz | D 35.0 1673 92.29 2.64

Table 4.6: Filtered a3 vs. v Laplacian source density approximation minimum
and maximum correct SVM classification (250 ms, o = 0.5)

Subject | C | NSV(%) | Classifications | Correct(%) nf;_";'fc;u;l;ffr‘thﬁtc‘f;s
Anin 1 98.5 14501 10.05 0.10
Aper |1 36.5 14501 98.97 2.71
Bin 5 97.0 2688 28.98 0.30
Bpar | D 32.5 2688 93.68 2.88
Cnin ) 97.5 1673 22.95 0.24
Craz | D 32.5 1673 92.29 2.84
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Chapter 5

Discussion, Conclusion, and

Recommendations

The research proposed was to investigate the usage of electrophysiological re-
sponse for the interface and control of a computing device. The application for
this work was the autonomous augmentation of audio perception with a digital
hearing aid as the data processing device. Using our model, the device would
be capable of autonomously modifying the speech signal based on the identi-
fication of electrophysiological response, or an affective state. We studied the
speech communication channel from production to perception and examined
several electrophysiological attributes which lent themselves to being measured
by a computing device adorned about the ear. The selected attributes were
the motion of the eye (electrooculogram) and the activity of the brain (elec-
troencephalogram). Harnessing the eye measurement for control was demon-
strated effective, but visual adaptation could not be controlled or corrected;
thus this method was postponed for future research. The measurement and

use of brain current for the control of a computer (brain-computer-interfacing)
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can be traced back approximately 30 years to the research of Vidal et al. Since
then there have been a few notable examples of functional BCI by Wolpaw et
al [20,32], McFarland et al [25,32], and Birbaumer et al [28,32]. However,
those methods of BCI depended upon operant conditioning and significant, if
not full, cognitive focus. The model we proposed employed the post- “learned”
and innate characteristics that remain from the damaged attribute or are asso-
ciated with it. In effect, the operant conditioning for our model is performed
in situ. Given the nature of measuring brain activity it is difficult to em-
ploy signal averaging techniques to reduce “noise” when the response may be
aperiodic, thus averaging may only dilute the signal’s presence. Instead, our
model’s focus was to identify an electrophiological/affective state using single
trials. The single trial identification of an affective state is not a trivial task,
but it has the potential for significant speed of response.

Reviewing the three assumptions on which our model is based:

1. Emotional responses, or affective patterns, can be probed using observ-
able bioelectric signals, in particular using the fluctuations of electroen-

cephalographic potentials from the human scalp.

2. All meaningful electroencephalographic phenomena should be viewed as
a complex structure of elementary rhythms that have correlation with

underlying processes.

3. Although operant conditioning procedures could increase the reliability
and stability of these time signatures and patterns, the loss of a normal or

innate attribute would invoke a reliable and measurable affective pattern.

The results from our model analysis are very encouraging. By determin-

ing a good set of parameters, our support vector machine generated a very
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high percentage of correct classification (>90%). In reference to our model as-
sumptions, we have validated that emotional responses (affective patterns) can
be measured using bioelectric signals and that the loss of an innate attribute
is sufficient to produce a reliable and measurable response without explicit
operant conditioning, or subject training of the BCI. However, our second as-
sumption, although well documented in brain research literature, will require
further investigation for validation in our research. The data reduction method
of source density estimation resulted in similar classification results, but with
increased computation cost. The filtering of specific frequency components
for the training and testing of the support vector machine (SVM) classifier
produced excellent results, but those results do not significantly differ from
the non-filtered raw EEG training and testing data. Given the successful per-
centage of classification of each (raw EEG, raw Laplacian, filtered Laplacian),
the choice of which is better suited for online implementation will be based on
the capabilities of the target platform.

This research has successfully proven the efficacy of autonomous single
trial identification of affective states as an alternative or additional method of
hearing prosthetic control. The model successfully demonstrates the concept of
a double feedback mechanism and the method of bidirectional communication
between the man and the machine; cybranetics.

Recommendations for refining this research are to focus on increasing the
communication bandwidth and information content. Neglecting the overhead
of target platform processing, the information transfer rate of the present
model was 1 bit / 250 ms; 4 bits/second or 240 bits/minute. A recent survey
of BCI [30] information transfer rates stated a maximum of 5 - 25 bits/minute.
However the comparison is not adequate because the survey of BCI research

is primarily for the conscious control of a computer’s cursor for the selection
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of symbols or letters. Our model is novel in that respect, but limited as
well. The next step of this research would be to investigate if our affective
state classification can be extended to two- or three-bits for the selection of an
affective quadrant or octant employing the same concepts used in synchronous
sequential digital logic design to create an affective state machine (SASM). To
provide a contextual awareness it may be necessary to use parallel information
channels (e.g. direction of visual gaze) and parallel support vector machines

as inputs to the synchronous affective state machine.
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Appendix A: Subject A Experimental Results
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Appendix B: Threshold Data Analysis Files




A_EEGdata.csv
(9 channels raw)

A 4

A_EEGdata lap.csv
(1 channel raw)

A 4

B_EEGdata.csv
(9 channels raw)

A 4

B_EEGdata_lap.csv
(1 channel raw)

A 4
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C_EEGdata.csv
(9 channels raw)

A 4

get_laplacian.m

C_EEGdata_lap.csv
(1 channel raw)

h 4

getthreshdata.m

A_EEGdata_lap_thresh.csv

(1 channel)

B_EEGdata_lap_thresh.csv

(1 channel)

C_EEGdata_lap_thresh.csv

(1 channel)

the files belo

process_threshold.m

I Each file generates

ABC_EEGdata_lap_thresh_f08_1.csv

| ABC_EEGdata_lap_thresh_f10_1.csv

I | ABC EEGdata lap thresh f08 2.csv

I ABC_EEGdata lap_thresh_f10_2.csv

—4

rABC_EEGdam_lap_ﬂuesh_ﬂ 2 l.csv |
ABC EEGdata lap thresh fl12 2.csv
—rABC_EEGdata_lap_thresh_fl 5_l.csv

ABC_EEGdata_lap_thresh_f15_2.csv

|

write_fcp_data.m

write_psd_data.m

Thresh_fcp_[band][subject]_div50.csv

psd_thresh_fcp_[band][subject]_div50.csv

[band] CHILIILIUEL 1IN TEustom}
[subject] ZITA, B, C}

N

psd_dx_thresh_fep [band][subject]_div50.csv

The number of files generated for threshold analysis = 8 * 54 = 432 files
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Appendix C: Single Channel Schematic of Electrophysiological
Amplifier
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