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Abstract 

Skeletal muscle differentiation is a process through which mono-nucleated myoblasts 

(MBs) form multi-nucleated myotubes (MTs). In this process, a highly orchestrated 

transcriptional regulatory network controls the program of muscle specific gene 

expression inducing specific genes in a spatially and temporally appropriate manner. 

Myogenic regulatory factors (MRFs) are muscle specific, sequence specific DNA 

binding transcription factors that play a central role in skeletal muscle differentiation. 

Two of the MRFs, MyoD and Myf5, are essential for myogenic lineage 

determination. MyoD is expressed in committed myogenic cells but the MBs do not 

differentiate until they receive appropriate cues. Induction of Myogenin (MyoG, 

another MRF), a critical downstream target of MyoD, is an absolute requirement for 

formation of myotubes. Therefore, myogenesis and particularly MyoD activity are 

inherently sensitive to external signals. 

Here, we attempted to characterize the roles of two soluble factors in muscle 

differentiation, namely Cardiotrophin-1 (CT-1) and Tumour growth factor-p* (TGFP). 

CT-1 is a member of the IL-6 family of cytokines. Although CT-1 is highly expressed 

in skeletal muscle during embryo development and in the adult, the role of CT-1 in 

skeletal muscle had not been characterized. It was found that CT-1 inhibits muscle 

differentiation and regeneration through activation of MEK signalling. Activated 

MEK physically interacts with MyoD and interferes with MyoD's trans-activation 

properties. In the presence of CT-1, myog induction is inhibited without affecting 

MyoD and Myf5 protein levels suggesting that CT-1 maintains the undifferentiated 

state of MBs by activation of MEK (Chapter III). 
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TGFp is the prototypic member of the TGFp super-family of cytokines and a known 

potent inhibitor of myogenesis. We previously documented that an inhibitory Smad 

(I-Smad), Smad7, represses receptor regulated Smads (R-Smad) activation by TGF0; 

yet, Smad7 can not reverse TGFP's inhibitory effect on myogenesis. However, 

Smad7 enhances myogenesis by interacting with MyoD. These observations suggest 

that TGFp inhibits muscle differentiation independent of R-Smad activation and that 

Smad7 promotes myogenesis independent of inhibition of R-Smad activity. Since 

Smad7 masks the TGFp type I receptor from R-Smads in cytoplasm, we engineered a 

Smad7 fusion protein with a nuclear localization signal (NLS). This Smad7-NLS 

protein localizes predominantly in the nucleus and is incapable of inhibition of R-

Smad activation by TGFP signalling. However, the Smad7-NLS enhanced muscle 

differentiation to a similar degree as the wild-type Smad7. Smad7 interacted with the 

N-terminal region of MyoD in the nucleus. Since MEK also associates with the N-

terminal of MyoD, we speculated that Smad7 enhances MyoD's trans-activation 

properties through attenuation of MEK's inhibitory effect. We demonstrated that 

Smad7 and MEK functionally antagonize each other in regulating MyoD's trans-

activation properties. Therefore, Smad7 promotes myogenesis by enhancing MyoD's 

trans-activation properties in the nucleus independent of R-Smad inhibition in 

cytoplasm (Chapter IV). 

Since Myostatin, another member of the TGFP super-family, activates the ERK 

pathway, we hypothesized that TGFp inhibits muscle differentiation through 

activation of MEK/ERK signalling instead of R-Smads. Blockade of R-Smad 

activation by a pharmacological inhibitor, SIS3, had no effect on the inhibitory effect 

v 



of TGFp on myogenesis; however, a pharmacological MEK inhibitor, U0126, 

partially reversed the inhibitory effect of TGFp. A known downstream target of 

MEK/ERK signalling c-Jun, which is an inhibitor of MyoD's trans-activation 

properties, was activated by phosphorylation and accumulated in the nucleus. As 

previously reported, ectopic expression of c-Jun strongly inhibited MyoD driven 

myog promoter reporter gene activity. Thus, TGFp inhibits myogenesis by the 

MEK/ERK/c-Jun pathway independent of activation of R-Smads (Chapter V). 

These observations position MEK activation as a nexus for convergence of signals 

that regulate skeletal muscle differentiation; Conservation of this mechanism to 

regulate the key transcriptional machinery involved in myogenesis by a variety of 

cytokines indicates a pivotal role for this common cellular pathway in skeletal muscle 

ontogeny and physiology. 
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Chapter I; Literature Review 

Anatomy of skeletal muscle development (myogenesis) 

1.1. During embryo development; Somitogenesis to muscle differentiation 

In vertebrates, skeletal muscle is an essential tissue to provide locomotion and 

proper posture for the organism. During embryogenesis, all skeletal muscle with the 

exception of some craniofacial and oesophageal muscles is generated from 

progenitor cells originating from somites (originally described as primitive 

segments). Somites are transient embryonic structures of segmented blocks of 

paraxial mesoderm which eventually differentiate and give rise to skeletal muscle, 

vertebrae, cartilage, tendon, and dermis. Somitogenesis starts at the anterior end of 

unsegmented presomitic mesoderm at embryonic day 8 (E8 in mouse) and proceed 

towards the posterior end at a constant interval in a symmetric manner on both sides 

of the neural tube (figure 1A). By E12-13, approximately 30 pairs of somite are 

formed during mouse embryo development (Buckingham et al., 2003; Ordahl and 

Le Douarin, 1992; Parker et al., 2003; Tajbakhsh and Sporle, 1998). This 

segmentation process is regulated by the segmentation clock, which is controlled by 

a molecular oscillation of the members of the Notch and Wnt signalling pathways 

and fibroblast growth factor (FGF) in the presomitic mesoderm (PSM) (Dubrulle et 

al., 2001; Jiang et al., 2000). This periodic formation of segmented somites from the 

PSM is regulated by the basic helix-loop-helix (bHLH) transcription factor Hairy 

and enhancer of split-7 (Hes7), which is essential for somitogenesis of the mouse 

embryo. The FGF signalling is required for hes7 gene expression, and Hes7 
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negatively autoregulates its own gene expression. The Notch signalling also 

activates hes7 expression (figure IB). Therefore, co-operation of FGF with the 

Notch signalling pathways generates an oscillation of Hes7 expression resulting in 

the formation of a pair of segmented somites approximately every 2hrs during 

mouse embryo development (Feller et al., 2008; Hirata et al., 2004; Kageyama et 

al., 2009). 

A newly formed segmented somite is a sphere of epithelial cells, which later gives 

rise to distinguishable groups of cells such as dermomyotome, myotome, 

syndetome, and sclerotome (figure 2A) (Brent et al., 2003; Brent and Tabin, 2002). 

The sclerotomes give rise to the cartilage and bones, and the syndetome develops 

into the tendons. The dermomyotome gives rise to the dermis and skeletal muscles 

(Marcelle et al., 1997; Ordahl and Le Douarin, 1992) (figure 2B). In detail, the deep 

back muscle originates from the epaxial myotome, the lateral trunk muscles are 

developed from the ventral lateral lip (VLL). Some of the VLL derived cells 

undergo epithelial-mesenchymal transition (ETM) and migrate to lateral regions 

contribute to the formation of the limbs, ventral wall, diaphragm and tongue 

muscles (Parker et al., 2003). 

1.2. Skeletal muscle growth and regeneration in adults 

Adult skeletal muscle can be regenerated in response to injury throughout life. To 

allow this remarkable ability, adult skeletal muscle stem cells have capabilities of 

'self-renewal' to maintain the stem cell population and also 'differentiation' to 

regenerate multinucleated myotube (MT). There are mononucleated cells located 
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inside of the basal lamina but outside of the plasma membrane of the mature 

myofibers named 'satellite cells' which fulfill these roles (Mauro, 1961) (figure 11). 

Isolated 'satellite cells' were found to proliferate to expand their population and 

differentiate to form multinucleated myotubes in vitro (Bischoff, 1986). Although it 

has not yet been demonstrated definitively that all satellite cells are a skeletal 

muscle stem cells in vivo, at least a portion of the satellite cells in adult skeletal 

muscle has the progenitors of asymmetric self renewal and differentiation (Kuang et 

al., 2008). 

The muscle satellite cells originally arise from the central dermomyotome during 

embryo development after generation of the primary myotome (figure 4). In a 

neonatal mouse, about 32% of nuclei associated with myofibers represent growth 

arrested satellite cells. However, in a mature adult mouse, approximately 6% of the 

nuclei belong to the satellite cells (Cardasis and Cooper, 1975). Therefore, it is not 

clear that these satellite cells in adults are of identical origin as the satellite cells in a 

newborn. In addition, recent analysis indicates adult skeletal muscle resident stem 

cells that are not satellite cells. For example, muscle-resident side population 

(muSP) (Asakura et al., 2002), muscle-derived stem cells (MDSCs), and 

multipotent adult progenitor cells (MAPCs) (Jiang et al., 2002) have been 

identified. The roles of these cells in muscle growth and repair need to be 

characterized. However, satellite cells are sufficient for complete musclefiber 

regeneration after extensive muscle injury in vivo; therefore, the satellite cells seem 

to contribute the great majority of the stem cell pool for regeneration or growth of 

adult skeletal muscle. Upon appropriate stimuli such as muscle injury or exercise, 
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the quiescent satellite cells re-enter the cell cycle, and these proliferating myoblasts 

divide asymmetrically and contribute to both repopulate quiescence satellite cell 

and fusing into and providing new myonuclei for myotubes (figure 11). Therefore, 

skeletal muscle regeneration and growth can be achieved without expense of the 

satellite cell population (Kuang et al., 2008). 

1.3. Myoblast (MB) formation 

Vertebrate skeletal myogenesis consists of three phases, embryonic, fetal, and adult 

myogenesis. Embryonic myogenesis (El0.5-12.5) determines the principal muscle 

pattern. Fetal myogenesis (E14.5-17.5) is important for muscle maturation and 

growth. Adult myogenesis is necessary for postnatal growth and damage repair 

(Biressi et al., 2007a). Accumulating evidence indicates that not only adult muscle 

progenitor cells but also prenatal muscle progenitor cells are not a homogeneous 

population (Asakura et al., 2002; Cao et al., 2003; Jiang et al., 2002; Olguin and 

Olwin, 2004). During each phase of myogenesis, a distinct population of myogenic 

precursor cells (myoblasts; MB) forms muscle. Therefore, they are characterized as 

embryonic MB, fetal MB, and satellite cell (figure 3). As mentioned above, the 

origin of the vast majority of skeletal muscle is the somitic dermomyotome. Prior to 

forming the dermomyotome, myogenesis starts in a newly formed somite, and the 

first terminally differentiated myocytes in the embryo generate from the 

dermomyotome later; the myotomal cells at both dorsal medial lip (DML) and VLL 

expand under the dermomyotome, withdraw from the cell cycle, elongate, and 

differentiate to form the myotome. Proliferating MBs arise from the central region 
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of the dermomyotome (figure 4). At approximately El 1, it seems that embryonic 

MBs fuse to the myotome and form MTs (figure 3). At E14.5 to E17.5, secondary 

myogenesis takes place, in which fetal MBs fuse with each other and form 

secondary fibers and also a small portion of fetal MBs fuse to the primary fibers. At 

the end of secondary myogenesis (El6.5), slow-proliferating satellite cells can be 

identified between the basal lamina and the plasma membrane of the myofibers 

(Biressi et al., 2007a; Parker et al., 2003) (figure 11). The supply of new myonuclei 

is almost entirely relying on the progeny of the satellite cell for peri- and post-natal 

muscle growth. For the repair of damaged adult muscle, quiescent satellite cells are 

activated by appropriate stimuli and re-enter the cell cycle to produce progeny, 

which may fuse to each other to form new myotubes or fuse to pre-existing 

myofibers. There are three types of MBs, which arise from a common 

stem/progenitor cell (figure 3). However, horizontal relationship among these MBs 

is still not clear (Wagers and Conboy, 2005). It is noteworthy that C2C12 MBs 

were originally isolated from 2-month old adult skeletal muscle, so they are 

generally considered as a model system for the satellite cell and fetal MB (Yaffe 

and Saxel, 1977) 
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Molecular biology of skeletal muscle development (myogenesis) 

1.1. Specification of skeletal muscle progenitor / stem cell; role ofPax3 and Pax7 

1.1.1. Role of Pax3 

The earliest molecule involved in skeletal muscle lineage specification during 

embryo development is the paired box transcription factor, paired box gene-3 

(pax3). Pax3 is a member of the paired box gene family, which is characterized by 

the presence of a paired domain. Most of the Pax genes encode sequence specific 

DNA binding transcription factors, which recognize TAAT(N2-3)ATTA motif with 

some variations. Pax family proteins play a number of roles in tissue and organ 

development (Chi and Epstein, 2002; Lang et al., 2007; Wilson et al., 1993). In 

mouse embryo development, Pax3 is expressed in the PSM (E8) and also newly 

segmented epithelial somites (E10.5-13.5) (Takahashi et al., 2007; Williams and 

Ordahl, 1994). The mouse embryo lacking Pax3 protein (pax3-/-; splotch mouse) 

fails to form limb muscles (Bober et al., 1994; Borycki et al., 1999b). Although the 

dermomyotome forms in the pax3-/- mouse embryo, the muscle precursor cells 

from the VLL of the hypaxial dermomyotome do not migrate to the limb (Goulding 

et al., 1994; Williams and Ordahl, 1994). Therefore, Pax3 is required for limb but 

not trunk muscle formation. 

Furthermore, adenovirus mediated ectopic expression of Pax3 in the lateral 

mesoderm in vitro induces myogenic differentiation! (myod) and myogenic factor-5 

(myf5) expression (Maroto et al., 1997). Compound loss of pax3 and myf5 causes 

loss of body muscle with the exception of the head region in the embryo, so the 
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myod gene is genetically located down-stream of pax3 and myf5 (Tajbakhsh et al., 

1997), and myf5 expression is also regulated by Pax3 in mature somites (Bajard et 

al., 2006). Therefore, Pax3 regulates the initiation of myogenic gene expression 

program. Consistent with these observations, vessel-associated stem cells, 

mesoangioblasts, are capable of differentiating to skeletal muscle in a Pax3 

dependent manner (Messina et al., 2009), and also exogenous expression of Pax3 is 

sufficient for activation of the skeletal muscle differentiation gene expression 

program in PI9 embryonic carcinoma cells (Ridgeway and Skerjanc, 2001). 

However, myogenic role of Pax3 is context dependent. For example, in the normal 

course of myogenic differentiation of C2C12 myoblast cell, ectopic expression of 

Pax3 inhibits myogenesis, and C3H10T1/2 fibroblast cell conversion to myocyte by 

MyoD but not Myogenin (MyoG) is also interfered with Pax3 expression (Epstein 

et al., 1995). In adult skeletal muscles, Pax3 expression becomes undetectable with 

the exception of a small fraction of musculatures, for example the diaphragm and a 

small fraction of satellite cells (Kassar-Duchossoy et al., 2005; Kuang et al., 2007; 

Relaix et al., 2004). However, since at the initial stage of satellite cell activation and 

proliferation, Pax3 expression is transiently up-regulated (Boutet et al., 2007; 

Conboy and Rando, 2002) (figure 8 and 9), Pax3 may be required for muscle 

growth and regeneration. However, in agreement with above observations, Pax3 is 

mono-ubiquitinated and targeted for proteasome mediated degradation (Boutet et 

al., 2007). Therefore, for adult skeletal muscle growth and regeneration, Pax3 may 

play a role in activation and early proliferation but need to be eliminated for MB 
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differentiation. However, more recent study documented that Pax3 is dispensable 

for adult skeletal muscle growth and regeneration (Lepper et al., 2009). 

1.1.2. Role of Pax7 

Pax7, another member of the Pax gene family, is expressed in the central region of 

the dermomyotome (figure 4). The initial phenotypic analysis of the loss of Pax7 

did not detect any overt defect in the skeletal muscle (Mansouri et al., 1996). 

However, a subsequent detailed analysis of the skeletal muscle in the pax7-l- mouse 

identified an almost complete loss of satellite cells (precursor cells for skeletal 

muscle) but not another classes of muscle derived stem cells leading to a muscle 

regeneration defect in the postnatal mouse (Seale et al., 2000). The reduction of the 

number of satellite cells was also observed during fetal muscle growth in the pax7-

I- mouse, and Pax7 was found to be required for satellite cell survival independent 

of Pax3 (Kassar-Duchossoy et al., 2005; Relaix et al., 2006). A compound loss of 

pax3 and pax? causes an arrest in skeletal muscle development after forming the 

primitive myotome (Relaix et al., 2005). Although some of the roles of Pax3 can be 

compensated by Pax7 in the dorsal neural tube, neural crest cell, and somite 

development, Pax3 is essential for migration of muscle progenitor cells to the limb 

(Relaix et al., 2004), and Pax7 is required for satellite cell survival (Relaix et al., 

2006). Therefore, Pax3 and Pax7 play distinctive essential roles in myogenesis. 

Since the expression pattern of Pax3 and Pax7 is clearly different in muscle 

progenitor cells in each phase of muscle differentiation (embryo, fetal, and adult 

myogenesis), it can be used to classify the MB. The embryonic MB is Pax3+/Pax7-, 
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the fetal MB is Pax3+/Pax7+, and the satellite cell (adult MB) is Pax3-/Pax7+ with 

the exception of some Pax3+/Pax7+ progenitor cells. These differences may explain 

why each category of MB responds differently to the environmental cues during 

embryonic development (Hutcheson et al., 2009). 

1.2. Specification of skeletal muscle; role of cell-cell communication 

The cells in newly formed epithelial somites are specified not only as myotome but 

also dermatome, sclerotome, and syndetome (figure 2). This specification process is 

highly dependent on the position of the cells in the somite. Accumulating evidence 

suggests that the communication with the surrounding axial structures by means of 

soluble secreted factors or extracellular protein-protein interactions play roles in the 

specification of the cells during embryo development. 

For muscle cell lineage specification, Sonic hedgehog (Shh) protein secreted from 

the notochord and the floor plate of the neural tube is required for expression of 

Myf5 in the dorsal medial region of the somite (epaxial muscle precursors) through 

activation of Gli transcription factors, and Shh is also essential for sclerotome 

formation in the ventral region of the somite which antagonises dermatome 

formation (Fan et al., 1995; Gustafsson et al., 2002; Johnson et al., 1994; 

Munsterberg et al., 1995) (figure 5). Hypaxial muscle formation is regulated by the 

signals from the lateral plate, dorsal ectoderm, and dorsal neural tube (Cossu et al., 

1996; Pourquie et al., 1995; Pourquie et al., 1996; Sporle et al., 1996; Takada et al., 

1994). The dorsal neural tube secretes bone morphogenic proteins (BMP) and Wnts, 

and the somite secretes the BMP antagonist, Noggin, whose expression is induced 
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by the Wnt signalling (Marcelle et al., 1997); the neural tube regulates specification 

of the cells in the somite in coordination with the dorsal ectoderm and somites 

(Capdevila et al., 1998; Ikeya and Takada, 1998) (figure 5). The epaxial muscle 

precursors maintain in an unspecified state in the dermomyotome due to high BMP 

from the surface ectoderm. However, in the DML, the epaxial muscle precursors are 

also under the influence of Wnts secreted from the neural tube. The Wnts activate 

Noggin, which antagonizes the BMP signalling, and also induce Gli transcription 

factors, which induce myf5 gene expression. In addition, the ventral region is the 

'Shh-rich' environment due to its secretion from the notochord and the floor plate 

of the neural tube. As a result, proliferation of cells at the DML contribute to the 

growth of the dermomyotome on the dorsal side ('re-unspecified' by BMP), and on 

the ventral side, the epaxial muscle precursors maintain myf5 expression and 

produce Myf5 proteins leading to the expression of MyoD and differentiation into 

myocytes and formation of the epaxial myotome (figure 5). 

2.1. Differentiation of skeletal muscle; role of myogenic regulatory factor (MRF) 

For the induction of the skeletal muscle differentiation program, myogenic 

regulatory factors (MRFs) are essential. The MRFs are members of the basic helix-

loop-helix (bHLH) family of sequence specific DNA binding transcription factors. 

The MRFs consist of Myogenic Differentiation-1 (MyoD), Myogenic Factor-5 

(Myf5), Myogenin (MyoG), and Myogenic Regulatory Factor-4 

(MRF4/Herculin/Mfy6) (Pownall et al., 2002) (figure 6A). Most skeletal muscle 

specific genes have E-boxes (CANNTG) in their regulatory region, and this cis-
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regulatory element is required for muscle specific expression. The MRFs 

heterodimerize with ubiquitously expressed E-protein (El2, E47) and bind the E-

box found in the regulatory region of muscle specific genes to induce gene 

expression in co-operation with other transcription factors (Etzioni et al., 2005; 

Murre et al., 1989) (figure 6B). This leads to the differentiation of muscle 

progenitor cells to morphologically and biochemically distinctive skeletal myocytes 

(Olson et al., 1991) (figure 6). Indeed, MyoD and also three other MRFs, if 

ectopically expressed individually, can convert fibroblasts into myocytes (Davis et 

al., 1987; Molkentin and Olson, 1996). 

Gene targeting studies in a mouse in which a specific MRF or combinations of the 

MRFs have been genetically ablated demonstrates the MRF's functions in vivo. The 

loss of either myod (Rudnicki et al., 1992) or myf5 (Braun et al., 1992) has no effect 

on specification of myogenic lineage during embryo development. However, the 

compound loss of functional myod and myf5 causes loss of MB and muscle fibers 

without affecting mesenchymal multi-potentiality (Kassar-Duchossoy et al., 2004). 

Therefore, for cell lineage specification, either Myf5 or MyoD is required, and both 

work as lineage determination factors. A targeted mutation of the myog gene causes 

loss of most of the skeletal muscle fibers; yet, the MB population was expanded. 

Therefore, the skeletal muscle lineage is specified during embryo development but 

muscle progenitor cell differentiation was interfered with the loss of myog (Hasty et 

al., 1993). Thus, MyoG is essential for the skeletal muscle differentiation. Gene 

targeting of mrf4 in mouse did not generate a consistent phenotype (Patapoutian et 

al., 1995; Zhang et al., 1995) since mrf4 and myf5 are genetically linked (Yoon et 
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al., 1997) (figure 7). MRF4 can specify cell lineage to skeletal muscle progenitor in 

a double-null mutation of myf5 and myod loci if the mutation of my/5 locus does not 

affect on mr/4 expression in the mouse (Kassar-Duchossoy et al., 2004) and 

zebrafish embryo (Schnapp et al., 2009). Therefore, the function of MRF4 needs to 

be elucidated further. 

2.1.1. Regulation of the myf5 gene during embryo development 

The first MRF expressed during embryonic development is Myf5 which becomes 

detectable at E8.0 in the DML. The my/5 gene is induced at E9.5 in the ventral 

dermomyotome and branchial arches (BAs) (Ott et al., 1991; Summerbell et al., 

2000). 

Since the transcriptional regulatory region of the myf5 gene spans more than 140 

kb from the transcriptional start site (TSS), and the my/5 and mrf4 genes are 

genetically linked (figure 7), the analysis of my/5 gene regulation has been a 

challenging task (Carvajal et al., 2008). Since all skeletal muscle precursor cells 

(Pax3+/Pax7+) originate from the central region of the dermomyotome with the 

exception of the somitic myotome, which is developed from the epaxial (DML) and 

hypaxial (VLL) dermomyotome, the early myogenesis, in which somitic myotome 

forms (E8.5-10.5) from the DML and VLL progenitor cells, is Pax3/Pax7 

independent. Therefore, myf5 is induced in a Pax3/Pax7 independent manner in the 

DML, VLL, and BA. The early epaxial enhancer of myf5 gene is activated by the 

Shh/Gli, and Wnt/p-catenin pathways, and Wnt mediated Noggin indirectly 
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antagonizes the negative regulatory BMP signalling (Borello et al., 2006; 

Gustafsson et al., 2002; Hadchouel et al., 2000) (figure 5 and 7). However, the other 

group disputes this observation (Teboul et al., 2003). On the other hand, for the 

Pax3 dependent induction of the my/5 gene, the enhancer element located at -58/-48 

kb of the TSS of my/5 gene is required, and removal of this region caused the loss 

of the activity of the my/5 promoter and expression of myf5 gene. It further leads to 

loss of limb muscles (Hadchouel et al., 2000). In the -58A56 kb, a putative paired 

domain-binding site was identified, and this region is required and sufficient for 

my/5 expression in the muscle precursor cells in limbs and particularly somites. 

Pax3 can bind and activate the my/5 promoter through this putative binding site 

(Buchberger et al., 2007) (figure 7). Furthermore, Sixl and Six4, genetically located 

up-stream of the pax3 gene, bind a 145 bp-element located at the -57.5 kb region of 

this enhancer, and together with Pax3, they activate the my/5 gene expression in the 

limbs and mature somites (Giordani et al., 2007) (figure 7). This is a complete 

agreement with the defect in skeletal muscle development in the sixl and six4 

compound 'knock-out' mouse (Grifone et al., 2005). An another transcription factor 

regulates the myf5 expression during embryo development is T BoX family 

member-6 (Tbx6), which is important regulator of somite specification (Tatsumi et 

al., 2006). BMP/Smad6 signalling co-operates with Smad specific E3 ubiquitin 

protein ligase 1 (Smurfl), an E3 ubiquitin ligase, targets Tbx6 for degradation. As a 

result, the BMP signalling inhibits myf5 expression (myotome specification) 

through degradation of Tbx6 mediated by Smad6/Smurfl (Chen et al., 2009b). 

However, this needs to be verified in vivo. 
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In adult skeletal muscle, myf5 expression localizes to the muscle fiber associated 

satellite cell and muscle spindle, which is a distinctively small muscle fiber in 

diameter and works as a type of stretch-sensitive mechano-receptor (Passatore et al., 

1983). Surprisingly, myf5 expression in the satellite cell and the muscle spindle are 

driven by the -140/-88 kb and -59A8.8 kb of the regulatory region of myf5 gene 

respectively (Zammit et al., 2004a).The myf5 gene enhancer/promoter-reporter gene 

can be activated in the neural tube during embryo development, but Myf5 protein is 

not detectable in the corresponding tissue (Daubas et al., 2000). Therefore, 

transcriptional induction of the my/5 gene is regulated by a variety of transcription 

factors in a developmental stage and cell specific manner (figure 7). In addition, a 

very recent study suggests that myf5/mrf4 gene expression is transcriptionally 

regulated by 'transcription balancing sequences', which regulate enhancer-promoter 

interaction for productive transcription (Carvajal et al., 2008). The myf5 gene 

expression is maintained during the fusion of MBs, but starts down-regulated 

during late gastrulation, and only remains in satellite cells and muscle spindles in 

the adults (Zammit et al., 2004a). 

2.1.2. Regulation of the my od gene during embryo development 

Following Myf5, MyoD begins to express at E10.5 in the myotome (Chen et al., 

2001) (figure 5). In the my/5-/- embryo, MyoD expression is delayed but is not 

abolished in the DML and VLL. However, the pax3-l- and myf5-l- double null 

embryo fails to form skeletal muscle with the exception of the head region. 

Therefore, either Pax3 or Myf5 is required for myod expression during embryonic 
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development (Tajbakhsh et al., 1997). The functional cis-regulatory regions of 

myod promoter/enhancer was isolated (Goldhamer et al., 1992). A 256 bp element 

(core enhancer sequence; CES) located at -20 kb of the TSS of the mouse myod 

gene sufficiently reproduces the endogenous gene expression pattern (Goldhamer et 

al., 1995) (figure 8B). In addition to the CES, at -5 kb of the TSS of the myod gene 

has the distal regulatory region (DRR), and the CES supports spatiotemporal 

expression pattern of endogenous myod gene if introduced into embryo as a 

heterologous reporter except with temporal defects in the hypaxial myotome and 

limb buds (Chen et al., 2001) (figure 8A). Even though myod gene is genetically 

located down-stream of my/5 and pax3, regulation of both the DRR and the CES is 

not directly regulated by Myf5 and Pax3 (Chen and Goldhamer, 2004; Chen et al., 

2002). Search of the CES regulatory factor by a yeast one-hybrid screen for factors 

that interact with the myod core enhancer DNA identified a novel C2H2 zinc finger 

protein, glucocorticoid-induced gene-1 (Gigl), whose expression pattern overlaps 

with myod expression in mouse embryo (Yamamoto et al., 2007). However, a 

molecular mechanism by which Myf5 and Pax3 induce myod expression during 

embryonic myogenesis has not been characterized yet. A very recent study showed 

that for injured adult skeletal muscle regeneration, which is defective in myod-l-

mouse (Asakura et al., 2007), Pax3 and forkhead box 03 (Fox03) are required for 

up-regulation of myod gene, and they bind the cis-regulatory elements located 

between the DRR and CES of the myod gene directly (Huang et al., 2008) (figure 

8B). 

23 



A) 
tongue & 
laryngeal 

2nd branchial arches 

1st branchial arches 

epaxial 

extra-ocular 

limb bud 

hypaxial myocf-lacZ-reporter mouse (E11.5) 

B) 
Pax3, Myf5 

S S 

Gig1 

1 
Pax3, 
Fox03 

i 
9 

CES T I DRR I ' | _ ORF 

-20kb -5kb 

myod gene 

Figure 8. MyoD expression A) myod Core Enhancer (CES) -LucZ 
expression. B) transcriptional regulation of myod gene. 

24 



2.1.3. Regulation of the mrf4 gene during embryo development 

MRF4 expression is detected at E8.0 in the undifferentiated cells in the hypaxial 

domain of thoracic somites (the somitic bud) (Summerbell et al., 2002), and is 

activated at E9.0 in the central myotome of rostal somite. With exception of limbs 

and branchial somites, all somites express mrf4 gene by El0.0 and again down 

regulated by El2.5, and then the third phase of activation, in which the expression 

is sustained in adult skeletal muscles (Carvajal et al., 2001). As discussed above, 

although mr/4 expression becomes transiently detectable in the somite myotome 

during embryogenesis, mrf4 expression is up-regulated during late fetal 

development to eventually become the predominant myogenic bHLH factor 

expressed in adult skeletal muscle. Therefore, it has been proposed that MRF4 may 

play role in skeletal muscle maturation. In mrf4 null embryo, MyoG was greatly up-

regulated, and it was suspected the compensatory mechanism (Zhang et al., 1995). 

This notion was also supported by the fact that the loss of MyoG can be 

compensated by mr/4 expression driven by myog promoter in embryo skeletal 

muscle development (Zhu and Miller, 1997). However, more recent observations 

indicate that MEF4 may function as a skeletal muscle lineage determination factor 

(Kassar-Duchossoy et al., 2004). Since myf5 and mr/4 are genetically linked, the 

loss of mutation on mrf4 locus also affects my/5 expression (Carvajal et al., 2008; 

Yoon et al., 1997) (figure 7). A new myf5-l- and myod-l- double null embryo, in 

which the mrf4 gene expression is not affected by the manipulation, surprisingly did 
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not show severe skeletal muscle defect phenotype observed in the early my/5-/- and 

myod-l- double "knock-out" embryo (Valdez et al., 2000) suggesting that MRF4 

and Myf5 are genetically located up-stream of MyoD (Kassar-Duchossoy et al., 

2004). In zebrafish skeletal muscle development, early expression of MRF4 but not 

MyoG can reverses the defective skeletal muscle phenotype of the myf5-1- and 

myod-l- doubly targeted embryo further supporting the lineage specification role of 

MRF4 (Schnapp et al., 2009). 

2.1.4. Regulation of the my og gene during embryo development 

The loss of MyoG cannot be compensated for by the other MRFs, so MyoG is a 

unique MRF and essential for skeletal muscle differentiation during embryo 

development (Hasty et al., 1993). MRFs and Myocyte enhancer factor 2 (MEF2) 

play important roles in the myog gene regulation during embryo development. The 

5'regulatory region of the myog gene has MRF binding sites (E-box) and MEF2 

binding site (figure 9), and the mutation of these sites attenuates the myog 

expression in the embryo (Cheng et al., 1993; Yee and Rigby, 1993). In myog-l-

embryo, muscle lineage specification occurs normally (formation of muscle 

progenitors), but they could not differentiate into multinucleated myotubes 

(Nabeshima et al., 1993). In agreement with these observations, loss of MyoG does 

not affect myod expression and primary myogenesis (MB formation) (Venuti et al., 

1995). A -184/+18 bp myog promoter respect to the TSS can reproduce the myog 

expression pattern during embryo development (Cheng et al., 1993), and 

evolutionarily conserved MEF3 sites (TCAGGTT) are required for myog 
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expression. The MEF3 sites are recognized and trans-activated by the 

homeoproteins of the Six/sine oculis family, Sixl and Six4 (Spitz et al., 1998). 

Although six4-l- embryos bone normally without any gross defects (Ozaki et al., 

2001), six 1-1- and six4-l- compound mutant embryos have a skeletal muscle defect 

(Grifone et al., 2005). Activation of the myog gene by MyoG in co-operation with 

MEF2D is required for full activation of the myog gene expression. MEF2D and 

MyoG, but not MyoD, co-recruit SWI/SNF complex containing an ATP-dependent 

chromatin remodelling enzyme, BRG-1, which alters chromatin structure at the 

regulatory region of the myog gene for the terminal differentiation (Ohkawa et al., 

2006; Ohkawa et al., 2007) (figure 9). It is also reported that for the MyoD 

dependent myog gene activation, TAF3/TRF3 complex replaces TFIID and directs 

the transcriptional initiation of the myog gene transcription (Deato et al., 2008). 

Therefore, chromatin remodelling and general transcription factor switch are also 

important regulatory steps to induce the myog gene. 

2.2. Differentiation of skeletal muscle; role of Myocyte enhancer factor-2 

(MEF2) 

Myocyte enhancer factor-2 (MEF2) was isolated from C2C12 myotubes and 

BC3H1 myocytes as a trans-activator on the enhancer element in the muscle 

creatine kinase gene (Gossett et al., 1989). mef2 genes are taxonomically part of the 

MADS-box gene super-family that encode DNA binding proteins involved in yeast 

mating type decisions (MCM1), plant development (Agamous and Deficiens), and 

serum responsivity of mammalian cells (Serum Response Factor: SRF) (Jarvis et 
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al., 1989; Norman et al., 1988; Sommer et al., 1990; Yanofsky et al., 1990). There 

are four mefl genes (mefla, -b, -c, and-d) in mammals, and they generate a few 

isoforms from each gene. MEF2 protein forms homo- or heterodimers and binds to 

dsDNA in a sequence specific manner (the consensus sequence of the MEF2 site; 

(C/T)TA(A/T)4TA(G/A)) (Pollock and Treisman, 1991). Although MEF2 

expression is not restricted in skeletal muscle (Potthoff and Olson, 2007), its 

activity is highly localized in muscle and neural cell lineages during development of 

mouse embryo (Naya et al., 1999). In myogenic lineage, mef2c is expressed at E9.0 

in rostral myotome after my/5 and myog expression. At E9.5, expression of mefla, -

c, and -dgenes are detected in myotome. After El2.5, mefl is expressed in a wide 

variety of tissues (Edmondson et al., 1994). This indicates MEF2 activity is post-

transcriptionally or -translationally regulated. Indeed, MEF2 activity is extensively 

regulated by variety of post-translational modification (Potthoff and Olson, 2007). 

DNA binding activity of the MEF2 dimers seems not to be regulated in a cell type 

specific manner (Ornatsky and McDermott, 1996). We and other groups 

documented that MEF2 transcriptional activity is regulated by phosphorylation 

coupled recruitment of either histone deacetylases (HDACs)/co-repressors or 

Histone acetyltransferase (HAT) enzymes/co-activators (Du et al., 2008; Gordon et 

al., 2009; Perry et al., 2009; Potthoff and Olson, 2007; Zhang et al., 2007b) (figure 

10A). More importantly, most muscle specific genes have a conserved E-box for 

MPvF binding and MEF2 site in their regulatory region, and MEF2 and MRF co

operates synergistically for the up-regulation of these genes in muscle cells (Black 

and Olson, 1998; Olson et al., 1995) (figure 10B). 
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2.3. Differentiation of skeletal muscle; role of signalling molecules 

Primary myogenesis occurs at E10.5-12.5, in which only the fraction of MB 

population, embryo MBs, differentiates to form primary fibers. The remaining MBs 

(fetal MBs; Pax3+/Pax7+) maintain their committed state (Pax3+/Pax7+) but 

somehow avoid differentiation till E14.5-17.5 (Kassar-Duchossoy et al., 2005; 

Relaix et al., 2006; Relaix et al., 2005). At E14.5-17.5, secondary myogenesis takes 

place in which the fetal MBs fuse to form secondary myofibers (initially smaller in 

diameter) around the primary myofibers (Kelly and Zacks, 1969). The Fetal MBs 

may also fuse to the primary myofibers (Zhang and McLennan, 1995) (figure 3 and 

4). After formation of fetal muscle (E16.5), mono-nucleated satellite cells can be 

identified between the plasma membrane and the basal lamina of the myofibers 

(Mauro, 1961) (figure 11). 

It has been established that these MBs (embryo MB, fetal MB, and satellite cell 

(adult MB)) have specific characteristics and respond to extracellular cues in a 

distinct manner (Biressi et al., 2007a; Biressi et al., 2007b; Cossu and Biressi, 2005; 

Cossu et al., 1987; Cossu et al., 1988; Cossu and Tajbakhsh, 2007; Cusella-De 

Angelis et al., 1994; Hutcheson et al., 2009; Zappelli et al., 1996). 

2.3.1. Roles of BMP signalling 

BMP signalling controls specification of myogenic lineage. Interestingly, in the 

presence of BMP4 (50ng/ml), embryo MBs isolated from the somites and limbs of 

El 1.5 embryo, but not fetal MBs from E16.5, can differentiate into muscle myosin 
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heavy chain (MyHC)-positive multinucleated myotubes in vitro (Biressi et al., 

2007b). Genome-wide gene expression analysis of the embryo MBs and fetal MBs 

revealed that key genes in the BMP/TGFp signalling are differentially expressed. 

For example, myostatin, smad6, smadl, meftc, fgf, follistatin, and connective tissue 

growth factor (ctgf) are higher, and pax3,junb, collagens, and type II tgffireceptor 

are lower in the embryo MBs (Biressi et al., 2007b). In addition, a potent inhibitor 

for myogenic differentiation of the fetal MBs, TGF|3 (lOng/ml), also failed to 

inhibit the embryo MB's myogenesis in vitro (Biressi et al., 2007b). Therefore, 

although the molecular mechanisms are not still clear, these genes that are 

differentially regulated in embryo and fetal MB might be targets of the BMP/TGFp 

signalling and they are potentially important genes for myogenic differentiation. 

2.3.2. Roles ofShh signalling 

Sonic hedgehog (Shh) is secreted from notochord and the floor plate of the neural 

tube at critical times for somite specification (figure 5), and the roles of Shh were 

originally characterized as an enhancer of the formation of sclerotome and a 

suppressor of the dermatome formation (Johnson et al., 1994). The myotome 

formation mediated by induction of MRF may be directed by the combinatorial 

activity of the Shh and Wnt (Munsterberg et al., 1995), and one of the mechanisms 

by which the Shh inducing myf5 expression is co-operative up-regulation of a 

BMP4 antagonist Noggin to relieve BMP4's repressive effect on the my/5 

expression (Borycki et al., 1999a; Hirsinger et al., 1997; Marcelle et al., 1997) 

(figure 5). Noggin induction is essential for the DML specification for sclerotome 
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and epaxial myotome through blocking BMP4 signalling (McMahon et al., 1998). 

The Shh signalling also regulates cell lineage specification in the epaxial myotome 

through the my/5 gene up-regulation through the epaxial somite enhancer of the 

myf5 gene by Gli transcription factors (Gustafsson et al., 2002) (figure 5). GH2 and 

-3 are also required for sclerotomal gene induction by Shh (Buttitta et al., 2003). 

Myod expression in the somite is also regulated by Shh mediated by GH2/4 

(Borycki et al., 1998). Shh maintains but not induces myod expression in the 

somites (Coutelle et al., 2001; Marcelle et al., 1999). Shh also induces expression of 

the cell surface heparan sulfate proteoglycans, which regulate heparan-dependent 

Wnt signalling is required for myod expression in C2C12 cells (Dhoot et al., 2001). 

2.3.4. Roles of Wnt signalling 

Another signalling molecule known for embryo myogenesis regulator is Wnt (a 

secreted glycoprotein), which is secreted from the neural tube (Wntl) (figure 5). 

Wnt induces expression of Noggin, which is a secreted protein and binds and 

inactivates BMP4 (an antagonist of BMP4), at the DML of epaxial dermomyotome 

(Hirsinger et al., 1997). Since BMP indirectly regulates Wnts expression, at the 

DML the dorsal portion of somite patterning is determined by the BMP and Wnts 

from the dorsal neural tube, the Shh from the floor plate of the neural tube and 

notochord, and Noggin in the somite (Marcelle et al., 1997; Reshef et al., 1998) 

(figure 5). 

Wnt/p-catenin 'canonical' pathway is required for induction of the my/5 gene in the 

epaxial domain of the somite, where activated T-cell specific transcription 
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factor/Iymphoid enhancer-binding factor (Tcf/Lef) by the 'canonical' Wnt 

signalling binds the early epaxial enhancer of the myf5 gene and further co-operates 

with Shh/Gli for full induction for the myf5 gene (Borello et al., 2006) (figure 5). 

Wnts also induce cyclic AMP responsive element binding protein (CREB) through 

activation of the protein kinase A (PKA) signalling. The CREB is also required for 

Wnt inducing pax3, myf5, and myod expression during embryo myogenesis (Chen 

et al., 2005). Furthermore, the (3-catenin independent Wnt signalling pathway (non-

'canonical' Wnt signalling) activates the myod gene expression in a protein kinase 

C (PKC) activity dependent manner, in which PKC activates the Pax3 

transcriptional properties and Pax3 induces the myod gene expression (Brunelli et 

al, 2007). Wnts are also important for the adult skeletal muscle growth and injury 

repair (Le Grand et al., 2009; Otto et al., 2008). 

Growth and regeneration of adult skeletal muscle 

A major goal for the developmental biology is to reveal the mechanism by which an 

elegantly organized collection of multiple tissues and organs is generated from a 

single cell during embryo development. Adult stem cells must have an ability to 

produce both types of progenys; one for self-renewal to maintain 'stem' population 

and the other for growth or regeneration of given specialized cells to maintain 

growth and regeneration capacity. Skeletal muscle satellite cells on the adult muscle 

fibers are now considered as adult stem cells, and these satellite cells provide the 

life-long growth and regeneration capabilities for the skeletal muscles (Collins et 

al., 2005; Kuang et al., 2008; Seale and Rudnicki, 2000). 
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1.1. Satellite cell marker; Myf5 and Pax7 

1.1.1. Role of Myf5 

It has been established that adult myogenesis differs from embryo and fetal 

myogenesis at the molecular level. The most obvious differences are roles of MyoD 

and Pax7. In embryo and fetal myogenesis, loss of MyoD can be compensated by 

Myf5 with exception of muscle development in head region (Rudnicki et al., 1992). 

However, for adult skeletal muscle regeneration, MyoD is essential (Asakura et al., 

2007). These observations suggest that Myf5 could not replace at least some of the 

MyoD's functions in the adult satellite cell differentiation but not embryo and fetal 

myogenesis. Interestingly, the myf5-l- MBs proliferate at much lower rate than 

normal MBs. In contrast, the myod-l- MBs grow faster and express higher level of 

Myf5 than the normal MB in vitro (Cornelison et al., 2000; Sabourin et al., 1999; 

Yablonka-Reuveni et al., 1999). Although MyoD is much more efficient than Myf5 

for the induction of muscle specific genes, a set of MyoD and Myf5 target genes are 

very similar in a microarray analysis in C2C12 cells (a satellite cell derived MB cell 

line) (Ishibashi et al., 2005). Although non-redundant specific down-stream target 

genes of MyoD and Myf5 in the satellite cell have not yet identified, it has been 

suggested that Myf5 plays a role in satellite cell proliferation and that MyoD is 

required for the growth arrest and differentiation (Asakura et al., 2007; Ishibashi et 

al., 2005). Since Myf5 expression has been down-regulated in the myonuclei in 

mature terminally differentiated post-mitotic myofibers, the Myf5 expression is one 

of the markers for the quiescent satellite cells on the myofibers. However, 10% of 
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Pax7+ quiescent satellite cells do not express Myf5, so these satellite cells (Pax7+, 

Myf5-) are not yet committed to the myogenic lineage (Kuang et al., 2007). 

1.1.2. Role of Pax7 

The other satellite cell marker is Pax7, which is essential for maintenance/survival 

of satellite cells during embryo development (Seale et al., 2000) but dispensable for 

embryo and fetal myogenesis (Mansouri et al., 1996) and adult regeneration and 

muscle growth (Lepper et al., 2009). Specifically, in the pax?-I- embryo, primary 

and secondary myofibers are formed normally, but the satellite cell population is 

declining progressively due to apoptosis and at birth almost complete loss of the 

satellite cells on the myofibers causing defects in the skeletal muscle growth and 

regeneration (Oustanina et al., 2004; Relaix et al., 2006). Pax7 may also be required 

for the maintenance of the undifferentiated state of the satellite cells by preventing 

precocious differentiation (Olguin et al., 2007) and of the proliferative capacity by 

antagonizing MyoD's activity (Zammit et al., 2006). In support of this notion, in 

chicken, only Pax7+ MB but not Pax7- MB proliferate (Day et al., 2009). 

Pax7 expression is inhibited by Myostatin (MSTN), which inhibits satellite cell 

activation (proliferation) and self-renewal (McCroskery et al., 2003), through 

activation of Extracellular signal-regulated kinase (ERK) signalling (McFarlane et 

al., 2008). Interestingly, a microarray and Chromatin immuno-precipitation (ChIP) 

analysis identified that Pax7 is genetically located at up-stream of the my/5 gene, 

and Pax7 directly up-regulates the my/5 gene expression by recruiting a histone 

methyltransferase complex in the MBs derived from satellite cells (McKinnell et al., 
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2008). Therefore, these observations suggest that Pax7 may be required for 

maintaining the satellite cell population by supporting myf5 expression and 

suppressing myog expression induced by MyoD (Olguin et al., 2007). Interestingly, 

Pax7 and Pax3 become dispensable not only for muscle regeneration but survival of 

the satellite cell in the adult muscle fiber after 21 days of birth in mouse (Lepper et 

al., 2009). 

2.1. Adult myogenesis; satellite cells to myocytes 

Satellite cells are derived from embryonic progenitors (Pax3+, Pax7+, Myf5-, and 

MyoD-). During fetal myogenesis, these progenitor cells either up-regulate 

Myf5/MyoD and differentiate into embryonic and fetal muscle or maintain 

Pax3+/Pax7+/Myf5-/MyoD- state and become satellite cells (Relaix et al, 2005) 

(figure 3 and 4). Once the satellite cells establish their niche in between the basal 

lamina and the plasma membrane of the myofibers, most satellite cells induce the 

myf5 and down-regulate pax3 gene expression (Pax7+, Pax3-, Myf5+, and MyoD-) 

(figure 11). A small population of the satellite cells maintains Pax3 expression 

(Pax7+, Pax3+, Myf5+, and MyoD-) (Kuang and Rudnicki, 2008). Although most 

of the satellite cells are expressing Myf5 (Pax7+, Myf5+), a small portion of the 

satellite cells are not expressing Myf5 (Pax7+, Myf5-), which are an uncommitted 

population for the myogenic lineage (Kuang et al., 2007) (figure 12). Once 

activated, these satellite cells (Pax7+, Myf5-) produce progeny, which are ether for 

self-renewal (Pax7+, Myf5-) or committed (Pax7+, Myf5+) by symmetrical or 

asymmetrical cell division, respectively (Kuang et al., 2007). Activated and 
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committed satellite cells (Pax7+, Myf5+) further up-regulate MyoD and proliferate 

and form MBs (figure 11 and 12). Some Pax7+/Myf5+/MyoD+ MBs down-regulate 

MyoD and become Pax7+/Myf5+/MyoD- quiescent satellite cells (self-renewal), 

and the other committed satellite cells down-regulate Pax7 and induce the myog 

gene and become myocyte (Pax7-, MyoG+) (Halevy et al., 2004; Olguin and Olwin, 

2004; Zammit et al., 2004b) (figure 12). Therefore, Pax7 and MRF may cross-

inhibit each other's expression. In culture, Pax7 is able to inhibit the myog gene 

induction by inhibiting MyoD's transactivation properties, and MyoG down-

regulates/?ax7 expression (Olguin et al., 2007). 

2.2. Adult myogenesis; Satellite cell activation; Role of the Notch signalling 

For life-time long efficient and sustained skeletal muscle repair, satellite cells first 

expand by proliferation and then withdrawn from the cell cycle and differentiate to 

regenerate myofibers (differentiation), and also adult stem cell population need to 

be maintained by self-renewal. 

As seen in fetal myogenesis, the Notch signalling plays a pivotal role in satellite 

cell activation (Conboy and Rando, 2002; Sun et al., 2007). In agreement with these 

observations, in parallel to decreased skeletal muscle regeneration capacity with 

age, the Notch expression level in the satellite cells is decreased (Conboy et al., 

2003). The 'canonical' Notch signalling pathway starts with activation of Notch 

receptors at plasma membrane by ligands of the Delta, ferrate/Jagged, and Lin-12 

and Glp phenotype-2 (DSL) family (figure 13B). Both Notch receptors and the DSL 

ligands are type I single-pass integral membrane proteins with tandem EGF-like 
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repeats in their extracellular domains (figure 13A). This ligand/receptor complex 

formation causes proteolytic release of the Notch intracellular domain (NICD), 

which tanslocates to the nucleus and regulates target genes as a transcription factor 

associate with other transcription factors (figure 13B). Therefore, there is no 

amplification of the signal at the receptor level and irreversible activation in the 

Notch 'canonical' signalling pathway. The Notch signalling pathway is 

evolutionarily highly conserved (C. elegance to mammals) and required for cell fate 

determination and tissue/organ development (Artavanis-Tsakonas et al., 1995; 

Artavanis-Tsakonas et al., 1999; Chan and Jan, 1998; Fortini, 2009; Kopan and 

Ilagan, 2009; Lai, 2004). 

Some mechanisms by which the Notch signalling pathway maintains activated 

satellite cells in an undifferentiated state have been proposed. The NICD interacts 

with MyoD and Myf5 in the nucleus as an active repressor (Kopan et al., 1994). In 

the limb development in the chick embryo, Delta-1 and Serrate-2 activate the Notch 

pathway and inhibit muscle differentiation through Pax3, Myf5, and MyoD (Delfini 

et al., 2000) (figure 14A). Stral3, a basic helix-loop-helix transcriptional repressor, 

is required for skeletal muscle regeneration. Notch signalling is enhanced in stral3-

I- MBs, and they exhibit an enhancement in proliferation and defects in muscle 

differentiation (Sun et al., 2007). An another group also reported that induction of 

myog and other MyoD target genes is repressed by the binding of Stral3 on the E-

box in the regulatory region of these target genes (Hsiao et al., 2009). In addition, 

genetic ablation of the mastermind-like-1 (mamll) gene, which encodes an essential 

co-activator for the NICD, suffers severe muscle dystrophy, and ectopic expression 
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of MyoD could not convert the mamll-l- fibroblasts into myocytes. However, this is 

not due to a non-functional Notch 'canonical' pathway, MAML1 is also a co-

activator of MEF2C. Therefore, the NICD competes with MEF2C for MAML1 

upon activation of the Notch signalling and interferes with MEF2C's pro-myogenic 

activity (Shen et al., 2006) (figure 14B). In addition, a recent study documented that 

Notch signalling inactivates p38MAPK, which enhance muscle differentiation by 

phosphorylation of several myogenic regulatory factors including MEF2s (Cox et 

al., 2003), by up-regulation of Mitogen activated protein (MAP) Kinase 

phosphatase-1/ Dual specificity phosphatase-1 (MKPl/Duspl) (Kondoh et al., 

2007). MegflO, which is a multiple epidermal growth factor repeat transmembrane 

protein, is a quiescent satellite cell marker gene, which is expressed in the satellite 

cells and MBs but not in the myofibers. MegflO is required for self-renewal of the 

satellite cells. Reduction of MegflO causes myog activation and precocious 

differentiation by impinging Notch signalling. Therefore, MegflO regulates balance 

between self-renewal and differentiation of the satellite cells through the Notch 

signalling (Holterman et al., 2007) (figure 13). 

A recent study also indicates that the Wnt signalling interferes with the Notch 

signalling to shift the cells from proliferation to differentiation. Glycogen synthase 

kinase-3p (GSK3p) is a mediator of this crosstalk. GSK3p is active under the 

influence of the Notch signalling, but it is inactivated by Wnt signalling (Brack et 

al., 2008). Upon muscle injury, myofibers up-regulate Wnt ligands 

transcriptionally, and secreted the Wnt ligands from injured myofibers. The Wnt 

ligands act on the satellite cells, and activate p-catenin, which is a co-activator of 
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the down-stream transcription factor of the 'canonical' Wnt signalling (Otto et al., 

2008). In particular, Wnt7a stimulates symmetric proliferation of satellite stem cells 

without affecting on the differentiation of the MBs. Therefore, Wnt7a plays role for 

expansion of the satellite stem cell population by self-renewing (Le Grand et al., 

2009) (figure 13). 

2.3. Adult myogenesis; Satellite cell differentiation 

Once the satellite population is activated by exercise or muscle injury, the fate of 

the activated satellite cells will be determined. However, to achieve both efficient 

regeneration of damaged skeletal muscle and maintenance of'stem' cell pool for 

life-time long, satellite cells have to commit to both of these very different fates. A 

few models have been proposed to explain this characteristic of the satellite cell, 

such as asymmetric cell division (Conboy and Rando, 2002; Conboy et al, 2007; 

Shinin et al., 2006) (figure 14, 15, and 16), symmetric cell division followed by a 

stochastic cell fate determination (Halevy et al., 2004; Olguin and Olwin, 2004; 

Zammit et al., 2004b), and the niche models (Day et al., 2007; Holterman et al., 

2007; Kuang et al., 2008; Kuang et al., 2007) (figure 17). They are not necessary 

mutually exclusive to each other. 

2.3.1. Asymmetrical cell division by Notch signalling pathway 

For activation of skeletal muscle satellite cells, Notch 'canonical' pathway plays 

pivotal role, and several Notch signalling regulators in the satellite cells has been 

identified and characterized. 
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2.3.1.1. Lateral inhibition 

Signalling molecules in the Notch signalling pathway are regulated by feedback 

loops. Since a Notch target gene, the E(spl)/HES family of bHLH regulators, 

antagonises the activity of the achaete-scute complex (as-c) gene, which up-

regulates Notch and down-regulates Delta, the Notch activation enhances Notch and 

represses Delta expression (figure 15). These positive (for Notch expression) and 

negative (for Delta expression) feedback loops causes initially equivalent cells to be 

two different characteristic cells (signal sending (Delta expressing cell) and signal 

accepting (Notch expressing cells). By this 'lateral inhibition', the Notch signalling 

specifies different cell fates in adjacent cells (figure 15). This 'lateral inhibition' 

plays key role in many developmental scenarios in coordination with other 

positional and temporal cues in order to specify different cell types (Fortini, 2009; 

Kopan and Ilagan, 2009). 

2.3.1.2. Role of Numb protein in asymmetrical cell division 

Activation of Notch 1 signalling promotes proliferation of satellite cells in the 

Pax3+ ('pre-MB') state. Activated satellite cells divide asymmetrically due to 

uneven distribution of Numb, which is an antagonist of Notchl signalling (figure 

16). Increased Numb expression shifts the satellite cells in 'pre-MB' state to MB 

fate (Myf5+, MyoD+, Desmin+, and Pax7+). During mitosis, after activation of the 

satellite cells, Numb localized one of the cortical crescents; as a result, progenys 

have different amount of Numb proteins. Therefore, the daughter cells of the 
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activated satellite cells become heterogeneous in myogenic commitment (figure 

16). Thus, the balance between Notchl and Numb generates muscle precursors for 

self-renewal of the satellite cells and MB for growth and regeneration of skeletal 

muscle by asymmetric cell division (Carmena et al., 1998; Conboy and Rando, 

2002; Lu et al., 1998; Shinin et al., 2006) (figure 16). With myofibers, Numb 

proteins localize the basal lamina side in the dividing muscle progenitors 

(Holowacz et al, 2006). Therefore, positional information regulates asymmetric cell 

division; self-renewal and differentiation (Shinin et al., 2006). 

2.3.1.3. Asymmetrical cell division by non-random DNA strand segregation 

Not only Numb proteins but also DNA strands segregate asymmetrically during the 

mitosis of the myogenic precursors (figure 17). After the first cell division, during 

the second mitosis, all old DNA strands tend to segregate together into one of the 

daughter cells. The old DNA strand receiving cells are self-renewing cells, the new 

DNA strands co-segregate into the differentiating cells assessed by a stem cell 

marker Seal and the differentiation marker Desmin (Conboy et al., 2007) (figure 

17). Although this asymmetric cell division occurs a small portion of the satellite 

cells, similar co-segregation of the DNA strands observed in epithelial and neural 

stem cell but not in hematopoietic stem cell (Conboy et al., 2007; Karpowicz et al., 

2005; Kiel et al., 2007; Shinin et al., 2006; Shinin et al., 2009). This asymmetric 

cell division capacity of the muscle stem cell is lost quickly in cell-culture setting 

(Conboy et al., 2007; Shinin et al., 2006) suggesting that it is context dependent and 

positional information is required (Kuang et al., 2008). However, Numb proteins 
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were observed to be co-segregated with the old DNA strands instead, and the reason 

for this discrepancy is not clear (Shinin et al., 2006). 

2.3.2. Symmetric cell division followed by a stochastic cell fate determination 

Upon stimulation, activated quiescent satellite cells (Pax7+, MyoD-) up-regulate 

MyoD and symmetrically proliferate and become MB (Pax7+, MyoD+). Some of 

these MBs stochastically down-regulate MyoD and become quiescent satellite cells 

(Pax7+, MyoD-) for self-renewal, the others up-regulate MyoG and down-regulate 

Pax7 to enter differentiation program (Pax7-, MyoD+, MyoG+) (Halevy et al., 

2004; Olguin and Olwin, 2004; Zammit et al., 2004b). 

2.3.3. Asymmetrical cell division; positional effect (niche regulation) 

Three important components of the satellite cell niche are the host myofibers, the 

basal lamina, and the micro-vasculature. The host myofibers communicate with the 

satellite cells and regulate satellite cell functions (Charge and Rudnicki, 2004; 

Molgo et al., 2004; Tatsumi et al., 2006). The basal lamina is an .extracellular matrix 

(ECM), which contains laminin, collagens and proteoglycans. The satellite cells 

attach to the basal lamina, which is essential for the stem cell identity (Blanpain et 

al., 2004; Fuchs et al., 2004). In addition, a variety of extrinsic signals from 

fibroblasts, muscle-resident stem cells, macrophages, and circulatory system 

transduce through the basal lamina and capillaries/vascular endothelial cells 

(Christov et al., 2007). In addition, the satellite cells express integrin cc7pi 

receptors, and they are localized at the basal side of the satellite cells and interact 

with the laminin on the basal lamina (Burkin and Kaufman, 1999). At the apical 
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Figure 18. Asymmetrical cell division; Niche effect 
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side, the satellite cells communicate with the host myofibers through M-Cadherin 

(Cornelison and Wold, 1997). Therefore, the satellite cells receive different signals 

from apical and basal side (figure 18). 

In this niche, two daughter cells produced by a planar-oriented cell division from an 

activated satellite cell are exposed to the identical signals. However, an apical-

basal-oriented cell division generates two daughter cells exposed to the different 

signals (figure 18). As a result, these two daughter cells are specified symmetrically 

in former case and asymmetrically in the later case. In fact, the daughter cell 

attaches with the basal lamina adapts a self-renewal fate, and the other loses to 

contact with the basal lamina adapts a differentiation fate (Kuang et al., 2007). 

There are still some discrepancies, but asymmetric localization of Numb protein 

and asymmetric segregation of DNA strands during mitotic cell division in the 

activated satellite cells might require this particular niche (Conboy et al., 2007; 

Kuang et al., 2007; Shinin et al., 2006). 

2.3.4. Cytokines and Growth factors that satellite cells are exposed to 

Upon skeletal muscle injury, satellite cells are activated for muscle repair. The 

damaged myofibers and the activated satellite cells secrete chemo-attractants for 

monocytes and macrophages infiltration, which causes inflammation reactions. 

Interestingly, the blockade of inflammatory cell infiltration impairs muscle repair. 

Macrophage inflammatory protein-1(3 (MIPlp) or vascular endothelial growth 

factor (VEGF) stimulate the satellite cell proliferation and differentiation 

(Lescaudron et al., 1999), and the activated satellite cells secrete VEGF and attract 
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monocytes and macrophages, which support survival of the activated satellite cells 

(Chazaud et al., 2003). A variety of inflammatory cytokines affect on the 

myogenesis, such as Interleukin-4 (IL-4) (MB fusion, from MT) (Horsley et al., 

2003), Leukemia Inhibitory Factor (LIF) (maintenance of the 'stem' state) (Murray 

and Edgar, 2001), Transforming Growth Factor p (TGFp) (fibrotic disorder, from 

macrophage) (Vidal et al., 2008), IL-6 (satellite cell proliferation, from myofibers) 

(Serrano et al., 2008), and Tumour Necrosis Factor a (TNFa) (early phase of 

differentiation of MB, from myofibers) (Li and Schwartz, 2001). In addition to the 

initiation of inflammatory response, Matrix metal loproteinase (MMP) activity 

mediated release of growth factors, which is being bound to the ECM proteins such 

as proteoheparan sulfates, from myofibers involves in muscle damage repair 

(Carmeli et al., 2004; Husmann et al., 1996). In addition, Fibroblast Growth Factors 

(FGFs) (Clegg et al., 1987; DiMario et al., 1989), Hepatocyte Growth Factor (HGF) 

(Tatsumi et al., 1998), Insulin-like Growth Factor 1 (IGF1) (Machida and Booth, 

2004; Perrone et al., 1995), Brain-Derived Neurotrophic Factor (BDNF) (Mousavi 

and Jasmin, 2006), Calcitonin (CT) (Fukada et al., 2007), Stromal-Derived Factor 

1/Chemokine (C-X-C motif) Ligand-12 (SDF1/Cxcll2) (Ratajczak et al., 2003; 

Sherwood et al., 2004), epidermal growth factor (EGF) (Golding et al., 2007), 

Tumour necrosis factor-like WEAK inducer of apoptosis/Tumour Necrosis Factor 

(ligand) Superfamily member-12 (TWEAK/TNFSF12) (Dogra et al., 2006; 

Girgenrath et al., 2006), Nitric Oxide (NO) (Tatsumi et al., 2006; Wozniak and 

Anderson, 2007), Integrin pi (VLA4) (Rosen et al., 1992), Laminin (Burkin and 

Kaufman, 1999), M-Cadherin (CDH15) (Irintchev et al., 1994), and 
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Myostatin/Growth Differentiation Factor-8 (GDF8) (McCroskery et al., 2003) have 

been shown to regulate myogenesis. As discussed above, Wnt (Brack et al., 2007; 

Polesskaya et al., 2003) and Deltal (Conboy et al., 2003; Kuang et al., 2007; Schuster-

Gossler et al., 2007) also regulate adult myogenesis (summarized in Table 1). 
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Cardiotrophin-1 (CT-1) signalling pathway 

As discussed above, despite the fact that a variety of cytokines and growth factors 

affect on myogenesis at multiple stages, a detailed understanding of their 

corresponding signal transduction pathways and their down-stream targets are still 

not clear. Is there any common target? 

Cardiotrophin-1 (CT-1) is a member of the IL-6 family, which is comprised of IL-6, 

IL-11, Leukemia inhibitory factor (LIF), Ciliary Neurotrophic Factor (CNTF), 

Cardiotrophin-Like Cytokine (CLC), and Oncostatin M (OSM). Their down-stream 

target genes are regulators of differentiation, proliferation, survival, apoptosis, and 

especially haematopoiesis. In addition, pro- and anti-inflammatory response and 

acute phase and immune response are controlled by the genes regulated by these 

cytokines. CT-1 was originally identified in conditioned medium from embryoid 

bodies (Pennica et al., 1995). In developing embryos, CT-1 is expressed in heart, 

skeletal muscle, liver and dorsal root ganglia (Sheng et al., 1996). In adults, human 

CT-1 mRNA is detected in the heart, skeletal muscle, ovary, colon, prostate and 

testis, and in fetal kidney and lung (Pennica et al., 1996b). The functions of CT-1 in 

the cardiovascular system have been characterized. The amount of CT-1 circulating 

in the patients suffering from ischemic and valvular heart disease is increased 

(Freed et al., 2003). CT-1 protects cardiomyocytes from apoptosis (Brar et al., 

2001; Sheng et al., 1996) and is involved in regeneration of cardiac muscle after 

infarction (Freed et al., 2005). Exogenous CT-1 causes cardiac hypertrophy in vitro 
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(Sheng et al., 1996). CT-1 also supports survival of sciatic motoneurons (Pennica et 

al., 1996a). However, down-stream molecular events are still not well characterized, 

and the role of CT-1 in embryonic myogenesis and adult muscle growth and 

regeneration has not, thus far, been characterized. 

1.1. Signalling pathway of IL-6 family; Ligand-Receptor complex formation 

IL-6 family cytokines are structurally related. They have four a-helices, which are 

organized in an up-up-down-down orientation (figure 19A). IL-6 and IL-11 have all 

straight helices, but LIF, OSM, and CNTF have a kinked helix (Bravo and Heath, 

2000; Deller et al., 2000) (figure 19A). It suggested that these structural differences 

cause the recruitment of a different pair of the signalling receptors. IL-6 and IL-11 

form a complex with gpl30/gpl30 homodimer, but the others complex with gpl30 

heterodimer. In addition to the signalling receptor dimers, IL-6, IL-11, CNTF, and 

CLC also bind a non-signalling a receptor such as IL-6Ra, IL-1 IRa, and CNTFRa 

(for both CNTF and CLC) (Heinrich et al., 2003; Heinrich et al., 1998; Senaldi et 

al., 1999). The a receptor for CT-1 was predicted, but it has not yet been 

characterised (Robledo et al., 1997). The signalling complex formation of IL-6 

cytokine family is summarized in figure 19B. 
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Figure 19. IL-6 family cytokines 

A) Structure model of IL-6 family cytokines. B) Ligand/receptor 
combinations. 
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2.1. Signalling pathway of IL-6 family; Janus kinase (JAK) activation 

Upon formation of the requisite complex with the respective cytokine, the 

oligomeric receptor complex transduces the signal to the nucleus through the Janus 

Kinase (JAK) to Signal Transducer and Activator of Transcription (STAT) for gene 

regulation (Heinrich et al., 2003) (figure 20). There are three kinases such as JAK1, 

JAK2, and Tyrosine Kinase-2 (TYK2) that are responsible for transducing signal 

from the receptor complex, and they constitutively associate with glycoprotein 130 

(Gpl30) and LIF p-receptor (LIFRJ3) receptors (Hermanns et al., 1999; Lutticken et 

al., 1994; Radtke et al., 2005; Stahl et al., 1994). Since loss of functional JAK1 

causes impaired IL-6 signalling, JAK1 is essential for the gpl30 mediated signal 

transduction (Guschin et al., 1995; Rodig et al., 1998). A major interaction region 

of gpl30/ LIFRp/OSMR receptors with JAKs is the conserved membrane proximal 

region, the proline-rich boxl (Haan et al., 2000; Murakami et al., 1991; Radtke et 

al., 2002). The FERM (Four-point-one, Ezrin, Radixin, and Moesin) domain in the 

N-terminal region of JAKs is required for interaction with gpl30/LIFRp/OSMR 

(Haan et al., 2001) (figure 20). A mutation of the 652 tryptophan (W652) within the 

boxl of the Gpl30 to alanine (W652A) eliminates the cytokine dependent 

activation of JAK 1 without affecting on the JAK1 association with the receptor. 

This mutation causes dominant negative inhibition for the JAK1 activation 

suggesting that cytokine dependent activation of JAK 1 requires dimer formation 
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nuclear translocation 

Figure 20. IL-6 family cytokines activate JAK/STAT signalling pathway 
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of the receptor, which is not required for JAK1 association with gpl30 (Haan et al., 

2002). 

2.2. Signalling pathway of IL-6 family; STAT activation 

Down-stream targets of JAKs are STAT transcription factors. STATs are sequence 

specific DNA binding (consensus sequence; TT(N)4-6AA (Seidel et al., 1995)) 

transcription factors, and STAT family consists of seven different genes, such as 

STAT1, -2, -3, -4, -5a, -5b, and -6, and a few isoforms are generated by the 

alternative splicing of the mRNAs (Becker et al., 1998; Chen et al., 1998; 

Vinkemeier et al., 1998). 

STAT3 and STAT1 are activated by Gpl30, and LIFRp/OSMR activate STAT3, 

STAT1, and STAT5 (Heinrich et al., 1998; Lai et al., 1995). These cytokine 

receptors have several STAT binding motif (YXXQ) in their cytoplasmic tails, and 

the STAT proteins are recruited to the activated receptor through the interaction of 

this YXXQ motif (Y (Tyr) is phosphorylated by activated JAKs) and the Src 

homology domain-2 (SH2) of STAT proteins (Gerhartz et al., 1996; Heim et al., 

1995; Hemmann et al., 1996; Stahl et al., 1995). STAT proteins are phosphorylated 

by JAKs at the single tyrosine (705 for STAT3, 701 for STAT1), and 

phosphorylated STATs dissociate from the receptor and form dimer through the 

phosphor-tyrosine/SH2 inter-molecular interaction (Kaptein et al., 1996; Shuai et 

al., 1994; Shuai et al., 1993a; Shuai et al., 1993b). The STAT dimers translocate to 

nucleus and activate target genes (Zhang et al., 2000b), and this tyrosine 

phosphorylation is essential for STAT nuclear translocation (Gough et al., 2009) 
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(figure 20). However, some tyrosine phosphorylated STAT1 and -3 also localizes in 

the cytoplasm and membrane rafts with caveolin-1 and heat-shock protein-90 

(Sehgal et al., 2002; Shah et al., 2002). 

STAT1, -3, -5a, and -5b are also serine-phosphorylated upon cytokine stimulation. 

The phosphorylation at the 727 Serine (S727) of STAT3 may further enhance 

transcriptional activity of STAT3, but some reported that this phosphorylation 

reduces the STAT3 activity (Abe et al., 2001; Beuvink et al., 2000; Haq et al., 

2002; Lim and Cao, 2001; Nair et al., 2002; Sanceau et al., 2000; Schuringa et al., 

2000; Su et al., 1999). A few studies show that the phosphorylation of S727 is 

MAKP independent (Abe et al., 2001; Chung et al., 1997), and the others document 

that it depends on PKC5 (Jain et al., 1999; Schuringa et al., 2001). However, the 

role of this serine phosphorylation of STAT may depend on cellular context (Aziz 

et al., 2007; Gartsbein et al., 2006; Park et al., 2008; Wang et al., 2005b); therefore, 

further characterization is required. 

3.1. Signalling pathway of IL-6 family; activation of MEK/ERK kinases 

Dimerization of the cytokine J3-receptor (gpl30, LIFRp, and OSMR) activates not 

only the JAK/STAT signalling pathway but also the MAPK cascade. SH2 domain 

containing tyrosine phosphatase (SHP2) plays a critical role for MAPK activation 

by Gpl30 and LIFRp (figure 20). Phosphorylation at Y759 in Gpl30 and Y974 in 

the LIFRp are required for the SHP2 binding (Schiemann et al., 1997; Stahl et al., 

1995). OSMR activates the same kinase cascade recruiting SH2 and collagen 

homology domain containing protein (She) at phosphorylated Y861 instead 
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Figure 21. IL-6 family cytokines activate Ras/Raf/MEK/ERK cascade 
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(Hermanns et al., 2000). Phosphorylation of the tyrosine residue in SHP2 requires 

JAK1 but not JAK2 or TYK2 (Schaper et al., 1998). It is speculated that the 

phosphorylated tyrosine amino acid provides the binding sites for SH2 domain of 

Growth factor receptor bound protein (Grb2)/Son of Sevenless (SOS) and/or Grb2 

associated binder 1 (Gabl) complex. This complex formation leads to activation of 

membrane anchored Ras, and it initiates MAPK cascade (Ras-Raf-MEK-ERK) 

(Fukada et al., 1996; Gu et al., 1998; Hermanns et al., 2000; Holgado-Madruga et 

al., 1996; Schaper et al., 1998; Schiemann et al., 1997) (figure 21). Since Gabl is a 

scaffolding adaptor protein with pleckstrin homology (PH) domain, it can interact 

with the Grb2, SHP2, phosphatidylinositol 3-kinase (PI3K), Crk (v-crk sarcoma 

virus CT10 oncogene homolog), Phospholipase Cy, and c-Met (hepatocyte growth 

factor receptor) (Holgado-Madruga et al., 1996; Liu and Rohrschneider, 2002; 

Schaeper et al., 2000). IL-6 family cytokines are known to activate PI3K/Akt 

(PKB), and p38MAPK, JNK as well (Bode et al., 2001; Hideshima et al., 2001; 

Negoro et al., 2001; Schuringa et al., 2001; Zauberman et al., 1999). 

4.1. Role of CT-1signalling in myogenesis 

CT-1 is expressed in skeletal muscle during embryo development (Pennica et al., 

1996a; Pennica et al., 1996b). In regenerating and overloaded skeletal muscles, CT-

1 proteins are expressed in satellite cells and infiltrated macrophages. Therefore, it 

has been suggested that roles of CT-1 in skeletal muscle regeneration and 

hypertrophy (Nishikawa et al., 2005). 
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Figure 22. Inhibitory effect of CT-1 on MyoD through MEK activation 

65 



Gpl30 is expressed in skeletal muscle (Arimura et al., 2005). IL-6 is transiently 

produced from growing myotubes, and IL-6 stimulates satellite cell proliferation in 

a paracrine manner through STAT3 activation (Serrano et al., 2008). During 

preparation of our manuscript (Chapter III), Wang et al. (2008b) documented that 

the JAK1/STAT1/STAT3 pathway is required for MBs proliferation and actively 

prevent the MBs from precocious differentiation, and the JAK2/STAT2/STAT3 

pathway has a pro-myogenic effect (Wang et al., 2008b). LIF inhibits an early 

phase of myogenesis through activation of ERK but independent of STAT3 

activation (Jo et al., 2005). Therefore, originally STAT3's role in myogenesis was 

proposed as a negative regulator of myogenesis by interfering with MyoD (Kataoka 

et al., 2003), as we documented (Chapter II), activated STAT3 may not be 

responsible for the inhibitory effect of CT-1 on myogenesis. CT-1 inhibits skeletal 

muscle differentiation through activation of MEK, which interacts with MyoD and 

inhibits MyoD's transcriptional activation properties (figure 22). Therefore, CT-1 

does not affect on the muscle specification by MyoD and Myf5 expression in the 

MBs but prevents the terminal differentiation by interfering with the myog gene 

induction by MyoD. Thus, we propose that CT-1 maintains the undifferentiated 

state of muscle progenitors through activation of MEK (Miyake et al., 2009). 
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Tumour Growth Factor p (TGFp) signalling pathway 

TGFp superfamily consists of TGFps, BMPs, Growth and differentiation factors 

(GDFs), Activins and Nodal. They are key regulators for embryonic development 

and tissue morphogenesis (Feng and Derynck, 2005). TGFp superfamily proteins 

believed to be secreted as a disulfide-linked homo- or hetero-dimer. Extracellular 

matrix (ECM) associated proteins trap secreted TGFp proteins and sequestrate these 

growth factors from the receptors. Proteolytic cleavage releases TGFp ligands from 

the ECM (Annes et al., 2003). 

Processed TGFp superfamily proteins bind to the cell surface receptors (type II 

receptors), and then the receptor complex phosphorylates intracellular effecter 

proteins (receptor Smads; R-Smads), which translocate to the nucleus and regulate 

target gene expression (Derynck and Zhang, 2003; Shi and Massague, 2003). In 

addition to this TGFp 'canonical' signalling pathway, R-Smad independent 'non-

canonical' signalling regulates TGFp response and Smad activity (Derynck and 

Zhang, 2003). 

1.1. 'Canonical' TGFp signalling pathway; ligand/receptor complex formation 

TGFP ligand/cell surface receptor complex contains 'type I' and 'type IF receptors. 

Although they are structurally similar transmembrane serine/threonine kinase, the 

type I receptors have Glysine/Serine-rich 'GS-rich sequence' in their cytoplasmic 

tail. Without ligand binding, they form homodimers and are inactive kinases. Upon 

ligand binding, the ligands and the receptors form a stable complex, which consists 

two of each type I and II receptor and the ligand (figure 23). The type II receptor 
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Figure 23. Ligand/receptor combinations of TGFfS family cytokines 
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phosphorylates serine residues in the 'GS-rich sequence' in the type I receptor. This 

phosphorylation initiates the auto-phosphorylation of the type I receptor, and then 

the active type I receptor phosphorylates R-Smads associated with the receptor 

(Derynck and Zhang, 2003; Shi and Massague, 2003). The specific interaction 

between the type I receptor and the R-Smad is mediated by the L45 loop of the type 

I receptor and the L3 loop in the MH2 domain of the R-Smad (Lo et al., 1998). 

Specific combinations of the type I with type II receptors for a given TGFP 

superfamily ligand are summarised in figure 23. 

Interestingly, although there are at least 29 genes encoding TGFp superfamily 

ligands in the human genome and 42 ligands generated in total, there are so far only 

seven type I, and six type II receptors have been identified. Formation of diverse 

receptor complexes leads to ligand specificity and diverse biological responses. 

However, more interestingly, there are only five R-Smads {smadl, -2, -3, -5, and -8) 

characterised for the TGFp 'canonical' pathway (Derynck and Zhang, 2003; Shi 

and Massague, 2003) (figure 23). 

1.2. 'Canonical' TGFfi signalling pathway; intracellular signalling, R-Smads 

The Smads are the only common intracellular signalling molecules for TGFp 

'canonical' signalling pathway. The Mothers against decapentaplegic homology 

proteins (Smads) are functionally sub-divided into three groups such as receptor 

Smads (R-Smads; Smadl, -2, -3, -5, and -8), common-Smad (C-Smad; Smad4), and 

inhibitory Smads (I-Smads; Smad6 and -7). All Smads have a conserved Mad 

homology 2 (MH2) domain at their C-termini and a less conserved MH1 domain at 
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PSNNKSRFCLGLLSMVHRNSTIEHTRRHIGKGVHLYYVG-GEVYnECLSDSSIFVQSRNCNFHHGFHPT-TVCKIPSSCSLKIFN NQEFHQL 
PSHNRNRFCLGLLSNVHRNSTIEHTRRHIGKGVHLYYVG-GEVYflECVSDSSIFVaSRNCNYQHGFHPR-TVCKIPSGCSLKVFN NQLFHQL 
PSNSE-RFCLGLLSNVNR(«TVEMTRRHIGRGVRLYYIG-GEVFHECLSDSflIFVQSPNCNQRYGHHPH-TVCKIPPGCNLKIFN NQEFRRL 
PSNSE-RFCLGLLSNVNRHRflVELTRRHIGRGVRLYYIG-GEVFRECLSDSfllFVaSPNCNDRYGHHPR-TVCKIPPGCHLKIFN NQEFHHL 
PSGGD-RFCLGQLSNVHRTEfllERflRLHIGKGVQLECKGEGWHVRCLSDHRVFVQSYYLDREnGRHPGOflVHKIYPSHYIKVFDLROCHRQnQQQHHTfl 
LPQGS-GFCLGQLNLEQRSESVRRTRSKIGFGILLSKEPDG-VHflYHRGEHPIFVNSPTLDnPGGRRL—WRKVPPGYSIKVFD FERSGL 

LRQSVNHGFET 
LHQSVMHGFEH 
LRQSVHHGFEV 
LRQSVHQGFER 

-VYELTKHCTIRNSFVKGHGREYHRaDVTSTPCUIEIHLHGPLQHLBKVLTQHGSPHHPISSVS 
-VYELTKMCTIRMSFVKGHGaEYHRQDVTSTPCHIEIHLHGPLQHLDKVLTQMGSPLNPISSVS 
-VYELTKHCTIRHSFVKGHGREYHRQDVTSTPCHIEIHLHGPLQHLDKVLTQHGSPHHPISSVS 
-VYOLTRnCTIRMSFVKGHGHEYRRgTVTSTPCHIELHLNGPLQHLDKVLTQMGSPSVRCSSIlS 
-VYOLTRMCTIRMSFVKGHGflEYRRaTVTSTPCHIELHLNGPLQHLDKVLTQIIGSPSIRCSSVS LflQSVWIGFEfl 

QflflnflflQflfiflVRGNIPGPGSVGGIRPfllSLSflflflGIGVBOLRRLCILRHSFVKGHGPDYPRQSIKETPCHIEIHLHRHLQLLDEVLHTMPIBOPQPLD 
LQHR Dfl HHGPYDPHSVRISFRKGHGPCYSRQFITSCPCHLEILLMHHR 
LBRPHDHEF HUQPHTGFTVOISFVKGHGQCYTRHFISSCPCHLEVIFMSR 

Figure 24. Amino acid sequence alignment of Smad proteins (mouse) 
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target genes 

Figure 25. 'Canonical' TGF0 signalling pathway 
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their N-termini (Hayashi et al., 1997; Heldin et al., 1997; Massague, 1996; Nakao et 

al., 1997) (figure 24). R-Smads are recruited to the cytoplasmic tail of the type I 

receptor, at which both serines in the SXS motif in the C-terminus end of the R-

Smads are phosphorylated by the type I receptor. Upon being phosphorylated, the 

R-Smad dissociates from the receptor due to a conformational change, and 

associates with Smad4 to form a trimeric complex (two R-Smads and one C-Smad 

(Smad4); RC-Smad complex) which translocates into the nucleus and regulates 

target gene expression (Chacko et al., 2004; Jayaraman and Massague, 2000; 

Kawabata et al., 1998; Lo et al., 1998) (figure 25). Nuclear translocation of the RC-

Smad (Smad2/3/4 complex) requires WW domain containing transcription 

regulator-1/transcriptional co-activator with PDZ-binding motif (TAZ) which also 

recruits a transcriptional mediator complex to the DNA bound complex (Varelas et 

al., 2008). On DNA, Smads may form dimers depending on the other interacting 

proteins (Inman et al., 2002). 

1.3. 'Canonical' TGFp signalling pathway; DNA binding ofR-Smad 

The consensus common DNA sequence for RC-Smad complex binding is 5'-

GTCTAGAC-3'. The MH1 domain of Smad3 interacts with 5'-GTCT-3' and its 

reverse complement 5'-CAGA-3' (the Smad binding element; SBE) (Shi et al., 

1998). However, DNA binding affinity of the RC-Smad complex is very low, so in 

Smad target promoters, the binding site for the Smad interacting transcription 

factors are often found adjacent to the SBE (Feng et al., 2000; Qing et al., 2000). 

Smad3 represses the c-myc gene transcription in response to TGFp by binding to 
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the 5'-GGCGGG-3' sequence (Frederick et al., 2004). Smadl can also bind to the 

5'-GCCG-3' sequence with high affinity with BMP stimulation (Kim et al., 1997; 

Kusanagi et al., 2000). Smad4 also binds to 'GC-rich' sequence (Ishida et al., 

2000). However, a major isoform of Smad2 is incapable of binding to the DNA due 

to the disruption of the DNA contacting p-hairpin in the MH1 domain by sequence 

insertion (figure 24). An alternative spliced variant form of Smad2, which does not 

have this insert in the MH1 domain, is capable of binding to the DNA with a similar 

affinity of that of Smad3 (Shi et al., 1998; Yagi et al., 1999). 

A variety of sequence specific DNA binding transcription factors interact with 

Smad proteins physically and functionally. This allows the R-Smads to regulate 

diverse biological processes. 

1.4. 'Canonical' TGFfl signalling pathway; co-activator/co-repressor ofR-Smads 

R-Smad interacts not only with sequence specific DNA binding transcription 

factors but also with a large number of transcriptional co-activators or co-

repressors. The transcriptional activation properties of R-Smads depend on the 

interaction with CREB binding protein (CBP)/ p300. The MH2 domain of R-Smads 

and CBP/p300 interaction requires phosphorylation of the C-terminal SXS motif 

(Feng et al., 1998). P300 also interacts with Smad3 through its linker region 

independent of ligand activation (Wang et al., 2005a). The MH2 domain of Smad4 

does not recruit CBP/p300, but in the linker, there is a unique 48-amino acid 

proline-rich sequence (figure 24). Therefore, Smad4 is capable of interacting with 

p300 and supports transcription. This sequence is termed the Smad4 activation 
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domain (SAD) and it is required for the recruitment of p300 to RC-Smad complex 

(de Caestecker et al., 2000). P300/CBP-associated factor (P/CAF) and GCN5 

associate with Smad2 and -3 (Itoh et al., 2000), and GCN5 also interacts with 

Smadl, -5, and -8 (Kahata et al., 2004). For the up-regulation of the Smad2/3 

dependent TGFp response genes in epithelial cells, BRG1 mediated recruitment of 

SWI/SNF complex to the target promoter through interaction with Smad2/3 is 

required with exceptions of the stnad? and snoN genes (Xi et al., 2008). ARC, a 

component of a mediator complex, associates with Smad2, -3, and -4, but not with 

Smadl (Kato et al., 2002). TAZ (transcriptional co-activator with PDZ-binding 

motif/WW domain containing transcription regulator 1 (WWTR1)) interacts with 

the RC-Smad complex (Smad2/3/4), and it is required for the nuclear-cytoplasmic 

shuttling of the RC-complex. The TAZ/RC-Smad complex also recruits ARC 105 (a 

mediator complex component) (Varelas et al, 2008). Smad wing for transcriptional 

activation (Swift), a nuclear BRCT (BRCA1 C-terminal) domain protein, interacts 

with Smad2 (Shimizu et al., 2001). 

Several proto-oncogene products interact with R-Smads and repress their 

transcriptional transactivation properties. R-Smads and Smad4 interact with c-Ski 

and SnoN, and they repress TGFp inducing the pif"k4B and repressing the c-myc 

gene expression. Therefore, TGFP inducing growth arrest, mediated by Smad2/3 

activation, is reversed by the c-Ski and SnoN (Luo, 2004; Sun et al., 1999; Wang et 

al., 2000; Wotton and Massague, 2001; Wu et al., 2002). C-Ski interferes with the 

RC-Smad complex formation and also recruits HDACs to the RC-Smad complex 

through mSin3 or Nuclear receptor co-repressor (N-CoR) (Luo, 2004; Wu et al., 
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2002). c-Ski's inhibitory effect can be reversed by the ectopic expression of Ski 

interacting protein (SKIP), which is co-activator of Smad2/3 (Leong et al., 2001). A 

zinc finger transcription factor encoding oncogene, ecotropic viral integration site-

1 {evil), also represses R-Smads transcriptional activity through interaction with the 

MH2 domain of R-Smads and recruits C-terminal Binding Protein (CtBP) (Alliston 

et al., 2005; Izutsu et al., 2001; Kurokawa et al., 1998). A homeobox transcription 

factor, TGFp-induced factor homeobox-1 (TGIF1), interacts with the MH2 domain 

of R-Smads and recruits mSin3 and CtBP with HDACs, so TGIF inhibits R-Smads 

mediated transcription (Lo et al., 2001; Melhuish et al., 2001; Wotton et al., 2001; 

Wotton and Massague, 2001). 

2.1. 'Non-canonical' TGFft signalling pathway 

Beside the 'canonical' TGFP-Smad pathway, TGF|3 also activates a variety of 

signalling pathways independent of R-Smad; 'non-canonical' TGFp signalling 

pathways (Bakin et al., 2000; Bhowmick et al., 2001; Derynck and Zhang, 2003; 

Edlund et al., 2002; Moustakas and Heldin, 2005; Mulder and Morris, 1992; 

Shibuya et al., 1996; Yamaguchi et al., 1995). 

2.1.1. TGFp activate kinase 1 (TAK1) signalling 

TGFp activated kinase-1 (TAK1), which is MAPK kinase kinase 7 

(MKKK7/MAP3K7) (Shibuya et al., 1996; Yamaguchi et al., 1995), might be 

responsible for the MAPK activation by TGFp. A recent study showed that TAK1 

stably associates with the cytoplasmic tail of TGFp type I receptor through the GS 

domain in an unstimulated state. Upon ligand stimulation, TAK1 dissociates from 
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TGFP 

Figure 26. 'Non-canonical' TGF0 signalling; TAK1 activation 
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the receptor and auto-phosphorylates (but not by the type I receptor) for activation 

(Kim et al., 2009) (figure 26). Since TAK1 is an MKKK, it can stimulate the 

MAPK kinase (MKK) 4/7-JNK and MKK3/6-p38MAPK cascades (Ishitani et al., 

1999; Ninomiya-Tsuji et al., 1999). TAK1 plays a crucial role for TGFp inducing 

ECM production and fibrosis. Expression of the type I collagen and fibronectin 

depend on the MKK3-p38MAPK and MKK4-JNK signalling respectively (Hocevar 

et al., 2005; Zhang et al, 2000a). Increasing and enhancing TAK1 activity in the 

TAK1 transgenic mice lead to the p38MAPK activation and promote the interstitial 

fibrosis in myocardium (Zhang et al., 2000a). TGFp also regulates apoptosis 

through TAK1 activation (Sayama et al., 2006; Thiefes et al., 2005), and also TAK1 

cross-talks to the Wnt signalling (Smit et al., 2004). Interestingly, TAK1 is capable 

of interacting with all Smad proteins. This interaction is mediated by MH2 domain 

of the Smad and active kinase domain of TAK1, and inhibits the R-Smads 

transcriptional activity (Hoffmann et al., 2005). Therefore, activation of TAK1 by 

TGFp might be a part of negative feedback loop for the 'canonical' TGFp pathway. 

2.1.2. Mitogen activated protein kinase (MAPK) cascades 

TGFp activates all three branches of mitogen-activated protein kinase (MAPK) 

pathways, such as c-Jun N-terminal kinase (JNK) (Atfi et al., 1997; Hocevar et al., 

1999), p38MAPK (Chin et al., 2001; Hanafusa et al., 1999; Wang et al., 2002), and 

Extracellular signal regulated kinase (ERK) (Hartsough and Mulder, 1995; Mucsi et 

al., 1996). 
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TGFp induces the connective tissue growth factor {ctgf/ccnl) gene in the 

Ras/MEK/ERK signalling dependent manner but independent of R-Smad 

activation, and CTGF/CCN2 is required for ECM deposition and epithelial tissue 

repair (re-epithelialization) (Seeker et al., 2008). CTGF/CCN2 is also required for 

TGFp inducing focal adhesion kinase (FAK)/Akt activation (Shi-wen et al., 2006), 

and Tumour necrosis factor a (TNFa) inhibits TGFp induced ctgf gene expression 

(Yu et al., 2009). TGFp induced apoptosis in the renal tubular epithelial cell 

(tubular atrophy; due to chronic renal interstitial fibrosis) is independent of Smad2 

activation but requires p38MAPK activation (Dai et al., 2003). Either TGFp or 

BMP up-regulates the Cyclin dependent kinase (CDK) inhibitors (CKIs) such as 

cyclin-dependent kinase inhibitor-IB (p27Klf>1) and -1A (p21Cipl) through the 

Ras/MEK/ERK signalling activation in the intestinal epithelial cells. However, one 

of the targets of this kinase cascade is Smadl (Hartsough et al., 1996; Hartsough 

and Mulder, 1995; Mulder and Morris, 1992; Yue et al., 1999). Therefore, the 'non-

canonical' signalling pathway may crosstalk to the 'canonical' TGFp/R-Smad 

pathway. 

2.1.3. Phosphatidylinositol 3-kinase (PI3K)/Akt (Protein kinase B (PKB)) 

pathway 

TGFp mediated cell migration and epithelial to mesenchymal transition (EMT) are 

regulated by the RhoA/PI3K/Akt (PKB) signalling pathway. Interestingly, the 

phosphorylation of Smad2 SXS motif depends on this signalling pathway (Bakin et 

al., 2000). TGFp induced destabilisation of the E-cadherin-mediated cell-cell 
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adhesion is regulated by the phosphorylation of p-catenin through the activation of 

PI3K, and it is independent of the RC-Smad complex activity (Vogelmann et al., 

2005). TGFp type I receptor physically interacts with PI3K (p85), and PI3K activity 

is enhanced by the activation of the TGFp receptor. Interestingly, Smad7 prevents 

TGFp inducing PI3K activity (Yi et al., 2005). In human lung fibroblasts, TGFp 

induces a5j33 integrins, which is required for FAK and c-Src kinase activation. 

Interestingly, TGFp activates p38MAPK but not Smad2/3 in a Src family non

receptor tyrosine kinases dependent manner (Pechkovsky et al., 2008). However, in 

an early stage colon carcinoma cell line (FET/DNRII), TGFp inhibits the 

PI3K/Akt/survivin signalling pathway, so loss of TGFp signalling interferes with 

apoptosis and promotes carcinogenesis (Wang et al., 2008a). 

2.1.4. Rho signalling 

The TGFp 'non-canonical' signalling pathway regulates axon growth. Actin 

cytoskeleton is regulated by TGFp, which activates Rho GTPases Rhol and Rac 

(Ras-related C3 botulinum toxin substrate (Rho family, small GTP binding 

protein)), and LIM kinase 1 (LIMK1), which require for axon growth (Ng, 2008). 

TGFp induction of RhoA/Rho-kinase activity is also required for EMT (Kaartinen 

et al., 2002). However, although ectopic expression of Smad7 or a dominant 

negative form of Smad3 (DN-Smad3) silences TGFp 'canonical' pathway, Smad7 

or the DN-Smad3 could not inhibit TGFp inducing EMT. TGFp activated RhoA 

signalling is also not inhibited by Smad7 (Bhowmick et al., 2001). TGFP induced 
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RhoA and Cell division cycle 42 (GTP binding protein, 25kDa/Cdc42) activation 

surprisingly requires Smad7 (Edlund et al., 2004). 

Vascular cell adhesion molecule-1 (VCAM1), which is a ligand ofa4pl integrin, 

inhibits the pl90RhoGAP mediating EMT induced by TGFp (Dokic and Dettman, 

2006). Interestingly, the other classes of small GTPases also regulate TGFP 

signalling. For example, an internalization of TGFp receptor complex by 

endocytosis is regulated by the small GTPases Rab, RalA/Ral-binding protein 1 and 

Rap2, and Ran GTPase involves in the RC-Smad complex translocation to the 

nucleus through the nuclear pores (Kardassis et al., 2009). Therefore, there might be 

crosstalk between TGFp and small GTPases signalling. 

3.1. Cross talk between 'canonical' and 'non-canonical' TGFp signalling 

pathway; Effect of linker phosphorylation on R-Smad activity 

R-Smads are phosphorylated at both serines in the SXS motif in their C-termini by 

the type I receptor upon ligand stimulation. In addition to these phosphorylations, 

R-Smads are also phosphorylated at their linker region, in which there are numbers 

of S/TP sites (figure 24). These sites are targeted by the proline directed kinases 

such as Mitogen activated protein kinases (MAPKs) or Cyclin dependent kinases 

(CDKs). Therefore, 'non-canonical' TGFp signalling pathway especially through 

TAK1 activation might target these sites and regulate the R-Smad activity (Derynck 

and Zhang, 2003; Massague, 2003) (figure 26). In this regard, TAK1 activation 

might be a part of negative feedback loop for the R-Smads activation by TGFp. In 

fact, TGFP induces phosphorylation of Smad3 at the C-terminus by the type I 
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receptor and the linker regions by GSK3. Inhibition of GSK3 activity reduces linker 

phosphorylation, which enhances Smad3 transcriptional activity by the increased 

interaction with CBP (Millet et al., 2009). Furthermore, the C-terminal tail 

phosphorylation of the type I TGFp receptor is a prerequisite for the 

phosphorylation of the linker regions of Smad3 by GSK3 and CDKs (Wang et al., 

2009). Therefore, the membrane localization of the R-Smad is required for the 

linker phosphorylation. The linker phosphorylation also marks R-Smads for 

degradation. The phosphorylation of the linker regions increases Pinl (a 

peptidylprolyl cis-trans isomerase) interaction with the linker legions of Smad2/3. It 

further recruits Smad ubiquitin regulatory factor-2 (Smurf2) to the linker regions, 

and Smurf2 targets the Smad2/3 for ubiquitin mediated degradation (Nakano et al., 

2009). Therefore, the phosphorylation of the linker regions of the R-Smads may 

serve as a negative feedback loop for the R-Smad activation by TGFp. In addition, 

TAK1 physically interacts with all R-Smads and inhibits transcriptional activity 

(Hoffmann et al., 2005). Therefore, TAK1 may negatively feedback TGFp . 

'canonical' signalling pathway by multiple mechanisms. 

The furin gene, which encodes a predominant convertase for the maturation of a 

number of growth/differentiation factors, is regulated by the TGFp signalling in an 

R-Smad dependent manner. Although the phosphorylation sites were not specified, 

Smad2 phosphorylation and nuclear translocation are enhanced by TGFp and also 

mediated by ERK activity in HepG2 cells. Thus, Smad7 and MEK inhibitors 

interfere with furin gene up-regulation by TGFp (Blanchette et al., 2001a; 

Blanchette et al., 2001b). 
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3.1.1. Cross talk by the posttranslational modification of the linker; 

phosphorylation/sumolylation 

R-Smads activity is not only regulated by the phosphorylation at the both serines in 

the SXS motif at C-terminus but also the phosphorylations at the linker region of R-

Smads. The linker region has several S/TP sites, which are targeted by the proline 

directed kinases such as Mitogen activated protein kinases (MAPKs) or Cyclin 

dependent kinases (CDKs). However, the effect of the phosphorylation of these 

sites on the R-Smad activity seems to be context dependent. ERK phosphorylates 

the linker region of Smad 1/2/3 and antagonizing the anti-proliferative affect of 

TGF(3 by inhibiting the nuclear translocation of the RC-Smad complex 

(Kretzschmar et al., 1997a; Kretzschmar et al., 1999; Kretzschmar et al., 1997b; 

Pera et al., 2003). The antagonistic relationship between BMP and FGF8/IGF2 for 

neural induction during embryo development can be explained that Smadl 

activation by the BMP signalling inhibited by the linker phosphorylation by the 

MAPK stimulated by the FGF and IGF (Aubin et al., 2004; Pera et al., 2003). 

However, the other groups reported that Ras/ERK or JNK inducing phosphorylation 

in the linker region has no effect or even enhances the nuclear translocation of the 

RC-Smad complex (de Caestecker et al., 1998; Engel et al., 1999; Lehmann et al., 

2000). Furthermore, p38MAPK co-operates with the Rho/Receptor for activated 

protein kinase C (ROCK) signalling and phosphorylates the serines residues in the 

linker region of Smad3. These modifications enhance TGFP mediated Smad 

dependent down-regulation of the c-myc and up-regulation of p21 ip~ gene 

expression (Kamaraju and Roberts, 2005). However, in the human kidney epithelial 
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cell line, R0CK1 physically interacts with the linker region of Smad3 and interferes 

with Smad3 DNA binding (Okano et al., 2006). The linker region is also 

phosphorylated by CDKs. CDK2/4 inhibit the Smad2/3 dependent transcription and 

TGFp's anti-proliferative effect by the phosphorylation of the linker regions of 

Smad2/3. However, the target sites of the CDKs are different from that of ERK 

(Matsuura et al., 2004). 

Small C'-terminal domain phosphatases 1, 2, and 3 (SCP1-3) dephosphorylate not 

only Smadl's C'-terminal tail (SXS) but also the linker region of Smad 1/2/3. This 

dephosphorylation causes inactivation of Smad 1 but enhancement of Smad2/3 

activity stimulated by TGF(3 (Sapkota et al., 2006). PP2A (Serine/threonine protein 

phosphatase-2A) interacts with the BMP type II receptor and dephosphorylates the 

linker region of Smadl and enhances the nuclear translocation of Smadl 

(Bengtsson et al., 2009). 

The linker region is not only phosphorylated but also post translationally modified 

by the other means. For example, the linker region of Smad4 is sumolylated by the 

E3 ligases such as Protein inhibitor of activated STAT 1 (PIAS1) and PIASxP upon 

TGFp stimulation. Interestingly, p38MAPK not only stabilized PIASxP protein but 

also enhanced pasxfi gene expression, and consequently p38MAPK activates Smad-

dependent transcription by enhancing SUMO-1 (Small ubiquitin-like modifier-1) 

modification on the linker region of Smad4 (Ohshima and Shimotohno, 2003). 

PIASy interacts with the MH2 domain of Smad7 and Smad3, and sumoylation of 

Smad3 by PIASy, in this case, suppresses Smad3 activation by TGFp (Imoto et al., 

2003). In contrast to PIASs, other E3 ubiquitin ligase, Itch (itchy E3 ubiquitin 
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protein ligase homolog), promotes Smad2 ubiquitination, which facilitates the 

Smad2/TGFp receptor complex formation and increases the phosphorylated Smad2 

and Smad2 dependent transcription (Bai et al., 2004). 

Since Smad4 and R-Smads have a nuclear export signal (NES) in the linker region 

(Smadl also has the second NES), the post-translational modification (PTM) of the 

linker region of R-Smads and Smad4 may regulate sub-cellular localization of the 

Smad proteins (Xiao et al., 2003). The PTM of the linker region may also affect on 

the recruitment of p300 since the linker region of Smad4 and Smad3 has the SAD, 

which is required for the p300 docking (Inman, 2005). 

4.1. Functions of the inhibitory Smads (I-Smads); Smad6 

Smad6 is an inhibitory Smad (I-Smad) for 'canonical' BMP signalling. Smad6 has 

a highly conserved MH2 domain, but the N-terminal MH1 domain is divergent to 

the other Smads. Smad6 interacts with the type I BMP receptors and prevents the 

R-Smads (Smad 1/2 but not Smad3) recruitment to the type I receptors. 

Consequently, 'canonical' BMP signalling is repressed by Smad6 (Goto et al., 

2007; Imamura et al., 1997) (figure 25). This interaction is enhanced by Transducer 

of ErbB-2.1 (Tobl), which associates with Smad6 at the plasma membrane 

(Yoshida et al., 2003). However, another group reported that Smad6 has no effect 

on the phosphorylation of Smadl by the type I receptor stimulated by the BMP. 

Smad6 instead physically associates with phosphorylated Smadl and competes for 

the RC-Smad complex formation with Smad4 (Hata et al., 1998). In addition, a few 

mechanisms by which Smad6 inhibits the BMP signalling have been proposed. 
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First, Smad6, but not Smad7, forms a DNA bound complex with both Homeobox 

C8 (HoxC8) and HoxA9. Smad6 inhibits interaction of Smadl with HoxC8, and 

consequently the BMP signalling (Bai et al., 2000). Smad6 and Smadl interacts 

with most of homeobox (Hox) proteins and Smad6 inhibits Hox proteins' 

transcriptional activation properties (Li et al., 2006b). Second, Smad6 binds DNA 

and recruits class I, but not class II, HDACs and inhibits gene expression stimulated 

by BMP (Bai and Cao, 2002). Third, Smad6 also interacts with the N-terminus of 

the glucocorticoid receptor (GR) through its MH2 domain and suppresses the GR-

mediated transcriptional activity in vitro by recruiting HDAC3 (Ichijo et al., 2005). 

Smad6 also recruits CtBP through its linker region which has a CtBP binding motif, 

PLDLS (Lin et al., 2003). The mutation of the CtBP binding motif in Smad6 causes 

neutralization of the inhibitory effect of Smad6 on the BMP inducing gene 

expression, for example the idl gene (Lin et al., 2003). Fourth, Smad6 also inhibits 

'non-canonical' BMP signalling pathway though interaction with TAK1. Smad6 

inhibits TAKl/p38MAPK activation by BMP2 and consequently BMP2 inducing 

apoptosis in mouse hybridoma MH60 cells (Kimura et al., 2000). Finally, 

Osteoblast differentiation induced by BMPs and exogenous expression of an active 

BMP type I receptor in a multi-potent mesenchymal cell, C2C12, is inhibited by 

Smad6 and the other I-Smad, Smad7 (Fujii et al., 1999; Valcourt et al., 2002). 

Smad6 reverses BMP2 but not Activin induced growth arrest, and Smad7 

antagonizes Activin's but not BMP2's anti-proliferative effect (Ishisaki et al., 

1999). 
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4.1.1. Smad6 gene expression 

Expression of the smad6 gene is remarkably restricted to the developing heart, eyes, 

and limbs during embryo development, and Smad6 expression is induced by BMP2 

and down-regulated Noggin, an antagonist of BMP (Vargesson and Laufer, 2009; 

Yamada et al., 1999). In agreement with this observation, the smad6-l- mouse has 

multiple cardiovascular abnormalities (Galvin et al., 2000). 

The promoter/enhancer region of the smad6 gene has a Smad (Smadl/5) binding 

site, which responds to the BMP stimulation and is termed as proximal BMP-

responsive element (PBE) (Nakanishi et al., 2000). OAZ/Zinc finger protein-423, a 

critical co-activator of Smadl/4, enhances smad6 expression upon BMP stimulation 

(Ku et al., 2006). BMP2 also induces runt-related transcription factor-2 (runx2), 

which binds to the smad6 promoter and activates the smad6 gene expression. 

Smadl and Smurfl are also recruited to the PBE and regulate the smad6 gene 

transcription positively and negatively (Wang et al., 2007). Interestingly, TGFp 

antagonizes the BMP signalling through inducing smad6 expression (Shen et al., 

2007). It suggests that there is a cross-talk between the TGFp and BMP signalling 

through I-Smads. 

Finally, besides smad6 gene regulation, Smad6 protein activity is inhibited by 

Associated molecule with the SH3 domain of signal transducing adaptor molecule 

((SH3 domain and ITAM motif) (STAM)) (AMSH). AMSH interacts with Smad6 

in the cytoplasm and sequestrates Smad6 from other binging partners (Itoh et al., 

2001). 
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4.2. Functions of the inhibitory Smads (I-Smads); SmadJ 

Smad7 is the other I-Smad. Structurally, Smad7 is very similar to Smad6; Smad7 

has a highly conserved MH2 domain at its C-terminus but less conserved MH1 

domain at its N'-terminus (figure 24). Smad7 inhibits the TGFp/Nodal signalling by 

interference with the R-Smads (Smad2/3) phosphorylation by the type I receptors 

(Hayashi et al., 1997). Smad7 also interferes with the type I BMP receptor mediated 

R-Smad phosphorylation (Souchelnytskyi et al., 1998) (figure 25). Serine/threonine 

kinase receptor associated protein (STRAP), which associates with both the type I 

and II TGFp receptors, co-operates with Smad7, but not Smad6, to interfere with 

the access of Smad2/3 to the receptor. The four basic amino acids in the C-terminus 

of Smad7 protein are critical for the association with the type I receptor (Datta et 

al., 1998; Datta and Moses, 2000; Mochizuki et al., 2004). STRAP also associates 

with Pyruvate dehydrogenase kinase-1 (PDK1). STRAP/PDK1 complex co

operates with Smad7 and enhances the inhibition of TGFp 'canonical' signalling 

(Seong et al., 2005) (figure 27A). PDK1 interacts with Smad2, -3, -4, and -7, and 

this interaction enhances PDK1 kinase activity but inhibits R-Smad transcriptional 

activation properties. Therefore, PDK1 and Smad7 may co-operate to inhibit the 

TGFp 'canonical' signalling pathway by two mechanisms (Seong et al., 2007) 

(figure 27A). The salt-inducible kinase (sik), which is induced by TGFp in a Smad4 

dependent manner, also physically associates with Smad7 and enhances degradation 

of the type I TGFp receptor through a complex formation with Smad7/SIK/type I 

receptor. Therefore, SIK may participate in the negative feedback of TGFp 

'canonical' signalling (Kowanetz et al., 2008) (figure 27B). 
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Figure 27. Smad7 mediated regulation of TGFp signalling 
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However, the most established inhibitors for Smad7 dependent inhibition of TGFp 

signalling pathway are E3 ubiquitin ligases. For example, Smurf interacts with the 

type I receptor through I-Smads and promotes receptor degradation. Smurf interacts 

with an evolutionarily conserved PY motif in the linker region of Smad7 (Chong et 

al., 2006). Therefore, Smad7 works as a bridging protein between the TGFp 

receptor and Smurfl (Murakami et al., 2003) (figure 27B). SmurfZ also binds 

Smad7 and targets the TGFp type I receptor for degradation (Ebisawa et al., 2001; 

Kavsak et al., 2000; Ogunjimi et al., 2005). Furthermore, E3 ubiquitin ligases such 

as Tiull (TG1F (TGFp induced factor homeobox 1) interacting ubiquitin ligase-1) 

and NEDD4-2 (Neural precursor cell expressed, developmentally down-regulated 

4-2), inhibit TGFp signalling in a similar manner (Kuratomi et al., 2005; Seo et al., 

2004) (figure 27B). Atrophin 1 -interacting protein 4 (AIP4), as an E3 ubiquitin 

ligase, also interacts with Smad7, but AIP4 targets Smad7 but not the TGFp 

receptor for ubiquitin mediated degradation. Therefore, AIP4 activates the TGFp 

pathway by removing Smad7 (Lallemand et al., 2005) (figure 27B). Smad7 and 

Smad6 also enhance degradation of Smad4 in co-operation with Smurfl. Smad7 co-

localizes with Smad4 in the cytoplasm, and this co-localization brings Smurfl to 

Smad4. Consequently, Smurfl targets Smad4 for ubiquitin mediated degradation, 

and Smad7 inhibits the TGFp pathway through reduction of C-Smad (Moren et al., 

2005) (figure 27B). Smad7 itself is also targeted by the TGFp induced Smurfl 

mediated ubiquitin-proteolysis. HAT, p300, interacts with Smad7 and acetylates 

two lysine residues at the N'-terminus of Smad7. Since these lysines are also 
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targeted by the ubiquitination by Smurfl, p300 protects Smad7 from TGFp induced 

degradation by the competition for the PTM of these lysines with Smurfl (Gronroos 

et al., 2002) (figure 28B). Another E3 ubiquitin ligases positively regulate TGFp 

'canonical' pathway by interacting with Smad7 is Arkadia, which was originally 

identified as a Nodal signalling enhancer (Episkopou et al., 2001; Niederlander et 

al., 2001), physically interacts with Smad7 but not the TGFP receptor and leads to 

poly-ubiquitination of Smad7. Consequently, poly-ubiquitinated Smad7 by Arkadia 

is targeted for degradation. TGFp/BMP signalling is therefore enhanced by ectopic 

expression of Arkadia, and Arkadia is required for TGFp/BMP induced R-Smad 

activation (figure 27B). Interestingly, since Arkadia expression is down-regulated 

by TGFp, Arkadia may be part of a negative feedback loop for TGFp signalling 

(Koinuma et al., 2003). The Arkadia/Smad7 interaction is scaffolded by Axin, and 

Axin enhances Smad7 degradation mediated by Arkadia and potentiates TGFp 

signalling pathway (Liu et al., 2006). Arkadia also enhances degradation of the co-

repressors for R-Smads, SnoN and c-Ski, by ubiquitination which also potentiates 

TGFp 'canonical' signalling pathway (Nagano et al., 2007). 

Furthermore, Smad7 recruits Growth arrest and DNA damage-34 (GADD34) 

protein to the receptor. Since GADD34 is a regulatory subunit of the protein 

phosphatase-1 (PP1), the type I TGFP receptor is dephosphorylated and inactivated 

by the PP1 (Shi et al., 2004) (figure 27C). Smad7 interacts with TAK1-associated 

Binding Protein2 and -3 (TAB2/3) and interferes with the TAK1 activation by 

TGFp. It causes inactivation of NF-KB, which is a key transcriptional regulator for 

pro-inflammatory cytokine induction by TNFa (Hong et al., 2007). Ectopic 
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expression of Smad7 can also interfere with Rho activation, which is potential 

down-stream target of TGFp, and cytoskeletal reorganization by TGFp in Swiss 

3T3 fibroblasts (Vardouli et al., 2005). 

4.2.1. Negative targets ofSmad7 

In support of the inhibitory role of Smad7 on the TGFp 'canonical' signalling 

pathway, there are a few examples in which Smad7 negatively regulates R-Smad 

dependent TGFp target genes. For example, the cyclin-dependent kinase inhibitor-

1A (p21 ip~ ) gene induction by activated Smad2/3 by TGFp and trans-acting 

transcription factor 1 (Spl) can be inhibited by ectopic expression of Smad7 

(Pardali et al., 2000). Smad7 also inhibits Activin A-induced expression of p21Cip"1 

and hypo-phosphorylation of retinoblastoma protein (Rb) and reverses anti

proliferative effect and apoptosis induced by Activin A in the B lineage cells (HS-

72) (Ishisaki et al., 1998). Smad7 inhibits the MEKK1, but not MEK1 or TAK1, 

induced Smad2 activation (Brown et al., 1999). MEKK1, but not MEK1 or TAK1, 

mediated enhancement of the transcriptional activation properties of Smad2 and the 

nuclear translocation of Smad2/4 are inhibited by ectopic expression of Smad7 

(Brown etal., 1999). 

4.2.2. Expression of the Smad? gene 

Smad7 expression is up-regulated by TGFp stimulation. Therefore, Smad7 forms a 

negative feedback loop for 'canonical' TGFp signalling pathway (Nakao et al., 

1997). The promoter of the smad7 gene has an SBE, and it responds to TGFp and 

an ectopic expression of Smad3 (Denissova et al., 2000; Nagarajan et al., 1999) 
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(figure 28A). Since R-Smad often co-operates with other classes of transcription 

factor for the regulation of its target genes, the smadl gene is also co-regulated by a 

variety of transcriptional regulators in an R-Smad dependent and independent 

manner. TGFp activated Spl and API co-operate with Smad2/3 and induces the 

smad7 gene transcription (Brodin et al., 2000). Although the SBE bound protein 

complex contains Smad2/3/4, genetic targeting study of the smad2, -3, or -4 gene 

indicated that Smad3 and Smad4, but not Smad2, are required for TGFJ3 inducing 

the smadl gene expression (von Gersdorff et al., 2000). Ski, a co-repressor for 

Smad4, negatively regulates the smad7 gene transcription depending on the binding 

of the Smad4 on the SBE (Denissova and Liu, 2004). Evi-1 and CtBP also repress 

the smadl gene transcription by interacting with the MH2 domain of the R-Smads 

(Alliston et al., 2005). A bHLH transcription factor, Transcription factor binding to 

IGHM enhancer-3 (TFE3), and Smad3 synergistically induces the smadl gene 

expression transcriptionally through binding to an E-box and an adjacent SBE 

respectively with TGFp stimulation (Hua et al., 2000; Stopa et al., 2000). BMP also 

induces the smadl gene transcription through multiple BMP response elements 

(BREs). BRE1 and -2 are located in the 5'-regulatory region of the smadl gene, and 

the third one is located in the first intron (I-BRE). The BRE1 and -2 activities are 

regulated by Smadl/4, and the I-BRE is activated by GATA binding protein-1 

(GATA1), -5, or -6 factors (Benchabane and Wrana, 2003). JAK1/STAT1 (Ulloa et 

al., 1999) and NF-tcB/RelA (Bitzer et al., 2000) are activated by Interferon-y (IFNy) 

and antagonises TGFp action by the up-regulation of the smadl gene. Furthermore 

norepinephrine, a a 1-adrenergic agonist, induced the smadl gene expression is 
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mediated by activation of NF-KB in hepatocytes (Kanamaru et al., 2001). In 

osteosarcoma Saos2 osteoblasts, NF-KB is constitutively activated, and this leads to 

a higher expression level of Smad7 which prevents BMP2 inducing osteoblast 

differentiation (Eliseev et al., 2006). However, another group reported that an 

ectopic expression NF-KB/p65 or TNFa activated NF-KB inhibits the smad.7 gene 

expression. Since p300 expression relieves the NF-KB'S inhibitory effect on the 

smad7 gene expression, the competition between Smad2/3 and NF-KB for p300 

binding has been suggested (Nagarajan et al., 2000). However, another study 

showed that TNFa inhibits TGFp target gene expression by the activation of API 

but not Smad7, and the smadl gene expression levels are not affected by TGFp 

stimulation (Verrecchia et al., 2000). In breast, endometrial, and ovarian cancer cell 

lines, the smad7 gene expression was up-regulated by HER/Neu (v-erb-b2 

erythroblastic leukemia viral oncogene homolog, neuro/glioblastoma derived 

oncogene homolog) and ER81 (ets variant-1) through binging to two Ets binding 

sites in the smad7 promoter, and either ERK or TAKl/p38MAPK activity is 

required (Dowdy et al., 2003) (figure 28A). Furthermore, the smad7 gene 

expression is an immediate-early gene target of TGFp in fibroblasts (Mori et al., 

2000). However, Ultraviolet (UV) irradiation blocks TGFp 'canonical' pathway 

through the degradation of the type II receptor. In addition, the smad7gQt\e 

transcription is up-regulated by UV irradiation independent of the TGFp signalling 

but depending on the API site bound c-Jun and c-Fos (Quan et al., 2001, 2005). It 

was also reported that IL-6 family cytokines up-regulate the smad7 gene 

transcription by activation of STAT3 through gp!30 (Jenkins et al., 2005). IL-7 
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protects pulmonary fibrosis induced by TGFP through up-regulation of the smad7 

gene expression via activation of the JAK1/STAT1 signalling pathway (Huang et 

al., 2002). Interferony (IFy) can induce the smad7 gene transcriptionally through 

JAKl/Y-box protein-1 (YB1), which binds a bona fide binding site in the smad7 

promoter (Dooley et al., 2006) (figure 28A). 

Smad7 is also regulated by the PTM. Acetylation of two lysine residues in Smad7 

protein controls its stability. Acetylation by p300 increases Smad7 stability by 

preventing the Smurf mediated ubiquitin proteosomal degradation induced by 

TGFp, and deacetylation by HDACs enhances the Smad7 ubiquitination 

(Simonsson et al., 2005). SIRT1, a class III HDAC, interacts with N'-terminus of 

Smad7 and deacetylates these lysines and facilitates Smurf 1 binding to the Smad7 

and enhances Smad7 degradation (Kume et al., 2007) (figure 28B). Therefore, 

Smad7 expression is regulated at the transcriptional level and also by the PTMs. 

4.2.3. Sub-cellular localization ofSmad7 

As a TGFp 'canonical' signalling pathway inhibitor and a part of a negative 

feedback loop, Smad7 needs to be localized in the cytoplasm but not in the nucleus. 

Therefore, the regulation of Smad7 sub-cellular localization is critical for its 

inhibitory role. Smad7 resides in the both cytoplasm and nucleus, but upon TGFp 

stimulation, Smad7 is exported from the nucleus and localized in the cytoplasm. A 

deletion mutant form of Smad7, which lacks C-terminal MH2 domain, is mainly 

localized in the cytoplasm independent of TGFp stimulation. Therefore, the C-

terminus is required for nuclear translocation of Smad7 (Itoh et al., 1998). 
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However, it has also shown that N-terminal of Smad7 controls its sub-cellular 

localization, and a chimera of the N'-terminus Smad7 and the MH2 domain of 

Smad6 more efficiently inhibits TGFp 'canonical' signalling (Hanyu et al., 2001). 

However, another group found that TGFp has no effect on the Smad7 sub-cellular 

localization in mink lung epithelial (MvlLu) cells but the type of cell culture 

surface does affect it. Smad7 mainly localized in the cytoplasm if the cells were 

cultured on plastic or on fibronectin-coated glass plates. In contrast, if the cells are 

on glass, most of the Smad7 protein localizes in the nucleus (Zhu et al., 1999). 

A protein-protein interaction controls Smad7 sub-cellular localization. Smurfl 

interacts with and ubiquitinates Smad7, and the ubiquitinated Smad7/Smurfl 

complex translocates to the cytoplasm (Ebisawa et al., 2001). The nuclear export of 

the Smad7/Smurfl complex is mediated by a nuclear export receptor, exportin-1 

(CRM1), and C-terminal nuclear export signal (NES) of Smurfl is required for this 

CRM1 dependent nuclear export of the Smad7/Smurf complex (Tajima et al., 

2003). The N-terminal conserved-2 domain of Smurfl requires for membrane 

localization of the Smad7/Smurfl complex but not association with Smad7 (Suzuki 

et al., 2002) (figure 29). 

Similarly, WWRl/Tiul-1 associates with Smad7 and co-translocates to the 

cytoplasm with Smad7, and enhances Smad7 and the TGFp receptor complex 

formation. Therefore, functionally, WWRl/Tiul-1 inhibits TGFp 'canonical' 

pathway through enhancement of the cytoplasmic localization of Smad7 (figure 29). 

WWRl/Tiul-1 cold not interact with R-Smads (Komuro et al., 2004), but Smad2 

was reported to associate with Tiul-1 by another group (Seo et al., 2004). PDK1 
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also interacts with Smad2, -3, -4, and -7 with its pleckstrin homology (PH) domain. 

Interestingly, upon stimulation of TGFp, PDK1 prevents nuclear translocation of 

Smad2, -3, and -4, and surprisingly inhibits the nuclear export of Smad7 (Seong et 

al., 2007). COP9 constitutive photomorphogenic homolog subunit 5 (Jabl/CSN5), a 

subunit of the Constitutive photomorphogenic-9 (COP9) signalosome complex, 

interacts with Smad7. Upon complex formation, it translocates to the cytoplasm 

from the nucleus, and then the Smad7 is targeted by degradation (Kim et al., 2004). 

Since Smad7 is an important inhibitory molecule for TGFp 'canonical' signalling 

pathway, these molecules, which regulate Smad7 sub-cellular localization, 

potentiate or de-sensitize TGFp signalling. Therefore, it provides the cells to 

regulate TGFp signalling pathway by different way other than manipulating the 

'core' components of this pathway. 

4.2.4. Nuclear function ofSmad7 

In addition to the established 'canonical' role for TGFp signalling inhibitor in the 

cytoplasm, role of Smad7 in the nucleus has been speculated. Smad7 associates 

with the class I HDAC in the nucleus (Bai and Cao, 2002) and sirtuin (silent mating 

type information regulation-2) homolog-1 (SIRT1), a class III HDAC (Kume et al., 

2007). Smad7 binds to the SBE through its MH2 domain in the plasminogen 

activator inhibitor-1 (pail) gene promoter. On the SBE, Smad7 prevents RC-Smad 

DNA binding to the SBE, therefore, inhibits the TGFp induced R-Smad dependent 

transcription of the pail gene (Zhang et al., 2007a). Smad7 can be phosphorylated 

at serine 249 independent of TGFp stimulation, and this phosphorylation has no 
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effect on the ability of Smad7 to inhibit the TGFp/BMP7 'canonical' signalling but 

has an effect on transcriptional potential of Smad7 without changing its stability or 

subcellular localization (Pulaski et al., 2001). Finally, TGFp induces expression of 

the transgelin/smooth muscle 22 protein (tagln/sm22a) gene transcriptionally 

through enhancing the SRF DNA binding to the promoter. Smad7, in the nucleus, 

physically interacts with SRF, and this interaction is regulated by TGFp negatively 

(Camoretti-Mercado et al., 2006) (figure 29). Therefore, Smad7 may have a nuclear 

function beside the inhibition of 'canonical' TGFp signalling pathway at the plasma 

membrane receptor level. 

4.2.5. Biological function ofSntad7 

In addition to a large number of studies that indicate Smad7 plays biological roles 

antagonizing the TGFp signalling (Hayashi et al., 1997; Nakao et al., 1997; 

Whitman, 1997), other studies including reports from our laboratory suggest that 

Smad7 may have physiological roles independent of its inhibitory effect on the 

TGFp signalling (Kollias et al., 2006; Mazars et al., 2001; Pulaski et al., 2001). 

Smad7 and Smad6 inhibit BMP2 induced chondrocytic expression and osteoblastic 

differentiation as inhibitors of the BMP pathway (Valcourt et al., 2002). 

Interestingly, TGFp stimulation or ectopic Smad3 and Smad2 expression inhibit 

adipocyte differentiation. However, ectopic expression of Smad7 and Smad6 also 

prevent adipogenesis even though they are inhibitors of the 'canonical' TGFp/BMP 

signalling pathway (Choy et al., 2000). Similarly, an ectopic expression of Smad7 

interferes with the activation of R-Smads (Smadl/5) by the BMP or Activin type I 
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receptors and the BMP6 inducing osteoblast and chondrogenic differentiation of 

C2C12 (Fujii et al., 1999). DnaJ (Hsp40) homolog, subfamily A, member 3 

(DNAJA3/Tidl) interacts with MH2 domain of Smad7 and blocks the dorsalizing 

and BMP-dependent regulatory activity of Smad7 in developing Xenopus embryos 

(Torregroza and Evans, 2006). The mouse has the expression cassette of the smad7 

but not samd6 gene. Surprisingly, Smad7, but not Smad6, down-regulates the 

phosphorylation of p38MAPK and the chondrocyte differentiation induced by BMP 

(Iwai et al., 2008). Epithelial-mesenchymal transition (EMT), which is required for 

the normal tissue patterning and also carcinoma invasiveness, is induced by 

TGFp/Activin, but not BMP members of TGFp superfamily in normal epithelial 

cells. Ectopic expression of Smad7 prevents the EMT by TGFp/Activin (Valcourt et 

al., 2005). In agreement with above observations, single nucleotide polymorphisms 

(SNPs) in the smad7 gene were identified in the samples of 940 individuals with 

familial colorectal tumours (Broderick et al., 2007). Smad7 also enhances 

degradation of p-catenin and antagonizes the Wnt signalling and interferes with the 

function of the keratinocytes (Han et al., 2006). Furthermore, Smad7 physically 

interacts with MyoD and promotes skeletal muscle differentiation independent of its 

inhibitory effect on the TGFp 'canonical' signalling pathway (Kollias et al., 2006). 

4.2.5.1. Role of Smad7 in embryonic development 

BMP inhibits neural induction, and inhibition of this signalling is required for the 

neural marker gene expression. Therefore, a role of I-Smads in this process has 

been speculated (Chang and Harland, 2007). The BMP/ALK2/R-Smad pathway 
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regulates cardiac (left-right) orientation, and Smad7 and Smadl are the down

stream targets of BMP signalling (Ramsdell and Yost, 1999). In embryos 

expressing a mutated form of Smad7 (deletion of the MH2 domain), heart 

development is defective, and most embryos died pre-natally due to multiple 

defects in cardiovascular development. This indicates that Smad7 is essential for the 

development and function of the heart in vivo (Chen et al., 2009a). In the 

developing limb buds in a chick embryo, Smad7 and -6 are expressed in the regions 

expressing BMPs. In the limb mesenchyme, BMP signals may regulate Smad7 and 

-6 expression (Vargesson and Laufer, 2009). Mis-expression of Smad7, but not 

Smad6, in pre-chondrogenic cells causes inhibition of chondrocyte differentiation 

through down-regulation of p38MAPK, which is normally activated by BMP (Iwai 

et al., 2008). 

4.2.5.2. Pathophysiological role ofSmad7 

Scleroderma is a chronic systemic disease that leads to fibrosis of affected organs. 

Affected tissue shows hyperactive TGFp/Smad2/3 activity and reduced expression 

of Smad7. Ectopic expression of Smad7 reverses this pathological chronical 

activation of TGFJ3 signalling (Dong et al., 2002). In a progressive form of 

tubulointerstitial fibrosis, both Smurfl and -2 are up-regulated, and their target, 

Smad7 protein, but not the mRNA level, is reduced progressively, and nuclear 

phosphorylated Smad2 and -3 are increased (Fukasawa et al., 2004). In contrast, in 

inflammatory bowel disease (IBD) mucosa and purified mucosal T cells, Smad7 

expression is up-regulated, and pro-inflammatory cytokines are chronically 
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produced. TGFp signalling restricts production of these cytokines in the unaffected 

tissues, and the inhibition of Smad7 reduces the inflammatory reaction in the IBD 

(Monteleone et al., 2001). Activation of NF-KB, which is a key transcription factor 

for up-regulation of pro-inflammatory cytokines, is a negative down-stream target 

of TGFp signalling pathway. In the IBD gut inflammation, TGFp could not block 

NF-KB activation due to high level of the Smad7 expression (Monteleone et al., 

2004). However, another study showed that TGFp induced Smad7 physically 

interacts with TAB2/3, which is required for efficient activation of TAK1. Since 

TAK1 activates NF-KB, TGFp repressed TNFa induced inflammatory responses by 

up-regulation of the smad7 gene (Hong et al., 2007). 

In the development of Alzheimer disease, progressive accumulation of the 

amyloidp peptide in the brain is crucial. TGFp plays a role for the clearance of 

accumulated amyloidp peptide by up-regulation of Matrix metalloproteinase-2 

(MMP2). Accumulation of the amyloidp peptide 1-42 leads to up-regulation of the 

smad7 gene transcription and down-regulation of MMP2 production, which may 

cause further accumulation of amyloidp peptide and silencing TGFp 'canonical' 

signalling pathway by up-regulation of the smad7 gene (Lee et al., 2005a). Smad7 

also negatively regulates TGFp induced collagen production in skin fibroblasts. UV 

irradiation up-regulates the smad7 gene transcription though activation of c-Jun and 

c-Fos, and collagen production in the connective tissue maintained by TGFP is 

reduced (Quan et al., 2005). TGFp plays a major role for fibrosis in diseases such as 

diabetic nephropathy. CTGF/CCN2 is a down-stream effecter of TGFp signalling in 

the fibrosis (Seeker et al., 2008), and CTGF enhances the TGFp 'canonical' 
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pathway by transcriptional suppression of the smad7 gene through induction of the 

transcription factor kruppel-like factor-10 {klflO/tiegl) (Wahab et al., 2005). 

Conversely, the smadl gene induced by IFy transcriptionally through JAK1/YB1 

pathway inhibits TGFp induced collagen expression. YB1 also directly inhibits 

collagen {collAT) expression as a transcriptional repressor, but Smad7 also plays a 

role in the IFy's anti-fibrotic effect (Dooley et al., 2006). For the skin wound 

healing, re-epithelialization is essential, and TGFp signalling plays important roles 

(Hua et al., 1998). During the re-epithelialization, keratinocyte a3pi integrin is up-

regulated. Surprisingly, the role of a3pi integrin for keratinocyte migration is not 

essential, but blockade of Smad7 is required for the re-epithelialization (Reynolds et 

al., 2008). Smad7 interacts with Axin, and this interaction excludes GSK3p and P-

catenin from the Axin scaffolding. Consequently, Smad7 protects P-catenin from 

being phosphorylated by GSK3P and following degradation. The protected P-

catenin forms a complex with E-cadherin instead of translocates into the nucleus. 

Therefore, Smad7 regulates the cell-cell adhesion through the modulation of P-

catenin (Tang et al., 2008). 

Thus, maintenance of appropriate Smad7 level is a key regulatory event to control 

TGFp signalling pathway in the several different tissues. 

4.2.5.3. Role of Smad7 in apoptosis 

TGFp stimulation causes apoptosis, and inhibition of Smad7 expression and, 

surprisingly, negates TGFp induced apoptosis in some cell lines. Therefore, TGFp 

induces apoptosis depending on Smad7 expression, but not activation of R-Smads 
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in some cases (Landstrom et al., 2000). Ectopic expression of Smad7 stimulates 

MKK4/JNK signalling cascade which does not affect on R-Smads activity and 

induces cell-death (Mazars et al., 2001). In progressive glomeruloscrosis, podocytes 

are being eliminated by the TGFp mediated apoptosis, which depends on 

p38MAPK and Caspase-3 activation. Interestingly, Smad7 also stimulates apoptosis 

independent of TGFp signalling through the interference with the nuclear 

translocation and activation of NF-KB, which is a survival factor in podocytes 

(Schiffer et al., 2001). Similarly, TGFp or ectopic expression of Smad7 induces 

apoptosis in renal glomerular mesangial cells. This apoptotic response is attenuated 

by the enhanced degradation of Smad7 through deacetylation by SIRT1 and 

subsequent Smurfl binding to Smad7 (Kume et al., 2007). Moreover, either ectopic 

expression of Smad7 or TGFp stimulation induces apoptosis in human prostate 

cancer PC-3U cells in a p38MAPK dependent manner. Smad7 surprisingly plays a 

scaffolding role for the TAKl/MKK3/p38MAPK kinase cascade. Therefore, a key 

effecter of the induction of apoptosis by TGFp might be Smad7 (Edlund et al., 

2003). In addition, TGFp does crosstalk to Wnt signalling. P-catenin and LEF1/TCF 

form a complex with Smad7 in response to TGFp. TGFp increases nuclear p-

catenin and LEF1/TCF and activity of p38MAPK and Akt/PKB in a Smad7 

dependent manner, and apoptosis in PC-3U cells and human keratinocytes (HaCaT 

cells) (Edlund et al., 2005). 

Smad7 also blocks TGFp induced anti-proliferative effects. In this case, Smad7 

represses activation of Akt/PKB but enhances phosphorylation of c-Jun by TGFp. 

Consequently, down-regulation of c-Myc, CDK4, and CyclinDl and up-regulation 
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of p21 ip" in response to TGFp are reversed by ectopic expression of Smad7 

(Haider et al., 2005). Similarly, in B-lymphocytes, the CD40 (TNF receptor 

superfamily member-5) signalling mediated activation of NF-KB up-regulates 

Smad7 expression and reverses TGFP inducing anti-proliferation and apoptosis 

(Patil et al., 2000). 

Thus, Smad7 either enhances or attenuates apoptosis in a context dependent 

manner. However, whether Smad7 induced apoptosis depends on TGFP signalling 

or not needs to be elucidated. In some cases, Smad7 seems to induce apoptosis 

independent of TGFp signalling (Davoodpour and Landstrom, 2005; Mazars et al., 

2001). 

5.1. Role of TGFp signalling in myogenesis 

It is well established that BMP signalling plays an important role for somite cell 

lineage specification. Therefore, Smadl activation is a key step to regulate cell fate 

determination. The balance between the BMP signalling (SXS motif 

phosphorylation) and FGF/MAPK signalling (linker region phosphorylation) 

determine the Smadl (Fuentealba et al., 2007; Kretzschmar et al., 1997a; Massague, 

2003), or Smad 1/5/8 activity (Retting et al., 2009). The BMP4 signalling is 

antagonized by FGF10 in lung morphogenesis (Weaver et al., 2000), by FGF8 in 

tooth development (Neubuser et al., 1997), by FGF2 in cranial suture closure 

(Warren et al., 2003), by FGF4 in limb bud formation (Niswander and Martin, 

1993a, b, c), and by FGF8 in retinoic acid inducing mouse embryonic carcinoma 

PI9 cells differentiation into neuroectodermal cell lineages (Wang et al., 2006). 

105 



Smad2/3 activation by TGFp is antagonized by the hyperactive Ras/MAPK 

signalling in cancer cells (Kretzschmar et al., 1999; Siegel and Massague, 2003). 

I-Smads also play an important role to regulate BMP signalling. BMPs and Smad6 

and Smad7, are dynamically expressed in developing chick embryo limbs 

(Vargesson and Laufer, 2009). The BMP signalling represses myogenesis by up-

regulation of Smad6. Smad6 brings Smurf 1 to the T Box family-6 protein (Tbx6), 

which interacts with MH2 domain of Smad6 and Tbx6 is down-regulated by 

ubiquitin mediated-degradation. Since Tbx6 is a transactivator of the my/5 gene, 

Myf5 expression, which plays a critical role for myogenic lineage determination, is 

inhibited by BMP (Li et al., 2006a; Yabe et al., 2006; Zhong et al., 2009). In 

C2C12, Smurf 1 is required for myotube formation. Ectopic expression of Smurf 1 

reduces protein levels of Smad5 but surprisingly not Smadl, -2, -3, -7, and TGFP 

receptors, and Smurfl only interferes with osteoblast conversion by BMP2 but not 

inhibition of muscle differentiation by TGFp. Therefore, Smurfl is capable of 

blocking the BMP but not TGFp signalling in C2C12 MBs (Ying et al., 2003). 

5.1.1. Negative regulator of skeletal muscle differentiation by TGFp 

Although one study showed that in a mitogen-rich environment, TGFp enhances 

muscle differentiation (Zentella and Massague, 1992), TGFp is a well established 

inhibitor of muscle differentiation. TGFp3 is expressed and secreted in skeletal 

muscle in embryos and adult and also in C2C12 MBs. Exogenously added TGFp3 

inhibits the MB fusion to form MTs (Lafyatis et al., 1991). The TGFp type I and -II 

receptors are expressed in L6 rat MBs, and the TGFP signalling is initiated by the 
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ligand/receptor complex formation (Segarini et al., 1992). In damaged skeletal 

muscle, prior to the inflammation reaction, TGFp2 is produced by damaged 

necrotic muscle fibers, and then infiltrated macrophages generates TGFp3-rich 

environment in the damaged area. Muscle regeneration is delayed until clearance of 

the macrophages from the necrotic fiber. Newly formed myotubes and activated 

satellite cells shows strong TGFJ32 immuno-reactivity (McLennan and Koishi, 

1997). TGFp inhibits muscle differentiation by down-regulation of Insulin-like 

growth factor-binding protein-5 (IGFBP5), and this down-regulation is mediated by 

JNK activation by TGFp. Ectopic expression of a dominant negative form of 

MKK4, but not Smad7, reverses IGFBP5 down-regulation by TGFp (Rousse et al., 

2001). Therefore, TGFp is an important regulator of skeletal muscle regeneration in 

vivo. 

5.1.2. TGFp activated signalling 

Exogenously added TGFP reversibly inhibits muscle differentiation in vitro, and it 

associates with strong induction of extracellular matrix type I collagen and 

fibronectin. It causes the dense multilayer cells on the cell culture plate (Massague 

et al., 1986). FGF also inhibits muscle differentiation (Spizz et al., 1987). TGFp and 

bFGF up-regulates cyclin Dl expression, and ectopic expression of cyclin Dl 

inhibits muscle differentiation of C2C12 MBs (Rao and Kohtz, 1995). Both bFGF 

and TGFP also up-regulate the fibroblast intermediate conductance calcium-

activated potassium channel (FIK), a positive regulator of cell proliferation in a 

MEK/ERK pathway dependent manner. Both bFGF and TGFp inhibit muscle 
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differentiation of 10T1/2-MRF4 cells (C3H10T1/2 stably expressing MRF4) 

depending on the activation of the Ras/ MEK/ERK kinase cascade and its down

stream target, FIK up-regulation (Pena et al., 2000). TGFp also down-regulates the 

igfbp5 gene expression independent of R-Smads, but depends on the activation of 

JNK (Rousse et al., 2001). TGFp negatively targets the myog gene induction and 

up-regulates the junB gene in L6E9 rat MBs. Interestingly, ectopic expression of 

MyoG could not reverse TGFP's inhibitory effect (Heino and Massague, 1990). 

Therefore, TGFp inhibits muscle differentiation at the down-stream of the myog 

gene induction. Reduced expression of Decorin, a member of the small leucine-rich 

proteoglycan family, and/or lipoprotein-receptor related protein (LRP1) desensitizes 

the inhibitory effect of TGFp (Cabello-Verrugio and Brandan, 2007; Riquelme et 

al., 2001). p-glycan is a membrane-anchored proteoglycan, which works as a co-

receptor for TGFp and bFGF through its glycosaminoglycan chains, p-glycan 

expression is up-regulated during C2C12 differentiation, and MyoD but not MyoG 

is responsible for this induction. TGFP inhibits up-regulation offi-glycan gene 

(Lopez-Casillas et al., 2003). However, whether this down-regulation of p-glycan 

gene is responsible for the inhibitory effect of TGFp on skeletal muscle 

differentiation was not addressed. 

5.1.3. Role of SnoN and c-Ski 

SnoN and c-Ski work as co-repressors of R-Smads (He et al., 2003), and c-Ski 

enhances skeletal muscle differentiation (Ichikawa et al., 1997). However, c-Ski's 

enhancement effect on myogenesis may not be due to inhibition of TGFp R-Smad 
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'canonical' pathway. SnoN and c-Ski are targeted by sumolylation. However, the 

SUMO-modified SnoN and c-Ski and un-sumolylatable SnoN and c-Ski represses 

the R-Smads activity in the same extent, but the sumolylated SnoN and c-Ski 

markedly enhance skeletal muscle differentiation without affecting their protein 

levels (Wrighton et al., 2007). According to a recent report, c-Ski is able to displace 

HDAC from MyoD and de-represses MyoD's transcriptional properties 

independent of the TGFp R-Smad pathway (Kobayashi et al., 2007). Therefore, 

regulator of c-Ski other than the TGFP signalling might be important for muscle 

differentiation. 

5.1.4. Role of p57Kip-2 

TGFp causes proteolysis of cyclin-dependent kinase inhibitor 1C (p57Kip~2) and has 

a unique role in embryo development (Westbury et al., 2001) and muscle 

differentiation (Reynaud et al., 2000; Reynaud et al., 1999). The degradation of 

p57Kip"2 is enhanced by the R-Smad mediated up-regulation of the ubiquitin-

proteasome activity. TGFp induces proliferation of osteoblasts by the degradation 

of this CKI, and ectopic expression of Smad7 blocks this pro-proliferative effect of 

TGFp in osteoblasts (Nishimori et al., 2001; Urano et al., 1999). However, whether 

TGFP targets p57Kip"2 for the inhibition of myogenesis has not been addressed. 

5.1.5. Role ofMEF2C 

One group reported that an activated Smad3 by TGFp interferes with MEF2C 

transactivation properties by the interaction with the MADS domain of MEF2C and 

inhibits myogenesis. This interaction interferes with the recruitment of a co-
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activator GRIP1 to the MEF2C (Liu et al., 2004). However, the mef2C gene 

expression is up-regulated later than MRP is in muscle differentiation (Martin et al., 

1993). Therefore, it is questionable whether inhibition of MEF2C transcriptional 

properties by Smad3 is responsible for inhibition of myogenesis by TGFp. Finally, 

our group documented that an inhibitor of the TGFp/R-Smad 'canonical' pathway, 

Smad7, potently inhibits the R-Smad activity in response to TGFp, but ectopic 

expression Smad7 could not reverse the inhibitory effect of TGFp on muscle 

differentiation (Kollias et al., 2006). Thus, R-Smad activation may not be required 

for the inhibition of myogenesis by TGFp. 

6.1. Role of Myostatin in myogenesis 

Myostatin/Growth differentiation factor-8 (MSTN/GDF8), a member of the TGFp 

family, is a potent physiological reversible negative regulator of skeletal muscle 

growth. Naturally occurring loss of function mutations of the mstn gene cause 

greatly increased skeletal muscle mass (Grobet et al., 1997; McPherron et al., 1997; 

McPherron and Lee, 1997) (figure 30). 

6.1.1. Regulation of myostatin (mstn) gene expression 

MyoD positively regulates the mstn gene transcription through multiple E-boxes in 

the promoter. Since MSTN has anti-proliferative effect, MyoD may utilize MSTN 

to withdraw from the cell cycle (Spiller et al., 2002). Interestingly, ectopic 

expression of Smad7 reduced the promoter activity of the mstn gene, and MSTN 

down-regulates its own promoter activity though up-regulation of Smad7 (Forbes et 

al., 2006). Our group documented that ectopic expression of Smad7 reverses 
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Myostatin's inhibitory effect on skeletal muscle differentiation (Kollias et al., 

2006). In addition, in C2C12 MBs, MSTN up-regulates TGFp production, and 

TGFp also stimulates the mstn gene expression, and Decorin induces Follistatin and 

antagonises MSTN action (Zhu et al., 2007) (figure 30). 

6.1.2. Anti-proliferadve effect of MSTN 

Myostatin inhibits proliferation of C2C12 MBs through up-regulation of p21Cip"' 

and down-regulation of CDK2 (Thomas et al., 2000). Ectopic expression of MSTN 

up-regulates p53, p21Cipl, IGFBP3, and IGFBP5, and hypophosphorylated Rb 

(Joulia et al., 2003; Kamanga-Sollo et al., 2005). MSTN also down-regulates 

nuclear cyclinDl by both degradation and nuclear export dependent on GSK3P 

activity. As a consequence, CDK4 activity is reduced by MSTN (figure 30). IGF1 

and PI3K/Akt signalling reverse the cyclinDl down-regulation and anti

proliferative effect by MSTN. If IGF 1 signalling is inhibited, upon MSTN 

stimulation, C2C12 cells are eliminated by apoptosis. Furthermore, IGF1 up-

regulates the mstn gene expression depending on the PI3K activation (Yang et al., 

2007). MSTN also inhibits translation through down-regulation of Akt/mammalian 

target of rapamycin (mTOR) pathway (Amirouche et al., 2009). 

6.1.3. MAPK activation by MSTN 

Myostatin activates the Ras/MEK/ERK kinase cascade in C2C12 cells, and a MEK 

specific inhibitor, PD98059 reverses the MSTN's inhibitory effect on muscle 

differentiation. Therefore, MSTN inhibits myogenesis by activation of the MAPK 

cascade (Yang et al., 2006). MSTN also activates JNK in C2C12, and similarly, 
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JNK inhibitor, SP600125, reverses p21 ip" up-regulation and MRF down-regulation 

by MSTN (Huang et al., 2007). MSTN activates p38MAPK through TAK1, and 

ATF2 is phosphorylated in response to MSTN (Philip et al., 2005). 

6.1.4. Inhibition of satellite cell activation by MSTN 

Myostatin up-regulates p21Cip~1 and down-regulates CDK2 in the satellite cells, and 

conversely, the mstn-l- satellite cells shows enhanced proliferation and 

consequently higher numbers of satellite cells. Therefore, MSTN inhibits the 'self-

renewal' of satellite cells (McCroskery et al., 2003). In chick muscle development, 

MSTN down-regulates Pax3 and MyoD, and this inhibition can be reversed by 

Follistatin which antagonises MSTN activity by direct protein-protein interaction 

(Amthor et al., 2004). In addition, MSTN down-regulates Myf5 and MyoG but no 

effect on Pax7. This inhibitory effect is reversible, and upon removal MSTN, the 

stimulated satellite cells up-regulate Pax3 and MyoD and proliferate normally 

(Amthor et al., 2006). 

6.1.5. Inhibition of muscle regeneration by MSTN 

The product of the follistatin-related gene (flrg) associates with MSTN and restricts 

MSTN activity in the circulation (Hill et al., 2002). Since Follistatin (FSTN) is 

involved in the MB fusion independent of IGF 1 or IL-4, MSTN inhibition also 

mimics the FSTN effect. Interestingly, a HDAC inhibitor, trichostatin A, increases 

FSTN expression and enhances the expression of regeneration marker genes (Iezzi 

et al., 2004). In the mstn -I- adult mouse, muscle regeneration is accelerated, and the 

satellite cell migration and the recruitment of the macrophages into the damaged 
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sites and their clearance is enhanced, in addition, fibrosis is reduced (McCroskery et 

al., 2005). 

MSTN also enhances interaction between MyoD and Smad3 which interferes with 

MyoD's transactivation properties. However, ectopic expression of DN-Smad3 

partially reversed this effect but ectopic expression of MyoD had no effect on the 

inhibitory effect of MSTN (Langley et al., 2002). Akirinl (Mighty) is a potential 

signal transducer in muscle regeneration. Akirinl is up-regulated in the activated 

proliferating satellite cell. Macrophages also express Akirinl, and the increase in 

the chemotaxis of the macrophages and MBs can be observed by increased 

expression of Akrinl. Importantly, Akirinl is a negative target of MSTN (Salerno 

et al., 2009) (figure 30). Function of Akirinl in muscle regeneration needs to be 

characterized. 

6.1.6. Pathology by hyperactivation of Myostatin 

A DN-mutation of muscle specific Caveolin, Caveolin-3, causes autosomal 

dominant limb-girdle muscular dystrophy 1C. The loss of function of Caveolin-3 

hyper-activates MSTN and causes muscle atrophy. The wild type Caleolin-3 

antagonises the MSTN signalling through inactivation of Smad2 by decreasing its 

phosphorylation (Ohsawa et al., 2006). The blockade of MSTN signalling may 

prevent depletion of the satellite cells in the dystrophic muscles (Bogdanovich et 

al., 2002). Administration of a soluble form of the activin type IIB receptor, which 

binds MSTN and blocks binding to the cell surface receptor, increases muscle mass 

(Lee et al., 2005b). 
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6.1.7. Adipocyte 

BMP2 and -7 enhance adipogenesis, and MSTN antagonises this adipogenic effect 

of the BMPs by competing out the BMPs from binding to the receptors 

(Rebbapragada et al., 2003). However, MSTN by itself enhances differentiation of 

pluripotent C3H10T1/2 fibroblasts into immature adipocytes. It mimics the effect of 

glucocorticoid/dexamethasone. These immature adipocytes exhibit increased insulin 

sensitivity and glucose oxidation and resists to diet-induced obesity (Feldman et al., 

2006; Guo et al., 2009). Conversely, glucocorticoid-induced muscle atrophy can be 

'rescued' by the mstn -I- mouse (Gilson et al., 2007) 

7.1. Role of Sntad7 in myogenesis 

Smad7 inhibits the ActRIB/ALK4 activation by Activin and BMP and blocks 

activation of dorsal mesoderm genes (Casellas and Brivanlou, 1998). Consequently, 

Smad7 up-regulates neural makers and inhibits mesoderm formation (Bhushan et 

al., 1998). Osteoblast differentiation induced by the BMP6/R-Smad pathway is 

inhibited by ectopic expression of Smad7 and Smad6 (Fujii et al., 1999). 

Furthermore, Smad7, but not Smad6, interferes with the TGFp mediated inhibition 

of both lung branching morphogenesis and cyto-differentiation (Zhao et al., 2000). 

A large number of studies documented that the TGFp signalling is a key regulatory 

pathway for myogenesis, and it has been speculated that Smad7 is an important 

molecule for biological events regulated by the TGFP signalling pathway. However, 

a physiological role of Smad7 has not been clearly defined yet because most studies 

focus on Smad7 as an inhibitor of the TGFp 'canonical' signalling pathway. 
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Our group documented that Smad7 is required for skeletal muscle differentiation by 

utilizing siRNA technology to reduce endogenous expression of Smad7 (Kollias et 

al., 2006). With the reduced levels of Smad7, up-regulation of MyoG, MyoD, 

MEF2A, and MyHC that are up-regulated in the normal course of muscle 

differentiation, was attenuated without affecting on the Smad2/3/4 protein levels 

and Smad2/3 phosphorylation. Since the reduction of Smad7 activates Smad3 

dependent reporter gene activity, endogenous Smad7 works as an inhibitor of TGFp 

'canonical' pathway. Therefore, one can still argue that reduced levels of Smad7 

causes the hyperactive TGFp 'canonical' signalling and inhibits myogenesis. 

However, our gain of function approach indicated that TGFp does not inhibit 

myogenesis by the activation of R-Smads (Kollias et al., 2006). Ectopically 

expressed Smad7 potently inhibited the R-Smad dependent reporter gene activity in 

the presence of TGFp. However, inhibitory effect of TGFp but not MSTN was not 

reversed by silencing the TGFp 'canonical' pathway by ectopic expression of 

Smad7. These observations imply that TGFp and MSTN inhibit myogenesis in 

different manners, and activation of R-Smad by TGFp is not sufficient to explain 

the mechanism by which TGFp inhibits myogenesis. In addition, ectopic expression 

of Smad7 not only reverses but greatly enhances myotube formation in the presence 

of MSTN suggesting that Smad7 promotes skeletal muscle differentiation other 

than inhibiting the TGFp/Myostatin 'canonical' pathway. In agreement with this 

hypothesis, Smad7 physically interacts with MyoD which is a nuclear protein, and 

enhances MyoD's transactivation properties (Kollias et al., 2006). Therefore, 

Smad7 may also promote myogenesis as a positive co-activator of MyoD, and it is 
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independent of the inhibitory role of Smad7 in the TGFp signalling at receptor 

level. Finally, we also found that the smad7 gene is a MyoD target in muscle cells 

(Kollias et al., 2006). Since the smadl gene is up-regulated in response to TGFp, 

Smad7 was characterized as part of a negative feedback loop of TGFp 'canonical' 

pathway (Nakao et al., 1997). However, in C2C12 MBs, mutation of the SBE, 

which mediates TGFp/R-Smad inducibility, had not a clear effect on the smad7 

promoter activity; in contrast, the E-box mutation caused greatly reduced the smad7 

promoter activity. In addition, ectopic expression of MyoD potently activated the 

smadl promoter-reporter gene activity (Kollias et al., 2006) (figure 31). Therefore, 

Smad7 is an integrated part of the myogenic gene expression program. 
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Chapter II; Statement of Purpose 

In MBs, MyoD and Myf5 are already expressed, but these MRF's transactivation 

properties are repressed until stimulated by extracellular cues for muscle 

differentiation or regeneration. Once MyoG is induced by MyoD in co-operation with 

MEF2, the MBs terminally differentiate into MTs. Therefore, the regulation of 

MyoD's transactivation properties is a key event to determine MB cell fate, and CT-1 

and TGFp are candidate molecules to control this event. The primary goal of these 

studies was to characterize the role of cytokines such as CT-1 and TGFP in myogenic 

cells. 

Cardiotrophin-1 maintains the undifferentiated state of skeletal myoblasts 

(Chapter III) 

Although CT-1 is highly expressed in skeletal muscle during embryo development 

and in adulthood, the role of CT-1 in skeletal muscle had not been well characterised. 

Previous studies documented that in cardiomyocytes, CT-1 activates MEK/ERK/AP-

1 and JAK/STAT signalling pathways, and both AP-1 and STAT are inhibitory 

molecules for skeletal myogenesis. Therefore, we sought to characterize how CT-1 

affects skeletal muscle differentiation at the molecular level. 

Nuclear Smad7 enhances skeletal muscle differentiation (Chapter IV) 

Previous work from our group documented that Smad7 promotes skeletal muscle 

differentiation. Interestingly, we found that Smad7 physically interacts with nuclear 

transcription factor MyoD and enhances its transactivation properties. In addition, 

although Smad7 potently inhibits TGFp 'canonical' pathway, ectopic expression of 
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Smad7 could not reverse the inhibitory effect of TGFp on myogenesis. Since most of 

studies focus on the inhibitory aspect of Smad7 at the receptor level even though 

Smad7 localized mainly in the nucleus, we, therefore, sought to characterize the 

nuclear role of Smad7. 

Maintenance of the undifferentiated state in skeletal myoblasts by TGFp is Smad 

independent and requires MEK activation (Chapter V) 

Since our previous study suggested that TGFp might inhibit skeletal muscle 

differentiation independent of activation of R-Smad and other studies documented 

that TGFp activates the MAPK pathway in different systems, we hypothesized that 

TGFP inhibits myogenesis by activation of MEK independent of activation of R-

Smad. 
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Running title: CT-1 inhibits skeletal myogenesis. 

Abstract 

Skeletal myogenesis is potently regulated by the extracellular milieu of growth 

factors and cytokines. We observed that Cardiotrophin-1 (CT-1), a member of 

the Interleukin-6 (IL-6) family of cytokines, is a potent regulator of skeletal 

muscle differentiation. The normal up-regulation of myogenic marker genes, 

Myosin Heavy Chain (MyHC), Myogenic Regulatory Factors (MRFs), and 

Myocyte Enhancer Factor 2s (MEF2s) were inhibited by CT-1 treatment. CT-1 

also represses Myogenin (MyoG) promoter activation. CT-1 activated two 

signaling pathways: Signal Transducer and Activator of Transcription-3 

(STAT3), and Mitogen-Activated Protein Kinase Kinase (MEK), a component of 

the Extracellular Regulated MAP Kinase (ERK) pathway. In view of the known 

connection between CT-1 and STAT3 activation, we surprisingly found that 

pharmacological blockade of STAT3 activity had no effect on the inhibition of 

myogenesis by CT-1 suggesting that STAT3 signaling is dispensable for 
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myogenic repression. Conversely, MEK inhibition potently reversed the 

inhibition of myotube formation and attenuated the repression of MRF 

transcriptional activity mediated by CT-1. Taken together, these data indicate 

that CT-1 represses skeletal myogenesis through interference with MRF activity 

by activation of MEK/ERK signaling. In agreement with these in vitro 

observations, exogenous systemic expression of CT-1 mediated by adenoviral 

vector delivery increased the number of myonuclei in normal post-natal mouse 

skeletal muscle and also delayed skeletal muscle regeneration induced by 

cardiotoxin (CTX) injection. The expression pattern of CT-1 in embryonic and 

post-natal skeletal muscle and in vivo effects of CT-1 on myogenesis implicate 

CT-1 in the maintenance of the undifferentiated state in muscle progenitor cells. 

Introduction 

Terminal differentiation of skeletal myogenic cells, termed myogenesis, consists 

of a series of well characterized highly regulated steps that has become a paradigm 

for lineage acquisition and cellular differentiation. Initially, pluripotent mesodermal 

stem cells commit to become myogenic precursor cells. Commitment to the myogenic 

lineage then results in the binary state of either maintenance of proliferative potential 

and pluripotency, or, on appropriate cues, withdrawal from the cell-cycle, activation 

of a battery of structural, contractile and metabolic genes constituting the 

differentiation programme and ultimately formation of multi-nucleated myotubes 

(Perry and Rudnick, 2000). The field of myogenesis has benefited from the use of 

well established in vitro cell-culture systems which faithfully recapitulate the in vivo 



differentiation programme. During myogenesis, a group of basic helix-loop-helix 

transcription factors, Myogenic Differentiation-1 (MyoD), Myogenic Factor-5 (Myf5), 

Myogenin (MyoG), and Myogenic Regulatory Factor-4 (MRF4), collectively termed 

the Myogenic Regulatory Factors (MRFs), play essential roles in differentiation 

(Kassar-Duchossoy et al., 2004; Pownall et al., 2002; Rudnicki and Jaenisch, 1995). 

Most promoter-enhancer regions of muscle specific genes contain the cognate 

binding site, E-box (CANNTG), for the MRFs, and the E-box is often essential for 

the induction of these genes during differentiation (Tapscott, 2005; Walsh and 

Gualberto, 1992). For example, early and late muscle specific genes, MyoG and 

muscle specific Myosin Heavy Chain (MyHC) respectively, are transcriptionally 

regulated by MyoD and other MRFs through E-boxes in their proximal promoter 

regions (Penn et al., 2004; Rudnicki and Jaenisch, 1995). The molecular and genetic 

requirement for the MRFs during myogenesis has been confirmed in many studies 

both in vitro and in vivo (Edmondson and Olson, 1989; Kassar-Duchossoy et al., 

2004; Myer et al., 2001). The MRFs also co-operate with another class of myogenic 

transcription factors, comprised of the Myocyte Enhancer Factor two family (MEF2) 

(Naya and Olson, 1999; Olson et al., 1995). MEF2 genes are taxonomically part of 

the MADS-box gene super-family that encode DNA binding proteins involved in 

yeast mating type decisions (MCM1), plant development (Agamous and Deficiens), 

and serum responsivity of mammalian cells (Serum Response Factor: SRF) (Jarvis et 

al., 1989; Norman et al., 1988; Sommer et al., 1990; Yanofsky et al., 1990). 

As well as the detailed knowledge of core transcriptional regulatory circuits mediated 

by myogenic transcription factors and their accessory factors, much work has 



contributed to the identification of a number of growth factor and cytokine mediated 

signaling pathways that positively and negatively impact myogenesis (Engert et al., 

1996; Olwin and Hauschka, 1988; Ridgeway et al., 2000; Templeton and Hauschka, 

1992). In some cases, these pathways regulate the decision to differentiate or not, a 

critical regulatory point since differentiation in muscle is terminal and absolutely 

required for viability of all metazoan life. Moreover, negative regulation of 

differentiation is equally important since it underpins the maintenance of the 

proliferative state and pluripotency. 

A number of growth factors and cytokines, such as Insulin like Growth Factors 

(IGFs), insulin, Transforming Growth Factor-|3 (TGFB), Fibroblast Growth Factor 

(FGF), and Epidermal Growth Factor (EGF), that influence myogenesis have been 

identified (Allen and Boxhorn, 1987; Engert et al., 1996; Olwin and Hauschka, 1988; 

Templeton and Hauschka, 1992), however, a detailed understanding of their 

corresponding signal transduction pathways and transcriptional network targets is still 

rudimentary. One group of cellular signaling cascades that are known to affect 

myogenesis in a complex manner are the MAPK pathways. For example, p38 MAPK, 

a member of one of the MAPK pathways, directly phosphorylates and activates E47, 

which forms a productive dimer with MyoD (Lluis et al., 2005; Lluis et al., 2006). 

P38MAPK also regulates MEF2 (Cox et al., 2003; Zetser et al., 1999) transcription 

factors as well as being involved in the recruitment of ATP dependent chromatin 

remodelling factors to myogenic loci (de la Serna et al., 2005; McKinsey et al., 2002; 

Serra et al., 2007). Conversely the ERK-MAPK cascade plays a bi-phasic role in 

myogenic cells, being inhibitory in the initial phases of the differentiation program 



while being required for later stage events, such as cell fusion (Bennett and Tonks, 

1997). 

CT-1 is a member of the IL-6 family, which is comprised of IL-11, Leukemia 

inhibitory factor (LIF), Ciliary Neurotrophic Factor (CNTF), and Oncostatin M 

(OSM). These cytokines are structurally related and form a variety of oligomeric 

ligand - receptor complexes. IL-6 and IL-11 form a complex with a homodimer of 

the Glycoprotein-130 (Gpl30) receptor or heterodimers of gpl30 and leukaemia 

inhibitory factor receptor-p1 (LIFRB). Gpl30/LIFRp also recognises LIF, CT-1, CNTF, 

OSM, and Cardiotrophin-Like Cytokine (CLC). OSM binds to the Gpl30 and 

Oncostatin M receptor (OMR). Upon formation of the requisite complex with the 

respective cytokine, the preponderant view is that the oligomeric receptor complex 

transduces its signal through the Janus kinase (JAK)-STAT signaling pathway 

(Heinrich et al., 2003). 

CT-1 was originally identified in conditioned medium from embryoid bodies 

(Pennica et al., 1995). In developing embryos, CT-1 is expressed in heart, skeletal 

muscle, liver and dorsal root ganglia (Sheng et al., 1996). In adults, human CT-1 

mRNA is detected in the heart, skeletal muscle, ovary, colon, prostate and testis, and 

in fetal kidney and lung (Pennica et al., 1996). The functions of CT-1 in the 

cardiovascular system have been extensively researched. Patients with ischemic and 

valvular heart disease have elevated levels of CT-1 in their sera (Freed et al., 2003). 

Further study of the role of CT-1 in the heart indicated that it has a cardio-protective 

role by reducing apoptosis (Brar et al., 2001; Sheng et al., 1996) and may be involved 

in regeneration of cardiac muscle after infarction (Freed et al., 2005). Exogenously 



administered CT-1 also induces cardiac hypertrophy in vitro (Sheng et al., 1996). 

While the modulation of cardiomyocyte phenotype by CT-1 has been well 

documented, the underlying signaling pathways are still unclear and the role of CT-1 

in skeletal muscle has not, thus far, been characterized. 

In this report, we demonstrate that CT-1 is a potent inhibitor of skeletal muscle 

differentiation. In C2C12 cells, CT-1 represses molecular markers of muscle 

differentiation and phenotypic myogenesis. Also, the transcriptional networks 

involved in the induction of key myogenic genes such as the MyoG and MCK genes 

are suppressed by CT-1 signaling. Surprisingly, small chemical inhibitors of MEK, 

PD98059 and U0126, reversed these repressive effects on skeletal myogenesis by CT-

1 whereas inhibition of STAT3 activation was without effect. Collectively, these data 

show that CT-1 interferes with the transcriptional network required for muscle 

differentiation through the activation of the MEK-MAPK signaling module. 

Furthermore, in vivo, adenovirus mediated expression of CT-1 increases satellite cell 

number and delays regeneration of damaged muscle by cardiotoxin (CTX) injection. 

These observations indicate that CT-1 represses myogenesis and serves to maintain 

myogenic progenitors in their proliferative, multipotent state in vitro and in vivo. 



Experimental procedures 

Plasm ids MRF expression plasmids were constructed in pEMSV as described 

elsewhere (Davis et al., 1987). An activated (AN3 S218D/S222E) human MEK1 

expression construct was a kind gift from A. Natalie (Mansour et al., 1994). The 

reporter construct pMCK-eGFP was a gift from A. Ferrer-Martinez (Universitat de 

Barcelona, Spain). Transcription reporter constructs, pMCK-luc (Donoviel et al., 

1996), pCMV-p-Galactosidase were described elsewhere (Kollias et al., 2006). The 

myogenin promoter region was excised from pMyoG-luc by SadIBgl //digestion. 

The resultant 1152bp fragment was inserted at the SacI IBgl II sites of pGL4-10 

vector (Promega). The dsRed2-Nl expression construct was purchased from Clontech 

Laboratories. 

Antibodies The primary antibodies used in this study were obtained from Santa 

Cruz Biotechnology; MyoD (C-20), Myf5 (C-20), Actin (1-19), and ERK1 (C-16), 

from BD Biosciences; MEF2D (610775), from Cell Signaling Technology; Stat3 

(9132), Phospho-Stat3 (Tyr705) (58E12; 9135), Phospho-Stat3 (Ser727) (6E4; 9136), 

MEK1/2 (9122), Phospho-MEKl/2 (Ser217/221) (9121), Phospho-p44/42 MAPK 

(Thr202/Tyr204) (E10; 9106), from Developmental Studies Hybridoma Bank; 

Myogenin (F5D), and MyHC (MF20), from DakoCytomation; MyoDl (clone:5.8A; 

M3512). Polyclonal antibody for MEF2A was prepared as previously described (Cox 

et al., 2003). Normal mouse (sc-2025) IgG was from Santa Cruz Biotechnology. 



Cell Culture C2C12 myoblasts were obtained from American Type Culture 

Collection (CLR-1772) and cultured in growth medium (GM) consisting of 10% Fetal 

bovine serum (FBS) (HyClone) in high-glucose Dulbecco's modified Eagle's 

medium (DMEM) (Gibco) supplemented with 1% penicillin-streptomycin (Gibco) at 

37 °C and 5% CO2. Myotube formation was induced by replacing GM with 

differentiation medium (DM) which consisted of 2% horse serum (Atlanta 

Biologicals) in DMEM supplemented with 1% penicillin-streptomycin. For CT-1 

treatment, recombinant mouse CT-1 (R&D system; 438-CT) was resuspended with 

solvent (4 mM HC1, 0.1% bovine serum albumin (BSA)) and supplemented into the 

media. For myotube formation assays, DM with CT-1 (lOng/ml) was replenished 

every 2 days. Inhibitors (PD98059 (Cell Signaling Technology; 9900), U0126 (Cell 

Signaling Technology; 9903), and P6 (2-(l,l-Dimethylethyl)-9-fluoro-3,6-dihydro-

7H-benz[h]-imidaz[4,5-fJisoquinolin-7-one; Pyridone 6) (Calbiochem; 420097)) were 

resuspended with DMSO and added into the cell culture media for 30 minutes prior to 

adding CT-1. 

Sacromeric Myosin Heavy Chain Detection 

C2C12 cells were washed with Phosphate buffered saline (PBS) (pH7.4)and fixed 

with 90% methanol at -20 °C for 10 min. After fixation, the cells were incubated in 

5% milk in PBS for 30 min at 37 °C for blocking. Cells were incubated at room 

temperature with MF-20 (primary antibody) diluted in blocking buffer (5% milk 

PBS) for 1 hour. After incubation, the cells were washed three times with PBS and 

incubated for 60 min at room temperature with an Horseradish peroxidase (HRP)-



conjugated a-mouse secondary antibody. The cells were again washed three times 

with PBS and incubated in developer (0.6 mg/ml DAB, 0.1 % H202 in PBS) to detect 

MyHC by immunocytochemistry. The nuclei were counter-stained with haematoxylin. 

Images were recorded with a microscope (Axiovert 35; Carl Zeiss Microimaging) 

with either 4X NA 0.10 or 10X NA 0.25 Achrostigmat objective lenses with a digital 

camera (Canon, EOS D60). 

Proliferation assay After 72hrs in DM and in the presence of CT-1 (lOng/ml) (or 

solvent), cells were incubated with lOOuM of BrdU (Sigma) for 1 hr at 37°C. Cells 

were washed with cold lx PBS then fixed with 70% ethanol for lhr at 4°C. The cells 

were then washed with lx PBS and incubated with 2N HC1 for 1 h at 37°C to 

denature the DNA. The cells were blocked in 10% goat serum (Sigma) diluted in lx 

PBS for 2hrs at room temperature with shaking and then incubated with BrdU 

primary antibody (G3G4: Developmental hybridoma bank, Iowa) diluted in 1.5% 

goat serum (Sigma) for 1.5hr at room temperature with shaking. Cells were washed 

with lx PBS-T (0.5% Tween20) and incubated with anti-mouse secondary antibody 

conjugated to FITC (Sigma) diluted in 1.5% goat serum (Sigma) for 2hrs at room 

temperature with shaking. Cells were washed with lx PBS-T (0.5% Tween20). 

Microscopy and Fluorescence Fluorescence and phase contrast pictures were 

obtained using an epifluoresence microscope (Axiovert 35; Carl Zeiss Microimaging), 

with appropriate phase and filter settings, and either 4X NA 0.10 or 1 OX NA 0.25 



Achrostigmat objective lenses. Images were recorded with a digital camera (Canon, 

EOS D60). 

Western blotting analysis Total cellular protein extracts were prepared in NP-40 

lysis buffer (0.1 % NP-40, 150 mM NaCl, ImM EDTA, 50 mM Tris-HCl pH 8.0, 

ImM sodium vanadate, ImM PMSF, supplemented with a protease inhibitor cocktail 

(Sigma, P-8340)). Protein concentrations were determined by a standard Bradford 

assay (BioRad). Equivalent amounts of protein were resolved by SDS-PAGE gels, 

followed by electrophoretic transfer to an Immobilon-P membrane (Millipore) as 

directed by the manufacturer (Millipore). Blots were incubated with the indicated 

primary antibody in 5% milk in PBS or Tris buffered saline (TBS)-T (lOmM Tris-

HCl pH8.0, 150mM NaCl, 0.1% Tween-20) or 5% Bovine serum albumin (BSA) in 

TBS-T according to the manufacturer's protocol at 4 °C overnight with gentle 

agitation. After washing briefly, the blots were incubated with the appropriate HRP-

conjugated secondary antibodies in 5% milk in PBS or TBS-T at room temperature 

according to the manufacturer's protocols (Santa Cruz Biotechnology, Cell Signaling 

Technology). After washed three times with 1XPBS or 1XTBS (depending on the 

primary antibody) at room temperature, the blots were treated with the Enhanced 

chemiluminescence reagent (Amersham) to detect immuno-reactive proteins. The 

blots were exposed to Biomax film (Kodak) for visual representation. 

Transcription reporter gene assays C2C12 myoblasts were transfected by a 

standard calcium phosphate-DNA precipitation method with the indicated reporter 



gene and expression constructs and pCMV-p-Galactosidase to monitor transfection 

efficiency. After transfection, the cells were washed with PBS and maintained in GM 

and then treated as indicated. Total cellular protein was extracted with luciferase lysis 

buffer (20mM Tris-HCl pH7.4, 0.1% Triton X-100). Luciferase and p-Galactosidase 

enzyme assays were performed according to the manufacturer's protocol (Promega). 

Luciferase activity was quantified using a luminometer (Berthold Lumat, 9501) and 

standardized according to the P-Galactosidase activity. Relative Luciferase units 

normalized for the P-Galactosidase activity (Relative Luciferase Unit; RLU) were 

determined and plotted as an average of triplicate determinations and error bars 

represent standard deviations of the triplicate values. Each experiment was repeated at 

least three times. 

Semi-quantitative RT-PCR analysis Total RNA was extracted from cells with 

TRIzol (invitrogen) according to manufacture's protocol. cDNA was generated from 

the isolated total RNA (lug) with Superscript III (invitrogen) and oligo-dT (i6) 

primer (Sigma) by the protocol provided by the manufacturer. To amplify a target 

transcript, a pair of primers was designed that flanked an intron based on the mouse 

gene sequences. The target transcripts were amplified by tag DNA polymerase (New 

England Biolab) with gene specific primers. An amplified DNA was separated in an 

agarose gel and visualized by ethidium bromide (EtBr) (Sigma) staining and UV 

exposure. Detailed information about the primers is in supplement. 



Co-immunoprecipitation analysis An equal amount of total cellular protein 

(250ug) was diluted with NP-40 lysis buffer to a final concentration of 1 ug/ui. 

Protein complexes were immunoprecipitated with the indicated antibody and 25 ul of 

protein G-Plus Sepharose beads (50% slurry) (Santa Cruz Biotechnology) by 

incubation at 4°C overnight on a rotating platform. The beads were washed with 

three changes of NETN wash buffer (0.1% NP-40, 150mM NaCl, ImM EDTA, and 

50 mM Tris-HCl pH 8.0). Beads were boiled in SDS sample buffer, and protein 

complexes were resolved by SDS-PAGE and immuno-blotted as described above. 

CT-1 adenovirus The CT-1 adenovirus was previously described (Bordet et al., 

1999). Briefly, full length murine CT-1 cDNA was isolated by PCR and the CT-1 

reading frame was fused with a 60 base pair pre-Nerve Growth Factor (NGF) leader 

sequence to promote secretion of the CT-1 protein. The CT-1 cDNA was cloned in 

the Rous Sarcoma virus (RSV) vector (Bordet et al., 1999). A LacZ containing 

adenovirus (CTRL) was used as a control for all injection experiments. This 

adenovirus was kindly provided by Dr. Robin Park at the Ottawa Health Research 

Institute, Ottawa, Canada. 

In vivo administration of CT-1: Muscle injury 

To test CT-1 in vivo, B6C3F1 mice were subjected to systemic delivery of the CT-1 

adenovirus. Briefly, animals were anaesthetized with halothane. The injections were 

administered via intra-cardiac chamber delivery using a 29-gauge insulin needle 

(VWR) with 50uL of Ad-CT-1 at a concentration of 3.0 X 108PFU/mL (n=3). A 



control group of B6C3F1 mice were injected with 50uL Ad-CTRL at a similar 

concentration (n=3). In a separate group of animals, cardiotoxin was used to induce 

muscle injury immediately prior to AdCT-1 and Ad-CTRL injection (n=3 for each 

group). 25 ul of lOuM cardiotoxin (Latoxan) was injected directly into the TA muscle 

using a 29G1/2 insulin syringe in halothane anaesthetized mice (Asakura et al., 2002). 

Post-recovery, mice were monitored closely for weight loss, dehydration and cardiac 

distress. All injections were administered by a trained animal care technician 

according to the standards of the Animal Care Committee at the University of Ottawa, 

Ottawa, Canada. 

Immuno-histology At 7days post-injection, skeletal muscle was excised and rinsed 

in cold 1XPBS. The muscle was fixed in 4% PFA in PBS for 2days then embedded in 

paraffin, sectioned at 1 OuM and counterstained with haematoxylin and eosin to 

visualize the nuclei and cytoplasm. Sections were dehydrated in a graded ethanol 

series ending in CitriSolv (Fisher Scientific). For immuno-histological, sections were 

treated with antigen unmasking solution (Vector Labs), blocked with 5% BSA, 

incubated overnight at 4°C with a primary antibody, then incubated in donkey-anti-

goat CY3 antibody (Chemicon) and finally counterstained with DAPI (Sigma). 5 

fields of view per section and 5 sections per TA muscle were analysed. The 

micrographs were representative views. 

Stem Cell/Progenitor Cell Isolation Side population (muscle progenitor cells) 

were collected as previously described (Hierlihy et al., 2002). Contra lateral TA 



muscle was collected from Ad-CT-1 and Ad-CTRL mice and all visible connective 

tissue and blood vessels were removed by dissection. Muscle was digested in 

collagenase B (lOmg/mL) (Roche) plus dispase II (2units/mL) (Roche) for and the 

resulting single ell suspensions were then stained with Hoechst dye 33342 (5ug/mL) 

(Sigma-Aldrich) at 37°C for 90 minutes. As an SP control, the drug verapamil 

(50uM) (Sigma-Aldrich) was added to an aliquot of cells simultaneously stained with 

Hoechst 33342. Cells were finally re-suspended in 500uL of Hanks Balanced Salt 

solution with 2% FBS and lOmM Hepes (HBSS+). The cells were filtered through a 

50uM Cell Trie® (disposable filters made of monofil nylon material) (Partec GmbH) 

and remained on ice until FACS analysis (Hierlihy et al., 2002). Cell sorting was 

performed using a DakoCytomation MoFlo high-speed cell sorter (DakoCytomation) 

(Hierlihy et al., 2002). Forward and side scatter was measured at 488 nm 

(Spectraphysic Argon Laser). The Hoechst dye was excited at 359nm (I90C laser 

from Coherent). Blue emission was measured at 424nm (424/44 band pass filter) and 

red emission was above 675nm (675 AGLP long pass filter). All data was collected 

and analyzed with Summit™ Data Acquisition and Analysis Software 

(DakoCytomation). 

Methylcellulose Stem Cell/Progenitor Cell Culture 2x104 Side population cells 

were re-suspended in 2.5mL of Methocult media GF3434 (Stem Cell Technologies) 

using a 5mL syringe and a 12 gauge needle (Hierlihy et al., 2002). Cells were then 

plated on 2cm plastic petri dishes and incubated in humidity chambers at 37°C and 



5% C02 for 14days. At 14days post plating, colonies were counted using a Zeiss 

inverted microscope. 

Statistical Analysis Differences between Ad-CT-1 and Ad-CTRL injected 

samples were evaluated for statistical significance using one tailed, unpaired 

Student's t test. Differences were considered statistically significant at a p value less 

than 0.05. 

Results 

CT-1 represses myogenic differentiation 

Major sites of CT-1 expression during embryonic development are heart and skeletal 

muscle (Sheng et al., 1996). While CT-l's role in the cardiovascular system is being 

defined (Sheng et al., 1997), its role in skeletal muscle is not characterized. To begin 

to elucidate CT-1 function in skeletal muscle, we initially treated C2C12 cells 

chronically with CT-1 (lOng/ml, 0.5nM) and assessed muscle differentiation by the 

formation of multi-nucleated myotubes and accumulation of a skeletal muscle 

differentiation marker protein, MyHC. Solvent treated C2C12 cells began to exhibit 

multinucleated myotubes after 48hrs in DM. Thereafter, the control, solvent treated 

C2C12 cells developed MyHC-positive myotubes with large numbers of nuclei at 

later time points (figure 1A). In contrast, C2C12 cells in the CT-1 containing DM 

failed to form multinucleated myotubes at 48hrs. At later time points, some 



myogenesis occurred although the number and calibre of MyHC-positive myotubes 

were greatly reduced in the presence of CT-1 compared to the corresponding controls 

(figure 1A). In addition, the MCK promoter activity was strongly inhibited by CT-1 

as indicated by the transfection of a MCK promoter-reporter gene fused to enhanced 

signal Green Fluorescent Protein (EGFP) (pMCK-EGFP) (figure IB). We also 

observed that CT-1 did not affect the cellular proliferation rate of differentiating 

myoblasts in DM assessed by BrdU incorporation rate (figure 1C&D). Therefore, 

these data document that CT-1 represses the skeletal muscle differentiation 

programme without affecting proliferation rate. 

CT-1 represses the expression of pro-differentiation transcriptional regulators 

(MyoG and MEF2A/D) 

To generate multi-nucleated myotubes from mono-nucleated myoblasts, the MRFs 

and MEF2s play an essential synergistic role at various stages of the differentiation 

programme (Kaushal et al., 1994). Therefore, we postulated that CT-1 might interfere 

with muscle differentiation through the MRFs and/or MEF2. First, in order to 

establish that the repression of myogenesis by CT-1 was observed in this analysis the 

levels of MyHC, a structural marker of muscle differentiation were assessed. As we 

expected that MyHC accumulated in the solvent treated C2C12 cells at late time 

points. Conversely, this accumulation of MyHC was largely attenuated in C2C12 

cells treated with CT-1 (figure 2). Having determined that myogenesis was repressed 

by CT-1 at the molecular level, we next assessed the levels of various muscle 

transcription factors. Under these conditions, the expression of MyoG, a key MRF 

required for differentiation (Myer et al., 1997) was repressed by CT-1 compared to 



the solvent treated cells, in which it was strongly induced (figure 2). In addition, 

MEF2A and MEF2D were also lower in the cells treated with CT-1 (figure 2). These 

data indicate that CT-1 inhibits myogenic differentiation by interfering with the up-

regulation of MyoG and MEF2 factors. Interestingly, MyoD and Myf5 protein levels 

were relatively not affected by CT-1 suggesting that the lesion in the hierarchical 

differentiation programme lies between the MRFs required for lineage commitment 

(MyoD and Myf5) and the pro-differentiation transcriptional regulators (MyoG and 

MEF2A and MEF2D). 

Transcriptional induction of the myoG promoter by MyoD is repressed by CT-1 

signaling 

Since MyoD, along with Myf5, play an early 'commitment' role in the myogenic 

cascade and also play an important role in the induction of the myoG gene (de la 

Serna et al., 2005), we hypothesised that CT-1 might interfere with the trans-

activation properties of MyoD and therefore its ability to activate myoG transcription. 

To begin to address this hypothesis, we initially measured myoG promoter activity 

using reporter gene assays. In the absence of CT-1, the myoG promoter was activated 

in differentiating C2C12 cells in DM (figure 3). In the presence of CT-1, the 

activation of the myoG promoter was markedly inhibited in a dose dependent manner 

(figure 3). These data indicate that reduced MyoG levels observed with CT-1 (figure 

2) result from a loss of transcriptional induction of the myoG locus. 



Trans-activation properties of the MRFs are repressed by CT-l 

Based on our observation that myoG gene transcription was attenuated by CT-l, we 

next focused on whether MyoD frvms-activation properties might be altered by CT-1 

since MyoD expression levels remained unaffected with CT-l treatment (figure 2). 

The £ra«s-activation capacity of MyoD has already been documented to be a heavily 

regulated aspect of its function, both positively and negatively, by a variety of 

mechanisms (Kim et al., 2008; Polesskaya et al., 2001; Puri et al., 2001; Reynaud et 

al., 2000). Bioinformatic analysis of MyoD interacting proteins revealed that MEK1 

(Perry et al., 2001) and STAT3 (Kataoka et al., 2003) also share the property that they 

are known to be activated by phosphorylation in the presence of IL-6 family 

cytokines in different cell types. Therefore, we first confirmed that expression of CT-

1 and its signal transduction receptors, Gpl30 and LIFRp in C2C12. Endogenous CT-

1 and their receptor expression were confirmed by semi-quantitative RT-PCR 

analysis in the presence or absence of recombinant exogenous CT-l in the media. We 

detected their transcripts in C2C12 cells, and their expression levels were not affected 

in the presence of CT-l (figure 4A). We then surveyed these signaling molecules first 

by determining the phosphorylation levels of MEK1 and STAT3 in C2C12 cells 

acutely (figure 4B) or chronically (figure 4C) treated with CT-l by Western blotting 

analysis. Indeed, levels of phosphorylated MEK-1 and STAT3 proteins in C2C12 

cells were elevated in the presence of CT-l compared to those in solvent control cells 

(figure 4B and C). A previous study indicated that MyoD's transcriptional activation 

properties can be inhibited by a direct interaction with MEK1 (Perry et al., 2001). 

Therefore, we sought to test this interaction by co-immuno-precipitation analysis. 



These experiments revealed that exogenous expression of an activated form of MEK1 

(Act-MEK: MEK1 R4F) and MyoD resulted in co-purification of the two molecules 

in the same complex, suggesting the possibility that this interaction can occur (figure 

4D). In addition we observed that the typical activation of the tnyoG promoter (figure 

4E) and MCK promoter (supplemental figure 1) by exogenously expressed MRFs 

was repressed by CT- 1 signaling (recombinant CT-1 or Act-MEK 1) (figure 4E). 

These results further support the idea that MyoD ^raws-activation properties are 

repressed by CT-1 and that MEK activation is a key component of that repression. 

CT-1 inhibits the transcriptional properties of the MRFs through activation of 

MEK signaling 

To directly test the idea that CT-1 activation of MEK is responsible for MyoD trans-

repression, we utilized MEK specific inhibitors, PD98056 and U0126. First, we 

reasoned that if MEK activation is absolutely required for CT-1 repression of 

myogenesis, then we should abrogate CT-1 effects on myogenesis by repression of 

MEK. In the absence of CT-1 (solvent), C2C12 cells formed multinucleated 

myotubes, and they accumulated MyHC proteins (brown colour) after 2days in DM 

(figure 5 A). These morphological changes were not observed in the presence of CT-1. 

However, addition of MEK inhibitors neutralized the inhibitory effect of CT-1 on 

both myotube formation and MyHC accumulation in a dose dependent manner (3uM 

vs. lOuM) assessed by immunochemistry (figure 5A). Western blotting analysis of 

MyHC levels further confirmed the above observations (figure 5B). In agreement 

with this, a more detailed Western blotting analysis showed that MyoG protein levels 

were lower in the presence of CT-1, and this inhibitory effect was reversed by MEK 



inhibition (PD98059), which prevented CT-1 mediated induction of phosphorylation 

of ERK (a MEK activity indicator). It was noted that as previously reported in 

different systems (Chen and Sytkowski, 2004; Yip-Schneider et al., 2009), the MEK 

inhibitor caused hyper-phosphorylation of MEK. However, in the presence of 

PD98059 upregulation of phospho-ERK by CT-1 was clearly inhibited (figure 5C). 

Therefore, this MEK inhibitor prevents CT-1 mediated activation of MEK. We also 

noticed that the MEK inhibitor reversed these CT-1 effects without affecting the 

phosphorylation levels of STAT3 (figure 5C, see below). Furthermore, luciferase 

reporter gene assays also showed that myoG promoter activity driven by exogenously 

expressed MyoD was repressed by CT-1. Furthermore, 

exogenous expression of an activated form of MEK 1 or Raf (components of the 

MAPK signaling pathway), also repressed myoG activation and these effects were 

reversed in a dose dependent manner by MEK inhibition (figure 5D), and by 

expression of dominant negative form of MEK 1 or Rafl (figure 5E). Therefore, these 

data indicate that MEK inhibition 'rescues' muscle differentiation from the inhibitory 

effect of CT-1, both morphologically and biochemically; and repression of MyoD's 

frvms-activation properties by CT-1 is also reversed by MEK inhibition. Taken 

together, CT-1 represses skeletal myogenic differentiation through interference of the 

transcriptional activity of MyoD by the activation of MEK signaling. 

STAT3 activation by CT-1 is not sufficient for inhibition of myogenesis 

We documented that STAT3 is highly phosphorylated at tyrosine 705 (Y705) and 

serine 727 (S727) in response to CT-1 treatment (figure 4A&B). The Y705 

phosphorylation is required for STAT3 dimer formation, nuclear translocation, and 



transcriptional regulatory activity of STAT3 (Bromberg et al., 1999; Wen et al., 1995; 

Yu et al., 1995). Since a previous study showed that activated STAT3 can inhibit the 

transcriptional properties of MyoD (Kataoka et al., 2003), we postulated that STAT3 

might also be involved in the repression of MyoD by CT-1 signaling. Western 

blotting analysis showed that the MEK inhibitor inhibited phospho-ERKl/2 (an 

indicator of MEK activity) activation by CT-1. However, MEK inhibition had no 

apparent effect on the phosphorylation levels of STAT3 at Y705 or S727 by acute or 

chronic CT-1 treatment (figure 5C and 6A). Since MEK inhibition rescues myogenic 

repression but does not alter STAT3 phosphorylation by CT-1, this indicates that 

STAT3 activation is not sufficient to inhibit myogenesis. To further address this issue, 

we next used a pan-JAK kinase inhibitor, P6 (Pedranzini et al., 2006) since STAT3 is 

phosphorylated by the Gpl30/LIFRp associated JAK kinases. As previously observed, 

CT-1 inhibited myotube formation and MyHC accumulation in DM compared to 

controls (figure 6B). In assessing the dose dependency of the P6, we observed no 

effect on CT-1 mediated myogenic repression up to.a concentration at 250nM. 

However, at 500nM, P6 clearly neutralised the inhibitory effect of CT-1. Since P6 

inhibits tyrosine kinase activity of other kinases at high levels (Thompson et al., 

2002), we assessed the inhibitory effect of P6 on the phosphorylation levels of, 

STAT3, MEK1/2, and ERK1/2 by Western blotting analysis. As is claimed for this 

inhibitor, increased phosphorylation of STAT3 (Y705 and S727) by CT-1 was 

inhibited by P6 in a dose dependent manner (figure 6C). However, at a high 

concentration (500nM), P6 also repressed phosphorylation of ERK1/2 in the presence 

of CT-1. Since significant repression of phosphorylation of STAT3 was seen with the 



P6 inhibitor at low concentrations (up to 250nM), but such concentrations had no 

effect in reversing CT-1 effects on myogenesis, we conclude that STAT3 activation 

by CT-1 is not sufficient to inhibit myogenesis. In agreement with the above results, 

MyoD driven myoG promoter activity was clearly inhibited in the presence of CT-1 

(figure 6D). However, at any concentration tested, P6 had little effect on CT-1 's 

inhibitory effect. In addition, exogenous expression of constirutively active (A662C 

and N664C) (Bromberg et al., 1999), phospho-mimetic mutant (Y705D and S727D) 

or dominant negative forms of STAT3 (S705F and S727A) (Kaptein et al., 1996) had 

no apparent effect on myogenesis phenotypically and biochemically in the presence 

of CT-1 (data not shown). Therefore, these results indicate that inhibition of MEK1/2 

activity but not JAK activity is required for reversing the inhibitory effect of CT-1 on 

myogenesis. Taken together, we conclude that CT-1 inhibits skeletal muscle 

differentiation primarily through activation of MEK and, surprisingly, does not 

require STAT3 activation. 

CT-1 increases the number of muscle precursor cells and delays regeneration of 

damaged muscle in vivo 

To test the effect of CT-1 on in vivo skeletal muscle function, we utilized systemic 

delivery of a CT-1 expressing adenovirus, AdCT-1 (Bordet et al., 1999). AdCT-1 

infection causes accumulation of CT-1 protein in cell-culture medium (figure 7A), 

and AdCT-1 injection leads to accumulation of CT-1 in liver and skeletal muscle 

(figure 7B). Although it did not lead to gross morphologic alterations in skeletal 

muscle (figure 7C), we noted a significant increase in the number of DAPI positive 

nuclei per myofiber following exposure to AdCT-1 compared to control injected 



animals (Figure 7C&D; P<0.05). This observation suggested that CT-1 exposure 

represses differentiation leading to an increase in the number of undifferentiated 

myogenic precursors in vivo, similar to the effect elicited in C2C12 myoblast cell 

cultures. To test the possibility that CT-1 elicited an expansion of the 

myoblast/muscle precursor cell population, we also investigated the impact of CT-1 

administration on the endogenous skeletal muscle progenitor pool. Skeletal muscle 

contains a population of cells that retain stem cell/progenitor like characteristics and 

these cells can be isolated based on Hoechst dye exclusion, referred to as side 

population (SP) cells (Asakura et al., 2002; Jackson et al., 2002; Muskiewicz et al., 

2005). Skeletal muscle derived muscle progenitor cells from CT-1 injected animals 

were substantially increased compared to the number of progenitor cell colonies 

derived from control injected animals (10.6 vs 1.0; PO.05; n=7). Based on our in 

vitro observations, we postulated that CT-1 exposure might also limit the 

differentiation of myoblasts in vivo. To test this supposition we induced muscle 

regeneration via cardiotoxin (CTX) injection in animals that received either AdCT-1 

or the control adenovirus. CTX injury elicits a well defined response in which the 

myofibers are damaged, followed by expansion and differentiation of myogenic 

precursors to renew or replace the lost myofibers. Interestingly, CT-1 injected 

animals displayed a limited regeneration, exemplified by a marked reduction in the 

number of myofibers with centrally located nuclei and an expansion of 

mononucleated cells associated with regenerating myofibers compared to controls 

(Figure 7E). These results suggest that CT-1 targets myoblasts/muscle progenitor 

cells in vivo and actively represses the differentiation program. Taken together, our 



results implicate a role for CT-1 in the maintenance of the undifferentiated state in 

muscle progenitor cells. 

Discussion 

In this study, we have characterised CT-1 as a potent inhibitory cytokine for the 

skeletal muscle differentiation program. We document that CT-1 activates MEK, 

which functionally abrogates the transcriptional activation properties of MyoD, a 

master regulator of myogenesis. Repression of this core muscle transcriptional 

network extinguishes induction of the myoG gene, an essential downstream regulator 

of the muscle differentiation program. Inhibition of muscle differentiation by CT-1 is 

MEK dependent since well-established MEK specific inhibitors, PD98059 and U0126 

reverse CT-l 's inhibitory effects on myogenesis both biochemically and 

phenotypically. Conversely, even though STAT3 is highly phosphorylated in the 

presence of CT-1, our experiments indicate that the phosphorylated STAT3 at Y705 

and S727 is not sufficient to inhibit myogenesis. Thus, we conclude that CT-1 

mediated inhibition of myogenesis requires MEK activation which subsequently 

interferes with the /ra«,y-activation properties of MyoD. This repression is 

independent of JAK-STAT signaling since pharmacological blockade of this pathway 

has no effect on the repression of myogenesis by CT-1. 



Is MEK-ERK signaling a convergent regulatory nexus for cytokine mediated 

myogenic repression? 

Several cytokines and growth factors such as FGF and EGF inhibit myogenesis 

through activation of MEK-ERK signaling. There are however some exceptions, such 

as IGF and Insulin, which activate MEK-ERK but paradoxically enhance muscle 

differentiation under some conditions. Since IGFs and Insulin also activate the 

Phosphatidy Inositol 3-Kinase (PBK)-Akt pathway, and inhibition of PI3K or Akt 

neutralises their effect on myogenesis (Xu and Wu, 2000), it is likely that inhibition 

of differentiation is a "ground state" which can be overcome by pro-myogenic signals 

such as those mediated by Akt (Serra et al., 2007). This is essentially the sequence of 

events during ontogeny in which the muscle progenitor cells are held in an 

undifferentiated state until appropriate cues and conditions for differentiation are 

established. Thus, the dominance of pro-myogenic over inhibitory signals is a 

prerequisite for differentiation to occur. There is now substantial evidence suggesting 

that MEK activation is a point of convergence for several growth factors in repressing 

myogenesis (Page et al., 2004; Ramocki et al., 1997; Rommel et al., 1999). Evidence 

to date indicates that an activated nuclear MEK interacts with the MRFs and inhibits 

their transcriptional activation properties (Perry et al., 2001). The MRFs have 

consensus MAPK phosphorylation sites. However, MEK is capable of inhibiting the 

activity of a mutated form of Myf5, which does not have intact ERK phospho-

acceptor sites. Therefore, the phosphorylation of the MRFs by MEK is not necessarily 

required for the repression (Winter and Arnold, 2000). Recently, transcriptional 

regulators have been found to recruit kinases in a stable manner to target promoters to 



phosphorylate other components at the transcriptional machinery (Puri et al., 2001). 

Therefore, it is possible that the recruitment of kinases to muscle promoters is 

required for the inhibitory effects on differentiation. This is consistent with our data 

which indicates that the physical association of MyoD with MEK is crucial for the 

anti-myogenic activity of CT-1. 

Interestingly, another member of the IL-6 cytokine family, LIF, was shown to inhibit 

skeletal myogenesis in vitro (Jo et al., 2005). In agreement with our observations, LIF 

mediated repression was also correlated with MEK-ERK pathway activation (Jo et al., 

2005). LIF and CT-1 transduce signals in a similar manner through p-receptors such 

as Gpl30 and LIFRp. Prior to binding to the P-receptors, at least some of the IL-6 

family cytokines bind to ligand specific a-receptors, and expression levels of the a-

receptor in some cell types is known to regulate the sensitivity of the responsiveness 

to the specific ligand. Although LIF appears to bind P-receptors directly, CT-1 forms 

a complex with an a-receptor (Heinrich et al., 2003). However, this receptor has so 

far not been fully characterized, so a tissue specific role of this receptor has yet to be 

determined. In C2C12 skeletal muscle cells, we have confirmed that Gpl30 and 

LIFRp are expressed, and further characterization of the CT-1 a-receptor will 

delineate the precise receptor system. The convergence of LIF and CT-1 on MEK-

ERK signaling suggests that this is a common nodal point for Gpl30 linked cytokines. 

CT-1 was originally isolated as a hypertrophic factor for cardiomyocytes in vitro 

(Pennica et al., 1995). Chronic administration of CT-1 into the mouse, indeed, causes 

hypertrophic hearts and also increases the size of liver, kidney, and spleen. This is, at 

least partially, the result of induction of the Vascular Endothelial Growth Factor 



(VEGF) gene in cardiac myocytes through activation of the Gpl30-JAK-STAT3 

pathway (Jin et al., 1996). In addition, CT-1 activates MAPK pathways and the Akt-

PI3 kinase pathway and protects cardiomyocytes from apoptosis (Brar et al., 2001; 

Liao et al., 2002; Sheng et al., 1997). One of the target genes of CT-1 in this cardio

protective role is the Small Proline-Rich Repeat protein-lA (SPRR1A) gene. CT-1 

induces SPRR1A expression transcriptionally through activation of MEK-AP-1 and 

CCAAT/Enhancer-Binding Protein-p (C/EBPJ3) pathways. This SPRR1A gene 

induction by CT-1 is independent of STAT3 activity but blunted by small chemical 

inhibitors of MEK activity, PD98059 and U0126 (Pradervand et al., 2004). Therefore, 

in other systems, CT-1 activates MEK kinases and regulates their down stream 

transcription factors. In C2C12 cells, we observed that the SPRR1A promoter was 

also up-regulated by CT-1 or an activated form of MEK, and this induction was 

dependent on MEK activation. However, SPRR1A over-expression does not inhibit 

myogenesis suggesting that this CT-1 target gene is not responsible for myogenic 

repression (data not shown). Our observations are discordant with a previous study, in 

which it was shown that activated STAT3 and MyoD physically interact and 

functionally antagonise each other by competing for limited amounts of co-activators, 

such as P300 and PCAF (Kataoka et al., 2003). We document that the pan-JAK 

inhibitor, P6, reduced the phosphorylation levels of STAT3 (Y705 and S727) by CT-

1 but had little effect on myotube formation or MyoD's transcriptional activity at the 

concentration at which P6 inhibits phosphorylation of STAT3. Therefore, while we 

do not completely rule out the possibility that the inhibition of MyoD activity may be 

partly mediated by STAT3, we conclude that activation of MEK but not STAT3 is the 



primary molecular event responsible for CT-l's inhibitory effect on myogenesis. 

Further support for this idea was recently provided by the observation that STAT3 

and JAK2 were shown to be required for muscle differentiation C2C12 (Wang et al., 

2008). Thus, the notion that STAT3 also functions in an inhibitory manner is unlikely. 

In addition, we observed that a well established JAK2 inhibitor, AG490, inhibited 

muscle differentiation in a dose dependent manner as previously reported 

(supplemental figure 2A) (Wang et al., 2008). However, this JAK2 inhibitor 

surprisingly had no effect on phosphorylation of STAT3 by CT-1 (supplemental 

figure 2B). Therefore, the JAK/STAT pathway does not appear to play a repressive 

role during myogenesis. 

Given the temporal and spatial patterns of CT-1 expression during myogenesis, a 

pervasive consideration is whether CT-1 plays a role in the maintenance of the 

undifferentiated state or even pluripotency of progenitor cells in an autocrine or 

paracrine manner. Since CT-1 is expressed in skeletal muscle at key times during 

embryogenesis, and, as we observed, has a potent role in which it can reversibly 

repress myogenesis in vitro and delay regeneration in vivo. The observed in vitro and 

in vivo role of CT-1 in skeletal muscle cells defines it as a potential target of 

therapeutic interventions in which small molecule cell permeable inhibitors can be 

used to manipulate pro- and anti-differentiation pathways. Moreover, knowledge of 

these pathways could be instrumental in ex-vivo programming of progenitor cells 

which may have critical implications for a variety of cellular based muscle therapies. 

In summary, we have documented that the CT-1 cytokine has a potent repressive 

effect on skeletal myogenesis in vivo and in vitro. This effect, which is reversible, 



requires MEK-ERK signaling and, surprisingly, does not require STAT3 activation. 

The expression patterns of CT-1 and its in vivo and in vitro properties described here 

make it a viable candidate to play a role in the maintenance of the undifferentiated 

muscle progenitor cell state in embryonic and post-natal skeletal muscle. 
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FIGURE LEGENDS 

Figure 1. CT-1 represses myogenic differentiation. A) C2C12 cells were seeded onto 
cell culture plates at equal density and maintained in CT-1 (lOng/ml) or solvent 
containing growth medium (GM) or differentiation medium (DM) for the indicated 
time period. The cells were fixed and stained for muscle myosin heavy chain (MyHC) 
detection by immunochemistry. The photomicrographs are representative fields in each 
condition. B) C2C12 cells were plated at equal density and transfected with pCMV-
deRed2 and pMCK-eGFP constructs. The transfected cells were maintained in CT-1 
(lOng/ml) or solvent containing DM for 72 hrs to induce myotube formation. The cell 
morphology was recorded by phase-contrast microscopy and transfected cells were 
monitored by the red fluorescence signal. MCK promoter activity was assessed by the 
green fluorescence signal. C) C2C12 cells were maintained in DM for 72hrs and CT-1 
(lOng/ml) or solvent was added every 24hrs. After 72hrs in low serum conditions cells 
were incubated with lOOuM of BrdU for lhr. Cells were then fixed with 70% ethanol 
and then incubated with 2N H O to denature the DNA. The cells were then blocked 
with 10% goat serum prior to incubation with BrdU primary antibody. The cells were 
then washed with lx PBS-T and incubated with secondary antibody conjugated to FITC. 
The cells were washed with lx PBS-T and mounted using fluorescence mounting 
media and viewed under a fluorescence microscope. D) The average of percentage of 
BrdU positive nuclei over total nuclei in 12 individual fields per condition was 
calculated and graphed, (error = standard variation) 

Figure 2. CT-1 represses the expression of pro-differentiation transcriptional 
regulators (MyoG and MEF2A/D). C2C12 cells were induced to differentiate in DM 
with CT-1 (lOng/ml) or solvent. The cells were maintained in the indicated conditions 
for specific time periods. Total protein samples were extracted from the cells and equal 
amounts of total protein (20ug) were subjected to Western blotting analysis. The levels 
of indicated proteins were assessed by a standard immuno-blotting technique with a 
specific primary antibody. Actin indicates equal amounts of protein loading into each 
lane. 

Figure 3. Transcriptional induction of the ntyoG promoter by MyoD is repressed 
by CT-1. C2C12 cells were transfected with either pGL3 (empty control) or a 
Myogenin promoter-luciferase reporter gene construct (pMyoG-Luc), and to monitor 
transfection efficiency, pCMV-p-gal construct was included in each condition. The 
transfected cells were maintained for 16 hrs in the indicated concentration of CT-1 or 
its solvent in DM. Total protein samples were harvested with a luciferase lysis buffer. 
Luciferase activity in each condition was measured independently and normalized 
according to P-Galactosidase activity. 
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Figure 4. Trans-activation properties of the MRFs are repressed by CT-1. A) Total 
RNA was isolated from C2C12 cells in GM (lane 1), DM with solvent (48hrs) (lane 2), 
and DM with CT-1 (lOng/ml) (48hrs) (lane 3) and subjected to semi-quantitative RT-
RCP analysis with indicated gene specific primer pairs. RT-PCR amplified DNA was 
separated in a TAE/agarose-gel, and EtBr stained DNA was visualised by UV 
irradiation. GAPDH serves as an internal loading control. B) C2C12 cells were plated 
at equal density and kept in DM for 16hrs. CT-1 (lOng/ml) or equal volume of the 
solvent was added to the media. The cells were harvested after 20min of CT-1/solvent 
addition. Total protein samples were subjected to Western blotting analysis to estimate 
the levels of indicated proteins. C) Western blotting analysis was performed as 
described above. However, the cells were maintained in DM with CT-1 or solvent for 
indicated time periods. D) C3H10T1/2 cells were transfected with combinations of the 
indicated constructs. Total protein samples were extracted from the cells maintained in 
DM. Exogenous-expression of MyoD and an activated form of MEK1 was confirmed 
by immuno-blotting (IB) (lOug loading) with the specific antibodies. An immuno-
precipitation (IP) analysis was performed with the total protein extract (250ug) with 
MyoD antibody (mouse) and proteinG conjugated beads. Precipitated immuno-complex 
were eluted off the proteinG beads and subjected for an immunoblotting with MEK 
antibody (Rabbit). Equal amount of IgG loading was monitored with MyoD immuno
blotting with MyoD specific antibody (Rabbit). E) C2C12 cells were transfected with 
the indicated expression constructs or its empty vector (lug) and myoG promoter-
(pMyoG-Luc) promoter-Luciferase reporter construct (0.5ug). In addition, an activated 
form of MEK 1 expression vector (lug) or its empty vector (for CT-1 and solvent) was 
included. To monitor transfection efficiency, a pCMV-p-Gal construct was also 
included (0.3ug). After transfection, the cells were maintained in DM containing CT-1 
(lOng/ml) or its solvent for 16 hrs. The cells were harvested and subjected to luciferase 
assay and p-Galactosidase assay. 
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Figure 5. CT-1 inhibits the transcriptional activity of the MRFs through activation 
of MEK signaling. A) C2C12 cells were plated at equal density and induced 
differentiation transferred into DM upon about reaching confluence. The cells were 
maintained in indicated concentration of MEK inhibitor (PD98059, U0126, or DMSO; 
3uM or lOuM) with without CT-1 (lOng/ml). After 2days in the indicated conditions, 
the cells were fixed and stained for MyHC detection by immunochemistry with MF-20 
mouse monoclonal antibody. MyHC protein accumulation was indicated by brown 
color. The photomicrographs are representative fields. B&C) C2C12 cells were 
maintained in DM with CT-1 (lOng/ml) and or PD98059 (lOuM), or their solvents for 
2days (C) or 3days (B) to induce myotube formation. Total cellular proteins were 
extracted from the cells in each condition. The total protein lysate samples (20ug) were 
subjected to Western blotting analysis. Actin levels indicate loading of an equal amount 
of the total protein into each lane. D) C2C12 cells were transfected with a pMyoG-Luc 
(0.5ug), a MyoD expression vector (lug;), a pCMV-P-Gal (0.3ug), and also the 
indicated kinase expression vector (act.MEKl, act.Raf) or an empty vector (lug). The 
transfected cells were maintained in DM containing CT-1 (lOng/ml) or solvent, and the 
indicated concentration of PD98059 MEK inhibitors for 16hrs. The cells were 
harvested and subjected to Luciferase assay and (3-Gal assay. Luciferase activity was 
normalized according to the P-galactosidase activity from a co-transfected pCMV-p-
Gal expression construct by calculating the Relative Luciferase Unit (RLU) for each 
individual condition, and the fold-activation was calculated with respect to the average 
RLU of the "empty vector + solvent" at the corresponding concentration of PD98059. 
E) C2C12 cells were transfected with a pMyoG-Luc (0.5ug), a pCMV-p-Gal (0.3ug), 
and also the indicated kinase expression vector (DN-MEK1, DN-Rafl) or an empty 
vector (lug). The transfected cells were maintained in DM containing CT-1 (lOng/ml) 
or solvent for 16hrs. The cells were harvested and subjected to Luciferase assay and p-
Gal assay. 
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Figure 6. STAT3 activation by CT-1 is not sufficient for inhibition of myogenesis. 
A) C2C12 cells were plated at equal density maintained in DM. A MEK inhibitor 
(PD98059 (10uM)) or DMSO was added 30min before the addition of CT-1 (lOng/ml) 
or its solvent. After 20 min of CT-1 or solvent treatment, the cells were harvested, and 
total protein samples were extracted for each condition. The protein samples (20ug) 
were subjected to Western blotting analysis. B) An equal number of C2C12 cells were 
plated and maintained in DM containing CT-1 (lOng/ml) or its solvent, in addition, the 
indicated concentration of pan-JAK kinase inhibitor, P6, was included in the DM. The 
cells were fixed after maintained in the DM for 3days, and accumulation of MyHC was 
visualized by immunochemistry. The brown color indicates MyHC accumulation in the 
cells. The photomicrographs are representative fields of each condition. C) C2C12 cells 
were plated at equal density and maintained in DM for 16 hrs. Thirty min before adding 
CT-1 (lOng/ml) or its solvent, the cells were treated with indicated concentration of P6 
(pan-JAK kinase inhibitor). After 20 min of CT-1 or solvent addition to the media, the 
cells were harvested. Total protein samples were extracted from the cells in each 
condition, and equal amounts of the protein (20ug) was subjected for Western blotting 
analysis. D) C2C12 cells were transfected with an either pMyoG-Luc or pGL4-10 
(0.5 ug), and a MyoD expression vector (l(xg), a pCMV-P-Gal (0.3 ug). The transfected 
cells were maintained in DM containing CT-1 (lOng/ml) or solvent, and the indicated 
concentration of P6 pan-JAK inhibitor for 16hrs. The cells were harvested and 
subjected to Luciferase assay and P-Gal assay. 
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Figure 7. CT-1 delays regeneration of damaged skeletal muscle in vivo A) 
Immunoblotting was used to verify the efficacy of Adenovirus CT-1 production. 
Recombinant CT-1 protein (lOOng) was used as a positive control, as well as media 
from CT-1 adenovirus infected myocytes. At 72hrs post-infection, the media from the 
treated and untreated cells was collected and subjected to Western blotting analysis 
with a CT-1 antibody. B) At 7 days post-injection, skeletal muscle (sk.muscle) and liver 
samples were excised from adenovirus injected mice. Frozen tissue was homogenized 
and a total of 300ug of protein was electrophoresed on a 15% SDS-PAGE. An equal 
protein loading was verified by Western blotting analysis using P-tubulin specific 
antibody C) At 7days post-injection, skeletal muscle was excised, fixed then embedded 
in paraffin, and sectioned at 1 Oum. These sections were counterstained with 
haematoxylin and eosin to visualize the nuclei and cytoplasm. For immuno-histological 
detection of P-actinin, the sections were incubated with P-actinin antibody (Abeam), 
then incubated in donkey-anti-goat CY3 antibody (Chemicon) and finally 
counterstained with DAPI (Sigma). The micrographs were representative fields D) 5 
fields of view per section and 5 sections per TA muscle were analysed. Differences 
between Ad-CT-1 and Ad-CTRL injected samples were evaluated for statistical 
significance using one tailed, unpaired Student's ^test. Differences were considered 
statistically significant at a p value less than 0.05. (n=3) 
E) B6C3F1 mice were subject to systemic delivery of the CT-1 adenovirus. The 
injections were administered via intra-cardiac chamber delivery with 50uL of Ad-CT-1 
at a concentration of 3.0 X 108PFU/mL (n=3). A control group of B6C3F1 mice were 
injected with 50 uL Ad-CTRL at a similar concentration (n=3). In a separate group of 
animals, cardiotoxin was used to induce muscle injury immediately prior to AdCT-1 
and Ad-CTRL injection (n=3 for each group). 25u1 of lOuM cardiotoxin (Latoxan) was 
injected directly into the TA muscle. 5 fields of view per section and 5 sections per TA 
muscle were analysed. The micrographs were representative views. During post-
recovery, mice were monitored closely for weight loss, dehydration and cardiac distress. 
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Abstract 

In the 'canonical' view of transforming growth factor-p (TGFP) signaling, Smad7 serves 

an inhibitory role. While Smad7 represses SmacB activation by TGFp, it does not reverse 

the inhibitory effect of TGFp on myogenesis suggesting a different function in myogenic 

cells. We previously reported a pro-myogenic role of Smad7 mediated by an interaction 

with MyoD. Based on this association, we hypothesized a possible nuclear function of 

Smad7 independent of its role at the level of the receptor. We therefore engineered a 

chimera of Smad7 with a nuclear localization signal (NLS), which serves to prevent, and 

therefore bypass, binding to the TGFp receptor while concomitantly constitutively 

localizing Smad7 to the nucleus. This Smad7-NLS did not repress Smad3 activation by 

TGFp but did retain its ability to enhance myogenic gene activation and phenotypic 

myogenesis indicating that the nuclear, receptor independent, function of Smad7 is 

sufficient to promote myogenesis. Furthermore, Smad7 physically interacts with MyoD 

and antagonizes the repressive effects of active-MEK on MyoD. Reporter and myogenic 

conversion assays indicate a pivotal regulation of MyoD transcriptional properties by the 

balance between Smad7 and active-MEK. Thus, Smad7 has a nuclear co-activator 

function that is independent of TGFP signaling and necessary to promote myogenic 

differentiation. 
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Introduction 

Skeletal muscle differentiation results from a highly orchestrated program of gene 

expression. Extensive biochemical and genetic evidence has implicated a family of DNA 

binding transcriptional regulatory proteins encoded by the myogenic regulatory factor 

(MRF) genes, my/5, myod, myogenin (myog), and mr/4, in this process. In conjunction 

with the proteins encoded by the myocyte enhancer factor two (MEF2A-D) gene family, 

the MRP's activate an evolutionarily conserved program of gene expression, which leads 

to the generation of terminally differentiated multinucleated myotubes from 

mononucleated precursor cells (10, 16, 22, 24, 40, 41, 45, 51). The transcriptional 

activation properties of the MRF and MEF2 complexes are potently regulated by diverse 

protein-protein interactions (4, 6, 25, 26, 30, 31, 35, 37, 43, 47, 49, 61) and myriad post-

translational modifications (7, 9, 13, 23, 46, 54, 59, 60). This integrated network of 

protein complexes specifies a unique code for the establishment of myogenic lineage 

commitment and differentiation. The dynamic nature of these transcriptional regulatory 

complexes is acquired by an exquisite responsiveness to the milieu of cytokines and 

growth factors that regulate the myogenic cascade (1, 14, 19, 21, 38, 44, 50, 52, 55). 

Amongst a plethora of secreted soluble growth factors affecting muscle differentiation, 

TGFp and Myostatin have been implicated as potent repressors of the myogenic gene 

expression program. 

The TGFp superfamily of cytokines has been shown to function through a 'canonical' 

pathway in which the receptor regulated Smads (R-Smads) transduce signals to the 

nucleus to modulate gene expression in response to ligand-receptor interaction. An 

interesting feature of this signal transduction cascade is the existence of inhibitory Smads 
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(I-Smad; Smad6 and Smad7) which serve to repress receptor mediated signaling in an 

auto-regulatory feedback loop. Smad7 is primarily characterized as a negative regulator 

of the TGF|3-Smad2/3 pathway (17). The 'canonical' view is that Smad7 prevents 

Smad2/3 from being phosphorylated by the TGFJ3 type I receptor (ALK5) by physical 

interaction with the cytoplasmic tail of the receptor complex; as a result, Smad7 inhibits 

Smad2/3 and Smad4 complex formation and subsequent nuclear accumulation of this 

complex (42, 56). Both TGFp and Myostatin repress myogenesis in vitro and in vivo 

respectively (2, 3, 5, 15, 36, 57). These pathways converge on Smad2/3 through 

formation of activated receptor complexes with type I (ALK5) and II TGFP receptors for 

TGFp (18, 33, 34, 53, 58), and type I (ALK7) and IIB activin receptors for Myostatin (27, 

28). Despite the commonality of this effecter system, we previously found that exogenous 

Smad7, which functions as an inhibitory Smad, reverses the inhibitory effect of 

Myostatin but not TGFP on muscle differentiation suggesting that some aspects of the 

downstream signaling are divergent (26). In these studies, it was documented that Smad7 

fulfills an essential and enhancing role for muscle differentiation. Preliminary evidence 

suggested that Smad7 might co-operate with a nuclear transcription factor in order to 

enhance muscle differentiation through potentiation of the transcriptional properties of 

MyoD (26). 

In this report, we systematically dissect the role of Smad7 in the nucleus in myogenic 

cells. Constitutive nuclear localization of Smad7 was engineered by fusing a nuclear 

localization signal (NLS) to Smad7 (Smad7-NLS). Smad7-NLS accumulates in the 

nucleus, bypassing its 'canonical' ability to inhibit Smad3 activation by TGFp. The 

nuclear Smad7 retains its capacity to enhance MyoD's transcriptional properties and 
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myogenic differentiation independent of its ability to abrogate Smad3 activation at the 

level of the receptor. In addition, we found that Smad7 antagonizes the repressive effects 

of MAP kinase kinase (MEK) on MyoD function. Collectively, these observations 

support a pro-myogenic role of nuclear Smad7 independent of its role in antagonizing 

TGFp signaling. 

Materials and Methods 

Plasmids Smad7 and Smad7T expression vectors were described previously (26). The 

ORF of EGFP without a stop codon was inserted at the Hindlll site of pcDNA3-Smad7 or 

pcDNA3-Smad7T expression vectors for expression of the fusion peptide, and the EGFP 

ORF with a stop codon was inserted at the Hindlll site of pcDNA3 empty vector 

(invitrogen). NLS of SV40 (5'tc gag ggt gga ggt cc acct aaa aag aag egg aaa gtg ggt gga 

ggt t 3' and 5'ct aga ace tec ace cac ttt ccg ctt ctt ttt agg tgg ace tec ace c 3') was inserted 

at the Xhol/Xbal site in frame to generate an EGFP-Smad7-NLS construct. MRF 

expression plasmids were constructed in pEMSV as described elsewhere (8). MyoD 

deletion constructs were a kind gift from S.Tapscott (Division of Human Biology, Fred 

Hutchinson Cancer Research Center, Seattle). An activated (AN3 S218D/S222E) human 

MEK1 expression construct was a gift from A.Natalie (32). The reporter construct 

pMCK-EGFP was provided by A. Ferrer-Martinez (Universitat de Barcelona, Spain). 

3TP-Lux, and expression vectors for DN-Actll, DN-TpiIR were from J.Wrana 

(University of Toronto; Program in Molecular Biology and Cancer, Samuel Lunenfeld 

Research Institute, Mount Sinai Hospital). The expression vector for DN-TpIIR was from 
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J.Massague (Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, 

New York). Smad 7 promoter-luciferase-reporter constructs were provided by S.Dooley 

(Molecular Alcohol Research in Gastroenterology, II, Medical Clinic, Medical Faculty 

Mannheim, University of Heidelberg, Heidelberg, Germany). (CAGA)XIO-Luc reporter 

construct was generated by insertion of 10X (CAGA) sequence from the pai-I promoter 

(11) followed by a c-fos minimal promoter in the pGL3-basic (Promega) luciferase 

reporter vector. Transcription reporter constructs, pMCK-luc (12), pCMV-p-

galactosidase were described elsewhere (26). The myogenin promoter region was excised 

from pMyoG-luc by Sad IBgl II digestion. The resultant 1152bp fragment was inserted at 

the Sad IBgl II sites of pGL4-10 vector (Promega). The dsRed2-Nl expression vector 

was purchased from Clontech Laboratories. All constructs used in this study were 

verified by DNA-sequencing (York University Molecular Core Facility). 

Antibodies The primary antibodies used in this study were obtained from Santa Cruz 

Biotechnology; MyoD (sc-304), GFP (sc-5385), Actin (sc-1616), c-Jun (scl694), Myf5 

(sc-302) from Cell Signaling Technology; MEK1/2 (9122), Phospho-MEKl/2 

(Ser217/221) (9121), from Developmental Studies Hybridoma Bank; Myogenin (F5D), 

Myc (9E10), from DakoCytomation; MyoDl (clone:5.8A; M3512), from R&D system; 

Smad7 (MAB2029). Normal mouse IgG (sc-2025) was from Santa Cruz Biotechnology. 

Cell Culture C2C12 myoblast and C3H10T1/2 were obtained from American Type 

Culture Collection and cultured in growth medium (GM) consisting of 10% Fetal bovine 

serum £FBS) (HyClone) in high-glucose Dulbecco's modified Eagle's medium (DMEM) 
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(Gibco) supplemented with 1% penicillin-streptomycin (Gibco) at 37°C and 5% CO2. 

Myotube formation was induced by replacing GM with differentiation medium (DM) 

which consisted of 2% horse serum (Atlanta Biologicals) in DMEM supplemented with 

1% penicillin-streptomycin. For TGF(3 or CT-1 treatment, recombinant human TGFp 

(R&D system; 240-B) or CT-1 (R&D system; 438-CT) was resuspended with solvent 

(4mM HC1, 0.1% bovine serum albumin (BSA)) and added into the media. For myotube 

formation assays, DM with TGFJ3 (lng/ml) or CT-1 (lOng/ml) was replenished every 2 

days. 

Microscopy and Fluorescence Fluorescence and phase contrast photomicrographs 

were obtained using an epifluoresence microscope (Axiovert 35; Carl Zeiss 

Microimaging), with appropriate phase and filter settings, and either 4X NA 0.10 or 10X 

NA 0.25 Achrostigmat objective lenses. Images were recorded with a digital camera 

(Canon, EOS D60). 

Nuclear protein extraction Nuclear proteins were extracted from the cells by NE

PER® kit (Pierce) according to the manufacturer's protocol. 

Western blotting analysis Total cellular protein extracts were prepared in NP-40 lysis 

buffer (0.1 % NP-40, 150 mM NaCl, ImM EDTA, 50 mM Tris-HCl pH 8.0, ImM 

sodium vanadate, ImM PMSF, supplemented with a protease inhibitor cocktail (Sigma, 

P-8340)). Protein concentrations were determined by a standard Bradford assay 

(BioRad). Equivalent amounts of protein were resolved by SDS-PAGE gels, followed by 
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electrophoretic transfer to an Immobilon-P membrane (Millipore) as directed by the 

manufacturer (Millipore). Blots were incubated with the indicated primary antibody in 

5% milk in PBS or Tris buffered saline (TBS)-T (lOmM Tris-HCl pH8.0, 150mM NaCl, 

0.1% Tween-20) or 5% Bovine serum albumin (BSA) in TBS-T according to the 

manufacturer's protocol at 4°C overnight with gentle agitation. After washing briefly, 

the blots were incubated with the appropriate HRP-conjugated secondary antibodies in 

5% milk in PBS or TBS-T at room temperature according to the manufacturer's protocols 

(Santa Cruz Biotechnology, Cell Signaling Technology). After being washed three times 

with 1XPBS or 1XTBS (depending on the primary antibody) at room temperature, the 

blots were treated with the Enhanced chemi luminescence reagent (Amersham) to detect 

immuno-reactive proteins. The blots were exposed to Biomax film (Kodak) for visual 

representation. 

Transcription reporter gene assays C2C12 myoblasts were transfected by a standard 

calcium phosphate-DNA precipitation method with the indicated reporter gene and 

expression constructs and pCMV-P-galactosidase to monitor transfection efficiency. 

After transfection, the cells were washed with PBS and maintained in GM and then 

treated as indicated. Total cellular protein was extracted with luciferase lysis buffer 

(20mM Tris-HCl pH7.4, 0.1% Triton X-100). Luciferase and p-galactosidase enzyme 

assays were performed according to the manufacturer's protocol (Promega). Luciferase 

activity was quantified using a luminometer (Berthold Lumat, 9501) and standardized 

according to p-galactosidase activity. Relative Luciferase units normalized for P-

galactosidase activity (Relative Luciferase Unit; RLU) were determined and plotted as an 
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average of triplicate determinations and error bars represent standard deviations of the 

triplicate values. 

Co-immunoprecipitation analysis An equal amount of total cellular protein (250ug) 

was diluted with NP-40 lysis buffer to a final concentration of 1 ug/ul. Protein 

complexes were immunoprecipitated with the indicated antibody and 25ul of protein G-

Plus Sepharose beads (50% slurry) (Santa Cruz Biotechnology) by incubation at 4°C 

overnight on a rotating platform. The beads were washed with three changes of NETN 

wash buffer (0.1% NP-40, 150mM NaCl, ImM EDTA, and 50 mM Tris-HCl pH 8.0). 

Beads were boiled in SDS sample buffer, and protein complexes were resolved by SDS-

PAGE and immuno-blotted as described above. 

Results 

Constitutive nuclear localization ofSmad7 bypasses its inhibitory role at the TGFfi 

receptor complex. Since our preliminary studies suggested a possible dual role for 

Smad7 at the level of the TGF|3 receptor and also in the nucleus, we therefore aimed to 

dissect these potentially independent facets of Smad7 activity in a systematic manner. 

Initially, we sought to engineer a nuclear localized Smad7 that was independent of 

receptor mediated events in order to test whether this property of Smad7 could 

recapitulate the pro-myogenic effect that we have previously documented for the wild-

type Smad7 molecule (26). One strategy was to add a nuclear localization signal (NLS) to 

Smad7. The rationale being that such a modification of Smad7 would abrogate its ability 
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to interfere with R-Smad activation by the receptor while concomitantly localizing it to 

the nuclear compartment where, based on our previous observations, we predicted it 

might still function in the control of myogenic gene expression. 

Therefore, we fused the NLS of SV40 at the C-terminus of Smad7. In addition, to track 

the sub-cellular localization of the Smad7-NLS fusion protein in living cells, we also 

generated a fusion in which we added EGFP at the N-terminus of Smad7 (figure 1A). The 

fusion proteins were expressed in transfected C2C12 cells at the expected molecular 

weights. Addition of the NLS to Smad7 has no apparent effect on the expression levels of 

the Smad7 proteins (whether conjugated with EGFP or not) in myogenic cells (figure IB). 

In C2C12 cells, exogenously expressed EGFP-Smad7 localized to the nucleus and 

cytoplasm, while EGFP-Smad7-NLS was localized almost exclusively to the nucleus as 

indicated by EGFP signal localization (figure 1C). To quantitate these observations, we 

randomly chose 10 fields and scored sub-cellular localization of the EGFP signals. The 

results, summarized in figure ID, document that, in contrast to EGFP-Smad7, EGFP-

Smad7-NLS essentially localizes to the nucleus. We further determined the sub-cellular 

localization of the Smad7 fusion proteins by biochemical fractionation of cytoplasmic 

and nuclear extracts. Western blotting analysis of the fractionated samples for positive 

markers of the cytoplasmic (MEK1/2) and nuclear fractions (c-Jun) revealed a very good 

level of enrichment in the respective fractions (figure IE). Subsequent analysis of the 

different Smad7 proteins showed that EGFP-Smad7 was detected in both the nuclear and 

cytoplasmic fractions whereas, as predicted, EGFP-Smad7-NLS was essentially localized 

in the nuclear fraction as assessed by three different primary antibodies (recognizing myc, 

Smad7, and GFP proteins in figures IE and IF). Thus, we concluded that adding the NLS 
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to Smad7 effects a very efficient re-localization of Smad7 in the nucleus and largely 

eliminates the cytoplasmic accumulation which is characteristic of the wild type protein. 

Thus, based on the biochemical and fluorescence data we concluded that we have 

effectively engineered a variant of SMAD7 that is localized in the nucleus and should be 

incapable of functioning at the level of the TGFP receptor. 

We next assessed whether the engineered changes in localization of Smad7 resulted in 

functional alterations in its properties. Firstly, TGFp potently activated a TGFp/Smad3 

dependent reporter gene (3TP-lux) activity, and TGFp induced 3TP-lux activity was 

reduced in the presence of EGFP-Smad7 (figure 1G), consistent with the known function 

of wild-type Smad7. However, as we predicted, ectopic expression of EGFP-Smad7-NLS 

did not interfere with 3TP-lux activation by TGFp as would be seen by wild type Smad7 

(figure 1G). However, we noted that 3TP-lux consists of a Smad Binding Element (SBE) 

and also 3 copies of the TPA Responsive Element (TRE), which recognizes activator 

protein-1 (AP-1) transcription factor. Because we have recently observed that TGFp can 

activate AP-l in this system (data not shown), we also constructed a multimerized Smad3 

binding site (CAGA) driven luciferase reporter gene ((CAGA)XlO-luc) to test whether 

this effect was primarily dependent on the SBE and independent of the TREs in 3TP Lux 

(11). In agreement with the results observed for 3TP-lux, Smad7 inhibited TGFp induced 

(CAGA)XlO-luc activity, while Smad7-NLS expression had essentially no effect on 

reporter gene activation by TGFp (figure 1H). These results indicate that constitutive 

Smad7 localization to the nucleus bypasses repression of TGFp signaling at the level of 

the receptor. Thus, the cytoplasmic localization of Smad7 is required for Smad7's 

'canonical' inhibitory effect on the TGFp/Smad3 pathway. 
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Nuclear Smad7 enhances MyoD 's transcriptional activation properties independent of 

inhibiting the TGFp/Sntad3 pathway. Having successfully engineered Smad7-NLS, 

which is localized to the nucleus and is unable to interfere with TGFp receptor mediated 

Smad3 activation, we tested whether this molecule could still function to enhance 

myogenesis. Since we previously observed that Smad7 can physically associate with 

MyoD and enhances MyoD's transcriptional properties (26), we sought to determine 

whether Smad7-NLS retains the ability to potentiate MyoD's transcriptional properties. 

First, we determined the effect of exogenous expression of Smad7 on nuclear MyoD 

protein levels with or without addition of TGF|3 (lng/ml). Exogenously expressed Smad7 

and Smad7-NLS were detected in the nuclei, and in agreement with the above results, 

Smad7-NLS accumulated in the nucleus in considerably larger amounts than that of wild-

type Smad7 (figure 2A). Although it was previously reported that MyoD protein levels 

are down-regulated when cells are exposed to TGFp, there was no effect of exogenous 

Smad7 on endogenous MyoD protein levels in the presence or absence of TGFp. In 

addition, ectopic expression of Smad7-myc and Smad7-NLS-myc had no effect on 

endogenous expression of MyoD, Myf5, and c-Jun, and transfection efficiency was not 

affected by the expression of Smad7 fusion proteins as assessed by co-transfected dsRed2 

expression (figure 2B). 

To further examine whether Smad7 enhances myogenesis independent of Smad7's 

'canonical function' of inhibiting R-Smad activation mediated by the activated TGFp 

receptor complex, we silenced TGFp and Myostatin signaling by expression of a 

dominant negative (DN) form of the corresponding receptors (figure 2C). Activity of a 
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Smad3 dependent reporter gene (3TP-luc) was repressed by expressing the DN form of 

activin type II receptor (DN-ActllR), of TGFp type II receptor (DN-TbllR), or a 

combination of both. Under these conditions of complete receptor blockade, Smad7 still 

activated MyoG promoter-reporter gene activity suggesting that Smad7 enhances 

MyoD's transcriptional properties in a manner independent of TGFp-Smad3 signaling. 

Nuclear Smad7 enhances muscle differentiation. Based on the above 

observations on the myog promoter, we next tested the hypothesis that the pro-myogenic 

role of Smad7 could be recapitulated by the nuclear localized Smad7. To address this 

question, we first examined the effect of Smad7-NLS and Smad7 on MyoD's 

transcriptional activity. As indicated by a myog promoter-luciferase reporter gene 

(pMyoG-luc), Smad7-NLS enhanced MyoD driven myog reporter gene activity to a 

similar extent to that of wild-type Smad7 (figure 3 A) without affecting MyoD protein 

levels (figure 3B). Next, Smad7-NLS was expressed in C2C12 myoblasts in which a 

muscle differentiation marker gene, muscle creatine kinase (mck) promoter EGFP 

reporter construct (pMCK-EGFP) was included to monitor myogenesis. Transfected cells 

were marked by co-transfection of pCMV-dsRed2. Progression of muscle differentiation 

was monitored by documenting EGFP expression driven by the mck promoter. After 

48hrs in differentiation conditions, the cells transfected with empty expression vector 

(pcDNA3) started forming multinucleated myotubes, and mck driven EGFP signals were 

observed in these myotubes (figure 3C). In agreement with our previous studies (26), 

Smad7 transfected cells generated larger caliber myotubes and stronger MCK-EGFP 

signals compared to those in the control cells. Moreover, Smad7-NLS expressing cells 
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showed a similar enhancement of myogenesis to that observed with wild-type Smad7, 

and these observed effects were restricted to transfected cells (dsRed2 positive cells) with 

Smad7 or Smad7-NLS expression in contrast to empty vector transfected cells (figure 

3C). 

Therefore, the Smad7-NLS chimera preserves the nuclear function of Smad7 such that it 

enhances MyoD's transactivation properties and promotes myogenesis whilst completely 

losing its capacity to inhibit the TGFp-Smad signaling pathway. These results indicate 

that Smad7 nuclear localization, independent of its ability to inhibit receptor regulated 

Smad activation, is sufficient for Smad7's pro-myogenic effect. 

The C-terminus (amino acids 409 to 426) ofSmad7 is required for nuclear 

accumulation and pro-myogenic activity. We previously documented that Smad7 

promoted myogenesis and potently inhibited TGFp induced Smad3 activity in C2C12 

cells (26) (figure 1G and H and figure 3D). In contrast, Smad7T, a deletion mutation 

which lacks the last 18 amino acids (aa) (A409-426) (figure 4A), was not able to repress 

activation of Smad3 by TGFp (figure 4B left). In addition, we observed that Smad7T 

failed to reverse the inhibition of myogenesis by Myostatin (26), and was incapable of 

enhancing activity of myogenic reporter genes such as the myog gene (figure 4B right). 

Next, we assessed the possibility that Smad7T might be dysfunctional because of its 

localization in the cell. To investigate this, expression vectors for EGFP-Smad7 and 

EGFP-Smad7T were generated (figure 4A) and their sub-cellular location was 

documented (figure 4C and D). We found that EGFP-Smad7 localized to both nucleus 

and cytoplasm in C2C12 cells as previously documented. However, EGFP-Smad7T was 
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essentially excluded from the nucleus (figure 4C and D) indicating that the 18 amino 

acids at the C-terminus of Smad7 are required for its proper nuclear localization (20) and, 

importantly, nuclear accumulation is required for the pro-myogenic function of Smad7. 

This observation lends further support to our idea that the pro-myogenic role of Smad7 

resides in its ability to function in the nucleus although Smad7T does also seem to be 

deficient in its ability to abrogate canonical TGFp signaling (figure 4B). 

Smad7 can promote muscle differentiation by antagonizing the inhibitory effect of 

activated MEK on MyoD 's transcriptional activation properties. We previously 

demonstrated that Smad7 physically interacts with MyoD and reduction of Smad7 

expression by siRNA technology severely represses myogenesis suggesting that co

operation between MyoD and Smad7 is required for myogenesis (26). We, and others, 

reported that the activity of MyoD is repressed by its interaction with MEK (39, 47). The 

MEK-MyoD interaction may be a nodal point for myogenic repression since a number of 

cytokines such as Cardiotrophin-1 (CT-1) inhibit myogenesis by promoting the 

association of MyoD with MEK (39). Based on these observations, we postulated that 

one nuclear function of Smad7 might be to antagonize the repressive function of MEK on 

MyoD's transactivation properties. 

To address this, we utilized the pMyoG-luc reporter gene to quantify MyoD's 

transcriptional activity in response to perturbations in MEK and Smad7 activity. 

Exogenously expressed, activated MEK1 (ActMEKl) repressed MyoD driven pMyoG 

reporter gene activity in a dose dependent manner as previously reported (47) without 

affecting protein levels of Smad7 and MyoD (figure 5A and B). Also, Smad7 partially 
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reversed the inhibitory effect of Act.MEKl on MyoD (figure 5A) suggesting that Smad7 

and MEK signaling converge on MyoD in a reciprocal manner to regulate muscle 

differentiation. We tested this idea further in a myogenic conversion assay which takes 

advantage of MyoD's capacity to induce myogenesis in the 10T1/2 fibroblast cell line. 

The results of these studies were striking in that ectopic expression of an active form of 

MEK1 prevents induction of MyoG by MyoD in this assay (figure 5C) and Smad7 and 

Smad7-NLS enhance MyoD driven myogenesis (figure 5D). However, ectopic expression 

of Smad7 as well as Smad7-NLS reverses this antagonism of MyoG induction by MEK1 

(figure 5E, and F). It is worth mentioning that these reciprocal effects of Smad7 and 

MEK1 on target genes expressed in muscle appear to be dependent on MyoD since 

another MEK inducible gene, sprrla (48) which is not targeted by MyoD but is expressed 

in muscle cells, was not repressed by exogenous expression of Smad7 (data not shown). 

We further observed precocious up-regulation of MyoG, which is a key target of MyoD, 

by ectopic expression of Smad7-myc and Smad7-NLS-myc in differentiating myoblasts 

(figure 5G). 

To further characterize the MyoD-Smad7 interaction, we investigated the transcriptional 

activity of a number of MyoD deletion mutants (figure 6A and B) in the presence of 

either Act.MEKl or Smad7. Western blotting analysis showed that MyoD or its deletion 

mutants are appropriately expressed in transfected cells (figure 6B). As previously 

reported (47), ActMEKl repressed pMyoG-reporter gene activity driven by MyoD or a 

series of deletion mutants except for one lacking aa 3-56 (MyoDA3-56) (figure 6C). 

Cardiotrophin-1 (CT-1), which inhibits myogenesis by activation of the MEK/ERK 

pathway (39), also repressed this reporter gene activity (figure 6D). Smad7 enhanced 
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MyoD's transcriptional activity, but this enhancement was diminished by deletion of the 

N-terminal part of MyoD (aa 3-56 or aa 63-99) (figure 6E). These data indicate that 

MEK1 and Smad7 may functionally interact with an overlapping region of MyoD 

suggesting that their interaction might be mutually exclusive. To explore this possibility, 

we exogenously expressed MyoD and act.MEKl with or without a myc epitope tagged 

Smad7 to assess the amount of MEK1 in the MyoD containing immuno-complex. We 

postulated that if MEK1 and Smad7 associate with MyoD protein in a competitive 

manner, the amount of MEK1 interacting with MyoD should be reduced in the presence 

of Smad7. Smad7 and MEK1 were detected in the immuno-complex precipitated by a 

MyoD antibody (figure 6F). However, in the presence of enhanced Smad7 expression, 

there was no apparent effect on the amount of MEK1 in the MyoD immuno-complex 

suggesting that Smad7 and MEK1 associate with the MyoD protein in a non-competitive 

manner. 

Smad7 reverses inhibition of muscle differentiation by activated MEK by CT-1. 

Recently, we identified that CT-1 is a physiological regulator of skeletal muscle 

differentiation, and CT-1 inhibits muscle differentiation through activation of MEK 

which antagonizes MyoD activation (39). Therefore, we used CT-1 as a biological 

regulator of muscle differentiation and as an activator of MEK for these experiments. In 

agreement with the above, CT-1 inhibited myog promoter-reporter gene activation by 

MyoD in a dose dependent manner, and exogenously expressed Smad7 reversed CT-l's 

inhibitory effect on the myog promoter (figure 7A). Collectively, these results suggest 

that activation of the MEK/ERK pathway prevents premature differentiation of myoblasts 
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by repressing MyoD's transcriptional activation properties (39). Moreover, Smad7 

antagonizes MEK's inhibitory effect on MyoD to induce transcription of the myog gene 

(figure 5A), which is an essential step for myogenesis. Because of these observations, we 

hypothesized that altering the levels of Smad7 may cause precocious differentiation even 

in the presence of CT-1. We previously reported that exogenously expressed Smad7 

accelerated formation of myotubes and up-regulated pMCK-EGFP activity compared to 

those of control cells (pcDNA3) (26) (figure 3C and 7B). As previously observed (39), 

CT-1 treated C2C12 cells in DM were repressed from differentiation as indicated by 

prevalence of the mononucleated myoblast phenotype and also the lack of pMyoG-luc 

activation after 48hrs in DM. Importantly, these inhibitory effects of CT-1 on myogenesis 

were essentially reversed by exogenous expression of Smad7 (figure 7B), suggesting that 

the balance between activated MEK and Smad7 regulates the initiation of muscle 

differentiation (figure 8). 

Discussion 

In this study, we document that nuclear Smad7 enhances MyoD's transcriptional 

activation properties. This is the first report to identify a clear biological function of 

nuclear Smad7. We found that Smad7 in the nucleus interacts with MyoD and enhances 

MyoD's ability to induce muscle differentiation. Our previous study showed that reduced 

expression of Smad7 by siRNA technology antagonized myogenic differentiation 

suggesting that Smad7 is an essential component of the program of myogenic 

differentiation (26). It is well established that MyoD requires activation to induce 
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myogenesis since myogenic lineage determining factors, MyoD and Myf5, are detected in 

undifferentiated myoblasts where they are inactive as initiators of the myogenic gene 

expression program. The exact molecular mechanism by which the MRFs shift from a 

repressed to an active state to induce the myogenic program of gene expression is not 

completely understood although a number of studies to date have found that MyoD 

activity is extensively regulated by protein-protein interactions. Data presented here 

implicate Smad7 as an essential co-factor in the myogenic cascade. Independent of the 

well known function of Smad7 in the cytoplasm, nuclear Smad7 physically interacts with 

MyoD and potentiates MyoD's transcriptional activation properties. 

Since MRP activity is sensitive to extracellular secreted factors, it is reasonable that 

downstream signaling molecules associated with these signaling pathways will play an 

important role for the regulation of MRF activity. Accumulating evidence indicates that 

the MEK-extracellular regulated kinase (ERK) pathway also plays a fundamental role on 

MyoD's transcriptional activation properties. Interestingly, a previous report showed that 

activated MEK physically interacts with MyoD and inhibits MyoD activity (47). In 

addition, we have recently documented that CT-1 represses myogenesis through 

inactivation of MyoD by activation of the MEK/ERK pathway (39). In this study, we 

demonstrate that Smad7 can reverse CT-1 's inhibitory effect on myogenesis. This effect 

is not confined to CT-1 since Smad7 is also capable of reversing the inhibitory effect of 

MEK on MyoD. Since MEK and Smad7 can form complexes with MyoD, MEK 

signaling and Smad7 converge on MyoD. Interestingly, Smad7 expression is regulated by 

MyoD at the transcriptional level through the E-box in the smad7 promoter. Therefore, 

Smad7 and MyoD may constitute a mutually reinforcing feed-forward loop to initiate 
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myogenesis. Thus, the down-regulation of smadl mediated by MEK activation could be a 

common mechanism to inhibit myogenesis utilized by a number of different growth 

factors and cytokines such as CT-1, FGF, EGF and PDGF (figure 7). Interestingly, 

although Myostatin, a member of the TGFp family, and CT-1 mediated repression of 

myogenesis were 'rescued' by exogenous Smad7 expression, Smad7 could not reverse 

TGFP's inhibitory phenotype (26). However, TGFP's inhibitory effect is partially 

reversed by MEK inhibitors (T.Miyake, unpublished observation). Therefore, activation 

of MyoD's transcriptional activation properties either by up-regulation of an activator, for 

example Smad7, or down-regulation of an inhibitor, for example active MEK, may 

constitute a key nodal point for the regulation of MyoD activity and subsequently the 

decision to initiate differentiation. 

Interestingly, Levy and Hill identified Smad4 dependent and independent TGFJ3 target 

genes by reducing Smad4 expression by siRNA technology (29) indicating that there are 

divergent groups of TGFp responsive target genes regulated by different facets of the 

signaling pathway. Smad7-NLS could also proye to be a useful tool in dissecting non-

canonical aspects of TGFP signaling pathway. A similar approach of dissecting the TGFp 

independent target genes of the nuclear form of Smad7 has the potential to identify a 

unique group of myogenic genes that are regulated by MyoD and Smad7. 

In summary, we document a novel function of nuclear Smad7 in myogenic cells (figure 

7). Nuclear Smad7 antagonizes the inhibitory effect of MEK on MyoD's transcriptional 

activation properties and, importantly, enhances myogenesis independent of its inhibitory 

role in TGFP-Smad3 signaling. These observations document a novel 'non-canonical' 
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nuclear role for Smad7 in modulating the properties of MyoD and potentiating myogenic 

differentiation. 
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Figure Legends 

Figure 1. Constitutive nuclear localization of Smad7 bypasses its inhibitory role at 

the TGFp receptor complex A) A schematic presentation of Smad7 proteins. NLS; 

SV40 large-T nuclear Localization Sequence, EGFP; enhanced green fluorescence 

protein, (black box; NLS). B) C2C12 cells were transfected with indicated constructs 

with pCMV-dsRed2, and expression was verified by Western blotting analysis with 

indicated antibodies. dsRed2 blot was included as an indicator of transfection efficiency. 

C) C2C12 cells were transfected with indicated EGFP constructs (1 ug) for expression of 

EGFP-fusion proteins. The transfected cells were maintained in DM for 16hrs. The cell 

morphology was recorded by phase-contrast microscopy. Sub-cellular localization of 

EGFP, EGFP-Smad7, or EGFP-Smad7-NLS was monitored by the green fluorescence 

protein signal. Overlay images were generated from the phase contrast and EGFP 

micrograph. D) Five fields were randomly chosen in each condition, and sub-cellular 

localization of the indicated EGFP proteins were scored as 'whole', 'nucleus' or 

'cytoplasm'. Graphs were generated indicating the percentage of the sub-cellular 

localization of EGFP signal over total EGFP positive cells. E and F) C2C12 cells were 

transfected with the indicated construct, and subjected to extraction of 

nuclear/cytoplasmic proteins using NE-PER®. Nuclear and cytoplasmic protein samples 

were analyzed by Western blotting techniques. MEK1/2 and c-Jun were markers for 

cytoplasmic and nuclear proteins respectively. G) C2C12 cells were transfected with 

3TP-luciferase reporter gene construct (3TP-Lux) (0.5 ug), and expression vector of 

EGFP, EGFP-Smad7, or EGFP-Smad7-NLS (lfig). In addition, to monitor transfection 

efficiency, pCMV-p-gal construct (0.3fig) was included in each condition. The 
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transfected cells were maintained for 16 hrs in TGFP (lng/ml) or its solvent in DM. Total 

protein samples were harvested with a luciferase lysis buffer. Luciferase activity in each 

condition was measured independently and normalized according to (3-Galactosidase 

activity: relative luciferase unit (RLU). The bar represents the average of the RLU of the 

three individually transfected samples (+/- STD). H) C2C12 cells were transfected with 

pGL3-basic (pGL3) or (CAGA)X 10-Luciferase reporter gene construct (0.5ug), and 

expression vector for Smad7, or Smad7-NLS, or an empty expression vector 

(pcDNA3)(1.0ug) as a control. In addition, to monitor transfection efficiency, pCMV-p-

gal construct (0.3 |ng) was included in each condition. The transfected cells were 

maintained for 16 hrs in TGFp (lng/ml) or its solvent in DM. Total protein samples were 

analyzed in the same way as stated above. Each bar represents the mean of triplicate 

sample (+/- SD). 

Figure 2. Nuclear Smad7 enhances MyoD's transcriptional activation properties 

independent of inhibiting the TGFp/Smad3 pathway A) C2C12 cells were 

transfected with expression vectors for Smad7-myc, Smad7-NLS-myc, or control 

(pcDNA3) (l.Oug). The transfected cells were maintained for 16 hrs in TGFp (lng/ml) or 

its solvent in DM. Nuclear protein was extracted by using NE-PER®. The amount of 

indicated nuclear protein was visualized with standard Western blotting technique. Equal 

protein loading was monitored by c-Jun immunoblot. Nuclear Smad7 with a myc-epitope 

tag was identified by anti-myc antibody. B) C2C12 cells were transfected with the 

indicated constructs. Expression levels of the indicated proteins were assessed by 

Western blotting analysis. An Actin blot indicated equal loading of the protein samples, 
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and a dsRed2 blot showed that similar transfection efficiency. C) C2C12 cells were 

transfected with 3TP-Luc, pMyoG-Luc or pGL3-basic reporter gene construct (0.3ug). In 

addition, expression vectors for a dominant negative form of type IIB Activin receptor 

(DN-Actll), dominant negative typell TGFp receptor (DN-TbllR), or a combination of 

both (l.Ojag each, total 2.0ug). Expression vector either for Smad7 or empty control 

(pcDNA3) (l.Oug) were added to each condition. pCMV-p-gal construct (0.3ug) was 

included in each condition to monitor transfection efficiency. The transfected cells were 

maintained for 16 hrs in DM. Total protein samples were analyzed as the same way as 

stated above to calculate each RLU. Fold-activation was calculated with respect to the 

control. The bar represents the average of the fold-activation of the three individually 

transfected samples (+/- SD). 

Figure 3. Nuclear Smad7 enhances muscle differentiation A) C2C12 cells were 

transfected with a pMyoG-Luciferase reporter gene construct (pMyoG-luc) (0.5ug) with 

MyoD expression vector (pEMSV-MyoD) (l.Oug). In addition, expression vector for 

Smad7, or Smad7-NLS, or an empty expression vector (pcDNA3) (l.Oug) as a control 

was included. pCMV-p-gal construct (0.3 ug) was included in each condition to monitor 

transfection efficiency. The transfected cells were maintained for 16 hrs in DM. The bar 

represents the average of the fold-activation of the three individually transfected samples 

(+/- STD). B) C2C12 cells were transfected with indicated constructs, and the transfected 

cells were subjected to Western blotting analysis for the indicated protein expression. C) 

C2C12 cells were plated at equal density and transfected with pCMV-dsRed2 (0.5ug) and 

pMCK-EGFP constructs (1 .Oug). The transfected cells were maintained in DM for 48 hrs 
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to induce myotube formation. The cell morphology was recorded by phase-contrast 

microscopy and transfected cells were monitored by the dsRed2 signal. MCK promoter 

activity was assessed by the EGFP signal. Overlay images were generated from the phase 

contrast and EGFP micrograph. 

Figure 4. The C-terminus (amino acids 409 to 426) of Smad7 is required for nuclear 

accumulation and pro-myogenic activity A) A schematic presentation of Smad7 

proteins. Smad7T; TGFP receptor interaction region was deleted from Smad7. B) C2C12 

cells were transfected with 3TP-Lux (left panel) or, pMyoG-Luc (right panel) (0.5|ag) and 

expression vector of Smad7, Smad7T, or empty control (pcDNA3) (l.Oug). MyoD 

expression vector (pEMSV-MyoD) or empty vector (pEMSV) (l.Oug) was also included 

(right panel). In addition, to monitor transfection efficiency, pCMV-(3-gal construct 

(0.3 ug) was included in each condition. The transfected cells were maintained for 16 hrs 

in TGFp (lng/ml) or its solvent in DM (left panel), or in DM (right panel). Luciferase 

activity in each condition was measured independently and normalized according to P-

galactosidase activity: relative luciferase unit (RLU). The bar represents the average of 

the RLU of the three individually transfected cellular samples (+/- STD). C) C2C12 cells 

were transfected with indicated EGFP constructs (1.0|ug) for expression EGFP-fusion 

peptides. The cell morphology was recorded by phase-contrast microscopy. Sub-cellular 

localization of EGFP-Smad7, or EGFP-Smad7T was monitored by the EGFP signal. D) 

Five fields were randomly chosen in each condition, and sub-cellular localization of the 

indicated EGFP proteins were scored as 'whole', 'nucleus' or 'cytoplasm'. Graphs were 
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generated percentage of the sub-cellular localization of EGFP signal over total EGFP 

positive cells. 

Figure 5. Smad7 can promote muscle differentiation by antagonizing the inhibitory 

effect of activated MEK on MyoD's transcriptional properties A) C2C12 cells 

were transfected with a pMyoG-Luc (0.5 ug), a MyoD expression vector (l.Oug), a 

pCMV-p-gal (0.3ug), and also increasing amounts (0, 0.1, 0.4, 0.8, and l.Oug from left) 

of expression vector for the activated form of MEK 1 (Act.MEKl) with a combination of 

the empty vector for control (3.0, 2.9, 2.6, 2.2 and 2.0ug) (total 3.0ug for each condition). 

In addition, the expression vector for Smad7 (l.Oug) or empty control was added. The 

transfected cells were maintained in DM for 16hrs. The cells were harvested and 

subjected to Luciferase assay and P-gal assay. Luciferase activity was normalized 

according to the P-galactosidase activity to calculate the RLU (+/- STD). B) C2C12 cells 

were transfected with the indicated constructs (5ug of Smad7-myc and MyoD expression 

vectors in all conditions with increasing amount (0, 0.5, 2, 2.5, and 5ug) of Act.MEKl. 

The transfected cells were maintained in DM for 16hrs. Expression levels of the indicated 

proteins were assessed by Western blotting analysis. An Actin blot indicated equal 

loading of the protein samples. C) C3H10T1/2 cells were transfected with the indicated 

constructs (5ug of MyoD expression vector in all conditions with +/- myc-Smad7 (5ug), 

and increasing amount (0, 0.5, 1, and 5ug) of Act.MEKl. The transfected cells were 

maintained in DM for 16hrs. Expression levels of the indicated proteins were assessed by 

Western blotting analysis. Endogenous MyoG and c-Jun protein levels were also assessed. 

An Actin blot indicated equal loading of the protein samples. D) C3H10T1/2 cells were 
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transfected with Smad7-NLS-myc, Smad7-myc, or control empty vector (8ug) and 

constant amount of MyoD expression vector (5ug). The transfected cells were maintained 

in DM for 16hrs to induce MyoG induction and subjected to extraction of 

nuclear/cytoplasmic proteins using NE-PER®. Nuclear and cytoplasmic protein samples 

were analyzed by Western blotting techniques. Endogenous MEK1/2 and c-Jun were 

markers for cytoplasmic (C) and nuclear (N) proteins respectively. Expression levels of 

the indicated proteins in each cell compartment were assessed by Western blotting 

analysis. For the MyoD blot the arrow indicates MyoD protein and * indicates a non

specific cytoplasmic cross reactant. E and F) C3H10T1/2 cells were transfected Smad7-

myc (E), Smad7-NLS-myc (F), or control empty vector (0, 2, or 8ug) and Act.MEKl (0, 

2 or 8ug) with constant amount of MyoD (4ug) expression vectors. Total protein samples 

were extracted and analyzed by Western blotting techniques. Endogenous MEK1/2 and c-

Jun were markers for cytoplasmic and nuclear proteins respectively. Expression levels of 

the indicated proteins were analyzed by Western blotting technique. G) C2C12 cells were 

transfected with Smad7-myc, Smad7-NLS-myc, or empty vector using lipofectamine 

(Invitrogene). The transfected Cells were maintained in DM for 48 h after transfection to 

induce differentiation and total protein was extracted and expression levels of the 

indicated proteins were analyzed by Western blotting. Actin was used as a loading 

control and dsRed2 as a marker for transfection efficiency. 

Figure 6. Smad7 and MEK1 interact with MyoD A) A schematic presentation of 

MyoD protein. The number corresponds to amino acid co-ordinates. B) Western blotting 

analysis of expression of deletion mutant of MyoD proteins. C3H10T1/2 cells were 
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transfected with indicated expression vector (l.Oug) for the expression of indicated 

MyoD deletion mutant, wild-type MyoD protein, or empty control. The transfected cells 

were maintained in DM for 16hrs and harvested for total protein samples. The extracted 

total proteins were subjected to Western blotting analysis described in the Experimental 

Procedure to confirm expression of corresponding MyoD protein. C-E) C3H10T1/2 cells 

were transfected with pMyoG-Luc (0.5ug), and indicated MyoD wild-type, or deletion 

mutant forms of MyoD, or empty expression vector (1.0f4.g), and a pCMV-0-gal (0.3ug). 

In addition, expression vector (LO^g) for active form of MEK1 or empty control (C), or 

Smad7 or empty control (E) was included. The transfected cells were maintained in DM 

for 16hrs for D&F or DM containing CT-1 (lOng/ml) or solvent (D). The cells were 

harvested and subjected to Luciferase assay and P-gal assay. Luciferase activity was 

normalized according to the p-galactosidase activity to calculate the RLU (+/-STD). F) 

C3H10T1/2 cells were transfected with combinations of the indicated constructs. Total 

protein samples were extracted from the cells maintained in DM. Exogenous-expression 

of MyoD, an activated form of MEK1, or Smad7-myc was detected by immuno-itlotting 

(IB) (10ug loading) with the specific antibodies. A co-immuno-precipitation (Co-IP) 

analysis was performed with the total protein extract (250ug) with MyoD antibody 

(mouse) and proteinG conjugated beads. Precipitated immuno-complexes were eluted off 

the proteinG beads and subjected to immunoblotting with MEK antibody or myc 

antibody. 

Figure 7. Smad7 reverses inhibition of muscle differentiation by activated MEK by 

CT-1 A) C2C12 cells were transfected with a pMyoG-Luc (0.5 ug) or pGL3-basic 
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luciferase reporter gene construct with MyoD expression vector or empty vector (l.Oug) 

and Smad7 expression vector or pcDNA3(1.0ug). pCMV-(3-gal (0.3ug) was also added in 

each condition for monitoring transfection efficiency. The transfected cells were 

maintained in DM containing either CT-1 (3ng/ml or lOng/ml) or solvent for 16hrs. The 

cells were harvested and subjected to Luciferase assay and P-gal assay. Luciferase 

activity was normalized according to the P-galactosidase activity to calculate the RLU. 

The bar represents the average of the RLU of the three individually transfected samples 

(+/- SD). B) C2C12 cells were plated at equal density and transfected with pCMV-

deRed2 (0.5ug) and pMCK-EGFP constructs (1.0|ug), and either the expression vector 

for Smad7 or empty control (pcDNA3) (l.Oug). The transfected cells were maintained in 

CT-1 (lOng/ml) or solvent containing DM for 48 hrs to induce myotube formation. The 

cell morphology was recorded by phase-contrast microscopy and transfected cells were 

monitored by the red fluorescence signal. MCK promoter activity was assessed by the 

green fluorescence signal. 

Figure 8. A model of nuclear Smad7 function in myogenesis The depicted 

schematic indicates the hierarchal relationship between MyoD, MEK, and Smad7 in the 

control of muscle specific genes based on data presented here. 
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Abstract (196) 

Transforming Growth Factor p (TGFP) is a pluripotent cytokine and regulates 

a variety of biological processes. It is well established that TGFp potently 

inhibits skeletal muscle differentiation; however, the molecular mechanism of 

TGFp's inhibitory effect is not well defined. We previously documented that 

inhibition of the TGFp 'canonical' pathway by an inhibitory Smad, Smad7, 

does not reverse TGFp's inhibitory effect suggesting that activation of receptor 

Smads (R-Smads) by TGFp is not responsible for repression of myogenesis. In 

fact, pharmacological blockade of Smad3 activation by TGFp did not reverse 

TGFp's inhibitory effect. In considering other pathways, we observed that 

TGFp potently activated MEK/ERK, and a pharmacological inhibitor of MEK 
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partially reversed TGFp's inhibitory effect as indicated by a myogenin 

promoter-reporter gene, Myosin heavy chain accumulation, and myotube 

formation. Furthermore, a well established inhibitory molecule for 

myogenesis, the c-Jun protein, which is a down-stream target of MEK/ERK 

signaling, was phosphorylated and accumulated in the nucleus in response to 

TGFp. In agreement with previous observations, activation of the myog 

promoter by MyoD was strongly inhibited by c-Jun. Taken together, these 

observations suggest that TGFp activates a MEK/ERK/c-Jun pathway to 

repress myogenesis, thus, maintaining the pluripotent undifferentiated state in 

myoblasts. 

Introduction (411) 

TGFp is the prototype of a large family of pluripotent cytokines with diverse effects 

on cellular proliferation, tumor growth, apoptosis, differentiation, anti-

inflammation, and embryo development [1-5]. Competence to TGFp cytokine 

signaling plays an important role in determining lineage acquisition in cells of 

mesenchymal origin, notably determining osteogenic or myogenic commitment [6]. 

The potency of TGFp signaling in myogenic cells has been known for some time 

although dissection of the molecular pathway(s) is still fragmentary. 

The general 'canonical' view that has been established for TGFp signaling is that it 

binds to its cognate type II receptor which facilitates receptor complex formation 

and activation of the cytoplasmic serine/threonine kinase activity of the type I 

receptor leading to phosphorylation of Smad2/3 (receptor regulated Smads: R-

Smads). Phosphorylation of R-Smads at the C'-terminal SXS motif results in 
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association with the common Smad, Smad4, and translocation into the nucleus to 

regulate target gene transcription through complex interactions with heterogeneous 

transcription complexes [7, 8]. While this pathway is pervasive in mediating TGFP 

effects, a number of 'non-canonical' aspects of TGFp signaling have also been 

reported [9, 10]. 

Previously, we observed that an inhibitory Smad (I-Smad), Smad7 potently 

counteracts Smad3 activation by TGFp in a myogenic cell line. However, 

exogenous Smad7 was surprisingly not able to prevent the inhibition of muscle 

differentiation by TGFp [11]. These observations indicate that TGFp inhibits 

muscle differentiation through a Smad independent pathway. In further support for 

this idea, Myostatin, a member of the TGFP family and a regulator of skeletal 

muscle differentiation, also activates Smad2/3 by phosphorylation of the SXS motif 

of the R-Smads in a manner analogous to TGFp. However, exogenous expression of 

Smad7 reverses the inhibitory effect of Myostatin but not that of TGFp [11]. Thus, 

several lines of evidence suggest that repression of myogenesis by TGFp is 

mediated by a pathway distinct from the canonical 'R-Smad' pathway. Here, we 

document that TGFp activates MEK-ERK signaling in response to TGFp. MEK 

activation subsequently represses the transcriptional activity of MyoD [12-14]. 

Importantly, a MEK specific inhibitor, U0126 [15], reverses the inhibitory effect of 

TGFp on myogenic differentiation, whereas pharmacological blockade of Smad3 

signaling was without effect. These findings indicate that MEK, and not Smad3, 

activation is the primary mechanism underlying TGFp's inhibitory action on 

myogenesis. These observations reveal the involvement of a TGFp-MEK pathway 
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in maintaining myogenic precursor cells in the undifferentiated state and also place 

TGFp at a strategic nexus to control the differentiation of pluripotent mesenchymal 

cells into different lineages. 

Materials and Methods (859) 

Plasmids Smad7 and Smad7T expression vectors were described previously 

[11]. An activated (AN3 S218D/S222E) human MEK1 expression construct was a 

gift from A.Natalie [16]. p3TP-Lux reporter construct was from J.Wrana 

(University of Toronto; Program in Molecular Biology and Cancer, Samuel 

Lunenfeld Research Institute, Mount Sinai Hospital). (CAGA)X13-Luc reporter 

construct was generated by insertion of 13X (CAGA) sequence from the pai-I 

promoter [17] followed by a c-fos minimal promoter in the pGL3-basic (Promega) 

luciferase reporter vector. pCMV-P-galactosidase were described elsewhere [11]. 

The myogenin promoter region was excised from pMyoG-luc by Sad IBgl II 

digestion. The resultant 1152bp fragment was inserted at the SacI IBgl II sites of 

pGL4-10 vector (Promega). The dsRed2-Nl expression vector was purchased from 

Clontech Laboratories. All constructs used in this study were verified by DNA-

sequencing (York University Molecular Core Facility). 

Antibodies The primary antibodies used in this study were obtained from Santa 

Cruz Biotechnology; MyoD (C-20), Actin (1-19); from Cell Signaling Technology; 

MEK1/2 (9122), Phospho-MEKl/2 (Ser217/221) (9121), STAT3 (9132), Phospho-

STAT3 Y705 (9135), S727 (9136), Smad3 (9513), phospho-Smad3 (9514), Smad2 
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(3122), and Phospho-Smad2 (3101); from DakoCytomation; MyoDl (clone:5.8A; 

M3512). 

Cell Culture C2C12 myoblast and C3H10T1/2 were obtained from American Type 

Culture Collection and cultured in growth medium (GM) consisting of 10% Fetal bovine 

serum (FBS) (HyClone) in high-glucose Dulbecco's modified Eagle's medium (DMEM) 

(Gibco) supplemented with 1% penicillin-streptomycin (Gibco) at 37°C and 5% CO2. 

Myotube formation was induced by replacing GM with differentiation medium (DM) 

which consisted of 2% horse serum (Atlanta Biologicals) in DMEM supplemented with 

1% penicillin-streptomycin. For TGFP or CT-1 treatment, recombinant human TGF|3 

(R&D system; 240-B) or CT-1 (R&D system; 438-CT) was resuspended with solvent 

(4mM HC1, 0.1% bovine serum albumin (BSA)) and added into the media. For myotube 

formation assays, DM with TGFp (lng/ml) or CT-1 (lOng/ml) was replenished every 2 

days. Inhibitors (PD98059 (Cell Signaling Technology; 9900), U0126 (Cell Signaling 

Technology; 9903), and SIS3 ((2E)-l-(6,7-Dimethoxy-3,4-dihydro-lH-isoquinolin-2-yl> 

3-(l-methyl-2-phenyl-lH-pyrrolo[2,3-b]pyridin-3-yl)-propenone hydrochloride (Sigma-

Aldrich, S0447) were resuspended with DMSO and added into the cell culture media for 

30 minutes prior to adding TGFp. 

Microscopy Phase contrast photomicrographs were obtained using an 

epifluoresence microscope (Axiovert 35; Carl Zeiss Microimaging), with 

appropriate phase and filter settings, and either 4X NA 0.10 or 1 OX NA 0.25 
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Achrostigmat objective lenses. Images were recorded with a digital camera (Canon, 

EOS D60). 

Nuclear protein extraction Nuclear proteins were extracted from the cells by 

NE-PER® kit (Pierce) according to the manufacturer's protocol. 

Western blotting analysis Total cellular protein extracts were prepared in NP-40 

lysis buffer (0.1 % NP-40, 150 mM NaCl, ImM EDTA, 50 mM Tris-HCl pH 8.0, 

ImM sodium vanadate, ImM PMSF, supplemented with a protease inhibitor 

cocktail (Sigma, P-8340)). Protein concentrations were determined by a standard 

Bradford assay (BioRad). Equivalent amounts of protein were resolved by SDS-

PAGE gels, followed by electrophoretic transfer to an Immobilon-P membrane 

(Millipore) as directed by the manufacturer (Millipore). Blots were incubated with 

the indicated primary antibody in 5% milk in PBS or Tris buffered saline (TBS)-T 

(lOmM Tris-HCl.pH8.0, 150mM NaCl, 0.1% Tween-20) or 5% Bovine serum 

albumin (BSA) in TBS-T according to the manufacturer's protocol at 4°C overnight 

with gentle agitation. After washing briefly, the blots were incubated with the 

appropriate HRP-conjugated secondary antibodies in 5% milk in PBS or TBS-T at 

room temperature according to the manufacturer's protocols (Santa Cruz 

Biotechnology, Cell Signaling Technology). After being washed three times with 

1XPBS or 1XTBS (depending on the primary antibody) at room temperature, the 

blots were treated with the Enhanced chemiluminescence reagent (Amersham) to 
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detect immuno-reactive proteins. The blots were exposed to Biomax film (Kodak) 

for visual representation. 

Immunochemistry C2C12 cells were washed with Phosphate buffered saline (PBS) 

(pH7.4)and fixed with 90% methanol at -20 °C for 10 min. After fixation, the cells were 

incubated in 5% milk in PBS for 30 min at 37 °C for blocking. Cells were incubated at 

room temperature with MF-20 (primary antibody) diluted in blocking buffer (5% milk 

PBS) for 1 hour. After incubation, the cells were washed three times with PBS and 

incubated for 60 min at room temperature with an Horseradish peroxidase (HRP)-

conjugated a-mouse secondary antibody. The cells were again washed three times with 

PBS and incubated in developer (0.6 mg/ml DAB, 0.1 % H202 in PBS) to detect MyHC 

by immunocytochemistry. The nuclei were counter-stained with haematoxylin. Images 

were recorded with a microscope (Axiovert 35; Carl Zeiss Microimaging) with either 4X 

NA 0.10 or 10X NA 0.25 Achrostigmat objective lenses with a digital camera (Canon, 

EOS D60). 

Transcription reporter gene assays C2C12 myoblasts were transfected by a 

standard calcium phosphate-DNA precipitation method with the indicated reporter 

gene and expression constructs and pCMV-P-galactosidase to monitor transfection 

efficiency. After transfection, the cells were washed with PBS and maintained in 

GM and then treated as indicated. Total cellular protein was extracted with 

luciferase lysis buffer (20mM Tris-HCl pH7.4, 0.1% Triton X-100). Luciferase and 

p-galactosidase enzyme assays were performed according to the manufacturer's 
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protocol (Promega). Luciferase activity was quantified using a luminometer 

(Berthold Lumat, 9501) and standardized according to p-galactosidase activity. 

Relative Luciferase units normalized for P-galactosidase activity (Relative 

Luciferase Unit; RLU) were determined and plotted as an average of triplicate 

determinations and error bars represent standard deviations of the triplicate values. 

Results (1119) 

Inhibition ofTGFp mediated Smad3 phosphorylation does not reverse the 

inhibitory effect of TGFp on muscle differentiation We previously found 

that although exogenous Smad7 strongly repressed Smad3 activation by TGFp , the 

inhibition of muscle differentiation by TGFp was not 'rescued' by exogenous 

expression of Smad7 [11]. These results suggested that TGFp inhibits muscle 

differentiation in a Smad3 independent manner. To test this possibility, we inhibited 

Smad3 activation using a chemical inhibitor, SIS3 [18, 19]. In agreement with 

previous observations, SIS3 strongly repressed TGFp induced phosphorylation of 

Smad3 (figure 1 A). In the absence of SIS3, TGFp potently enhanced the activity of 

3TP-Lux and (CAGA)X13-Luc reporter genes which are Smad3 dependent and 

TGFp responsive reporter genes [17, 20]. The activation of these two reporter genes 

by TGFp was strongly repressed by SIS3 indicating the efficacy of SIS3 inhibition 

of Smad3 activation (figure IB). However, at the same concentration, at which SIS3 

strongly inhibits phosphorylation and activation of Smad3, SIS3 failed to reverse 

TGFp's inhibitory effect on muscle differentiation as assessed by myotube 

formation and myosin heavy chain (MyHC) accumulation (figure 1C). In 
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congruence with previous results, both SIS3 and Smad7 greatly reduced TGFP 

induced Smad3 activity, but neither reversed TGFP's inhibitory effect on muscle 

differentiation (figure 1C) [11]. Taken together, these observations strongly suggest 

that activation of Smad3 by TGFp is insufficient for myogenic repression. 

TGFp stimulates MEKphosphorylation We hypothesized that if Smad3 

activation is insufficient to inhibit muscle differentiation, TGFJ3 must activate a 

'non-canonical' pathway to repress myogenesis. We noticed that TGFp treated 

C2C12 cells reached high density and survived better in differentiation inducing 

medium (DM) (unpublished observation). In different systems, TGFp has been 

observed to activate the MEK-ERK pathway [21, 22], and we therefore assessed the 

MEK-ERK pathway as a potential target for TGFp signaling in muscle cells. 

Previously, we have documented that MEK activation is required for maintaining 

the undifferentiated state of myoblasts since a member of the IL-6 family, 

Cardiotrophin-1 (CT-1), inhibits myogenesis through MEK activation [23]. 

Therefore, we treated C2C12 cells with recombinant TGFp as well as CT-1 as a 

positive control to assess phosphorylation levels of MEK. 

Assessment of the MEK signaling pathway activation by immuno-blotting with 

antibodies recognizing the total and phosphorylated forms of MEK revealed that 

phosphorylated MEK was highly increased in C2C12 cells treated with TGFp 

(2ng/ml) compared to that in solvent treated cells. TGFp was more potent than CT-

1 (lOng/ml) in terms of MEK activation (figure 2). Since we previously observed 

that CT-1 (lOng/ml) potently inhibits muscle differentiation [24] and the amount of 
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phosphorylated MEK due to TGFp treatment was higher than that of CT-1, we 

reasoned that TGFp mediated MEK activation in C2C12 cells could be sufficient to 

inhibit muscle differentiation. These results led us to postulate that TGFp inhibits 

myogenesis by activation of the MEK signaling pathway. 

Inhibition of MEK activation by a pharmacological inhibitor partially reverses 

the inhibitory effect of TGFp on muscle differentiation We next tested the 

possibility that prevention of MEK activation by a MEK specific inhibitor might 

activate myotube formation and MyHC accumulation in the presence of TGFp. As 

seen in figure 3A, C2C12 cells kept in DM for 72hrs without exogenous TGFp 

formed large multinucleated myotubes, and these myotubes accumulated a 

molecular marker protein, MyHC (brown). In the presence of exogenously added 

TGFp in DM, as previously observed by us and several other groups [25-27], most 

of the cells maintained their mono-nucleated undifferentiated phenotype, and 

accumulation of MyHC was not observed (figure 3B). This undifferentiated 

phenotype with, exogenous TGFP administration was essentially reversed by 

treatment of the cells with the MEK inhibitor, U0126, in a dose-dependent manner 

(figure 3A). This indicates that MEK is a key down-stream target of TGFp 

signaling, and the activation of MEK contributes considerably to the inhibition of 

muscle differentiation. 

Reversal of TGFp mediated myogenic repression by MEK inhibition is not due to 

inhibition of Smad signaling since MEK/ERK signaling may modulate R-Smad 

activity by phosphorylating the linker region of Smad2/3 [28-31]. In our 

experiments, MEK inhibition caused an increase in the activity of a TGFP reporter 
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gene consistent with the idea that MEK/ERK inhibition de-represses the R-Smads 

[29, 31] (figure 3B). Thus, MEK inhibition does not rescue myogenesis by 

repressing TGFp induced R-Smad activation. These data further support the idea 

that R-Smad activation is absolutely unnecessary for myogenic repression by 

TGFp. 

MEK specific inhibitors reverse the repression ofMyoD transcriptional activation 

properties by TGFp If MEK phosphorylation and subsequent nuclear 

accumulation are required for inhibition of muscle differentiation by TGFp, we next 

tested whether MEK specific pharmacological inhibitors might reverse TGFp 

mediated repression of MyoD transcriptional activation properties [13] quantified 

by the transcriptional activation of the myog gene which is a critical MyoD target 

gene in the hierarchical control of myogenesis [32-34]. To assess this, a myog 

promoter-luciferase reporter gene (pMyoG-luc) was used. C2C12 cells were 

transfected with this reporter gene construct and a MyoD expression vector. The 

transfected cells were treated with a MEK specific inhibitor, PD98059, or DMSO 

(diluent), and TGFp protein or its solvent. As a positive control, CT-1 treatment 

was included in this analysis. TGFP as well as CT-1 reduced MyoD driven myog 

promoter activation (figure 3A). In the presence of PD98059 (lOuM), neither TGFp 

nor CT-1 was able to inhibit transcriptional activity of MyoD efficiently suggesting 

the requirement for MEK signaling for myogenic repression by CT-1 and TGFp 

(figure 3C). Therefore, these results indicate that TGFp mediated MEK activation is 

required for the inhibition of MyoD's transcriptional properties, and inhibition of a 

primary myogenic target gene, the myog gene. 
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TGFp signalling modulates MyoD co-activator and co-repressor proteins. 

Previously, we reported that Smad7 can physically and functionally co-operate with 

MyoD in promoting myogenesis [11]. In this study, we document that Smad7 

protein level is reduced by TGFp treatment (figure 4A). Since MyoD can bind to 

and activate the Smad7 promoter [11], this effect is likely mediated by interference 

with MyoD transcriptional properties and repression of this positive feed-forward 

loop by TGFp. Secondly we also documented that TGFP signaling enhances the 

nuclear levels of phospho-c-Jun, a well established target of activated MEK 

signaling and a co-repressor of MyoD function [12, 14]. Our data analyzing the 

myog promoter confirms this repression of MyoD by c-Jun and also indicates that 

exogenous Smad7 expression cannot override this repression (figure 4A and B) 

consistent with Smad7's inability to inhibit TGFp mediated myogenic repression 

[11]. 

Therefore, the primary inhibition of MyoD properties by TGFp induced MEK 

activation is re-inforced by the subsequent down-stream inactivation of MyoD co-

activators such as Smad7, and induction of MyoD co-repressors such as c-Jun. We 

suggest that these molecular events constitute a mutually re-inforcing network to 

lock the cells in an undifferentiated state. 

Discussion (561) 

It is widely assumed that TGFp inhibits skeletal muscle differentiation via 

activation of the 'canonical' TGFp/Smad3 pathway. However, we have made 

several key observations to dispute this idea. First, Smad7, an inhibitory Smad, 



reversed the inhibitory effect of Myostatin but not TGFp on myogenesis even 

though Smad7 potently inhibits Smad3 activation induced by both Myostatin and 

TGFp [11]. Second, although a Smad3 specific inhibitor, SIS3, potently inhibited 

TGFp induced Smad3 phosphorylation and subsequent activation of TGFp/Smad3 

dependent gene expression, it did not reverse the inhibitory effect of TGFp on 

myogenesis. Third, a MEK inhibitor reverses TGFP's inhibitory effect on 

myogenesis suggesting a 'non-canonical' pathway for myogenic repression. Fourth, 

a nuclear Smad7, which is incapable of inhibiting the TGFp/Smad3 'canonical' 

pathway, is sufficient to enhance myogenesis (in press). These observations clearly 

indicate that TGFp inhibits muscle differentiation independent of activation of R-

Smads. 

Is MEK activation a commonly used effecter of TGFp family cytokines? 

TGFP is known to activate the MEK/ERK pathway [21, 35], and we recently found 

that this MAPK pathway plays an important role for maintenance of the 

undifferentiated state of myogenic precursor cells by CT-1 [23] and now, in the 

current study, by TGFp. Interestingly, a recent study documented that BMP4, which 

is a known inhibitor of myogenic cell specification during embryo development 

[36] and a member of the TGFp superfamily, induces neuronal differentiation in a 

Ras/ERK dependent manner [37]. Thus, these observations indicate the possibility 

that TGFp cytokines commonly invoke MEK activation to restrict or promote 

lineage acquisition depending on the context. Further analysis of this idea is 

therefore warranted. 
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A detailed analysis of Smad independent TGFp target genes may be enlightening 

in documenting these non-canonical effects of TGFp signaling. Consistent with our 

observations, it was reported that c-jun,junB, and smad7 genes are regulated by 

TGFp in a Smad4 independent manner [38]. These data predict that regulation of c-

jun, junB, and smad7 gene expression by TGFp would not be affected by inhibition 

of R-Smad activity although this remains to be tested. Furthermore, exogenous 

Smad7 expression could not reverse TGFp's inhibitory effect on Insulin-like growth 

factor binging protein-5 (IGFBP5) synthesis in C2C12 MBs [39]. 

The identification of MEK as a potent effecter of TGFp signaling in myogenic cells 

will allow this pathway to be manipulated pharmacologically in a variety of 

contexts. In particular, programming of multipotent mesenchymal cells or stem 

cells will greatly benefit from the characterization of signaling pathways that can 

repress or promote specific differentiation pathways in order to allow systematic 

programming of cells. In this regard, we envision that TGFp, as a repressor of 

myogenesis, can be manipulated in favor of other lineages such as osteogenesis. 

Also, based on our studies repression of TGFp induced MEK signaling would likely 

be a pre-requisite to promoting myogenic specification of precursor cells. Targeting 

the TGFp/MEK cascade with cell permeable small molecule inhibitors has already 

proven to be a highly efficacious way to achieve some of these goals. 

In summary, we have characterized the mechanism of TGFP's inhibitory effect on 

myogenesis at the molecular level. TGFP mediated repression of myogenesis is 

dependent on MEK activation and repression of MyoD activity. TGFp effects on 

myogenesis are surprisingly but unequivocally independent of R-Smad activation. 
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Molecular dissection of TGFp effects on myogenesis will allow further insights into 

the role played by this complex cytokine during development and post natal 

physiology in skeletal muscle. 
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Figure legends (660) 

Figure 1. Inhibition of TGFp mediated Smad3 phosphorylation does not reverse 
the inhibitory effect of TGFp on muscle differentiation A) C2C12 cells were 
seeded onto cell culture plates at equal density and maintained in TGFp (lng/ml) with 
or without indicated concentrations of SIS3. Total protein samples were extracted 
from the cells and equal amounts of total protein (20ug) were subjected to Western 
blotting analysis. The levels of indicated proteins were assessed by a standard 
immuno-blotting technique with a specific primary antibody. Actin indicates equal 
amounts of protein loading into each lane. B) C2C12 cells were transfected with 
either 3TP-lux (left panel) or (CAGA)X13-luciferase reporter gene construct (right 
panel), and to monitor transfection efficiency, pCMV-p-gal construct was included in 
each condition. The transfected cells were maintained for 16 hrs in TGFp (lng/ml) 
with or without indicated concentrations of SIS3. Total protein samples were 
harvested with a luciferase lysis buffer. Luciferase activity in each condition was 
measured independently and normalized according to P-Galactosidase activity. (n=3, 
+/- Stdv). C) C2C12 cells were seeded onto cell culture plates at equal density and 
maintained in TGFp (lng/ml) with or without indicated concentrations of SIS3 for 
48hrs. The cells were fixed and stained for muscle myosin heavy chain (MyHC) 
detection by immunochemistry. The photomicrographs are representative fields in 
each condition. 

Figure 2. TGFp stimulates MEK phosphorylation C2C12 cells were seeded onto 
cell culture plates at equal density and maintained in TGFp (lng/ml), CT-1 
(lOng/ml), or solvent. Total protein samples were extracted from the cells and equal 
amounts of total protein (20ug) were subjected to Western blotting analysis. The 
levels of indicated proteins were assessed by a standard immuno-blotting technique 
with a specific primary antibody. Actin indicates equal amounts of protein loading 
into each lane. 

Figure 3. Inhibition of MEK activation by a pharmacological inhibitor partially 
reverses inhibitory effect of TGFp on muscle differentiation A) C2C12 cells 
were seeded onto cell culture plates at equal density and maintained in TGFp 
(lng/ml) or solvent with or without indicated concentrations of U0126 for 72 (left 
panel) and 96hrs (right panel). The cells were fixed and stained for muscle myosin 
heavy chain (MyHC) detection by immunochemistry. The photomicrographs are 
representative fields in each condition. B) C2C12 cells were transfected with 
(CAGA)X13-luciferase reporter gene construct, and to monitor transfection 
efficiency, pCMV-P-gal construct was included in each condition. The transfected 
cells were maintained for 16 hrs in TGFp (lng/ml) or solvent with or without 
indicated concentrations of U0126 (left panel) or PD98059 (right panel). Total protein 
samples were harvested with a luciferase lysis buffer. Luciferase activity in each 
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condition was measured independently and normalized according to P-Galactosidase 
activity. (n=3, +/- Stdv). C) C2C12 cells were transfected with myogenin promoter-
luciferase reporter gene construct (pMyoG-Luc) with MyoD expression vector, and to 
monitor transfection efficiency, pCMV-(3-gal construct was included in each 
condition. The transfected cells were maintained for 16 hrs in TGFp (lng/ml), CT-1 
(lOng/ml), or solvent with or without indicated concentrations of PD98059. Total 
protein samples were harvested with a luciferase lysis buffer. Luciferase activity in 
each condition was measured independently and normalized according to P-
Galactosidase activity. (n=3, +/- Stdv). 

Figure 4. TGFp signaling modulates MyoD co-activator and co-repressor 
proteins A) C2C12 cells were seeded onto cell culture plates at equal density and 
maintained in TGFp (lng/ml) or solvent in DM for 16hrs. Nuclear protein was 
extracted by using NE-PER®. The amount of indicated nuclear protein was 
visualized with standard Western blotting technique. Equal protein loading was 
monitored by c-Jun immunoblot. B) C2C12 cells were transfected with myogenin 
promoter-luciferase reporter gene construct (pMyoG-Luc) with MyoD expression 
vector, and indicated amount of c-Jun expression vector and combinations with 
Smad7 expression vector (0, 0.5, and lug). In addition, to monitor transfection 
efficiency, pCMV-P-gal construct was included in each condition. The transfected 
cells were maintained for 16 hrs in DM. Total protein samples were harvested with 
a luciferase lysis buffer. Luciferase activity in each condition was measured 
independently and normalized according to P-Galactosidase activity. (n=3, +/-
Stdv). 
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Conclusion 

In this work I have studied the signal transduction pathways initiated by two 

physiologically important cytokines for skeletal muscle differentiation. In these 

studies I documented that as CT-1 and TGFp, both repress the gene expression 

program leading to skeletal muscle differentiation. The inhibitory effect of both 

cytokines on muscle differentiation is mediated by convergence of the signalling on 

the activation of MEK1, a MAP kinase kinase. Activated MEK1 physically interacts 

with MyoD and inhibits MyoD's trans-activation properties. As a result, an essential 

process for myogenic differentiation, such as induction of the myog gene by MyoD, 

was found to be impaired in the presence of CT-1 or TGFp. Therefore, we propose 

that these cytokines maintain the undifferentiated state of myoblasts and may serve 

an in vivo role to maintain myogenic precursor cells from premature differentiation. 

Interestingly, Smad7, which was originally characterized as an inhibitory regulator of 

TGFp/Smad3 signalling pathway, is essential for myogenic differentiation because in 

the nucleus Smad7 interacts with MyoD and antagonizes MEK1 's inhibitory effect 

on MyoD's trans-activation properties, and Smad7, therefore, potentiates muscle 

differentiation. In summary, since not only CT-1 and TGFp but also other cytokines 

and secreted proteins are known to activate MEK signalling and inhibit myogenesis, I 

propose that MEK1 activation is a nexus of myogenic regulation. Activated MEK1 

by extracellular signalling and Smad7converge on MyoD and regulate the its trans-

activation properties and therefore muscle lineage determination and differentiation 

(see Figure 32). Since loss of the muscle-mass is typical consequence of a variety 
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chronical disease conditions and also ageing, the elucidation of these pathways at the 

molecular level may lead to the development of pharmacological and/or 

physiological interventions that can alleviate or even prevent these 

pathophysiological conditions. 

Nuc. 

Figure 32 This schematic depicts the major findings of these studies. For details 

please see the text in the conclusion section above. 
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APPENDIX 

Molecular techniques; 

Cell Culture 

Reagents: lx Dulbecco's PBS, Versene (0.2g of EDTA in 1L lx PBS), 0.125% 
Trypsin-EDTA (Gibco) diluted in Versene, DMEM (supplemented with Penicillin-
Streptomycin (Gibco) and L-glutamine (Gibco) added as required), Freezing medium 
((Growth media (GM) supplemented with 10% DMSO); sterilize the freezing medium 
by passing through a 0.2um filter), FBS( heat inactivated at 56°C for 30 min), HS (heat 
inactivated at 56°C for 30 min). 

Cell passaging 

1. Remove media. 
2. Rinse the cell monolayer with 4 ml of Versene. 
3. Add 2.0ml of 0.125% Trypsin-EDTA solution to 100mm dish. 
4. Remove the Trypsin-EDTA solution. 
5. Add 10 ml of GM. 
6. Pipette the cells up and down with the GM. 
7. Plate cells accordingly. 

Inducing Muscle Cell Differentiation 

1. At 60-80% confluence, wash cells with PBS and re-feed with 5% HS in DMEM 
(differentiation medium (DM)). 

2. Incubate cells for desired time at 37°C with 5% CO2 

Transfection of Mammalian Cells with DNA 

Reagents: 2x HEBS (2.8 M NaCl, 15mM Na2HP04, 50mM HEPES)(adjust pH to 7.15, 
filter sterilize, store at -20 °C), 2.5 M CaCl2 (filter sterilize, store at -20 °C). 

Calcium-phosphate transfection 
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1. Plate cells day before transfection for 30-50% confluent. 
2. Re-feed cell cultures with GM 2-3 h prior to addition of DNA. 
3. Label sterile tubes and add 0.5 ml of 2x HEBS to each tube. 
4. Prepare DNA-CaCl2 solution as follows, add 25 ug DNA, bring up volume to 

450 fj.1, mix, add 50 ul 2.5 M CaCl2, mix. 
5. Add DNA-CaCl2 solution drop-wise to the HEBS. 
6. Add DNA mix drop-wise to cell cultures. 
7. 16 h after addition of DNA, wash cells with 1XPBS and re-feed with GM. 

Luciferase Assay 

Reagents: Luciferase assay Lysis buffer (20 mM Tris, pH 7.4, 0.1% Triton-X 100), 
Luciferase substrate (Promega). 

1. Wash adherent cells with 1XPBS. 
2. Add 300 u,l of lysis buffer per well/dish (35mm). 
3. Harvest cells and spin-down cell debris at 15000rmp for lOmin. 
4. Transfer cell lysate into new tubes. 
5. Transfer 30 jul to Luciferase assay tube. 

B-Galactosidase Assay 

Reagents: ONPG (4 mg/ml in ddH20), Z buffer (60 mM Na2HP04, 40rnM NaH2P04, 
lOmM KC1, ImM MgS04), 1 M Na2C03 

1. Prepare reaction mixture (per sample (500 ul Z buffer, 100 ul ONPG, 2.74 ul P-
mercaptoethano 1)). 

2. Incubate tubes at 37 °C until a color change is apparent (yellow). 
3. Add 400 ul of 1M Na2CC>3 to each tube to stop reaction. 
4. Measure absorbance of samples at 420 nm. 



Protein Extracts 

Reagents: ice-cold 1XPBS, Lysis buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1 mM 
Sodium vanadate, 1 mM PMSF (add fresh), Protease inhibitor cocktail (add fresh, 
Sigma, P-8340), 2X SDS sample buffer (BioRad) (supplemented with p-
mercaptoethanol) 

1. Wash cells with ice-cold 1XPBS twice. 
2. Scrape cells and transfer to a new tube. 
3. Centrifuge at 1500XG for 2min. 
4. Remove PBS, and re-suspend the pellet with five times (vol/vol) lysis buffer. 
5. Vortex cells briefly every 10 min for 30 min on ice. 
6. Centrifuge cell lysate at 10 000XG for 15 min, and transfer supernatant to new 

tube. 
7. Determine protein concentration by Bradford assay. 

Nuclear and Cytoplasmic Protein Extracts (NE-PER kit. Pierce) 

1. Scrape cells and pellet by centrifugation at 1 500XG for 5 min at 4 °C. 
2. Remove supernatant and add 200 ul of ice-cold CER 1 to the cell pellet. 
3. Vortex the tube for 15 sec and then incubate tube on ice for 10 min. 
4. Add 11 ul of ice-cold CER II to the tube. 
5. Vortex the tube for 5 sec on the highest setting and then incubate tube on ice for 

1 min. 
6. Vortex the tube for 5 more sec and then centrifuge at 13 OOOxg for 5 min at 4 

°C. 
7. Immediately transfer the supernatant (cytoplasmic extract) fraction to a clean 

pre-chilled tube. Place this tube on ice until use or storage. 
8. Re-suspend the insoluble pellet fraction from step 7 in 100 ul of ice-cold NER. 
9. Vortex on the highest setting for 15 sec every 10 min for 40 min. 
10. Centrifuge the tube at 13 OOOXG for 10 min at 4 °C and then transfer 

supernatant to new tube. 
11. Determine protein concentration by Bradford assay and analyze samples by 

Western analysis. 



SDS-PAGE 

Reagents: 1.5M Tris pH 8.8, 30% acrylamide mix, 10% SDS, 10% APS, TEMED, 
Laemmli buffer. 

1. Prepare resolving gel and then top with stacking gel. 
2. Fill bottom and centre well of mini-gel apparatus with IX Laemmli buffer. 
3. Load samples on a gel. 
4. Run a gel at 100-150 V. 

Western blotting 

1. Transfer protein from a gel to Immobilon-P (Millipore) membrane by wet-
transfer at 20 V for 16 hrs. 

2. Block membrane with 5 % (w/v) skim milk powder in 1XPBS/TBS (blocking 
solution). 

3. Incubate membrane with primary antibody in blocking solution for 1-16 hrs at 4 
°C. 

4. Wash membrane with 1XPBS/TBST (3X5 min each). 
5. Incubate membrane with secondary antibody in blocking solution for 1-2 hrs at 

room temperature (RT). 
6. Wash membrane with PBS/TBST (3X5 min each). 
7. Apply chemiluminescence reagent, and expose blot to film. 

Co-Immunoprecipitation 

1. Prepare cell lysates as described in protein extracts section. 
2. Dilute protein sample in lysis buffer. 
3. To 1 ml of cell lysate (250-1000ug total protein) add 1-5 (ig of primary 

antibody and incubate at 4 °C for 1 h with gently agitation. 
4. Add 30-50 ul of Protein G-Agarose, and nutate 16 hrs at 4 °C. 
5. Pellet immuno-complex by centrifugation at 1000XG for 30 sec. 
6. Wash pellet with 1 ml of lysis buffer. 
7. Repeat steps 5 and 6 twice more. 
8. Re-suspend pellet in 40 uJ of 2 X SDS sample buffer and boil for 3 min, and 

transfer supernatant to new tube. 
9. Sample ready for immuno-blotting. 
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Immunochemistry 

Reagents: Fixative (90% ice-cold methanol), Blocking reagent (5 % skim-milk 
in 1XPBS). 

1. Wash cells and fix and permeabilize with 90 % methanol for 10 min at -20°C. 
2. Block with 5 % skim-milk in 1XPBS at 37 °C for 30 min. 
3. Incubate cells with primary antibody for 1 hr in 5 % skim-milk. 
4. Incubate cells with Horseradish peroxidase (HRP)-conjugated secondary 

antibody, 1 hr in 5 % skim-milk 1XPBS. 
5. Wash cells three times with 1XPBS and incubated in developer (0.6 mg/ml 

DAB, 0.1 % H202 in 1XPBS). 
6. Counter-stain nuclei with haematoxylin. 
7. Wash several times in ddFkO. 
8. Mounting cells with mounting media and cover-slip. 

RNA Isolation 

1. Add 1 ml of Trizol to 100 - 35 mm dish, agitate for 5 min and then transfer 
solution to microfuge tube. 

2. Add 200 ul chloroform to cell suspension, vortex for 15 sec, and leave at RT 
for 2-3 min. 

3. Centrifuge samples at 12 000XG for 15 min at 4 °C. 
4. Transfer the aqueous phase to "a fresh tube. 
5. Add 500ul of isopropanol to the aqueous phase and incubate at RT for 

10 min. 
6. Centrifuge samples at 12 000XG for 10 min at 4 °C. 
7. Remove the supernatant and leave pellet. 
8. Wash RNA pellet with 70% ethanol. 
9. Centrifuge samples at 7500XG for 5 min at 4 °C. 
10. Remove supernatant and air dry for 5-10 min. 
11. Dissolve the pellet in 25-50 ul of DEPC-treated water. 
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Cloning technique 

Vector construction 

1. Research the gene you want to express (if you can do sub-cloning, you may skip this 
step) 

a. Go to PubMed, type a name of gene you want to clone, and choose "Gene" from 
a drop-down menu 

b. Choose an appropriate species according to your template. 
c. Examine sequences (isoforms, size, and date registered (*latest one is often 

better)) 
d. Copy and paste DNA sequence according to your plan (typically ATG to STOP: 

ORF) to Word. (*record accession # for future reference) 
e. Copy and paste the sequence to WedCutter2.0 to identify the restriction sites you 

can use for cloning. 
f. Examine G/C content (if it is more than 70%, you may need special DNA 

polymerase for PCR amplification) 

2. Choose a vector based on the following 

a. promoter (constitutive (CMV, SV40), or regulated (MCK, MyoG,...)) 
b. antibiotic resistance gene (ex. Amp-R (if not Amp-R, you may need to prepare 

bacterial plates) 
c. screening drug (G418, puro, ...) 
d. sequencing feature (T4, SP6, CMV, BGH, if Lee do not have one, you need to 

provide it) 
e. multiple cloning sites (directional insertion, double digestion, Methyl-sensitive, 

restriction enzyme...) 

3. Design a set of primers for PCR 

a. chose DNA polymerase (ex. Phusion for a normal template). 
b. Set-up an annealing temperature. 
c. a forward primer needs 1-3 Nts for following restriction digestion, a restriction 

site of your choice, Kozak sequence for optimal translation (if no tag), ATG (You 
may eliminate the ATG of the ORF if you want to add a tag or peptide (Gal4-
DBD, GFP, GST...)). 

d. A reverse primer needs reverse-complement of the 3'end of the ORF (STOP 
codon MUST be eliminated fro the primer to put tag or peptide at C,-terminus), a 
restriction site of your choice, and 1-3 Nts to facilitate the restriction enzyme 
binding to PCR products. 
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4. Digest Vector DNA accordingly, and Gel-purify the linearised vector DNA. (If you 

can do directional ligation (two different cohesive ends), you should not do CIP 

treatment. However, you need to do non-directional ligation; you MUST do CIP 

treatment with your digested vector DNA ONLY, NOT insert.) 

5. Amplify insert DNA by PCR 

a. Prepare template DNA (by RT-PCR from mRNA, gDNA or a vector you have). 
b. Set-up PCR reaction according to the manufacture's protocol. 

6. Run PCR products in a DNA agarose gel to examine the size of PCR products. 

7. If your PCR products have expected size, cut out DNA bands and purified DNA 

from the gel. 

8. Digest purified DNA with appropriate restriction enzyme(s) (typically @37C for 
lhr). 

9. Set-up ligation reactions. 

a. total amount of DNA should be about lOOng. 
b. stoichiometry ratio between insert and vector DNA should be more than 1. 
c. 20ul in total reaction volume (lul T41igase). 
d. Allow ligase to seal DNA backbone at RT for more than 15 min. 
e. put on ice and cool-down tubes for transformation for a few minutes. 

10. Set-up transformation 

11. Examine the number of colonies on the plates. 

12. Set-up mini-prep for screening, (number of colonies you would pick-up should be 

based on the ratio between number of colonies on insert+vector and no-insert 
plates.) 

13. Do mini-prep and check insert size. 

14. You may send the DNA from a positive clone for sequencing. 


