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Abstract

Detailed magnetometry and polarized neutron reflectometry studies were conducted

on MnSi thin films grown epitaxially on Si(111) substrates. It is demonstrated that

with an in-plane applied field ~H ‖ [110], a broadly stable skyrmion phase exists at

elevated temperatures and fields.

Magnetometry and transport measurements with an out-of-plane applied field

~H ‖ [111] prove that no skyrmion phase exists in this geometry. However, Hall effect

measurements in this geometry show unexpected evidence of a topological Hall effect.

This can be explained with a multi-dimensionally modulated cone phase, which proves

that contrary to recent literature, a topological Hall effect is not sufficient proof of

skyrmions.

The results of this thesis represent a significant step towards a technologically

relevant material in which skyrmions are broadly stable. A material of this type

could be used in novel magnetic storage devices and significantly impact our future

computing capabilities.
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Chapter 1

Introduction

Spintronics, the study of the control of electron spin in materials as well as charge,

is a nascent field that has already had significant impacts on society. This field first

emerged in the 1970s and 1980s with the discovery of spin-dependent tunneling by

Julliere [1] and giant magnetoresistance (GMR) by Binasch et al. [2] and Baibich

et al. [3]. Giant magnetoresistance is an effect that occurs in materials consisting

of stacked ferromagnetic and nonmagnetic conducting thin film layers. In these ma-

terials, the resistance changes dramatically when adjacent ferromagnetic layers are

aligned either parallel or antiparallel to one another. This change in resistance comes

about through spin-dependent scattering of the electrons as they pass through the

material. Both groups performed their initial studies on stacked Fe/Cr/Fe layers

and found a maximum resistance change of approximately 80% when the layers were

placed in a saturating field at T = 4 K [2, 3]. This large change in resistance enabled

devices made of these layers to find widespread application in the read/write heads

of magnetic hard drives, facilitating the enormous increases in data storage density

seen in recent years.

The second founding discovery of spintronics, spin-dependent tunneling, occurs

in ferromagnetic/insulating/ferromagnetic trilayer structures. If the insulating layer

is sufficiently thin, quantum mechanics tells us that there will be a small tunneling

current through the insulator when a voltage is applied to the structure. Julliere

showed that this tunneling current depends on the relative orientation of the fer-

romagnetic layers when he studiedin Fe/Ge/Co junctions [1]. While the change in

current discovered by Julliere was only 14%, later work has found changes of 180%

1
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in Fe/MgO/Fe junctions [4], and 604% in CoFeB/MgO/CoFeB junctions [5]. These

large current changes have allowed devices using spin-dependent tunneling to replace

giant magnetoresistance sensors in hard drives today.

Another important spin transport process is known as spin transfer torque, where

a spin polarized current transfers angular momentum from one magnetic layer to

another [6]. This effect was first proposed by Berger [7] in 1978, and first observed by

Freitas et al. [8] in 1985. This first observation demonstrated that a spin polarized

current passing through a ferromagnetic material can drag domain walls along with

it at an appreciable speed, and later work found that this speed can be up to 110

m/s [9]. In 1996, Slonczewski [10] and Berger [11] independently predicted that a

spin polarized current that passes through a multilayer structure could reorient the

magnetization in one of the layers. This prediction was important for the development

GMR applications, and spurred a large amount of research into spin transfer torque.

Recently, a new type of magnetic memory called “racetrack memory” has been

proposed by Parkin et al. [12] that would make use of spin transfer torque induced

domain wall motion. Bits of data would be stored in domains along a magnetic

wire, and then moved past a conventional magnetic read/write head by passing a

spin polarized current through the wire. This would allow high density data storage

without the moving parts that exist in modern hard drives, hopefully improving

reliability and reducing power requirements. However, moving magnetic domains in

ferromagnets requires very large current densities, typically on the order of 1011A/m2;

this uses a large amount of power. This poses a significant technological challenge

for racetrack memory devices. Hence, it is an important concern to find novel types

of materials where spin transfer torque can occur at much lower current densities.

A few years ago Jonietz et al. demonstrated a spin transfer torque induced ro-

tation in bulk crystals of MnSi [13], and more recently Yu et al. demonstrated spin

transfer torque induced linear motion in FeGe [14]. These spin transfer torque effects

occurred in a novel magnetic phase known as the skyrmion phase, and were shown to
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require current densities as small as 106 A/m2. Current densities on this scale would

enable a much more practical racetrack memory device and could lead to commercial

development in the near future. For development to proceed, detailed understanding

of the materials, cubic helimagnets, that host this skyrmion phase is necessary.

1.1 Bulk MnSi and Other Cubic Helimagnets

MnSi is a member of a class of materials known as cubic helimagnets. These materials

form a B20 cubic crystal structure (space group P213), which is a distorted rock

salt structure with basis vectors (u, u, u), (1
2
+ u, 1

2
− u,−u), (−u, 1

2
+ u, 1

2
− u) and

(1
2
− u,−u, 1

2
+ u). The positions for MnSi are given by uMn = 0.137 and uSi = 0.845

[15]. This crystal structure lacks inversion symmetry and hence can take on either a

left or right handed crystal chirality. The structure is shown below in Fig. 1.1 for a

left-handed MnSi crystal.

Figure 1.1: MnSi B20 cubic crystal structure. Purple atoms are Mn while blue atoms
are Si. (a) Crystal axis (111) pointing out of the page. (b) Crystal axis (110) axis
out of plane. This structure is shown for a left handed crystal.
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Crystals that lack inversion symmetry have four main interactions that contribute

to the free energy density. These are the two standard magnetic interactions: Zeeman,

and exchange, as well as a weak anisotropic exchange interaction, and an additional

interaction which comes about from the lack of inversion symmetry. This additional

interaction is the Dzyaloshinskii-Moriya interaction, which is caused by spin-orbit

coupling and takes the form ~Si× ~Sj, where ~Si,j are neighboring spins in the material

[16, 17]. The free energy density, w, resulting from these interactions is shown in Eq.

1.1 [18, 19, 20].

w(M) =
c

2
M2

s (∇M̂)2 + bDM
2
s M̂ · (∇× M̂) +

S2FQ2(~L · M̂)2

4a3
− µ0

~H · ~M (1.1)

In this equation MS is the saturation magnetization, ~M is the magnetization

vector, M̂ =
~M
MS

is a unit vector in the direction of the magnetization, ~H is the

applied magnetic field, S = 0.8h̄ is the spin per unit cell, a = 0.4558 nm is the

lattice constant, F is the anisotropic exchange constant, and ~L is the cubic invariant

which describes the anisotropy. The constants c and bD are related to the spin

wave stiffness A and the Dzyaloshinskii-Moriya constant D by c = AS/(M2
Sa

3) and

bD = DS/(M2
Sa

3).

As shown by Eq. 1.1, the Dzyaloshinskii-Moriya term, which is the second term

in this equation, is an interaction that favors perpendicular alignment of adjacent

spins, while the exchange interaction, the first term in Eq. 1.1, favors parallel align-

ment. The competition between these two interactions forms complicated magnetic

textures in MnSi that are modulated in one or more dimensions. The common one

dimensionally modulated structures are the helical and the conical phases, while the

two dimensionally modulated structure is the aforementioned skyrmion phase. The
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helical phase shown in Fig. 1.2 (a), consists of layers of ferromagnetically aligned

spins that are perpendicular to the propagation vector, �Q, while adjacent layers have

spins oriented at slightly different angles to form a twist with a particular chirality.

The angle increases linearly in the Q̂ direction, and spans a full cycle of 2π in a dis-

tance equal to the helical wavelength, λ = 2π
|Q| . The cone phase is similar to the helix,

except that the spins are canted towards the Q vector at an angle ϕ, called the cone

angle, rather then being perpendicular to it, as shown in Fig. 1.2 (b). An expression

for the magnetization of this phase with �Q vector parallel to ẑ the is shown in Eq.

1.2; the magnetization for the helical phase can be obtained by setting ϕ = 0 in this

equation.

Figure 1.2: Magnetization structure where the arrows represent the direction of the
magnetization at each point. (a) Helix, (b) Cone with cone angle ϕ = π

9

�M = MS(sin(Qz)cos(ϕ), cos(Qz)cos(ϕ), sin(ϕ)) (1.2)

Early investigations by Ishikawa et al. and Motoya et al. showed that MnSi

orders magnetically in a helical state below a Curie temperature TC = 30 K at zero

field [21, 22, 23]. This helical phase has a multi-domain structure with the Q vectors
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oriented along the 〈111〉 crystallographic directions. This indicates a weak cubic

anisotropy derived from the anisotropic exchange interaction [21]. The Q vector of

the helical phase aligns with the magnetic field for an applied field above 0.15 T,

above which field the magnetic state evolves continuously through a cone state and

into the ferromagnetic state at HC2 = 0.62 T [21].

Kusaka et al. used ultrasonic attenuation to map out the phase diagram of MnSi,

shown in Fig. 1.3 [24]. This study identified an additional phase near the Curie

temperature that was previously unknown, which was called the A-phase. The mag-

Figure 1.3: Phase diagram of bulk MnSi near the Curie temperature. Adapted from
[24].

netic nature of the A-phase is currently a controversial topic, and considerable work

has been performed over the years in an attempt to understand it. Kadowaki et

al. performed early measurements that revealed anomalies in the magnetization and

magnetoresistance at the boundaries of this phase, and suggested that it is further

subdivided into two distinct magnetic phases [25]. Initial small angle neutron scat-

tering (SANS) experiments performed soon after by Ishikawa et al. suggested that

the entire A-phase was a paramagnetic phase [26]. However, later SANS studies by

Lebech et al. and Harris et al. instead indicated that the A-phase is populated by
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helical states with Q-vectors perpendicular to the applied field [27, 28]. A decade

later, Lamago et al. performed refined SANS measurements, and found the results to

be inconsistent with a simple reorientation of the helical Q vector, and instead sug-

gested that the A-phase was a multi-dimensionally modulated structure [29]. More

recent work has interpreted this phase as a skyrmion phase [30, 31].

1.2 Skyrmions

Skyrmions are topologically stable multi-dimensional solitons that arise as solutions

to certain non-linear field equations. A schematic of a skyrmion is shown in Fig. 1.4.

Figure 1.4: Constant M skyrmion for �B ‖ ẑ. Arrows show the direction of the
magnetization at each point in space.

The idea of skyrmions was first proposed by Skyrme in the early 1960s [32]. He

proposed the idea in the context of particle physics, to develop a theory that shows

pions can be represented as topologically stable twists of meson fields, hence showing
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how particles can arise in continuous fields. These topological objects were shown

to have an integer ‘twistedness’ associated with them, which can be viewed as the

Baryon number of the particles.

Skyrmion-like objects have since been discovered and proposed in a number of

regimes outside particle physics. They have been theoretically predicted to exist in

Bose-Einstein condensates by Khawaja et al. [33], and at a similar time observed by

Anderson et al. [34]. In this system, skyrmions are unstable spin textures that persist

for several hundred milliseconds before decaying into vortex rings [34]. Skyrmions

have further been theoretically demonstrated in two dimensional Heisenberg ferro-

magnets by Balavin et al., [35], 2D electron gases under an applied field by Sondhi

et al. [36], and in nematic liquid crystals by Bogdanov et al. [37]. Skyrmion-like

objects have also been observed in chemical reaction Turing patterns by Ouyang et

al. [38], and in the blue phases of crystallite liquids by Wright et al. [39].

Skyrmions were first proposed in magnetic crystals by Bogdanov et al. in 1989

[40, 41]. Later, Rößler et al. predicted the existence of skyrmions in cubic helimagnets

[42, 43]. In these systems, skyrmions come about through the Dzyaloshinskii-Moriya

interaction, and hence cannot form in crystals which possess inversion symmetry.

However, it is possible to generate skyrmions in a material whose bulk form pos-

sesses inversion symmetry if that symmetry is broken by an interface, as was recently

demonstrated by Heinze et al. in monolayers of Fe grown on Ir substrates [44].

Skyrmions in magnetic systems are of considerable interest because of their potential

technological applications in magnetic data storage and computing [45, 46].

In 2009 Mühlbauer et al. and Pappas et al. independently made early demonstra-

tions of the existence of skyrmions in a magnetic crystal, both studying the A-phase of

MnSi [30, 31]. Mühlbauer et al. identified the skyrmion phase with SANS, expanding

on similar measurements done by others [29, 27, 28], and re-interpreting the results

based on a controversial triple-Q skyrmion model. Pappas et al. performed neutron

spin echo spectroscopy measurements, and identified a disordered skyrmion phase in
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this region. However, there is significant dispute in the community over the interpre-

tation of these results. In particular, the triple-Q model used by Mühlbauer ignores

the nonlinear nature of skyrmions, and theoretical work by Rößler et al. indicates

that the A-phase is more complicated than their simple model suggests [47]. This is

supported by the measurements of Kadowaki et al. [25] in MnSi and Wilhelm et al.

in FeGe that indicate the A-phase is subdivided into a number of smaller regions [48].

Further, Grigoriev et al. have disputed the interpretation of a skyrmion phase over

the entire A-phase region, and instead suggest a superposition of randomly oriented

helices in some portions of this region [49].

Soon after these works on A-phase skyrmions, Yu et al. made the definitive identi-

fication of the magnetic skyrmion phase in thinned samples of Fe0.5Co0.5Si [50]. This

was a real space identification done with Lorentz microscopy, a technique which uses

a defocussed transmission electron microscope to detect magnetic structure in thin

samples [51]. Lorentz microscopy was further used by Yu et al. to image skyrmions

in FeGe [52], and by Tonomura et al. to image skyrmions in MnSi [53]. In addi-

tion, Pfleiderer et al. have found evidence for skyrmion lattices in the small A-phase

pockets of Mn0.92Fe0.08Si, Mn0.98Co0.02Si, and Fe1−xCoxSi using SANS [54].

The study by Yu et al. on FeGe demonstrated that the skyrmion stability region

dramatically increases as the thickness of the sample decreases , which is in line with

theoretical predictions by Rößler et al. that surface anisotropies will stabilize the

skyrmion phase [42, 55]. Tonomura et al. also showed that the skyrmion stability re-

gion in their thinned samples is significantly larger than the A-phase skyrmion region

in bulk MnSi, although they do not present a study of multiple sample thicknesses

as was done by Yu et al. These two studies form an important step towards realizing

practical methods to stabilize skyrmions over broad regions of the phase diagram.

However, freestanding thinned films are fragile and too small to study with many

standard techniques and therefore are not an ideal material choice for further inves-

tigation or future application. Self-supported films grown epitaxially on a suitable
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substrate avoid both of these problems, and thus represent a more attractive system

for further study.

A number of groups have also investigated the Hall effect as it relates to the

skyrmion phase in helimagnets [56] - [60]. Lee et al. studied MnSi bulk crystals and

found that the anomalous Hall coefficient, RS, can be expressed as RS = SHρ
2
xxM ,

where SH is a constant that does not vary with temperature [56]. Using this fitting

scheme, Neubauer et al. performed detailed measurements of the Hall effect in MnSi

bulk crystals just below the Curie temperature, in the vicinity of the A-phase [57].

They found an additional component to the Hall effect in this region, which they iden-

tified as the topological Hall effect. They then use the previously calculated skyrmion

density of −1 for a regular skyrmion lattice[30] to calculate the expected topological

hall effect from this configuration, and find it in good agreement with their measured

values. Hence, they have demonstrated that the presence of a skyrmion phase will

produce a significant signature in the Hall effect. Following this work, Kanazawa

et al. investigated the Hall effect in MnGe crystals and inferred the presence of a

broad skyrmion region from a large topological Hall effect [59]. Similarly, Huang et

al. used the topological Hall effect to infer the presence of a skyrmion phase in FeGe

thin films grown epitaxially on Si(111) that is much larger than in bulk crystals [60].

Both of these works implicitly assume that the only magnetic phase that would give

rise to a topological Hall effect is the skyrmion phase. This assumption is shown to

be incorrect in a later section of this thesis.

1.3 MnSi Thin Films

Recently, theoretical work has been done by Butenko et al. to predict the stability

of skyrmion lattices in strained epitaxial thin film helimagnets, where the strain

induces a magnetocrystalline anisotropy in the film [61]. They predicted that the

uniaxial anisotropy will suppress the helical and conical phases when a magnetic field
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is applied in plane, leading to a much broader skyrmion stability region than seen

in bulk crystals. A potentially larger skyrmion region, combined with the ease of

integration with modern silicon-based electronics, makes the growth of thin films of

helimagnets on silicon substrates an attractive research area.

In thin films there are additional interactions to consider in the free energy. The

small thickness of the films means that the energy contribution from the demagne-

tizing stray field is significant. This must be taken into account by an additional

term,

wdemag =
1

2
µ0
~Hd · ~M, (1.3)

where Hd is the demagnetizing stray field. Further, strain in the films induces an

easy-plane type anisotropy with the hard axis out of the plane, described by the

free energy wa = Ku(M̂ · n̂)2, where n̂ ‖ [111]. This anisotropy will be much larger

than that induced by the weak anisotropic exchange interaction, and therefore the

anisotropic exchange interaction is neglected in the following analysis. The total free

energy density is therefore given by,

w =
c

2
M2

s (∇M̂)2 + bDM
2
s M̂ · (∇× M̂) +Ku(M̂ · n̂)2− µ0

~H · ~M +
1

2
µ0
~Hd · ~M. (1.4)

An expression for the saturation field can be determined by substituting in the mag-

netization of the cone phase, equation 1.2, and then minimizing this with respect

to the cone angle, ϕ. This must be done separately for the case of an in-plane or

out-of-plane applied field, as the effect of the magnetocrystalline anisotropy and the

demagnetizing field is different in the two cases. For a field applied out of plane,

~H ‖ [111], the demagnetizing energy density for the cone phase is given by [62]

wdemag = 1
2
µ0M

2
Ssin

2ϕ, and the magnetocrystalline anisotropy energy density is given

by wa = Kusin
2ϕ. Substituting these two, along with equation 1.2, into equation 1.4
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gives the following expression for the free energy density,

w = M2
Scos

2ϕ
( c

2
Q2 − bDQ

)
+ sin2ϕ

(
Ku +

µ0

2
M2

S

)
− µ0HMSsinϕ. (1.5)

First, minimizing this with respect to the helical propagation vector, Q, gives a

value of Q = bD
c

which is useful to simplify the expressions determined for saturation

fields. Next, the saturation field can be determined by minimizing with respect to

the cone angle because, for a uniform cone phase, sinϕ = H/H⊥C2. This minimization

gives H⊥C2 as shown in Eq. 1.6.

µ0H

sinϕ
= µ0H

⊥
C2 = MS(2bQ− cQ2) +

2Ku

MS

+ µ0MS

µ0H
⊥
C2 = MS

(
b2

c

)
+

2Ku

MS

+ µ0MS

(1.6)

By defining a new parameter, K0 =
b2DM

2
S

2C
, which is the effective stiffness of the

conical phase, the final expression for H⊥C2 becomes,

µ0H
⊥
C2 =

2

MS

(K0 +Ku) + µ0MS. (1.7)

For the case of an in-plane field, H ‖ [110], the demagnetizing energy is given

by wdemag =
µ0M2

Scos
2ϕ

4Qd
(1 − e−Qd) = Km

2
[62], where Km is the total demagnetizing

field contribution, and the magnetocrystalline anisotropy energy density is given by

wa = Kusin
2ϕ. Proceeding similarly to the out-of-plane case, the in-plane saturation

field can be expressed as follows,

µ0H
‖
C2 =

1

MS

(2K0 −Ku −Km). (1.8)

Experiments typically measure the values of parameters MS, H
‖
C2, H⊥C2, and Q

directly, and it is therefore useful to have expressions for K0 and Ku in terms of these
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parameters. These expressions follow directly from equations 1.7 and 1.8 and are

given below.

Ku =
MS

3

[
µ0(H⊥C2 −H

‖
C2 −MS)− Km

MS

]
(1.9)

K0 =
MS

6

[
2Km

MS

+ µ0(2H
‖
C2 +H⊥C2 −MS)

]
(1.10)

Finally, comparison with theoretical work presented later in this thesis requires

normalization by the effective bulk zero-anisotropy saturation field, termed HD. This

field is calculated by setting Ku = 0, and Hd = 0 in equation 1.4, and minimizing as

before, yielding the following expression,

µ0HD =
2K0

MS

. (1.11)

It has been well established that MnSi films can be grown epitaxially on Si(111)

substrates [62]-[70]. MnSi grows with the epitaxial relationship MnSi[11̄0] ‖Si[112̄]

[67]. With the lattice constants of aMnSi = 0.4561 nm and aSi = 0.5431 nm [71],

there is a lattice misfit in this arrangement of [aMnSi − aSicos(30)]/aMnSi = −3.1%.

This lattice misfit induces a tensile strain in the films, which gives rise to an easy

plane anisotropy that has significant impacts on their magnetic properties [70], and

is predicted to stabilize the skyrmion phase [61].

MnSi thin films grown epitaxially have only been magnetically characterized pre-

viously by a small number of groups. The first magnetic measurements were done by

Schwinge et al., and consisted of magneto-optic Kerr effect measurements at temper-

atures down to 10 K[72]. This data indicated ferromagnetic behavior at 10 K, but

was not sufficient to determine the Curie temperature of the films. More recently,

Magnano et al. grew MnSi thin films capped with Ag and performed Supercon-

ducting Quantum Interference Device (SQUID) magnetometry measurements on the

films[69]. They found behavior very similar to bulk, with a Curie temperature of
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30 K, a transition at 0.1 T attributed to the helical to conical transition, and a sat-

uration field of 0.6 T. Further, a small ferromagnetic moment was found to persists

above 300 K, which they attributed to Mn atoms at the Si-MnSi interface. However,

more recent work by Karhu et al. disputes this explanation and instead attributes

the high temperature ferromagnetism to the Ag-MnSi interface [70].

In the past couple of years, Karhu et al. have done a large amount of work

characterizing the magnetic structure of Si capped MnSi thin films by a variety of

methods. Early SQUID magnetometry work by this group indicated that the strain

in epitaxial MnSi films causes the Curie temperature to increase significantly, up to

40 K for thicker films [70]. Further, transmission electron microscopy in this work

demonstrated that both left and right handed chiral domains with sizes of the order

500 nm exist in these films, which explains the observed glassy magnetic behav-

ior [70]. Later work presented polarized neutron reflectometry (PNR) and SQUID

magnetometry measurements which gave direct evidence for the helical phase with

2π/Q = 13.9 ± 0.1 nm at 5 K [73]. The latest work by this group presents SQUID

magnetometry measurements at 5 K with the applied field H ‖ [110] that identify

one large first order transition in the majority of the films, labeled Hα, and a sec-

ond, less pronounced, first-order transition, Hβ, in films of thickness near d = 4π/Q

[20]. A theoretically calculated field - anisotropy phase diagram is presented which

predicts a broad skyrmion stability region. However, agreement is not found between

the measured and predicted transition fields. Finally, PNR measurements at 5 K on

a 26.7 nm sample show that ~Q still points out of plane above Hβ, but the profiles are

explainable by neither a distorted helical phase nor a skyrmion phase.

These studies by Karhu et al. have contributed considerable understanding of the

magnetic structure of these films at low temperature. However, very little work was

done to determine the properties at elevated temperatures between T = 5 K and TC .

This thesis fills this gap by presenting a study of the magnetic properties of these

films over a broad temperature range.
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1.4 Magnetic Phase Transitions

Phase transitions can be broadly sorted into two categories, first-order phase tran-

sitions and second-order phase transitions. Second-order transitions occur with a

continuous variation of a given order parameter, while first-order transitions have a

discontinuity in this order parameter [74]. In the rest of this thesis I use the term

“first-order” to refer to phase transitions that occur with a discontinuity or quasi-

discontinuity in the magnetization, and “second-order” to refer to those that do not.

Ideal first-order transitions with a discontinuity in the magnetization would show

a delta function in the susceptibility at the transition. However, magnetic inho-

mogeneities in real samples cause different portions of the sample to transition at

slightly different fields. This broadens the transition out into a quasi-discontinuity in

the magnetization, which is indicated by a finite peak in the susceptibility.

The transition between different magnetic structures will be first-order when one

structure cannot be continuously deformed into another, which causes a distinct jump

in the magnetization when the new phase is suddenly created. In particular, the tran-

sition from a helical phase to a ferromagnetic phase is second-order, as the cone angle

of the helicoid can vary continuously from the helical state at ϕ = 0 to the ferromag-

netic state at ϕ = π/2. However, the skyrmion phase is topologically distinct from

the ferromagnetic and helical phases, and hence cannot be continuously deformed

into into these phases. Therefore, the transitions into and out of the skyrmion phase

are first-order.

Another transition that can occur in helimagnets is Q-vector reorientation. This is

where the Q-vector, which is originally pinned to a certain crystallographic direction

by anisotropy effects, will reorient in the direct of an applied field. This transition is

also seen to be first-order in measurements on bulk MnSi for certain field directions

[75]. In this case, the transition is first-order because of an energy barrier created by

the anisotropic exchange interaction [62].



16

Figure 1.5 shows a schematic of the energy in a generic first-order phase transition.

It is energetically favorable for the system to transition between states one and two

above the critical field HC . However, the system will not transition continuously

between these states because of the energy barrier, and the transition will only occur,

abruptly, once the energy of state 1 is increased above the energy barrier. This

typically occurs through increasing applied magnetic field in magnetic materials.

Figure 1.5: Schematic of a first-order phase transition in terms of the free energy as
a function of the order parameter, M . Dotted lines indicate the free energy of state 1
in various magnetic fields. The solid blue line indicates the free energy at the critical
field, HC , where the free energy of the two states is equal.



Chapter 2

Experimental Methods

2.1 Sample Growth

Samples studied in this thesis were grown previously by Dr. E.A. Karhu. The MnSi

films were grown on 300µm thick Si(111) wafers that were cleaned ultrasonically in

acetone and methanol, and then in an H2O2/NaOH solution. The cleaned wafers

were placed into a vacuum chamber with a base pressure less than 5× 10−9 Pa, and

then degassed by heating up to 600oC overnight. Removal of the native Si oxide was

then done by heating the wafers to 800oC for 1 hour. After this, a 10-20 nm layer

of Si was deposited onto the wafers at 600oC. The wafers were then cooled to room

temperature where a 0.5 nm layer of Mn was deposited. This Mn layer was annealed

at 400oC for 1 hour to produce a 1 nm template layer of MnSi. Mn and Si were then

co-deposited on the surface in stoichiometric proportions at 400oC until the desired

film thickness was reached. Finally, the wafers were cooled to room temperature and

a Si cap layer of approximately 20 nm was deposited. Further information about the

film growth can be found in section 2.1 of Ref. [62].

2.2 Polarized Neutron Reflectometry

Polarized neutron reflectometry (PNR) is a technique used to characterize magnetic

multilayers. Neutrons are reflected from surfaces at sufficiently low incidence angles,

with the reflectivity dependent on the interaction potential of the material. As a

result of the neutron’s spin, neutrons interact with both the nuclei and with the

magnetization of the material, allowing magnetic information to be extracted from the

17
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reflectivity curves. In contrast to most magnetometry techniques, PNR determines

the magnetization depth profile rather than the average magnetization, which makes

it a powerful tool for studying non-trivial spin textures. Further, as it is layer-specific,

PNR determines the magnetization of thin film layers without the influence of the

substrate, allowing accurate measurements of small magnetic moments that would

otherwise be lost in the magnetic response of the substrate.

2.2.1 Reflectometry Theory

The interaction of neutrons with matter is determined by the Schrödinger equation,

[
−h̄2

2mn

∇2 + V (~r)

]
Ψ(~r) = EΨ(~r), (2.1)

where mn is the neutron mass, V is the interaction potential, E is the neutron energy,

and ψ is the neutron wavefunction. The potential, V , can be broken up into the

nuclear potential, Vnuc = 2πh̄2bρ
mn

, and the magnetic potential, Vmag = gnµn
~σP
2
· ~Beff .

Here ρ is the atomic density, b is the scattering length, ~Beff is the effective field

from the sample magnetization, gn = −1.913 is the Lande factor, µn = eh̄
2mn

=

5.05× 10−27J/T is the nuclear magneton, and ~σP are the Pauli spin matrices:

σx =

 0 1

1 0

 σy =

 0 −i

i 0

 σx =

 1 0

0 −1

 . (2.2)

The Schrödinger equation therefore will give solutions in the basis spin states

|+ > and |− >. Solutions can be expressed in the form Ψ+(r) =< r|+ >= a+e
ik+r

and Ψ−(r) =< r|+ >= a−e
ik−r. This gives two possible values for the wavevector,

k2
± =

2mE

h̄2 − 4πρ

(
b± 2m

h̄2 µn|B|
)

=
2mE

h̄2 − 4πρ (b± bm) , (2.3)
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where bm = 2m
h̄2
µn|B| is the magnetic scattering length. The general state using these

wavevectors is,

ψ(r) =

 cos( θ
2
)

sin( θ
2
)eiφ

 (A+e
+i~k+·~r+B+e

−i~k+·~r)+

 −sin( θ
2
)e−iφ

cos( θ
2
)

 (A−e
+i~k−·~r+B−e

−i~k+·~r),

(2.4)

in terms of the polar angle θ, and azimuthal angle φ of ~σP with respect to the

direction of the effective field in the medium. Using this expression, the reflectivity

from a magnetic layer can be determined. First, assume a neutron beam in vacuum

with ~S ‖ ~H ‖ ẑ. This gives the wave function in vacuum of,

ψ0(r) =

 A0+e
ik+r +B+e

−ik+r

A0−e
ik−r +B−e

−ik−r

 (2.5)

In the case of spin-up neutrons incident on a sufficiently thick layer B1+ = B1− =

A0− = 0, and the reflectivity and transmission coefficients can be expressed as,

r++ =
B0+

A0+

r+− =
B0−

A0+

t++ =
A1+

A0+

t+− =
A1−

A0+

(2.6)

These reflectivity and transmission coefficients are determined by continuity of

the wavefunction and its out of plane derivative (∂ψ/∂z) at the interface, which give

the following four equations,

1 + r++ = t++cos
θ

2
− sinθ

2
t+−e

−iφ

r+− = t++sin
θ

2
eiφ + cos

θ

2
t+−

k+
0z(1− r++) = k+

1zcos
θ

2
t++ − k−1zsin

θ

2
e−iφt+−

− k−0zr+− = k+
1zsin

θ

2
eiφt++ + k−1zcos

θ

2
t+−

(2.7)
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Solving these equations gives the transmission and reflectivity coefficients,

t++ =
2k0z

+(k−1z + k−0z)cos
θ
2

(k−1z + k+
0z)(k

+
1z + k−0z)sin

2 θ
2

+ (k−1z + k−0z)(k
+
0z + k+

1z)cos
2 θ

2

t+− =
−2k0z

+(k+
1z + k−0z)sin

θ
2
eiφ

(k−1z + k+
0z)(k

+
1z + k−0z)sin

2 θ
2

+ (k−1z + k−0z)(k
+
0z + k+

1z)cos
2 θ

2

r++ =
(k−1z + k−0z)(k

+
0z − k+

1z)cos
2 θ

2
+ (k+

1z + k−0z)(k
+
0z − k−1z)sin2 θ

2

(k−1z + k+
0z)(k

+
1z + k−0z)sin

2 θ
2

+ (k−1z + k−0z)(k
+
0z + k+

1z)cos
2 θ

2

r+− =
2k2

0z(k
−
1z − k+

1z)sin
θ
2
cos θ

2
eiφ

(k−1z + k+
0z)(k

+
1z + k−0z)sin

2 θ
2

+ (k−1z + k−0z)(k
+
0z + k+

1z)cos
2 θ

2

(2.8)

The critical angle for total reflection can be determined from the continuity of k‖

at the interface. This gives cosα0k0 = k1cosα1, where α0 and α1 are the incidence

angle and refracted angle as shown in Fig. 2.1. Total reflection occurs when α1 = 0,

and therefore, using the small angle approximation cosα = 1− 1
2
α2, the critical angle

is given by αc =
√

2
√

1− n, where n is the refractive index, n = k1
k0

.

As a specific example, consider B to be small in vacuum, and magnetization in

the medium such that θ = 0, φ = 0. First, a small B in vacuum implies k±2
0 ≈ 2me

h̄2

and therefore n =
√

1− 4π
k20
ρ(b± bm) ≈ 1− 2π

k20
ρ(b± bm). This gives αc =

√
4πρ(b±bm)

k0
.

Next, the reflectivity coefficients are given by,

r++ =
k+

0z − k+
1z

k+
1z + k+

0z

r+− = 0

r−− =
k+

0z − k−1z
k−1z + k+

0z

r−+ = 0

(2.9)

The magnetization causes the critical angle to be different for incident spin-up or



21

Figure 2.1: Reflected and refracted angles for a neutron impinging on an interface
from vacuum.

spin-down neutrons, and gives a reflectivity curve as shown below in Fig. 2.2 for the

case of the reflectivity from a thick magnetized iron sheet. In this figure, the reflectiv-

ity is plotted as a function of the scattering vector, defined as q = 4πsinα/λn, where

α is the neutron incidence angle, and λn is the neutron wavelength. Reflection from a

sample consisting of multiple distinct layers is determined by considering iteratively

the continuity of the wavefunction and its derivative at each interface. This can be

calculated recursively from the back infinitely thick substrate through to the vacuum

following Parrat’s method developed for x-ray reflectometry [76]. Interference be-

tween reflection from the layers causes oscillating fringes to appear in the reflectivity,

as shown in Fig. 2.3 (a) for a 50 nm Co layer on top of an infinitely thick Fe substrate.

The width of these fringes varies strongly with the thickness of the layers.

Realistic materials do not contain infinitely sharp boundaries, and always have

some roughness, or intermixing, at the interfaces between two materials. This can be

taken into account by assuming the following form for the scattering length density,
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Figure 2.2: PNR from a magnetized Fe surface, with a uniform magnetization per-
pendicular to the scattering plane.

Figure 2.3: PNR from a 50 nm Co layer on a Fe substrate for (a) no interface
roughness , (b) roughness with σ = 2 nm.
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defined as SLD = ρb,

SLD = SLD1 +
SLD1 − SLD2

2

[
1 + erf

(
y − d√

2σ

)]
, (2.10)

where y is the depth in the material, σ is the characteristic diffusion length, and d is

the layer thickness. This gives an SLD profile as shown by the black line in Fig. 2.4.

Reflectivity for this arrangement can be calculated by discretizing the SLD profile

into a number of layers, as shown with the blue line in Fig. 2.4, and then applying

Parratt’s recursive formalism to the structure with these layers. As an example, the

reflectivity from the aforementioned 50 nm Co layer on top of an Fe substrate with

σ = 2 nm roughness at the interfaces gives the reflectivity curve shown in Fig. 2.3 (b),

which drops in intensity more quickly with increasing q than the simulation for σ = 0.

The reflectivity curves shown here, as well as fit curves shown later in this thesis, are

generated using the Simulreflec software package that calculates the reflectivity from

a defined multilayer structure using the Parratt formalism [77].

Figure 2.4: Scattering length density for a spin-up neutron at the interface between
saturated Co (y > 0) and Fe (y < 0). Dashed line shows SLD with no roughness,
solid black line shows the SLD with roughness σ = 2 nm, and solid blue line shows
the SLD with roughness σ = 2 nm discretized into 1 nm layers.
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2.2.2 D3 Reflectometer

PNR measurements presented in this thesis were gathered on the D3 reflectometer at

Chalk River Laboratories with the assistance of Dr. H. Fritzsche. Figure 2.5 shows a

schematic of the setup of this instrument. It uses a graphite focusing monochromater

followed by a pyrolytic graphite (PG) filter to produce a beam of neutrons with

wavelength 0.237 nm. This beam is then polarized using an Fe/Si supermirror to

produce a spin-up neutron beam, and flipped to a spin-down beam, if required, using

a Mezei type precession spin flipper [78] before impinging on the sample. A spin

flipper and Heusler alloy spin analyzer after the sample allow measurement of the

spin-flip signals. Finally, the neutrons are detected by a 32-wire He detector. In

Figure 2.5: Schematic of the D3 reflectometer at Chalk River Laboratories.

this thesis I did not measure the spin-flip component of the reflectivity as it was

shown to be very small in similar measurements by Karhu et al. as a result of

the chiral domains in these films [20]. Hence, the Heusler alloy was only used to

determine the spin-flip ratio, a measure of the polarization of the beam. The spin-flip

ratio, SPFR, is determined by passing a nominally spin-up polarized beam directly

through the setup with the sample out of the beam, and measuring the spin-up and

spin-down components of this beam using the spin flipper and Heusler spin analyzer.

This value is defined as the ratio between the spin-up and spin-down components of
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this measurement, and is used to adjust the calculated reflectivity fits to the finite

polarization of the measured curves. This correction is done by adding a portion of

the opposite spin to the fits calculated for an ideal infinite spin-flip ratio using the

following relations,

R−−corr = R−−(1− 1

SPFR + 1
) +

R++

SPFR + 1
,

R++
corr = R++(1− 1

SPFR + 1
) +

R−−

SPFR + 1
,

(2.11)

where R++ and R−− are the measured spin-up and spin-down reflectivities.

The magnetic field at the sample was provided by a split coil cryomagnet, allowing

measurement in fields up to several Tesla. However, to retain neutron beam polar-

ization, a non-zero field parallel or anti-parallel to the neutrons spin must be present

at all points in space. This requires running the cryomagnet in asymmetric mode,

with the bottom coil producing a larger field than the top coil [79]. This results in

a small variation in the applied field over the sample surface that had to be taken

into consideration when planning the experiments. In particular, data points near

transition fields were not measured to avoid the possibility of different portions of

the sample being in different magnetic states.

Measurements were conducted by varying the sample and detector angle together

to produce a θ − 2θ spectrum, which is plotted in terms of the scattering vector,

q, defined above. The sample was overilluminated at all incidence angles, with the

length of the beam projected on the sample plane, l, being larger than the sample

length, L, as shown in Fig. 2.6. Therefore, the footprint of the sample as a fraction of

the projected beam length can be written as, f = L/l = Lsinα/Sw. This represents

the fraction of the total neutron beam that is incident on the sample at a given

incidence angle. In PNR experiments we directly measure the neutron intensity that

is reflected from the film for a given total incident beam intensity. To compare the

sample reflectivities at different incidence angles we therefore must correct for the
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sample footprint by dividing each measured reflected intensity by sinα. Further, as

the neutron flux from the reactor is variable, a low-efficiency monitor counter is placed

before the monochromator and the count rates at each data point are normalized by

the monitor count rate. Background subtraction was done by measuring a θ − 2θ

reflectivity curve with the sample angle offset by 0.5o, and subtracting these values

from all other measured θ − 2θ curves.

Figure 2.6: Diagram of the length of the beam on the sample plane, l, for a beam
width defined by a slit of width Sw. In this diagram α is the incidence angle and L
is the sample length

2.3 SQUID Magnetometry

Supconducting quantum interference device (SQUID) magnetometry is an extremely

sensitive technique that can measure magnetic moments as low as 10−8 emu. This

makes it a useful tool for studying the magnetic properties of small magnetic samples.

As a result, it has become the standard method of measuring sample magnetization

in recent years.

This magnetometry technique relies on Faraday’s law of magnetic induction. A

time varying magnetic flux, ΦM , through a loop induces an electromotive force, ε, in

the loop, given by ε = −dΦM

dt
, which in turn generates a current in the loop.

Figure 2.7 shows a diagram of the magnetometer pick-up coil. The coil shown is a

second-order gradiometer. This is sensitive to the second-order spatial derivative of

the time varying flux, rather than the flux itself, which helps eliminate some sources
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of background. The magnetic sample is mounted in a plastic straw inside of the

conducting loops, where an external magnetic field can be applied. A magnetic field

is also present around the sample as a result of its intrinsic magnetization. When the

sample is moved vertically past the conducting loops, a time varying magnetic flux

is created through these loops from the magnetization of the sample. This causes a

current to flow through the fifth conducting loop, labelled P, which produces an emf

in the SQUID sensor.

Figure 2.7: Diagram of the SQUID magnetometer with 2nd order gradiometer setup.
Translating the sample through the conducting loops induces a current in these loops
which is transmitted to the SQUID sensor and read by the voltage produced across
this sensor.

The SQUID sensor consists of a superconducting wire loop broken by two Joseph-

son junctions. When a magnetic flux is introduced inside a loop of superconducting

wire, a current will be induced in this wire that attempt to cancel out the magnetic

flux. However, the magnetic flux inside a superconducting loop is quantized in units

of the flux quantum, h
2e

= 2.07× 10−15Wb, where h is Planck’s constant, and e is the

charge of an electron [80, 81]. Therefore, the induced current in the superconducting
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loop will oscillate as the flux is increased in order to bring the total flux to the nearest

integer multiple of the flux quantum. This current can be read as an output voltage

because of the presence of the two Josephson junctions in the loop.

Josephson junctions are thin insulating boundaries that are placed between two

superconducting wires. It was first predicted by Josephson in 1962 that a current

would flow through an insulating boundary between superconducting wires with no

voltage drop, provided the current was low enough [82], and this was first observed in

1963 by Anderson et al. [83]. The voltage across this junction will begin to increase

above zero once a critical current is reached. SQUID sensors use a bias current

applied across the superconducting loop, as shown in Fig. 2.8, to raise the current

above the critical current required for a non-zero voltage. With this bias current

applied, any small change in the flux through the superconducting loop will result

in a large change in the voltage across the Josephson junctions. This allows for the

accurate measurement of magnetic moments in SQUID magnetometry.

SQUID magnetometry measurements in this thesis were collected on a Quantum

Design MPMS SQUID magnetometer. All measurements were conducted with the

reciprocating sample option (RSO) mode of this device. The RSO mode oscillates

the sample vertically about the center of the coils, and measures the SQUID voltage

as a function of position, which gives a curve as shown in Fig. 2.9. The measured

voltage curve is then fit to obtain the magnetic moment with the following equation,

V = z+loP+µη[2(r2+[P−γ]2)−1.5−(r2+[β+(P−γ)]2)−1.5−(r2+[−β+(P−γ)]2)−1.5],

(2.12)

where z is the sample position that aligns the sample with the center of the coils, lo is

a linear offset, P is the position of the sample, r, γ, and β are geometric parameters of

the coil setup, η is a sensitivity factor, and µ is the magnetic moment of the sample.

The SQUID magnetometer measures the average magnetic moment of the entire

sample. The samples mounted in the straws consisted of cleaved pieces of the wafers
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Figure 2.8: SQUID sensor schematic. Ib is the bias current applied to the SQUID
sensor, and I1 and I2 are the currents that will pass through each Josephson junction.
The net circulating current in the sensor will be I2 − I1.

Figure 2.9: Sample RSO output voltage curve. The black circles show the measured
voltage, while the red line shows the voltage fit, as described in the text.
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with the deposited thin films, and therefore include the Si substrate. This substrate

is roughly four orders of magnitude thicker than the thin film of MnSi, and therefore

the small diamagnetic response of the Si results in a significant background to the

measurement of the magnetization of the thin film. For the magnetization measure-

ments with an applied field in-plane, the substrate background was subtracted by

fitting the magnetic moment at high field, as shown in Fig. 2.10, and subtracting the

slope, χSi, from the measured magnetic moment. The magnetization in kA/m was

then calculated as M = (µ−χSiµ0H)/v, where v is the sample volume. The substrate

background correction for the measurements with an applied field out-of-plane will

be discussed in chapter 4.

Figure 2.10: Fitting of the magnetic moment at high field for the subtraction of
the substrate background. The black circles show the measured magnetic moment
generated from fitting the SQUID voltage, and the red line shows the fit to this data
at high field. The equation for the fit is shown on the graph.

To detect magnetic phase transitions, two types of magnetization curves were

measured in this thesis: M −H curves, and M − T curves. As shown in Fig. 2.11,

changes in M observed in M −H scans are more sensitive to phase boundaries with
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a weak temperature dependence that are close to horizontal on a field-temperature

phase diagram. By contrast, M−T curves are more sensitive to phase boundaries with

a weak field dependence that are closer to vertical on a H − T plot. Therefore, these

two types of scans are complimentary and allow any transition on a field-temperature

phase diagram to be detected.

Figure 2.11: A schematic representation of a field-temperature phase diagram with
one phase boundary that is vertical, and one that is horizontal. The arrows represent
how the phase diagram is sampled by M −H and M − T scans.

The M − H curves were measured by setting the temperature to the desired

value, and then applying a field of 5 T or -5 T to saturate the sample. The field was

then changed in discrete steps and the magnetization measured at each field value.

For each field, multiple RSO voltage curves were measured, and the fit moments

were averaged together. The M −T curves were measured by heating the samples to

100 K, well above the Curie temperature, applying the desired magnetic field, cooling

the sample to 5 K, and then measuring the magnetization upon warming the sample.

Again, the temperature was changed in discrete steps, multiple RSO voltage curves

were measured at each temperature, and the fit magnetic moments were averaged
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together.

2.4 Electrical Transport Measurements

Electrical transport measurements are a valuable tool that can give insight into the

electrical and magnetic properties of materials. To perform transport measurements,

a portion of a 25.4 nm sample was patterned into the Hall-bar arrangement shown in

Fig. 2.12 using SPR220-3.0 photoresist, and then etched using Ar-ion bombardment.

Gold wire leads were then soldered onto the surface using indium solder applied at

approximately 200 oC, below the temperature expected to cause significant structural

changes in the film [65].

Figure 2.12: Hall bar geometry used for measuring longitudinal resistivity and Hall
effect. In this figure all dimensions are in millimeters, and I is the current.

2.4.1 Longitudinal Resistivity

The longitudinal resistivity of the patterned sample was measured by passing a cur-

rent between leads A and B and simultaneously measuring the voltage, VL, between

leads C and E. The resistivity, ρxx, is then given by,

ρxx =
(VL)(25.4 nm)(0.25 mm)

I(5 mm)
. (2.13)
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These measurements were performed in a Quantum Design PPMS that allowed

control of the temperature between 2 and 300 K and applied field up to 9 T. The

Hall voltage, VH , was simultaneously measured between leads E and H.

2.4.2 Hall Effect

Hall Effect Theory

The Hall effect is a transverse voltage that is produced across a current-carrying

conductor in a magnetic field applied perpendicular to the current flow, as shown in

Figure 2.13 for a non-magnetic material. In this figure, VH is the Hall voltage, I is

the current, H is the magnetic field, w is the width of the conductor, and d is the

thickness of the conductor. When charges move in a magnetic field, they feel a force

called the Lorentz force, ~FL = q(~v×µ0
~H), where q is the charge, and ~v is the velocity

of the charge. This force causes the charge carriers to accumulate on one side of the

conductor, which gives rise to the observed Hall voltage that is proportional to the

applied field. The Hall resistivity is defined as,

ρyx =
VHd

I
, (2.14)

and is the quantity typically reported from experiments.

In nonmagnetic materials, the Hall resistivity follows the above model, and can be

expressed as, ρyx = R0µ0H, where R0 is the ordinary Hall coefficient. This coefficient

can be related to the charge carrier density of the material, nC . In equilibrium, the

Lorentz force will be equal to the electric force generated by the displaced electrons,

|FL| = −evµ0H = −eE = −eVH/w, where e is the electron charge. The electron

velocity can be related to the current by, I = −enCvdw, which gives,

−Iµ0H

enCdw
= VHw =

ρyxI

dw
. (2.15)
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Figure 2.13: Schematic of the Hall effect for a magnetic field, H, applied to a con-
ductor of width w and thickness d carrying current I. VH is the Hall voltage and FL

is the force felt by the electrons.

Therefore, ρyxµ
−1
0 H−1 = −(enC)

−1, and R0 = −(enC)
−1.

In magnetic materials, the Hall effect is more complicated. It has been known

since the late 19th century that ferromagnetic conductors have a Hall effect that is

significantly larger than that derived from the above explanation. This is termed the

anomalous Hall effect and has been the topic of considerable study over the years [84].

The anomalous Hall effect is proportional to the magnetization, M , of the material,

which gives the following expression for the Hall resistivity,

ρyx = R0µ0H +RSM, (2.16)

where RS is the anomalous Hall coefficient. The anomalous Hall coefficient comes

from three distinct mechanisms, called the intrinsic, skew, and side jump contribu-

tions. The intrinsic contribution was first explained by Karplus and Luttinger and

comes about from a velocity contribution given by inter-band coherence in an applied

electric field [85]. This contribution has also recently been linked to the topology of

the bands, and the Hall conductivity, σyx, is independent of the transport lifetime, τ

[84]. The intrinsic Hall resistivity is given by ρintyx = ρ2xxσ
int
yx .
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The second two contributions both come from impurity scattering. Skew scatter-

ing results from asymmetric scattering from impurities caused by spin-orbit coupling[84].

This contribution is proportional to the transport lifetime, σskewH ∝ τ , which is also

proportional to the longitudinal conductivity, σxx. Therefore, the Hall resistivity

from this arrangement will be directly proportional to the longitudinal resistivity.

Side-jump scattering is the impurity scattering that is independent of the transport

lifetime, and comes from a transverse displacement experienced upon scattering from

a spherical impurity [84]. This contribution will have the same ρ2
xx dependence as

the intrinsic contribution, and therefore it is difficult to distinguish between the two

in experiments.

There is also an additional component to the Hall effect that can be observed in

chiral magnets, called the topological Hall effect. This effect comes about from the

geometric phase, called the Berry Phase [86], that electrons pick up when moving

through a spatially varying magnetic field. This phase factor creates an effective

magnetic field felt by the electrons and hence contributes to the Hall effect. The

effective magnetic field is proportional to the skyrmion density, Φ, which can be

calculated as follows, [87]

Φ =
1

4π
m̂ ·
(
∂m̂

∂x
× ∂m̂

∂y

)
. (2.17)

In the continuum limit, the skyrmion density is proportional to the spin chirality,

SC = Si · (Sj × Sk), where Si,j,k are adjacent spins [59]. This means that the effect

will only be present for spin structures that have a net chirality, and spins which are

non-coplanar. Therefore, the simple helical and conical phases in Fig. 1.2 cannot

produce a topological Hall effect, while the skyrmion phase can.
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Hall Effect Experiment

The Hall effect was measured on the 25.4 nm patterned sample shown in Fig. 2.12

using the Quantum Design PPMS system, and the raw Hall resistivity was determined

according to Eq. 2.14. However, slight misalignment of the leads used to measure the

Hall effect introduces a small component of ρxx into the measured ρyx, which must

be removed for proper analysis. The Hall resistivity is necessarily antisymmetric in

field, while ρxx is symmetric in field. Therefore, to remove this ρxx contribution from

the Hall resistivity data, I use ρyx = (ρyx+ − ρyx−)/2 as a true measure of the Hall

resistivity, where ρyx+, ρyx− are the positive and negative field portions of the raw

data.



Chapter 3

Magnetic Properties with ~H ‖ [110]

Prior magnetic studies of MnSi thin films focused on the low temperature magnetic

behavior, at or near 5 K [70, 73, 20]. In this chapter, I expand upon prior work

by presenting a study of the magnetic behavior of MnSi thin films over a broad

temperature range with an applied field in-plane along the [110] axis. The studied

films were grown by molecular beam epitaxy as described in section 2.1, and have been

previously magnetically characterized at low temperatures [20]. This characterization

identified the helical and conical phases but found no low temperature skyrmion

phase. The new PNR and SQUID measurements presented in this chapter show that

these films do exhibit a skyrmion phase at elevated temperatures, which persists over

a broad field range.

3.1 SQUID Magnetometry

Detailed SQUID magnetometry measurements were performed on five films of thick-

nesses 18.3, 23.6, 25.4, 26.7 and 29.8 nm. Each of the films was grown on a Si(111)

substrate and capped by an amorphous layer of silicon with a thickness close to 20 nm.

As the results are very similar for all of the films, the detailed analysis is only shown

for one film at d = 26.7 nm with the results of the rest of the films summarized into

a field-anisotropy phase diagram at the end of this section. This d = 26.7 nm film

was previously found to have a 26.3 nm layer of pure MnSi, with a 0.4 nm layer of

mixed MnSi/Si at the boundary with the amorphous cap [62].

I first present a series of M − H curves at representative temperatures for the

d = 26.7 nm MnSi thin film in Fig. 3.1. These plots show that there is significant

37
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hysteresis present at low temperature that vanishes at higher temperatures. Further,

there is clear evidence for multiple first-order phase transitions in the distinct slope

changes on the plots, including one transition near B = 0.3 T that appears on the

T = 15 and 35 K plots, but not the 5 K plot. To better characterize these transitions,

the static susceptibility was calculated from this data by taking the derivative of

magnetization as a function of applied field.

Figure 3.1: Magnetization curves as a function of field for representative temperatures
of a d = 26.7 nm MnSi thin film.

Figure 3.2 shows a series of susceptibility curves calculated from the M−H curves

in Fig. 3.1, as well as from similar measurements at intermediate temperatures. In

addition to the two peaks previously identified at T = 5 K by Karhu et al. [20],

these plots show a third peak that arises at higher temperatures. These three peaks

are labeled Hβ, Hα1, and Hα2, and indicate three first-order transitions. Ideally,

first-order transitions would appear as extremely sharp peaks in the susceptibility,
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but inhomogeneities in the films caused by, among other factors, the chiral domains

observed by Karhu et al. [70], causes these transitions to be broadened into the peaks

shown in Fig. 3.2.

Figure 3.2: Magnetic susceptibility curves as a function of field for a 26.7 nm MnSi
film. These curves were calculated from the derivative of hysteresis curves for in-
creasing and decreasing field branches separately.

The field value of each transition was determined by fitting each peak to a gaus-

sian. The saturation field, H
‖
sat, was determined from the magnetization curves by

the intersecting line method, as demonstrated in Fig. 3.3 for a curve at T = 15 K.

This method involves extrapolating a line from the slope just below saturation and

a line from the slope just above saturation. The field value where these two lines

intersect is then taken as the saturation field. In previous analysis of these films,
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H
‖
sat was determined by the position of a minimum in d2M

dH2 . However, I was unable

to consistently find a minimum corresponding to saturation at all temperatures, and

hence the line intersection method was used for consistency. This method involves

some estimation of the characteristic slope above and below saturation, and hence is

the main source of uncertainty in the analysis that follows.

Figure 3.3: Demonstration of the method used to determine the saturation field.
Red filled circles show increasing field magnetization, while the blue open circles
show decreasing field magnetization. Red, black, and blue lines are manually drawn
to track the slope of the susceptibility just above and below saturation.

It is instructive to compare the measured magnetization curves to curves calcu-

lated theoretically for known magnetic phases. U.K. Rößler, A.B. Butenko, and A.N.

Bogdanov calculated the magnetization curves expected for these films from Eq. 1.7

by relaxing the system to the minimum energy state using simulated annealing. This

calculation used periodic boundary conditions and assumed the saturation magneti-

zation, MS, was constant over the film. Surface anisotropies were only included as an

additional contribution to the effective volume anisotropy, Ku. Further details on the

calculation can be found in Ref. [61]. This calculation revealed helical and conical

phases, and well as a regular skyrmion lattice with cores parallel to the film surface,

as shown in Fig. 3.4.
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Figure 3.4: Skyrmion lattice determined by energy minimzation calculations with
H||[110]

In order to properly compare with these curves, the anisotropy (Ku/K0) and

effective bulk saturation field (HD) were calculated from the in-plane and out-of-

plane saturation fields following equations 1.11, 1.12 and 1.13. The out-of-plane

saturation fields, H⊥sat, were determined from M −H curves measured with an out-

of-plane field at each temperature. Here, a clear minimum in the second derivative

was fit to obtain the saturation field, as shown in Fig. 3.5.

Figure 3.5: Magnetization curve (solid black circles) and µ−2
0 d2M/dH2 (open blue

triangles) along with a gaussian fit (red line) to the peak in µ−2
0 d2M/dH2 for the

d = 26.7 nm film with H ‖ [111] at T = 15 K.
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Figure 3.6: Calculated magnetization curve for MnSi film with Ku/K0 = 0.22, corre-
sponding to T = 15 K, d = 26.7 nm. The green solid line indicates the magnetization
for a conical phase, the blue dashed line shows the magnetization for the helical phase,
and the dotted navy line shows the magnetization for the skyrmion phase. The black
solid line follows the minimum energy state. Inset: Magnetization curve for MnSi
film with Ku/K0 = 0.02 corresponding to T = 42 K, d = 26.7 nm.

Figure 3.7: Measured magnetization (squares) and susceptibility (triangles) for (a)
T = 42 K, and (b) T = 15 K. In (b) red closed symbols show values measured on
increasing field and open blue symbols show values measured for decreasing field. H
denotes helicoid phase, SK denotes skyrmion phase, C denotes conical phase, and F

denotes ferromagnetic phase.
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Figure 3.6 shows calculated magnetization profiles forKu/K0 = 0.22 andKu/K0 =

0.02 (inset), corresponding to T = 15 K and T = 42 K respectively. These two graphs

show distinctly different behaviors, that correspond to two different regions of the

anisotropy-field phase diagram. Figure 3.6 (inset), which is qualitatively comparable

to the measured curve at 42K shown in Fig. 3.7 (a), has a single first-order transi-

tion from the helical to conical phase at low field that represents the reorientation

of ~Q from the [111] direction to the field direction. This corresponds to Hα1 on the

measured magnetization curve in Fig. 3.7 (a). Above this transition, the measured

susceptibility shows a plateau, which is consistent with the calculated conical phase

that has a linear increase in magnetization with field.

The calculated magnetization curve in the larger plot of Fig. 3.6 shows two

first-order transitions, the transitions into and out of the skyrmion phase. This

is consistent with the presence of two first-order transitions, Hα1 and Hα2, in the

measured curve shown in Fig. 3.7 (b). On the increasing branch, these two measured

transition fields are Hα1 = 0.46 T= 0.56HD, and Hα2 = 0.67 T= 0.86HD at T = 15 K.

Comparison of these values with the calculated curve indicates that the system is in

a metastable helicoid phase up to Hα1, as this is very close to the field Hh/HD = 0.62

above which helicoids are no longer stable. The first-order nature of the transitions

at Hα1 and Hα2 indicates that a skyrmion phase exists between these field values

as there is no other likely phase that is topologically distinct from the helical and

ferromagnetic phases. Further, the shape of the magnetization curve measured in

an increasing field is consistent with the shape of the calculated magnetization for

the skyrmion phase, which gives additional evidence that this is the skyrmion phase.

On the decreasing branch, the lower transition, Hα1 = 0.45HD, is much closer to the

predicted transition between the helical and skyrmion phases, H = 0.37HD, shown

in Fig. 3.6. This indicates that the decreasing branch follows a phase evolution

much closer to the minimum energy state. The energy barrier between this minimum

energy state and the metastable states that are accessed on the increasing branch is
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what gives rise to the hysteresis in the measured magnetization curves.

The interpretation of the measured susceptibility curves for the temperatures

below 15 K is complicated by the kinetics that become increasingly important at these

temperatures. There is a much more dramatic difference between the increasing and

decreasing field curves at these temperatures, as shown by Fig. 3.2. In particular, for

increasing fields, Hα1 dominates, and Hα2 becomes a flat shoulder instead of a peak.

This indicates behavior similar to that discussed for high temperature, where the

system transitions from a helical phase to a conical phase at Hα1, and then progresses

smoothly into the ferromagnetic phase. On the decreasing branch, the transition Hα1

shrinks, vanishing almost completely at the lowest temperatures, while Hα2 remains

as a large peak. This indicates that there is no conical phase with decreasing field.

Instead, Hα2 indicates a transition directly into the ferromagnetic phase, likely from

a mixed skyrmion/helicoid phase.

Figure 3.2 also shows that in all regions of the phase diagram, apart from the

highest temperatures, there is a third transition, Hβ. This transition manifests as a

peak that is significantly smaller than the Hα1 and Hα2 peaks, meaning it is unlikely

to represent a transition of the entire film between different magnetic states. In

addition, comparison of Fig. 3.6 to Fig 3.7 (b) shows that this transition occurs very

close to the minimum skyrmion stability field near 0.2HD, indicated by the open circle

in Fig. 3.6. This suggests that Hβ represents the partial nucleation of skyrmions in

the films. This could occur on defect sites where the energetics would be modified

and may promote skyrmion formation. For example, skyrmions could nucleate on

the boundaries between chiral domains, as seen by Yu et al. in thinned FeGe crystals

[52]. Assuming typical domain sizes of 500 nm [62], nucleation of single skyrmions

on either side of the domain walls would give a skyrmion coverage of approximately

10%, which roughly accounts for the small size of Hβ compared to Hα1.

The susceptibility curves in Fig. 3.2 give one other piece of evidence pointing

to the presence of the skyrmion phase. As shown more clearly in Fig. 3.8, the
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susceptibility drops significantly between Hα1 and Hα2 compared to the susceptibility

at low fields for temperatures between 15 and 35 K. This susceptibility drop is a

signature for the skyrmion phase that has been seen in magnetization measurements

through the A-phase of bulk MnSi [75]. Therefore, the existence of this drop for

intermediate temperatures in these films strongly points towards the skyrmion phase

in this region.

Figure 3.8: Magnetic susceptibility curve as a function of field for a d = 26.7 nm
MnSi film at T = 25 K. The dashed line is a guide to the eye.

The susceptibility curves presented above are not sensitive to transitions that

would lie along a vertical H − T line. Therefore, I also took susceptibility mea-

surements from field cooled M − T scans in order to screen for these transitions, as

described in chapter 2. From these curves, dM/dH was calculated from scans sepa-

rated by µ0H = 10 mT; the resulting curves are shown in Fig. 3.9. This data shows

two first-order peaks in the susceptibility, Hα1 and Hα2, that lie between T = 20 K

and 40 K, and are completely consistent with the susceptibility calculated from the

M −H curves. In addition, a clear susceptibility decrease is seen in these measure-

ments between these transitions, which confirms the drop seen in the M −H derived

susceptibility curves and gives additional evidence for the skyrmion phase. Finally,

no extra transitions are seen in this plot that are not present in Fig. 3.2.
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Figure 3.9: Magnetic susceptibility curves as a function of temperature for the
d = 26.7 nm MnSi thin film. These curves were calculated from the field deriva-
tive between M-T scans separated by 0.01 T.

The transition fields from all of the susceptibility plots are summarized as a phase

diagram in Fig. 3.10. This figure clearly shows the large hysteresis present at low

temperatures, which emphasizes that these transitions are first-order. Further, it

shows the broad skyrmion stability region that is indicated to exist in this film.

The transition fields for multiple samples are plotted together to form the anisotropy-

field phase diagram shown in Fig. 3.11. On this phase diagram, the data points below

T = 15 K were not plotted in order to avoid the more complicated behavior at these

temperatures. Further, the critical fields determined from the increasing and de-

creasing M − H branches are averaged together for each temperature in order to

more easily compare with theoretical results. This makes only a small difference to

the phase diagram as there is little hysteresis at T = 15 K and above. Figure 3.11

shows that the variation of the measured transition fields fits well to the predicted

curves. Hβ tracks the lower skyrmion stability line, HS1, very well. This indicates

that skyrmions begin to nucleate at this field in all films. The next transition, Hα1,
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Figure 3.10: Magnetic phase diagram of the d = 26.7 nm MnSi thin film from mag-
netic susceptibility measurements. Red and blue symbols represent peaks in the
susceptibility from M − H curves, and the black diamonds represent peaks in the
susceptibility from M-T curves.

follows a nearly horizontal line that is very close to Hh = 0.62HD, the upper helicoid

stability field. This gives additional evidence that Hα1 represents the field where

the helicoid phase disappears completely, making way for either the conical phase at

high temperatures, or the skyrmion phase at lower temperatures. The final first-order

transition, Hα2, has a slope that is slightly different from that of H
‖
sat, and is con-

sistent with the slope of HS3, the upper bound of skyrmion stability. This indicates

that the system does not immediately fall into the ferromagnetic phase when the

skyrmion lattice dissolves, but passes through an intermediate state for a small field

region. One possibility for this state is a disordered phase of isolated skyrmions, as

was observed in (Fe,Co)Si [50].

It is important to note that the measured transition fields show that skyrmions

are stable up to HS3, whereas the theory predicts equilibrium stability of skyrmions
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only in the region between HS1 and HS2, with a cone phase existing between HS2 and

HS3. This indicates that there are additional interactions in these films, which act to

either stabilize the skyrmion phase or destabilize the cone phase, and are not taken

into account by the model of Eq. 1.7. These additional interactions may also explain

the shift of HS3 to a slightly higher field than predicted, and of Hh to a slightly lower

field. Future work towards understanding the nature of these interactions will be

important to develop a full picture of the magnetic phases in this material.
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Figure 3.11: Phase diagram of MnSi thin films as a function of anisotropy. Teal
symbols are transitions Hβ from a variety of films, orange symbols show Hα1, green

symbols show Hα2 and navy symbols show H
‖
sat. Solid and dotted lines show theo-

retical transition fields calculated by Bogdanov et al. HS1 and HS2 are the lower and
upper bounds of skyrmion equilibrium stability, Hh is the upper bound of helicoid
stability, and HS3 is the upper bound of skyrmion stability.
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3.2 Polarized Neutron Reflectometry

As an independent verification of the magnetic states, I measured polarized neutron

reflectivity curves at a number of field and temperature points for the 26.7 nm film

with H ‖ [110]. This film has previously been studied by PNR for four field values

at T = 5 K [20]. I measured reflectivity curves for additional field values at T =

5 K to obtain a more complete picture of the magnetic structure. Furthermore, I

measured curves at T = 25 K to explore a different region of the phase diagram.

Figure 3.12 shows the field-temperature values of the PNR measurements, where

green stars represent the curves shown in this thesis, and navy stars represent previous

measurements by Karhu et al. [20]. All PNR measurements were obtained on the

decreasing field branch.

I measured PNR curves at T = 25 K in applied fields of B = 2 T, 500 mT,

300 mT, and -32 mT, and at T = 5 K in applied fields of B = 2 T, 700 mT, 400 mT,

200 mT and -32 mT. Here, the negative field refers to the direction with respect to

the physical instrument. However, in all cases the sign convention is adopted that a

positive neutron spin is parallel to the field direction. For both temperatures the field

was first set to 2 T for measurement of the 2 T reflectivity curve. The reflectivity

curves at lower field, with the exception of B = −32 mT, were then measured by

sequentially decreasing the field from 2 T through the required field values. The

B = 32 mT reflectivity curves could not be measured by directly decreasing the field

to 32 mT as instrumental hysteresis requires that low field values be approached

from negative field in order to have an acceptable spin-flip ratio. Therefore, for the

B = 32 mT curves the field was first set to -2 T, and then increased up to -32 mT

where the reflectivity curve was measured. B = −32 mT was used rather than 32 mT

in order to stay on the decreasing field branch of the hysteresis loop.

Simulreflec was used to calculate fits to the data from given magnetization depth

profiles by using the structural model of this film found previously by Karhu in ref.
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Figure 3.12: Magnetic phase diagram of the d = 26.7 nm MnSi thin film from mag-
netic susceptibility measurements. Red and blue symbols represent peaks in the
susceptibility from M − H curves, and the black diamonds represent peaks in the
susceptibility from M −T curves. Stars show field-temperature data points at which
polarized neutron reflectivity curves were measured. Navy stars were measured pre-
viously by Karhu et al. in Ref. [20] and green stars are presented in this thesis.

[62]. This structural model was generated by simultaneously fitting x-ray reflectome-

try data and unpolarized neutron reflectometry data and is summarized in Table 3.1.

To input the magnetization profiles into Simulreflec, the profiles were discretized into

100 layers each of thickness d = 0.263 nm. These layers replaced the d = 26.3 nm

MnSi layer shown in Table 3.1. The fits generated by Simulreflec were then corrected

for the measured spin-flip ratios, shown in Table 3.2, using Eq. 2.11.

Figures 3.13 - 3.16 present the field dependence of the PNR data at T = 25 K. The

B = 2 T reflectivity data in Fig. 3.13 is well fit by a flat magnetization profile, with
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Layers Thickness d (nm) Density ρ (1028 atoms / m3) Roughness σ (nm)
Si Substrate 0 5.00 0.47

MnSi 26.3 8.44 0.76
MnSi + Si 0.38 7.04 0.27

Si 20.31 5.00 0.68
SiO2 1.56 1.76 0.55

Vacuum 0 0 0

Table 3.1: Structural model of the 26.7 nm MnSi thin film used to fit the neutron
data.

Field (T) Spin-flip Ratio
2 35

0.5 20
0.3 29

0.032 36

Field (T) Spin-flip Ratio
2 30

0.7 18.7
0.4 35.4
0.2 19.5

0.032 29.9

Table 3.2: Spin-flip ratios for PNR measurements at 25 K (left) and 5 K (right).

Figure 3.13: Polarized neutron reflectometry data for the d = 26.7 nm MnSi film
measured at B = 2 T, T = 25 K. Blue(red) circles show the spin-up(down) measured
reflectivity points with 1σ error bars. Solid blue(red) lines show the reflectivity fits
calculated using Simulreflec. The inset shows the magnetization profile used to fit
the data.
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Figure 3.14: Polarized neutron reflectometry data for the d = 26.7 nm MnSi film
measured at B = 500 mT, T = 25 K. Blue(red) circles show the spin-up(down) mea-
sured reflectivity points with 1σ error bars. Solid blue(red) lines show the reflectivity
fits calculated using Simulreflec. The inset shows the magnetization profile used to
fit the data.

M = 0.38µB / Mn. This shows that a ferromagnetic phase exists above the saturation

field, as is expected. When the field is decreased to 500 mT, midway between Hα1

and Hα2, the data shown in Fig. 3.14 is very well fit by the magnetization profile

for the skyrmion phase calculated theoretically by Rybakov [88]. The structure of

the skyrmion phase was calculated by energy minimization assuming free boundary

conditionsfor the interface, in contrast to the periodic boundary conditions used to

generate Fig. 3.6 and 3.11. The magnetization profile, expressed in terms of the

saturation magnetization (MS), was calculated by integrating the magnetization over

the film area at each depth in the film. To input this into Simulreflec, the saturation

magnetization was taken to be MS = 0.38µB / Mn, the value obtained from the

reflectivity data at B = 2 T. It is important to note that the magnetization profile

so obtained was directly used to fit the reflectivity data, with no fitting parameters

other than the measured MS. This gives strong evidence that the skyrmion phase
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Figure 3.15: Polarized neutron reflectometry data for the d = 26.7 nm MnSi film
measured at B = 300 mT, T = 25 K. Blue(red) circles show the spin-up(down) mea-
sured reflectivity points with 1σ error bars. Solid blue(red) lines show the reflectivity
fits calculated using Simulreflec. The inset shows the magnetization profile used to
fit the data.

exists at this field, as was expected from magnetometry data.

As the field is dropped below Hα1 to 300 mT, the reflectivity data, shown in

Fig. 3.15, changes significantly, and is no longer well fit by the pure skyrmion phase.

As discussed in section 3.1, the magnetometry data indicates that a mixed helicoid-

skyrmion phase exists between Hβ and Hα1, the region where this data is measured.

Hence, the reflectivity data was fit with a profile generated from the superposition

of a distorted helicoid and the skyrmion phase. This profile was calculated from the

following equation,

M =

[
M1sin

(
2πy

λ
+ φ0

)
+M2cos

2

([
2πy

λ
+ φ0

])]
(1− Sf ) + SfMSS(y), (3.1)

where M1 and M2 are fitting parameters giving the proportions of first harmonic

and a phenomenological non-linear term of the helicoid, y is the depth in the film,

λ is the helical wavelength, φ0 is a fitting parameter which gives the translation of
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Figure 3.16: Polarized neutron reflectometry data for the d = 26.7 nm MnSi film
measured at B = 32 mT, T = 25 K. Blue(red) circles show the spin-up(down) mea-
sured reflectivity points with 1σ error bars. Solid blue(red) lines show the reflectivity
fits calculated using Simulreflec. The inset shows the magnetization profile used to
fit the data.

the helicoid along the [111] direction, Sf is the fraction of skyrmion phase, and S(y)

is the skyrmion magnetization depth profile. The fit profile was generated using the

parameters M1 = 0.38µB/Mn, M2 = 0.11µB/Mn, φ0 = 0.66, A = 0.4 and λ = 16 nm.

This gives a 40% skyrmion phase in the film, and a significant non-linearity in the

helicoid phase. Presence of non-linearity in the helicoid is expected, as it has been

explained theoretically in helicoids with an applied field ~H ⊥ ~Q by Plumer and Walker

[89], and observed by small angle neutron scattering in bulk FeGe [90] and MnSi [91]

as well as in prior PNR studies of MnSi thin films [20]. The 40% skyrmion phase is

significantly larger than the expected skyrmion fraction of 10% from nucleation at

chiral domain boundaries. This proportion of a skyrmion phase, assuming nucleation

only around the chiral grain boundaries, would require a skyrmion lattice around

each boundary that is eight skyrmions deep. Lorentz images collected by Yu et al.
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only show skyrmions up to three deep at the grain boundaries in FeGe, and it is not

known whether the energy balance in MnSi thin films would promote more skyrmion

formation at these sites. If this is not the case, it is possible that skyrmions are

nucleating at other defect sites to give this 40% skyrmion fraction.

The final reflectivity curve, at B = −32 mT, is measured below the field, Hβ,

where magnetometry indicates skyrmions begin to nucleate, and hence no skyrmion

phase is expected. This curve was fit using a profile generated from Eq. 3.2 with

parameters M1 = 0.14µB/Mn, M2 = 0.024µB/Mn, φ0 = 1.7, and λ = 11.5 nm.

This profile has no skyrmion phase, as expected, and there is a small non-linearity

in the helicoid phase. Adding this non-linearity only makes a small difference to the

reflectivity curve, and the data cannot distinguish between these two cases from the

reflectivity alone, as shown in Fig. 3.17. However, the non-linearity brings the average

film magnetization to 9.2 kA/m from 4.6 kA/m without the non-linearity, which

agrees much better to the value of 9.2 kA/m obtained from SQUID magnetometry

data. Table 3.3 shows the comparisons of average magnetization from the PNR fits

and SQUID data for the four PNR curves. In each case, the magnetizations agree

within 5%, which is an important validity test for the PNR fits. This table also

shows a summary of the fitting parameters used to generate the magnetization depth

profiles.

B PNR M SQUID M M1 M2 φ0 Sf λ
(T) (kA/m) (kA/m) (µB/Mn) (µB/Mn) (nm)
2 148 157 N/A N/A N/A N/A N/A

0.5 109 104 N/A N/A N/A 1 N/A
0.3 63.0 61.3 0.38 0.11 0.66 0.4 16

0.032 9.2 9.2 0.14 0.024 1.7 0 11.5

Table 3.3: Average magnetization for PNR measurements at T = 25 K compared
to magnetization measured by SQUID, and fitting parameters used to generate the
magnetization depth profiles.

Taken together, these PNR curves at 25 K support the magnetic phase diagram

generated from the SQUID magnetometry data, with a helicoid phase at low field,
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Figure 3.17: Comparison of PNR fits for B = 32 mT at T = 25 K with and without
a non-linearity added. Red and blue solid lines show the spin-down and spin-up
reflectivities calculated with a non-linearity, while the dashed black and dashed green
lines show reflectivities calculated without the non-linearity. Dotted red(spin-down)
and blue(spin-up) lines show the percent difference between the curves with and
without the non-linearity.

partial nucleation of skyrmions at Hβ, formation of a skyrmion lattice at Hα1, and

dissolution of the skyrmion lattice at Hα2.

Figures 3.18-3.22 present the field dependence of the PNR data at T = 5 K. As

expected, the B = 2 T reflectivity curve shown in Fig. 3.18 is again well fit with a

uniform magnetization profile, with M = 0.42µB/Mn. This magnetization is higher

than for the T = 25 K point at 2 T, which is expected from the magnetometry curves.

B = 700 mT brings the film below H
‖
sat, and the reflectivity curve, shown in Fig.

3.19, can not be fit with a uniform magnetization profile, indicating that at this field

the system is in neither a ferromagnetic nor conical phase with ~Q ‖ ~B. Instead, I

was able to obtain a reasonable fit to the data with a magnetization profile that is

flat in the center of the film and tails off slightly at both interfaces. One possible

explanation for this magnetization depth profile is a long wavelength distorted helicoid
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Figure 3.18: Polarized neutron reflectometry data for the d = 26.7 nm MnSi film
measured at B = 2 T, T = 5 K. Blue(red) circles show the spin-up(down) measured
reflectivity points with 1σ error bars. Solid blue(red) lines show the reflectivity fits
calculated using Simulreflec. The inset shows the magnetization profile used to fit
the data.

with ~Q ‖ [111].

The B = 400, 200, and 32 mT reflectivity curves shown in Fig. 3.20 - 3.22 are

each fit with distorted helicoid magnetization profiles generated by the equation,

M =

[
M1sin

(
2πy

λ
+ φ0

)
+M2cos

2

(
2πy

λ
+ φ0

)]
+G, (3.2)

where G is a fitting parameter which gives an offset to the helicoids magnetization.

This offset gives a magnetization that is larger in the direction of the field then away

from it, and indicates that the films are not in a pure helicoid phase. In particular, a

small offset is consistent with the presence of a mixed skyrmion-helicoid phase. The

offset was used for fitting at T = 5 K rather than using a fraction of a skyrmion

depth profile, as was done for fitting at T = 25 K, because detailed calculations of

the skyrmion structure at this temperature are not available. The fitting parameters

used for the three field values are shown below in Table 3.4.

These fits indicate that the magnetic states at B = 400 mT and 200 mT are nearly
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Figure 3.19: Polarized neutron reflectometry data for the d = 26.7 nm MnSi film
measured at B = 700 mT, T = 5 K. Blue(red) circles show the spin-up(down) mea-
sured reflectivity points with 1σ error bars. Solid blue(red) lines show the reflectivity
fits calculated using Simulreflec. The inset shows the magnetization profile used to
fit the data.

Figure 3.20: Polarized neutron reflectometry data for the d = 26.7 nm MnSi film
measured at B = 400 mT, T = 5 K. Blue(red) circles show the spin-up(down) mea-
sured reflectivity points with 1σ error bars. Solid blue(red) lines show the reflectivity
fits calculated using Simulreflec. The inset shows the magnetization profile used to
fit the data.
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Figure 3.21: Polarized neutron reflectometry data for the d = 26.7 nm MnSi film
measured at B = 200 mT, T = 5 K. Blue(red) circles show the spin-up(down) mea-
sured reflectivity points with 1σ error bars. Solid blue(red) lines show the reflectivity
fits calculated using Simulreflec. The inset shows the magnetization profile used to
fit the data.

Figure 3.22: Polarized neutron reflectometry data for the d = 26.7 nm MnSi film
measured at B = 32 mT, T = 5 K. Blue(red) circles show the spin-up(down) mea-
sured reflectivity points with 1σ error bars. Solid blue(red) lines show the reflectivity
fits calculated using Simulreflec. The inset shows the magnetization profile used to
fit the data.
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Field B M1 M2 φ0 G λ
(T) (µB/ Mn) (µB/ Mn) (µB/ Mn) (nm)
0.4 0.3 0.12 0.75 0.1 15
0.2 0.32 0.08 1.1 0.06 14

0.032 0.21 0.02 2.54 0 13.85

Table 3.4: Fitting parameters used to generate the magnetization depth profiles to
fit PNR curves at T = 5 K, B = 400, 200, and 32 mT.

identical, with only small changes in the parameters. The presence of a non-zero offset

at both of these fields supports the interpretation of Hβ on the decreasing branch at

T = 5 K as the field where there is partial nucleation of skyrmions. In addition, the

slightly larger offset at B = 400 mT may indicate that there is additional skyrmion

nucleation at Hα1 at this temperature, although it is difficult to distinguish this small

change in offset from the reflectivity curves. Further, the non-linearity in the helicoid

is slightly larger at B = 400 mT than at B = 200 mT, which indicates an increasing

distortion of the helicoid from Hβ to Hα2.

The reflectivity curve at B = 32 mT, below Hβ, is fit by a magnetization profile

that has no offset, which is consistent with the interpretation of Hβ as the field

where skyrmions begin to nucleate. However, the magnetization profile at this field

is generated with a translation parameter, φ0, that is significantly larger than at other

fields. The position of the helicoid in this magnetization profile is similar to that used

by Karhu et al. to fit the reflectivity at B = 1 mT. This indicates that the translation

of the helicoid does not occur gradually from B = 0 mT up to B = 200 mT, but rather

might occur in an abrupt jump at Hβ. If there are skyrmions nucleated at Hβ, the

interaction between the partial skyrmion phase and helicoid phase may energetically

favor this abrupt translation. In addition, surface anisotropies could be pinning the

helicoid in a specific position at low fields, which could give rise to the observed shift.

Further theoretical investigations of this energy balance are required to determine

the nature of these effects.

The average magnetization values for the T = 5 K PNR profiles are compared to
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Field (T) PNR Magnetization (kA/m) SQUID Magnetization (kA/m)

2 164 159
0.7 147 147
0.4 79.5 78.4
0.2 47.7 45.7

0.032 8.4 8.0

Table 3.5: Average magnetization for PNR measurements at T = 5 K compared to
magnetization measured by SQUID.

the values from SQUID magnetometry in Table 3.5. As was seen for the T = 25 K

profiles, these values agree within 5%, which shows that the the fits are consistent

with the magnetometry measurements. Magnetization profiles determined for the

T = 5 K PNR curves shown in this thesis are consistent with those presented earlier

by Karhu et al. [20]. In particular, the curves measured at 300 mT and 500 mT by

Karhu et al. are similar to the 200 mT and 400 mT curves presented here. These 4

data points give clear evidence that the magnetic state does not undergo significant

changes in the region between Hβ and Hα2, as was expected from the magnetization

data. Further, comparison of the profile determined at 32 mT here with the 1 mT

profile by Karhu et al. shows that the only difference is a small non-linearity in the

helicoid at 32 mT compared to none at 1 mT. This indicates that the magnetization

increase seen below Hβ can be attributed entirely to a continuous increase in the

distortion of the helicoid.

The PNR data presented here is completely consistent with the picture of the

magnetic evolution derived from the magnetometry measurements. These two inde-

pendent measures of the magnetic states of this film give compelling evidence that the

skyrmion phase exists in this material with an in-plane applied field. Further, the de-

pendence of the skyrmion stability on the film anisotropy demonstrates a mechanism

by which the stability region may be manipulated, as the anisotropy can be adjusted

by changing the film thickness. This study therefore represents an important step

towards the use of the skyrmion phase in technological applications.



Chapter 4

Magnetic Properties with ~H ‖ [111]

The results of the previous chapter were obtained with an applied field pointing in-

plane, parallel to the [11̄0] MnSi crystal axis. However, as a result of the uniaxial

anisotropy with hard axis along the [111] direction, the magnetic properties are sub-

stantially different when the field is applied out-of-plane, parallel to the [111] axis.

With an applied field in-plane, the hard axis of the anisotropy supresses the conical

phase. This, combined with the reduction of the Dzaloshinskii-Moriya contribution

to the free energy from a two dimensional modulation rather than one, leads to the

stability of skyrmions in this geometry [61]. However, with an applied field along the

hard axis, the magnetization of the cone phase rotates perpendicular to the hard axis,

and therefore this phase is not supressed. In addition, the hard axis would destabilize

a skyrmions core, which would point along the hard axis. These two effects mean

that skyrmions are not predicted to be stable with an applied field along the [111]

axis.

Further, as the ~Q vector lies along the [111] axis at zero field, a field applied

along this direction does not reorient the ~Q vector, and hence the system can evolve

continuously from a pure helicoid state into the conical state, without reorientation

effects. The analysis of magnetometry and transport measurements I show below

demonstrates that there is no skyrmion phase with this field arrangement.

4.1 SQUID Magnetometry and Magnetoresistance

To interrogate the phase diagram for an out-of-plane field, I measured magnetization

curves as a function of field and temperature by SQUID magnetometry for a 25.4 nm

62
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MnSi thin film with the applied field ~H ‖ [111]. Figure 4.1 shows a full hysteresis

loop measured at T = 25 K with this field arrangement. This figure demonstrates

that there is no hysteresis in these magnetization curves. Hence, all magnetization

curves after this are taken on only a single branch, where consecutive measurements

alternate between increasing and decreasing branches. A series of these magnetization

curves is shown in Fig. 4.2.

Figure 4.1: Hysteresis loop at T = 25 K with H ‖ [111] for a d = 25.4 nm MnSi thin
film. Blue open triangles show decreasing field points and red closed triangles show
increasing field points.

Typically, the background from the substrate in thin film SQUID magnetometry

is removed by assuming that the high-field susceptibility is derived entirely from the

diamagnetic response of the substrate. However, MnSi is a weak itinerant magnet
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Figure 4.2: Magnetization versus applied field curves for the d = 25.4 nm MnSi film.
Temperatures shown are 5 - 40 K in 5 K steps, 41 - 50 K in 1 K steps, 42.5 K and
55 K. The applied field points out of the plane of the film, along H ‖ [111].

and has a non-zero susceptibility even up to very high fields, which therefore must

be accounted for to subtract the substrate background properly [94]. In particular, it

is important to correctly determine this susceptibility for fitting the Hall effect data

that is presented in a later section.

Arrott plot analysis is normally used to determine the Curie temperature of a

sample. Here it was instead used to determine the high-field susceptibility that

corresponds to the Curie temperature, TC = 42 ± 0.5 K, independently determined

from the resistivity data as shown in Fig. 4.3. This analysis involves plotting a series

of M2 vs. H/M isotherms near TC . These curves are linear at high H/M , and the

isotherm whose linear fit has an intercept of zero is the Curie temperature isotherm
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[92]. This comes from considering the Landau expansion of the magnetic contribution

to the free energy,

wM =
c1M

2

2
+
c2M

4

4
+ ...− µ0MH, (4.1)

where c1 and c2 are constants. If c1 > 0, the free energy is minimized for M = 0

and the material is paramagnetic, while if c1 < 0, the free energy is minimized

for M > 0 and the material is ferromagnetic. The crossover between these two

behaviors therefore occurs for c1 = 0. This free energy is minimized with respect

to the magnetization, M , by the relation µ0H = aM + bM3, which can then be

linearized to µ0H/M = c1 + c2M
2. This yields the linear curves mentioned above,

as c1 = 0 at the curie temperature, where the material crosses from paramagnetic to

ferromagnetic behavior.

Figure 4.3: Linear resistivity (black circles) and its temperature derivative (blue
triangles) measured with zero applied field on the 25.4 nm sample. The dotted line
indicates the TC , determined from the position of the peak in the derivative. The
gray box around the dotted line shows the estimated uncertainty of TC
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Arrott plots of bulk MnSi are nonlinear even up to very high fields, and require a

more complicated fitting to extract TC [93]. However, I found that the Arrott plots

for MnSi thin films are linear at high field and hence do not require this complex

fitting.

Figure 4.4: Arrott plot with applied field H ‖ [111] for the 25.4 nm MnSi film.
Temperatures shown are 5 - 40 K in 5 K steps, 41 - 50 K in 1 K steps, 42.5 K and
55 K.

For this analysis, the magnetization of the film is expressed as M = (µ−HχSi)/v,

where µ is the total moment measured by the SQUID magnetometer, χSi is an ad-

justable substrate background correction factor, and v is the volume of the film. An

Arrott plot was then constructed using this magnetization, and the factor χSi was

adjusted until the Arrott plot gave TC = 42 ± 0.5 K. The resulting Arrott plot is
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shown in Fig. 4.4. The high-field susceptibility was taken as the slope of the M −H

graphs above 2 T , as these graphs are linear beyond this field. The value obtained

at T = 40 K is 17.5 ± 1 kA/m/T, where the uncertainty is derived from scatter in

the magnetization data and the uncertainty in TC . This high-field susceptibilty is

significantly larger than the value of 1.69 kA/m/T measured for bulk samples [94].

I also repeated this Arrott plot analysis for the d = 26.7 nm film discussed in the

previous chapter, and found a value of 15.7±0.5 kA/m. These two values are close to

one another, but are roughly two standard deviations apart. Although these samples

have a similar thickness, their strains are significantly different, with an out-of-plane

strain of -0.45 ± 0.01 % for the 26.7 nm film and -0.38 ± 0.01 % for the 25.4 nm

film [62]. This indicates that the high-field susceptibility varies from sample to sam-

ple, and may depend on the thickness or strain of the films. To properly determine

this dependency, future work could study the high-field susceptibility of a range of

samples of different thicknesses and strains by Arrott plot analysis.

To confirm this novel approach to SQUID substrate background subtraction, I

used PNR to measure the magnetization of the d = 26.7 nm film at T = 40 K for

in-plane fields of 1, 2, and 3 T. The advantage of PNR is that the magnetization of

the film can be measured independently, without any contribution from the substrate.

This measurement is done with an in-plane field, in contrast to the Arrott plot analysis

of magnetization data with the field applied out-of-plane. However, the behavior of

the ferromagnetic state is expected to be similar with an applied field in-plane or

out-of-plane, and therefore this analysis should confirm the large slope found from

the Arrott plots.

Measurement of the high-field magnetization with PNR was done by measuring

the spin-up and spin-down reflectivities for Q between 0.08 and 0.17 nm−1 at each

field. The spin asymmetry, ASYM= R++−R−−
R+++R−−

, for these three curves was then cal-

culated at each field and fit using Simulreflec to determine the magnetization of the

MnSi layer. The spin asymmetry drops unexpectedly after the Q = 0.14 nm−1 data
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point for the B = 1 T scan, likely indicating an alignment error or other transient

technical fault. In order to avoid this error, the fits were done in the region Q = 0.08

to 0.14 nm−1. These fits are shown in Fig. 4.5, with the fit magnetization values

shown in Fig. 4.6. The slope between the B = 2 T and 3 T points gives a high-field

susceptibility of 15 ± 2 kA/m, in reasonable agreement with the values from Arrot

plot analysis, which demonstrates that MnSi thin films do have a significant high-field

susceptibility.

Figure 4.5: Plots of the spin asymmetry for PNR data collected at T = 40 K on the
d = 26.7 nm MnSi film at B = 1 T (black), 2 T (blue), and 3 T (red) . Solid circles
show the measured data points with 1σ error bars, and solid lines show the fits to
the data generated by Simulreflec.

Figure 4.7 shows a comparison of the PNR fit magnetization values to the mag-

netization values measured by SQUID magnetometry on the d = 26.7 nm film. In

this figure, the values for H ‖ [111] were corrected using the substrate background

correction factor determined by Arrott plot analysis. However, a suitable data set

to construct an Arrott plot for H ‖ [110] was not available. Therefore, the substrate

background was removed for this curve by adjusting the background correction factor

until the slope between B = 2 T and 3 T matched that measured by PNR, and by
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Figure 4.6: Magnetization values used to produce the spin asymmetry fits in Fig.
4.5. The red line is a linear fit to the data with the equation shown on the graph.
Error bars were generated by fitting the asymmetry curves with individual 1 σ error
range added to each point, and taking the difference between this fit magnetization
and the data point fit magnetization.

SQUID with H ‖ [111] curve. The PNR magnetizations are also plotted in this figure

offset vertically by 8 kA/m to more easily compare the field dependencies. This makes

it clear that the three fit magnetizations accurately match the field dependence of

the magnetization measured by SQUID magnetometry with H||[110]. In particular,

this figure shows the non-linearity of the magnetization between B = 1 T and 2 T,

which is why the high-field susceptibility must be taken between B = 2 T and 3 T.

This figure also shows that while the field dependencies match, the PNR fit mag-

netization values are offset with respect to those measured by SQUID magnetometry.

One possible explanation for this offset is a temperature calibration error in the PNR

measurements. As the temperature increases close to TC , the saturation magneti-

zation falls off rapidly, and hence a small temperature calibration error can explain

the significant downward shift of the magnetization. Figure 4.8 shows the saturation

magnetization as a function of field for the d = 26.7 nm film with H ‖ [111]. The

values of MS were taken as the intercepts of the high-field susceptibility fit lines for
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Figure 4.7: Comparison of the magnetization values of the d = 26.7 nm film mea-
sured by PNR and SQUID magnetometry. The blue closed triangles are the PNR fit
magnetization values with H ‖ [110], the blue open triangles are the same PNR fit
magnetization values offset by 8 kA/m, the red circles are the magnetization values
measured by SQUID magnetometry with H ‖ [111], and the black squares are the
magnetization values measured by SQUID magnetometry with H ‖ [110]. The navy
line shows the high-field susceptibility.

M−H curves measured at each temperature that had been corrected using the Arrott

plot analysis. These MS values were then fit with a quadratic function to give the red

line shown in Fig. 4.8. The saturation magnetization, MS = 97.4 kA/m, for the PNR

measurements is then compared to the quadratic MS fit line on this figure. This com-

parison indicates that the offset of the PNR magnetization values can be explained

by a “true” temperature for the PNR measurements of 41.3 K as would be measured

by the SQUID. A temperature calibration deviation of this magnitude between dif-

ferent cryogenic system is reasonable, and it is likely that this is the cause observed

offset. As the curie temperature measured on the SQUID magnetometer has been

cross-checked to values obtained from resistivity values on a different instrument, it

is more likely that the PNR setup is the source of the calibration error.
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Figure 4.8: Saturation magnetization values for the d = 26.7 nm thin film. The black
circles show the values from SQUID-measured M−H curves, and the red line shows a
quadratic fit to these points. The dotted lines indicate the saturation magnetization
from the PNR magnetization fits and the temperature that this corresponds to.

Notwithstanding the temperature discrepancy, the high-field susceptibility mea-

sured by PNR is consistent with the measurements of both samples by Arrott plot

analysis. The agreement between these two methods provides strong evidence that

the high-field susceptibility in these films is a real effect effect that can be accurately

accounted for with the novel use of Arrott plots. Hence, I have assumed that the Ar-

rott plot analysis yields an accurate background correction factor. This background

correction factor was used to produce the magnetization curves shown in Fig. 4.2.

From Fig. 4.2, I calculated the static susceptibility as a function of field to look

for peaks that indicate first-order transitions that may not be obvious in the M −H

data. The results of these calculations are shown in Fig. 4.9. This figure shows no

first-order transitions, consistent with a continuous transition from a helical phase at

zero field, through a conical phase, and to a ferromagnetic phase above the saturation

field.
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Figure 4.9: Static susceptibility versus field of the d = 25.4 nm MnSi film obtained
by taking the derivative of Fig. 4.2. Temperatures shown are 5 - 40 K in 5 K steps,
41 - 50 K in 1 K steps, 42.5 K and 55 K. The applied field points out of the plane of
the film, along H ‖ [111].

However, there is one feature on these plots that requires discussion. At many of

the temperatures there is a markedly decreased susceptibility for the points at very

low field, followed by a sharp increase up to a flat plateau. This effect is similar to

the susceptibility changes as the helix reorients in bulk MnSi [95]. Further, SQUID

samples are manually mounted in a plastic straw and adjusted by eye to the correct

orientation. This makes it difficult to align the sample perfectly with H ‖ [111];

misalignments of up to a few degrees are expected. Hence, it is likely that this

deviation represents the small reorientation of the helical Q vector from the [111]

direction to the field direction when the sample was slightly misaligned.
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Figure 4.10: Field-cooled magnetization measurements for the d = 25.4 nm MnSi
film. Data sets shown in blue are for field values in steps of B = 0.05 T from 0.1 to
1.0 T and steps of 0.02 T from 0.01 T to 0.05 T, and the data sets in red are each
measured at a field 10 mT higher than the blue. Applied field points out of the plane
of the film along H ‖ [111]

It is also instructive to consider plots of the susceptibility as a function of tem-

perature, as these may give evidence of transitions that are vertical on a H−T phase

diagram, and hence would not appear on the M-H plots shown above. In addition,

the in-plane skyrmion phase does show a distinct peak in susceptibility-temperature

plots at its phase boundaries, as shown in Fig. 3.9. Therefore, as a second means of

screening for skyrmions, I performed a similar set of measurements for H ‖ [111]. I

measured the magnetization as a function of temperature for a wide range of fields

by cooling the samples in an applied field from T = 100 K to 5K and then measuring

the magnetization on warming. These curves are shown in Fig. 4.10.
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Figure 4.11: Susceptibility curves determined from field cooled magnetization mea-
surements on the d = 25.4 nm MnSi film. Each curve was calculated from field cooled
scans at fields separated by 10 mT. Field values shown are in steps of 0.02 T from
0.015 T to 0.055 T and in steps of B = 0.05 T from 0.105 to 1.005 T from top to
bottom. These curves are offset by 20 kA/m/T for clarity. Applied field points out
of the plane of the film along H ‖ [111].

From these curves, the static susceptibility is calculated by taking the derivative

between curves separated by B = 10 mT, as was done in section 3.1. The resulting

curves are shown in Fig. 4.11. Figure 4.12 shows an expanded view of the curves from

B = 0.2 to 0.55 T near TC , which corresponds the the bulk A-phase region where

transitions might be expected to show up. Neither of these figures show evidence of

peaks in the susceptibility that would indicate first-order transitions, and hence it

can be concluded that there is no skyrmion phase for H ‖ [111].
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Figure 4.12: Susceptibility curves determined from field cooled magnetization mea-
surements on the d = 25.4 nm MnSi film. Each curve was calculated from field cooled
scans at fields separated by 10 mT. Field values shown are 0.205, 0.255, 0.305, 0.355,
0.405, 0.455, 0.505 and, 0.555 T from top to bottom, and are offset by 20 kA/m/T
for clarity. Applied field points out of the plane of the film along H ‖ [111].

The curves for 0.905 T and 0.705 T in Fig. 4.11 appear to be offset significantly

at low temperature relative to what is expected from the other curves. Normally,

this would indicate peaks in the susceptibility as a function of field centered on these

two curves that persist over a broad temperature range. However, since no such

peaks were seen in Fig. 4.2, this deviation is much more likely a result of some

extrinsic effect, rather than showing a transition in the films. These two curves were

measured at a later time, with the sample mounted in a different straw than for the
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measurements of the other curves. Hence, one possible explanation is that there was

some contaminant introduced into the straw that produced this deviation.

An additional method that can be used to interrogate the phase diagram of this

film is magnetoresistance. Kadowaki et al. have shown that the transition into

and out of the skyrmion A-phase in bulk samples is accompanied by peaks in the

magnetoresistance [25], and hence peaks of this nature would be expected if this film

hosts a skyrmion phase. The magnetoresistance was measured as described in section

2.4 at a variety of temperatures between 10 and 46 K, and the resistivity calculated

from equation 2.13, where VL is the longitudinal voltage, and I is the current.

Figure 4.13: Magnetoresistance of the d = 25.4 nm MnSi film with applied field point-
ing out-of-plane along the [111] direction at T = 10 K. Open blue circles represent
the data points measured on decreasing field, and close red circles represent the data
points measured on increasing field.

First, Fig. 4.13 is presented to show that there is no hysteresis in the magne-

toresistance data, even at small field. This gives additional weight to the argument
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that the slight deviation at low field seen in the SQUID data is a result of sam-

ple misalignment, as the mount for magnetoresistance measurements makes it much

easier to align the sample very close to the desired ~H ‖ [111]. Therefore, the lack

of any deviation here is indicative of what would be seen with perfect alignment in

the SQUID data. Next, the magnetoresistance ratio ∆ρxx/ρxx0 = (ρxx − ρxx0)/ρxx0,

where ρxx is the longitudinal resistivity and ρxx0 is the zero field longitudinal resistiv-

ity, was calculated at each field in order to emphasize changes in the resistivity, with

the resultant curves shown in Fig. 4.14. These show no evidence of peaks that would

indicate a skyrmion phase, consistent with the interpretation of the magnetometry

data.

Figure 4.14: Magnetoresistance of the d = 25.4 nm MnSi film with applied field
pointing out-of-plane along H ‖ [111]. Temperatures shown are 10 - 40 K in 5 K
steps and 41 - 46 K in 1 K steps. Curves are offset by -0.015 for clarity, for T >10 K.
increasing.

The magnetoresistance and magnetometry data together support the simple phase

diagram shown in Fig. 4.15, where the system transitions smoothly through a con-

ical state into the ferromagnetic state. Significantly, the detailed investigation over
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Figure 4.15: Phase diagram for the d = 25.4 nm MnSi film with an applied field
~H ‖ [111]. Closed black circles are saturation fields determined from a minima in
d2M/dH2 calculated from M-H curves.

the entire phase diagram shows no evidence of a skyrmion pocket at any field or

temperature values, which is a significant contrast to the broad skyrmion stability re-

gion with an in-plane field. This highlights the importance of the magnetocrystalline

anisotropy in stabilizing the skyrmion phase.

4.2 Hall Effect

A topological contribution to the Hall effect has been taken by others as a sufficient

condition to prove the existence of a skyrmion phase. Therefore, I measured the Hall

resistivity of the d = 25.4 nm patterned sample, as described in section 2.4, for a

variety of temperatures below TC . The data was then fit to Eq. 4.2, including the

regular Hall effect, R0H, and the anomalous Hall effect, SHMρ2
xx,

ρyx = R0µ0H + SHMρ2
xx. (4.2)
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In this equation, R0 is the Hall coefficient, SH is a fitting parameter for the anoma-

lous Hall effect, and ρxx is the longitudinal resistivity. For the fits, I measured ρxx at

the same time as ρyx, and used the magnetization measured by SQUID magnetom-

etry shown in Fig. 4.2. The resultant fits, along with the data, are shown in Fig.

4.16, and the parameters used to generate the fits are shown in Fig. 4.17. This figure

shows that the values of R0 and SH vary significantly as a function of temperature,

and SH even changes sign. This is in sharp contrast to Hall effect measurements

in bulk MnSi [56] that show temperature independent values of R0 = 7.32 ± 0.06

nΩ-cm/T and SH = −7.06 ± 0.48 × 10−4V−1. In addition, the values of R0 in this

film, 11-17 nΩ-cm, are significantly larger, with a mean value twice as large as the

value measured for bulk MnSi, which indicates a reduced charge carrier density com-

pared to bulk. Density functional calculations show that the band structure of MnSi

changes when the structure is strained [62]; this may explain the change in carrier

density.

These fits also show a significant deviation over a large field range, similar to that

traditionally attributed to a topological contribution [57, 58, 59, 60]. The conven-

tional view would be that this indicates a skyrmion phase covering almost the entire

phase diagram. However, the magnetization and magnetoresistance data excludes

this possibility as no first-order transitions are observed.

Topological contributions to the Hall effect, as discussed in chapter 2, come from

the Berry phase that electrons pick up traversing a loop containing non-coplanar

spins. Hence, any spin structure that contains non-coplanar spins that vary in the

Hall effect measurement plane will show a topological Hall effect. One possibility for

such a structure is shown in Fig. 4.18. This is a conventional cone phase which is also

modulated in the in-plane direction, x̂, with a propagation vector along the out-of-

plane direction, ẑ. Assuming the in-plane and out-of-plane propagation vectors have
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Figure 4.16: Measured Hall resistivity of the d = 25.4 nm sample (black circles), and
fits to this data using Eq. 4.2 (red lines).

Figure 4.17: Values of the parameters R0 and SH used to produce the fits shown in
Fig. 4.16.

the same magnitude, Q, the spin texture is described by,

~S = S0 (cos[(x+ z)Q]cos(ϕ), sin[(x+ z)Q]cos(ϕ), sin(ϕ)) . (4.3)

Considering three neighboring spins in the z=0 plane, ~Si(a, 0, 0), ~Sj(b, 0, 0), and
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Figure 4.18: Schematic of the modulated cone phase with magnetization given by
Eq. 4.3. In this figure the �Q points out of the page.

�Sk(c, 0, 0), the spin chirality, which is proportional to the Hall conductivity, is given

by Eq. 4.4.

�Si · �Sj × �Sk =sinϕ cos2ϕ
[
(sin[(a)Q]− sin[(b)q])cos[(c)Q]

− (cos[(a)Q]− sin[(b)Q])sin[(c)Q]

+ (cos[(c)Q]sin[(b)Q]− sin[(a)q]cos[(c)Q])
]

(4.4)

Regardless of the exact spin positions, the spin chirality is proportional to sinϕcos2ϕ,

where ϕ is the cone angle. Therefore, σtop
yx ∝ sinϕcos2ϕ. The Hall resistivity is equal

to the Hall conductivity times ρ2xx [58], hence the total Hall resistivity can be written,

ρyx = R0µ0H + SHρ
2
xxM + Cρ2xxsinϕcos

2ϕ, (4.5)

where C is a fitting parameter. The cone angle, ϕ, can be calculated from the mag-

netization data as the SQUID with H ‖ [111] measures strictly the out-of-plane

component of the magnetization, Mz, and, for a cone phase, Mz/MS = sinϕ. Using

this cone angle, I calculated the topological Hall effect from this proposed spin con-

figuration and adjusted C to best fit the measured topological signature, defined as

ρtopyx = ρyx − R0µ0H − SHρ
2
xxM , at each temperature. These fits are shown in Fig.
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4.19.

The fits accurately replicate the field dependence of the measured topological hall

effect, which shows that the Hall data is consistent with the proposed spin model.

This distinctly shows that there are spin arrangements other than the skyrmion phase

which produce a significant topological Hall signature and may be present in helimag-

netic thin films. It is possible that a simple cone phase may also produce a topological

Hall effect, as there is a significant deviation from the fits over a broad field region

present in measurements on bulk MnSi [56]. Therefore, the topological signature

alone is not sufficient to demonstrate the presence of a skyrmion phase. Further,

topological signatures recently advanced by others in FeGe [60] and MnGe [59] as the

sole evidence for skyrmions have field dependencies similar to that presented here,

and it is thus a distinct possibility that these signatures were misinterpreted in these

studies. Reinterpreting signatures of this nature as evidence for an in-plane modu-

lated cone phase rather than skyrmions would require reevaluation of a number of

claims of skyrmion stability in various helimagnets, and potentially have a signifi-

cant impact on the direction of future work towards producing a material in which

skyrmions are broadly stable.
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Figure 4.19: Topological component of the Hall resistivity, ρtopyx = ρyx − R0µ0H −
SHρ

2
xxM , of the d = 25.4 nm sample (circles) along with fits to this data (solid lines)

assuming a modulated cone phase as described in the text. The fits are calculated
by, ρtopyx fit = Cρ2

xxsinϕcos
2ϕ, where C is a fitting parameter. Curves are offset by

4 nΩ-cm for clarity, and the dashed lines show the zero for each temperature. The
dotted line shows the saturation field at each temperature.



Chapter 5

Conclusion

MnSi thin films grown epitaxially on Si(111) substrates were magnetically charac-

terized by SQUID magnetometry and polarized neutron reflectometry. These mea-

surements indicate that for a magnetic field applied in-plane with ~H ‖ [110], there

exists a broad skyrmion stability region at elevated temperature and fields. The size

of this skyrmion region was shown to vary as a function of film anisotropy, which

demonstrates a potential method to engineer a structure with a given skyrmion sta-

bility region. In addition, skyrmion nucleation was found to occur in two main steps,

with up to 40% of the film nucleating into the skyrmion phase at a lower transition

field Hβ and the rest of the film transitioning into the skyrmion field at a high field,

Hα1. The skyrmion stability region was found to be qualitatively consistent with

theoretical calculations. However, exact quantitative agreement was not found. Fu-

ture theoretical work should be done to investigate the cause of these discrepancies.

In particular, surface and cubic anisotropies that were neglected in the theoretical

calculation should be considered. In addition, PNR studies that measure the spin-flip

component of the reflectivity should be conducted in order to complete the picture

of the magnetic states of the film.

For a field applied out-of-plane with ~H ‖ [111], a detailed investigation of the

magnetic states of the films using SQUID magnetometry and transport measurements

found no evidence for a skyrmion phase. This is consistent with earlier theoretical

predictions that the the uniaxial anisotropy in these films would not stabilize the

skyrmion phase in this geometry. In addition, Hall effect measurements were con-

ducted that showed the presence of a topological Hall effect over a broad region of

84
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the film. This shows that the presence of the topological Hall effect is not a sufficient

test for the presence of skyrmions. In these films, the topological Hall effect was in-

terpreted as arising from a multidimensionally modulated cone phase with ~Q ‖ [111].

Good agreement was found between the expected topological Hall effect from this

arrangement and the measured values. This study of the Hall effect raises signifi-

cant questions about previous claims of skyrmion stability by other groups [57, 60],

and could significantly impact the direction of work towards a technologically viable

skyrmion-containing magnetic system. Future work should attempt to find additional

evidence for this modulated cone phase. In particular, detailed Lorentz microscopy

measurements may find evidence for this phase. The contrast for Lorentz microscopy

measurements in this phase would be largest when the films are of half-integer wave-

length thickness. Therefore, films of thickness d = 21 or 35 nm should be studied

with this technique.

Magnetometry and PNR results also indicated that MnSi thin films have a high-

field susceptibility that is close to 10 times larger than the high field susceptibility

observed in bulk MnSi. The high field slopes measured by PNR on a d = 26.7 nm

sample and by magnetometry on a d = 25.4 nm were slightly different. This could

indicate that varying the film thickness and strain changes the high field slope. Addi-

tional investigations using PNR on films of a variety of thicknesses and strains should

be done to determine this dependence, and hopefully help illuminate the cause of the

increased high-field susceptibility.

The results of this thesis represent a significant step forward towards a techno-

logically relevant material in which skyrmions are broadly stable. A material of this

type could be used in novel magnetic storage devices and significantly impact our

future computing capabilities.
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P. Böni, C. Franz, R. Georgii, M. Janoschek, F. Jonietz, T. Keller, R. Ritz,
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