
Short title for lettering ••.

,MULTIPLE REGIONS FOR THE MCGILL-RAX TlME-SHARING SYSTEM

MULTIPLE USER REGIONS FOR THE MCGILL-RAX TlME-SHARING
SYSTEM---JUSTIFICATIONS AND METHODS OF IMPLEMENTATION

Presented as a requirement for the degree of
MASTER OF SCIENCE (COMPUTER SCIENCE)

by
Roy Watt Miller

McGill University
Montreal, CANADA
September, 1971

A B S T R ACT

This paper sketches the development of a time-

sharing system known as MCGILL-RAX which is based on an

earlier IBM RAX System.

The reader is introduced to time-sharing concepts

and the internal operation of the RAX System. Arguments are

presented in support of the best method, in this author's

judgment, of adding multiple user regions to the system.

The required modifications are outlined and an

implementation order is suggested.

Measurements performed on the current version of

the system are presented as part of the justifications

towards making such modifications.

This paper also includes a description of how the

seemingly unrelated DOS/OS Compatibility Feature can be used

to advantage in an implementation of the multiple user

region scheme.

MULTIPLE USER REGIONS
for the

MCGILL-RAX TlME-SHARING SYSTEM
JUSTIFICATIONS and METHODS of IMPLEMENTATION

@

by

Roy Watt Miller

COMPUTER SCIENCE
MCGILL UNIVERSITY

MONTREAL, CANADA

SEPTEMBER, 1971

Roy Watt Miller 1973

.. ~ \ ,
'l: PREFACE

Fundamental to the design of a time-sharing system

are the techniques used to manage the user regions. Indeed,

time-sharing systems are generally classified by the

techniques used.

This p&per &ddresses the problem of restructuring

~ to support more than one user region. Decisions must be

made as to the proper technique to use and whether the

result would justify the work involved. Such decisions are

usually left to management and senior systems personnel.

For this reason this thesis is written so that it may be of

use to those who do not have a detailed knowledge of time-

sharing systems. The relevant keywords and concepts are

introduced informally in the texte The reader is referred

to any of a multitude of "computer dictionaries" for their

formal definitions.

Detailed measurements were made of the system's

internal performance in relation to the various user

requests. The previously unmeasured figures are presented

as part of this paper.

Since RAX operates only on IBM Computers, this

report restricts its study to these machines. Sorne of the

ii

\ .. ,- techniques and discussions presented here could equally

apply to other makes of computers.

The author wishes to express his thanks to

Professor W.D. Thorpe, Director and Professor A.M. Valenti,

Associate Director of the McGill Camputing Centre, for their

encouragement during the preparation of this work. Special

thanks are due them for guiding rather than direating the

development of MCGILL-RAX. The developers of MCGILL-RAX,

themselves major users of the system, were given a free hand

in implementing changes which they thought were necessary.

This appears to have contributed sig'nificantly to the

success of the system.

The author wishes to acknowledge the support and

encouragement of the Computing Centre staff as a whole.

Specifie thanks are due Mr. Alan Greenberg who worked

together with the author during the past four

developing the MCGILL-RAX Operating System.

years

Thanks are also due to the seven other MCGILL-RAX

installations in North America a.nd Europe. Their support of

the system and interest in further extensions were in part

the motivation for writing this paper.

iii

1

The author appreciates the assistance of Mr. Peter

Mann, IBM's local representative, who attempted to resolve

the author's endless questions. The privilege and

experience of working with the IBM Cambridge Scientific

Centre and the CP/67 Development Group is acknowledged.

Working together with these groups gave the author valuable

insight into the design of time~sharing systems on machines

with relocation hardware.

The auth~r wishes to thank Miss Linda Doke for her

assistance in typing parts of this paper.

iv

Chapter

1.

2.

3.

4.

5.

6.

7.

8.

9.

TABLE OF CONTENTS

INTRODUCTION •

HISTORY OF RAX

RAX SYSTEM INTERNAL OPERATION

USER REGION MANAGE~mNT TECHNIQUES

CHOICE OF A MULTIPLE USER REGION
MANAGEMENT TECHNIQUE FOR RAX • •

RELOCATION THROUGH USE OF THE
DOS/OS COMPATIBILITY FEATURE •

MODIFICATIONS TO SUPPORT MULTIPLE
REGIONS ON RAX • • • • •

IMPLEMENTATION SCHEDULE

JUSTIFICATION CRITERIA •

. . . .

.
.

.
10.

11 •

MEASUREMENT OF MCGILL'S RAX INSTALLATION.

12.

JUSTIFICATION CRITERIA APPLIED TO
MCGILL'S INSTALLATION

CONCLUSIONS
APPENDIX A • • •

APPENDIX B ••

. . . .
.

BIBLIOGRAPHY .

1

5

8

16

22

26

30

39

42

51

55

64

66

72

83

v

CHAPTER 1

INTRODUCTION

The evolution of computers has brought with it

significant strides in the computer's calculation speed and

logical ability. Computing centres have tended to take

advantage of these changes by utilizing faster camputers to

reduce the cost per unit of work. Unfortunately, these

large scale systems do not permit the user to "interact"

with the computer hardware at a basic level. At typical

computer rentals of 10 to 20 dollars a minute, the computer

centre can ill-afford to have the computer idle for even a

few seconds. Whereas the user originally loaded his own

problem into the computer and controlled its solution, this

mode of operation is no longer feasible on a cost basis.

To solve a typical problem, the user must organize

a deck of cards (his program) which completely defines the

computations and logical steps to achieve the results, take

it to the computing centre, and return perhaps two days

later for the results. Thus a calculation which might take

30 minutes at a desk calculator and one second on the

computer, could effectively take two days to solve using the

above batoh method.

1

The typical turnarou nd tirne available with these

batch systems prevents its use for the class of jobs which

require fast turnaround in order to be effective. This

class includes applications such as on-line program

debugging and infor.mation retrieval.

Time-shapingt was developed to solve these

dilemmas. Through typewriter-like devices called tepminaZs,

a user can be directly connected to a computer to allow him

to enter his problem and wait for its solution. Perhaps he

need only type in the required data to a previously written

program.

To make this scheme effective, it must be possible

for one user to start and perhaps finish a job before

another user's job is ended. If this were not the case,

then one user might be able to submit a 10 minute job which

would require that the others wait 10 minutes for their

turne

TO accomplish tirne-sharing, the technique is to run

a job for a short period of time, or time-sZiae, with a

tResoupae-shaping

"time-sharing" is

operation.

is perhaps a more descriptive term, but

the accepted name for this type of

2

duration not more than several seconds, and then in turn

process other jobs during their time-slices and then resume

execution of the first. A technique of temporarily storing

a partially executed job is also required. This can be done

by aheakpointing (copying) part or all of the job to an

external storage device until the scheduZer selects it for

service again.

A specialized supervisory program is required to

mode_ Sorne of the run a computer system in time-sharing

functions of this program are to:

-schedule the time and perhaps length of each time-

slice,

-allow users to modify, control and inspect their job

while it is running,

-ensure that one user cannot destroy or otherwise

adversely affect the running or the results of another,

-provide adequate diagnostic messages if the user

attempts to do something incorrectly,

-ensure that only authorized persons use the system,

'provide adequate accounting of service performed for

each user,

'operate in a rnanner to minimize human intervention.

As an example, sorne time-sharing supervisors are

designed to handle several programs internally before having

3

to resort to checkpointing. Such a system is said to have

muZtipZe user regions.

In this paper, the tirne-sharing supervisor program

being discussed is called MCGILL-RAX. At the present, it is

a singZe user region system. This paper discusses the types

of changes required to support multiple user regions and the

criteria that might be used to justify such a modification.

The next two chapters are presented to acquaint the

reader with the development of RAX and its internaI

structure.

4

(

CHAPTER 2

HISTORY OF RAX

In April of 1964 IBM announced the SYSTEM/360 in an

attempt to satisfy aIl computing needs with one product

line.

One of the fi-rst installations of -c.hese new

computers was at the Lockheed Aircraft Plant in Marietta,

Georgia. Working with IBM field personnel, they developed

by July 1965, a system known as Remote Aaaess Computing

System (RACS). It h?s been claimed that "it was the first

time-sharing system built around an IBM SYSTEM/360 installed

and working in an industrial enviromnent" 1lt
•

RACS used sorne of the programs developed for the

IBM system called Basic Programming Support (BPS). The BPS­

TAPE System was designed to handle jobs read in on cards and

to use magnetic tape for work space. RACS added the

facility to read input from a disk file created from

terminal input and to use disk for work space. The initial

RACS system was little more than a remote job entry facility

since it lacked the ability to retain (save) programs and to

interact with the program while it was running. It did

however have time-sliced execution.

5

(

In July 1967 IBM took over the responsibility of

maintaining the system and changed its name to RAX. By this

time RAX had the facility of saving programs and the ability

to read data from the terminaIs during execution. The se

features, coupled with the fact it was the only IBM time­

sharing system suitable to run on aIl announced SYSTEM/360

computers, gave it great marketing potential.

Significant changes to RAX were made at ITT DATA

SERVICES. In May 1968, they started running a time-sharing

service called "RTS" using RAX as its base; By 1969 they

had added many enhancements including the support of

languages such as BASIC, FORTRAN-G, COBOL. Their

modifications were proprietary due to the nature of their

operation.

The University of Rhode Island and Bell Aerosystems

Company contributed modifications to RAX which were

partially incorporated into later versions of the system.

McGi11 University Computing

RAX in October 1967 on an IBM Model 50.

Centre started using

At that time the

Centre had no experience with either IBM SYSTEM/360 or time­

sharing. Two recent additions to the McGi11 staff were

assigned the task of mOdifying and supporting the system.

They were Mr. Alan Greenberg and the author of this paper.

6

,
1

McGill's modifications included supporting Teletype

terminaIs and the Teletype-compatible terminaIs which soon

became popular. The latter had the additional ability to

run at speeds typically up to six times that of the Teletype

terminaIs. Additional security was implemented through

passwords, fetch protection, private and execute-only files.

The data transfer rate of checkpointing was first doubled

and then doubled again. MCGILL-RAX was changed to support

the IBM OIS FORTRAN-G, COBOL, ASSEMBLER-F language

compilers. In April 1971, with the availability of the

System/370 Model 155, McGi11 became one of the first to run

time-sharing on this new line of machines.

i _t_

7

CHAPTER 3

RAX SYSTEMINTERNALOPERATION

a) RAX-Hardware Interface

At the centre of a RAX installation is the centpaZ

ppouessing unit (epu) (see

arithmetic f logical and

calculations and direct

figure 1) • The CPU has the

perform control circuitry to

the system as a whole. The

supervisor (RAX in this case) resides in main stopaget.

Parts of main storage are allocated to conta in the user

region and other parts are set aside for disk and terminal

buffers.

RAX issues commands

(I/O) with the terminaIs. The

response executes a series

communications to the channels

that

CPU

of

and

initiate

control

operations

then to

input/output

circuitry in

that start

the specific

control unit. The control unit in response may originate

signaIs to be sent through the communications lines to the

terminal.

t Main storage is sometimes referred to as cope stopage or

simply cope.

8

\0

TERMINALS

L]-
L]­
e:}

TAPES

TRANSMISSION
CONTR~L UNIT

TAPE
CONTROL UN IT

Fiq. 1

MULTIPLEX
CHANNEL

C~NTR~L DATA

C P U

CONTR~L

SELECT OR
CHANNEL

MAIN ST ORAGE

DATA

HARDWARE COMPONENTS

UNIT RCD
CONTROL UNIT

OISK
CONTROL

RDR/PUNCH

PRINTER

OISKS

.-'

The srume sequence is used to control the other 110

devices such as the disk storage units. The details of the

signal flow is nor.mally of little importance to the

supervisor program which need only be concerned with the

general characteristics of the addressed device.

A general knowledge of the characteristics of a

disk storage unit are required in this study. Three

operations are required to access the data fram these

devices. First, the access mechanism containing the

read/write heads must be mechanically positioned. This is

known as the Beek operation. Second, the searah operation

is started and generally requires a time-Iapse while the

required data rotates to a read/write head. Finally, the

data tranBfer takes place.

It is important in the system design to recognize

that different components of the system have vastly

different transfer rates. Typical data rates are given

belowc

10

DEVICE

user typing

terminal typing

TABLE 1

disk storage (2314 type)

main storage (Mod 65)

b) RAX Data' Flow

DATA RATE (chars/sec)

1 or 2

10 to 60

312,000

10,600,000

Figure 2 illustrates the basic data flow in RAX.

As the user types characters on his terminal the y are

transferred into main storage (path 5). After several lines

are typed, the block of lines (buffer) is transferred to an

input area allocated on disk(4). Conver~ely to write to the

terminal, a block is read from the output area on disk and

is sent line by line to the terminal. RAX is infor.med by

the hardware when each line of input or output is completed.

It need not be concerned with each character as it is sent

over the data paths. The arnount of time required to satisfy

these terminal IIO requests is minimal in a RAX system.

These operations are performed on a demand basis and proceed

asynchronously with the rest of the operations in the

system.

11

-,

...10

~

SAVE LIB FILES
PERM OISK FILES
,",ORK FILES

PHASE RESIDENCE

...

TERM INPUT/OUTPUT AREAS

HAIN ST ORAGE

TERM SPOOL BUfFS

RESIDENT
SYSTEM CODE

USER REGION
OISK SPOOL BUffS

USER REGION

LOWCOAE

Fig 2. RAX SYSTEM DATA FLOW

TERMINALS

CHECKPCHNT
AREA

-_l

(

To submit a job, the user types in the program fram

his terminal or indicates by a command line that the program

has already been written and is to be found on RAX's save

library. When the specification of the problem is complete,

the user requests that it be rune At this point aIl the

lines he has typed have been transferred to disk. His job

request is put into a queue for the user region. When the

job scheduler selects it to be run, an initialization phase

is read in (loaded) from an area on disk(1). This transient

system code determines if a aompiler must first be read in

to translate the program into a series of machine

instructions. If this were the case, then it would load the

appropriate compiler to service the request(1). The

compiler reads in the program from the disks{2,3} and

perhaps produces sorne output to be sent to the terminal via

the disk{3}. If the compiler has not detected any errors in

the program then the generated machine instructions will be

loaded into main storage and the us~r program will be

allowed to execute.

If the program executes for more than four seconds

it may be stopped and another job started. The system is

required to preserve the state of the job until it can be

run again. RAX writes the user region in its entirety on

disk, thus freeing the user region for another job. This

operation is called rollout or taking a aheakpoint{6). When

13

the job's turn cornes up again it is read from the checkpoint

device(6) and its execution resurned.

If at any tirne during this process there are output

lines written to disk, the y will be printed by the terminal

support whose opera~ion continues regardless of the activity

in the user region.

Due to the great difference in speeds between the

terminal and the CFU, it is possible that the user sees

uninterrupted printing of results and is thus unaware that

it is being produced in discrete portions.

It is usual for a job running in the user region toi

request IIO from disk and then be unable to proceed until

the infor.mation is completely read from disk. In this

condition the program must wait for the completion of the

IIO and is said to be in wait state. A program which

requests a read fram the terminal is not put into wait

state, for this would require that the CPU be idle for at

least several seconds, perhaps minutes. Instead RAX will

prematurely end the job's time-slice and will schedule

another user's program to run in the interirn.

A user request for activity on the save library,

such as to save a program, is handled in much the same way.

14

The transient phase which is read in will contain the code

to handle the save request in the same fashion that a

compiler is loaded to process a job. These types of

requests are of short duration and are never time-sliced.

c) User Reg'ion Scheduler

This scheduler receives requesta for the user

region and records the time and type of request. Records of

jobs in the checkpointed state are also maintained. The

scheduling philosophy is to service short utility requests

first, such as sign-on, save, etc. It will then service the

user who has the least amount of output waiting to be

printed and who has been waiting for CPU service for the

longest tme.

15

CHAPTER 4

USER REGION MANAGEMENT TECHNIQUES

The number of user regions and the techniques for

managing them form a integral part of any time-sharing

system. This chapter discusses five management techniques

that could be used.

The simplest technique involves the single user

region. This scheme's main disadvantage is its excessive

unproductive wait time. MCGILL~RAX rarely is in IIO wait

state for longer than 0.06 seconds. Individually, these

portions of time are too short to justify checkpointing the

user's program, which typically takes 0.6 seconds. However,

these short time quanta may add up to as much as four hours

a day. Additionally up to two hours are accumulated daily

waiting for the checkpoint operation to be complete.

Adding other regions to this scheme would allow the

supervisor to switch control momentarily to process another

region's job when one goes into wait state. Such a

modification increases the complexity of the system as

discussed below.

16

l

Suppose Job A and B are running in a two region

system. Now Job C is to rune Clearly Job A or B must be

checkpointed to allow room for this new job. Let us suppose

Job A is the one to be checkpointed. At sorne later time Job

A will have to be read in again into one of the user

regions. If the computer is any of the IBM SYSTEM/360

series (except the Model 67) the job will have to be

returned to the same region it previously occupied. This is

a requirement because the program will probably rely on

absolute main storage addresses. This restriction could

result in a situation where one region is empty while other

jobs are waiting to run in the other region. Thus, in an

effort to make use of wait time, it might be that the system

still has significant amounts of unproductive wait time7 and

in addition, it has a block of main storage idle.

One way to solve this problem is to ensure that the

programs do not have specifie address dependencies or

perhaps, if they must, then to make sure aIl addresses are

in well-defined locations so that the user regivn scheduler

might change these addresses before dispatching the program

in another region. Certain high~level language compilers

such as PORTRAN and PL/I have been written to run in such an

environment and to produce object code adhering to these

specifications. Writing programs in assembler language for

these systems would be beyond the capability of almost aIl

17

users. The wide variety of application programs that have

been developed over the years to run on batch systems could

not be easily adapted to run in this envir~nment since many

of them are written, at least partially, in assembler

language.

The computer hardware could be changed to assist in

translating addresses so that the program appears to be

always operating in the same user region. Such hardware

exists on a SYSTEM/360 Model 67 and certain modela of the

SYSTEM/370 line.

The hardware on the Model 67 additionally provides

the facility of mapping the user program into sections

(called pages) which may occupy non-contiguous core

locations. The programming system maintains a

correspondence table (page tabZe) which is used by the

hardware to determine the physical main storage locations

represented by the virtuaZ addresses generated by the user

program. It is also possible to indicate that certain pages

are not in main storage. References that map to these

entries will cause an interruption. This can be used to

inform the supervisor of the need to obtain the required

page tram an auxiliary storage device such as a disk or

drum. It is also possible to setup a page table which

represents a range of virtual main storage addresses which

18

exceeds the size limitation of the machine's physical main

storage. These teatures allow a time-sharing system to be

designed to run without fixed user regions and to permit the

user program to be of almost unlimited size. The supèrvisor

would attempt to write only the most inactive pages to the

auxiliary storage. Depending on how much real core is

available and the number of jobs running, it may occur that

only a small portion of the job is in real core. If the

program refers to a section of the program which has been

pa~ed-out, the supervisor will delay execution until the

required page is read in.

The current implementation of relocation does not

perIllit the IIO to use the address translation. Instead it

requires that the supervisor provide the real core addresses

when performing the IIO and to ensure that the core pages

invol~ed remain there until the IIO is complete.

The tive techniques discussed above are reviewed in

Table 2.

In summary, a single user region can make no use of

wait time. To utilize this wait time more user regions are

necessary. Thus at the expense of main storage the

unproductive wait

efficient use of

time may be reduced. To make more

main storage, a paging system might be

19

N
o

.~

Table 2 USER REGION MANAGEMENT TECHNIQUES

DESCRIPTION

A 1 Single user
region

B 1 Multiple user
-user region
dependent

C

D

E

Multiple user
region-software
assisted

Multiple user
hardware
assisted

Variable user
region-core on
demand

NOTES

all job requests
use same region

checkpointed job
must return ";0
the same reg ion
it used before

SPECIALt USER SPECIAL MACHIN~
SOFTWARE HARDWARE

no

no

yes

no

no

no

no

no

yes-only
simple relocation

needed

yes-full
relocation
required

EXAMPLES

RAX

TSO
(current
version)tt

CALL/360
APL\360

CP/67
TSS

tThe word "special" here means non .. standard as compared with batch systems

ttIt is rumored that this system is designed for category D or E.

_1

implemented. Unfortunately if such a system is not closely

controlled it could mean that a job which needs a large

amount of core but does little IIO could became a job which

requires the system to do a lot of IIO on its behalf to

bring in pages. This would increase the unproductive wait

time for the system as ,~whole. Thus, this sophisticated

time-sharing technique could turn out to be even less

efficient than a single user region system. Ideally faster

IIO devices would make this technique more attractive. Note,

however, that as the speed of IIO approaches something

infinitely fast, the need for anything but a single user

region approaches zero!

2l

...
!

CHAPTER 5

CHOICE OF A MULTIPLE REGION MANAGEMENT TECHNIQUE FOR RAX

This chapter concerns the problem of choosing the

best multiple user region management technique for a RAX

System. A discussion of the merits of such a change is

found in Chapter 11.

Modifying an existing system places certain

constraints on the "best ll choice to ensure that such a

change does not adversely affect the current users.

Specifically:

a) no user programs should have to be rewritten,

b} no facilities should be removed or curtailed. For

example, the user should not have a smaller amount of

storage in which to run his program,

c} the system should not be made inherently less

reliable,

d} the cost of running a program should not increase

without sorne compensating return justifiable to the user.

Referring to Table 2, we can at once elirninate

choice A as it is the single user region scheme used at

present. Choice C can also be eliminated as it does not

satisfy the above criteri.on a or b.

22

Method B would seem at first to be the easiest

choice. Unfortunately, RAX due to its BPS background,

presents two major obstacles in the implementation of this

scharne. The first being that the BPS Campilers used in RAX

can only run in the first 65,936 (64K) bytes of core. This

would restrict their operation to the first user region.

This restriction could be eliminated by removing the BPS

Compilers and substituting ones which did not have this

restriction. This change would have to be done with great

care in order not to affect the current users.

To further confound the issue, RAX has countless

dependencies on the assumption that the user region always

starts at the same location. The major one is that aIl

phases are in non-relocatable (core~tmage) format.

Method D does not have the restrictions of B since

a relocation scheme could be set up so that aIl the user

regions appear to have the sarne fixed starting address. The

RAX supervisor would then be responsible for determining the

real core address from the virtual one that the job running

in relocation mode would provide. It should be noted that

running in "relocation mode" would slow the execution of

23

instructions by perhaps 10 per centt.

Method E would have approximately the same

relocation degradation of 10 per cent and in addition some

due to paging. Jobs might get faster response in a paging

environment but it must be stressed that the CPU times for

these jobs would never be better than those under methods

A,B or D. The evaluation of this method :ies in the

determination of whether a paging or a swapping scheme would

be the more expedient. The answer is dependent on the

characteristics of the jobs run on such a system. Many

investigations have been made to determine whether paging is

the better scheme18
• In general, the conclusion is that

programs may be written which are much faster in a paging

scheme, but if care is not taken, could be considerably

slower. To make a study of whether the typical RAX program

would be best swapped or paged would require a study of core

utilization during a time~slice. These figures

theoretically could be obtained through trace programs but

to do a thorough study would require tracing through all the

user region requests for an entire day~-an unthinkable task.

Thus, for practical reasons such a study requires the

hardware to determine what section of the user region has

t It could be possible to run one of the regions without

relocation, though this would impact the efforts to achieve

consistency in CPU accounting data.

24

(,
been referenced or modified during a time-slice. This

hardware is presently limited to an IBM SYSTEM/360 Model 67.

Having discussed the various alternatives, a choice

must now be made. In the author's opinion, Method D is

easier to implement than ~1ethod B. It is almost impossible

to replace existing compilers without impacting sorne users,

since each compiler has its own peculiarities and

limitations. Method D puts aIl the changes in the system.

This would appear to make it less likely to adversely affect

the user. Method E is attractive but its effectiveness is

difficult to measure. It also requires a cornpletely new

sCheduling and core management system whereas Method D does

not. Choosing Method D would not preclude the later change

to Method E after hardware measurements have determined its

effect. The reader should note that it is not necessary to

page or swap exclusively and so it might be useful to design

a system which would do either depending on sorne criteria.

Method D has the advantage that it requires only a very

simple relocation scheme such as is available with the

DOS/OS Compatibility Feature. It should be noted that this

feature is not marketed for use in this manner, though it

is sufficient for the requirements of Method D. The next

chapter describes how this feature could be used on RAX.

This feature is available on the IBM SYSTEM/370 Models 135,

145 and 155, allowing an implementation over the wide range

of CPU powers represented by these machines.

25

CHAPTER 6

RELOCATION THROUGH USE OF THE DOS/OS COMPATIBI'LITY FEATURE

This chapter discusses the DOS/OS Campatibility

Feature and how it might be used to achieve a simplified

relocation scheme for RAX.

DESCRIPTION

The DOS/OS Campatibility Feature is a conversion

aid implemented on the IBM SYSTEM/370 to assist current

users of the DOS Operating System to switch to the OS

Operating System. This feature permits an unmodified DOS

System to run under the control of OS. To the OS

supervisor, the DOS system appears to be a problem program.

To the DOS supervisor, it appears that it has the complete

control over the machine. Two basic facilities were

required to achieve this goal. One was that the DOS

supervisor must not be able to control the machine's status

or the IIO devices directly, though it must appear that it

is doing so. In other words, it must not be able to perform

the nprivilegedn instructions directly. Secondly, the main

storage addresses must appear to start from location zero as

far as the DOS supervisor was concerned, but not to be

26

assigned these addresses in reality as it would conflict

with OS's use of them.

The feature was implemented by two additional

instructions for the hardware and a software interface

.~
rout1ne.

In operation, the DOS system is run in a user

region of OS together with the software interface routine.

The EXECUTE LOCAL instruction is provided to enable the DOS

system to run in local e~ecute mode such that aIl privileged

instructions will be intercepted and control given to the

interface program. This routine can then perform the

equivalent functions through the facilities available to the

OS problem programs.

When in local execute mode, the hardware will
t---,

l."

transparently add a constan~ to aIl generated main storage

references. This constant is provided by the interface

routine when it issues the EXECUTE LOCAL instruction. Its

effect will be to map the addresses into the main storage

area set aside in the OS user region to contain the

simulated system's main storage. Thus this facility adds

the capability of "relocating" a blqck-.of main storage.

27

An additional instruction, ADJUST CCW STRING, is

provided to aid in the translation of the channel programs

from the "virtual" addresses developed in local execute mode

to the true addresses required by the channels.

The techniques used in the DOS/OS Campatibility

Feature are not unique to this feature and bear resemblance

to sorne portions of the CP/67 Operating System25
• What is

of interest, is that it is now possible to accomplish sorne

form of relocation without using the IBM Model 67.

The performance degradation using the feature is

due to two distinct causes. One is the extra cycles that

the hardware goes through to add on the relocation constant

when it is in local execute mode. The second is due to the

requirement of trapping the status control and I/Ocontrol

instructions issued by the DOS supervisor and their

simulation through the facilities available to the OS

problem programs. The former may typically cause an overall

10% degradation, while the latter may be expected to degrade

up to 300% depending on the programs rune

28

_.'"
1

RAX USAGE

As discussed in the previous chapter, RAX requires

only the facility to dynamically set up an addressing scheme

such that aIl the user regions appear to start at the same

location. Thus the severe degradati~n that might result

from running the DOS system under the Compatibility Feature

would not he present if it is used merely to provide some

form of relocation for RAX. Furthermore, it is possible to

utilize this feature in a way such that the added system

coding could he easily adapted for use in another relocation

environment. This would ease the conversion should it be

required to support the IBM Model 67 or other similar

machines with relocation.

29

CHAPTER 7

MODIFICATIONS TO SUPPORT MULTIPLE US'ERREGIoONS ON °RAX

The parts of RAX that would require modifications

to support multiple user regions are explored specifically

in this chapter. The presentation here is designed to

indicate the magnitude of the entire task rather th an the

design of each section of the code. The reader is referred

to the Bibliography if he requires material which would be

of assistance in the design of these changes.

a) WaitLoops

If there is only one user region in the system

there can be only one user job running at any time. There

will be tbnes that the job will have to wait for the

completion of its 1/0. It could do this in one of two ways.

It could merely go into an instructi.on loop waiting for the

completion of the event to be posted by the 1/0 scheduler.

Alternately, it could inform the supervisor of the need to

wait until the completion of the event. This latter

technique is the one that is generally used in multiple

region systems. RAX uses the first and simpler method.

This means that RAX does not go into a true wait state

pending the completion of the 1/0. As a result, it is

30

difficult to separate the "wait' time" from the CPU time. It

also makes it impossible for the system to make use of this

time if it had multiple user regions. Thus it is necessary

to change RAX to remove these loops and replace them with

calls to the supervisor., Once this change has been made,

the supervisor can record information on the reason and

length of time for the wait conditions. These figures are

also required for the statistical recorder described later.

Removing these instruction loops requires modifications to

about half of the modules in the system and the additional

supervisor code to handle the wait requests.

b) Accounting Routines

Currently RAX job charges are based on the elapsed

time the job was in the user region. This scheme is

obviously limited to a one user region system. To charge

equitably for jobs in a multiple user region system requires

a more complex scheme.

It is reasonable to require that the redesign of an

accounting system for RAX be done in such a way as to attain

charge consistency. This is an important rule that must be

kept in mind when designing accounting systems. It may be

stated as fOllowsJ assuming that the charge rates remain

31

(

constant-- then if a user runs the same Job twice~ he shouZd

be charged the same for both.

It is very difficult to explain to a user why "the

computer worked faster" for one run than the other. Many

present accounting systems are lacking in this respect,

mainly due to the interference of one job's IIO with

another, which can increase the IIO charge for both.

On mult.iprogrammed systems, job accounting is often

done by dividing the charge into CPU time and IIO time. CPU

time can easily be measured. IIO time can be approximated

by job wait time. The multiple user region system would

attempt to process a second job when one goes into wait

state. This second job may use the sarne devices that the

first job did and thus interfere with its Ilo requests.

Attempts have been made to remedy this problem by separating

IIO charge into seek and data transfer time. The most

significant interference factor is usually disk arm

contention, which causes a multiprogrammed job to spend more

time seeking than would be required if it were running by

itself. The obvious solution here is to charge IIO time as

made up of data transfer time and simulated seek time. The

seek time would be calculated by reference to the time it

would have taken had the disk's access mechanism not been

moved by the other job. The above scheme penalizes the job

32

which does excessive seeking such as the job which copies

from one part of the disk to another part of the same disk.

It also charges the user more if he makes several small

requests for data as opposed to requesting a large block of

data at one time. Accounting systems are usually designed

with this philosophy in mind.

On RAX however, almost aIl the blocking and the

choice of where the data is located is beyond the control of

the user. This relieves the user of the necessity of

becoming familiar with disk packs, seek times and channel

programs. Unfortunately, as a consequence, the accounting

system for RAX should not penalize the job for badly

rnanaging its I/O. Thus an accounting system for RAX can

only charge for CPU time, data transfer time and sorne fixed

charge per IIO request. It would be up to the systems

support staff to ensure that the user data sets are arranged

in an order which minimizes the seek time. With such a

scheme the job charge would be reproducible.

The implementation of this charge scheme requires

that RAX's internaI accounting system be rewritten to

rnaintain separate IIO and CPU charges. As a consequence,

RAX's disk I/O scheduler would have to be modified to be

able to identify the requests from the user regions and to

rnaintain the IIO charges accordingly.

33

-,

(

Changing the charging structure also involves

changing the installation's billing program and informing

the users of the new charge scheme. For some installations

this might be a non-trivial task.

c) Contiguous Core

When hardware relocation is in effect, each user

region can appear identical with respect to addressing. In

fact, it should be impossible for the program to determine

its real location in main storage. This is of course, the

who le significance of using relocation. The user region

must conta in aIl the information that is necessary to the

program running in it. It is therefore required to gather

aIl information specific to a user region in a contiguous

area of core storage.

Parameters such as time and date are currently

maintained by the system outside of the users region and can

be directly addressed from a user program. The users'

programs obtain this information via routines provided to

the user and maintained by the system staff. It should

therefore only require that these be altered to request the

information via sorne other technique, such as a Supervisor

CalI Instruction (SVC).

34

d) Fetch Protect

To ensure that the user does not accidentally or

otherwise refer to locations outside his region, aIl such

core should be fetah ppoteated. This protection is provided

as part of the CPU's hardware and is designed to prohibit

access to any selected areas of main storage (in increments

of 2K).

e) Cor:e 'Iiilnits

At the present time RAX's execution region is about

110K. In the future, it would be advisable to maintain the

actual core size used in case it proves justifiable to have

other user regions of smaller size. AlI unused core should

be fetch protected to prevent the possibility of some errors

only occurring when the job is run in a smaller region.

f} SVC Sav'eAr'eas

The system may put a job into a wait state pending

the completion of the 1/0. Typically this wait is done in an

SVC handler. In order to make use of this wait time another

user region must now be able to be dispatched. However

RAX's SVC handlers are sepially pe-usable, that is, one

usage must be complete before another is allowed to start.

35

('

\

To make use of this wait time it is necessary that these

routines be made re-entr~nt so that another request may be

started before the first is completed. In order to maintain

the required status of the SVC request it is necessary to

have a save area outside the SVC routines, perhaps one

associated with each user region.

g) Enqueue, Dequeue

There will be occasions when the system must ensure

that only one program is using a resource or modifing a disk

record at any given time. Such a condition could oceur when

a program is being added to the save library. This involves

reading a record from disk p updating the record and

rewriting it to disk. Clearly a second program must be

prevented from performing the same operation until the first

is campleted. Currently such a condition cannot occur s~nce

only one save job can be in operation at a time and it

completes the entire save operation before another one can

start. In a multiple user region system we would require an

enqueuing facility to ensure that the system integrity is

preserved.

36

-(

h) Time-Sli·ceS·cheduler

Modifications would have to be made to the current

RAX scheduler in order that it could handle more than one

region. Additional scheduling parameters would have to be

inspected so that the user regions could be used in the

optimum fashion.

i) User Region Dispatcher

This would be a new system routine whose

responsibility would be to ensure that the user region jobs

do not destructively interfere and that the wait times are

effectively used. To simplify its design perhaps the

technique is to run Job B only when Job A goes into wait

state. The identity of Job A and B could be changed

dynamically depending on sorne observed characteristics of

the jobs. Attaching a fixed priority to the jobs could not,

in general, maximize throughput and response to the·user.

j) 1/0 Dispatc·her

This routine would have a similar function to the

user region dispatcher except its responsibility would be to

the 1/0 channels.

37

\.

k) StatisticalRecorder

Counters and timers would have to be added to

measure wait times and keep records of the types and

characteristics of the job requests. Such statistics would

be required to justify a change to the multiple user region

scheme and to determine its effect after implementation. It

would also be indispensable for use in design of the new

schedulers.

1) Data Set Reorganization

Based on the channel utilization statistics,

certain data sets would have to be moved to different disk

modules to reduce the seek time. It would be imperative

that this be done if the charge scheme was chosen as

recommended above, which would have the effect of making

seek time part of system overhead.

38

CHAPTER 8

IMPLEMENTATION SCHEDULE

This chapter discusses the order in which the

modifications outlined in the previous chapter should be

made. Estimates of the amount of time required for these

changes are not given here as they vary somewhat depending

on the installation's experience, manpower, etc. Chapter 11

discusses the time in relation to McGill's installation.

The implementation order should be determined with

several considerations in mind. They are that:

a) the users must not be adversely affected at any

point,

b) it must be possible to use the measured statistics

before and after the change to determine whether, in fact,

the implementation had the desired effect,

c) be able to "undo" the changes if they do not

initially work or if they have sorne unexpected side-effect,

d) do as much as possible with as little equipment

outlay as possible.

A four phase irnplementation schedule is suggested

below.

39

i ,

Phase 1 - Preparation

Replace aIl wait loops in RAX with calls to a wait

routine.

·write programs to retrieve the statistics.produced

by the system and to determine the feasibility of the entire

project.

·Arrange the user region so it occupies contiguous

core locations and fetch protect aIl other core from the

user programs_

-Write and implement a new accounting system based

on CPU charge and a measure of IIO charge. This should be

done in paraI leI with the present accounting system. This

change should be done in conjunction with the changes to the

time-slice scheduler and the implementation of the user

region scheduler.

-Rewrite many, if not aIl, of the SVC routines which

handle the IIO requests to make them re-entrant and put in

enqueues and dequeues where necessary.

Phase 2 - Initial Use of Relocation Hardware

-The system should now use the relocation hardware

with only one user region. Should any problem develop it

should be possible to immediately discontinue this mode_

40

-Ensure that the new accounting system is

functioning smoothly.

Phase 3 - Full Multiple User Region Implementation

-Allow more than one job to run at a time and

closely observe the interference between the user regions.

Phase 4 .. Optimization

-Based on the statistics gathered up to this point,

rearrange the data sets to minimize the seek time and job

interference.

-Perhaps make certain phases resident in the unused

core.

-Deter.mine the best number of user regions and their

optinlum size.

A major portion of Phase 1 . has been completed.

Typical measurements of wait times and other statistics are

discussed in Chapter 10.

41

\.

CHAPTER 9

JUSTIFICATION CRITERIA

In this section an attempt will be made to

establish the criteria required to justify the multiple user

region support to RAX. In effect, we are attempting to

balance the additional cost with an increase in performance.

How much importance is attached to the need for a "balance"

is installation dependent. One installation may feel that

an increased performance is a justifiable cause for an

increase in expense. A commercial time-sharing company, on

the other hand, would be more interested in a "balance" that

would work out to cost them less per unit of chargeable

work. This chapter enumerates the criteria which should be

considered in such an evaluation. The actual weighing of

these factors is left to the installation. Chapter 11,

which analyzes McGill's installation, may be used as a guide

by others in their evaluation.

COST 'CONSIDERATIONS

Equ-iplt!ènt Cost

The equipment cost is composed of the relocation

feature and that of the additional main storage. The extra

42

storage is required to contain the added user regions and

the enlargements of the RAX Supervisor to control them.

Additional main storage is typically available in sections

of no less than 128K. It is imperative to note that the

cost of an additional 128R plus one character is the same as

the cost of 256K.

optimizing the system for the multiple user regions

might additionally precipitate the need for more channels

and/or additional IIO devices.

The above costs are summarized in Appendix A.

Better Use of Equipment

Considerations must be made as to whether the

additional equipment cost might be better used for other

functions.

As an example, the 128R needed for a second user

region could also be used to hold compilers and other system

phases. As described in Chapter 3, these routines are

currently read in fram disk when the y are needed. The

unproductive wait time associated with this operation alone

accounts for about fort y minutes a day at McGill (see

Chapter 10). A substantial saving of ttme could thus be

realized by keeping these routines in main storage at the

expense of the additional cast of the core.

Manpower Cost

An additional cost that must be considered is that

of the manpower to accamplish this change. An installation

might be faced with three alternatives. If the systems

support staff is capable of doing the task, then it must be

considered whether their time might be better spent in

another way. If the system staff is not to make the change

then the cost is that of hiring additional help, recognizing

that a major portion of their efforts would be directed

towards familiarization with RAX rather than with the

problem at hand. If the system changes had already been

made then it might be best to purchase the change rather

than undertake the job of doing it again. This last choice

does not present itself at the present since the changes

have not been made by anyone else.

'PERFORMANCE CONSIDERATIONS

The measurement of performance in a time-sharing

system can be divided into two sections. One is the

utilization of the computer system, the other the response

as seen by the terminal user.

44

....
1

Coropute"r Systems performance

The question that is of interest here is: nCan the

job's unproàuctive wait time, the swapping time and other

overhead be reduced?".

Performance to the User

The user sees the system's efficiency through the

response he gets at the terminal. Therefore, when

implementing systems changes, their effect on ter.minal

operation should be evaluated. Particularly important is

the response time for short requests. Studies have been

made 1 ! that indicate that a user can perceive differences of

a tenth of a second in responses in the order of two

seconds. For thirty second responses, only differences of

several seconds are perceptible.

The response of the terminal itself is also of

importance. Some terminaIs require about one second to

unlock their keyboard. Thus if the system reduces its

response time to something below this, the difference wou Id

be imperceptible to the user.

45

The perfor.mance to a user also includes turnaround

time for jobs that have few or no interactions fram the

terminal. A significant factor is how many minutes of CPU

time is demanded by the user per hour that he is connected

to the computer. Note that this sets an upper limit to the

number ~f terminals that might be supported. Suppose that

the average terminal user requested one minute of CPU time

per hour, then it is clear that only sixt y such users (at

most) could be supported over a period of an hour.

The effect of improving the response time to a

terminal user will tend to keep the user busier and hence

happier. Beyond a certain point however, the increase in

perfor.mance would have little or no effect. At this point

additional users are needed to justify the system. Whether

in fact more users are available is a question that would

have to be answered by each installation.

A study of the effect of response time was made by

Robert Miller, a psychologist, working for IBM. His paper 13

emphasizes that the ideal response time is a function of the

type of activity requested and cannot, as is often

46

-- Î

attempted, be described as a single value of, say, two

seconds.

This study demonstrates the compl ex it y of human

reaction to varying response ttme. His findings show that

there is not a linear decrease in human efficiency with

increasing response times. A ten second response, in

certain cases, was found to be no better than one of one

minute. This was found to be due to a requirement to

respond within four seconds, (two was optimum), in order to

preserve the continuity of the user's thought processes.

Conversely, when typing in inf~r.mation the user is best not

infor.med of an error until at least two seconds has elapsed.

A popular demonstration of the use of time-sharing

is to allow the user to type in his program and have the

computer check each line as entered. The system must be

able to accept lines as fast as the user can type them in

since "obviously" (to the user anyway), the computer is

faster than he i5. This Zine by Zine syntaz aheaker should

take into account the fact that there is a human requirement

for a delay of two seconds if an error is detected. There

is also a need for consistency of response time. This is

the type of dilemma that should be considered when making

system changes. It also illustrates the complexity of

designing systems in which human interaction is such an

integral part.

-,

Robert Miller also suggests that if no response is

expected within several seconds, the system should supply

one. In MCGILL-RAX, for example, a message "*IN PROGRESS"

is issued after a request to run a job. There is no system

requirement to send this message~ it is simply there to give

the user a sense of partial psychological closure. A close

parallel exists when we place a telephone calI. The only

absolute requirement is to be connected to the required

party, though the telephone company decides to artificially

induce the sound of a telephone ringing to satisfy the human

need.

A study 12 has been made to demonstrate that giving

users too good a response may increase their time to solve a

problem. Suggestions have been that responses be slowed

down for certain activities, thus creating a loak-out

effeat. Unfortunately, no universal criteria can be

established for this. Indeed, sorne commercial time-sharing

firms might be quite happy to give the user an excellent

response so that he might use the service inefficiently and

thus increase his computer charges.

In summary, the effect of improving response will

generally allow a user to be more effective. It could allow

him to perform more interactive functions. It might reduce

48

his solution ttme and hence allow him to be more productive.

It could increase his effectiveness by helping him find the

errors through debugging aids. This might also have a

negative effect in that he would rely on the computer to

find his error where a simple glance at his program might

determine the cause.

SYSTEMSRELI'ABILITY 'AND AVAlLABILTTY

A batch system which is down for a period of time,

let us say an hour, may not have any adverse effect on the

usage. The cost of an operator for the additional hour

would be small in proportion to the machine cost.

The effect of a time~sharing system being down for

one hour is entirely different. The users would notice

tmMediately, often before the operating staff does, that the

system is not working. Since time~sharing primariiy exists

to satisfy the user's immediate requests, the revenue lost

by the machine being unavailable is generally irrecoverable.

To ask all the users to remain for one hour to recover the

lost time is unthinkable. To a commercial time-sharing

service this down time may have the siâe effect that users

will go to a campetitor who may be just ano~her phone number

away.

49

--,

To the average user the time waiting for the system

ta come back up is generally ttme lost. The user generally

hopes it will be working in a few minutes and that there it

is not much point working on samething el se in the meanttme.

Thus in evaluating a major system change, it is

necessary to consider whether such a change would make the

system measurably more unreliable. Since the system is not

available until it is campletely started, modifications that

would significantly increase the restarting time would be

undesirable.

ADDITIONAL CAPABILITIES

The change to a multiple user region system permits

additional facilities to be implemented. For example, a

facility could be added to allow a single job to run in two

or more concatenated regions, thus permitting the running of

programs which exceed current RAX size limitations.

50

CHAPTER 10

MEASUREMENT OF MCGILL 'SRAX INSTALLATION

This chapter discusses the measurements made at

McGill University to assess the effect that multiple user

regions might have on the system. Of primary interest was

the usage of the present user region and the amount of wait

time occurring for typical user requests.

In order to measure this time, a substantial

portion of Phase 1 (see Chapter 8) was completed by the

author. Specifically the instruction loops were replaced

with calls to a wait routine. AlI uses of the user region

were recorded in a table in main storage together with

various parameters about the usage. Since this table had a

limitation of one thousand entries, it was necessary to

periodically inspect and summarize the contents of the

table. A facility was added to the system to allow a job to

request its next time-slice after a specified period of

elapsed time.

A program was written to summarize the user request

table and certain other parameters and counters of interest

in lese than one second. The program was activated every

51

ten minutes. This period was chosen so that it would be

short enough to measure the system status on a time basis

and long enough so that it wou Id not impact the system's

performance.

The results of these measurements are summarized in

Appendix B, and described briefly below.

Table 6 and Figure 4 show the proportion of time

the user region spends performing its major functions.

Notice that the user region is active about 430 minutes a
_~r

day. The region is in job wait state for about 52% of this

time while only 27% of this time, or 115 minutes, was

actually used processing instructions.

The next graphs represent a more detailed picture

of the activity in the user region. The length of time of

each request is shown in Figure 5. Notice that most

requests are either for less than 0.2 seconds or go for the

full time-slice of 4.0 seconds.

Table 6 showed that the average job was in wait

state 2/3 of the time. It is of interest to see whether the

amount of I/O wait bears any relation to the length of the

user region request. Figure 6 shows that the requests tend

"0 be slightly less I;O bound as they approach the four

52

second time-slice limite The plot between four and ten

seconds represents the small portion of jobs that are not

time-sliced and which can run until they are finished. Such

requests are generally due to a long BPS compile job.

Figure 5 showed that these requests were few in number.

Table 7 and Figure 7 show the requests for the user

region by the job type. Notice that the utility requests

which make up 23% of the requests, total only 14% of the

time. Notice that a sign-on takes 0.2 seconds to process,

but it may force the system to do an additional two

checkpoints totaling" 0.6 secon~s to rollout the current job

and then restart it afterward.

When adding another user region, it is of interest

to know whether it needs to be as large as the first.

Figure 8 shows the proportion of the requests that could be

run as a function of the user region size. Notice that

about 50% of the requests could run in about 60K or less of

main storage.

Figure 9 is sirnilar to the previous plot though it

shows the proportion of time a given user region size is

needed. Notice that a user region of about 70K could

satisfy the total user requirements 43% of the time.

53

-,

(

Figure 10 shows the systems activity during a

typical day. It is presented here to show that the usage is

dependent on the time of day. It can be seen, for example,

that most users have a coffee break at 10:30 and go for

lunch at 1:00 pm. Batch jobs on MCGILL-RAX can be scheduled

to run by the system only when the user region would

otherwise be idle. Thus if a batch stream is run during the

day, the system utilization would not show such marked time

dependencies.

Figure 11 shows the system usage rate per active

user. It can be seen here that the typical usage rate is

roughly one minute per terminal hour. This limits the

number of similar users that can be supported simultaneously

to about sixty. The CPU rate by itself is about 0.4 minutes

per terminal hour which sets the theoretical maximum of 150

users, assuming other variables are held constant.

54

CHAPTER 11

JUSTIFICATION CRITERIA APPLIED °TO MCGILL'S INSTALLATION

Chapter 9 outlined the criteria that might be used

to justify adding multiple user region support to RAX. This

chapter will discuss the criteria in reference to McGill's

own installation using sorne of the measurements presented in

the last chapter.

COST EVALUATION

EQUIPMENT CO ST

Currently MCGILL-RAX uses almost aIl of 256K of

main storage available. The unused part is earmarked for

future changes other than those required by the multiple

user region concept. Therefore, main storage must be added

for the new regions. The smallest addition available for

our machine is 128K. The author estimates that the

additional code, pointers and buffers required to support

the multiple user regions would take about 20K. An

additional 10K should be left available to provide a margin

of safety. Thus a 128K addition to our machine would not be

large enough to hold an additional user region of 110K plus

the added system code of 20K (minimum) to support the

change. An addition of 256K to the current system would be

55

\

just large enough to support two additional 110K regions.

Notice that from this investigation that roughly

one-half our jobs could be run in a 70K region. If this was

the size chosen then we would be left with 28K spare. This

space could be used to hold the most frequently used phases

that would, otherwise have to be read in frorn diskt. This

latter configuration would appear to be the best initial

choice since it involves the least amount of additional

equipment.

It would cost about $1,800 per month to add 128k of

main storage to our Model 155. The DOSIOS Compatibility

Feature which rents for roughly $300 per month would also be

needed--for a total of $2,100 per month. This would mean

that we wou Id have to be able to justify an additional

charge of $100 per working day. At typical commercial

charge rates of $10 per elasped minute, it would require an

additional chargeable time of 10 minutes per day.

tIt is estirnated that about one half of the 40 minutes a

~ay that is spent loading phases can be saved by taking

advantage of this space.

56

r
l

It is interesting to compare this price with that

of a similar change on the SYSTEM/360 line. It would be

necessary to get a Model 67 which is roughly the same

internaI speed as the Model 65 and the SYSTEM/370 Model 155.

The required change would cost about $14,710, or in other

words, require an additional 74 minutes of chargeable time a

day (though additional relocation features are available

with this hardware).

Manpower Cost

The author estima tes about two man-months to

complete Phase 1 of the implementation schedule. This

estimate assumes the full-time dedication of a systems

programmer experienced in making modifications to MCGILL-

RAX.

After the completion of Phase 1, the installation

could start to benefit from the modifications. The work

involved in Phases 2 through 4 could be handled as part of

the installation support effort g

The manpower cost of doing the change at McGi11

would be minimal since the present system staff is capable

of doing the job. Considerations must be given as to

whether their time might be better spent on another project.

57

-,

We must also consider the urg~ncy of making these changes.

Figure 11 showed that if the usage rate continues at its

.. present level, then, about sixt Y terminaIs can be supported

in the' present c·onfiguration. If roughly half of the

unproductive wait time could be 'utilized then over one

hundred terminaIs could be supported. Notice that if a

faster CPU were used then not much more throughput could be

realized than with our present configuration.

It is also a consideration whether the facilities

offered by MCGILL-RAX would satisfy the requirements of the

~ediate future or whether we must scrap the system and use

another one entirely. This latter choice would make the

entire change to a multiple user region system a venture of

limited value. At the present time we can see no other

time-sharing system working on an IBU computer that can

satisfy our present time~sharing requirements without

substantial increase in cost. Functions not currently

supported by MCGILL-RAX could be added with less work than

that in irnplementing and supporting a new system. This can

he partially attributed to the fact that supporting another

system would inevitably require changes to the supervisor

and terminal handlers to satisfy a cammunity with previous

time-sharing experience. This is due to the fact that time­

sha·ring users become "attached" to the convenience features

of a system. A switch of systems is not sufficient

justification to the user of why the computer, for example,

is now incapable of printing his output with tabs or

allowing him to skip several lines of output by hitting the

attention key.

EFFECTS ON 'SYSTEMS PERFORMANCE

As mentioned above, it would require an additional

10 minutes of chargeable time to justify the cost of the

additional equipment. This time would come out of the 300

minutes of wait timet. It would seem unlikely that the

addition of multiple regions could not achieve this meager

increase.

It is a momentous task to calculate accurately the

amount of wait time that could be utilized by a second

region. It would require a detailed simulation study based

on the characteristics of the jobs' I/O requests, such as

the locations of the data on disk, which disk it used, the

amount of data transferred, the time of the I/O requests,

etc. Unfortunately the types of jobs the user submits and

the rates at which he submits' them are dependent on the

response he gets and the time of day. Therefore the results

tAlternately a batch load could be run to use the 14 hours

a day of idle time.

59

of this study would only be of significant value if the net

result of the change is transparent to the user. If this

were so, then probably the change could not be justified.

Thus the element of dealing with human reactions makes the

task almost impossible. Furthermore, the constant series of

changes being made to MCGILL-RAX me ans that the

characteristics of the system could likely change in such a

way as to make the simulation results of dubious value. It

is the feeling of the author that the time involved,

possibly several man-months, cou Id be better used in

implementing the features rather than simulating their

effect. The following case dernonstrates the effect users

can have on a time-sharing system.

One MCGILL-RAX installation, who was running on a

SYSTEM/360 Model 40, planned to run on a Model 67 using a

system called CP!67 and hoped for a performance similar to a

Model 50. Due to a delay in the generation of their CP/67

System, it was decided to run the machine in Model 65 mode

for a few weeks in the interim. During those few weeks the

characteristics of the users' jobs changed so drastically as

their ùsage expanded to use the faster system. When the

switch was finally made to run RAX under CP/67, their users

were not satisfied with the response as it was slower than

what they had been getting with the machine in "65 mode".

The decision was then made to run permanently without CP/67.

60

/

i

Several months later they had to get an additional Model 65

to handle the ever increasing load. From this experience it

would appear that time-sharing users should never be given a

facility that will have to be withdrawn or decreased later

as they tend to fully utilize additional resources as they

are added rather than grow into them at a linear pace.

For the above reasons no attempt should be made to

attain full utilization of our system overnight. It is

desirable however, to ensure that there is sufficient

capacity for the near future to allow for the continued

growth so that more users may he supported while maintaining

suitable response time for aIl.

There are, of course, further enhancements which

would enable the multiple user region to function better.

For example, one could checkpoint the regions on a channel

which is not used by the user regions in their I/O. Such a

change might require additional IIO and control units.

PERFORMANCE TOTHE USER

The implementation of multiple user regions might

slow down the execution of a job by sorne 10%. However, due

to the fact that the user requests are usually at least 50%

IIO bound and that there is now a good chance that the

61

(

request will be started sooner, the net result should be an

improved response.

SYSTEMS RELIABILITY AND AVAILABILITY

The multiple user region support would not increase

the time to start or restart the system. It would not be

inherently less reliable. Systems that use a paging scheme

generalLy have a built-in reliability problem--that the

system is programmed to abort when there is no more space in

main storage to hold a critical page.

ADDITIONAL CAPABILITIES

The discussion so far has been concerned with the

addition of another user region. However, with only a

slight additional modification, a scheme could be

implemented to dynamically allow the available user region

of about 180K to be divided on a demand basis into several

small regions or perhaps one large one. This availability

would allow larger programs to run than are now possible and

also permit smaller programs to get better service. The

core fragmentation problem usually associated with this

scheme would not he experienced due to the use of the

relocation feature.

62

Additionally we could have subsystems which do not

require disk IIO to the same extent that the usual RAX job

does. These systems could communicate directly with the

terminal, thus not using the disk as an intermediate device.

These tasks would be capable o~ running while the disk

channels were being fully utilized by the other regions or

by the system for checkpointing. Candidates for this type

of operation are "desk calculator" programs, or even a

complete APL System.

In summary, the additional cost of adding multiple

user regions to MCGILL~RAX at McGi11 is of minor

consequence. The major consideration is whether the time

spent making these modifications can be justified. The

author thinks 50.

63

CHAPTER 12

CONCLUSIONS

The SYSTEM/360 Model 67 was heralded as IBM's

"time-sharing computer" 7
• The high cost of its additional

main storage and channels together with the price of the

relocation feature resulted in a number of time-sharing

systems being designed to run without the use of relocation.

The SYSTEM/370 line of computers now provides some form of

relocation over a wide range of computing power. This

availability, reinforced by its now nominal cost, makes the

support of relocation of interest to a wide range of

programming systems. Though the imminent announcement of·

the availability of full relocation on these machines has

not been made at this time, this paper suggests that the

relocation available through the use of the DOS/OS

Compatibility Feature is sufficient for sorne purposes.

MCGILL~RAX is an ideal system to support these new

features since it already has the capability of running on a

range of computer models and it has been shown that it can

be run relatively econamically on these machines.

If the multiple user region support were not added

to our system, we would not be able to continue to provide

64

i·

1
i

sufficient service to our users. A faster machine could not

be justified due to the relatively low CPU utilization at

present. Having two identical systems would be most

inconvenient to the systems and operations support staff.

It must therefore be concluded that the addition of

multiple user regions to MCGILL-RAX is justified and that

this modification should be made in the immediate future.

65

APPENDIX A

IBM EQUIPMENT RENTAL CHARGES

The rentaIs given in this section are based on IBM

Canada's "Monthy Availability Charge" which includes

maintenance.

AlI charges are camputed without certain discounts

which do not apply to aIl installations. Such discounts are

for long ter.m rentaIs of certain IIO units, educational

allowance and dut Y and Federal Sales Tax exemptions.

CPU'SPRICED

System/360 Model 50

65

67

System/370 Model 145

155

(Simplex)

(without IFA)

66

-)

Costs calculated based on the following IIO configuration

which is typical for a large MCGILL-RAX installation.

2 Selector channels (or Equivalent)

1 Multiplexor channel

1 2703 Transmission Control Unit with 60 lines

(30 2741 break, 30 TTY lines)

6 2319 Direct Access Storage Facilities

(configured into two 9 drive (8 usable) units on

separate channels)

2 2314 Control Units for the above

1 2540 Card Reader and Punch

1 1403 Printer

1 2821 Control Unit for the 2540 and 1403 devices

The rentaIs are summarized in the following graph and

tables.

67

l

70

60

Ul
H 50
n1
r-I
r-I
o ru

4-l
o
Ul 40 ru
s::
n1
Ul
::s
.8
+J

30

10

Model 67

N.odel 65

Model 15 5

Model 50

Model 145

r-

I 1 1 1 1 1
128K 256K 384K 512K 768K 1024K

MAIN STORAGE SIZE (bytes)

Figure 3 CONFIGURATION COSTS

68

{

ADDITIONAL COSTOF RELOCATION FEATU~~

Bloekt

Reloeation

Page

Reloeation

System/360 Madel 50

65

67

System/370 Model 145

155

$0

$295

$3,495 to

$4,130 tt

t Sueh as with the DOS/OS COMPATIBILITY FEATURE

ttCaleulated from differenee in priee of Models 65 and 67

and depends slightly on the amount of main storage.

Table 3

69

-)

COST OF ADDITIONAL SELECTOR CHANNELS

COST OF 3rd and 4th Selector Channelt

System/360 Model 50

65

67

System/370 Model 145

155

3rd

$ 810

$1,040

$1,040

$ 265

$ 443

tassuming that channels 1 and 2 are installed.

Table 4

4th

$2,430

$2,430

$ 265

$ 413

-î

70

(

COST OP ADDITIONAL MAIN STORAGE

Systemj360 Model 50

65

67

Systemj370 Model 145

155

256K to

384K

$ 3,950

$10,630t

$10,630t

$ 3,424

$ 1,800

iSince 128K increments are not available, this

reflects a 256k increase.

Table 5

384K to

512K

$ 3,220

$ 0

$ 0

$ 2,805

$ 1,800

71

APPENDIX B

Detailed measurements of the MCGILL-RAX System

operating at McGi11 University were made during the week of

July 5, 1971 (Monday through Friday). Specifie emphasis was

placed on recording the activity in the user region. Each

request for the region was broken down into its CPU time,

core requirements and its function. Supplemental

measurements were made such as the number of active

terminaIs and checkpoints. The results of these

measurements are summarized in the fOllowing pages. Chapter

10 presents a description of the relevance of these graphs

and tables.

72

'-J
W

Table _ 6 SYSTEM USAGE t

number number
of of

check- region
points requests

Monday 17,024 16,437

Tuesday 15,885 16,136

Wednesday 15,964 16,349

Thursday 18,639 18,087

Friday 20,486 17,193

Totals 87,998 84,202

Average 17,600 16,840

texcluding Idle time

user region usaqe Croins)
cneck- charqeable iob t~e
pointing wait cpu

89 234 124

84 199 101

82 244 120

97 242 128

107 211 101

459 1130 574

92 226 115

(

USER REGION USAGE

JOB

CPU

CHECK­

POINTING

OTHER JOB WAIT

Figure 4

74

a
a .
a
UJ
ru

a
a

o
o

eno
t-UJ
en
w
::J
Go
W O
0:0

o
u..
E)

o
o

DISTRIBUTION OF REQUESTS BY TIME

...

.+-----~~~===4~----~------~----~
0 0 . 00 2.00 4.00 6.00 8.00 10.00

REQUEST LENGT:1 (SECS)

Figure 5

75

-)

{

o
<:) .
o
o

o
o .
o
(XI

t­
~o

CC~
~o

W
l:)

CD

CC
t- 0

z~
Wo
U;j'
cr:
W
a....

o
o .
o
ru

o
o

PERCENTAGE WAIT OF REQUESTS
as a function of

LENGTH OF REQUESTS IN REGION

.~--------r--------~j---------'j --------Tj--------,.
9b.00 2.00 4.00 6.00 8.00 10.00

REQUEST LENGTH (SECS)

Figure 6

76

~
~

--,

SUMMARY BY JOB TYPE

t ~ll programs written by users start here and may go to 1st time
slice after BPS Compiler has scanned the job, or when FORTRAN G
Compiler takes control. Subsequent time-slices are for those
jobs that require more than one time-slice to complete.

-.J

USER REGION USAGE BY JOB TYPE

PROPORTION B1 NUMBER .r.--------------SIGN-ON

/
--~- DISPLAY

SUBSE •
TlME­
SLICES

PROPORTION B1 TIME

SUBSE •
TIME­
SLICES

."._---INSERT
___ -SAVE

PURGE

UPDATE

JOB START

1st TIME­
SLICE

SIGN-ON
~~====~_---DISPLAY

__ ~~ ,r.------------INSERT
/~ SAVE

/' PURGE

;Figure 7

UPDATE

\?--JOB START

---1 st TIME­
SLICE

78

o
o .
o
o -
o
o .
o
CX)

W
.-J
a....
LO
cro
Cf) •

o
(D

lJ...
o

W o
C)o
cr· .-0
Z::l"
W
U
a::: 0
Wo
a.... •

o
ru

o
o

PROPORTION OF SAMPLE THAT CAN
RUN IN A GlVEN USER REGION SIZE

.~--------r-------~--------~--------r--------'--------
0 0 • 00 20.001' 40.00K. 60. 00K. 80. OOK.. lOO.OOK

REGIeJN SIlE

Figure 8

79

W
L

o
o .
o
o

o
o .
o
co

....... 0
t-o

lL...~
o

.
o
ru

o
o

PROPORTION OF TlME THAT JOBS
CAN RUN IN A GIVEN USER REGION SIZE

20.00 k 40.00K 50.00K aO.OOK
REGlôN SIZE

Figure 9

lOO.OO\'.

80

o
o

I--g
Z •
W O
L)~

cr:
W
(L

o
o

Figure 10 SYSTEMS ACTIVITY

chargeable time

.~~----~~------~--------~------~--------~------~
0 8 . 00

o
o

o
o

10.00 12.00 1Y.OO 16.00 18.00 20
TIME ~F DAY

CHECKPOINT TIME

.~~----~--------~--------r--------r------~~~-----.
~.OO o .
o
<D

o
(1)0

L·
cr:~
W
1-

o
o

10.00 12.00 1Y.00 16.00 18.00 20
TIME ~F DAY

NUMBER OF ACTIVE TERMINALS

.~------~---------- ·------,i--------Ti--------~i------~i
~.OO 10.00 12.00 1Y.00 16.00 18.00 20

TI ME eJF DR'(
81

-j

o
li') .
ru

o
o .
ru

w
ro
CC o
0:. -

.
o

o
o

USAGE RATE

hargeable time

.~--------T---------r-------~--------~--------~--------.
0 8 . 00 10.00 12.00 1ij.00 16.00 18.00 20

TIME eJF DRY

Figure 11 82

BIBLIOGRAPHY

The scope of this paper does not permit an in-depth

presentation of certain aspects of the subject matter. The

following selected bibliography includes material of use by

those who wish to investigate these subjects in greater

detail. To facilitate its use in this manner, the works are

grouped under major topic headings.

83

ACCOUNTING SYSTEM DESIGN

l)Hootman, Joseph T.
The ppicing Dilemma
Datamation
August 1969, pp. 61-66

2) Selwyn, Lee L.
Computep Resoupce Accounting
in a Time Sharing Enviponment
AFIPS Conference Proceedings
1970 SJCC, Volume 36, pp. 119-130

3)Yourdon, Edward
CalZ/360 Costs
Datamation
November 1 1970, pp. 22-28

DOS/OS COMPATIBILITY FEATURE

q)Allred, Gary R.

5)IBM

PAGING HARDWARE

System/370 Integrated EmuZation
undep OS and DOS
AFIPS Conference Proceedings
1971 SJCC, Volume 38, pp. 163-168

DOS Emulatop Logic
(on IBM System/370 undep OS)
IBM Systems Reference Library
For.m Number GY26-3741

6) Gibson, Charles T.

7)IBM

Time-Shaping in the
System/360 ModeZ 67
AFIPS Conference Proceedings
1966 SJCC, Volume 28, pp. 61-78

ModeZ 67 FunctionaZ Charactepistics
IBM Systems Reference Library
Form Number GA27-2719

84

PERFORMANCE EVALUATION

8) Drummond, M.E. Jr.
A Perspective on System
Performance Evaluation
IBM Systems Journal
Volume 8, Number 4 (1969) pp.252-263

9)Yourdon, Edward
An Approach to Measuring a
Time-Sharing System
DatàÎnation
April 1969, pp. 124-126

PERFORMANCE EVALUATION USING HARDWARE MONITORS

10)Bonner, A.J.
Using System Monitor Output to
Improve Performance
IBM Systems Journal
Volume 8, Number 4 (1969), pp. 290-298

11)Cockrum,J.S. and Crockett, E.D.
Interpreting the Results of a
Hardware Systems Monitor
AFIPS Conference Proceedings
1971 SJCC, Volume 38, pp. 23-38

PSYCHOLOGICAL REACTIONS OF TIME-SHARING USERS

12)Boehm, B.W., Seven, M.J. and Watson, R.A.
Interactive Problem-SoZving--
An Ezperimental Study of "Loakout Effects"
AFIPS Conference Proceedings
1971 SJCC, Volume 38, pp. 205-210

13)Miller, Robert B.

MX HISTORY

14}IBM

Response Time in Man-Computer
Conversational Transactions
IBM Systems Development Division
Poughkeepsie, New York
Paper Number TR 00.1660-1

Lockheed Pioneer8 Remote Computing
IBM Camputing Report
April 1966, Volume 1, Number 2, pp. 16-18

85

RAX INTERNAL ORGANIZATION

15) IBM
Remote Aaaess Computing System (RAX)
System ManuaZ,
IBM Systems Reference Library
Form Number GY20-0101

RAX OVERALL DESCRIPTION

16)IBM
RAX ppogram Desaription ManuaZ,
IBM Systems Reference Library
Form Number GH20-0354

SCHEDULERS, DESIGN OF TIME-SHARING

17)Doherty, Walter J.
8aheduling T8S/560 for Responsiveness
AFIPS Conference Proceedings
1970 FJCC, Volume 37, pp. 97-111

18)Hellerman, H.
Some Prinaiples of Time-Sharing
Saheduler Strategies
IBM Systems Journal
Volume 8, Number 2 (1969), pp. 94-117

19)Wilkes, l-iaurice V.
A Mode~ for Core Spaae Alloaation in a
Time-Sharing System
AFIPS Conference Proceedings
1969 SJCC Volume 34, pp. 265-271

SIMULATION OF OPERATING SYSTEMS

20)Chang, W.
A Queuing ModeZ, for a SimpZ,e Case
of Time Sharing
IBM Systems Journal
Volume 5, Number 2 (1969), pp. 115-125

21}Kleinrock, Leonard
A Continuum of Time-Sharing Saheduling
Algorithms
AFIPS Conference proceedings
1970 S3CC, Volume 36, pp. 453-458

86

~.

i
, , .

22)Seaman, P.H.
The RoLe of DigitaL simuLation
IBM Systems Journal
Volume 5, Number 3 (1966), pp. 175-189

23)Seaman, P.H. and Soucy, R.C.
SimuLating Operating Systems
IBM Systems Journal
Volume 8, Number 4 (1969), pp. 264-279

TlME-SHARING TECHNIQUES

24)Cluff, Milton H. and Thompson, David
Prinaiples of Time-Sharing-­
Class NCltes

Virtual Machines

IBM World Trade Systems Centre
Bulletin Number 39
February 1969

25)Meyer, R.A. and Seawright, L.H.
A Virtual Machine Time-Sharing System
IBM Systems Journal
Volume 9, Number 3 (1970), pp. 199-218

87

~- .
l'

"

