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Abstract

We apply the lower bound method of reduced density matrix theory in one dimen-
sional rings, using a restricted class of hamiltonians. We implement the calculation

in MATLAB using routines for solving positive semi-definite programming problems.

“The class of model specific hamiltonians is defined and shown to have a set of good
quantum numbers. These determine invariant subspaces which we present as the defi-
nition of phase. The phase structure of these hamiltonians is investigated theoretically
and we pfesent a theorem on the dimensions of the phases and phase boundaries. Fi-
nally, the three body density matrix is parameterized and we obtain by calculation

the relative sizes of the different phases.
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Chapter 1

Introduction

In this chapter we introduce superconductivity and the quantum phases. We also
review the lower bound method of reduced density matrix theory. Finally, SeDuMi, a

MatLab program used for solving semi-definite programming problems is introduced.



1.1 Superconductivity

Thére are two fields of research into superconductivity which are differentiated by the
critical temperature at which the materials become superconductors, 7.. The first
involves the study of superconducting metals or alloys with low critical temperatures,
such as mercury (the first superconductor to be discovered in 1911, T, = 4.19K [1]).
The second field is high-T, superconductivity and involves the study of materials
with much higher T,’s. The most widely studied high-T, superconductors are a class
of cuprates which have Cu-O planes in parallel. An example is optimally doped
HgBa;CayCu3Os.y which has T, = 164K [2]. Since the interaction between adjacent
planes is very weak, the material properties, including the phase structure, are due
to interactions within a plane. It is this two-dimensional square lattice which is of
interest, but this thesis examines a one-dimensional square lattice. As they become
available, results from one, two and three dimensional calculations will be compared
to show a dimension effect: that the superconducting phase is most stable in a two-

dimensional system.

A material acts as a superconductor when it is in a superconducting phase; there are
other possible phases for square lattices, such as the ferromagnetic phase where all
electrons have their spins aligned. The most studied model for interactions on square

lattices is the Hubbard model [3]. The corresponding hamiltonian is:
HHub =1 Z(a,}‘ai+1 + aI_Hai -+ b;".bi-f-l + bi+1bi) + U Z a;ra,-b;‘bi, (11)

where a;,b; are annihilation operators for spin-up and spin-down electrons on site
i respectively. The first term of the Hubbard hamiltonian is known as the hopping

term and describes the movement of one electron between two nearest neighbour sites
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while the second corresponds to the Coulomb repulsion between two electrons on a

single site (when U > 0).

1.2 Two-body Hamiltonians

The most important terms of the hamiltonians for atomic, molecular and solid systems
are sums of interactions between at most two identical particles. These are one and
two-body interactions. For example, the attractive potential of atomic nuclei is a
one-body operator and the Coulomb repulsion of two electrons interacting is a two-
body term. The physical properties of a systefn can be obtained from the expectation

values of one-body and two-body operators alone.

In atomic systems, shell structure is the result of the Pauli Principle interacting with
one-body operators. Introducing the two-body and higher order terms perturbs the
solution, but does not completely destroy the shell structure. In solid systems, the

Pauli Principle interacts with the two-body terms to give phase structure.

Chapter 2 will show that two-body hamiltonians separate the Hilbert space into
invariant subspaces and hence define a set of good quantum numbers. Including
one-body terms in the hamiltonian combines many of these subspaces. Chapter 3
presents a definition of phase in terms of these subspaces. In order to study the
phase structure directly, the one-body terms are removed and the effect of two-body

hamiltonians alone are considered in this thesis.

The first term of the Hubbard hamiltonian is a one-body operator while the second
term is two-body. Therefore the Hubbard model is not considered in this thesis.

However, a dimension effect is known in the band limit of the Hubbard hamiltonian,



that is when U = 0 [5]. In this case the Hubbard hamiltonian is a pure one-body

hamiltonian and ‘does not include the interaction between electrons on the same site.

1.3 The Density Operator

The lower bound method of reduced density matrix theory is an alternative to us-
ing wave-functions to perform quantum mechanical calculations. Multielectron wave

functions; (1,2, ..., N), are anti-symmetric with respect to exchange of electrons.
V(1 ky oy by oy N) = =9(1, .00, o Ry oy N). , (1.2)

Since physically interesting operators are one-body or two-body operators, most of
the information in v is redundant. An alternative to the wave function is the von
Neumann- density operator, p. For an ensemble of k pure states v1,s, .1, the

density operator is given by

k k
p= Z Cipi = Z i) (il (1.3)

. =1 =1
where Zle c¢? = 1. The expectation value of any Hermitian operator ¢ on a state 1

can bé computed using p; = |¢1)(¢1], since
(g,p1) = Tr(qul) = Tr(glYr) (¥1]) = (Pnlglypr)- (1.4)

If the equivalence between (g, p) and (¥|q|¥) is not apparent, consider the analog of
this in the finite basis R? where |1) corresponds to a column vector [a1, ap]” and the

operatdr g is a 2 X 2 symmetric matrix with entries g;;.

g1 Q12 a
(¢,p) = Tr(¢'p)=Tr [a1, as)
d12  q22 as



2
qi1 12 a;  Gi0p
= Tr

qi2 422 a102 Qg

= 102 + 2q12010 + G203,

q11 Gi2 ay
= [ay, a9

12 g22 Qs
= (Plgly)
= (9)-

Thus, the expectation value of any operator ¢ can be calculated using the density

operator.

A density operator is a positive semi-definite Hermitian operator with unit trace.
Determining the von Neumann deﬁsity is just as difficult as calculating the wave
function for that system. An approximate von Neumann density can be defined by
relaxing the condition that it be positive semi-definite. A k-density is an Hermitian
operator with unit trace which is positive semi-definite for all operators with degree

less than or equal to £ in the annihilation and creation operators.

Definition 1.3.1 An Hermitian operator p is a k-density if:

1. {p,q'q) > 0 for all operators q with deg(q) < k.

2. Tr(p) =1

The k-density contains all the necessary information to evaluate the expectation value

of all j-body operators where j < k.



1.3.1 Matrix Representations

Let Q% = {q1,...,¢s}, s < o0, be a basis for the linear space of operators ¢ with

deg(q) < k.

Definition 1.3.2 Relative to the basis QF, the k-matriz corresponding to the k-

density p is the matriz P with entries
pi; = (alg;,p). (1.5)

The k-matrix contains all of the information of the k-density, since any k-body oper-

ator z can be expanded in terms of the basis QF:
T = sz‘qu%- (1.6)
)

The matrix representation of z is X = [z;;]. Then the expectation value of z is given

by Tr(PX):
8 s
Tr(PX) = Y Pyzy= > (p,alg;)zs, (1.7)
i,j=1 i,j=1
= (p, Y 2d/q) = (p, ). (1.8)
i,j=1

Chapter 4 will construct the basis @3 to be used in the calculation and determine the

entries of P.
Many matrix entries are zero by the commutation relations, and there are many linear
relationships between the non-zero matrix entries, since many products qlT g; are equal.
For example,

(a109)t (brbe) = albiabby = —(a1b})f (bra)). (1.9)
The zeros and linear relationships define the shape of the density matrix, and are

necessary conditions for a matrix to be a k-matrix.
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1.3.2 n-Representability and the Lower Bound Method

The k-density is positive semi-definite for all operators of degree no greater than k,
this is called k-positivity. Not all s X s positive semi-definite, Hermitian matrices
correspond to a positive semi-definite p via (1.5). Those P with at least one repre-

sentation p are called k-body reduced density matrices, or n-representable [6].

Searching for solutions by requiring that a positive semi-definite matrix P be n-
representable is not feasible, since necessary and sufficient n-representability condi-
tions cannot be imposed directly. Instead, an approximatation to the actual reduced

density matrix is found using the lower bound method.

Approximate reduced density matrices are found by solving the following program-

ming problem:

min E(p) = Tr[HP], P € Py, -.(1.10)

where H is the matrix representation of the hamiltonian h, P is the k-body density
matrix and Py is the convex set of all positive semi-definite matrices which satisfy the
normalization condition (1,P) = 1 and the linear relationships between the matrix
entries. These are necessary but not sufficient conditions for a density matrix to be
n-representable. Since the variation takes place over a space which contains matrices
which are not precisely n-representable, the energy found by this method is less than

or equal to the actual ground state energy.

The solutions converge very rapidly with k&, the order of positivity. Calculations at
the k& = 2 level are very accurate in atomic and molecular systems [7], [8], [9], but
incomplete for the solid system examined here [4]. Calculations at the k = 3 level

give solutions which are accurate to three figures [4]. Computations at the k = 4



level may be accurate to seven figures or more, and may also allow the calculation of

excited state energies through the dispersion relation [10], [11].

1.4 SeDuMi

The lower bound method is dependent on restricting the density matrix to be positive
semi-definite. There were neither algorithms for solving semi-definite programming
problems nor powerful computers when the lower bound method was first developed,
therefore only the simplest systems could be examined using the lower bound method.
There is now software (SéDuMi [12], SDPT3 [13]) which enforces the semi-definite
condition directly. All of these programs exploit the block structure of the matrix
to speed up the calculation where possible; organizing the basis so that the density

matrix is a block matrix reduces the time required to complete the calculation.

The matrices used in this calculation have a very specialized structure, and these
generic programs do not exploit this. Recent results by Mazziotti [9] suggest that
routines written specifically for these particular lower bound calculations can decrease

the time required for these calculations by a factor of 10 or more.



Chapter 2

Two-Body Hamiltonians

We define a linear space of model two-body hamiltonians for a one-dimensional square
lattice and construct a basis for this space of operators. We show that certain sub-
spaces are left invariant by all model hamiltonians and that these can be described

by a set of good quantum numbers.



2.1 The Model

The reduced density matrix for the ground state of a system where electrons move
on a one-dimensional lattice with periodic boundary conditions will be determined.
In one dimension, the infinite lattice is modelled by a finite set of equi-spaced points
on a ring, called A. |A|, the number of sites on the ring, is even. Let the ring sites be
indexed by the integers mod |A| such that adjacent sites are labelled by consecutive

numbers.

The Pauli Principle requires that each site on the lattice be occupied by no electrons,
one spin-up electron, one spin-down electron or doubly occupied, with both a spin-up
“and a spin-down electron. Sites occupied by exactly one electron, either spin-up or
spin-down, are called valence sites, those which are unoccupied or doubly occupied

are ionic.!

Since each lattice site can be occupied in one of four ways, there are 47l distinct

configurations for the lattice. A particular configuration can be denoted by

I T‘L) T, wa Jfa"'>7 (21)

where, starting on the left, 1] denotes double occupancy for the first lattice site, 1
'denotes a spin-up electron on the next lattice site, § indicates that the third lattice
site is unoccupied, | denotes a spin-down electron on the following lattice site and so

on.

Each such configuration corresponds to a basis element of the Hilbert space in the

1This terminology is chosen since, in the high-T, superconductors, each lattice site corresponds
to a valence d orbital of a copper atom. The net charge is zero when the orbital is occupied by one
electron but non-zero otherwise.

10



following way:
where a; and b; are the annihilators and o} and b} are the creators of a spin-up

(a;) or spin-down (b;) electron at site <. The vacuum state |0) has configuration

10,0,---,0) >.

2.2 Two-Body Hamiltonians
All operators can also be written as polynomials in a;, aI, b;, sz, i=1,..., Al

Definition 2.2.1 An operator q is a k-body operator if and only if it satisfies the

following two conditions:

1. ¢ can be represented as a polynomial of degree 2k in ai,al,bi, bI, i=1,..., Al

2. q 1is orthogonal to all operators ¢' that can be represented as polynomials of

degree less than 2k.

Thus a two-body operator is degree four in the annihilators and creators and orthog-
onal (with respect to the trace scalar product, (¢,p) = Tr(q'p)), to all operators
of lesser degree. The identity, 1, is the only non-trivial zero-body operator. If g
is a k-body operator, then every polynomial representation of ¢ has degree at least
2k. No operator has a unique polynomial representation because of the commutation
relations

ala; + aia;r =1= b;rbi + bibi. (2.3)

i
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An arbitrary two-body hamiltonian measures the interaction of electrons on four sites
or fewer. Including only nearest neighbour interactions restricts the model to short
range forces. Under nearest neighbour interactions, the hamiltonian operators are
restricted to at most two adjacent sites. In this case, an arbitrary hamiltonian h can

be written as
Al

h=> hi, (2.4)

i=1
where h; ;1 is the interaction between sites ¢ and ¢ + 1. Translation invariance is
also imposed on the hamiltonian: (h; ;+1,p) = (h; j+1,p). Thus there is a one-to-one
correspondence between the total hamiltonian h and the bond hamiltonian hi,, the

interaction between sites 1 and 2.

Definition 2.2.1 ignores the lattice structure that underlies the model. A definition
for two-body interactions specific to the square lattice can be given in terms of the
symmetries of the hamiltonians. Let H be the linear subspace of model hamiltonians
on the square lattice. Then h € H if the bond hamiltonian his is degree four in

annihilation and creation operators and has the following five symmetries:

S1. Self-Adjoint: Al, = hy,.
- S2. Ring Symmetric: hyz = hyy.

53, Spin Particle Preserving: the interaction preserves the number of spin-up and

spin-down electrons separately.

S4. Spin-up, spin-down symmetric: the hamiltonian is invariant with respect to

exchange of spin-up and spin-down electrons.

12



S5. Particle-Hole Invariant: the hamiltonian is invariant under the exchange of

creators and annihilators for electrons of the same spin.

S1-S5 determine a subspace of operators Hy, which immediately generates H. The
purpose of the present chapter is to find a basis for Hy,, and hence H, and show
that there is a set of good quantum numbers which determine subspaces which are

invariant under these hamiltonians.

Interpretation of the Hamiltonian Symmetries

Spin particle preserving hamiltonians are such that the number of spin-up and spin-
down electrons are preserved independently. Thus S3 means that hjs is a polynomial

in the following degree zero and degree two operators, called the basic operators:

{la €ary €azy €bys Ebas aJ{a’%ala’;vb{b?vblbg}’ (25)

where e,, = a;r a; — az-a}L and e, = b;f b; — b;b]. The operators ey, and ep; measure the

occupation of site . That is, the expectation value of e,, is 1 if site < is occupied by

a spin-up electron, —1 if not. For example,

el 1) = (afa; — a;:af)afb]|0) = ala;alb]|0) — aialalb]|0) (2.6)
= al(1 - afa;)bl]0) = alb][0) (2.7)
= [ (2.8

The operators e,, and e, are related to the two-body electrostatic operators (e, =+
ey;)(€q; T €p;), and are also called electrostatic operators. The last four operators are
called transport operators since they necessarily move an electron from site 1 to site

2 or vice-versa.

13



Consider Tpy the transformation which sends particles to holes and vice-versa,

a ¢ al,
TPH . (29)
b« b,
For example,
Trgleq] = Try [a{al - ala{] = alai — aJ{al = —e,,- (2.10)

Invariance under Tpy is specific to the 2k-body operators; thus it is S5 which restricts
this investigation to the two-body operators. All operators which are invariant under
S1-S4 will be determined. These will be divided into two groups, the one-body and
the two-body operators according to definition 2.2.1. In section 2.3.3 the action of
| Tpy on these two classes will be examined to show that it distinguishes between one

and two-body operators.

2.3 A Basis for Hys

Finding a basis for H is equivalent to finding a basis for Hy5. The basis for Hy, will
be found in two steps, first finding all one and two-body S1-S4 invariant operators

and then determining which of these are invariant under S5.

To determine all of the hamiltonians which satisfy S1-S4, polynomials of the basic
operators, excluding the identity, are formed. The k-body operators are degree k
polynomials in the basic operators, excluding the identity. All possible polynomials
are symmeterized with respect to S1-S4 and the lower order components are removed

by orthogonal projection.

14



2.3.1 One-body Operators

These operators are degree one in the basic operators. The two classes of basic

operators, electrostatic and transport, result in two types of one-body operators.

One-body Electrostatic Operator

Consider e,,. This term is not ring symmetric or spin-up, spin-down symmetric, but
the symmetrized term

E' = e, +e,, + 65 + e, (2.11)

is. This term is invariant under S1-S4, and is a pure one-body term since it is traceless,
Tr(EY=2+0+0-2=0, (2.12)

and hence orthogonal to the identity. Choosing any electrostatic term results in the

same one-body operator.

One-body Transport Operator

Consider next the basic transport operator aJ{az. After symmetrization over the ring

and the spin, this term becomes
T! = aJ{ag + aZal -+ b‘;bg + b;bl = a{ag - ala; + b{bg - blbg, (2.13)

the one-body transport term. It is already orthogonal to the identity. These two

terms are the only S1-S4 invariant one-body operators.

15



2.3.2 Two-body Operators

Two-body operators are degree two in the basic operators and there are three types of
products that can be formed. The first are the classic two-body electrostatic operators
which result from the product of two electrostatic basic operators. The second type
are the transport terms, these are the product of two basic transport operators.
Finally one basic electrostatic and one basic transport term can be combined to form

a mixed operator.

Note that many products of pairs of basic operators, including all squares, are con-

tained in the span of the basic operators by the commutation relations.

€a;€a; = 1= epep (2.14)

alazalay =0= blbyblb, (2.15)
aaloyal =0= bblb,b} (2.16)

ea,alay = alag ep,biby = blby (2.17)
€0, 010} = —aya} ev,b1b} = —byb} (2.18)
€ay0las = —alay €b, 010y = —blb, (2.19)
€0y 0103 = aya ep,b1b) = by (2.20)

Notice also that the order of multiplication does not matter since the basic operators

are degree two in the annihilators and creators.

Electrostatic Terms

Consider the four basic electrostatic operators e,,; €s,,€s,,€s,. There are 42 = 16

possible pairs, but only (3) = 6 do not collapse under the commutation relations.

16



These are
€41€byy €a€byy €a1€azy €b1€b2y €ayC€bys €b;€ay, (221)

which can be divided into three pairs of operators, as above. The first pair are
permuted by the translation symmetry and the other two pairs are permuted by S4.

By summing the pairs together, invariant operators are formed. The operator
E? = e, e, + €qy€p, (2.22)

is known as the on site electrostatic operator since it is degree four on each site.

The other two operators, e, €., + €b €, and eq €y, + €p,€q,, are combined in the

following linear combination which simplifies their interpretation:

1 1

E'? — _(ealeaz + eblebz) -+ _(ealebz + ebleaz) = ej€,, (223)
4 4 '
1 1

E\Q/ = Z(emeaz + eb1eb2) - Z(ethebz + ebleaz) = N (2'24)

where e; = 1(e,, -+ ey;) and f; = 2(es, — €p,;). These terms are known as the ionic and

valence electrostatic operators repectively.

The eigenvalues of the operators e; and f; on each configuration of site 7 are listed in

the following table.

10 1 1
| +1 -1 0 0
il 00 41 -1

Thus FE? is zero unless sites 1 and 2 are ionic and E? is zero unless both sites are

valence. Both are traceless and are also orthogonal to the one-body operators.

17



Ionic and Valence Transport Terms
In addition to the simplifications due to 2.14, the four products
{alagaial, ayalalay, blbobibl, bybiblb,} (2.25)

need not be considered since they simplify to become electrostatic terms. For example,

alagaral = —alaja.a] (2.26)
1
= —Z(l + €4, )(1 — €g,) (2.27)
1 1
= '_Z(]- - ealeqz) - Z(_eal - eaz) o ‘ (2'28)
1
= (1= eneq) (2.29)

after symmetrizing over S1.

Consider the products a{azbJ{bg and a{agblbg. These are not ring symmetric or self-

adjoint. However the terms
—alblaghy — arbradbl,  —albyasbl — aiblalb,, (2.30)

do satisfy S1-S4. The first is zero unless one site is doubly occupied and the other site
is unoccupied, in which case the pair of electrons is transported from site to site. The
second is zero unless one site is spin-up occupied and the other is spin-down occupied,

in which case the electrons are exchanged between the sites. For this reason, the terms

T? = —alblagh, — aibalbl, (2.31)

T‘Q/ = —a‘;blagbg—alb{azbg, (232)

are known as the ionic and valence transport operators respectively.
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Two Site Hamiltonians: Mixing Transport Terms

The final family of products that must be investigated are those where one basic
polynomial is electrostatic while the other is a transport operator. The only non-
zero terms are of the form eale{bg, where the spins of the electrostatic and transport
operators differ. This term is not hermitian symmetric, ring symmetric or spin-up,

spin-down symmetric, so a multiple of the average

6a1b1b2 -+ ealbgbl + eazbgbl + €q, b]{bg + eblaJ{az + eb1a§a1 + ebzagal + e, aJ{ag

= (eq, + €q,)(blby — b1BY) + (e, + €3,)(alas — arald) (2.33)

is used. This term, called the mixing transport term, T'%,, transports a single electron
from a doubly occupied site to a valénce site or a single electron from a valence site
to an unoccupied site, swapping the location of the ionic and the valence sites on the

lattice.

This completes the search for one and two-body operators which satisfy S1-S4. There
are two one-body operators, an electrostatic and a transport operator, and five two-
body operators. The two-body operators can be divided further, there are two elec-
trostatic terms, one ionic and one valence, and three transport terms, ionic, valence

and mixed.

2.3.3 Particle-Hole Transformation

Invariance under the particle-hole transformation, Tpy, is the final property of the
hamiltonians to be studied. It was omitted from the criteria that were used to deter-

mine the set of hamiltonians, so it is necessary to verify which terms satisfy S5. It
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will be shown that the action of Tpy gives an easy way to distinguish one-body and
two-body operators: requiring an operator to be invariant under Tpg is equivalent to

requiring that operator be two-body.

Lemma 2.3.1 The operators {e,,, €, €1, fi} are anti-symmetric with respect to

Tpy.

Proof: By direct computation,

Trgles] = TpH[aEai - aia;r] = aiaz — a}ai = —é€q,, (2.34)

Trules] = Tprlblb — bbl] = bb! — bib; = —ey,, (2.35)
1 1

Tpyles] = TPH[g(eai + ep;)] = 5(—% — ey) = —ej, (2.36)
1 1

Tpulfi] = TPH[-z—(eai —ep)] = -2‘(—% + ey) = — fi. (2.37)

O

 Theorem 2.1 The one-body operators T' and E* are anti-symmetric with respect to

Tpy.
Proof:

TPH[El] = TpH[el + 62] = —€1 — €y = —El, (2.38)

TPH[TI] = TpH[aICLQ — ala; -+ b-{bg — blbz]
= alag - a{az + blbg — b{bg

= -T' (2.39)
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Theorem 2.2 The two-body operators E2, E2, EZ, T? T2, T3 are invariant with re-

spect to Tpy.

Proof:

Tpn|Eo]

Tru|E}]
TrulEY)

Ty}

Tpy(T?]

Tpu(Ty]

Trpplea en, + €ayb,)

(—ear)(—en) + (—€a,) (—es,) = Eg,
Truleies] = (—e1)(—ey) = E?,
Teulfifo) = (= f1)(=f2) = EY,
TPH[CL'{CLQbIbQ + alagblbg]

ayalbybl + aldgblb, = T?

TPH[aIagblb; + alang{bg] = T‘%

Tra|(€a, + €ay) (b1bs — b1b}) + (en, + €5,)(alaz — ara})]

(—€a, — €a,)(b1b] — blbs) + (—es, — €n,)(010] — alan)

T2,

(2.40)
(2.41)

(2.42)
(2.43)

(2.44)

(2.45)

O

Thus the two-body operators are symmetric with respect to Tpy while the one-body

operators are anti-symmetric. That is, S5, that hyy be invariant under Try is equiva-

lent to requiring h = ZLM h; ;+1 be a two-body operator. This conclusion is generally

valid, as expressed by the following theorem.

Theorem 2.3 All self-adjoint two-body operators are invariant under Tpy and all

self-adjoint one-body operators are anti-symmetric.

The proof is omitted since it has been shown directly for the operators used in this

thesis.
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2.3.4 Basis of Hamiltonians

Every degree one and degree two combination of the basic operators
{€a,, €ay» €by > Ebys G 02, A1aH, bTby, bibi}, (2.46)

has been formed, and each was checked for invariance under S1-S4. Furthermore,
it has been shown that all of the one-body operators are anti-symmetric under Tpy
while all of the two-body operators are invariant.

Therefore the set of six operators {E?, T2, EZ, T2, T%, E2} spans Hyp. Any he H

can be expressed as h = Zlﬁﬂl h; ;.1 where the bond hamiltonian h;s is given by

hio = arE} + 81T} + avE% + BvTi + BuTy + ao B (2.47)

In addition, the following theorem shows that these operators are orthogonal and that
H, and hence H are in fact six-dimensional. The proof can be done by checking the
eigenvalues of each operator on all sixteen possible bonds, but follows easily from the

next section.

Theorem 2.4 The operators {EZ, E?, E%, T?, T2, T} form an orthogonal basis for

Hy.

2.4 Good Quantum Numbers

Superconducting and other quantum states are stable if they persist under arbitrary

perturbations of the hamiltonian. This section shows that all model hamiltonians
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leave certain subspaces invariant and that these can be labelled by the quantum

numbers
N = {n|n = (ny,ng, n4,ny), ng +nyy +ny +ny = |A]}, (2.48)

where n4,, ng, 1+ and ny are the numbers of doubly occupied, unoccupied, spin-up

occupied and spin-down occupied sites on the ring.

2.4.1 Two-body Operators
Electrostatic Operators

The effect of any electrostatic operator is to multiply a configuration basis element by
a constant, adding a scale factor. This factor depends on the occupation of the sites;

however, all electrostatic operators preserve the number of sites of each occupation.

Transport Operators

The transport operators necessarily change the occupation of a site. However, it
will be shown that all two-body transport operators permute the configurations of
two sites, preserving the total number of sites of each' occupation. Without loss of
generality, consider the actions of {T?, T2, T%} on sites 1 and 2. The Hilbert space
on these two sites is 42 = 16 dimensional and the configuration basis elements are
labelled by the configurations on these two sites. The effect of these hamiltonians is

summarized in table 2.1.

In each case, at least two transport operators map the state to zero. The effect of any
non-zero interaction is to permute the configurations on sites 1 and 2, possibly adding

a scale factor, and hence to preserve the number of sites of each type of occupation.

23



7 Ty Ty

0> 0 0 0

|4, 1> 0 0 0

[ 4, 4> 0 0 0

[tLH>] 0 0 0
| 1,0 > 0 0 —2(0, 1>
14,0 > 0 0 —2|0, >
|0, 4> 0 0 =2/ 1,0 >
|®,~L> 0 0 —2l ~L7® >
| T, > 0 0 | -2[T >
|14, 4> 0 0 | =2/Lt>
|1, 14> 0 0 | -2/t 1>
[, 1> 0 0 =2/ 14, {>

[ 1,0> 1 [0,1> | 0 0

0,44> [ [140>] © 0

|1, 4> 0 |4, > 0

|4, T> 0 | 1,4> 0

Table 2.1: Interactions of T?, T2, T% on sites 1 and 2.

Good Quantum Numbers

Since any hi2 € Hiy preserves the quantum numbers n = (ng, nyy, ns, ny), these are
also preserved by the action of any h € H. Let Vi, = {¥|n(¥)) = n;} be the set of

states with quantum numbers n;.

Theorem 2.5 The numbers (ng, n4y, Ny, ny) are good quantum numbers for two-body

intemctions on the lattice.

Proof: Any h € H can be written

h = Z hz i+1y (249)
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where h; ;.1 satisfies S1-S5. As presented above, any h; ;41 that satisfies S1-S5 pre-

serves the quantum numbers (ng, 14y, N4, 1y ),
’l/) EVa=hy i+1 (’L/)) € Va. (250)

Thus,
YEVa=h() =D hii(e) = E & € Va, (2.51)
since ¢; = h; i11(¥) € Va.

Therefore, given any ¢; and 1),, such that n(¢;) # n(is), and any h € H,

(¥1]hlpe) = 0. (2.52)

Therefore the quantum numbers (ng, nqy, ny, ny) define invariant subspaces and are

good quantum numbers.

All possible sets of quantum numbers n satisfy
ng +nq4yy +n4+ny = ‘Al (2.53)

There are $|A[® + A + 2|A| + 1 ways to choose these quantum numbers, and each
choice determines an invariant subspace of states. Let N be the set of all possible

sets of quantum numbers. The set of all states V' is decomposed into a direct sum,

V = @nENVn- (2-54)

Since every hamiltonian is invariant under S4 and S5, states with ng = (ny, 12, n3, n4)
are degenerate with states which have quantum sets (n1, ng, n4, n3), (n2, n1, N3, N4)

and (ng,ny,n4,n3). For example, the configuration where every site is unoccupied,
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(|A],0,0,0), is equivalent to the configuration where every site is doubly occupied
(0,|A],0,0). The expectation value of all model interactions, h € H, is the same
on these two configurations; no perturbation by any h € H can distinguish between
them and remove the degeneracy. Thus it is more accurate to consider the subsets
N C N which are invariant under S4 and S5 when describing the ground states of
heH.

2.4.2  One-body Operators

The quantum numbers (ng, nsy, 74, n;) do not split the ground states into non-
interacting subspaces when one-body interactions are included in the hamiltonian.

"This is because of the action of the transport operator. For example,

TL albl|0> = (ayad + byb}) albljo >

= ayalblad|0 > —albblbl|0 >

blal|o > —albl|o > . (2.55)

" In fhis example the transport operator takes a configuration basis element with quan-
‘tum numbers (1,1,0,0) and returns a linear combination of basis elements, all of
Which'have quantum numbers (0,0,1,1). In general, the one-body transport operator
changes adjacent doubly occupied and unoccupied sites into one spin-up occupied and
one spin-down occupied site or vice-versa. Thus it does not preserve the quantum
numbers (’n@,, N4y, Ny, ny). However, it does preserve the difference between the num-
ber of unoccupied and doubly occupied sites, ng —ns;, and the difference between the

number of spin-up and spin-down sites, ny — n;. These are good quantum numbers

for systems with one-body interactions.

26



Theorem 2.6 Subspaces which are invariant under the action of all S1-S4 one-body

and two-body operators can be labelled by the one-body quantum numbers

(dr, dv) = (ng — nyy, np — ny). (2.56)

The one-body quantum numbers (df,dy) satisfy |dr] + |dv| = 2n < |A] for some
integer n. There are only |A|? + 2|A| + 1 invariant subspaces when the one-body

transport term is included.

The effects of including one-body interactions in the hamiltonian are as follows. Non-
interacting subspaces under the pure two-body hamiltonians coalesce to form larger
subspaces. This result is analagous to the atomic case where one-body terms interact
with the Pauli principle to create shell structure which is perturbed by the inclusion
of two-body terms. In the case of solid systems, the two-body terms alone split the

states into subspaces which are mixed by the inclusion of one-body interactions.
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Chapter 3

Quantum Phases

‘ in this chapter we introduce notation to characterize the important sets of quantum
numbers. The definition of phase is presented and the existence of phases using
two-body hamiltonians alone is demonstrated. Some results of Erdahl and Jin, [14],
relating to ionic hamiltonians are extended to the case of arbitrary hamiltonians and

used to prove a theorem characterizing the phase boundaries.
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3.1 Phase Structure

Recall H, the linear space of model hamiltonians and N, the set of all possible quan-

tum numbers n = (ng, Ny, N4, Ny ):
N = {n|ng + nt, +ns +ny = [A]}. (3.1)
The Hilbert space of states, V, has an orthogonal decomposition by n € N,

V=V (3.2)

neN

Consider V*, the space of ground state eigenvectors of h. These are the states which
minimize (h), and h may have a unique ground state or degenerate ground states. In

either case, V" has an orthogonal deéomposition by quantum number:
Vh =@,V =@,V NV, 1 (3.3)

Each V; C V defines a set of quantum numbers, N(V;) = {n € N|V; NV, # 0} . For
every h € H, the subset N(h) = N(V") C N is called the quantum set of h. Finally,

for every subset N C N, let
H(N)={h e H|N(h) = N}. (3.4)

It is possible that H(N) = { for some N € N. Those subsets are excluded by

restricting to N € M, where
M= {N C N|H(N) # 0} (3.5)
is the collection of all quantum sets.

For each N, the dimension of H(N) is its most important characteristic.
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Definition 3.1.1 A hamiltonian h is generic if, for every perturbation b, there exists

6 > 0 such that |e| < 0 implies h + eh' € H(N(h)).

A quantum set N is called locally minimal if there exists a generic hamiltonian h
such that N = N(h). If a hamiltonian is not generic, an arbitrarily small perturbation
can change the quantum numbers of the ground state. Non-generic hamiltonians are
degenerate between two or more quantum sets; the perturbation lifts the degeneracy,
and the quantum set of the perturbed hamiltonian is contained in the quantum set of
the unperturbed hamiltonian; That is, there exists an § > 0 such that N(h + €h') C

N(h), for every h', whenever ¢ < 6.

The set H(N(R)) has full dimension for every generic h. These full dimensional
subsets may or may not be connected. They are labelled by generic hamiltonians
or locally minimal sets of quantum numbers and have an interpretation as quantum
phaseé. The term quantum phase is used to describe both the characteristics of the
ground states and the hamiltonians which generate them. That is, a ground state ¢
is in a phase P if it has the quantum numbers associated with P and a hamiltonian

h is a P-phase hamiltonian if all of its ground states ¢ € V" are in P.

Definition 3.1.2 For every locally minimal N € M, the set H(N) is ¢ quantum

- phase.

The generic A determine full dimensional regions where N(h) is constant. These N
are the locally minimal sets, and each one corresponds to a set H(N). If N ¢ M
is not locally minimal, then h € H(N) is not generic and H(N) does not have full

dimension. These are the phase boundaries. Two phases IV; and N5 share a boundary
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if and only if there exists a hamiltonian A such that
Vi NVRE£D Vi, NV £0, (3.6)

and N1 U N, C N(h). The boundary of k phases is defined similarly.

There are a finite number of quantum sets, |N| < oo since the quantum numbers
are integers and bounded by the lattice size. Therefore there is at least one N
such that H(N) has full dimension. Let S® be the unit sphere in a six-dimensional
space. Then H N S%, the set of hamiltonians with unit length, is tiled by the sets
H(N) N S% for locally minimal N. Thus h € H N S5 is either in a phase or on
the boundary of fwo phases, H(N) is a phase boundary for all non-minimal N.
The restriction to hamiltonians with unit length does not affect the phase structure,
since each hamiltonian can be multiplied by a positive constant without changing the

ground state.

The chance of creating a hamiltonian A which has ground states labelled by N is
proportional to the area of H(N). If H(N) does not have full dimension, the chance
of finding h € H(N) is zero. Therefore phases are experimentally observable, while
phase boundaries are not. However, a phase transition between two phases is possible
only if the boundary between them has co-dimension one. Therefore co-dimension

one boundaries are experimentally detectable.

Further ’Remarks

The hamiltonian encodes the environment in which the electrons interact. There are
two very different types of change to the environment which can occur. The first

is that the external fields can be adjusted and the phase of the ground state may
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change. The second is that the material under investigation can be changed, as long
as the lattice structure is maintained. Since these two cannot be distinguished by the
model used here, there could be phases which theoretically share a boundary, but for
which a phase transition from one to the other is not possible since it would require

changing the material in question.

The locally minimal sets N are such that there exist hamiltonians h € H(N) with
a degeneracy in their ground states that can not be removed by local perturbation.
However, this does not guarantee that the degeneracy cannot be removed by perturb-
ing very far in one direction. Let N be globally minimal if there is no hamiltonian h
such that N(h) C N. Although the equivaience of the globally minimal and locally
minimal sets is not established theoretically, it and some related hypotheses will be

re-examined in section 3.4.1 using results specific to H.

3.2 The Quantum Phases

It will be shown that there are five phases which occur as ground states for hamil-
tonians in H. These are the vacuum phase (VAC), superconducting phase (SC),

ferromagnetic phase (FM), the anti-ferromagnetic phase (AFM) and the mixed phase.

~ Every square lattice can be thought of as a set of bonds instead of a set of sites.
This is convenient, since the hamiltonians describe the interaction between sets of
electrons on sites separated by exactly one bond. In one dimension, the lattice is a
sequence of bonds, the k* bond is between sites & and k 4+ 1 and the last bond is

between site |A| and site 1.

There are 10 types of bonds, which are classified as follows. Any bond between an
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ionic site and a valence site is a mixed bond; there are four possibilities. The on
site, ionic and valence operators are zero on these bonds, and the mixed operator is
constant: the expectation of T7 is the same, no matter which type of mixed bond is
present. There are two types of ionic and two types of valence bonds, called types I
and II. Type I bonds are between sites with the same occupation and type II bonds
are between sites with different occupations. Thus there is one type I ionic and one

type I valence bond but two type II ionic bonds and two type II valence bonds.

The Vacuum Phase

Consider hyy = —EI. The expectatio‘n value of ET on a bond is zero unless that bond

is ionic; it is positive (+1) if the bond is type I, negative (—1) on type II bonds.
Theorem 3.1 The vacuum state and all-filled state are ground states for hy, = —E?.

Proof: ' Let ki, ks, k3, ks be the number of type I ionic, type II ionic, valence and

mixed bonds respectively in a configuration. The expectation value of —E? is
—(k1) + (k2) + O(ks) + O(ks) = — (k1 — ko). (3.7)

The energy is lowest when k; is as large as possible and &, is as small as possible. This
occurs when k; = |A| and ky = k3 = ks = 0. Thus the ground state configuration
of —FE? has each site occupied by the same ionic configuration, either the vacuum
state, where every site is unoccupied, or the all-filled state, where every site is doubly

occupied.
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The quantum set corresponding to these two configurations,
N = {(|A},0,0,0),(0,]A],0,0)}, (3.8)

may or may not define a phase. To see that it does, i.e. that this quantum set is
locally minimal, observe that the vacuum and all-filled configurations are exchanged
by the particle hole transformation. Since all h € H are invariant under Tpy, there is
no perturbation A’ € H which lifts the degeneracy between these two configurations.

Therefore these configurations define a phase, called the vacuum phase.

The characteristics of the vacuum and all filled states that determine their common
properties are that every site is ionic and has the same occupation. This means
‘all transport terms have expectation value zero, as does the valence electrostatic

operator. The other electrostatic operators act as the identity.

The Mixed Phase

The ground states of the transport operators are superpositions of configuration basis
elements and, as such, are more difficult to describe. However, the mixed transport
operator is closely related to a one-body operator whose ground states can be de-

scribed by a Slater determinant.

Conisder hiy = £T%. The expectation value of T2 is the same on each type of mixed
bond. Therefore any ground state of +7% is degenerate with another in which all
ionic sites are unoccupied and all valence sites are spin-up occupied. In the subspace
of states where these are the only occupations, the hamiltonian corresponding to T

is equivalent to the hamiltonian
_ml _ ot I
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This one-body term can be diagonalized and the ground state eigenvectors and eigen-
values can be determined. Due to the ring symmetry, the eigenvectors are determined

by a discrete Fourier Transform,

IA]-1

;27
op = E '™ (alag 1 + aqaZ_H), (3.10)
q=0

for 0 < p,¢ < |A] — 1. Each ¢, corresponds to the creation of a spin-up electron
or valence site on the ring, like the original term aJ{ag + ala;. If the corresponding
eigenvalues are given by €,, then h = 3, h; ;11, where hy; = T}, can be diagonalized,

Al Al
h = E(a:fazq_l +aal,,) = Z €0 (3.11)
i ‘ i
The eigenvalues ¢; are easily calculated knowing the eigenvectors. For even |A|, all

are non-zero and for every 4, there exists 7 such that ¢; = —¢;.

The ground state of h = T}, is given by including only those terms whose eigenvalues

are negative,

6= ] o (3.12)

1,6;<0

Similarly, the ground state of h = —T}; is

o= ] o (3.13)

i\ei>0

Since there are an equal number of positive and negative eigenvalues, ¢, and ¢_ are
both given by the product of |—’:}—| valence creation operators, and thus are states which
have an equal number of ionic and valence sites. The same is true for +T%, the
ground states have an equal number of ionic and valence sites. However, in this case,
both ionic occupations and both valence occupations are allowed. Therefore there is

a 21M fold degeneracy in the ground state of hyy = +T%.
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The quantum set associated with the ground state of hjp = £T3 contains all quantum
numbers where the number of ionic and valence sites are equal. In the context of the
mixed hamiltonian, this is called half-filled. This subset of quantum numbers is locally
minimal, however these states are closely related to other states with both ionic and
valence sites. Therefore the definition of the mixed phase is slightly different from
3.1.2, it is defined as the set of all hamiltonians whose ground states have some ionic

and some valence sites. The quantum set corresponding to the mixed phase is
Ny = {(n4yy, no, np, ) € Ningy 4 ng, ny +ny > 0} (3.14)

The half filled ground states where ns + ng = ns + n; occur only near hip = +T%.
The term pure phase is used to distinguish the other phases from the mixed phase,
the pure phases do not consist of unrelated (under Tpy and Ts) subspaces grouped

together.

Constant and Alternating Subphases

The difference between the ground states of T2 and —T is the following. Consider
¢1 and ¢9, two configurations which differ only in that site 1 is unoccupied and site

2 is spin-up occupied in ¢; but these occupations are reversed in ¢s. Thus

(@2|Til1) > 0. | (3.15)

To lower the energy of the ground state wave function of h = T%, the signs of the
coefficients of these two configurations should differ, (alternating phase) while for

h = —T% the signs should agree (constant phase). For example, in the state

Al

o) = 3, (efaisa[0) + aial,,[0)) (3.16)

i=1
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every term has coefficient +1 and this state is part of the ground state of —T% since
(op] — Thylow) = —2{cw|ag) = =2 < 0. (3.17)

Similarly, the state |aa;), with €4 = 2, is an alternating phase ground state.
2 2

Assigning a parity to each configuration so that they interact only to lower the energy
is possible only for bipartite lattices, of which the n-dimensional square lattices are
a sub-class. Bipartite lattices are those whose sites can be divided into two groups
such that all bonds are between an even site and an odd site. The two groups are
called even and odd or positive and negative (since (—1)" is positive if and only if n

is even).

The n-dimensional square lattice sites are labelled by integers (i1,%2,...,%,). The

sites are assigned the parity of 4; +is + ...+ ¢,. In the one-dimensional lattice, site
i is an even site if and only if 7 is even. Consider a configuration ¢ and all of those
other configurations with which it interacts through the transport operator. Each
of these configurations differs from ¢ only on two nearest neighbour sites, where a
spin-up electron on one site is moved to an unoccupied site. Since adjacent sites
have opposite parities, the number of odd sites occupied by an electron is changed
by one. If the parity of a configuration ¢ is determined by the number of valence
occupied odd sites, then the interaction between any two configurations under T is
negative. Since the only important feature is the relative parity of two configurations,
an equivélent system is developed by. counting the unoccupied sites or by reversing

the parity assigned to each site.

The mixed phase is divided into two subphases, the constant mixed subphase and

the alternating mixed subphase. A state ¢ must have the correct parity as well as
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quantum numbers in order to be included in the subphase.

The SC Phase

Consider hi; = £T?, the ionic transport operator. Only ionic bonds contribute to the
energy, therefore the ground states will be ionic ground states. In fact, only bonds
between an unoccupied site and a doubly occupied site contribute. The action of
T? on the subspace where all sites are ionic is equivalent to the action of 7% on the
unoccupied, spin-up occupied subspace discussed above. Therefore the ground states
of h12 = =T, 12 have an equal number of unoccupied and doubly occupied sites. In the
ionic context, these states are half-filled, since the number of electrons is equal to the

‘number of sites on the lattice.

The term half-filled, when referring to pure phases, means that the number of electrons
is equal to the number of sites and that the number of spin-up and spin-down electrons
is equal. The first condition is automatically fulfilled by valence states while the
second is always true for ionic states. This is different from the meaning for mixed
states, where half-filled means that the number of ionic and valence sites are equal.
In géneral, the term half-filled refers to the pure phase definition unless otherwise

stated.

Like the mixed phase, the superconducting phase is divided into constant and alter-
nating subphases, depending on the sign of the coefficient of 77. In this case, the
parity of a configuration is calculated by counting the number of doubly occupied

odd sites.

The perturbation of £77 by any valence or mixed hamiltonian, or EZ does not change

38



the ground state since these operators act as constants on the ionic subspace. Pertur-
bation by E? changes the weighting of the configurations in the wave function, but
the quantum numbers are preserved, [14]. Therefore hy; = £=T7 defines a phase. This

is known as the superconducting phase and is characterized by pair transport.

Nsc = {('—g-' '—‘2—1,0,0)}. (3.18)

Pair transport refers to the fact that the transport term T? moves a pair of electrons

from one site to another.

The hamiltonian hy, = E? shares the quantum numbers (J—I%l, J%[, 0,0) with hyp = £T7.
Ifs ground state is the checkerboard 'state where the sites alternate between unoccu-
pied and doubly occupied around the ring. This hamiltonian is on the boundary
between the constant and alternating superconducting subphases, and arbitrary per-

turbations by 77 preserve the half-filled property of the ground states.

The Valence Phases

The similarities between the ionic and valence transport and electrostatic terms can
be exploited to understand the phase structure. There are two transformations which
exchange ionic and valence terms. Since there are three known ionic phases, VAC,
ASC and CSC, there are three corresponding valence phases known as the ferromag-

netic (FM), alternating anti-ferromagnetic (AAFM) and constant anti-ferromagnetic

phases (CAFM).

39



Consider the following transformations:

(

a; — az
1 even
T:t(I,V) . 4 (319)
a; — :f:a;r
1 odd.
bz‘ — ﬂ:bz

These transformations permute the terms (excluding the mixing term) in the hamil-

tonian.

T

2 =(1,V) 2

Ef — Ey
Ti1,v

T? RN 472
Tirv)

B} XY _R?

The hamiltonian —FE? and its vacuum phase ground states are transformed into hy =
—~FE% and its ground states. —E? has two degenerate ground states, one where every
site is spin-up and another where every site is spin-down. The parallel allignment of

spins is the defining characteristic of the ferromagnetic phase.

Under T (1,v) the superconducting phase hamiltonians discussed above become +T2.
All valence ground states are automatically half-filled, but the ground states ¢ € V=Tv
~have the additional property that they have same number of spin-up and spin-down

sites. This is known as anti-ferromagnetism,

Narm = {(0,0, %\—I, %—l)} . (3.20)

Like the other transport driven phases, the anti-ferromagnetic phase is divided into

constant and alternating subphases. By convention, the parity of the configurations
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in the alternating phase are determined by counting the number of odd sites which

are occupied by spin-up electrons.

The anti-ferromagnetic subphases are also transport phases. In this case, the action
of T2 is to exchange a spin-up electron and a spin-down electron on two sites. This
is not pair transport as in the superconducting phases, but two electrons are created

and two are destroyed, as was the case for T7.

Thus, for every hamiltonian with an alternating phése superconducting ground state
there is a hamiltonian with a constant phase superconducting ground state, a hamil-
tonian with an alternating phase anti-ferromagnetic ground state and a hamiltonian
with a constant phase anti-ferromagnetic ground state. Similarly, to every hamilto-
nian with a vacuum ground state there corresponds one with a ferromagnetic ground
state. This implies that the area covered by the vacuum phase is equal to that covered
by the ferromagnetic phase and that each of the other pure phases occupy the same

area.

3.3 Ionic Hamiltonian

Instead of considering an arbitrary h € ’H
hi2 = a1 E? + BiT? + avEL + BvTE + BuThy + anEL, (3.21)
consider the ionic hamiltonian
hy = a;E? + BT} (3.22)
which has been studied extensively by Erdahl and Jin, [14].
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The symmetry between the ionic and valence terms means that results which hold for
this hamiltonian have conterparts with the valence phases and hy = avE% + BvT3.

By decomposing the full hamiltonian into four parts,
h=h;+hy+ ﬂMT]\Q/[ + CYNE02, (323)

the phase structure is more easily described and understood.

3.3.1 The Representable Region
The representable region R is the region filled by

IB = [ﬁE’ﬂT] = [<pa E?)? <p7 TI2>] (324)

as a = [oy, fy] varies. Each von Neumann density is represented by a point in R.

Consider the region R for a ring with eight sites shown in figure 3.1.
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Figure 3.1: The representable region for |A] =8

" Each 8 ER corresponds to a quantum state with total energy given by
e = (p; hr) = |Al{p, hao) = [Al(r(p, BY) + Br(p. T7)) = |A] @ - a. (3.25)

Consider the ground state of a hamiltonian with coefficients o = [0, 8], fr < 0. This
is the‘ vector « in the figure, the ground state parameters are given by the point
B € R. This follows since § is a point of tangency for a line that is tangent to R and
perpendicular to «; the energy is constant along the tangent line and the vector o

points in the direction of increasing energy.

The regions ”R,‘ A} have certain features in common for all {A|. First, the representable

region shrinks as |A| — oo,

RoDRyDORegD ... (326)
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Second, the points [1,0] and [—1, 0] are always included. There are also line segments

-1
extending from [1,0] to [—I‘A—| -

AT These boundary points of R can be treated

theoretically.

Vacuum Phase

Consider the point [1,0]. (p, E?) = 1 indicates that all of the bonds are in phase
(positive) relative to the electrostatic operator. The corresponding configurations are
the vacuum and all filled states. These states are both represented by the point [1, 0].
The hamiltonian h = —FE? has tangent vector T = [0, £1] which is tangent to the
representable region at [1,0] and [—1,0]. Starting from [1,0], & = [~1,0] points to
the interior of R, so the vacuum and all filled states are the ground states of —EZ.
The point [—1, 0] represents states which are in phase (negative) for the electrostatic
operator. These states are the half filled checkerboard states and are groundlstates
for h = E2.

The vacuum phase point [1,0] is also a point of tangency for lines with slope m,

—1 < m < 1. Each of these hamiltonians, h = —FE? + BT2, where —1 < 8 < 1, has

the vacuum phase states as ground states.

VAC and SC Phase Boundaries

When h = —FE? = T2, the hamiltonian is on one of the boundaries between the
vacuum and superconducting phases. There are two line segments which form part of
the boundary of R; these extend from [1, 0] and have slope £1. Consider the segment

with slope —1 and the hamiltonian h = —E?+T? which is close to the ASC subphase,
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since the coefficient of 77 is positive. It can be shown, [14], that 1+ h is non-negative

and that ground states ¥ = P |0) satisfy

1

1. P is homogeneous in the pair creation operators o; Tl

= a;0;

2. Pair creators for adjacent lattice sites must have coefficients that differ by sign

alone. (Alternating Phase.)

A basis of ground state functions is given by

—

U= ('2—'>_§ (g"* 10), k=0,1,..., Al (3.27)

where g = Al e=injg b, The phase factor e = (—1)/ assigns the parity to each
j=1 7%
configuration.

The entire line segment between [1,0] and [—l%l—l, 7\————] is tangent to a = [-1,+1].
The point [1,0] corresponds to the empty and all filled states, ¥ = 0 and k = [A].
The point [ﬁ'ml, | A‘Ill] is a half filled state, k = —’2\— All other values of k correspond
to points which are interior to the line segment, ¥ for k and |A| — k are related by
particie hole symmetry. Since the vacuum and all filled states are ground states of
h = —E? + T? and a half filled state with alternating phase is another ground state

for h, t‘hi_s hamiltonian is on the boundary between the VAC and ASC phases.

- The case h = —FE? — T? is treated by symmetry. The operator g becomes

1A]

g = Eajbj (328)

: j=1
and all states have the same parity. This shows how the SC phase is divided into the

alternating and constant superconducting subphases, depending on the sign of the

transport term.
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3.3.2 Summary

Some results relating to the ionic hamiltonians can now be presented. Understanding
the phase structure in the space of ionic hamiltonians is a prerequisite to developping

a good picture of the phases for the full hamiltonian.

Theorem 3.2 There are only three phases resulting from the use of ionic two-body
hamiltonians, the VAC, ASC and CSC phases, and each of these share a boundary of

co-dimension one.

Proof: An ionic hamiltonian can be written
hr = C![E? + ,BIT}, ' (3.29)

where oy and §; are not both zero. When a; < —|8;| € 0, h has a vacuum ground
state. When oy = £6; < 0, h is on the boundary between the vacuum and alternating
superconducting phases (8; > 0) or the boundary between the vacuum and constant
superconducting phases (8 < 0). When —|6;| < af < 0 or oy > 0, B # 0, the
ground state of A is a superconducting phase, alternating or constant depending on the
sign of §;. Finally, in the last case, when oy > 0, 8; = 0, h has a checkerboard ground
state which is on the boundary between the alternating and constant superconduting

phases.

Therefore only the VAC, ASC and CSC phases occur as ground states, and there is
a two-dimensional family of ionic hamiltonians which share each phase as a ground
state. There is a one-dimensional boundary between any pair of states, and, since

this space is two-dimensional, this boundary has co-dimension one.
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A parallel result for the valence hamiltonians holds as well: ground states of hy =
ay B2 + ByT2 are either FM, CAFM or AAFM states and the intersection of any two

of these phases has codimension one.
Theorem 3.3 h; determines the ‘phase’ of the ionic molecules of a mized state.

Proof: Suppose h = h; + hy + apE2 + By T3, hr # 0 is such that it has a mixed
state 9 as a ground state. If the configurations that make up 1 are such that they
have at least two nearest neighbour ionic sites, then 1 contains ionic bonds and the
acvtion'of hr on these bonds affects the energy. The hamiltonian terms hy and T]%l
have expectation value zero on these bonds, and E? acts as a constant. Therefore,
“the only contribution to the energy made by these bond interactions is through h;.
Therefore the energy is lowest when the electrons on these bonds are arranged in the
pattern of the ground state of hj.

O

Thus there are only eight possible phases and subphases for the two-body hamiltoni-
ans on fhe square lattice. A generic hamiltonian h = h; + hy + oo E? + BT either
has aﬁ iqnic, valence or mixed ground state. If it is ionic, it is determined by h;, and
there are only three possibilities. If it is valence, it is determined by hy and again
it is in one of three subphases. Finally, if h has a mixed ground state, it is either

constant or alternating, giving a total of eight subphase possiblilties.
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3.4 H(N) for Phase Boundaries

In the case of the general hamiltonian A with corresponding bond hamiltonian
hig = arE? + BiT? + avE + BvTe + BuTay + aoER, (3.30)

the mixed phase occurs when the mixing term dominates the hamiltonian,

(Bucl >> \Jo + BF + o + B + of. (3.31)

Since all of the pure phases have full dimension, all ground states are pure states or
degenerate between pure states when the mixing parameter is small. To understand
the phase structure it suffices to examine the phase structure that occurs when Sy =
0. Each phase which occurs here will extend into the T2, direction, although all

phases may not extend equally.

If and only if two basins share a boundary of co-dimension one is a phase transition
from one to the other possible. Any phase boundary between pure phases intersects
the great circle where 8y = 0. Let Hp = {h|h = h; + hy + apEZ} be the space of

pure hamiltonians.

Let the quantum set of the intersection of & subphases be given by Ni. The goal is
to describe the dimension of Hp N H(Ny). Let Ho(Ng) = 1 if ap can be adjusted
without changing the phase of the ground state, otherwise Hy(Ny) = 0. Similarly, let
H(Ny) be the number of directions which A can be perturbed without affecting the
ground state phase. Since h; = a;E? + 5,77, 0 < H;(N,) < 2; the corresponding

valence term is Hy (Ng).

Theorem 3.4 Let Ny, be the quantum set associated with the intersection of k ionic

subphases. Then Hr(Ny) =3 —k for1 <k <3 and Hi(Ny) =2 when k = 0.
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Proof: Let hyy = a;E? + 81T? + avE% + ByT% + apE2. If h has an ionic (possibly
degenerate) ground state, then decreasing a does not change the phase since (E2) =
ny — ny. If Ni is the intersection of one or two phases, H;(Ny) has been described
in 3.3. By definition, all phases have full dimension; thus for k¥ = 1, H;(N;) = 2.
It was also shown that any two ionic phases share a boundary of co-dimension one,

Hi(N;) = 1.

Suppose h is on the boundary of all three ionic phases, kK = 3. The boundary between
the ASC and CSC subphases occurs at §; = 0 and the boundary between the vacuum
phase and the superconducting subphases occurs when oy = +3;. Thus, if h intersects
all three ionic subphases siumultaneously, then h; = 0 and H;(N3) = 0. It is possible
for hyog = hy + apE? to have an ionic ground state when oy < 0 dominates the
hamiltonian. In this case, all ionic states have the same energy, lower than that for

any mixed or valence state.

Finally, if  is not on the boundary of any ionic phases, ¥ = 0, and the ground state
of h is valence since h € Hp. Both a; and j; can be perturbed without moving onto
an ionic boundary, H;(Ny) = 2 in this case.

O

The same results also hold for Hy(IVi). A general h € H is represented by the bond

hamiltonian

hiz = hr + hy + o E§ + BuThy (3.32)

Hy(N), the degress of freedom in choosing ay, is all that is required to give a complete
description of the pure phase structure, since perturbations by TZ will never affect

the pure ground states.
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Theorem 3.5 Let N be the quantum set associated with the intersection of k pure
phases. Ho(N) =1 if and only if N is associated with the intersection of only ionic

or only valence phases. Otherwise Ho(N) = 0.

Proof: Since E? treats all ionic states equally and all valence states equally, if h
is degenerate between only ionic or only valence states, adding a multiple of E2 does
not destroy the degeneracy, so ap can be perturbed arbitrarily. Thus Ho(N) = 1. If
h is degenerate between at least one ionic and at least one valence state, changing a

would destroy the degeneracy. Hence Ho(N) = 0.
O

The proof that the intersection of any k < 6 pure phases has dimension 7 — k follows.

Theorem 3.6 Let Ny be the quantum set associated with the intersection of k pure

phases. Then dim(H(Ny)) =7 —k if k <6.

Proof: Since hyp = hy + hy + aoEZ + BT %, the dimension of H(N) is given by

dim(H(N)) = H;(N) + Hy(N) + Ho(N) + 1, (3.33)
since the expectation value of T% is zero on all pure phases implies that 85, can be
adjusted arbitrarily without changing the ground state.

Case 1, kK = 5. There are two equivalent possibilities. Either h is in the intersection
of three ionic and two valence phases or three valence and two ionic phases. In either

case,

dm(H(N))=0+1+0+1=1+40+0+1=2=7—k. (3.34)

Case 2, k = 4. There are three possibilities, but two are equivalent. Either h

intersects three phases of one type and one of the other, in which case dim(H(N)) =
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0+2+4+0+1=3=7=k, or we have two ionic states and two valence states,

dm(H(N)) =14+1+0+1=3=7—k.

Case 3, k = 3. Again there are two distinct combinations. Either h contacts all
three ionic or valence phases and none of the other type, or we have two of one and
one of the other. In the first case, dim(H(N)) =0+2+1+1=4=7-k, and in
the second case dim(H(N)) =1+2+0+1=4=7-k.

Case 4, k = 2. The first possibility is that A is in the intersection of two phases of the
same type. In this case, dim(H(N)) = 1+24+1+1 =5 = 7—k. Otherwise, h is in the
intersection of one ionic and one valence phase, dim(H (N)) = 2+2+0+1 =5 = T—k.

This shows that every pair of phases share a boundary of co-dimension one.

Case 5, £k = 1. h is in a single phase, either ionic or valence. In either case,
dim(h) =2+2+1+1=6="7- k. This is equivalent to the earlier result that the
pure phases have full dimension since the space of hamiltonains is six-dimensional.

O

The case k = 6 must be handled separately. The only hamiltonian which has a
degenerate ground state in all six pure phases is the identity, h = A1, which is also
degenerate with mixed states. The hamiltonian h = B,,T% does not prefer any pure

state over the others, but its ground state is a mixed state.

In practice, the normalization condition a2+ 8% + o + 8% + 82, + % = 1 is enforced.
This is equivalent to restricting h € H N S5. Projecting h onto S° affects the energy
of all ground states equally, and hence does not affect the phase of the ground state.
This is very helpful in visualizing the six-dimensional space of hamiltonians since it

reduces the dimension by one.
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3.4.1 Summary

The quantum sets of the of all hamiltonians » € H have been determined above.
The most striking property is that the locally minimal sets are distinct, ;N N; =0
whenever IV; and NV; are locally minimal. This implies that there is no locally minimal
set contained in another, and hence each locally minimal set is globally minimal in
the sense that there is no perturbation of the hamiltonian (large or small) which will
reduce the quantum set. Thus the phases are in a one-to-one correspondence with

the locally minimal quantum sets and the generic hamiltonians.

The quantum set of the boundary between k phases contains the union of the corre-
sponding k£ quantum sets, but is not necessarily equal to this union. The vacuum and
superconducting phase boundaries give an example. Consider h = —E? 4+ T? with its

basis of ground states,

[

V= (‘—:—'>_ (GNF10), k=0,1,..., Al (3.35)

where g = le’\:ll e~ Ig,b;. The wave functions with k£ = 0 and k = |A| correspond to
the vacuum and all-filled states respectively, while those with k£ = 112\—[ are ASC states.

UiNi = {(l‘M: 07 07 0)’ (07 lAla 03 0)’ (ljz\—" I_jz}'l" Oa O)} . (336)

The others are neither VAC phase nor ASC phase ground states, they have n(¥) =
(|A] = k, k,0,0). Therefore

N(h) = {(|A| = k,K,0,0)[0 < k& < |Al}. (3.37)

Since N(h) # U;N;, this example shows that the quantum set of a hamiltonian on
the boundary of k£ pure phases is not equal to the union of the quantum sets of those

pure phases.
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Finally, the region Hy is connected for every pure phase but not the mixed phase.
It fails for the mixed phase because the two mixed subphases are not connected.
The constant mixed phase and the alternating mixed phase occur for different signs
of the mixed transport operator. If these subphases had a boundary, then they
would be connected. However, the only boundary between S > 0 and Sy < O
is By = 0. At this point, the ground state of h is necessarilly pure, and is not
affected by small perturbations from TZ. Therefore, the mixed phase is disconnected.
This does not prevent the other subphase pairs from being adjacent. Consider the
boundary between the constant and alternating superconducting subphases. This
bound’ary occurs at T? = 0, but there is a half-filled ionic state which forms part
of this boundary, the checkerboard state. As 3; goes to zero, as long as «; is large
(positive) enough, the ground state of A will remain a half-filled (ionic) state, passing
through the checkerboard state and going through a transition from the constant to
the alternating phase (or vice versa). (ionic) state, passing through the checkerboard
state and going through a transition from the constant to the alternating phase (or

vice versa).
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Chapter 4

The Density Matrix

In this chapter we construct the density matrix and determine the relationships be-
tween its entries. First, the parameters which appear in the density matrix are de-
termined. Then the basis which is used to represent the density matrix is chosen so
that P is a block matrix. The entries of the density matrix are p;; = <qu g;,p) and

can be expressed in terms of the parameters.
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4.1 The k-matrix

The reduced density matrix is a very large, sparse matrix and the effectiveness of the
lower bound method depends on the basis of operators. The density matrix is block

diagonal if the correct basis and ordering is chosen.

Let {q1, g2, ..., s} be a basis for all polynomials in the creation and annihilaion
operators with degree less than or equal to k. Any k-body hamiltonian A has a
matrix representation relative to this basis given by H = [h;;] where the h,; are

determined by
h=>Y_ hjdlg. (4.1)
1,5

‘The k-matrix, P, can also be expressed in this basis. It has entries p;; given by
pij = {alg;,p)- (4.2)
The energy is found using

E(p) = (h,p) = Z hij{glaj, p) = Tr[HP]. (4.3)

Density matrix calculations provide approximate solutions, and the order of accuracy
of the approximation must be considered. The density matrix P defined above is
. k-positive: it is positive semi-definite with respect to all operators of degree less than
or equal to k. However, since the reduced density matrix is positive semi-definite with
respect to all operators, the level of approximation is measured by k. The size of the
basis and thé density matrix, and hence the complexity of the calculation increase
with the order of approximation k. For calculations in solid systems using two-body

interactions, £k > 3 is required to obtain meaningful results; when k£ = 3 the results
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are accurate to three figures, (4], and this is the order of approximation that will be

used here.

4.2 Parameters

The many entries of the density matrix are parameterized by a small number of
parameters. Each parameter q is the expectation value of an operator ¢ on the ground
state, q = (g, p), and q has a given symmetry if and only if ¢ does. The ground states
will share the symmetries S1-S5 of the hamiltonian, therefore the density matrix
entries will also satiéfy S1-S5, but not necessarily the nearest neighbour condition. In
this case, the operators g are invariant; under S1-S5 and may correspond to interactions
on up to four sites. Therefore the operators ¢ are products of pairs of the six basic |
operators:

L, blbs, bibl}, (4.4)

T
{eaia €b;5 Q5 a’ja aia], 4

where 1 < j.

By forming linear combinations of the above operators, six independent operators
which are symmetric or anti-symmetric under S4 and S5 are created. Since the
products of pairs of the basic operators must by symmetric under S4 and S5, only

operators with the same parity under these two transformations interact. Therefore
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the operators are grouped together according to their parity under S4 and S5:

S4 | S5

+ | — | e, and (ala; — aia;r-) + (blb; — bib})

— | = | fi, and (ala; — aia;‘-) — (blb, — bib;-) (4.5)
+ | + (ala; + aia ) + (blb; + b,-b;r-)

- |+ (afaj + a;a ) (bTbj + bib;f-)

The parameters are sorted into different types, according to the number of sites which
are occupied. The basis operators ¢; have degree less than or equal to three and the
products q}\ g; have degree less than or equal to six. Since the parameters must be
invariant under S5, they must be degree zero or degree four: they occupy four sites

or fewer.

The parameters must be translationally invariant, so indexing by the offset between
the occupied sites is natural. The parameters have both local and global representa-

tions, for example,
1A

a(j) IAI Za’z (4.6)

where o;(j) = (ei€i+;,p). The global a(j) corresponds to a general ionic electrostatic

'interaction between two sites separated by distance j.

Zero and One Site Parameters

Of the two-body, S1-S5 invariant operators, only the identity is a zero-site operator,

and e, e, is the only single site operator. The corresponding parameters are
1= <1ap>7 N; = <eaiebiap>' (47)
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The parameter N = I_fl\—l Y~ N; corresponds to the operator e, ey, + €q,€s, = Ef € Hip
since
1 A 1 |A| |
N = m Z(eaiebi,lﬁ = 2—IT\T Z<e‘”ebi + €a;41 €011 D) (4.8)
=1 i=1

Two Site Parameters

The operators on two nearest neighbour sites have been enumerated in chapter 2,
extending these to the case of two arbitrary sites is straight forward, and involves
the addition of different scale factors for the different operators. The five two site

parameters are given by

(eieivjrp),  Bild) = 2<O-zTUi+j + UiUZTH,P), (4.9)

(fifirss Py 6:(F) = 2(r)mipy + TiTiT-{-j)p)a (4.10)

a;i(f) =

Yi(J) =

el R N

and
i(3) = (€ + ausy)(blbias — BibLy5) + (es, + en,)(alasy; — aialyy),p), (411)
where 1 < j < % The offsets 7 > l%l do not correspond to new parameters since
o (j) = <6i6i+j,P> = <6i+j€i,p> = <ei+jei+j+(\/\|—j)ap> = ai+j(|A| - 9)- (4.12)

That is, any parameter with offset j > |A|/2 can be written as a parameter with

offset |A| — 7 < |A|/2.

Three Site Parameters

There are two types of products which result in three site operators: the products of
an electrostatic operator and a transport operator or the product of two transport

operators where two sites overlap.
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The three site parameters have two unpaired spin operators, say on sites 4; and 43, and
a paired operator, say on site i3. There are two possible arrangments of the paired
and unpaired operators. The first arrangement corresponds to the situation where
the paired operator is between the unpaired operators, ¢; < i3 < 1o, while the second
arrangment corresponds to the case when the paired spin is outside the unpaired
spins, i1 < iy < i3. Let j; = |ig — 4] be the offset between the unpaired spin sites
and let jo = |i3 — i1]. Then 1 < jp < jp/21if 4y <3 <idgor 1 +1 < jo < (A +72)/2
if 4, < iy < 3.

There are four types of palred operator e, fz, 0; and 7;, and each of these correspond
to a dlfferent type of three site parameter, E F,S or T repectwely Once the paired
'operator has been specified, the possible unpaired operators are known. Since there
are two arrangments for each type of operator, there are eight three-site parameters.
Symmetrizing the parameters over S1-S5 is straightforward. The only special case
is S2, which reflects the paired spin through the transport bond 7;. The three-site

parameters are given below.

Ei(ji,f2) = ((alairs, — aial,; +blbivs, — bl ) (i, + €inimsa) P,
Fi(j1,52) = ((alaiv, — aialy, = blbirsy + bl ) (Firsa + firsamza) D),
vsi(j17j2) = ((a ijﬂl - b: :r+gl)(‘7;r+jz + U§+j1—j2)>p>

+((Bi8isgy — Aibisi ) (Gitgy + Titi—ja), D)
Ti(j1,52) = ((albirj, — biales) (Tiwsa + Tivsuosn)s D)

H{((Olairs, — aiblyy) )y, +7hssi)ip)s
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Four Site Parameters

Degree four operators on four sites always involve four unpaired operators. There are
two different cases to be considered, when all four operators share the same spin and
when there is one spin-up and one spin-down creator-annihilator pair. The latter case
will be treated first - it is more general since there are additional symmetries when

all spins are alike. In total, there are four types of operator, A, B,C and D.

Let the sites i; < 45 < i3 < 74 be ordered so that
ik=i+j1 +j2+...jk_.1, (413)

where j; < js and [i4 — 91| > J1,J2, J3. There is no ambiguity in doing this as long
as the two largest gaps are not equal and adjacent. The parameters are indexed by

J1, j2 and js, but they will be written using 71, 42 and ¢35 to simplify their presentation.

To index the parameters which are invariant with respect to S4 and S5, label them by
operators where #; is occupied by af. The following notation is used for the parameter:
if the first spin-down occupied site is a creator, the parameter is type C, if it is an
annihilator, the parameter is type D There are three subtypes within each these,

depending on the location of the spin-up annihilator, a.

Cli(jl,j2,j3) = (a azzb b;, + a;a; bleL —f—bwa Q;, Ay +bib12a,-3a;~r4,p>,
C2(j1,darjs) = (albl asbi, + ashial bl + blal bj,as, + b,a5,0], ., p),

zzg

C3i(j1’j2;j3) = <a b btaai4 + azbzzb;rgazq + bza’zzaz.’SbM +b; 1 Qiy G Igbzup)

Rg
Dli(jl?j2ﬂj3) = <a azzbzsbL + a0 T bT b14 + bTblzazga + b bT a‘T a147p>7

12 713 22 73

12 'LS 22 713

D2;(j1, Ja, J3) = (agbi,‘,aisb + a;b! al by, + bal B! ai, + bjaz2 s M,p),
D3i(j1, 52, 53) = (albi,bl,ai, + a:blbial, + bial ai,bl, + blai,al bi,, p).

60



When the two largest gaps are equal and adjacent, it is always possible to write the
parameter as a C type parameter. Thus, there are six parameters of this type except

when j3 = (|A] = 71 — 72)/2, in which case there are only three.

When all operators have the same spin, the parameters, called A and B and cor-
responding to the parameters C' and D respectively, simplify due to the additional

symmetry, meaning that there are only three independent parameters. For example,

B3i(j17j2aj3) = (aglau)(a’ha'zg) = (a’;!.la”iz)(a’ggai‘l) = Ali(jl)j2’j3)' (414)
Similarly,
A3i(J1, g2, J3) = A2:(j1, J2, 53) and B2;(j1, J2, js) = B1i(J1, J2, J3)- (4.15)

Whenever j3 = (|A] — j1 — ja)/2, there are fewer parameters since B1;(j1,J2,j3) =
A2;(j1,j2, 73). Thus there are nine parameters on four sites, except when j3 = (|A| —

J1 — J2)/2, in which case there are only five.

4.2.1 Restricted Parameters

This is a complete list of parameters needed to express the three-positive density ma-
trix. However, restricting the density matrix so that only two-site parameters appear
gives a significant simplification without affecting the accuracy of approximation of

the ionic or valence ground states.

“Any degree four term qzT g; which occupies three or more sites necessarily has one site
occupied by a single annihilator or creator. This unpaired spin sends everything

to zero or changes the occupation of the site. There are four possible operators and
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occupations on this site.

al0) =0, altl) =1, alt)=10), ai| 4) =0,
bif0) =0, b|N)=-1),  blt)=0, bi| 1) = |0),
dify=11), ot =0, dfIN=0 dld) =),
olB) =14), bl =0, Bt =—[1), bl =0

(4.16)

Therefore the operator q;‘ g; changes the occupation of the site and necessarily changes
the subspace of the ground state if it is a pure ionic or valence state. For any ionic

or valence states w!, ¥l or ¢, ¥y,

(@) = (Wilglq;lv5) = (¥ lalgslvy) = 0. (4.17)

Thus p;; = (p, qzT ¢;) = (g) = 0 when p corresponds to a pure ground state. Therefore
restricting the density matrix so that all three and four site parameters are zero does
not affect the accuracy of the approximation of the ionic and valence ground states.

1.

If ¢ is not pure, then there are ¢ = g¢;q; such that g¢ is in the same subspace as
Y. However, the reduction in the size of the density matrix justifies setting the three
and four-site parameters equal to zero for all calculations. Since these interactions
model long range correlations, and the hamiltonians are nearest neighbour; the effect

of excluding these terms is small.

The entries of the density matrix are parameterized by the expectation values of all
operators which are invariant under S1-S5 and can be expressed as linear combinations
of terms which occupy at most two sites. This restriction does not compromise the
ionic or valence ground state solutions, but greatly reduces the complexity of the

calculation. In this case there are §|A| + 2 parameters.
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4.3 Symmetries of the Hamiltonians

Particle Number

Each operator ¢; has an associated two-vector called the Particle Number. PN(g;) =
[z,y], where z,y € Z are the net change in spin-up and spin-down electrons respec-
tively. For example, PN(g;b;al) = [0, —1]. Since all terms in the hamiltonian are
spin particle preserving, PN(h) = [0, 0], operators ¢; and ¢; will interact if and only
if

[0,0] = PN(glq;) = PN(g]) + PN(g) = ~PN(g:) + PN(g;), (4.18)
or PN(g;) = PN(g;). By ordering the basis according to particle number the density

" matrix becomes a block diagonal matrix.

Particle-Hole and Spin Symmetries

All pure two-body hamiltonians are invariant with respect to the Particle-Hole trans-
formation, Trg(h) = h, and spin-up, spin-down symmetric, Ts(h) = h. Suppose

PN(g;) = [z,y], then

PN(Tpu(q)) = [~z,-y] (4.19)

PN(Ts(@:) = [y,z]. (4.20)
These symmetries mean the blocks with particle number
[iL', y]a [—'113, —y]> [y) ZL'] or [—y) -—ZC] (421)

are identical; removing duplicates does not affect the accuracy of the solution. With-

out loss of generality, include only those basis elements ¢; such that PN(g;) = [z, y]
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where z < y and 2 4+ y < 0 in the basis. In this way, the size of the density matrix is

reduced by a factor of 4.

Operators on 2 or 3 sites

There are two types of operators in the basis for three-body operators, those which
occupy three distinct sites, and those which occupy less than three. An operator on
three sites (4, j, k) interacts only with other (i, 7, k) operators, since the product of
two three sites opérators on different sites would occupy more than two sites, but the
~ parameters are restricted to less than two sites. Thus, the matrix breaks apart into
blocks: one large block for the opefators on two sites and one block for each set of

three sites (4, j, k).

With this information, more can be said about the blocks which appear in the reduced
density matrix. These blocks are either three sites or two sites, and they are separated
by particle number. For the three-body case, all blocks have one of four possible

particle numbers:

PN(g) € {[~3,0], (=2, =1}, [-2, +1], [~ 1, 0]}. (4.22)

4.4 'Three Sites Operators

Consider the three sites (i, 7, k). There are a total of 4% = 64 operators on those three
sites (choice of a, af, b, b' at each site). However, only 16 of these are needed to
construct the matrices, due to the paricle-hole and spin symmetries. The following

table shows how these 16 are sorted by particle number.
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PN Operators Size

[—3,0] {a:aja} 1
-2, —1] {a;a;bx, abjar, bajak} 3
-2, +1] {aiaij, aib}ak, bgajak} 3

[-1,0] | {aia;al, aib;-bk, bla;by, a;b;bl, aia;ak, 9

bgbjak, biajb,t, bib;-ak, azajak}

The density matrix contains four blocks for each set of three sites (¢, 7, k). The number
of sets of sites grows quadratically with |A|, and adds significantly to the size of the

density matrix.
Weights
By ring symmetry, the parameters which appear in the blocks for sites (i1, i1 + J1, %1 +
J1+J2) and (i, 42 +J1, 12+ J1 +j2j are equal since the offsets j; and j, are equal. Thus
the blocks themselves are identical. Instead of including the same block repeatedly
in the density matrix, each block is multiplied by a weight according to its frequency
in order to preserve the trace scalar product. For example, on a ring of size |A| = 6
there are only three different arrangements of offsets: (1,1), (1,2) and (2,2). The
ﬁrst,o’ccursv6 times, since the central site can be any one on the ring. This block is
multiplied by a factor of wt = \/67 = /3. The second occurs 2 x 6 = 12 times,
because the central site can be any site on the ring, and for each choice we can decide

to have the nearest neighbour site to the left or to the right. In this case, wt = /6.

The last only occurs twice, for (1,3,5) and (2,4,6), wt = 1.
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Matrix Entries

The matrix entries for these blocks can now be determined. For example, consider
the operators with PN = [-2, —1] on sites ¢, j, k. There are three operators of this

type, {bia;ak, a;bjar, a;a;b; }; they form a 3 x 3 block.

The (1,1) entry is given by:

<(b,~ajak)“(biajak),p) = (b}bia;aja,tak,p)

=L (Q+e—f)1+ei+f) (L +ex+ fi),p)

+ ((1,p) + (eiej, p) — (fifs, p) + (eiex, D)

C(fiferB) + {eem ) + (s o 2Y)

il
ool

(L + oy = vi5 + Qe = ik + ik + Vjk),
since one-body (e;, f;) and three-body (e;ejex, .. .) do not satisfy S5.

The coefficient of the identity is é, but will be normalized to 1. All 3-site operators
are multiplied by a factor of V8 = 2v/2. A normalizing constant is also be added to

the two-site operators, see section 4.5.

The first entry is given by
<(2\/-2_biajak)f(2\/§biajak),p) =14 ;= Y5 + ik — Yk + Ok + Viks (4.23)
and the (1,2) entry is given by:

((2V2biajax)! (2V20aibsa1),p) = 8(blaialbjalax, p)

=4(rnrf(L+ex + fi),p) = Gy (4.24)
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The complete 3 x 3 block for PN = [~2, —1] on sites (¢, j, k) is:

1+ oj + 7vij + o6k — ik + Gk — Vik dij Oik
0ij L+ iy = vij + 0k + Yik + 2k — Vi 0
Oik 9 1+ g = i + ik — Yie + Qi + Vi |
(4.25)

4.5 Two Site Operators

If there are two sites, and three anihilation or creation operators, one site has an
unpaired spin. The other site must have one of the following operators, defined in

chapter 2:

€ = (eai + eb¢)> fi = (eai - ebi); (426)

g; = a,-bi, T = a,b:f (427)

These are the paired operators, and the basis for the two-sites operators is formed
by taking the product of a single annihilation or creation operator and one of these

paired ‘operators.

The operators e¢; and o; act on ionic sites and f; and 7; act on valence sites. Two
large non-interacting blocks are formed by grouping the operators whose paired spins

are ionic togethér and those whose paired spins are valence together.

The two sites basis elements are then ordered by particle number. Both the ionic and
valence cases contain a block with particle number PN = [~1,0]. These blocks are
formed from elements of the like {a;e;,bjo;} and {a;f;, bi7;} respectively. The other
ionic elements, {a;0;} form a PN = [-2, —1] block, while the other valence elements,

{a;7;} form a PN = [~2,+1] block.
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4.5.1 The [-2,+1] operators

The PN = [-2,+1] operators split into |A| blocks depending on the site of the
unpaired spin. By ring symmetry, any arrangement of sites can be translated so that
the offsets are preserved but the unpairéd spin is on site 1. The parameters in the

block are unchanged by this translation. Thus this block need be included only once.

In all of the two-sites blocks there is one more adjustment to the basis elements to be
made. Because of ring symmetry, terms such as a;e;4; and a;e;—; are related. To use
this symmetry, include in the basis terms of the form a;(e;+; & €;—1). There are now
two non-interacting blocks for each particle number, one of which includes all terms
whose paired spin coefficients are +1, and one block containing those terms where

one paired spin has coefficient —1.

The basis elements for the different blocks are given below:

[-2,-1] | 2a1(02 + o)), 201(03 + OA-1)s - - -, 2\/§a101+1_,2x_[,
[-2,-1] 20,1(0'2 - O”A]), 20,1(0'3 - OIAI"l)’ ey (428)
[-2,+1] | 2a1(72 + 7a)), 201(73 + TjA|-1), - - - 2\/§a17'1+%1,

[—2,+1] 2&1(7'2—7"1\'), 2041(7'3—7'|A,_1),

Matrix Entries

As an example, the matrix entries corresponding to the PN = [—2, —1] operators

{2a1(02 — 0}n)), 2a1(03 — OA=1)5 - - -} (4.29)
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for a ring with six sites will be formed. In this cases, there are only two operators,

201 (02 — 06) and 2a1 (03 — 03). The diagonal entries are

([201(03 = 06)){[2a1 (02 — 06)],p) = (2(1 + &1 + f1) (o302 + odos ~ ol — ofoa), )

= 140 - %2—, and (4.30)
<mM@—%WWM@—%mm:=1+m—%. (4.31)

The off-diagonal term is

B — 53.

(201 + &1+ £1)(0303 + odos — olos — ojos),p) = ——

(4.32)

4.5.2 The [-1,0] operators

Allof the PN = [—1, 0] operators are necessary, even though the sub-blocks generated
by operators with different unpaired spin sites are identical as in the PN = [-2, £1]
case. All operators are required due to non-zero interactions between operators with
‘different unpaired spin sites because of the mixing terms. These two large blocks are
of the order O(JA|?). It is still possible to exploit the ring symmetry in this case, by
introducing global (or symmetry adapted) basis elements for this part of the basis.
Using a discrete Fourier transform to symmetrize over the site of the unpaired spin,
this' matrix breaks into |A| diagonal blocks. The symmetry adapted operators for
ionic pairings are

1A

A = \/TA_Ze—W 2aqq, (4.33)
|A]
A;Hc = Z i \/—aq(eq+kieq k) (4.34)

\/W
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|A|

1 -
AP = \/\_]\—E :e ipgr’ 2a,e e
Al

B;Ek = __‘A Z —ipqr’ 2bT(oq+kiaq k)

IAI

B} = \/|_A_Z e~ 22}

g+15h

and for valence pairings are

1Al
s - ,m > e 20y
. \AI
CI;HC \/'— Z Rl \/—aq(fq-l-k + fq )
N |A|

Cp* \/]K_ Z el 2aqfq_|_l_i,

|A|
1 —1
DF* = > : PIT b (Tgak £ Tg—k),

N

lAi

Jox m—z 5 B,

where 7' = 2= and k =1,

|A]
Al , 5 — L

4.6 Summary

A basis of degree three operators has been constructed and ordered.

(4.35)

(4.36)

(4.37)

(4.38)

" (4.39)

(4.40)

'(4.41)

(4.42)

The basis ele-

ments fall into two general types, three sites and two sites operators. There are four

blocks for every arrangement of three sites, each with a different particle number. For

three sites (4, 7, k), the subbases of operators are given in the following table.
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PN Operators

[-3,0] (2v2a;a5a;}
[—2, —1] {Qﬂaiajbk, 2\/§aibjak, 2\/_2-biajak},
[—2,+1] {2\/_2_aiajbz, 2\/§aib}ak, 2\/§b;rajak},

[~1,0] | {2V2as05a], 2v/2a;blb, 2v/2b}a;by, 2v/2a:b;b], 2v/20:alax,
Qﬂbfbjak, 2\/§biajbz, 2\/§bib;r-ak, Zﬁajajak}.

Table 4.1: Subbases for the three-site blocks.

The two sites operators can also be grouped to give the density matrix block diagonal

structure. The subbases for the two local blocks, those with PN = [—2, +1] are

PN
[-2,-1) | 2a1(02 + oja)s 2a1(03 + Opap-1), -+ -, 2\/_2_a101+1%[,
[-2,-1] 2a1(02 — 0|a)), 2a1(03 — O)A|=1)s - +» (4.43)
[-2,+1] | 2a1(m2 + 7)), 201 (73 + TjA=1)5 -+ - 2\/—2_a1'rl+1%L,
[-2,+1] 2a1 (T2 — Tj})s 201(T3 = TiA|=1)s - - -

The organizational structure for the PN = [-1,0] blocks is given in table 4.2. The
block type is notation included to link this table with table 4.3 where the basis

elements for the different blocks are presented.:

From this table it is clear that the number of PN = [~1, 0] two-site blocks,
2% (2+2+ (JA| = 2)) = |A] + 4, (4.44)

grows linearly with the lattice size |A|. The largest block has size 2|A| — 1 which is
linear in |A|. The subbases for the different blocks with PN = [~1,0] are given in
table 4.2.
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I/V Valence Tonic
Subphase Const/Alt Other | Other | Const/Alt

+/- + - - +

Block Type | VC/At | yC/A~ | O IO | [C/A- | [ClAt

Block Size | |[A|4+1 | |A]=2 |2|A]=1]|2|A]-1|]|A]-2||A]+1

Number 2 2 Al =2 |Al=2] 2 2

Table 4.2: Types of PN = [—1,0] two-site operators and the size of the blocks.

The Full Hamiltonian

Early calculations by Jin ([4]) were confined to hamiltonians h;y = a;E! + B;T7.
Extending this to the case of an arbitrary hamiltonian A € H increases the number of
parameters in the density matrix, the size of the density matrix and the time required

to find solutions.

The most important distinction between these two cases is the number of parameters
which are needed. For the case of ionic hamiltonians, only %—l -+ 2 parameters are
required, while the number of parameters grows as |A|? in the case of an arbitrary
hamiltonian h € H. By restricting to parameters on less than two sites, the number

of parameters is reduced to 3|A| + 2.

If all parameters are used, the density matrix is made up of four large, diagonal blocks.

By excluding those parameters on more than two sites, these blocks are divided into
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Block Type Operators
o+ 0 1 2 3
V C()a 0 Ljﬁ CO 7DO’ 7_l)oJAL
B - F-1 p- —~(1g'-1)
VC C10 ’ ’ Co : ,u\_[DO 1, R DO le
v %, Cyy ooy Oy Dy -y Dy
2 2 3 3
1A A
- -1 ~(l4-n) " py —4l
v oz, .. o par L prl
2 p] 0} 3
- 14l _ 181 A
Vp CS) C’}) Cp 1, ey Cp;}l’ D;) DIJl) ey .Dpl;, p: 1, . 151_.1,
. = A
IpP Ag’Azlﬂ’Aplw"’Apz,BI,BPI,...,sz p=1, |_21_1,
- ~1 -(3l-1 oo —(lAl_y)
I AO""7AO J:A_LBO ,.,.,Bow
e+ AQ AL .. A, BL ... B
Ax LTl T Sy
I L;H),A% ,B;\"'”’Bii;_l.
14l 1A
JA+ A%, Aly, ... AR, Bly, ..., B
2 2 Z 2 7

smaller and smaller blocks and the largest block grows only linearly with the ring

size.

Even when using only the two-site parameters, the increase in size of the density
matrix when moving to the full hamiltonian poses serious computational problems.
The full matrix is ten times the size of the ionic matrix alone, and the largest block is
twice the size. The use of symmetrized basis elements gives a significant simplification,

but the increase in size means that calculations with the full hamiltonian require much

Table 4.3: Subbases for different PN = [—1, 0] blocks.

more memory than those for the ionic hamiltonians alone.

In the two sites case, the ionic and valence blocks are such that they have the same
structure, the only difference being that where the ionic block has ionic parameters,

the valence block has valence parameters and that the mixing parameters and the
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number parameter change sign. In the three sites blocks, the corresponding ionic
and valence parameters also appear together. In the 1 x 1 block, the parameters
always appear together in a sum. Where one 3 x 3 block has valence parameters,
the other has ionic parameters. The 9 x 9 block can be rearranged so that the ionic
parameters appear where the valence parameters once did and vice-versa. Thus for
every ionic ground state there is a corresponding valence ground state with the same
energy. When the ionic and valence coefficients are exchanged in the hamiltonian,
the ground state will have the ionic and valence parameter values exchanged but the
energy will be equal. Thus, the size of the basin of attraction for the constant and
alternating superconducting phases is equal to that for the constant and alternating

anti-ferromagnetic phases. This is the same result obtained in chapter 2.
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Chapter 5

The Calculation

' in this chapter we present the programming problem to be solved and explain the Mat-
Lab routines which are used. The results of the calculations are presented, including
the effects of requiring a half-filled shell structure. The phase structure is examined
using hig = B;T? + ByT2 + BuTe and hyy = arE? + B1T7 + avE% + ByTE + apE?
for fixed ay and ay. Finally, the conclusions are summarized and we discuss the next

steps in density matrix research.
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5.1 Formulation

The ground state reduced density matrix is found by minimizing the energy over all

possible density matrices.
min E(p) = (h,p) = Tr[HP], P € P, (5.1)

where H is a matrix representation for h and Py is the space of positive semi-definite

matrices with the same structure as the density matrix.

Let H be the space of matrices with the same block structure as the density matrix.
Let #. be the set of positive semi-definite matrices in #. Not all elements of . are
possible density matrices, only those with the same linear relationships between their
entries. There are thousands of entries in the matrix, but only §|A| + 2 parameters,
so there are many of these linear relationships. Let the Pauii Space, S, be the space
such that all z € H which satisfy these relationships satisfy 2 € #NS+. The solution
satisfies P € H, N S*; therefore projecting h onto S+ will not affect the solution:
Assume h L S, and assume h L 1. (This last condition is equivalent to a translation
of the spectrum, so the lower bound method is still applicable.) Thus H = hUIUSUK
where K is the space of matrices which do satisfy all the required linear relationships
and are orthogonal to h and 1. Then Py = {P € hU1U K|P is psd.}. The problem
is solved using the following theorem which gives necessary and sufficient conditions

for the optimum, [4].

Theorem 5.1 At the minimum, there exist positive semi-definite matrices z, and y,

such that

z.€ H,NSY, (Lz)=1, (5.2)
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v € H.NK+,  (1,5.) =1 (5.3)

and Z,ys = 0.

K is much smaller than S, so solving the dual problem is much faster than solving

the primal problem. The dual problem is given by

min  (h,y)
st (Ly =1 (5.4)

(ki,y) =0 V kiEK

Yy is positive semi-definite.

" The problem is now to find a basis for K in order to express the linear conditions on

y. The positive semi-definite condition will be handled by the software.

5.2 Solution

There are many variations on the optimization problem which may be solved. These
involve changes in ring size, whether to adapt for half-filled shells and whether to
include all interactions or only those between ionic sites. Only after that information

is known can the hamiltonian coefficients be specified.

To solve the problem, a basis for K is required. To this end, a natural basis for
all matrices in H N St is created. This space is spanned by AU 1U K and contains
matrices which may or may not be positive semi-definite. The natural basis is created
by setting each parameter equal to 1 while the others are 0 in the formula for the

density matrix. These will satisfy the required linear relationships and span K. There
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are 2|A|+ 2 elements in this basis when all interactions are used and |A| + 1 elements
when only the ionic interactions are used. This natural basis is converted into an

orthogonal basis using QR decomposition.

Imposing Half-Filled Shells

It is possible to restrict the problem so that all solutions will satisfy the half-filled
shell condition for pure states, ng = n4, and ny = ny. This was originally done
to speed up the convergence, and while it does not affect the ground states of the
superconducting or anti-ferromagnetic hamiltonians, it does impact on the ground

states of the other‘phases. B o o - R | |
If a half-filled shell structure is being imposed, the first basis element b; is chosen so
that (b;,dP) = 0 guarantees a half-filled shell. Since the basis set is orthogonal, and
since P € span{b; ...bx}, P is guaranteed to be a ground state with a half-ﬁlléd shell
if P € span{by...by}. If the element b, is removed from the basis the denstiy matrix
will satiéfy the half-filled condition automatically. The remaining basis elements are
ordered so that the first two elements are the identity and the hamiltonian and the

rest span K.

Consider (X1 e;,d) = nyy —ng and (XA f;,d) = s — ny. Then

1=

1A [A]
m=ne = (end) =0 (el d) =0, 59
i=1 =1
[A]
m=n, = (Q_f)%d =0, (5.6)
=1
and
[A] '
(Z &) = erer+etert ... +erep +eer + ...+ epnen
im1
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|A]
1
(O e®d) = IAIGE+N)+20+.. 4200, +ow).

=1

Enforcing the half-filled shell condition is accomplished by requiring

A [Al
(O e+ (O f)%d)y=0. (5.7)
=1 =1
That is,
(d,1+2a1+...+a1%+271+...+2’y%1_1+7j%[)=0. (5.8)

By removing by = 1 + 201 + ...+ a + 271 + ... + 27)a_; + Vi from the basis for
2 2 2

K, the density matrix will satisfy the half-filled condition.

Determining the Phase

Once a basis for K has been found, the problem is converted into standard form and
solved. The results which are recorded are the hamiltonian coefficients and the values
of the parameters. The reduced density matrix itself can be recreated by subsituting

the parameter values into the formula for the density matrix.

The phase can easily be determined from the parameters. If N =1 the ground state
is ionic, if N = —1 the ground state is valence, and if |N| < 1, the ground state is
mixed. If the ground state is ionic or valence, the corresponding transport parameter
is either positive, negative or zero. If it is positive, the ground state is an alternating
subphase state; if it is negative, the ground state is a constant subphase. The mixed
transport term is never zero when |N| < 1. If N =1 but the ionic transport term is
zero, B; = 0, then the ground state is the vacuum state. If N = —1 and §; = 0, the

ferromagnetic ground state is present.
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5.3 Calculational Results

This method was first tested on the case of the ionic hamiltonian alone, hA; =
arE" + B;TY, where data is known from Jin, [4]. The results agree with Jin and
the convergence is very fast. Rings up to size |A| = 100 were tested, far surpassing

earlier calculations.

The method was then extended to calculate ground state energies for arbitrary two-
body spin-invariant nearest neighbour hamiltonians. The amount of memory needed
to store the form of the density matrix and the basis for the K space increased
dramatically and this limited the size of the rings which were usable to |A| < 16. The
time also increased and rings with |A| < 12 sites were the largest that could be used
to extract useful results on the phases. The results for ionic hamiltonians agreed with

our earlier results and parallel results for valence hamiltonians were also obtained.

Half-filled Shells

The half-filled condition affects the ground states of the electrostatic and mixed op-
erators. The ground state of h = a;E? is a half-filled checkerboard state when a; > 0
or the vacuum state when a; < 0. Thus, when a; < 0 the half-filled condition is not
satisfied. When the half-filled condition is not enforced, the ground state returned
by the program for all hamiltonians h = a;E? + 8;TZ, where ay < —|f;| < 0, is the
degenerate gound state between the vacuum and all filled states. If || > —5;, the
program returns a half-filled state whether the half-filled condition is enforced or not,

confirming other results which show that the superconducting phase is half-filled.

When the half-filled condition is enforced, no mixed phase ground states are observed.
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To understand this, consider the case of a pure mixed hamiltonian, h = T2,. As
presented in section 3.2, the mixed states do not satisfy the half-filled condition for
pure phases and the program terminates with errors if the half-filled condition is

enforced when h = T%.

Since enforcing the half-filled condition does not improve the accuracy of the solution,

nor the speed of convergence, this condition is not used in the calculations.

Rembving Blocks

Some blocks remain positive definite, no matter which hamiltonians are used. These
blocks can be removed from the denstiy matrix calculation without changing the
| accuracy of approximation. The three sites blocks for non-adjacent sites are an ex-
ample. Since the hamiltonians are all nearest neighbour, ignoring the interactions
between three distant sites affects the energy very little, the approximation is equally
accurate whether these blocks are included or not. Removing these blocks simplifies
the density matrix greatly, especially for large |A|, since the number of three sites

blocks grows quadratically with |A[.

It was expected that the global blocks for the higher phase factors would be remove-
able, but this is not true. This means that the number of blocks in the matrix grows
linearly with the ring size and that the number of non-zero entries in the matrix is
O(|A[?). Compare this with the case of the ionic interactions where the number of

blocks is constant (6) and the number of entries is O(]A]?).
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5.4 Computational Results on Phases

An arbitrary, hamiltonian h € H coresponds to a given bond hamiltonian
hia = 01 B} + 81T} + avE} + BvTy + oo B + BuThy. (5.9)

By varying the coefficients oy, 8r, av, By, ap and By, the ground state for any two-
body hamiltonian can be determined by calculation. The space of hamiltonains is six
dimensional, but hamiltonians which are related by a positive constant have the same

ground states. The hamiltonians h € H N S° satisfy the normalization condition
af+ B +ap+ 0y +ai+ By =1 (5.10)
and form a five dimensional space which contains all of the information of the full

space. That is, H(/N) has dimension n in this space if and only if H(N) has dimension

n + 1 in the space of full hamiltonians.

A minimum of 50 data points in each dimension is required to obtain reasonable ap-
proximations to the locations of the phase boundaries. Exploring the five-dimensional
space of hamiltoninans is not practical. Instead, three dimensional families of hamil-
tonians which intersect at least two subsets H(N;) and H(N3), and hence contain a

phase boundary, are plotted individually.

The phase boundary of greatest interest is the boundary between the pure phases
and the mixed phase. If the location of this boundary changes with the dimension
of the lattice such that the pure phases occupy more area in two dimensions than in
three, this would explain why certain oxides are high temperature superconductors.
Although this boundary is not determiﬁed exactly by the approximate solutions re-
turned by the program, the results obtained here provide a lower bound on the area

occupied by the pure phases.
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5.4.1 Transport Hamiltonians

Consider the transport hamiltonians
hio = BiT? + ByTe + BuTy, where 87 + 8o + B3 = 1. (5.11)

This space of hamiltonians is two dimensional and can be considered the surface of
the unit sphere with the three axes z, y, z labelled by 55, By, By In this case, let

h(8, ¢) be the hamiltonian as a function of the polar coordinates ¢, § where

B = cos(d), Br = sin(¢) cos(8), By = sin(¢) sin(h). (5.12)

There are six subphases which are ground states for hamiltonians in this family, as

listed in the following table.

h 'T’ -t TV -TV. ™ -T™

PhaseiASC CSC AAFM CAFM AM CM

h(6, %) has Bar = 0 and must have a superconducting or an anti-ferromagnetic ground
state. The same holds for small values of | 3)s|, since these phases have full dimension.
Let M be the supremum of numbers M such that 0 < |8y;| < M implies N, is pure.
Let ¢! = arccos(M!). This region of pure states, —M; < By < M, surrounds the

equator of the sphere of hamiltonians.

Since the ground state of £ is a mixed ground state, as |¢ — Z| is increased, all
hamiltonians, regardless of 6, cross a boundary into the mixed phase. Let M? be
the infimum of numbers M such that |8y| > M implies h has a mixed ground state.
Let ¢ = arccos(M?) < ¢'. The values of ¢* and ¢? are important in determining

a dimension effect in square lattices. @¢' — #? describes the relative strength of the
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coherence in the pure versus the mixed phases. The values of ¢! and ¢? are given in

the following table for rings of size 4, 8 and 12.

Al ¢ ¢’
4 109081 0.7363

8 | 1.2640 1.1413
12 | 1.2885 1.1658

The pure states and their boundaries have been described in chapter 3. When
Br > |Bv|, h has an alternating superconducting ground state, while hamiltonians
with —8; > |Bv| have constant superconducting ground states. When |By| > |81]

the ground states are anti-ferromagﬁetic. The ionic-valence boundaries lie along the
curves |8;| = |Bv|.

The ground states of A(6,5) = cos(6)T7 + sin(9)T are the same ASC states for all
~% <6 < %, since | cos(f)| > |sin(8)| > 0 for all of these 6. However, the expectation
value of TZ is zero on the ASC states, therefore the total energy is lower when 6 = 0

than when  ~ I, since 87 = cos(f) has a maximum at # = 0. This makes the

e
hamiltonians with |3;| & |By| much more susceptible to perturbations, not only from
TZ, but also from TZ. As By is increased past M*, the hamiltonians near the ionic-
valence boundaries, §# = I,3 3T T have ground states which are mixed while the
hamiltonians with 8 = 0, %, , 521 will have pure ground states until 83 > M?2.

Consider the figure 5.1 which displays the different phases by different colours. This
figure only displays a small portion of the surface; all possible transport hamiltonians
can be obtained from these hamiltonians and the transformations 7% ;/y and T2 —
—T?%.. The portion displayed is for 0 < 6 < 7/4; 8r > fv > 0 throughout this region.

It does, however, show that the ionic to mixed boundary is not constant.

84



/"o

0.3+

BEEE
gel
‘|‘Ill

tnesiE
NRARATE
\‘mw‘;!

0.2+
0.1

T

[
agens

{BES
{1

ASC Phase
B B|

T T
i

[
[11]

111

1
LT

H T
{FH
HEEETH
figtad
HHHHH

0.8

0.6 1

Figure 5.1: The phase structure for h = 8;T? + BvT% + BuT%

The quantum numbers of the mixed phase states are not determined correctly by this
level of approximation, except at the poles h = +£T%. The parameter N should take
on discrete values since N = % and there are a finite number of sites. However,
the values returned for NV range between -1 and 1 and are not discrete. This may
occur since the level of approximation being used (k = 3) is not accurate enough,
because the parameters with unpaired spins have been removed or because of the

very large degeneracy in the mixed ground states.
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5.4.2 Tonic to Mixed Phase Transition

To understand this phase transition in greater detail, including the effect of the elec-

trostatic terms, consider the hamiltonians
h(6, ¢) = (8, 9)EF + Br(8, 9)T7 + Bu () Ty, (5.13)

where a;(8, ) = sin(@) cos(8), B;1(6,¢) = sin(¢)sin(f) and Bp(¢) = cos(¢). The
results which hold for this ionic-mixed phase transition will also hold for the valence-

mixed phase transition because of the symmetry between the ionic and valence terms.

The ground state energy of h(6, §) is proportional to the stability of the pure phase
as |Ba| is increased. h(f, %) has its lowest ground state energy when 6 = 1.2252 or
0 ~ 7 — 1.2252, and its highest ground state energy when 6 = 7 or 6 = %{1 Let M3
be the infimum of numbers M such that h(%, M) has a pure ground state and M 4
be the supremum of numbers M such that h(1.2252, M) has a mixed ground state.

The values of ¢¢ = arccos(M?) are given in the following table for three different ring

sizes.
AL} ¢° ¢*
4 | 1.2027 0.6995
8 | 1.1781 1.0308
12 1 1.1781 1.0799
In the two tables above, the values for the |A| = 4 case stand out as being very

different than those of the other two cases. In fact, ¢' < ¢° in this case, while
' > ¢% in the others. This suggests that the four sites case does not accurately

capture the physics of the system. Note that ¢ > ¢ > ¢4“for every ring size, This
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is because the ¢* corresponds to By = ay = oy = 0 while #* and ¢* correspond to

the minimum and maximum over hamiltonians with Sy = ay = 0.

Using the data from the 12 sites case, the area occupied by the pure phases is between

27% and 47% of the total. This is divided equally between the four subphases.

5.4.3 Phase Boundary Results

To visualize the phases and phase boundaries which exist, consider the three dimen-

sional space of hamiltonians
h=arE? + BiT? + ayEL + By Ty + ao ER, (5.14)
with oy, ay fixed. The three spheres
ar=ay=-1, ar=ay=-05, ar=ay =0 (5.15)

* will be discussed in detail.

FM Phase

VAC Phase

Figure 5.2: Phase structure for h € Hp when oy = ay = -1
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When o = ay = —1, there are no superconducting or anti-ferromagnetic states since
ar = ay < —|B|,|Bv] < 0 for all hamiltonians. The boundary between the vacuum
and ferromagnetic phases occurs at ap = 0, the equator. If oy or oy is decreased from
-1, the phase structure remains unchanged, while the location of the phase boundary

moves off the equator whenever a; # ay.

CAFM

FM
05

AAFM

Asc 054 cse

et vaAC

Figure 5.3: Phase structure for h € Hp when ay = ay = —0.5

To examine —1 < a; = ay < 0, consider a; = ay = —0.5. The phase boundaries
between ionic and valence phases are centered at the equator, oy = 0, but do not
occur there for all 5; and By. For |5;] > |ay|, the ground state is a superconducting
ground state. Therefore changing the coefficient §; affects the energy and increasing
Br at the expense of Sy causes the ionic-valence phase boundaries to move off of the
equator with the ionic phses occupying more space. Similarly for the valence cases.
The boundary between the vacuum phase and the superconducting subphases always

occurs at 87 = oy = +0.5.

Finally, consider oy = ay = 0.
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By P

Figure 5.4: Phase structure for h € Hp when oy = ay =0

~‘When a; = ay = 0, there are no vacuum or ferromagnetic phase ground states,
since |Br| > o and |By| > ay. The phase boundary between the superconducting
states to the anti-ferromagnetic states is centered at the equator, however the exact
location fluctuates as Sy and By change. The boundary between the alternating and
constant phase superconducting states occurs at 8; = 0. Since oy = 0, this boundary
is degenerate between all ionic ground states. When «; > 0, this boundary is the
checkerboard state and is not degenerate with the vacuum and all-filled states. The
checkerboard state does not have full dimension and the entire ionic portion of the

sphere is occupied by the superconducting subphases when a; > 0.

For all hamiltonians, adjusting a; and ay so that they are not equal will move the
ionic-valence phase boundaries away from oo = 0. However, the phase structure in

the ionic and valence regions is unchanged.
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5.5 Conclusions

Theoretical results on the possible phases and the dimensions of their intersections
were obtained. Any k < 6 pure phases share a boundary of dimension 7 — k£ and
this shows that any two phases share a boundary of co-dimension one, since H is six

dimensional. That is, a phase transition between any two pure phases is possible.

To implement the lower bound method, the basis of all degree three polynomials in
the annihilation and creation operators was ordered to give the density matrix the
simplest block structure. By restricting to parameters on two sites or fewer, the
blocks are further divided, greatly simplifying the calculation without sacrificing the
accuracy of the approximation of the pure ground states. Global basis elements were
used to reduce the size of the largest'block by a factor equal to the ring size. The size
of this block grows linearly with the ring size, but the number of blocks of this type
also grows linearly, so that the size of the density matrix as a whole is quadratic in

Al

The work of Jin was extended by implementing software routines which are capable of
enforcing positive semi-definite conditions and by using arbitrary nearest neighbour,
two-body hamiltonians. SeDuMi, a software program written in MatLab for solving
semi-definite programming problems was tested. The results were in agreement with
the results from [4]. Calculations on rings up to |A| = 100 were carried out using the

pure ionic hamiltonian and up to |A| = 12 were carried out using the full hamiltonian.

The mixed phase contains states which have equal numbers of ionic and valence sites
and states which do not. A complete analysis of the mixed phase was impossible due

to the degeneracy of the mixed states. However, useful results about the location of its
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boundary with the pure phases were obtained and provide a method to compare the
sizes of the superconducting phases in one, two, and three dimensional square lattices.
In the one-dimensional lattices, the two superconducting phases occupy more than

7.5% of the surface each and all pure phases together occupy at least 30%.

5.5.1 Future Work

This thesis is one step on the way to replacing the wave-function method with the

lower bound method of reduced density matrix theory.

~This calculation is limited by the amount of memory needed to store the conditions
on the dual matrix, so any advance in computing power will help. Using the full set
of parameters makes this problem much more difficult, and powerful computers such
as the HPCVL (High Performance Computing Virtual Laboratory) will be needed to
do these calculations. This will also allow larger lattices to be used. Recent results by
Mazzioti [9] show that programs‘ that exploit the particular structure of the density

matrix can significantly decrease the time and memory used over SeDuMi .

The next step is to use the 4-body density matrix in place of the 3-body matrix. This
would likely give very accurate results without increasing the number of constraints
signiﬁéantly. Solving the dispersion problem (see [11]) can only done using the k-body
density matrix with k¥ > 4. The dispersion problem calculates the energies of excited
states as well as ground states. However, the calculation at any level of approximation

is simplified by the restriction to two-site parameters without affecting the accuracy.

The most physically interesting extension of this work will be to apply these methods

to two and three-dimensional square lattices. This would allow the detection of a
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dimension effect which is a key problem in superconductivity.
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